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Introduction

Bézout’s theorem (Theorem 3.1) states that the number of common points of two algebraic
plane curves is either infinite or equal to the product of their degrees. The theorem holds if
we count points at infinity in the projective plane and intersection multiplicities.

History

In circa the year 300 BC Euclid of Alexandria (∼325–∼265 BC) wrote the treatise The
Elements consisting of thirteen books. Book seven is an introduction to number theory and
it contains the Euclidean algorithm to find the greatest common divisor of two integers.
This algorithm is one of the oldest in history and is still in common use.

In the year 1748 Leonhard Euler (1707–1783) and Gabriel Cramer (1704–1752) already
stated Bézout’s theorem, but neither of them succeeded in completing a proof. A few
years later, in the year 1764, Étienne Bézout (1730–1783) gave the first satisfactory proof
as a result of earlier work of Colin Maclaurin (1698–1746). In actual fact, this proof was
incomplete in the count of multiple points. The proper count of multiplicities was settled
more then one hundred years later, in the year 1873, by Georges-Henri Halphen (1844–1889).
This historical information can be found in [7] and [1].

Two years ago, in 2009, Jan Hilmar and Chris Smyth finished their article [5] and in
this work they proved Bézout’s theorem using the Euclidean algorithm. This bachelor thesis
is based on the article [5], but we will expand the matter a bit more precisely. Firstly, in
Remark 4 of Section 3.3 [5], Hilmar and Smyth admit that they ”have brazenly taken for
granted that certain polynomials [. . .] are homogeneous; so as not to interrupt the flow of the
paper”. In Lemma 3.5 of this bachelor thesis we will prove that these certain polynomials
are indeed homogeneous. Secondly, in the appendix of [5] Hilmar and Smyth refer to Fulton
[2] for the definition of the intersection multiplicity. So actually, alongside the Euclidean
algorithm, Hilmar and Smyth use commutative algebra in order to prove Bézout’s theorem
as well. Using Proposition 2.5, I will prove Bézout’s theorem without any use of commutative
algebra. Finally I will be more extensive in giving definitions and proving properties.

Content

The aim of this bachelor thesis is to prove Bézout’s theorem using the Euclidean algorithm.
Let k be a field and let k be its algebraic closure. Let k∗ denote the unit group of k.

In the first section we will define the projective plane over k̄. After that we will define
homogeneous polynomials, whose solutions have nice properties over the projective plane.
With these homogeneous polynomials, we will be able to define curves in the projective
plane and formulate and prove Bézout’s theorem.

The second section consists of a definition and some important properties of the in-
tersection multiplicity in a common point of two plane curves. Hereby we can define the
intersection cycle of two homogeneous polynomials. The proof of the finiteness of intersection
multiplicities is deferred to section 3.

The last section is about Bézout’s theorem and its proof. For this proof we use an
algorithm which reminds us strongly of the Euclidean algorithm mentioned above. After
applying this algorithm, it is sufficient to prove a weaker version of Bézout’s theorem. We will
finish the proof by induction on the minimum x-degree of two homogeneous polynomials.
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1 Curves and divisors of homogeneous polynomials

In this section we will first define the projective plane and thereafter homogeneous polyno-
mials and their curves. We can study homogeneous polynomials over the projective plane,
which give us curves in the projective plane. Since Bézout’s theorem is about curves in the
projective plane, we need these definitions and properties in order to formulate and prove
the theorem.

The projective plane

Recall that k is a field. We start with a definition of the projective plane over k, using an
equivalence relation.

Definition 1.1. Let ∼ be the equivalence relation on k̄3−{0} defined by x ∼ y if and only
if there exists a λ in k̄∗ such that the equality x = λy holds. The projective plane is defined
as the set

P2
(
k̄
)

:=
(
k̄3 − {0}

)/
∼ .

We will write P2 instead of P2
(
k̄
)
.

Example 1.2. Consider the field of real numbers R. The points (1, 1, 1) and (2, 2, 2) in R3

are not equal to one another, but they are elements of the same equivalence class modulo
the equivalence relation ∼ defined above.

Notation 1.3. Let q : k̄3 − {0} −→ P2 be the quotient map. For all points (a1, a2, a3) in
k̄3 − {0} write q(a1, a2, a3) = (a1 : a2 : a3). These are called homogeneous coordinates.

Remark 1.4. For every point a in P2 the projective plane, there either exist unique ele-
ments x and y in k̄ such that a is of the form (x : y : 1) or there exists a unique element
x in k̄ such that a is of the form (x : 1 : 0) or a is equal to (1 : 0 : 0). Therefore, there
are two disjoint subsets of the projective plane; the subset consisting all points of the form
(x : y : 1) and the subset consisting all points of the form (x : y : 0). Analogously, the latter
subset consists of two disjoint subsets. Hence, the projective plane is a disjoint union of
affine spaces

P2 = k̄2 t k̄ t {one point}.

We will write every point of the projective plane in one of the above mentioned forms.

Homogeneity

Since multiples of points in the projective plane are equal to one another, it would make
sense if there is a relationship between their values when substituted in a polynomial. We
will define so called homogeneous polynomials and subsequently we will show some of their
properties, which will become very useful in the proof of Bézout’s theorem.

Definition 1.5. Let f ∈ k[x, y, z] be a polynomial. One says that f is a homogeneous
polynomial of degree n ∈ Z≥0 if f is of the form

f =
∑
i+j≤n

fijx
iyjzn−i−j ,

with coefficients fij ∈ k for all i, j and one writes f ∈ k[x, y, z]n. If f is a nonzero polynomial,
then ∂f denotes the degree of f and ∂xf denotes the x-degree of f . Logically, ∂y and ∂z are
defined analogously.
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Remark 1.6. Let f ∈ k[x, y, z] be a homogeneous polynomial of degree n and let point

(a1, a2, a3) be in
(
k̄
)3

. For all λ in k̄∗ the equality f(λa1, λa2, λa3) = λnf(a1, a2, a3) holds.

Remark 1.7. The polynomial ring k[x, y, z] is equal to the following direct sum of k-vector
spaces

k[x, y, z] =
⊕
i≥0

k[x, y, z]i.

Hence, if f ∈ k[x, y, z] is a polynomial, then it is a unique finite sum of homogeneous
polynomials,

f =

N∑
i=0

fi

for some positive integer N and with homogeneous polynomials fi ∈ k[x, y, z]i for all i.

Remark 1.8. From Remark 1.6 it follows that if one finds a nonzero solution to the
equation f = 0 for some homogeneous polynomial f ∈ k[x, y, z], then one finds a line
through 0 in k̄3 such that every point in this line is a solution to the equation. From the
definition of the projective plane it follows that we may say that the projective plane is the
set of one-dimensional subspaces of k̄3.

Example 1.9. Consider the field of real numbers R and let f ∈ R[x, y, z] be the homoge-
neous polynomial given by x+ y − z. It is easy to see that point (1, 1, 2) in R3 is a solution
of the equation f = 0. Since f is homogeneous and since C is the algebraic closure of R, one
has that for all λ in C∗ the point λ(1, 1, 2) is a solution of the equation in C[x, y, z]. Hence,
we find point ( 1

2 : 1
2 : 1) in the projective plane P2 as a solution of the equation.

Lemma 1.10. Let f, g ∈ k̄[x, y, z] be two nonzero polynomials such that g divides f . If f
is homogeneous, then so is g.

Proof. Let g, h ∈ k̄[x, y, z] be two nonzero polynomials such that the product f := gh is
a homogeneous polynomial and suppose that g is not homogeneous. From Remark 1.7 it
follows that there exist strictly positive integers M and N such that

g =

M∑
i=0

gi, h =

N∑
j=0

hj and f =

M+N∑
s=0

fs

with homogeneous polynomials gi ∈ k̄[x, y, z]i, hj ∈ k̄[x, y, z]j and fs ∈ k̄[x, y, z]s for all
i, j, s. Define the following indices

i0 := min{i : gi 6= 0}, i1 := max{i : gi 6= 0}, j0 := min{j : hj 6= 0}, j1 := max{j : hj 6= 0}.

Hence, one has that both fi0+j0 = gi0hj0 and fi1+j1 = gi1hj1 are nonzero homogeneous
polynomials. One has that i0 6= i1, otherwise g would be a homogeneous polynomial. It
follows that one has that i0 + j0 < i1 + j1, so f is not homogeneous. This is in contradiction
with the assumption. Therefore, it follows that if f is homogeneous, then so is g.

Lemma 1.11. Let f ∈ k[x, y, z] be a nonzero homogeneous polynomial. There exists a
unique factorization modulo k∗ of f in k[x, y, z] such that one has

f = c ·
∏
i∈I

feii

for some constant c in k∗ and finite index set I, such that for all i one has that fi ∈ k[x, y, z]
is an irreducible homogeneous polynomial and ei ∈ Z>0 is the multiplicity of fi and for all
i, j one has that fi = fj modulo k∗ if and only if i = j.
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Proof. Since k is a field, k is a factorial ring (definition: [6], p. 144) or in different words
an unique factorization domain. Hence, k[x] is a factorial ring ([6], Theorem 6.9, p. 148)
and analogously it follows that k[x, y, z] is a factorial ring. So for all nonzero polynomials
f ∈ k[x, y, z] there exists a unique factorization modulo k∗. It follows from Lemma 1.10 that
fi is homogeneous for all i.

Remark 1.12. Let f ∈ k[x, y, z] be a nonzero homogeneous polynomial. Since k[x, y, z]
is a subset of k̄[x, y, z] and since k̄ is a field as well, one can consider the factorization of f
either in k[x, y, z] or in k̄[x, y, z].

Example 1.13. Consider the field of real numbers R. Let f ∈ R[x, y, z] be the homoge-
neous polynomial given by x2 + y2. Since f is irreducible in R[x, y, z], the factorization of
f in R[x, y, z] is given by (x2 + y2)1. Now consider the field of complex numbers C which is
the algebraic closure of R. The factorization of f in C[x, y, z] is given by (x− iy)1(x+ iy)1.

Notation 1.14. Let f, g ∈ k[x, y, z] be two nonzero homogeneous polynomials and let their
factorizations in k̄[x, y, z] be given as in Lemma 1.11. The greatest common divisor or gcd
of f and g is a common divisor of f and g such that if polynomial h is a divisor of both f
and g, then h divides the gcd of f and g. If for all i, j one has that fi 6= gj modulo k∗, then
one says that f and g are coprime and one writes gcd(f, g) = 1.

Remark 1.15. Note that using the Euclidean algorithm for polynomials in one variable
([6], Theorem 1.6, p. 113) it can be shown that f and g are coprime in k̄[x, y, z] if and only
if f and g are coprime in k[x, y, z].

Curves of homogeneous polynomials

Given a homogeneous polynomial one can define its curve in the projective plane. Theo-
rem 3.1 (Bézout’s theorem) tells us about the number of intersection points of these so called
curves.

Definition 1.16. Let f ∈ k[x, y, z] be a nonzero homogeneous polynomial. The curve of
f is the subset of P2 defined as the zero locus Z(f) :=

{
a ∈ P2 : f(a) = 0

}
.

Remark 1.17. Since k̄ is algebraically closed it follows that if f is not constant, then Z(f)
is infinite.

Example 1.18. Let f, g ∈ R[x, y, z] be two nonzero homogeneous polynomials given by xy
and xy2 respectively. The curves of f and g are both equal to the union of Z(x), the y-axis
and Z(y), the x-axis.

The following lemma is fundamental for both the formulation and the proof of Bézout’s
theorem.

Lemma 1.19. Let f, g ∈ k[x, y, z] be two nonzero coprime homogeneous polynomials. One
has that the intersection of their curves Z(f) ∩ Z(g) is finite.

Proof. Let f, g ∈ k[x, y, z] be two nonzero coprime homogeneous polynomials. From Remark
1.4 it follows that we can split Z(f) ∩ Z(g) into two disjoint subsets, the points which are
elements of k̄2 and the remaining points.

Consider the former subset. All its elements are of the form (a1 : a2 : 1). Hence,
it is equivalent to study common vanishing points in k̄2 of the polynomials f(x, y, 1) and
g(x, y, 1) in k[x, y]. Note that f and g are polynomials in one variable x with coefficients in
the polynomial ring k[y]. Since k[y] is a factorial ring with quotient field k(y) it follows from
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Gauss’s lemma that f and g are coprime in k(y)[x]. Hence, there exist two rational functions
r1, r2 ∈ k(y)[x] such that the equality r1f + r2g = 1 holds. Multiplying this equation by a
common (nonzero) multiple of the denominators of r1 and r2, say the polynomial h ∈ k[y],
shows that h is an element of the ideal (f, g) generated by f(x, y, 1) and g(x, y, 1) in k[x, y].
Hence, for all points (a1, a2) in k̄2 one has that if the equalities f(a1, a2, 1) = g(a1, a2, 1) = 0
hold, then one has that h vanishes at a2. Hence, there exist only finitely many points a2 in
k̄ such that the equalities f(a1, a2, 1) = g(a1, a2, 1) = 0 hold. Analogously, there exist only
finitely many points a1 in k̄ such that the equalities f(a1, a2, 1) = g(a1, a2, 1) = 0 hold. It
follows that there exist only finitely many points in in the intersection curves Z(f)∩Z(g) of
the form (a1 : a2 : 1).

Now consider the latter subset. Since there is only one point in this subset of the form
(1 : 0 : 0), it is sufficient to prove that there exist only finitely many points of the form
(b : 1 : 0). Note that at least one of the polynomials f(x, 1, 0) and g(x, 1, 0) in k[x] is
nonzero, otherwise z is a common divisor of f and g. Without loss of generality, assume
that f(x, 1, 0) is nonzero. There exist only finitely many points b in k̄ such that the equality
f(b, 1, 0) = 0 holds. Hence, there exist only finitely many points in the intersection of curves
Z(f) ∩ Z(g) of the form (b : 1 : 0) = 0.

It follows that Z(f) ∩ Z(g) is finite.

Lemma 1.20. Let f, g ∈ k[x, y, z] be two nonzero homogeneous polynomials such that the
curve of g is a subset of the curve of f ; Z(g) ⊂ Z(f). If g is irreducible, then g divides f and
one writes g|f .

Proof. Let f, g ∈ k[x, y, z] be two nonzero homogeneous polynomials with g irreducible and
such that Z(g) ⊂ Z(f). Assume that g 6 |f so that f and g are coprime. From Lemma 1.19
it follows that Z(g)∩ Z(f) is finite and so Z(g) is finite. Hence, from Remark 1.17 it follows
that, g is constant and so g divides f . This is in contradiction with the assumption so g
divides f .

Corollary 1.21. Let f, g ∈ k[x, y, z] be two nonzero irreducible homogeneous polynomials.
If f and g have the same curve, then the equality f = g modulo k∗ holds.

Divisors of homogeneous polynomials

From Example 1.18 it follows that it is possible for two nonzero homogeneous polynomials,
distinct up to k∗, to have the same curve in the projective plane. Hence, given a curve
there does not exist one unique polynomial modulo k∗ with this curve. We will now define
divisors of homogeneous polynomials. Given a divisor, it follows from Corollary 1.21 that
there exists a nonzero homogeneous polynomial, unique modulo k∗, giving this divisor.

Definition 1.22. A prime divisor in P2 is a subset of P2 of the form Z(f) with f ∈ k̄[x, y, z]
a homogeneous irreducible polynomial.

Definition 1.23. Let f ∈ k̄[x, y, z] be a nonzero homogeneous polynomial and let the
factorization of f be given as in Lemma 1.11. The divisor of f is defined by∑

i∈I
ei · Z(fi) in

{{
prime divisors of P2

} ϕ−→ Z : ϕ has finite support
}
.

We will not use the divisor of a nonzero homogeneous polynomial in our computations.
Later, in Definition 2.15 we will define the intersection cycle of two nonzero coprime homo-
geneous polynomials. This definition is rather similar to the definition above.
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2 Intersection of curves

In this section we will define the intersection cycle of two nonzero coprime homogeneous
polynomials. This intersection cycle is a way to write down common points of the curves
of those two polynomials. In the definition of a divisor one can see that points have a form
of multiplicity. In order to define these multiplicities we will first define the intersection
multiplicity of two nonzero coprime homogeneous polynomials in a point of the projective
plane. When we prove Bézout’s theorem, we will use the intersection cycle in an algorithm
to compute those common points and their multiplicities.

Definition of intersection multiplicity

We will first give a definition of the intersection multiplicity using the local ring of rational
functions of zero degree modulo one of its ideals. Thereafter, we will prove some properties
of the intersection multiplicity.

Definition 2.1. Let a be a point in the projective plane P2. The local ring of rational
functions of zero degree at the point a is defined as

Ra :=
{s
t
∈ k̄(x, y, z) : s, t ∈ k̄[x, y, z] homogeneous of the same degree, t(a) 6= 0

}
.

Definition 2.2. Let f1, . . . fn ∈ k̄[x, y, z] be homogeneous polynomials and let a be a point
in the projective plane P2. The ideal (f1, . . . , fn)a ⊂ Ra generated by f1, . . . , fn is defined
as the ideal ([6], p. 87 ) generated by the rational functions of zero degree fi/(t

∂fi) for all i
and with t ∈ {x, y, z} such that t does not vanish at a. Hence,

(f1, . . . , fn)a :=
{s
t
∈ Ra : ∃p1, . . . , pn ∈ k̄[x, y, z] homogeneous, s = p1f1 + · · ·+ pnfn

}
.

Definition 2.3. Let f, g ∈ k̄[x, y, z] be two nonzero coprime homogeneous polynomials and
let a be a point in the projective plane P2. The intersection multiplicity i(a, f ∩ g) of f and
g at a is defined as the dimension of the k̄-vector space Ra/(f, g)a. Hence

i(a, f ∩ g) := dim (Ra/(f, g)a) in Z≥0 ∪ {∞}.

Remark 2.4. From the axioms of a k̄-vector space it is easy to check that Ra is a k̄-
vector space with addition Ra×Ra → Ra and scalar multiplication k̄×Ra → Ra defined by
(f, g) 7→ f+g and (v, f) 7→ vf respectively. Hence, Ra/(f, g)a is indeed a k̄-vector space and
the intersection multiplicity i(a, f ∩ g) is well defined. Note that it is not obvious that this
dimension is finite, although in [5] Hilmar and Smyth did not mention anything regarding
the finiteness of the intersection multiplicity.

Properties of intersection multiplicity

In [5] the intersection multiplicity is defined in the same way as in this bachelor thesis. For
a proof of Proposition 2.5 below, Hilmar and Smyth refer to [2]. In [2] Fulton uses another
strategy to define the intersection multiplicity defined in Definition 2.3. He starts with de-
scribing the properties an intersection multiplicity should satisfy, including the properties
given in this section. Thereafter, he proves that there exists only one definition of an inter-
section multiplicity having these properties. He uses Hilbert’s Nullstellensatz ([2], page 20)
and more commutative algebra to prove that the k̄-vector space given in the definition above
is finite dimensional. In order to avoid Hilbert’s Nullstellensatz, we will prove Proposition
2.5 as part of Bézout’s theorem in Section 3. The properties of the intersection multiplic-
ity mentioned in this section will help us later in proving some computational tools of the
intersection cycle, as defined at the end of said section.
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Proposition 2.5. In the situation of Definition 2.3 above, the k̄-vector space Ra/(f, g)a
is finite dimensional.

Lemma 2.6. Let a be a point in the projective plane P2 and let f, g ∈ k[x, y, z] be two
nonzero coprime homogeneous polynomials. The intersection multiplicity i(a, f∩g) is strictly
positive if a is an element of the intersection of curves Z(f) ∩ Z(g) and zero otherwise.

Proof. Let a be a point in the projective plane P2 and assume that a is not an element of
in the intersection of curves Z(f)∩Z(g). Let s/t be a rational function of zero degree in Ra
with nonzero t(a). It follows that either the homogeneous polynomial ft or the homogeneous
polynomial gt does not vanish at point a or neither of them does. Without loss of generality,
assume that ft does not vanish at point a. Hence, one has that the rational function s/t is
equal to fs/ft and so it follows that s/t is an element of the ideal (f, g)a. So the local ring
of rational functions of zero degree Ra is a subset of its own ideal (f, g)a. Hence, the ideal
generated by f and g is equal to Ra. It follows that for the intersection multiplicity of f
and g at point a one has that

i(a, f ∩ g) = dim(Ra/Ra) = dim(0) = 0.

Suppose that a is an element of the intersection of curves Z(f)∩Z(g). Let s/t be a rational
function of zero degree in the ideal (f, g)a with nonzero t(a), so s is a linear combination of
f and g. Since a is an element of the intersection of curves Z(f) ∩ Z(g), one has that s/t
vanishes at point a. Hence, all elements of (f, g)a vanish at a. Since 1 = 1/1 is an element
of the polynomial ring k̄[x, y, z], but 1 does not vanish at a, one has that (f, g)a is not equal
to Ra. Thus, for the intersection multiplicity of f and g at point a, it follows that

i(a, f ∩ g) = dim(Ra/(f, g)a) > 0.

Lemma 2.7. Let a be a point in the projective plane P2 and let f, g ∈ k[x, y, z] be two
nonzero coprime homogeneous polynomials. For the intersection multiplicity of f and g at
point a one has that i(a, f ∩ g) = i(a, g ∩ f).

Proof. Let a be a point in the projective plane P2 and let f, g ∈ k[x, y, z] be two nonzero
homogeneous polynomials such that f and g are coprime. It follows directly from Definition
2.2 that one has that (f, g)a = (g, f)a. Hence, the equality i(a, f ∩g) = i(a, g∩f) holds.

In order to prove Lemma 2.10 we will first prove the following two lemmas.

Lemma 2.8. Let A be a ring and let v, w ∈ A be two of its elements such that the maps
v·, w· : A −→ A given by x 7−→ vx and x 7−→ wx respectively are injective. One has that
w· induces a morphism of A-modules A/(v) −→ A/(vw) and the sequence

0 −→ A/(v)
w·−→ A/(vw)

q−→ A/(w) −→ 0

is exact, with q the quotient map.

Proof. Let A be a ring and let v, w ∈ A be two of its element such as in the lemma. Since A
is a ring, A is an abelian group. We can define the map A×A −→ A given by (y, x) 7−→ yx
which defines A as an A-module ([6], p. 192). Since (v), (vw) and (w) are submodules of
A-module A, one can construct the factor modules A/(v), A/(vw) and A/(w) respectively.
Let ψ and ϕ be the two maps induced by the map w· and the quotient map q respectively.
Hence,

ψ : A/(v) −→ A/(vw) ϕ : A/(vw) −→ A/(w)
and

x 7−→ wx x 7−→ x
.
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Note that both ψ and ϕ are morphisms of A-modules. It is sufficient to prove that the
sequence

0 −→ A/(v)
ψ−→ A/(vw)

ϕ−→ A/(w) −→ 0 (1)

is exact.

Claim 1: The map ψ is injective. Let x be an element of A such that ψ(x) = wx
vanishes in A/(vw). It follows that one has that ψ(x) = n(vw) = w(nv) in A/(vw) for some
element n in A. Since w· is injective, the equality x = nv holds. One has that nv vanishes
in A/(v), which proves that the kernel of ψ is trivial and so that ψ is injective.

Claim 2: The map ϕ is surjective. This is because ϕ is the quotient map.

Claim 3: The image of ψ is equal to the kernel of ϕ. Let y be an element A such that
y in A/(vw) is an element of the image of ψ. Hence, there exists an element x in A such
that one has that y = wx in A. It follows that ϕ(y) is equal to wx which vanishes in A/(w).
This implies that y is an element of the kernel of ϕ and so the image of ψ is a subset of the
kernel of ϕ. Now, let y be an element of A such that y in A/(vw) is an element of the kernel
of ϕ. Hence, there exists an element x in A such that y is equal to wx in A. One has that
ψ(x) is equal to wx in A/(vw) and so it is equal to y, which implies that y is an element of
the image of ψ and so the image of ψ is a subset of the kernel of ϕ. This proves that the
image of ψ is equal to the kernel of ϕ.

From Claim 1, 2 and 3 it follows that the sequence (1) is exact, which completes the
proof of this lemma.

Lemma 2.9. Let
0 −→ U

e−→ V
p−→W −→ 0 (2)

be an exact sequence of k̄-vector spaces. One has that

dimU + dimW = dimV.

Proof. Let (ui)i∈I and (wj)j∈J be two bases of U and W respectively. Note that these bases
may be infinite. Let e be the embedding of U into V and let p be a projection of V onto
W . Let (vj)j∈J be elements of V such that for all j one has that the equality p(vj) = wj
holds. It is sufficient to prove the following claim. Claim: (e(ui)i∈I , (vj)j∈J) is a base of
V . Firstly, let v be an element of V . There exist unique elements {λj}j∈J in k̄ such that
the equality p(v) =

∑
j∈J λjwj holds. One has that

p

∑
j∈J

λjvj

 =
∑
j∈J

λjwj . Hence, p

v −∑
j∈J

λjvj

 = p(v)− p

∑
j∈J

λjvj


vanishes in W . It follows that v −

∑
j∈J λjvj is an element of the kernel of p and since (2)

is exact, it is an element of the image of e as well. This implies that there exists a unique
element u in U such that e(u) is equal to v −

∑
j∈J λjvj . Secondly, there exist unique

elements {µi}i∈I in k̄ such that the equality u =
∑
i∈I µiui holds. Hence, e maps u into∑

i∈I µie(ui). It follows that one has that

v =
∑
i∈I

µie(ui) +
∑
j∈J

λjwj .

Since the elements {λj}j∈J {µi}i∈I are unique, the latter proves the claim and so the
lemma.

Using Lemma 2.8 and Lemma 2.9 we can prove the following lemma.
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Lemma 2.10. Let a be a point in the projective plane P2 and let f, g, h ∈ k[x, y, z] be
three nonzero homogeneous polynomials such that f is coprime with both g and h. For the
intersection multiplicity of f and gh at a one has that i(a, f ∩ gh) = i(a, f ∩ g) + i(a, f ∩ h).

Proof. Let A be the ring Ra/(f)a and let its elements v and w be equal to g/(t∂g) and
h/(t∂h) respectively with t in {x, y, z} such that t does not vanish at a. The mapping v·
defined as in Lemma 2.8 is injective, since if there exist three elements p1, p2, q in A such that
both the equalities vp1 = q and vp2 = q hold, then it follows that one has p1 = p2. Likewise
one can prove that the mapping w· defined as in Lemma 2.8 is injective. Hence, from this
same lemma it follows that w· induces a morphism of A-modules A/(v) −→ A/(vw) and the
sequence of k̄-vector spaces

0 −→ Ra/(f, g)a −→ Ra/(f, gh)a −→ Ra/(f, h)a −→ 0

is exact. From Lemma 2.9 it follows that one has that

dim(Ra/(f, g)a) + dim(Ra/(f, h)a) = dim(Ra/(f, gh)a)

which completes the proof.

Lemma 2.11. Let a be a point in the projective plane P2 and let f, g, h ∈ k[x, y, z] be
three nonzero homogeneous polynomials such that f and g are coprime and such that fh
and g have the same degrees. For the intersection multiplicity of f and g+ fh one has that
i(a, f ∩ (g + fh) = i(a, f ∩ g).

Proof. Let a be a point in the projective plane P2 and let f, g, h ∈ k[x, y, z] be three nonzero
homogeneous polynomials such that f and g are coprime and such that fh and g have the
same degrees. Let t ∈ {x, y, z} such that t does not vanish at a. One has that

(f, g + fh)a =

(
f

t∂f
,
g

t∂g
+

f

t∂f
· h
t∂h

)
a

=

(
f

t∂f
,
g

t∂g

)
a

= (f, g)a.

Hence, for the intersection multiplicity of f and g+fh one has i(a, f ∩ (g+fh) = i(a, f ∩g).

Lemma 2.12. Let l,m ∈ k[x, y, z] be two nonzero distinct modulo k∗ homogeneous poly-
nomials of degree 1 given by l1x + l2y + l3z and m1x + m2y + m3z respectively. For the
intersection of their curves one has that Z(l) ∩ Z(m) = {p×} with intersection multiplicity
i(p×, l ∩m) = 1. The point p× of the projective plane is given by

p× :=

(∣∣∣∣ l2 l3
m2 m3

∣∣∣∣ , ∣∣∣∣ l3 l1
m3 m1

∣∣∣∣ , ∣∣∣∣ l1 l2
m1 m2

∣∣∣∣) .
Proof. Let l,m ∈ k[x, y, z] be two nonzero distinct homogeneous polynomials of degree 1
given by l1x + l2y + l3z and m1x + m2y + m3z respectively. From Cramer’s rule it follows
that the unique point on both lines is indeed p× defined as in the lemma. Since l and m are
distinct, it follows that they are independent, and since the dimension of k3 is equal to 3,
there exist elements n1, n2, n3 in k such that the matrix

J :=

 l1 l2 l3
m1 m2 m3

n1 n2 n3


has nonzero determinant. Let n ∈ k[x, y, z] be the nonzero homogeneous polynomial of

degree 1 given by n1x + n2y + n3z. Since the equality J
(
x y z

)T
=
(
l m n

)T
holds, it follows that the equality

(
x y z

)T
= J−1

(
l m n

)T
holds as well. Hence,
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all polynomials in k̄[x, y, z] can be written as polynomials in k̄[l,m, n]. Let q be a rational
function of zero degree in Rp× . For some positive integer r there exist two homogeneous
polynomials s2, t2 in k̄[l,m, n] both of degree r− 1 and two homogeneous polynomials s1, t1
in k̄[m,n] both of degree r − 1 and two elements s0, t0 in k̄ with nonzero t0 such that the
equality

q =
ls2 +ms1 + s0n

r

lt2 +mt1 + t0nr

holds. Note that both (lt2 +mt1 + t0n
r) and t0 do not vanish at the point p×. One has that

q − s0
t0

=
l(s2t0 − s0t2) +m(s1t0 − s0t1)

lt0t2 +mt0t1 + t20n
r

is an element of the ideal (l,m)p× . Since s0
t0

is an element of k̄, one has that the dimension of
Rp×/(l,m)p× is equal to 1. Hence, for the intersection multiplicity, one has i(p×, l∩m) = 1.

Intersection cycle

In order to define the intersection cycle we will first define the intersection function. The
definition of the intersection cycle reminds us strongly of the definition of a divisor. After the
definition of the intersection cycle of two nonzero coprime homogeneous polynomials we will
formulate a proposition with computational tools for the intersection cycle. Its proof will
follow directly from the properties of the intersection multiplicity mentioned in the previous
section.

Definition 2.13. Let f, g ∈ k[x, y, z] be two nonzero coprime homogeneous polynomials.
The intersection function of f and g is defined as

i(f, g) : P2 −→ Z≥0 ∪ {∞} with a 7−→ i(a, f ∩ g).

Later we will see that as a consequence of Bézout’s theorem, for all a the intersection
multiplicity i(a, f ∩ g) is in Z.

Lemma 2.14. The intersection function defined above has finite support.

Proof. Since f and g are coprime it follows from Lemma 1.19 that the intersection of their
curves Z(f)∩Z(g) is finite. From Lemma 2.6 it follows that points a in the projective plane
P2 have zero intersection multiplicity i(a, f ∩ g) if and only if a is not an element of the
intersection of the curves Z(f)∩Z(g). Hence, the intersection function has finite support.

Definition 2.15. Let f, g ∈ k[x, y, z] be two nonzero coprime homogeneous polynomials.
The intersection cycle of f and g is defined as

f ∩ g :=
∑
a∈P2

i(a, f ∩ g)a in
{
P2 ϕ−→ Z ∪ {∞} : ϕ has finite support

}
.

Let the sum of the intersection multiplicities of all points a in the projective plane P2

#(f ∩ g) :=
∑
a∈P2

i(a, f ∩ g) ∈ Z≥0 ∪ {∞}

denote the intersection number of f and g.

Note that from Definition 2.13 and Lemma 2.14 it follows that both the intersection cycle
of f and g and the intersection number of f and g are well defined and that #(f ∩ g) is in
Z if all i(a, f ∩ g) are in Z.
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Proposition 2.16. Let f, g, h ∈ k[x, y, z] be three nonzero homogeneous polynomials such
that f and g are coprime. The following properties of their intersection cycles and intersec-
tion numbers hold.

(i) f ∩ g = g ∩ f ;

(ii) If f and h are coprime, then f ∩ (gh) = f ∩ g + f ∩ h;

(iii) If ∂g = ∂(fh), then f ∩ (g + fh) = f ∩ g;

(iv) If f and g are two distinct homogeneous polynomials of degree 1, then #(f ∩ g) = 1.

Proof. Properties (i), (ii), (iii) and (iv) follow directly from the proofs of Lemma 2.7, 2.10,
2.11 and 2.12 respectively.

3 Bézout’s theorem

With the definition of the intersection number of two nonzero coprime homogeneous polyno-
mials given in the previous section, we can now finally formulate Bézout’s theorem. Subse-
quently, we will examine an example where one uses this theorem. In order to proof Bézout’s
theorem, we will simplify the theorem to the situation where one of the polynomials is a
union of lines. Proposition 3.3 is a proof for this simplified problem. In order to finish the
proof of Bézout’s theorem we will introduce an algorithm which reminds us strongly of the
Euclidean algorithm to find the greatest common divisor of two integers. This algorithm
uses the properties of the intersection cycle given in Proposition 2.16 in order to simplify
the intersection cycle of two arbitrary nonzero coprime homogeneous polynomials. In the
end, the proof of Bézout’s theorem will be a concise proof by induction.

Theorem 3.1 (Bézout (1730 - 1783)). Let f, g ∈ k[x, y, z] be two nonzero coprime homo-
geneous polynomials of degrees m and n respectively. For all points a in the projective plane
P2 the intersection multiplicity i(a, f ∩ g) is finite. The intersection number of f and g is
given by #(f ∩ g) = mn.

Example 3.2. Consider the field of real numbers R and let the two homogeneous poly-
nomials f, g ∈ k[x, y, z] be given by y2z − x3 and y2z − x2(x + z) respectively. Compute
all intersection points of f and g in the projective plane and their multiplicities. In other
words, determine the intersection Z(f) ∩ Z(g) of the curves of f and g.

Note that f and g are coprime. Hence, we can examine the intersection cycle f ∩ g.
From Proposition 2.16(i) it follows for the intersection cycle of f and g that one has that
f ∩ g = g ∩ f . Interpret f and g as two polynomials in one variable x with coefficients in
R[y, z]. Use polynomial long division ([6], Theorem 1.6, p. 113) to divide f through by g.
One obtains that f is equal to 1 · g + x2z = x2z + g · 1 and so for the intersection cycle of g
and f one has that

g ∩ f = g ∩ (x2z + g · 1).

It follows from Proposition 2.16(iii) that for the latter intersection cycle the equality

g ∩ (x2z + g · 1) = g ∩ (x2z)

holds. From Proposition 2.16(ii) it follows that for the intersection cycle of g and x2z one
has that

g ∩ (x2z) = 2(g ∩ x) + g ∩ z.

Finally, using Proposition 2.16(ii) and (iii) again, one computes the intersection cycles

g ∩ x = (y2z) ∩ x = 2(y ∩ x) + z ∩ x = 2(0 : 0 : 1) + (0 : 1 : 0)
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and
g ∩ z = (x3) ∩ z = 3(x ∩ z) = 3(0 : 1 : 0).

Hence, one obtains that
f ∩ g = 4(0 : 0 : 1) + 5(0 : 1 : 0).

Note that the intersection number of f and g is equal to 9, which follows as well from
Bézout’s theorem.

Intersecting with a union of lines

In this subsection we will proof Bézout’s theorem for a simplified situation, the situation
stated in Proposition 3.3. This is the first step of the proof by induction of Bézout’s theorem.

Proposition 3.3. Let f ∈ k[x, y, z] and g ∈ k[y, z] be two nonzero coprime homogeneous
polynomials of degrees m and n respectively. For all points a in the projective plane P2 one
has that the intersection multiplicity i(a, f ∩ g) is finite. The intersection number of f and
g is given by #(f ∩ g) = mn.

Proof. Let f ∈ k[x, y, z] and g ∈ k[y, z] be two coprime homogeneous polynomials of degrees
m and n respectively. We will prove the proposition for two different cases.

Firstly, assume that the polynomial g has zero y-degree as well. Hence, one has that g
is an element of k[z] so g is of the form g = λzn for some element λ in k∗. There exists a
homogeneous polynomial f ′ ∈ k[x, y, z] of degree m− 1 such that one has that

f(x, y, z) = f(x, y, 0) + zf ′(x, y, z).

Note that f(x, y, 0) is nonzero since z and f are coprime and that f(x, y, 0) and f ′ are
both homogeneous polynomials of degree m and m− 1 respectively. Hence, it follows from
Proposition 2.16(iii) that for the intersection cycle of f and z one has that

f ∩ z = (f(x, y, 0) + zf ′(x, y, z)) ∩ z = f(x, y, 0) ∩ z.

Since f(x, y, 0) is a homogeneous polynomial of degree m it follows from Lemma 1.11 and
Remark 1.12 that one can factorize f(x, y, 0) into µ

∏m
i=1 fi with element µ in k∗ and homo-

geneous irreducible polynomials fi in k̄[x, y]. Choose an order to the fi’s such that f1, . . . , ft
are elements of k̄[y] with zero x-degree and ft+1, . . . , fm are elements of k̄[x, y] with nonzero
x-degree for some constant t with 0 ≤ t ≤ m. From Proposition 2.16(ii) it follows that for
the intersection cycle of polynomials f(x, y, 0) and z one has that

f(x, y, 0) ∩ z =

(
µ

m∏
i=1

fi

)
∩ z =

m∑
i=1

(fi ∩ z) .

For all i in {1, . . . , t} note that fi is of the form νiy with element νi in k̄∗, so it follows
that for the intersection cycle of fi and z one has that fi ∩ z = y ∩ z = (1 : 0 : 0). For
all i in {t+ 1, . . . ,m} one has that homogeneous polynomial fi has degree 1, so fi is a line
in k̄[x, y]. Let αt+1, . . . , αm in k̄ be the (not necessarily distinct) roots of the polynomials
ft+1(x, 1), . . . , fm(x, 1) respectively. Since these are homogeneous polynomials of degree 1
with nonzero x-degree it follows that for all i in {t + 1, . . . ,m} one has that fi is equal
to (x − αiy). Hence, for these fi one has that the intersection cycles with z are given by
fi ∩ z = (x−αiy)∩ z = (αi : 1 : 0). Hence, for the intersection cycle of f and g one has that

f ∩ g = f ∩ (λzn) = n(f ∩ z) = n (f(x, y, 0) ∩ z) = n

(
m∑
i=1

(fi ∩ z)

)

= n

(
t(1 : 0 : 0) +

m∑
i=t+1

(αi : 1 : 0)

)
.
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Since the intersection cycle f ∩ g given above is a finite sum it follows that for all points
a ∈ P2 in the projective plane the intersection multiplicity i(a, f ∩ g) is finite and that the
intersection number of f and g is given by #(f ∩ g) = mn.

Secondly, assume that polynomial g has nonzero y-degree. Just as the factorization of
f(x, y, 0) in the situation above, one can factorize g into λ

∏n
i=1 gi with element λ in k∗

and homogeneous irreducible polynomials g1, . . . , gr equal to z modulo k̄∗ and homogeneous
irreducible polynomials gr+1, . . . , gn of the form y−βiz with (not necessarily distinct) roots
βr+1, . . . , βn in k̄ for some constant r with 0 ≤ r ≤ n. Note that for the former types of gi,
the situation is analogue to the situation above, so one has that

f ∩ z = f(x, y, 0) ∩ z = q(1 : 0 : 0) +

m∑
i=q+1

(αi : 1 : 0)

for some constant q. There exists a homogeneous polynomial f ′ ∈ k[x, y, z] of degree m− 1
such that for any element β in k̄ and the homogeneous polynomial f the equality

f = f(x, βz, z) + (y − βz)f ′(x, y, z)

holds. It follows from Proposition 2.16(iii) that for any element β in k̄ the intersection cycle
of f and line (y − βz) is given by

f ∩ (y − βz) = (f(x, βz, z) + (y − βz)f ′(x, y, z)) ∩ (y − βz) = f(x, βz, z) ∩ (y − βz).

Again, analogous to the factorizations of f(x, y, 0) and g above, for all i in {r + 1, . . . , n}
one can factorize f(x, βiz, z) into µi

∏m
j=1 fij with elements µi in k∗ and homogeneous irre-

ducible polynomials fi1, . . . , fisi in k̄(βi)[z] with zero x-degree and homogeneous irreducible
polynomials fi(si+1), . . . , fim in k̄(β)[x, z] with nonzero x-degree for some constants si with
0 ≤ si ≤ m. Hence, the homogeneous irreducible polynomials fi1, . . . , fisi are equal to
z modulo k(βi)

∗. For any element β in k̄ it follows from Proposition 2.16(iii) that for the
intersection cycle of these homogeneous polynomials fij and line (y − βz) one has that

fij ∩ (y − βz) = z ∩ (y − βz) = z ∩ y = (1 : 0 : 0).

Otherwise, if j is an element of {si + 1, . . . ,m}, then fij is a homogeneous polynomial of
degree 1 in k̄(β)[x, z] with nonzero x-degree. For all i, j let elements γij in k̄(βi) be the root
of the polynomial fij(x, 1). Hence, one has that fij(x, z) is equal to (x− γijz). It follows
that for these polynomials and for all elements β in k̄ one has that

fij ∩ (y − βz) = (x− γijz) ∩ (y − βz) = (γij : β : 1).

Hence, for the intersection cycle of f ∈ k[x, y, z] and g ∈ k[y, z] with nonzero x-degree one
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has that

f ∩ g = f ∩

(
λ

n∏
i=1

gi

)
=

n∑
i=1

(f ∩ gi) =

t∑
i=1

(f ∩ z) +

n∑
i=t+1

(f ∩ (y − βiz))

=

t∑
i=1

(f ∩ z) +

n∑
i=t+1

(f(x, βiz, z) ∩ (y − βiz))

=

t∑
i=1

(f ∩ z) +

n∑
i=t+1

µi m∏
j=1

fij

 ∩ (y − βiz)


=

t∑
i=1

(f ∩ z) +

n∑
i=t+1

 m∑
j=1

(fij ∩ (y − βiz))


=

t∑
i=1

(f ∩ z) +

n∑
i=t+1

si(1 : 0 : 0) +

m∑
j=si+1

(γij : βi : 1)


=

t∑
i=1

q(1 : 0 : 0) +

m∑
i=q+1

(αi : 1 : 0)

+

n∑
i=t+1

si(1 : 0 : 0) +

m∑
j=si+1

(γij : βi : 1)

 .
Since the intersection cycle f ∩ g given above is a finite sum it follows that for all points
a ∈ P2 in the projective plane the intersection multiplicity i(a, f ∩ g) is finite and that the
intersection number of f and g is given by #(f ∩ g) = mn.

The Euclidean Algorithm

In this section we will define an algorithm which reminds us strongly of the Euclidean
algorithm to compute the greatest common divisor of two integers. Given two nonzero
homogeneous polynomials of arbitrary degrees, the algorithm simplifies the computation
of their intersection cycle. Instead of computing this intersection cycle, we can compute
intersection cycles of two polynomials of which at least one has zero x-degree. Proposition
3.3 gives us the proof of Bézout’s theorem for these intersection cycles, thus we can finish
the proof by induction on the minimum of the x-degrees of f and g.

Algorithm 3.4. Input: Two nonzero coprime homogeneous polynomials f, g ∈ k[x, y, z]
of degree n and m respectively such that the inequality ∂xf ≥ ∂xg ≥ 1 holds.

Output: Four homogeneous polynomials r, g′, h, c ∈ k[x, y, z] such that one has the
equation of intersection cycles f ∩ g = r ∩ g′ − h ∩ g′ + f ∩ c holds and such that for the
x-degrees one has that ∂xr < ∂xg

′ = ∂xg and ∂xh = ∂xc = 0.

Note that all homogeneous polynomial of zero x-degree in k̄[y, z] are products of homo-
geneous polynomials of degree 1. In the previous subsection we proved Bézout’s theorem
for the situation where at least one of the homogeneous polynomials is such a product.

Step (1) Find the unique rational functions Q,R ∈ k(y, z)[x] with 0 ≤ ∂xR < ∂xg and
R 6= 0 and f = Qg +R.

Step (2) Define the homogeneous polynomial h̃ ∈ k[y, z] as the least common multiple of

the denominators of the rational functions Q and R to get h̃f = q̃g + r̃, with
homogeneous polynomials q̃ = Qh̃ and r̃ = Rh̃ in k[x, y, z].

Step (3) Define the homogeneous polynomial c := gcd(g, r̃) = gcd(g, h̃) ∈ k[x, y, z] and

divide through by c to get hf = q̃g′ + r, where g = g′c, h̃ = hc and r̃ = rc are
homogeneous polynomials.
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Step (4) Now one has four homogeneous polynomials r, g′, h, c ∈ k[x, y, z] such that the
equation of intersection cycles

f ∩ g = r ∩ g′ − h ∩ g′ + f ∩ c

holds and such that for the x-degrees one has that ∂xr < ∂xg
′ = ∂xg and

∂xh = ∂xc = 0.

Proposition 3.6 states that the algorithm above is correct. In order to prove this propo-
sition, we need the following lemma.

Lemma 3.5. The polynomials h̃, q̃ and r̃ ∈ k[x, y, z] given in the algorithm are homoge-
neous.

Proof. Note that k̄[x, y, z] is both a ring and a k̄-vectorspace with the same group structures
in such a manner that the axiom (λa)b = a(λb) = λ(ab) is satisfied for all elements λ in k̄
and a, b in k̄[x, y, z]. Hence, k̄[x, y, z] is a k̄-algebra ([4], p. 3). The group k̄∗ acts on the
k̄-algebra k̄[x, y, z] as follows

k̄∗ × k̄[x, y, z] −→ k̄[x, y, z], (λ, f) 7−→ λ ? f

where for λ ∈ k̄∗
k̄[x, y, z] −→ k̄[x, y, z], f 7−→ λ ? f

is the k̄-algebra automorphism given by x 7→ λx, y 7→ λy, z 7→ λz and a 7→ a for all a in k̄.
This induces a k̄-algebra automorphism λ? on k̄(x, y, z) and in particular on k̄(y, z)[x]. For
the equation in Step (1) one has that

λ ? f = (λ ? Q) · (λ ? g) + λ ? R.

Note that for all polynomials p ∈ k̄[x, y, z] one has that λ ? p is equal to λdp for all λ ∈ k̄∗
if and only if p is a homogeneous polynomial of degree d. Since both f and g in Algorithm
3.4 are homogeneous polynomials of degrees n and m respectively, it follows that both the
equalities λ ? f = λnf and λ ? g = λmg hold. Firstly, one has that

λnf = (λ ? Q) · (λmg) + λ ? R. (3)

Since the equality f = Qg +R is a division with remainder, it follows that (3) is a division
with remainder as well. Secondly one has that

λnf = λnQg + λnR = (λn−mQ) · (λ ? g) + λnR. (4)

Since (4) is also a division with remainder, it follows from the uniqueness of division with
remainder that the equalities λ ? Q = λn−mQ and λ ? R = λnR hold.

Write R = R1/R2 with the unique polynomials R1 in k̄[x, y, z] and R2 in k̄[y, z] such
that gcd(R1, R2) = 1 and with yizj the greatest monomial of R2 according to the graded
lexicographic monomial order ([3], Example 2.5, p. 13). In other words, R2 is monic for
the graded lexicographic monomial order. One has that λ ? R = (λ ? R1)/(λ ? R2) and that
λ ? R = λnR = λn(R1/R2). Therefore it follows that the equality

λ ? R1

λ ? R2
= λn

R1

R2
(5)

holds. Since yizj is a homogeneous monomial, one has that λ?(yizj) = λi+jyizj . Therefore,
and from (5), it follows that both the equalities

λ ? R2 = λi+jR2 and λ ? R1 = λn+i+jR2
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hold. Hence, both R1 and R2 are homogeneous polynomials. Just as R, write Q = Q1/Q2

with the same requirements to Q1 in k̄[x, y, z] and Q2 in k̄[x, y, z] as R1 and R2 respectively.
Analogously toR1 andR2, one can prove that bothQ1 andQ2 are homogeneous polynomials.

Since h̃ in Algorithm 3.4 is the least common multiple of Q2 and R2 and since the
factorizations of Q2 and R2 as in Lemma 1.11 consist of homogeneous polynomials, it follows
that h̃ is a homogeneous polynomial as well. Let d be the degree of h̃ so the equality
λ ? h̃ = λdh̃ holds. One has that

λ ? r̃ = (λ ? R)(λ ? h̃) =

(
λn+i+jR1

λi+jR2

)
(λdh̃) = λn+d

(
R1h̃

R2

)
= λn+dRh̃ = λn+dr̃.

Since R2 divides h̃, one has that r̃ is an element of k[x, y, z]. Hence, r̃ is a homogeneous
polynomial in k[x, y, z]. Analogously to r̃, one can prove that q̃ is a homogeneous polynomial
in k[x, y, z].

Proposition 3.6. Algorithm 3.4 is correct.

Proof. Firstly, note that since ∂xh = ∂xc = 0, it follows from Proposition 3.3 that the
intersection cycles h ∩ g′ and f ∩ c are finite. In Step (1) one can find the unique rational
functions Q,R given in the algorithm by polynomial long division of polynomials in x with
coefficients in k(y, z) ([6], Theorem 1.6, p. 113) of f through by g. Note that since f and g

are coprime it follows that R is nonzero. In Lemma 3.5 we proved that the polynomials h̃, q̃
and r̃ in Step (2) are indeed homogeneous. Since the polynomials h̃ and f are homogeneous,

it follows that h̃f is a homogeneous polynomial. Hence, q̃g and r̃ have the same degree
which means that c in Step (3) is well defined. Since f and g are coprime it follows that the

equality gcd(g, r̃) = gcd(g, h̃) holds. Therefore, one has that the polynomials g′, h and r in
k[x, y, z] are homogeneous. Step (4) follows from the properties of intersection cycles given
in Proposition 2.16:

f ∩ g = f ∩ (g′c)
(ii)
= f ∩ g′ + f ∩ c = h ∩ g′ + f ∩ g′ − h ∩ g′ + f ∩ c

(ii)
= (hf) ∩ g′ − h ∩ g′ + f ∩ c = (q̃g′ + r) ∩ g′ − h ∩ g′ + f ∩ c
(iii)
= r ∩ g′ − h ∩ g′ + f ∩ c.

One has that c and h are both homogeneous polynomials and both divisors of the ho-
mogeneous polynomial h̃ in k[y, z]. Hence, h and c have zero x-degree and the x-degree
of g′ is equal to the x-degree of g. As well one has for the x-degreed of R and r that
∂xR ≤ ∂xr < ∂xg. Therefore, one has that ∂xr < ∂xg

′.

Remark 3.7. If one wishes to compute the intersection cycle of two nonzero coprime
homogeneous polynomials f and g in k[x, y, z], the algorithm gives us the opportunity to
compute simpler intersection cycles of coprime homogeneous polynomials instead. After
applying the algorithm once, one obtains: two intersection cycles h∩ g′ and f ∩ c, such that
one of the two polynomials has zero x-degree; and one intersection cycle r ∩ g′ where one
polynomial has the same x-degree equal to ∂xf , while the other polynomial has x-degree
lower then ∂xg. Since all x-degrees are finite one can apply the algorithm recursively to
r ∩ g′ until one obtains a sum of intersection cycles of the form ±f ∩ g with f ∈ k[x, y, z]
and g ∈ k[y, z]. In Proposition 3.3 we all ready proved Bézout’s these intersection cycles.
Hence, we an finish the proof by induction.

Proof by induction on the x-degree of g

With Proposition 3.3 we have all the ingredients to complete this bachelor thesis with a
proof of Bézout’s theorem.
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Proof. Let f, g ∈ k[x, y, z] be two nonzero coprime homogeneous polynomials of degrees m
and n respectively.

If g has zero x-degree, then it follows from Proposition 3.3 that for all points a in the
projective plane P2 the intersection multiplicity i(a, f ∩ g) is finite and the intersection
number of f and g is given by #(f ∩ g) = mn.

Induction hypothesis: assume that Bézout’s theorem holds for all nonzero homogeneous
polynomials f, g ∈ k[x, y, z] with the x-degree of g smaller then N for some strictly positive
integer N .

Suppose that the x-degree of g is equal to N . After running Algorithm 3.4 once we find
four homogeneous polynomials r, g′, h, c ∈ k[x, y, z] such that for the intersection cycles the
equality

f ∩ g = r ∩ g′ − h ∩ g′ + f ∩ c

holds. Since the x-degree of r is strictly smaller than the x-degree of g, ∂g = N , and since
h and c have zero x-degree, it follows from the induction hypothesis that for all points a in
the projective plane P2 the intersection multiplicity i(a, f ∩ g) is finite.

Hence, for the intersection number of f and g one has that

#(f ∩ g) = #(r ∩ g′)−#(h ∩ g′) + #(f ∩ c).

From Algorithm 3.4 it follows that for the x-degrees of r and g one has that ∂xr < ∂xg = N .
Hence, it follows from the induction hypothesis that for the intersection number of homoge-
neous polynomials r and g′ one has that #(r∩g′) is equal to ∂r∂g′. Further, from Algorithm
3.4 it follows that h and c have zero x-degrees. Hence, from the induction hypothesis it fol-
lows that for both the intersection cycles of h∩ g′ and f ∩ c the intersection number is equal
to ∂h∂g and ∂f∂c respectively. Since the polynomials hf and r in Step 2 of Algorithm 3.4
are homogeneous, it follows that the equality ∂r − ∂h = ∂f holds. Analogously it follows
that the equalily ∂g′ + ∂c = ∂g holds. Hence, for the intersection number of f and g one
has that

#(f ∩ g) = ∂r∂g′ − ∂h∂g′ + ∂f∂c = (∂r − ∂h)∂g′ + ∂f∂c

= ∂f∂g′ + ∂f∂c = ∂f(∂g′ + ∂c) = ∂f∂g = mn.

This proves Theorem 3.1.
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