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Preface

Weather forecasts are part of everyday life. People use them to decide on
clothing, holiday destinations and as subject of conversations. Nowadays the
forecasts are quite accurate up to a week ahead, whereas thirty years ago one
could only rely on 2-days forecasts. Of course the results of the forecasts are
easy to grasp, but how about the methods to obtain those results, e.g. the
underlying theory?

In chapter 2 we will state the governing equations of atmospheric flow. A
physical aspect of the system, called the Coriolis effect, will then be described
in more detail. After this we start looking for well-behaving solutions; traveling
waves. This is done by transforming the system into new coordinates and
manipulating the system in such way that we only need to solve one equation.
In section 3 we obtain some qualitative results about waves under various
conditions using phase plane analysis. Special attention is paid to connections
between equilibrium points. Stability of the solutions will be discussed briefly
in section 4. In section 5 the model used in the first sections is compared to
an other model; the Eady model. The Eady model uses a slightly different
approach but will turn out to also be quite similar.
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1 Introduction

In search for more accurate weather forecasts there has been a lot of research
on the dynamics in the atmosphere. A well-known theory on the large-scale
behavior of the atmosphere found its roots at a work of Richardson [6] (1922).
He recognized (amongst others) that the atmosphere could be regarded as
a fluid. Nowadays it is indeed clear that the large-scale dynamics of the
atmosphere is very much like the dynamics in the ocean. The dynamics in
the atmosphere should thus satisfy the basic physical laws of fluid mechanics
and thermodynamics. Using these laws, Richardson formed a set of equations
that survived upcoming technology, such as computer solutions and improved
experimental verifications remarkably well. A few decades later, Hoskins [4]
(1975) and others modified some important aspects of the equations.

One adjustment is that they rewrote the system into new coordinates suit-
able for the atmosphere. In this coordinate system the Earth is assumed to
rotate on an axis through the poles. Also, the Earth’s surface is assumed to
be spherical with perturbations due to varying height of the landscape, e.g.
mountains and valleys.

A second adjustment is that the acceleration due to gravitation and cen-
trifugal accelerations are combined and are assumed to act normally to geopo-
tential surfaces (surfaces of constant potential energy). Geopotential surfaces
are much like surfaces of constant height, but do not coincide due to the in-
creasing acceleration of gravity when going polewards. The geopotential sur-
faces in the model are approximated by spherical surfaces. The corresponding
equations are rewritten in spherical polar coordinates with the origin at the
center of the Earth.

Other modifications included the assumption that the atmosphere consists
of a compressible ideal gas and the magnitude of the Rossby number. The
Rossby number will be explained shortly. The statements and the justification
for the physical assumptions and other simplifications can be found in Gill [2]
(1982), Holton [3] (1992) and Pedlosky [5] (1987).

2 Basic equations

As mentioned above, one of the assumptions by Hoskins is the magnitude
of the Rossby number. The Rossby number is a measure for the change in
momentum in proportion to the Coriolis force. This latter force corresponds
to a rotating motion and will be explained in more detail later on. Physically,
a large Rossby number corresponds to a system where inertial and centrifugal
forces dominate, e.g. a tornado. In a system with small Rossby number the
Coriolis force dominates, e.g. a low-pressure system. This latter system is of
greater use when modeling large-scale dynamics and more usable for weather
forecasts. When the Rossby number is assumed to be small the original set
of equations can be modified to so-called semi-geostrophic equations. The
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semi-geostrophic approximation which is used in this thesis1 is given by the
system [

∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

]
ug = − ∂

∂x
φ+ (f0 + βy)v (1)[

∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

]
vg = − ∂

∂y
φ− (f0 + βy)u (2)

∂

∂x
u+

∂

∂y
v +

∂

∂z
ω = 0 (3)[

∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

]
∂

∂z
φ+ Sω = 0 (4)

where u, v and ω are geostrophic coordinates (Y. Xu, Z. Lin and R. Dang [7],
1999). One might think of them as the northward, southward and upward
winds2. The variables ug and vg are the so-called geostrophic wind compo-
nents. They are northward and eastward components of a theoretical wind
that would result from an exact balance between the Coriolis acceleration and
the pressure gradient force; the direction and rate of the most rapid pressure
change. The constant ū is a basic zonal flow. It is a translation of u so that
u = 0 corresponds to a flow along a latitude line. The static stability S is
also constant. Static stability is a measure for the ability of a fluid at rest
to become turbulent or laminar due to certain forces. The exact nature of S
is not of importance in this thesis. Contribution of the Earth’s gravity field,
the geopotential, is accounted for by the variable φ. The constants f0 and β
correspond to the Coriolis parameter. This parameter and the Coriolis effect
will now be explained in more detail.

2.1 Coriolis effect

The Coriolis effect is an important factor in the semi-geostrophic equations.
It is described in more detail to emphasize the importance to the system.
Furthermore the paper by [7] uses a linear approximation of the Coriolis pa-
rameter instead of the constant approximation used by Hoskins and Eady [1].
The linear approximation of the Coriolis parameter f is given by

f = f0 + βy. (5)

where f0 and β are constants and y is the meridional distance from a fixed
latitude. In order to understand the influence of this parameter it is in place to
gain more knowledge on the Coriolis effect. The Coriolis effect is an apparent
deflection of moving objects when they are viewed from a rotating reference
frame. To gain intuition on this effect we will consider a ball on a rotating
disc (see figure 1). At the upper image the ball is seen from above whereas in
the lower image we view it from the side.

1Additional assumptions for this particular approximation include frictionless motion and
no heat exchange between different layers in the atmosphere.

2Strictly speaking they represent vector velocities.
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(a) (b)

Figure 1: Illustration of the Corioliseffect. A ball placed on a rotating disc (a) describes
the yellow path while rolling to the edge (b).

As can be seen in figure 1b the ball appears to roll from the middle of
the disc to the edge in a straight line when we look from above. However,
when looking from the side it appears that the ball moved over a non-straight
curve. This illustrates the basic idea of the Coriolis effect. Furthermore it
illustrates one of its properties when applied to the atmosphere as will be
discussed below.

A linear approximation of the Coriolis parameter is given by (5) where

f0 = 2ω sinϕ. (6)

and

β =
2ω

R
cosϕ. (7)

Here ω is the rotation rate of the earth, R is the radius of the earth and ϕ is the
latitude of the particle on which it works. When the Coriolis force works on
some particle in the atmosphere it will make the particle bend under radius
proportional to 1

f . This shows that the effect is weak when f is large, e.g.
when the particle is close to a pole.

Upon considering the disc in figure 1 to be the earth seen from above, this
makes a lot of sense. When the ball stays in the center there is no deflection
so that a particle on a pole will not be affected by the Coriolis effect. On the
other hand a particle at the equator will be effected strongly as the Coriolis
force is small. Also note that from expressions (6) and (7) it follows that
f0 ≥ 0 and β ≥ 0.

Now that we have obtained some intuition about the Coriolis effect one
might wonder how this is implemented in the equations. The earth is a rotating
object which should serve as some coordinate system in order to write down
equations describing the movement of a particle. For this reason one would
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like the earth to stand still and instead alter the equations so that they take
the rotation into account. In other words, we wish to describe a moving object
on a rotating frame. By implementing the Coriolis parameter, this is made
possible.

2.2 Traveling waves

Now that we know the basic equations and have more understanding of the
underlying physics, we will derive an equation for traveling wave solutions of
(1)-(4). Derivation of the equations and the assumptions in this derivation is
done analogue to [7].

By differentiating (1) with respect to x, (2) to y and adding them we obtain
the vorticity equation[

∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

](
∂

∂x
vg −

∂

∂y
ug

)
+
∂

∂x
u
∂

∂x
vg +

∂

∂x
v
∂

∂y
vg −

∂

∂y
u
∂

∂x
ug −

∂

∂y
v
∂

∂y
ug

= −(f0 + βy)

(
∂

∂x
u+

∂

∂y
v

)
− βv

= −f0

(
∂

∂x
u+

∂

∂y
v

)
− βv. (8)

The latter equality is of great importance for the rest of the analysis. However,
the exact reason why it holds is unclear. The article by [7] uses this equality
without further explanation. One justification for the neglected y-term is an
assumption on the area in which the dynamics are described. Recall that y
is the meridional distance from a fixed latitude. Considering an area that is
relatively close to this fixed latitude, y will be small and βy ≈ 0. For now we
will assume (8) is correct under certain assumptions.

Differentiating (1) with respect to y, (2) to x and subtracting them gives
the divergence equation[

∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

](
∂

∂x
ug +

∂

∂y
vg

)
+
∂

∂x
u
∂

∂x
ug +

∂

∂x
v
∂

∂y
ug +

∂

∂y
u
∂

∂x
vg +

∂

∂y
v
∂

∂y
vg

= (f0 + βy)

(
∂

∂x
v − ∂

∂y
u

)
− βu−∇2φ

= f0

(
∂

∂x
v − ∂

∂y
u

)
− βu−∇2φ, (9)

where again we obtain the last equality by following [7]. When we look for
traveling wave solutions of (1)-(4), we can obtain a simplified system using
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the relations above. To this end we introduce the traveling wave variables

u = U(ρ), v = V (ρ), ω = Ω(ρ), φ = Φ(ρ)

ρ = kx+my + nz − νt
(10)

where k,m, n, ν ∈ R, ν ≥ 0. The functions U, V,Ω and Φ describe the behavior
of waves of u, v, ω and φ. We can now obtain an differential equation in Ω
only. Furthermore we will find relations between the functions Ω, V and U so
that any solution to the differential equation for Ω automatically solves the
entire system.

Before doing this the following relations given by Hoskins [4] should be
noted:

ug = − 1

f0

∂

∂y
φ and vg =

1

f0

∂

∂x
φ. (11)

Substituting the traveling wave assumptions (10) and (11) into equations
(3),(4),(8) and (9) gives (see Appendix A)

U = −1

k
(mV + nΩ) , (12)

and
V = bΩ′, (13)

where Ω satisfies

Ω′′ = c1Ω′ + c2Ω +
ν1 − kū
ν − kū

Ω2

Ω + ν−kū
n

. (14)

The constants are given by

c1 = −mβ
f0

K2
n

K2
2K

2
3

, c2 = − n2β2

K2
2K

2
3S
− v1 − kū

v − kū
,

b =
1

f0β

(
S

n
K2

2 + nf2
0

)
, v1 = kū− kβ

K2
3

,

K2
2 = k2 +m2, K2

3 = k2 +m2 +
n2f2

0

S
, K2

n = k2 +m2 + 2
n2f2

0

S
.

3 Analysis of equilibrium points

We have now reduced system (1)-(4) to just one equation, (14). From now on
we only consider this equation. In this section we will analyze the equilibrium
points and their corresponding characters. Furthermore we are interested in
connections between equilibrium points.

For now assume c1 6= 0. The degenerated case c1 = 0 will be discussed
later. By introducing the following rescaling into equation (14)

ρ̃ =
1

|c1|
ρ, Ω̃(ρ̃) =

n

ν − kū
Ω(ρ̃)
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the equation reduces to

∂

∂ρ̃
Ω̃ = Y

∂

∂ρ̃
Y = aY + cΩ̃ + d

Ω̃2

Ω̃ + 1
,

(15)

a = sgn(c1), c = c2
1c2, d = c2

1

ν1 − kū
ν − kū

.

Here sgn(x) is the common sign function, in particular, a2 = 1. In this step
we also wrote the equation as a system of equations. For notational purposes
we drop the tildes in the further analysis.

Note that the system has a singularity at Ω̃ = −1. Moreover, in Ap-
pendix A it is shown that Ω̃ = −1 (or Ω = −ν−kū

n ) is no solution to (14).
For the system there exist two equilibrium points, namely (Ω, Y ) = (0, 0)

and (Ω, Y ) =
(
− c
c+d , 0

)
. We determine the character of the equilibrium points

by analyzing the eigenvalues of the Jacobi matrix J given by

J(Ω, Y ) =

(
0 1

c+ dΩ Ω+2
(Ω+1)2

a

)
.

For the equilibrium point (0,0) it then follows that the eigenvalues λ0
± of J(0, 0)

are given by

λ0
± =

1

2

[
a±
√

1 + 4c
]

whereas the eigenvalues λc± of J
(
− c
c+d , 0

)
are given by

λc± =
1

2

[
a±

√
1− 4c

c+ d

d

]
.

The character of the equilibrium points is determined by the values of a, c
and d. Assuming c and d are independent of each other one can see that both
equilibrium points can be a sink, source, (un)stable focus and saddle. The sign
of a determines local stability. A diagram with the possible characters is shown
in figure 2. The character of (0, 0) can be found in figure 2a and depends only

on c. The character of
(
− c
c+d , 0

)
can be determined from figure 2b. Phase

portraits corresponding to different characters can be found in figure 3. For
example consider the focus-sink plot. The equilibrium (0, 0) is a focus, so one
can see from figure 2a that c lies in the thick striped region. It then follows
that c < −1

4 . In the same way one can see from figure 2b that − 4c
4c−1 < d < −c

corresponds to a sink.
In some cases the equilibrium points are separated by the singularity at

Ω = −1. Then, the singularity prevents heteroclinic orbits from occurring.
This makes sense when one recalls that Ω = −1 is no solution to equation
(14). By continuity a solution Ω will either be smaller than −1 for all ρ or
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(a) Equilibrium point (0,0) (b) Equilibrium point
(

0,− c
c+d

)
Figure 2: Characters of (0,0) and

(
0,− c

c+d

)
for different values of c and d. For a = −1

there are sinks (thin striped) and stable foci (thick striped). For a = 1 the
equilibrium points have opposite stability. The white areas correspond to saddle
nodes.

larger than −1 for all ρ. In particular, a heteroclinic orbit can never occur
when the equilibrium states are separated by −1.

The only phase portraits where the singularity does not separate the equi-
librium points are those with exactly one saddle node. In those cases a hete-
roclinic orbit exists and is formed by a branch of the (un)stable manifold of
the saddle (depending on the sign of a) which tends to the other equilibrium
point forward or backward in time. For example, consider the sink-saddle
plot. A heteroclinic orbit then starts at the saddle and tends to the sink.
As function of ρ, Ω is then approximately constant for a long time and then
rapidly changes to a lower constant value (a kink). In the focus-saddle plot we
observe the same behavior though Ω then acts like a damped oscillator around
the lower value. Later in this section we consider an other system where a
plot of a homoclinic orbit of Ω will be given.

When Ω is known we can find U and V using relations (12) and (13).
In the previous examples, the function V (= bΩ′) can be seen to respectively
describe a pulse or a pulse followed by oscillations. The function U is a linear
combination of Ω and V .

Non-homoclinic solutions either tend to a equilibrium point or tend to
±∞ (right-hand solutions focus-saddle plot). In the first case, the functions
U, V and Ω are eventually constant. Physically, this corresponds to particles
moving at constant speed (balanced forces). The latter case corresponds to
particles that move down- or upwards with increasing speed. However, this
only describes their behavior for a short time. While getting closer to Earth
the system does not describe the dynamics correctly. The main reason for this
is the decreasing distance to Earth so that the boundaries of the system can
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not be neglected.

3.1 Zonal wave

We now analyze the solutions under a specific assumption. As in the paper
by Y. Xu, Z. Lin and R. Dang we assume that the waves are independent of
the y-coordinate. This is equivalent to setting m equal to zero. This results
in c1 = 0 and so the assumption leads to a reduced form of (14). The system
is then given by:

Ω′′ = c2Ω +
ν1 − kū
ν − kū

Ω2

Ω + ν−kū
n

. (16)

When we introduce the rescaling

ρ̂ =
√
|c2|ρ, Ω̂(ρ̂) =

n

ν − kū
Ω(ρ̂)

into (16) it yields

∂2Ω̂

∂ρ2
= rΩ̂ + s

Ω̂2

Ω̂ + 1
(17)

or

∂

∂ρ̂
Ω̂ = Y

∂

∂ρ̂
Y = rΩ̂ + s

Ω̂2

Ω̂ + 1
.

where

r = sgn(c2), s = |c2|
ν1 − kū
ν − kū

.

Again, we will drop the hats in the further analysis. Equilibrium points of

this system are given by (Ω, Y ) = (0, 0) and (Ω, Y ) =
(
− r
r+s , 0

)
. The Jacobi

matrix J is given by

J(Ω, Y ) =

(
0 1

r + sΩ Ω+2
(Ω+1)2

0

)

so that the eigenvalues λ0
± of the equilibrium point (0,0) are given by

λ0
± = ±

√
r

and the eigenvalues λs± of J
(
− r
r+s , 0

)
are given by

λs± = ±
√
−1 + rs

s
.

In contrast to system (15), the equilibrium points can now either be a center
or saddle. We are interested in connections in this system. For two centers or
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Figure 4: Level curves for (18) where r = 1 and s = −2. Graphical interpretation is given
in the capture of figure 3.

two saddles there can be no connections. It can be shown, using the symmetry
at Ω′ = 0, that a homoclinic orbit exists when the equilibrium points are a
center and a saddle which are not separated by the singularity at Ω = −1. One
may check that the saddle and center are always located at the right-hand side
of Ω = −1 and so there always is a homoclinic orbit. When the parameters
r and s satisfy r = 1, s ∈ R\[−1, 0], there is a homoclinic orbit from (0, 0) to

itself. When r = −1 and s ∈ R\[0, 1] the homoclinic orbit tends to
(
− r
r+s , 0

)
.

A phase portrait of this system containing a homoclinic orbit is plotted in
figure 4.

We will now focus on a homoclinic orbit that tends to (0, 0). Multiplying
(17) by Ω′ and then integrating over ρ gives the first integral, yielding(

Ω′
)2

= (r + s)Ω2 − 2sΩ + 2s ln |Ω + 1|+ C (18)

where C is an arbitrary constant. It can be seen that C = 0 corresponds to
the orbits ‘through’ (0, 0). An implicit expression for the homoclinic orbit can
be derived from (18). Solving the equation for Ω′ and using the method of
separation of variables results into∫ Ω

Ωmax

sΩ̄√
(r + s)Ω̄2 − 2sΩ̄ + 2s ln |Ω̄ + 1|+ C

= −|ρ− ρsym|

Here ρsym is the symmetry ‘time’ at which the orbit reaches its maximum
value Ωmax. The corresponding (ρ,Ω)-plot is given in figure 5. As expected,
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(a) s = −2 (b) s = −15

Figure 5: Homoclinic orbit from (Ω, Y )(0, 0) to itself (red) and approximation by a sech-
function (blue, dashed). The values of the parameters are r = 1 and C = 0. The
symmetry ‘time’ ρsym is set to 0. The maximum value Ωmax is approximated
numerically and depends on the other parameters. A larger value of |s| results
in a lower value of |Ωmax| as can be seen in the two figures.

the solution Ω stays close to the saddle (0,0), rapidly moves away and returns
in little time.

Recall that ρ = kx + nz − νt. We may thus fix x and z and only vary t
to observe the behavior of the solution over time. In this way a later time t
corresponds to a lower value of ρ. The plot then describes a particle that has
constant speed and direction for all time except for a short interval.

It can be seen that the behavior of Ω is very similar to that of a sech-
function. Indeed the two are much alike as will be shown next. For small Ω
we may use the Taylor expansion 1

1−x = 1 + x+ x2 + . . . in equation (17) and
obtain

∂2Ω

∂ρ2
= rΩ + sΩ2 +O(Ω3).

Neglecting the higher order terms this differential equation can be solved. The
solution is then given by

Ω(ρ) = −3r

2s
sech2

(
1

2

√
r (ρ− ρsym)

)
. (19)

Recall that r = ±1. For r = −1 it can be shown that (19) has infinitely many
singularities and thus a solution to this equation does not exist. From figure 5
it can be seen that (19) is indeed a good approximation for small Ω when
r = 1.
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4 Stability

So far we have focused on the qualitative behavior of solutions to (14). More-
over, we found an implicit expression and an explicit approximation for a
simplified system. Even more important than finding explicit solutions for the
system is to analyze the flows close to a solution. Do solutions starting close
to a known solution remain close to that solution for all time? In other words,
are solutions stable? This section provides the concept of linear stability and
applies it to our model.

An equilibrium solution x∗ of a dynamical system ∂
∂tx = f(x) is called

stable when a small perturbation of the initial condition decays over time.
That is, any solution starting close to x∗ will remain close to or even converge
to x∗. Linear stability can be considered as stability in a small, linearized
neighborhood of the equilibrium. Under certain smoothness conditions on
the system, linear stability implies general stability. We will now describe a
method to determine linear stability.

Linear stability is usually proven by considering an initial condition close
to the equilibrium solution, x(t) = x∗+εxd(t) (|ε| << 1), and determining the
effect for longer time. This is done by substituting x into the corresponding
differential system, linearizing this system (neglecting higher order terms) and
solving it. One then obtains a leading order differential equation of the form
dxd
dt = Df(x∗)xd so that the eigenvalues of Df(x) determine what will happen

to the εxd(t) perturbation. If all eigenvalues have negative real part then the
equilibrium is stable. If at least one eigenvalue has positive real part then the
equilibrium is unstable. When all real parts of the eigenvalues are non-positive
and at least one eigenvalue equals zero, more advanced theorems such as the
Stable Manifold Theorem are needed to conclude results on stability.

The concept of linear stability is the same for wave solutions, although the
method has to be extended to partial differential equations and eigenvalues
are not so easily found. We would like to know whether solutions starting
close to a known orbit will stay close to this orbit. However, to determine
stability we have to know how the perturbations evolve in time. Equation
(14) only depends on the traveling wave variable ρ and thus can not show
a solutions time-dependency on a perturbation. The only way to solve this
is to reconsider equations (1)-(4) and introduce traveling wave variables that
depend on both ρ and t;

u = U(ρ, t), v = V (ρ, t), ω = Ω(ρ, t), φ = Φ(ρ, t)

ρ = kx+my + nz − νt.

Repeating the manipulations in Appendix A shows that the earlier rela-
tions

U(ρ, t) = −1

k
(mV (ρ, t) + nΩ(ρ, t))

and

V (ρ, t) = b
∂

∂ρ
Ω(ρ, t)
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still hold. Instead equation (31) becomes

∂2Φ(ρ, t)

∂ρ2
+
∂

∂t
Φ(ρ, t) =

SΩ(ρ, t)

n2
(
Ω(ρ, t) + ν−kū

n

) .
A differential equation in one function is then given by

∂

∂ρ

[
nf0b

k
(ν − kū+ nΩ)

∂2Ω

∂ρ2

]
− nf0b

k

∂3Ω

∂ρ2 ∂t

+ (ν − kū+ 2nΩ)
n2β

k3

∂Ω

∂ρ
− n2β

k3

∂Ω

∂t
− S∂Ω

∂ρ
= 0. (20)

We will now substitute Ω(ρ, t) = Ω∗(ρ) + εΩd(ρ, t) into (20). Here Ω∗(ρ) is a
solution of (14) and thus satisfies (32). It can be shown that due to this the
O(1)-terms vanish. The O(ε)-terms are given by

∂

∂ρ

[
nf0b

k
(ν − kū+ nΩ∗)

∂2Ωd

∂ρ2
+
n2f0b

k
Ωd
d2Ω∗

dρ2

]
− nf0b

k

∂3Ωd

∂ρ2 ∂t
+ (ν − kū+ 2nΩ∗)

n2β

k3

∂Ωd

∂ρ

+ 2
n3β

k3
Ωd
dΩ∗

dρ
− n2β

k3

∂Ωd

∂t
− S∂Ωd

∂ρ
= 0.

The partial derivatives make it difficult to solve this system. One way to
overcome this problem is to substitute the assumption Ωd(ρ, t) = eλtωd(ρ) into
(20). The perturbation then will decay if Re(λ) < 0 and grow if Re(λ) > 0.
Performing this substitution gives

d

dρ

[
nf0b

k
(ν − kū+ nΩ∗)

d2ωd
dρ2

+
n2f0b

k
ωd
d2Ω∗

dρ2

]
− nf0bλ

k

d2ωd
dρ2

+ (ν − kū+ 2nΩ∗)
n2β

k3

dωd
dρ

+
2n3β

k3
ωd
dΩ∗

dρ
− n2βλ

k3
ωd − S

dωd
dρ

= 0.

When we substitute a known solution Ω∗ this expression is still difficult to
solve. In particular substitution of a pulse solution leads to expressions that
can not be solved without more advanced techniques. Still, it is important
to note that this is the correct way to determine stability. The independent
t-variable in the wave solutions is required in order to state results on stability.

5 Eady model

In the previous sections we only considered one model. Still, there are lots
of models describing the dynamics in the atmosphere. A well-known model
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Figure 6: Framework of the two-dimensional Eady model.

concerning the atmosphere is the Eady model [1]. Eady’s understanding of
the dynamics in the atmosphere and physical insight allowed him to simplify a
model similar to the model discussed before. His work is considered as the most
pure model to describe baroclinic instability; a phenomenon closely related to
weather fronts. It only takes the most relevant forces into consideration and
describes the basic mechanism of this instability. The model applies to the
mid-latitude areas of the Earth and has a very interesting set-up. Instead of
an unbounded three-dimensional plane, the Eady model considers a bounded
two-dimensional plane. The dynamics are only described in the x- and z-
directions (or rather latitudinal and vertical directions) for fixed distances
(see figure 6). It is also for this reason that all functions and variables in
the model are independent of y. Other assumptions on the model are much
like the ones that give the model of Y. Xu, Z. Lin and R. Dang. Since many
assumptions are alike and yet the framework of both models are quite different
it is interesting to compare the two. For convenience the model in [7] will be
referred to as Xu’s model from now on.

The Eady model is given by[
∂

∂t
+ u

∂

∂x
+ ω

∂

∂z

]
u = − ∂

∂x
φ+ fv[

∂

∂t
+ u

∂

∂x
+ ω

∂

∂z

]
v = Rgθ−1

0

(
z − H

2

)
− fu (21)[

∂

∂t
+ u

∂

∂x
+ ω

∂

∂z

]
ω = − ∂

∂z
φ+ gθθ̄−1

0[
∂

∂t
+ u

∂

∂x
+ ω

∂

∂z

]
θ −Rv = 0

∂

∂x
u+

∂

∂z
ω = 0

where u, v and ω are the same as in (1)-(4). The function θ is now related to
pressure instead of to gravity. New in this system is the change in potential
temperature θ(x, z, t). An initial reference state is given by θ−1

0 (x, z). R and
g are constants. The Coriolis parameter is approximated by the constant f .

As both methods describe systems that are very much alike it is interesting
to compare the two. Since the Eady model omits all dependency on y it is
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best to do the same in Xu’s system. Most importantly we set m = 0 as we
already did in section 3.

We would now like to consider traveling waves in the Eady model. To this
end we substitute the traveling wave variables

u = U(ρ), v = V (ρ), ω = Ω(ρ), φ = Φ(ρ), θ = Θ(ρ)

ρ = kx+ nz − νt
(22)

where k, n, ν ∈ R, ν ≥ 0 into the Eady model. The functions U, V,Ω,Φ and
Θ describe the behavior of waves of u, v, ω, φ and θ as before. It is shown in
Appendix B that the relations

U =
1

k
(C − nW )

and

V =
C − ν
R

Θ′ (23)

hold. Here C is a constant that is determined by the initial values of U and Ω.
Comparing these relations to (12) and (13) (recall m = 0) it is clear that the
waves are very much alike. The latitudinal velocity U is again proportional to
Ω and V equals a constant multiplied with an other function’s derivative. It
is remarkable, however, that V does not depend on the vertical velocity as in
Xu’s model, but rather on the change in potential temperature Φ.

One possible explanation for this is the nature of the model. Baroclinic
instability is a phenomenon directly related to the temperature differences
between layers in the atmosphere. When the temperature is higher, the air
will rise. In Xu’s model there is no explicit dependence on the temperature.
All effects due to temperature are thus implicitly included in the system.
Following the preceding reasoning it is natural that most temperature effects
are accounted for in the vertical velocity Ω. With the same arguments one
could say that the vertical velocity is dominated by the temperature. The two
are thus very close related, which is exactly what we see in (13) and (23).

In Appendix B it is also shown that

Rg

nf
(C − ν)K2

2

d

dρ

[(
z − H

2

)
θ−1

0 (x, z)

]
− 1

nfR
(C − ν)3K2

2Θ′′′

− nf(C − ν)

R
Θ′ + kgθ̄−1

0 (x, z)Θ = 0 (24)

holds. This is an equation in Θ, which again appears to be closely related to
the function Ω in Xu’s model. Furthermore it can be seen that the change in
potential temperature Θ is greatly influenced by it’s reference state θ0. This
is quite natural and thus it’s presence in (24) could be expected.

Note that θ0 is still a function of x and z instead of the wave variable ρ.
Assuming θ0 is constant we see that (24) becomes

1

nfR
(C − ν)3K2

2Θ′′′ = −nf(C − ν)

R
Θ′ + kgθ̄−1

0 Θ +
Rg

n2f
(C − ν)K2

2 .
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The solution to this system is a linear combination of three exponentials and
a constant. It is thus not very likely that the initial potential temperature is
constant. When substituting a more general θ0, for instance a linear function
in z, (24) is a partial differential equation. One will need more advanced
techniques to solve these equations.

As for the comparison with Xu’s model we can conclude a few things. First
of all, the functions U and V are related to the other functions in the almost
exact same way. The biggest difference is that the ’upward wind’ from Xu has
been replaced by the change in potential temperature. It is reasonable that
those two are closely related although this has not been proven in this thesis.

A differential equation for Θ and θ0 supports this statement although there
are still some differences. The non-linear term is not the same as in Xu’s
model and relatively simple solutions are completely different. The differential
equation for Θ can not be easily solved for more complex initial temperatures,
so those can not be compared.

6 Conclusion

After a short introduction into the semi-geostrophic equations and its physical
background we introduced traveling wave variables in order to find wave so-
lutions of the system. By doing so the system reduced to a single differential
equation containing one function. A better understanding of the dynamics was
then gained by doing phase plane analysis. From the analysis it followed that
there are a lot of possible connections between the steady states. Considering
a simplified model allowed us to determine an implicit expression for a homo-
clinic orbit. The corresponding plot showed the behavior of the homoclinic
orbit in time. Now that there was more understanding of wave-solutions of the
system, an attempt was made to determine stability. Though this thesis does
not provide results on stability of the traveling wave solutions, it did provide
the underlying ideas. Finally we compared the model to the two-dimensional
Eady model. This model describes different behavior in the atmosphere but
shows a lot of similarities as well. Introducing a traveling wave variable into
the Eady model resulted in the almost exact relations that were obtained for
the model used in the rest of this thesis. This implies a close connection
between the two models.
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Appendix A

Substituting (11) into (8) gives[
∂

∂t
+ (ū+ u)

∂

∂x
+ v

∂

∂y

](
∂

∂xx
φ+

∂

∂yy
φ

)
+

∂

∂x
u
∂

∂x
vg +

∂

∂x
v
∂

∂y
vg −

∂

∂y
u
∂

∂x
ug −

∂

∂y
v
∂

∂y
ug

= −f2
0 (

∂

∂x
u+

∂

∂y
v)− fβv

which may be rewritten to

(kū− ν + kU +mV )(k2 +m2)Φ′′′ + (kU ′ +mV ′)(k2 +m2)Φ′′

= −f2
0 (kU ′ +mV ′)− fβV

in the new coordinate. This expression then may be simplified to

[(kū− ν + kU +mV )K2
2Φ′′]′ + f2

0 (kU ′ +mV ′) + fβV = 0 (25)

where K2
2 = k2 +m2. In the same way we may modify (9) to find

f0(kV ′ −mU ′)− βU −K2
2Φ′′ = 0. (26)

Applying (10) to equation (4) respectively (3) yields

kU ′ +mV ′ + nΩ′ = 0 (27)

respectively
(kū− ν + kU +mV )nΦ′′ + SΩ = 0 (28)

where the former can be integrated with respect to ρ in order to obtain

kU +mV + nΩ = 0. (29)

The arbitrary integration constant has been set equal to zero. Substituting
(27) and (28) into (25) results into

−S
n
K2

2Ω′ − nf2
0 Ω′ + f0βV = 0

or
V = bΩ′ (30)

where b = 1
f0β

(
S
nK

2
2 + nf2

0

)
. Substituting (29) into (28) gives

−(ν − kū+ nΩ)nΦ′′ + SΩ = 0.

It can easily be verified that Ω = −ν−kū
n is no solution to this equation under

the assumption ν − kū 6= 0. We may thus write Φ′′ in terms of Ω:

Φ′′ =
SΩ

n2
(
Ω + ν−kū

n

) . (31)
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Using all results above to find an differential equation for Ω. Starting with
(26) and substituting (29) we get

f0

(
kV ′ +

m

k

(
nΩ′ +mV ′

))
+
β

k
(nΩ +mV )−K2

2Φ′′ = 0

which, using (30), can be rewritten as

f0

(
kbΩ′′ +

m

k

(
nΩ′ +mbΩ′′

))
+
β

k

(
nΩ +mbΩ′

)
−K2

2Φ′′ = 0.

Substituting (31) gives

f0

k
K2

2bΩ
′′ +

m

k
(f0n+ βb) Ω′ +

nβ

k
Ω−K2

2

SΩ

n2
(
Ω + ν−kū

n

) = 0, (32)

which simplifies to (14).

Appendix B

Substituting (22) into the system of equations corresponding to the Eady
model yields

(kU + nW − ν)U ′ − fV + kΦ′ = 0 (33)

(kU + nW − ν)V ′ + fU −Rgθ−1
0 ε = 0 (34)

(kU + nW − ν) Ω′ + nΦ′ − gθ̄−1
0 Θ = 0 (35)

(kU + nW − ν) Θ′ −RV = 0 (36)

kU ′ + nW ′ = 0. (37)

Integrating (37) over ρ gives

kU + nW = C (38)

where C is the integration constant. Substituting this into (36) yields

V =
C − ν
R

Θ′. (39)

Multiplying (33) by n, (35) by k and subtracting gives

(kU + nW − ν)
(
nU ′ − kW ′

)
− nfV + kgθ̄−1

0 Θ = 0,

which, after substituting (37) and (38), becomes

1

n
(C − ν)K2

2U
′ − nfV + kgθ̄−1

0 Θ = 0.

Here K2
2 = k2 + n2. Substituting (34) into (6) for U then gives

Rgε

nf
(C − ν)K2

2

dθ−1
0 (x, z)

dρ
− 1

nf
(C − ν)2K2

2V
′′ − nfV + kgθ̄−1

0 Θ = 0.

When we substitute (39) into this we finally obtain

Rgε

nf
(C−ν)K2

2

dθ−1
0 (x, z)

dρ
− 1

nfR
(C−ν)3K2

2Θ′′′− nf(C − ν)

R
Θ′+kgθ̄−1

0 Θ = 0.
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