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Summary

In this thesis we study a class of self-interacting random walk. The specific behaviour,
which can differ from a simple random walk, is presented in the form of simulations and
depends on some chosen parameters. The model for the random walk is as follows: the
walker chooses a starting position on the integers (1-dimensional walk) and an initial
value/weight is given to every edge between two neighbouring sites called the local time
profile. Our stochastic model represents the probability to jump one position, after one
unit of time, to the right which also depends on the local time profile. When the walker
doesn’t jump right the walker jumps one position to the left. The local time of the
corresponding edge is raised with an amount of one and the local time profile is updated
after every step. The underlying idea in this model is the possibility to choose parameters
in such a way the local time profile determines the qualitative asymptotic behaviour of
the walk. We start with the just described model and prove for a range of parameters
that the walk eventually gets stuck on a single edge. This will be done in three steps.
First we prove the walk gets stuck with positive probability. Next we show the walk
must have a finite range and we use Rubin’s Theorem to complete the proof. Further we
investigate extended models where the walker can jump one or two positions at a time
and find out that for one choice of parameters the type of behaviour is not unique. In
the remainder we discuss the main result from the article Stuck walks by Erschler, Tóth
and Werner. The theorem stated there gives a range of parameters such that the walk
gets stuck on two, three, . . . edges.
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1 INTRODUCTION TO SELF-INTERACTING RANDOM WALK

1 Introduction to self-interacting random walk

In a recent paper Erscher, Tóth and Werner [2] study a class of self-interacting random
walk on Z with ‘next-to-neighbouring’ interactions. This means that jumping left or
right depends on some function of the number of times the neighbouring and next-
to-neighbouring edges are crossed. We start with a similar model which is called an
Edge Reinforced Random Walk (ERRW) because the transition probabilities depend
on some nearby edges. In different models the transition probabilities could depend on
nearby sites instead of edges, which is called Vertex Reinforced Random Walk (VRRW).
Random walks have been studied thoroughly since the beginning of the twentieth century.
Ordinary random walk is defined by a starting position, X0 ∈ Z, and a probability to
jump one position to the left or right, (1 − p) and p respectivily (p ∈ (0, 1) to avoid
trivial walks). The following property holds for such walks:

P(Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = in+1|Xn = in)

meaning that the positions before time n are irrelevant in determining the next position.
This is called the ‘Markov property’. When studying self-interacting random walk we
find however that these walks are non-Markovian because their past trajectories do
influence their current behaviour. Before showing some examples we must start by
defining such random walks. Let L0 : Z + 1

2
→ R be a function that assigns a value,

L0(i + 1
2
), to every edge {i, i + 1}, i ∈ Z, and L0 is called the initial local time profile.

After crossing an edge it is raised by one. When choosing the initial local profile to be
identically zero for all edges, the values of Ln(·) can be interpreted as weights or the local
time of the edge. With this clarified we start off with the following model and explain it
in more detail.

Definition 1. Let L0, the initial local profile, k a positive integer, a±i ∈ R where i =
1, . . . , k be given. Ln(·) is updated after every step to Ln+1(·), Ln+2(·) and so on by
letting Ln+1(·) = Ln(·) + 1e where e = {Xn, Xn+1} = {Xn+1, Xn} denotes the crossed
edge in the (n + 1)-th jump. Furthermore let `n(·) = Ln(· + Xn) be the centralized local
profile. A self-interacting random walk on the set of integers is a sequence of random
variables (Xn) such that |Xn+1−Xn| = 1, for all n ∈ {0, 1, 2, . . .}. The random variables
are defined inductively as follows: Given an arbitrary starting point X0 = i0 ∈ Z the
probability to jump right equals

P(Xn+1 = Xn + 1 = in + 1|X0 = i0, . . . , Xn = in, Ln)

= 1− P(Xn+1 = Xn − 1 = in − 1|X0 = i0, . . . , Xn = in, Ln)

=
e∆n

e∆n + e−∆n

where

∆n =
k∑
i=1

a−i`n(−i+
1

2
)− ai`n(i− 1

2
).

Note that the random variables are in fact the choices of jumping left or right. In [2]
the definition of a self-interacting random walk is different because the most general form
is given in a way that any function satisfies, namely R(`n(·)). Just like [2] and [3] we
choose to study a particular class of self-interacting random walk and look at properties
for specific initial values and parameters.
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1 INTRODUCTION TO SELF-INTERACTING RANDOM WALK

Example 1. For all i, let a±i = 0, X0 = 0 and let L0(·) be randomly chosen. Then
this model described a 1-dimensional ordinary random walk with transition probabilities

P(Xn+1 = Xn ± 1 = in ± 1|X0 = i0, . . . , Xn = in, Ln) =
e0

e0 + e0
=

1

2
.
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Figure 1: Trajectory of a 1-dimensional ordinary random walk where every step is inde-
pendent of its previous visits.

After choosing the parameters a±i and letting L0(·) ≡ 0, a fraction of the edges could
look like this when the walker started at zero:
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Example 2. We visualize the effect of jumping over an edge ones more without
choosing the a±i explicitly which is not necessary to grasp the idea. Let the walk start
at X0 = 0 and suppose at the moment we are at Xn = 4. When Xn+1 = 5 the edge
between four and five is raised by one.
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1 INTRODUCTION TO SELF-INTERACTING RANDOM WALK

The probability that this happens can be computed by going through the definition.
Lets compute this probability explicitly for some choice of parameters. Suppose k = 2,
a−2 = a2 = 3, a−1 = 1 and a1 = 2. To be exact regarding notion we note that the weight
of the edge between three and four is L(−1

2
) = `(7

2
) = 25. Now we see that

P(Xn+1 = 5|Xn = 4, Xn−1 = in−1, . . . , X0 = 0, Ln)

=
e11a−2+25a−1−18a1−32a2

e11a−2+25a−1−18a1−32a2 + e−(11a−2+25a−1−18a1−32a2)

=
e33+25−36−96

e33+25−36−96 + e−(33+25−36−96)

which equals zero by approximation. So it is very unlikely to jump right in this particular
case. What is rather surprising is that the walker ended up in this setting at all since
the probability to jump right is close to zero.

We can simulate such walks on a computer. Because we don’t have time to compute such
probabilities by hand every time it is natural to use a tool as simulation. This is done
in section 3 and we see that the choices of a±i determines the characteristic behaviour
of the walk.

A random walk is height-invariant if the local time profile raised by a certain amount
doesn’t influence the walker. In the special case when a−i = ai for all i (the parameters
are symmetric) the random walk is height-invariant:

∆n((m+ `(·)) = a−k(m+ `−k+ 1
2
(·)) + . . .+ a−1(m+ `− 1

2
(·))

−a1(m+ ` 1
2
(·))− . . .− ak(m+ `k+ 1

2
(·))

= a−k`−k+ 1
2
(·) + . . .+ a−1`− 1

2
(·)− a1` 1

2
(·))− . . .− ak`k+ 1

2
(·)

= ∆((`(·))

for all m ∈ R. So the local time profile raised by an amount of m doesn’t change ∆n(`(·))
and consequently doesn’t change the transition probabilities.

The ai play an important role. Whenever a a±i is negative, the walker is attracted
to the corresponding edge L(Xn + i− 1

2
) or L(Xn − i+ 1

2
). Whenever it is positive it is

repelled by it. This effect increases when ai is larger or when the local profile is larger.
This repelling effect is also shown in Example 2 where the walker most repelled from the
edge between five and six with value 32. Also, whenever ∆n is positive or negative the
walker tends to the right or left respectivily.

An interesting property of random walk in general is whether or not the walk is re-
current. A state i is said to be transient if there is a nonzero probability to never return
to state i. If a state i is not transient it is recurrent.
It is still unknown (open question) whether the random walk stated in Definition 1 in
dimension d > 1 is recurrent or not. However, Merkl and Rolles (Recurrence of edge-
reinforced random walk on a two-dimensional graph) proved for Linearly Edge Reinforced
Random Walk, after dividing every edge in Z2 in r pieces that the walk on that graph
with certain initial conditions (also on the edges) is recurrent when r ≥ 130. Here lin-
early means that the transition probabilities proportional to the weights of (only) the
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1 INTRODUCTION TO SELF-INTERACTING RANDOM WALK

neighbouring edges. On the other hand if we consider Linear Vertex Reinforced Random
Walk on Z, Tarrès (Vertex-reinforced random walk on Z eventually gets stuck on five
sites) proved that such a walk (under certain conditions) eventually gets stuck on five
sites almost surely. So there are results known about random walks being transient or
recurrent but not a lot is known about them in higher dimensions.
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2 BASIC PROPERTIES

2 Basic properties

In this section we prove some basic properties of interacting random walks. Fortunately
we find that it is not necessary to use simulation from the start and now find properties
without computing the probabilities explicitly. We say a random walk gets stuck on an
edge {i, i + 1} when only finitely many times a different edge is crossed by the walker.
Analogous definitions hold for more than one edge.

Theorem 1. Let (Xn, n ≥ 0) as in Definition 1 where a−1, a1 < 0,other ai, L0, X0 are
given. Then for every edge there is a positive probability to be stuck on that particular
edge.

To prove this we let the random walk jump back and forth on the edge {i, i + 1},
i ∈ Z arbitrary.

Proof. First we note that with positive probability the walker successively jumps towards
i until it arrives at i, after n steps. Note that when X0 = 0 we could say: after n = |i|
number of steps. This is possible because the probability to jump left or right is never
zero. At i we have the following probability to jump to the right for the mth time:

P(Xn+2m−1 = i+ 1|Xn+2m−2 = i, Ln+2m−2) =
e∆1,m

e∆1,m + e−∆1,m

where

∆1,m =
k∑
j=2

(a−jLn+2(m−1)(i− j +
1

2
)− ajLn+2(m−1)(i+ j − 1

2
))

+a−1Ln+2(m−1)(i−
1

2
)− a1(Ln+2(m−1)(i+

1

2
) + 2(m− 1)).

At i+ 1 we have the following probability to jump to the left for the mth time:

P(Xn+2m = i|Xn+2m−1 = i+ 1, Ln+2m−1) =
e−∆2,m

e∆2,m + e−∆2,m

where

∆2,m =
k∑
j=2

(a−jLn+2(m−1)+1(i− j +
3

2
)− ajLn+2(m−1)+1(i+ j +

1

2
))

+a1Ln+2(m−1)+1(i+
3

2
)− a−1(Ln+2(m−1)+1(i+

1

2
) + 2(m− 1) + 1).

The information concerning the weights (due to the actual history of the walker) is inside
Ln so we don’t write the whole history of the walker in the conditional probability. Let τ
be the set of all times up to which the walker follows the stated strategy, jumping right
and left:

τ = {t ∈ N : Xn+2k = Xn = i,Xn+2k−1 = Xn + 1 = i+ 1 for all k = 1, . . . , t}.
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2 BASIC PROPERTIES

Multiplying all probabilities up to 2t and after simplifying the equation we notice that

P(max τ > 2t) =
t∏

m=1

1

1 + e−2∆1,m

1

1 + e2∆2,m
.

Hence

lnP(max τ > 2t) =
t∑

m=1

ln((1 + e−2∆1,m)(1 + e2∆2,m))

=
t∑

m=1

ln(1 + e−2∆1,m) +
t∑

m=1

ln(1 + e2∆2,m).

=
t∑

m=1

ln(1 + e−2∆
′
1e4a−1m) +

t∑
m=1

ln(1 + e2∆
′
2e4a1m).

where ∆
′
1 and ∆

′
2 are constants, possibly large or small. These summations are bounded

uniformly in t by the next observation. There exist m1,m2 ∈ N such that

e−2∆
′
1e4a−1m1 , e2∆

′
2e4a1m2 < 1.

Letting t→∞, we find

∞∑
m=1

ln(1 + e−2∆
′
1e4a−1m) =

∑
0<m<m1

ln(1 + e−2∆
′
1e4a−1m) +

∑
m≥m1

ln(1 + e−2∆
′
1e4a−1m).

Here the first expression is a finite sum and the second is dominated by a geometric
series with commom ratio e4a−1 . This also holds for

∞∑
m=1

ln(1 + e2∆
′
2e4a1m) =

∑
0<m<m2

ln(1 + e2∆
′
2e4a1m) +

∑
m≥m2

ln(1 + e2∆
′
2e4a1m)

where the common ratio equals e4a1 . Note that

lim sup
t→∞

P(τ > t) = P(lim sup
t→∞

{τ > t}) = P(τ =∞).

Hence − lnP(τ =∞) < ∞ and consequently P(τ = ∞) > 0. Because at the start
we move to i with positive probability and stay on the edge {i, i + 1} with positive
probability, the walk gets stuck on {i, i+ 1} with positive probability.

Before improving the statement of Theorem 1 to almost sure behaviour, we point
out the following interesting aspect of Definition 1. When we consider the initial values
L0(·) notice that the local time profile is not bounded just as in Theorem 1 and find the
following remarkable fact.

Lemma 1. Let (Xn, n ≥ 0) be a random walk as in Definition 1 with a±i = 0 if i =
2, 3, . . . , k and a−1 = a1 = a < 0 and let X0 = 0. Then there exist initial conditions L0

such that the walk gets stuck on one edge with positive probability and the walk goes to
infinity with positive probability.
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2 BASIC PROPERTIES

To prove that the walk gets stuck on one edge almost surely, we need the initial local
time profile to be bounded otherwise this lemma would contradict.

Proof. The first part of the lemma follows directly from Theorem 1 since no special initial
conditions are required to get stuck. For the second part we construct initial conditions
on the edges such that the walk is ‘pulled to’ infinity with positive probability.

L(−1
2
)

-1 0

L(1
2
)

1

L(3
2
)

2

L(5
2
)

3

L(7
2
)

4

Now forcing the walk to the right, from the start at X0:

lim
n→∞

P(Xn →∞) > P(∀n : Xn+1 = Xn + 1)

= lim
t→∞

t∏
n=1

ea(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))

ea(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

)) + e−a(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))

= lim
t→∞

t∏
n=1

1

1 + e−2a(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))
.

We added one to L(−1
2
) so the notation is somewhat better. Take the logaritm on both

sides and notice that

− lim
t→∞

t∑
n=1

log(1 + e−2a(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))) ≤ − lim
t→∞

t∑
n=1

e−2a(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))

if |e−2a(Ln−1(n− 3
2

)+1−Ln−1(n− 1
2

))| < 1. Here we use the identity ln(1 + x) ≤ x if |x| < 1.
Since a < 0 we need Ln−1(n− 3

2
) + 1−Ln−1(n− 1

2
) < 0 so L(n− 1

2
) > L(n− 3

2
) + 1. Take

L(−1
2
) = 1 (due to notation earlier), L(1

2
) = 3 and L(n− 1

2
) = 3L(n− 3

2
) for n ≥ 2 and

the condition is satisfied for all n so the sum is finite and thus lim
n→∞

P(Xn → ∞) > 0.

Here the final picture of the initial local time profile is:
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3 SIMULATIONS

3 Simulations

We now give a short overview of some possible types of behaviour that can occur, by us-
ing simulations. Fortunately, self-interacting random walks are simulated just as easy as
ordinary random walks which gives us the opportunity to see what happens for different
values of a±1 and a±2. A ‘phase diagram’ in terms of a = a±1 and b = a±2 is given in [2].
For convenience, we also let ai = 0 for all i = 3, 4, . . . , k and a1 = a−1 and a2 = a−2. We
have already seen the ordinary random walk in section 1. We start with a different type
of behaviour, the so-called ‘ballistic’ random walk.
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Figure 2: Two different walks for a1 = 0 and a2 = 1.

These walks are very similar to simple random walk where p < 1
2

or p > 1
2

but not quite
since it looks very structured and less jumpy. When it turns around, it tends to walk in
the new direction. Now we look at some cases where the walk gets stuck on a number
of edges.
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Figure 3: Two cases where the walker gets stuck on a single edge. Here a1 = 0, a2 = −.1
respectivily −.06. In the latter case the walker slowly builts up enough local time to get
stuck on the edge {1, 2}.

An example of a random walk where it takes very long before getting stuck.

15



3 SIMULATIONS

0 500 1000 1500 2000

−
10

0
10

20
30

40
50

time before stuck

number of steps

po
si

tio
ns

0 1000 2000 3000 4000

0
20

40
60

time before stuck

number of steps

po
si

tio
ns

Figure 4: Similar case where the walker gets stuck on a single edge. These walks are the
same, the second one is longer and we see it gets stuck. Here a1 = 0 and a2 = −.01.

We see by simulations that indeed for all a±1 < 0 the random walk gets stuck on a single
edge. On the other hand the time until it finally gets stuck can vary due to the choice of
parameters or initial local times. Finally, we find that the walker can get stuck on more
then a single edge.
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Figure 5: It appears that the walker gets stuck on five edges, note that the histogram
plots six sites! a1 = −.45, a2 = 1 and make 1000 steps.

Here we see that the histogram reveals the local time profile on the edges. It is possible
to get stuck on one, two, three, . . . edges in the long run but impossible to show them
all seperately. A range of parameters is given in [3] which tells us on how many edges
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3 SIMULATIONS

the walker will get stuck on. This is shown is section 6.

These plots are made in R1 and the program used can be found in the appendix as
Model 1.

1Search for R in your favorite internet search engine and you can download and use R for free.
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4 STUCK ON A SINGLE EDGE

4 Stuck on a single edge

Theorem 1 states the walk will get stuck with positive probability as soon as both
a±1 < 0. The aim of this section is to prove that the random walk gets stuck almost
surely. In order to do so we need another result: the finite range of the walk. Here the
range of the walker equals all sites ever visited, R = {X0, X1, . . .}.

4.1 Finite range

Lemma 2. The random walk from Theorem 1 with a±i = 0 for i = 2, 3, . . . , k and
supe |L0(e)| <∞ has finite range, |R| <∞.

Proof.

L(2n− 1
2
)

2n

L(2n+ 1
2
)

2n+ 1

L(2n+ 3
2
)

We show that there exist a δ > 0 such that every time we encounter a new 2nth site,
n ∈ N, the probability that the walk gets immediately stuck on the next edge is more
than δ. This δ can be viewed at as the worst case the walker could find itself in and so
the probability of getting stuck immediately is least likely. Let L(2n− 1

2
), L(2n+ 1

2
) and

L(2n + 3
2
) be the weights on the edges as in the figure above, around 2n. Let τx be the

time of first arrival at x, τx = inf{m ∈ N : Xm = x}. The first time we arrive at site 2n
the probability to jump right equals

P(Xm+1 = 2n+ 1|τ2n = m) =
ea−1(L(2n− 1

2
)+1)−a1L(2n+ 1

2
)

ea−1(L(2n− 1
2

)+1)−a1L(2n+ 1
2

) + e−(a−1(L(2n− 1
2

)+1)−a1L(2n+ 1
2

))

and jump over the same edge again (back to 2n) with probability

P(Xm+2 = 2n|τ2n = m,Xm+1 = 2n+ 1)

=
e−(a−1(L(2n+ 1

2
)+1)−a1L(2n+ 3

2
))

e−a−1(L(2n+ 1
2

)+1)−a1L(2n+ 3
2

)) + ea−1(L(2n+ 1
2

)+1)−a1L(2n+ 3
2

)
.

We want that the probability that we get stuck on that edge, {2n, 2n+ 1}, immediately
to be as small as possible and therefore we need both a−1(L(2n− 1

2
) + 1)− a1L(2n+ 1

2
)

and −a−1(L(2n+ 1
2
) + 1)− a1L(2n+ 3

2
) to be as small as possible because

ex

ex + e−x
>

ey

ey + e−y

if x > y. This can be done by maximizing L(2n− 1
2
), L(2n+ 3

2
) and minimizing L(2n+ 1

2
)

and we see that for this worst case we need L(2n − 1
2
) and L(2n + 3

2
) to be the largest

values allowed, say M , by our boundaries and L(2n+ 1
2
) to be as small as possible. δa−1,a1

depending on both a−1 and a1 can be found explicitly and to calculate this we refer to the
proof of Theorem 1 and note again it is greater than zero. Now every time we encounter
a new 2nth site, the probability the walker gets stuck immediately is always more than δ.
By symmetry the same holds for every new −2nth site we encounter, n ∈ N. It follows
that P(|R| > 2t) < (1− δ)t and consequently P(|R| =∞) = lim

t→∞
P(|R| > 2t) = 0.
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4.2 Rubin’s Theorem 4 STUCK ON A SINGLE EDGE

4.2 Rubin’s Theorem

In order to formulate Rubin’s theorem we consider infinite sequences of the set {l, r}.
Davis [1] shows an analogy with the generalized Polya urn model by drawing red (r) and
white (w) balls from an urn. We interpret drawing a red/white ball as going left/right
and we return a multiple of the same colored balls back into the urn.

We define two sequences l = (l0, l1, . . .) and r = (r0, r1, . . .) of nonnegative numbers

and need r0, w0 > 0. Let Lk =
k∑
i=0

li and Rk =
k∑
i=0

ri. The infinite sequence we generate

starts with an r with probability
R0

R0 + L0

and with l with probability
L0

R0 + L0

. After

n steps (entries) consisting of x r’s and y = n− x l’s the probability that the (n+ 1)th

entry is an r equals
Rx

Rx + Ly
and it is an l with probability

Ly
Rx + Ly

. This looks very

much like the model we start out with in Definition 1. Finally, let

pr = P(all but finitely many elements of the sequence are ‘r’)

and
pl = P(all but finitely many elements of the sequence are ‘l’)

and φ(r) =
∞∑
i=0

R−1
i and φ(l) =

∞∑
i=0

L−1
i .

Theorem 2 (Rubin). If φ(r) <∞ and φ(l) <∞ then pr, pl > 0 and pr + pl = 1.

This proof is also stated in [1].

Proof. Let Y0, Y1, . . . be independent exponential random variables with E(Yi) = R−1
i .

Let Z0, Z1, . . . be independent exponential random variables with E(Zi) = L−1
i and

note that all Yi and Zj are independent for i, j ≥ 0. Let A = {
k∑
i=0

Yi, k ≥ 0}, and

B = {
k∑
i=0

Li, k ≥ 0} and define G = A ∪ B. Let ξi be the ith smallest number in

G. We define a random sequence of r’s and l’s by letting the ith number be an r if
ξi ∈ A and l if ξi ∈ B. The most important property of this sequence is that it has
the same distribution as the generalized Polya sequence. We give two examples such
that this is clarified. The probability that the first entry is an r equals P(ξ1 ∈ A) =
P(Y0 < Z0). This can be computed easily because the joint probability density function
is the product of the two exponential distributions with expectations R−1

0 and L−1
0 .

Integrating over the area 0 < y < z < ∞ we get P(Y0 < Z0) =
R0

R0 + L0

which is

what is should be stated above. A different (representative) case is where the history
H = {the first four components are rrlr} = {ξ1 ∈ A, ξ2 ∈ A, ξ3 ∈ B, ξ4 ∈ A} is given.
Given H, the distance α from ξ4 to the smallest number in A greater than ξ4 is Y3. So
α has the distribution of Y3. Now let β be the smallest distance from ξ4 to the smallest
number of B greater than ξ4. Looking closely at the possiblities we find this distance to be
Z1 +Z0−(Y0 +Y1 +Y2). Due to the lack of memory property of exponential distributions

20



4.3 The argument completed 4 STUCK ON A SINGLE EDGE

we note that β has the distribution of Z1. This all relies on the assumption that we
condition on the given H. And because α and β are independent (given H) we conclude

P(ξ4 ∈ A|H) = P(α < β) =
Y3

Y3 + Z1

which also correspondes to the probabilities of the

generalized Polya sequence. Finally, we observe that because
∞∑
i=0

R−1
i <∞ it holds that

P(
∞∑
i=0

Yi < ∞) = 1. The same result holds if we replace the < sign by the = sign in

both expressions. Further note that in the finite case
∞∑
i=0

Yi has a positive density on

(0,∞). All these results are also true if we replace Ri by Li and the corresponding Yi by

Zi. Furthermore we see that pr = P(
∞∑
i=0

Yi <

∞∑
i=0

Zi) and pl = P(
∞∑
i=0

Zi <

∞∑
i=0

Yi). These

‘piles’ must be compared in the long run and notice that one must the larger that the
other with probability one, so pr + pl = 1 and both pr and pl are positive because both
sums are supported on the whole interval (0,∞).

4.3 The argument completed

Theorem 3. A random walk satisfying the conditions from Lemma 2 gets stuck on one
edge almost surely.

Proof. By Lemma 2 we know that the random walk has finite range and we proceed
indirectly by assuming that at least two (neighbouring) edges are both crossed infinitely
often. We refer to these as the left and right edge from the infinitely often visited site j.
Now we define a sequence consisting of r’s and l’s as follows: let T1 = inf{k ≥ 0 : Xk = j}
and Ti = inf{k > Ti−1 : Xk = j}, i > 1 and let the ith entry be r if XTi+1 = j+ 1 and l if
XTi+1 = j−1. By the assumption, the random walker will produce a sequence consisting
of infinitely many r’s and infinitely many l’s. Now we note that in general

P(Xn+1 = Xn + 1|Xn, Ln) =
ea−1ll−a1lr

ea−1ll−a1lr + ea1lr−a−1ll

=
e−a1lr

e−a1lr + ea1lr−2a−1ll

=
e−2a1lr

e−2a1lr + e−2a−1ll
=

Rn

Rn + Ln
.

Here Rn = e−2a1lr(n) and Ln = e−2a−1ll(n). To finally apply Rubin’s Theorem, we need
both φ(r) < ∞ and φ(l) < ∞. This holds because both φ(r) and φ(l) are geometric
series with common ratio e2a1 , e2a−1 < 1, because in Lemma 2 a−1, a1 < 0. So by Rubin’s
Theorem we now know that pr + pl = 1; implying the probability that we find both an
infinite number of r’s and l’s equals zero. So the assumption is wrong and we conclude
that only one edge is crossed infinitely often.

Sellke, Reinforced Random Walk on the d-dimensional Integer Lattice (1994), proved
the same result. Starting at the origin, an edge has weight wk if it is crossed k times.
He defines a walk on Zd and the transition probabilities are proportional to the weights
on the edges connecting the sites around its position at distance one. He also proves
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4.3 The argument completed 4 STUCK ON A SINGLE EDGE

whenever
∞∑
k=0

w−1
2k =∞ and

∞∑
k=0

w−1
2k+1 =∞ the range of the walker is finite and if both

are finite the walker gets stuck on a single edge.
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5 Extensions of the model

We consider extensions of the model where the walker is now able to jump to its neigh-
bouring sites as well as to its next-to-neighbouring sites. We investigate whether or not
it is possible to find parameters such that the qualitative asymptotic behaviour is not
unique. We found such parameters in the original model but failed when considering
bounded L0. We use simulations to find them for the following models.
The first extended model we consider is equal to the one we started with in Definition
1 but after choosing to jump left or right, we ‘flip a coin’ and with equal probability
the walker jumps one or two positions in that direction. The edges that are crossed are
raised by one.
We expect that whenever the original walker gets stuck on one edge this walker gets
stuck on three. We find the following interesting behaviour: when the parameters
a±2 = 1, a±1 = −3 the walk can get stuck on three or five edges with positive prob-
ability.
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Figure 6: a±1 = −3, a±2 = 1, 2000 steps
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5 EXTENSIONS OF THE MODEL

After doing simulations we find that for a±1 < 0 the walker gets stuck on five or three
edges due to the possibility of jumping twice as far as normal.

The second extended model we consider is equal to the one we started with in Defin-
ition 1 but after choosing to jump left or right we jump one or two positions depending
on the weights on the edges. Once the walker decides to go left/right, it jumps two
positions with probability

`(±3/2)

`(±3/2) + `(±1/2)

and one position with probability

`(±1/2)

`(±3/2) + `(±1/2)
.

Remember that going left means only minus signs in these terms, and going right rep-
resents only plus signs. The edges that are crossed are raised by one and the local time
profile L0 ≥ 1. We don’t want to divide by zero at any time.

The problem we encounter here is that the simulations could be misleading. It may
look like the walker is stuck on three edges for example when it actually needs four edges.
That can happen when you look at the random walk (Model 3) in the appendix. You
can use parameters a1 = .01, a2 = −.1 and set.seed(1) in R and first make only, say,
10000 steps and also one plot with at least 150000 steps (don’t forget to use set.seed(1),
this is essential).

The authors of [2] ask whether not almost sure behaviour is possible. Our similations
suggest it is for model 2 and probably not for model 3. We note that we have not varied
the initial conditions at any time so perhaps that could make in difference when the
initial conditions are not bounded. For model 1 with suitable initial conditions we know
it is possible (see Lemma 2) for different behaviours to occur with positive probabil-
ity. However, we have proven that it is not possible in model 1 with bounded initial
conditions and specified parameters in Theorem 3.
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6 Discussion

Finally, we discuss some other results presented in [2] and [3] and state some open
questions to be answered.
In [2] a symmetric case of the parameters is investigated and true self-repelling motion
is shown as well as the stuck case and the nonsymmetric case for certain parameters.
An overview of possible behaviour types is given in a ‘phase diagram’ in terms of a(=
a−2 = a2) and b(= a−1 = a1). Furthermore, we state the main theorem of Stuck walks
which gives sufficient conditions for the walker to get stuck on two, three, . . . edges. The
Theorem states: Let Ak := 1 + 2 cos( 2π

k+2
).

• If b/|a| ∈ (Ak, Ak+1) for some k ≥ 1 then with positive probability the walk remains
stuck on a set of k + 2 sites, and visits all infinitely often.

• If b/|a| > Ak then, almost surely, the walk does not get stuck on a set with less
than k + 2 sites.

The proof is given in [3], in two steps, consisting of a probabilistic part and a combinat-
orical one.

We wonder if it is possible to improve Theorem 3, so it hold for a larger range of
parameters and if its possible for more types of asymptotic behaviour for one choice of
parameters to occur when the initial conditions are bounded. Also, in higher dimensions
there is not much known about self-interacting random walk. It is a challenge to even
figure out what happens in Z2.
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7 APPENDIX

7 Appendix

To run one of the following programs, first insert the program in R. You can run the
program by entering walk1(1,2,200) for example. The first two entries (a2 and a1 re-
spectivily, where a2 = a−2 and a1 = a−1) are the parameters and the third entry is the
number of steps. The programs speak for themselves.

#Model 1

walk1=function(a,b,c)

{

h=0*(1:c)

l=0*(1:(2*c+10))

n=c

for(k in 1:c)

{

h[k]=n

d=a*l[n-2]+b*l[n-1]-b*l[n]-a*l[n+1]

p=1/(1+exp(-2*d))

if(runif(1,0,1)<=p)

{

l[n]=l[n]+1

n=n+1

}

else

{

l[n-1]=l[n-1]+1

n=n-1

}

}

h=h-c

plot(h,xlab="steps", ylab="positions",type="l")

}
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#Model 2

walk2=function(a,b,c)

{

h=0*(1:c)

l=0*(1:(2*c+10))

n=c

for(k in 1:c)

{

h[k]=n

d=a*l[n-2]+b*l[n-1]-b*l[n]-a*l[n+1]

p=1/(1+1*exp(-2*d))

q=1-p

v=runif(1,0,1)

if(v<=p/2)

{

l[n+1]=l[n+1]+1

l[n]=l[n]+1

n=n+2

} else

if(v<=p)

{

l[n]=l[n]+1

n=n+1

} else

if(v<=(p+(1-p)/2))

{

l[n-1]=l[n-1]+1

n=n-1

}

else

{

l[n-2]=l[n-2]+1

l[n-1]=l[n-1]+1

n=n-2

}

}

h=h-c

hist(h,main="local time profile", xlab="sites",ylab="weights")

#plot(h,type="l", xlab="number of steps", ylab="positions")

}
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#Model 3

walk3=function(a,b,c)

{

h=0*(1:c)

l=0*(1:(2*c+10))

l=l+1

n=c

for(k in 1:c)

{

h[k]=n

d=a*l[n-2]+b*l[n-1]-b*l[n]-a*l[n+1]

p=1/(1+exp(-2*d))

v=runif(1,0,1)

w=runif(1,0,1)

if(v<=p)

{

if(w<=(l[n]/(l[n]+l[n+1]))){

l[n]=l[n]+1

n=n+1}

else{

l[n+1]=l[n+1]+1

l[n]=l[n]+1

n=n+2}

}

else

{

if(w<=(l[n-1]/(l[n-1]+l[n-2]))){

l[n-1]=l[n-1]+1

n=n-1}

else{

l[n-2]=l[n-2]+1

l[n-1]=l[n-1]+1

n=n-2}

}

}

h=h-c

plot(h,type="l",xlab="number of steps",ylab="positions")

}
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