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Introduction
In this thesis we study elliptic curves over the field of p-adic numbers, denoted by Qp.

Diophantus of Alexandria lived between circa 200 and 298 AD and wrote a series
of books called Arithmetica, in which he discussed solutions of algebraic equations.
The study of these so-called Diophantine equations has been practiced ever since.
Mathematicians are interested in both proving that integer or rational solutions of
these equations exist and finding explicit solutions. Elliptic curves are examples of
Diophantine equations of degree three. In studying them, we use techniques from
algebraic geometry as well as from algebraic number theory. Much is already known
about the set of rational points on elliptic curves. For example, this set can be made
into an abelian group (Theorem 2.3.8). Furthermore, Mordell (1888-1972) proved
that, in the case of an elliptic curve over the rational numbers, this group is finitely
generated. There are also well known techniques to calculate the torsion points.
Nonetheless, in practice it turns out that determining the isomorphism type of this
group can be a hard task.

The study of p-adic numbers is more recent than elliptic curves. However, p-adic
numbers play a central role in algebraic number theory. Kurt Hensel (1861-1941)
first introduced them and he proved Hensel’s Lemma (Lemma 1.2.9), which plays
a very important role throughout this thesis. This lemma asserts that we can find
solutions of certain polynomials over the p-adic integers, denoted by Zp, by looking
for solutions in Fp.

How do these two subjects, the study of elliptic curves and the study of p-adic num-
bers, relate? Helmut Hasse (1898-1979) proved that a second degree polynomial
in two variables has rational solutions if it has solutions in Qp for every prime p.
Unfortunately, for elliptic curves this theorem does not hold, but we can still use
the group of p-adic solutions of elliptic curves to understand the group of rational
solutions. This is very useful, since the group of p-adic points on a curve is usually
more easily found.

In this thesis we will explain how we can find the group of p-adic points on an
elliptic curve. We will start the first chapter by defining the field of p-adic numbers
and study some important and useful properties of both Qp and Zp. We finish the
chapter by stating and proving Hensel’s Lemma. In the second chapter, we define
the projective plane and elliptic curves. We explain how the group of points on an
elliptic curve can be made into an abelian group. Finally, in the third chapter we
will bring these two subjects together and study elliptic curves over Qp. We will
finish the thesis by giving two explicit calculations of the group of p-adic points on
an elliptic curve.
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1 The p-adic numbers
In this chapter, we will define and explore the p-adic numbers. Recall that the real
numbers R are constructed from Q by taking all Cauchy sequences in Q modulo all
sequences that converge to zero. The p-adic numbers are constructed in a similar
fashion, but instead of the standard norm we use the so-called p-adic norm.

1.1 The field Qp and the ring Zp
We start this section by defining the notion of a valuation on a field K:

Definition 1.1.1. Let K be a field. A map ν : K −→ R∪∞ is called a valuation if
it satisfies the following properties for all a, b ∈ K:

i. ν(ab) = ν(a) + ν(b);

ii. ν(a+ b) ≥ min{ν(a), ν(b)} with equality if ν(a) 6= ν(b);

iii. ν(a) =∞⇔ a = 0.

We will focus on a specific valuation on the rational numbers, the p-adic valuation.

Definition 1.1.2. Let p be a prime, and a ∈ Q∗ a rational number. Write a = pρ · xy
with x, y, ρ ∈ Z and p - xy. The p-adic valuation of a, denoted by νp(a), is defined
as νp(a) = ρ, with νp(0) =∞.

Proposition 1.1.3. νp is a valuation on Q.

Proof. Let a, b ∈ Q. If a or b equals zero, properties i and ii are satisfied, since
νp(0) = ∞. If a 6= 0 6= b, write a = pρ · xy , b = pσ · x′y′ with x, y, x′, y′, ρ, σ ∈ Z
and p - xy, p - x′y′. Then νp(ab) = νp(p

ρ+σ xx′

yy′ ) = ρ + σ = νp(a) + νp(b), so νp

satisfies property i. To prove property ii, write a+ b = pρxy′+pσx′y
yy′ . Without loss of

generality we may assume that ρ ≤ σ, so that a+ b = pρ xy
′+pσ−ρx′y
yy′ . We know that

p - yy′, therefore νp(a+ b) ≥ ρ = min{νp(a), νp(b)}. Note that if σ 6= ρ, the integer
xy′ + pσ−ρx′y is not divisible by p, therefore νp(a + b) = ρ = min{νp(a), νp(b)}.
Hence, νp satisfies property ii as well. Finally, property iii is satisfied by definition,
so νp is a valuation on Q.

From the p-adic valuation we can construct the p-adic norm on Q:

Definition 1.1.4. Let p be a prime and a ∈ Q∗. The p-adic norm of a, denoted by
| · |p, is defined as |a|p = p−νp(a), with |0|p = 0.

Proposition 1.1.5. | · |p is a norm on Q.

Proof. Note that |a|p ≥ 0 for all a ∈ Q, and |a|p = 0⇔ a = 0 by definition. Now let
a, b ∈ Q∗. Then we have

|ab|p = p−νp(ab) = p−νp(a)−νp(b) = p−νp(a)p−ν(b) = |a|p|b|p
and |a · 0|p = |0|p = 0 = |a|p|0|p, so | · |p is multiplicative. Finally, we have

|a+ b|p = p−νp(a+b) ≤ p−min{νp(a),νp(b)} = max{|a|p, |b|p} ≤ |a|p + |b|p
and |a + 0|p = |a|p = |a|p + |0|p, hence | · |p satisfies the triangle inequality. We
conclude that | · |p is a norm on Q.
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Since | · |p is a norm, it satisfies the triangle inequality. In fact, we proved something
stronger: for all a, b ∈ Q we have |a+ b|p ≤ max{|a|p, |b|p}. Norms that satisfy this
property are called ultrametric. Furthermore, if a, b ∈ Q∗ with |a|p 6= |b|p, we find
|a+ b|p = p−νp(a+b) = p−min{νp(a),νp(b)} = max{|a|p, |b|p}.

Note that | · |p is a map from Q to R with image {pn|n ∈ Z} ∪ {0}. With respect
to the p-adic norm, numbers are small if they are divisible by high powers of p. We
illustrate this by giving an example.

Example 1.1.6. Consider the rational number x = 264
245 = 23 · 3 · 5−1 · 7−2 · 11. We

calculate |x|p for different values of p:

|x|2 =
1

8
, |x|3 =

1

3
, |x|5 = 5, |x|7 = 49, |x|11 =

1

11
.

For all p /∈ {2, 3, 5, 7, 11}, we have |x|p = 1.

Since we defined a norm on Q, we can talk about Cauchy sequences and convergence
in Q. For the convenience of the reader, we recall these two definitions.

Definition 1.1.7. Let k be a normed field with norm | · |, and (an)n∈N a sequence
in k. We say that (an)n∈N is a Cauchy sequence with respect to | · | if for all ε > 0
there exists an N ∈ N such that for all m,n ≥ N the equality |an − am| < ε holds.

Definition 1.1.8. Let k be a normed field with norm | · |, and (an)n∈N a sequence
in k. The sequence (an)n∈N is called convergent with respect to | · | if there exists
an a ∈ k with the property that for all ε > 0 there exists an N ∈ N such that for all
n ≥ N the equality |an − a| < ε holds. We say that (an)n∈N converges to a, and we
call a the limit of (an)n∈N.

We are on our way to construct the field of p-adic numbers. Before we can do this,
we need the following lemma:

Lemma 1.1.9. Let (an)n∈N be a Cauchy sequence in Q that does not converge to
zero with respect to | · |p. Then there exists an N ∈ N such that for all n ≥ N the
equality |an|p = |aN |p 6= 0 holds.

Proof. Since (an)n∈N does not converge to zero, there is an ε̃ > 0 such that for all
N ∈ N there exists an n∗ ≥ N with |an∗ |p ≥ ε̃. Now let ε = ε̃

2 . Since (an)n∈N is
Cauchy, there exists an N ∈ N such that |an − am|p < ε for all n,m ≥ N . Choose
such an N , and choose n∗ as above. Then by the triangle inequality we have

|aN |p ≥ |an∗ |p − |an∗ − aN |p > ε̃− ε = ε.

So for all n ≥ N we find |aN−an|p < ε < |aN |p. This means that |aN−an|p 6= |aN |p,
so

|an|p = |aN − an − aN |p = max{|aN − an|p, |aN |p} = |aN |p
for all n ≥ N . Since (an)n∈N does not converge to zero, and |x|p = 0 ⇔ x = 0, it
follows that |aN |p 6= 0.
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Now we have all the tools we need to construct the field of p-adic numbers. Let C
be the set of Cauchy sequences in Q. Note that C can be made into a ring by using
component wise addition and multiplication. Let I be the set of sequences in C that
converge to zero with respect to the p-adic norm. This is an ideal in C and, as we
will now prove, it is even a maximal ideal.

Lemma 1.1.10. I is a maximal ideal in C.

Proof. Let J be another ideal of C such that I ( J ⊂ C. For (an)n∈N ∈ J \ I, only
finitely many of the ai are zero by Lemma 1.1.9, say {ai1 , . . . , ain}. So the sequence
(bn)n∈N given by bi = 1 if i ∈ {i1, . . . , in}, bi = 0 if i /∈ {i1, . . . , in} is an element of I,
which means that (cn)n∈N = (an)n∈N +(bn)n∈N ∈ J , and ci 6= 0 for all i. We want to
prove that (c−1n )n∈N ∈ C, which would mean that (cn)n∈N · (c−1n )n∈N = (1)n∈N ∈ J ,
leading to J = C. To prove this, let ε > 0 be given. By Lemma 1.1.9 there exists
an N such that |cn|p = |cN |p 6= 0 for all n ≥ N . Choose N ′ ≥ N such that
|cn − cm|p < ε|cN |2p for all n,m ≥ N ′. Then for all n,m ≥ N ′:

|c−1n − c−1m |p =
|cm − cn|p
|cncm|p

=
|cm − cn|p
|cN |2p

<
ε|cN |2p
|cN |2p

= ε,

so (c−1n )n∈N is a Cauchy sequence. Hence, (c−1n )n∈N ∈ C and therefore J = C. We
conclude that I is a maximal ideal in C.

By the previous lemma, C/I is a field.

Definition 1.1.11. The field of p-adic numbers is defined by Qp = C/I.

The set of real numbers has certain properties, that make it a so-called completion of
Q with respect to the standard norm. We will prove that Qp has the same properties
with respect to the p-adic norm. First we define what these properties are:

Definition 1.1.12. Let K be a field and k ⊂ K be a subfield, with norms | · |K and
| · |k respectively. K is said to be the completion of k with respect to | · |k if:

i. |x|K = |x|k for all x ∈ k;

ii. K is complete with respect to | · |K ;

iii. k is dense in K with respect to the topology induced by | · |K .

To prove that Qp is indeed a completion of Q with respect to the p-adic norm, we
first show that | · |p extends to a norm on Qp.

Definition 1.1.13. Let x be an element in Qp and (an)n∈N a representative of x.
The p-adic norm of x, denoted by ||x||p, is defined by ||x||p = limn→∞ |an|p, with
||0||p = 0.

Proposition 1.1.14. || · ||p is well-defined and a norm on Qp.

Proof. First, note that ||·||p exists, since by Lemma 1.1.9 the sequence (|an|p)n∈N will
eventually be constant if it does not converge to zero, and for a sequence converging
to zero the norm is zero by definition. Of course, we have to prove that || · ||p does
not depend on the chosen representative of x. To this end, let (bn)n∈N be another
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representative of x. Then, by definition, (an)n∈N − (bn)n∈N is a Cauchy sequence
converging to zero with respect to | · |p. Hence,

lim
n→∞

|an|p = lim
n→∞

|an − bn + bn|p ≤ lim
n→∞

|an − bn|p + |bn|p

= lim
n→∞

|an − bn|p + lim
n→∞

|bn|p

= lim
n→∞

|bn|p,

so ||x||p is independent of the choice of representatives. What is left is to prove that
|| · ||p is indeed a norm. Since |a|p ≥ 0 for all a ∈ Q, we have ||x||p ≥ 0 for all
x ∈ Qp. Furthermore, ||x||p = 0⇔ x = 0 by Lemma 1.1.9. To prove additivity and
multiplicativity, let x, y ∈ Q∗p (if x or y is zero it is trivial) and choose representatives
(an)n∈N, (bn)n∈N, respectively. Then

||xy||p = lim
n→∞

|anbn|p = lim
n→∞

|an|p|bn|p = lim
n→∞

|an|p lim
n→∞

|bn|p = ||x||p||y||p,

and

||x+ y||p = lim
n→∞

|an + bn|p ≤ lim
n→∞

max{|an|p, |bn|p} ≤ lim
n→∞

|an|p + lim
n→∞

|bn|p

= ||x||p + ||y||p,

so || · ||p is a norm. In fact, the above shows that ||x + y||p ≤ max{||x||p, ||y||p} for
all x, y ∈ Q, so || · ||p is an ultrametric norm.

Now that we have a well-defined norm on Qp, we can prove that Qp is the completion
of Q with respect to the p-adic norm.

Proposition 1.1.15. Qp, with norm || · ||p, is a completion of Q with respect to the
p-adic norm.

Proof. Consider the canonical homomorphism i : Q ↪→ Qp, q 7−→ (q, q, q, . . .) (where

(q, q, q, . . .) is the class of the constant sequence (q, q, q, . . .) in Qp). Note that
||i(q)||p = |q|p for all q ∈ Q. To prove that Q is dense in Qp, let x be an ele-
ment in Qp and ε > 0. We will show that there exists an element y ∈ Q such that
||x − i(y)||p < ε. Let (an)n∈N be a representative of x. Since (an)n∈N is a Cauchy
sequence with respect to | · |p, there exists an N such that |an − am|p < ε for all
n,m ≥ N . Let y = aN . Then

||x− i(y)||p = lim
n→∞

|an − y|p = lim
n→∞

|an − aN |p < ε,

so Q is dense in Qp. The last thing to prove is that Qp is complete with respect
to the norm || · ||p. Let (xn)n∈N be a Cauchy sequence in Qp. We will prove that
(xn)n∈N converges to a limit in Qp. Since Q is dense in Qp, for every n ∈ N there
exists an yn ∈ Q such that ||xn − i(yn)||p < 1

n . We will show that the sequence
(yn)n∈N is a Cauchy sequence in Q. To this end, let ε > 0, and N ∈ N such
that N ≥ 1

ε . Then for all n ≥ N we find ||xn − i(yn)||p < 1
n ≤

1
N ≤ ε. So

(xn−i(yn))n∈N converges to zero, from which it follows that it is a Cauchy sequence.
Hence (i(y)n)n∈N = (xn)n∈N − (xn − i(yn))n∈N is a Cauchy sequence in Qp too. But
||i(yn)||p = |yn|p for all n ∈ N, so (yn)n∈N is a Cauchy sequence in Q with respect to
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| · |p. Hence, x = (yn)n∈N is an element in Qp. Next, we want to prove that x is the
limit of (xn)n∈N in Qp. We start by proving that (x − i(yn))n∈N converges to zero.
Let ε > 0, and choose N such that |yn − ym|p < ε for all n,m ≥ N . Then for all
n ≥ N , we find ||x− i(yn)||p = limm→∞ |ym − yn|p < ε. So (x− i(yn))n∈N converges
to zero, hence (x − xn)n∈N = (x − i(yn))n∈N − (xn − i(yn))n∈N converges to zero.
We conclude that (xn)n∈N converges to x in Qp, so Qp is complete with respect to
|| · ||p.

Since Q is dense in Qp, for all x ∈ Qp there is an y ∈ Q with ||x− i(y)||p < ||i(y)||p,
so ||x||p = ||x − y + y||p = ||i(y)||p = |y|p. We conclude that the image of the map
|| · ||p on Qp is exactly the same as the the image of | · |p. From now on, for an

element q ∈ Q we write q = (q, q, q, . . .) ∈ Qp. Furthermore, for an element x ∈ Qp

we will write |x|p instead of ||x||p.

Definition 1.1.16. The set Zp = {x ∈ Qp : |x|p ≤ 1} is called the set of p-adic
integers.

Proposition 1.1.17. Zp is a subring of Qp.

Proof. Clearly, 1 = (1, 1, 1, . . .) and 0 = (0, 0, 0, . . .) are in Zp. Let x, y ∈ Zp, then
|x|p ≤ 1, |y|p ≤ 1. This implies

|x+ y|p ≤ max{|x|p, |y|p} ≤ 1 and |xy|p = |x|p|y|p ≤ 1,

so Zp is closed under addition and multiplication. Finally, | − x|p = |x|p ≤ 1, so
−x ∈ Zp. This implies that Zp is a subring of Qp.

We will describe and understand the ring Zp thoroughly in this thesis. As we will
see later, Zp has the following property which states that we can very easily find
solutions of polynomials in Zp[x].

Theorem 1.1.18. Let f ∈ Zp[x] be a polynomial and assume that there is an a ∈ Zp
with f(a) ∈ pZp and f ′(a) ∈ Z∗p. Then there exists a b ∈ Zp with b ≡ a mod p and
f(b) = 0.

Proof. This is a special case of Hensel’s lemma, which is our main result in Section
1.2.

Definition 1.1.19. An element x ∈ Qp with |x|p = 1 is called a p-adic unit.

For a p-adic unit u we have |u−1|p = |u|−1p = 1, so u−1 ∈ Zp is a p-adic unit too.
Furthermore, if x is an invertible element of Zp, then |x|p ≤ 1 and |x−1|p = |x|−1p ≤ 1,
so |x|p = |x−1|p = 1, which means that x is a p-adic unit. We conclude that the
p-adic units are exactly the invertible elements of Zp. Furthermore, from what is
said about the image of || · ||p it follows that every element in Q∗p is of the form pnu,
with n ∈ Z and u a p-adic unit.

Definition 1.1.20. A ring is called a discrete valuation ring if it is a Noetherian,
local ring and its maximal ideal is generated by an element that is not nilpotent.

Proposition 1.1.21. Zp is a discrete valuation ring.
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Proof. We know that a ring R is a local if R \ R∗ is an ideal. Furthermore, we
showed that Z∗p = {x ∈ Qp||x|p = 1}. Note that 0 ∈ Zp \ Z∗p, since |0|p = 0 < 1. For
x, x′ ∈ Zp \ Z∗p we have |x|p < 1 and |x′|p < 1, so |x + x′|p ≤ max{|x|p, |x′|p} < 1
and | − x|p = |x|p < 1. Hence, x + x′ ∈ Zp \ Z∗p, −x ∈ Zp \ Z∗p. Finally, let y ∈ Zp,
then |xy|p = |x|p|y|p < 1, so xy ∈ Zp \ Z∗p. We conclude that Zp \ Z∗p is an ideal,
and Zp is a local ring with maximal ideal Zp \ Z∗p. What is left to prove is that
Zp \ Z∗p is generated by an element that is not nilpotent. To prove this, first note
that for an element x in Zp \ Z∗p we have |p−1x|p ≤ 1, so x ∈ pZp. Furthermore, an
element y in pZp is of the form y = pnu, with n ∈ Z>0, so |y|p < 1, which means
that y ∈ Zp \ Z∗p. We find Zp \ Z∗p = pZp. This ideal is generated by p, which is not
a nilpotent element. We conclude that Zp is a discrete valuation ring.

The previous proposition tells us a lot about the structure of Zp. With help of the
following two lemmas, we can understand Zp even better. That is, we can give an
explicit description of the elements in Zp.

Definition 1.1.22. For all n ∈ N, let xn be an element of Q. We denote the sequence
(
∑N

n=0 xnp
n)N∈N by

∑∞
n=0 xnp

n.

Lemma 1.1.23. If xn ∈ {0, . . . , p − 1} for all n, then (
∑N

n=0 xnp
n)N∈N is a Cauchy

sequence with respect to the p-adic norm.

Proof. Let ε > 0, and choose N such that p−N < ε. Then for all m ≥ l ≥ N we
have ∣∣∣∣∣

m∑
n=0

xnp
n −

l∑
n=0

xnp
n

∣∣∣∣∣
p

=

∣∣∣∣∣
m∑

n=l+1

xnp
n

∣∣∣∣∣
p

≤ max
l<n≤m

{|xnpn|p} < p−l < ε.

So the sequence (
∑N

n=0 xnp
n)N∈N is a Cauchy sequence with respect to the p-adic

norm.

Lemma 1.1.24. For all x ∈ Zp, m ∈ N there exist unique x0, . . . , xm ∈ {0, . . . , p− 1}
such that |x−

∑m
n=0 xnp

n|p < p−m, where the xn do not depend on m.

Proof. Uniqueness is easily checked, so we will prove existence. Let x ∈ Qp. Since Q
is dense in Qp, there is a y ∈ Q with |x−y|p < 1. From |y|p ≤ max{|x|p, |y−x|p} ≤ 1
it follows that y ∈ Zp. Hence, y is of the form a

b with α, β ∈ Z and p - β. This
means that gcd(p, b) = 1, so there is a b′ ∈ Z such that bb′ ≡ 1 mod p. Let x0 ≡ ab′
mod p, then

|y − x0|p =
∣∣∣a
b

(1− b′b) + kp
∣∣∣
p
≤ max{|y|p|1− bb′|p, |kp|p} < 1

for a certain k ∈ Z. It follows that

|x− x0|p = |x− y + y − x0|p ≤ max{|x− y|p, |y − x0|p} < 1,

so for m = 0 this lemma is true.
Now assume that this lemma is true for all m ≤ N . Then there exist unique
x0, . . . , xN ∈ {0, . . . , p− 1} with |x−

∑N
n=0 xnp

n|p < p−N . Let z = x−
∑N

n=0 xnp
n,
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then |p−N−1z| ≤ 1 so by the induction hypothesis there is a unique z̃ ∈ {0, . . . , p−1}
with |p−N−1z − z̃|p < 1, hence |z − pN+1z̃|p < p−N−1. Set xN+1 = z̃, then∣∣∣∣∣x−

N+1∑
n=0

xnp
n

∣∣∣∣∣
p

=

∣∣∣∣∣x−
N∑
n=0

xnp
n − z̃pN+1

∣∣∣∣∣
p

=
∣∣z − pN+1z̃

∣∣
p
< p−(N+1).

From the construction of the xn it is clear that they do not depend on m. We
conclude that the lemma holds for all m.

We are now able to give an explicit description of the elements of Zp.

Proposition 1.1.25. The elements in Zp are exactly the elements of the form

x =
∞∑
n=0

xnp
n,

with xn ∈ {0, . . . , p− 1}.

Proof. Consider the sequence
∑∞

n=0 xnp
n with xn ∈ {0, . . . , p− 1}. It is a sequence

in Zp and it converges to an element in Qp by Lemma 1.1.23. Since Zp is a closed
subset of Qp, the sequence converges to an element in Zp, so

∑∞
n=0 xnp

n ∈ Zp. Now
let x ∈ Zp. It follows immediately from Lemma 1.1.24 that for all m ∈ N there are

unique x0, . . . , xm ∈ {0, . . . , p−1} such that x− (
∑N

n=0 xnp
n)N∈N converges to zero.

We conclude that x = (
∑N

n=0 xnp
n)N∈N =

∑∞
n=0 xnp

n.

From the previous proposition, we see that every element x in Zp is uniquely repre-
sented by a Cauchy sequence of the form (x0, x0 + x1p, x0 + x1p+ x2p

2, . . .), where
xi ∈ {0, . . . , p−1} for all i. We call this Cauchy sequence the standard representative
of x.

Writing every element in Zp as an infinite series in powers of p, we don’t add two
elements like we add usual power series in one variable. Two series in Zp are added
by so called ‘carrying’. Consider the sequence a =

∑∞
n=0 anp

n with an ∈ N. Define
k0 = 0, ki = νp(ai−1 + ki−1). Then we construct a′ =

∑∞
n=0 a

′
np

n from a through
carrying by setting a′i = (ai + ki) − ki+1p. Note that a′i ∈ {0, . . . , p − 1} for all i,
hence a′ is an element in Zp. We illustrate the concept of carrying by an example:

Example 1.1.26. Let a = 2 + 1 · 3 + 0 · 32 + . . ., b = 2 + 1 · 3 + 1 · 32 + . . . be two
elements of Z3, then their sum is given by

a+ b = 1 + 0 · 3 + 2 · 32 + . . .

Lemma 1.1.27. Let

a = (a0, a0 + a1p, a0 + a1p+ a2p
2, . . .), a′ = (a′0, a

′
0 + a′1p, a

′
0 + a′1p+ a′2p

2, . . .)

be two Cauchy sequences in Q converging to the same element. Then

m∑
n=0

anp
n ≡

m∑
n=0

a′np
n mod pm+1

for all m ∈ N.
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Proof. Since a and a′ converge to the same element, their difference a−a′ converges
to zero. So

∑∞
n=0(an − a′n)pn = 0, which means that

m∑
n=0

(an − a′n)pn = −
∞∑

n=m+1

(an − a′n)pn ≡ 0 mod pm+1

for all m ∈ N.

We finish this section by the following proposition, which we will use later.

Proposition 1.1.28. Let p be a prime. There exists a canonical isomorphism

ψ : Zp/pZp −→ Z/pZ.

Proof. Consider the projection

π : Zp −→ Z/pZ,
∞∑
n=0

anp
n 7−→ a0.

First note that π(1) = π(1 + 0 · p + 0 · p2 + . . .) = 1. Furthermore, for a, b ∈ Zp
we have π(a + b) = π(a) + π(b) and π(ab) = π(a)π(b) by Lemma 1.1.27, so π is a
ring homomorphism. We claim that the kernel is exactly the ideal pZp ⊂ Zp. To
prove one implication, let a =

∑∞
n=0 anp

n be an element of pZp. Then a0 = 0, so
π(a) = a0 = 0, which means that a is in the kernel of π. Now let a =

∑∞
n=0 anp

n

be an element in the kernel of π. Then a0 = 0, so p|a, hence a ∈ pZp. We conclude
that the kernel of π is the ideal pZp, so

Zp/pZp ∼= π(Zp) = Z/pZ.

1.2 Hensel’s Lemma

Hensel’s lemma states that, under certain conditions, we can quite easily find solu-
tions of polynomials in Zp. Before we can state and prove Hensel’s lemma, we have
to define what it means for a ring R to be complete with respect to an ideal I ⊂ R.
This definition has to do with the projective limit of R with respect to I.

Definition 1.2.1. Let R be a ring, and I ⊂ R an ideal. The projective limit of R
with respect to I is the subring of

∏
n∈Z≥1

R/In given by

lim←−
n

R/In =

(a1, a2, a3 . . .) ∈
∏

n∈Z≥1

R/In|am ≡ an mod In for all n ≤ m

 .

We denote the projective limit by R̂I .

To verify that R̂I is indeed a subring of
∏
n∈Z≥1

R/In, note that the sum of two

elements in R̂I is again an element of R̂I , and the product too. Furthermore,

11



(0, 0, 0, . . .) ∈ R̂I and (1, 1, 1, . . .) ∈ R̂I . Finally, for an element in R̂I the addi-
tive inverse is in R̂I , too, so R̂I is indeed a subring of

∏
n∈Z≥1

R/In. There exists a
ringhomomorphism

ϕ : R −→ R̂I , r 7→ (r mod I, r mod I2, r mod I3, . . .).

For r ∈ R, we will denote ϕ(r) by r.

Example 1.2.2. Let R = Z, and for p prime let I = (p). The projective limit of Z
with respect to (p) is the ring

Ẑ(p) = {(a1, a2, ...) ∈
∏
n∈N

Z/pnZ|am ≡ an mod pn, n ≤ m}.

Proposition 1.2.3. There exists an isomorphism ψ : Zp −→ Ẑ(p).

Proof. By Proposition 1.1.25, every element x ∈ Zp is of the form
∑∞

n=0 xnp
n for

certain xn ∈ {0, . . . , p− 1}. Consider the map

ψ : Zp −→ Ẑ(p),

∞∑
n=0

xnp
n 7−→ (x0 mod p, (x0 + x1p) mod p2, (x0 + x1 · p+ x2 · p2) mod p3, . . .).

Note that for all x ∈ Z the element ψ(x) is indeed an element of Ẑ(p), so the map is
well-defined. To ease notation, for an element

∑∞
n=0 xnp

n in Zp we will write

ψ

( ∞∑
n=0

xnp
n

)
= (x0, x0 + x1p, x0 + x1 · p+ x2 · p2, . . .),

where
∑N

n=0 xnp
n is interpreted as an element of ∈ Z/pN+1Z. We will prove that ψ

is a ring isomorphism. Note that the unit element 1 = 1 + 0 · p+ 0 · p2 + 0 · p3 + . . .
is mapped to (1, 1, 1, . . .). Now let a =

∑∞
n=0 anp

n, b =
∑∞

n=0 bnp
n be two standard

representatives of elements in Zp, with c =
∑∞

n=0 cnp
n their sum constructed by

carrying. Then:

ψ(a) + ψ(b) = (a0 + b0, a0 + b0 + (a1 + b1)p, a0 + b0 + (a1 + b1)p+ (a2 + b2)p
2, . . .)

= (c0, c0 + c1p, c0 + c1p+ c2p
2, . . .) (Lemma 1.1.27)

= ψ(c) = ψ(a+ b),

so ψ(a+b) = ψ(a)+ψ(b) for all a, b ∈ Zp. Our next step is to prove multiplicativity.
Write ab =

∑∞
n=0(

∑n
k=0 akbn−k)p

n =
∑∞

n=0 dnp
n, where the latter is constructed by

carrying. Then:

ψ(a)ψ(b) =

(
0∑

n=0

(
n∑
k=0

akbn−k

)
pn,

1∑
n=0

(
n∑
k=0

akbn−k

)
pn,

2∑
n=0

(
n∑
k=0

akbn−k

)
pn, . . .

)
= (d0, d0 + d1p, d0 + d1p+ d2p

2, . . .) (Lemma 1.1.27)

= ψ(ab),
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hence ψ(ab) = ψ(a)ψ(b) for all a, b ∈ Zp.
We now proved that ψ is a ring homomorphism, which leaves us to show that ψ is
bijective. We start by proving injectivity. Let x =

∑∞
n=0 xnp

n ∈ Zp with ψ(x) = 0.
Then x ∈ pnZ for all n, from which it follows that x = 0, so ψ is injective. To
prove surjectivity, let (a1, a2, a3, . . .) be an element in Ẑ(p) and ai a representative
of ai in Z for each i. We will show by induction that for every n ∈ N there exist
α0, . . . , αn, with αi ∈ {0, . . . , p − 1} for all 0 ≤ i ≤ n, such that

∑n
i=0 αip

i ≡ an+1

mod pn+1 and where the αi do not depend on n. For n = 0, let α0 ≡ a1 mod p.
Now assume that our claim holds for all n < N . Then there exist α0, . . . , αN−1 with
αi ∈ {0, . . . , p − 1} such that

∑N−1
i=0 αip

i ≡ aN mod pN . By the property of the
projective limit we have

N−1∑
i=0

αip
i ≡ aN ≡ aN+1 mod pN ,

so there is an αN ∈ {0, . . . , p− 1} such that

N−1∑
i=0

αip
i + αNp

N ≡ aN+1 mod pN+1.

It follows that our claim holds for all n and from the construction of the αi it is
clear that they do not depend on n. Furthermore, αi ∈ {0, . . . , p − 1} for all i, so∑∞

n=0 αnp
n ∈ Zp. We find ψ (

∑∞
n=0 αnp

n) = (a1, a2, a3, . . .), hence ψ is surjective.

Proposition 1.2.3 is a very useful proposition, since it tells us that we can identify
Zp with both the ring of p-adic integers and the projective limit of Z with respect
to the ideal (p). We can often use this to prove things about Zp that seem difficult
using one definition, by switching to the other.

Definition 1.2.4. A ring R is complete with respect to an ideal I if ϕ : R −→ R̂I ,
r 7→ (r mod I, r mod I2, r mod I3, . . .) is an isomorphism.

Definition 1.2.5. Let R be a complete ring. A sequence (xn)n∈N of elements in R
is said to converge to a limit x in R if for all N ∈ N there exists an M such that for
all m ≥M the equality xm − x ∈ IN holds.

Example 1.2.6. Let R be a ring, and I = (0). Then

R̂I = {(a1, a2, a3, . . .) ∈
∏

n∈Z≥1

R|a1 ≡ a2 ≡ a3 ≡ . . . mod 0}.

Note that the condition in the description says that a1 = a2 = a3 = . . ., so R̂I
consists exactly of all constant sequences of elements in R, which means that ϕ is
an isomorphism. Hence, every ring is complete with respect to its zero ideal.

Example 1.2.7. Consider the ring Ẑ(p), and the ideal (p) = pẐ(p) ⊂ Ẑ(p). We will

prove that Ẑ(p) is complete with respect to (p). By Proposition 1.2.3, we know that
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Ẑ(p) is isomorphic to Zp. This means that proving that Ẑ(p) is complete with respect
to (p) is equivalent to proving that the homomorphism

ϕ : Zp −→ lim←−
n

Zp/pnZp,

∞∑
n=0

xnp
n 7→

( ∞∑
n=0

xnp
n mod p,

∞∑
n=0

xnp
n mod p2,

∞∑
n=0

xnp
n mod p3, . . .

)
is bijective. Let x =

∑∞
n=0 xnp

n ∈ Zp with ϕ(x) = 0. Then x ∈ pnZp for all n ∈ N,
which leads to x = 0, so ϕ is injective. To prove surjectivity, let (a1, a2, a3, . . .)
be an element of lim←−

n

Zp/pnZp. For all i, choose the representative of ai given by

ai =
∑i−1

n=0 ainp
n, where aij ∈ {0, . . . , p− 1}, in Zp. Then aij is uniquely determined

for all i ∈ Z≥1, 1 ≤ j ≤ i − 1. Moreover, by the property of the projective limit,

aj ≡ ai mod pi for all j ≥ i, so
∑j

n=0 ajnp
n ≡

∑i−1
n=0 ainp

n mod pi for all j ≥ i. We
can now choose m big enough such that ϕ(am) = (a1, a2, a3, . . .), so ϕ is surjective.

Definition 1.2.8. Let R be a complete ring, and xn ∈ R for all n ∈ N. We denote
the sequence (

∑N
n=0 xn)N∈N in R by

∑∞
n=0 xn. If this sequence converges to x, we

write

x =
∞∑
n=0

xn.

Lemma 1.2.9 (Hensel). Let R be a ring that is complete with respect to an ideal
I ⊂ R, and let f(x) ∈ R[x] a polynomial. Assume that there exists an n ≥ 1
and an a ∈ R such that f(a) ∈ In and f ′(a) ∈ R∗. Then, for all α ∈ R with
α ≡ f ′(a) mod I, the sequence given by

ω0 = a, ωm+1 = ωm −
f(ωm)

α

converges to an element b ∈ R with b ≡ a mod I and f(b) = 0.

Proof. First, for f(ωm)
α to make sense, we show that α ∈ R∗. Since α ≡ f ′(a) mod I,

α is of the form f ′(a) + i with i ∈ I. Note that f ′(a) ∈ R∗, so β = (f ′(a))−1 exists.
But then

α
∞∑
n=0

β(−βi)n =
∞∑
n=0

(1 + βi)(−βi)n =
∞∑
n=0

(−βi)n + (−1)n(βi)n+1 = 1,

so α ∈ R∗.
Now write ω = v + a and g(v) = f(v+a)

α , then we know that g(0) = f(a)
α ∈ In,

g′(0) = f ′(a) ≡ 1 mod I. We need to prove that the sequence

v0 = 0, vm+1 = vm − g(vm)

converges to an element b with g(b) = 0 and b ≡ 0 mod In.
To this end, first note that since g(0) ∈ In we have vm ∈ In ⇒ vm − g(vm) ∈ In.
Since v0 = 0 ∈ In, we find

vm ∈ In for all m ≥ 0. (1)

To continue the proof, we will need the following lemma:
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Lemma 1.2.10. vm+1 − vm ∈ Im+n for all m ∈ N.

Proof. We prove this with induction. For m = 0, we have v1−v0 = v1 = −g(0) ∈ In.
Now assume that vm+1−vm ∈ Im+n for all m < M . We calculate vM+1−vM . Write
g(v) =

∑d
i=0 aiv

i (where d is the degree of g), then we find:

vM+1 − vM = vM − g(vM )− vM−1 + g(vM−1)

= vM − vM−1 − (g(vM )− g(vM−1))

= vM − vM−1 −
d∑
i=0

ai(v
i
M − viM−1)

= vM − vM−1 − g′(0)(vM − vM−1)−
d∑
i=2

ai(v
i
M − viM−1)

= (vM − vM−1)

(
1− g′(0)−

d∑
i=2

ai(v
i
M − viM−1)

)
. (2)

By the induction hypothesis, vM − vM−1 is an element of IM−1+n. Furthermore,
g′(0) ≡ 1 mod I, so 1− g′(0) ∈ I. Finally, since vM and vM−1 are both elements of
In by (1) and therefore element of I we have

∑d
i=2 ai(v

i
M − viM−1) ∈ I. So (2) is an

element of IM+n, and by induction we have vm+1 − vm ∈ Im+n for all m ∈ N.

By the previous lemma, v = (v0, v1, v2, . . .) is an element of the projective limit of
R with respect to I, so we can consider it as an element of R since R is complete
with respect to I. We will show that g(v) = (g(v0), g(v1), g(v2), . . .) = 0, by proving
that g(vi) ∈ In+i for all i ∈ N. For i = 0, we have g(v0) = g(0) ∈ In. Now assume
that g(vi) ∈ In+i for all i < m. Then we have

g(vm) = g(vm−1 − g(vm−1))

=
d∑
i=0

ai(vm−1 − g(vm−1))
i

=

d∑
i=0

ai(vm−1)
i + g(vm−1)

d∑
i=1

iai(vm−1)
i−1 + g(vm−1)

2G(vm−1, g(vm−1))

for a certain G ∈ R[x, y]

= g(vm−1) + g(vm−1)g
′(vm−1) + g(vm−1)

2G(vm−1, g(vm−1))

= g(vm−1)(1− g′(vm−1)) + g(vm−1)
2G(vm−1, g(vm−1)). (3)

We have g(vm−1) ∈ In+m−1 by induction. Furthermore, we have (1− g′(vm−1)) ∈ I
since g′(0) ≡ 1 mod I and vm−1 ∈ I, so g(vm−1)(1−g′(vm−1)) ∈ In+m. Finally, since
g(vm−1) ∈ In+m−1 we have g(vm−1)

2 ∈ I2(n+m−1) ∈ In+m. So (3) is an element of
In+m. We conclude that g(vi) ∈ In+i for all i ∈ N, hence g(vi) ∈ I1+i for all i ∈ N,
from which it follows that g(v) = 0. Since vi ∈ In for all i, we have v ∈ In, so v ≡ 0
mod In.

As we proved in Example 1.2.7, Zp is complete with respect to its ideal pZp, so
if we have a polynomial in Zp[x] and an element a ∈ Zp for which the hypothesis
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of Hensel’s Lemma holds, we can use Hensel’s lemma to find a root of this polyno-
mial. It is now clear that Theorem 1.1.18 is in fact Hensel’s lemma for the case n = 1.

We conclude this section by an application of Hensel’s lemma.

Example 1.2.11. Let p be a prime. Using Hensel’s lemma, we can determine which
elements in Zp are squares, i.e. find all elements 0 6= a ∈ Zp for which there exists
an x ∈ Zp such that x2 − a = 0. We consider two cases.
First assume that p 6= 2. Let a ∈ Zp and assume that a is a square, say a = b2 for a
certain b ∈ Zp. Write a = pnu, b = pmv with n,m ∈ N and u, v ∈ Z∗p. From a = b2

we find pnu = p2mv2. Since v is a p-adic unit, we see that n is even and u is a square.
Consider the polynomial f(x) = x2 − u ∈ Zp[x] with derivative f ′(x) = 2x. If u is a
square, say u = w2, we have f(w) = w2 − u ≡ 0 mod p, hence u is a square modulo
p too. So two necessary conditions for a to be is a square is that n is even and u is
a square modulo p. To see if these conditions are sufficient, assume that n is even
and u is a square modulo p, say u ≡ w2 mod p. Then f(w) = w2 − u ≡ 0 mod p
and f ′(w) = 2w 6= 0 mod p, so by Hensel’s lemma, we know that f has a root in
Zp, hence u is a square in Zp. This means that a = pnu is a square in Zp, too. We
conclude that the squares in Zp are exactly the elements of the form a = pnu, where
u is a p-adic unit that is a square modulo p and n is even.
Now assume that p = 2. Let a ∈ Z2 and assume that there is a b ∈ Z2 such that
a = b2. Write a = pnu, b = pmv for n,m ∈ Z and u, v ∈ Z∗p. Since v is a p-
adic unit, we find |v|2 = 1. So 2 - v, which means that v = 2l + 1 for a certain
l ∈ Z2. We find b2 = p2mv2 = p2m(2l + 1)2 = p2m(4l2 + 4l + 1). Since a = b2, it
follows that n is even and u ≡ 1 mod 8. So two necessary conditions for a to be
a square in Z2 are that u ≡ 1 mod 8 and n is even. To see if these are sufficient,
assume that n is even and u = 8k + 1 for a certain k ∈ Z2. We will show that u
is a square in Z2. Consider the polynomial f(x) = x2 − u. For m ∈ Z2, we have
f(2m+ 1) = 4m2 + 4m+ 1− 8k− 1 = 4m2 + 4m− 8k. It follows that u is a square
in Z2 if there is an m ∈ Z2 such that g(m) = m2 +m− 2k = 0. Since m2 +m ≡ 0
mod 2 for all m ∈ Z2, we have g(m) ≡ 0 mod 2 for all m ∈ Z2. Moreover, we have
g′(m) = 2m + 1 6≡ 0 mod 2 for all m ∈ Z2, so Hensel’s lemma states that there is
an m ∈ Z2 for which g(m) = 0. It follows that u is a square in Z2, so a = pnu is
a square in Zp too. We conclude that the squares in Z2 are exactly the elements of
the form a = pnu, where n is even and u ≡ 1 mod 8.
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2 Elliptic curves
In this chapter, we will introduce elliptic curves. We will define them, and explain
how we can turn an elliptic curve into an abelian group.

2.1 Curves in the projective plane

Let k be an algebraically closed field. We recall that the affine plane over k is defined
by A2 = {(x, y)|x, y ∈ k}.

Definition 2.1.1. Let k be an algebraically closed field. The projective plane over
k, denoted by P2(k), is defined by

P2(k) = {(a, b, c)|a, b, c ∈ k, (a, b, c) 6= (0, 0, 0)}/ ∼,

where (a, b, c) ∼ (a′, b′, c′)⇔ ∃t ∈ k∗ : ta = a′, tb = b′, tc = c′.

The equivalence class of a point (a, b, c) in P2(k) is denoted by [a : b : c]. If k is clear
from the context or irrelevant, we often use the notation P2.

Remark 2.1.2. For a field k0 6= k0 we denote by P2(k0) the set

P2(k0) = {[a : b : c] ∈ P2(k0)|a, b, c ∈ k0}.

Definition 2.1.3. Let k be an algebraically closed field. A projective line is the set
of solutions [a : b : c] ∈ P2 of an equation of the form αX + βY + γZ = 0, where
[α : β : γ] ∈ P(k).

Remark 2.1.4. The definition of a projective line does not depend on the choice of
the representative of points [a : b : c].

Two lines in P2 intersect each other in exactly one point. Furthermore, there is
exactly one line going through any two distinct points in P2. A projective line is, as
we will see, an example of a projective curve.

Definition 2.1.5. Let k be an algebraically closed field. A polynomial F ∈ k[X,Y, Z]
is called homogeneous of degree d if F is a linear combination of monomials XiY jZ l

with i+ j + l = d.

Note that the condition in the previous definition implies that for all t we have
F (tX, tY, tZ) = tdF (X,Y, Z). We can now define a projective curve.

Definition 2.1.6. Let k be an algebraically closed field. A projective curve of degree
d over k is a set

C = Z(F ) = {[a : b : c] ∈ P2|F (a, b, c) = 0},

with F ∈ k[X,Y, Z] a homogeneous polynomial of degree d without repeated factors.
If all coefficients of F are in a subring k′ ⊂ k, we say that C is defined over k′ or
that C is a curve over k′.

Remark 2.1.7. The definition of a projective curve does not depend on the choice
of the representative of the points [a : b : c].
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Remark 2.1.8. Let C = Z(f) be a curve over a field k. From Hilbert’s Null-
stellensatz ([2], p.134) it follows that F is uniquely determined by C up to scalar
multiplication.

Example 2.1.9. A line in P2 is a projective curve of degree one.

A projective curve can be intersected with an affine plane to obtain an affine curve.
This process is called dehomogenization. Let F (X,Y, Z) be a homogeneous polyno-
mial defining a projective curve C. Let f(x, y) = F (x, y, 1) and define the map

φ : {[a : b : c] ∈ C|c 6= 0} −→ {(x, y) ∈ A2|f(x, y) = 0},

[a : b : c] 7−→
(
a

c
,
b

c

)
.

We will prove that φ is a bijection. To this end, let [a : b : c], [a′ : b′ : c′] ∈ C with
c 6= 0 6= c′ and assume that φ([a : b : c]) = φ([a′ : b′ : c′]). Then a

c = a′

c′ and b
c = b′

c′ , so
(a, b, c) = c

c′ (a
′, b′, c′), hence [a : b : c] = [a′ : b′ : c′]. We conclude that φ is injective.

For (x, y) ∈ A2 with f(x, y) = 0 we have F (x, y, 1) = 0, hence φ([x : y : 1]) = (x, y).
This means that φ is surjective too, so φ is bijection between the points [a : b : c]
on a projective curve with c 6= 0 and a curve in the affine plane. The polynomial
f is called the dehomogenization of F and the points on C with c 6= 0 is called the
affine part of C. The points on C with c = 0 are called points at infinity and the
projective line given by Z = 0 is called the line at infinity, denoted by L∞. We
conclude that a projective curve C can be written as a disjoint union of its affine
part and its points at infinity.

Conversely, if we start with a curve in the affine plane we can view it as a subset
of the projective plane by homogenization. Let C be an affine curve defined by the
polynomial f(x, y) = 0. Write f(x, y) =

∑
aijx

iyj . The degree d of f(x, y) as the
largest value of i + j for which aij is not zero. The homogenization of f(x, y) is
defined by F (X,Y, Z) =

∑
i,j aijX

iY jZd−i−j . We see that F is homogeneous of
degree d, so C = Z(F ) is a projective curve of degree d.

Remark 2.1.10. We can dehomogenize a projective curve defined by a homogeneous
polynomial F (X,Y, Z) by setting Z = 1, in which case the line at infinity is given
by L∞ : Z = 0. It is important to note here that we could just as well have chosen
X or Y instead of Z. However, in this thesis, if we use dehomogenizing we always
mean setting Z = 1.

Example 2.1.11. Let F = Y 2Z+aXY Z+bY Z2−X3−cX2Z−dXZ2−eZ3 define a
projective curve C over a field k and P = [0 : 1 : 0] ∈ C. The dehomogenization of C
with respect to Z is the affine curve y2+axy+by−x3−cx2−dx−e = 0. The point P
is now a point at infinity. However, if we would have defined dehomogenization with
respect to Y , the affine part of C is the curve z+axz+bz2−x3−cx2z−dxz2−ez3 = 0
and P is the affine point (x, z) = (0, 0).

From the names homogenization and dehomogenization, we would expect these two
processes to be inverse to each other. As the next example shows, this is not the
case for all curves.
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Example 2.1.12. Consider the curve C from example 2.1.11. As we have seen, the
dehomogenization of C is given by y2 + axy+ by− x3− cx2− dx− e = 0. If we now
homogenize this affine curve, we obtain C again.
Next, consider the curve C = Z(F ) where F = Z2Y +ZX2. If we dehomogenize C
we obtain the affine curve given by y + x2 = 0. But homogenizing this affine curve,
we obtain the projective curve given by ZY + X2 = 0, which is not the curve we
started with.

From the previous example we see that dehomogenization and homogenization are
inverse to each other for all projective curves C = Z(F ) with Z - F . However, if we
start with an affine curve, the dehomogenization of its homogenization is always the
same affine curve.

2.2 Elliptic curves

Definition 2.2.1. Let C be a projective curve over an algebraically closed field k,
defined by a homogeneous polynomial F (X,Y, Z). A point P ∈ C is called singular
if ∂F

∂X (P ) = ∂F
∂Y (P ) = ∂F

∂Z (P ) = 0. The curve C is called singular if it contains a
singular point and non-singular otherwise.

Remark 2.2.2. Since F is uniquely determined by C by Remark 2.1.8, the notion
of singularity is well-defined.

We can now define one of the main subjects of this thesis: an elliptic curve.

Definition 2.2.3. Let k be an algebraically closed field. An elliptic curve over k is
a non-singular projective E = Z(F ) where F is of the form

F = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ2 − a6Z3 (4)

with a1, . . . , a6 ∈ k.

We often denote an elliptic curve by its dehomogenization, i.e. we write E = Z(f)
with

f = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0. (5)

Of course, this equation gives only the affine part of an elliptic curve, but to increase
readability and since it hardly ever leads to confusion, we will use this equation also
to denote the projective curve.

Example 2.2.4. Let E = Z(F ) be an elliptic curve of form (4). We will compute
its points at infinity. If we make the substitution Z = 0 in (4) we find X3 = 0. This
has solution X = 0, so an elliptic curve has exactly one point at infinity, the point
[0 : 1 : 0]. We usually denote this point by O. Note that

∂F

∂Z
= Y 2 + a1XY + 2a3Y Z − 2a2X

2 − 2a4XZ − 3a6Z
2,

hence ∂F
∂Z (O) = 1, which means that O is not a singular point.
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2.3 The group law of an elliptic curve

Definition 2.3.1. Let E = Z(F ) be an elliptic curve defined over a field k0. We
define the set E(k0) as follows.

E(k0) = {[a : b : c] ∈ P2(k0)|F (a, b, c) = 0}.

We call E(k0) the set of k0-rational points of E. If k0 = Q we call it the set of
rational points on E.

Remark 2.3.2. The set E(k) is well-defined by Remark 2.1.8.

Remark 2.3.3. As we will see, if E is an elliptic curve defined over a field k, the set
E(k) can be made into an abelian group. To construct the group operation, we need
Bézout’s theorem, which relates the number of intersections of two projective curves
to their degrees. However, the theory that is needed to state Bézout’s theorem
stretches beyond the contents of this thesis. Therefore, we will state a specific case
of Bézout’s theorem, that only applies to a line and a projective curve of degree
three.

Let L be a line and C a curve in the projective plane over an algebraically closed field
k and let P ∈ L∩C. After making a linear change of coordinates if necessary we can
assume that L is the line Y = 0 and P is the point [0 : 0 : 1]. If we dehomogenize C
we obtain its affine part defined by a polynomial f(x, y) = 0. If we substitute y = 0
into f , we obtain a polynomial f(x, 0) in x.

Definition 2.3.4. Let L,C, P, f be as above such that the line L is not a component
of the curve C. Write f(x, 0) = xng(x, 0), where g(x, 0) ∈ k[x] with x - g(x, 0). The
intersection multiplicity I(L,C, P ) of L and C at P is defined by I(L,C, P ) = n.
This is independent of the change of variables used.

Remark 2.3.5. Let C be a curve in the projective plane over an algebraically closed
field k. If L is a line that is tangent to C at a point P and that is not a component
of C, we have I(L,C, P ) ≥ 2. Furthermore, if M is a line through a singular point
S on C that is not a component of C, then I(M,C, S) ≥ 2.

Theorem 2.3.6 (Special case of Bézout). Let L be a line and C a curve of degree
three in the projective plane over an algebraically closed field k, such that L is not
a component of C. Then ∑

P∈L∩C
I(L,C, P ) = 3.

Proof. See [4], p.20.

Now we can define our group operation, which we will denote by +:

Definition 2.3.7. Let E be an elliptic curve, and let P and Q be two points on
E. If P 6= Q, let L be the line through P and Q. If P = Q, let L be the tangent
line to E at P . According to Bézout’s Theorem, there is a unique third point of
intersection of E and L, say R. Now let L′ be the line through R and O. Again,
according to Bézout’s theorem, L′ intersects E in a unique third point. This point
we denote by P +Q.
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Theorem 2.3.8. Let E be an elliptic curve defined over a field k0. Then E(k0) is
an abelian group under the operation + with identity element O.

Proof. See [5], p.52.

We will use the following lemma later on.

Lemma 2.3.9. Let E be an elliptic curve, L a line, and let P,Q,R ∈ E ∩ L. Then
P +Q+R = O.

Proof. First note that R, O and P + Q are the three points of intersection of E
with a line. To add P + Q to R, we construct the line through P + Q and R
and take the third point of intersection of this line with E, which is O. If we now
construct the line through O and O we have the tangent line at O, which is the line
at infinity. Since E intersects the line at infinity with multiplicity 3, the third point
of intersection of this line and E is again O. So (P +Q) +R = O.

Example 2.3.10. Let E = Z(f) be an elliptic curve of form (5) defined over a field
k0 and P = (α, β) ∈ E(k0). We can derive an explicit formula for −P . Let L be the
line through P and O and note that −P is the third point of intersection (say R)
of L with E, since P + R = P + O + R = O. The line L is given by the equation
X = αZ. So, computing −P means finding the third point of intersection of L and
E. If we dehomogenize L we obtain the affine line x = α. Substituting this into (5),
we find y2 + a1αy + a3y − α3 − a2α2 − a4α − a6 = 0. This is a quadratic equation
in y where β is a root. Let β′ be the other root, then we can write

y2 + a1αy + a3y − α3 − a2α2 − a4α− a6 = (y − β)(y − β′) = y2 − (β + β′)y + ββ′.

By comparing the y term we find −β − β′ = a1α + a3, hence β′ = −β − a1α − a3.
We conclude that −P is given by −P = (α,−β − a1α− a3).
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3 Elliptic curves over Qp
Let E = Z(F ) be an elliptic curve over Qp. In this chapter we study the group of p-
adic points on E given by

E(Qp) = {[a : b : c] ∈ P2(Qp)|F (a, b, c) = 0}.

This set is an abelian group by Theorem 2.3.8 and in this chapter we describe its
structure. First we explain how we can reduce an elliptic curve over Qp modulo p.
We can then deduce an exact sequence that tells us a lot about E(Qp).

3.1 Reduction modulo p

In this section we will define the reduction modulo p of an elliptic curve. For an
element x ∈ Zp there is a natural reduction map

ϕ : Zp −→ Fp, x 7−→ x mod p,

where we use the notation ϕ(x) = x̃. There does not exist such a reduction map on
Qp, since all ring homomorphisms on a field are injective. Therefore, it makes sense
to consider elliptic curves that are defined over Zp.

Definition 3.1.1. Let E = Z(f) be an elliptic curve of form (5), defined over Zp.
The reduction of E, denoted by Ẽ, is defined as

Ẽ : f̃(x, y) = y2 + ã1xy + ã3y − x3 − ã2x2 − ã4x− ã6 = 0.

We can also reduce the points in P2(Qp).

Definition 3.1.2. For P ∈ P2(Qp), write P = [α : β : γ] with α, β, γ ∈ Zp and

at least one of α, β and γ in Z∗p. The reduction of P , denoted by P̃ , is defined as

P̃ = [α̃ : β̃ : γ̃].

If E is an elliptic curve defined over Zp and P ∈ E(Qp), then we have P̃ ∈ Ẽ(Fp).
We can now define the reduction map

P2(Qp) −→ P2(Fp) , P 7−→ P̃

which, when restricted to E(Qp), induces a reduction map

E(Qp) −→ Ẽ(Fp) , P 7−→ P̃

from the p-adic points on an elliptic curve E defined over Zp to the points in Ẽ(Fp).

The following lemma helps us to determine P̃ for different P .

Lemma 3.1.3. Let E = Z(f) be an elliptic curve of form (5) defined over Zp and
P = (α, β) a p-adic point on E. Then

νp(α) < 0 =⇒ 2νp(β) = 3νp(α).
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Proof. Write α = u
pn , β = v

pm with n ∈ Z>0,m ∈ Z and u, v ∈ Z∗P . Since P ∈ E, we

have νp(β
2 + a3β + a1αβ) = νp(α

3 + a2α
2 + a4α+ a6). We have

νp(β
2 + a3β + a1αβ) ≥ min

{
νp

(
v2 + a3vp

p2m

)
, νp

(
a1uv

pn+m

)}
= min{−2m, νp(a1)− n−m},

since v2 is not divisible by p, with equality if νp(β
2 +a3β) 6= νp(a1αβ). On the other

hand, we find

νp(α
3 + a2α

2 + a4α+ a6) = νp

(
u3 + a2u

2pn + a4up2n + a6p
3n

p3n

)
= −3n,

since n > 0 and u3 is not divisible by p. So we have−3n ≥ min{−2m, νp(a1)−n−m}.
Now assume that νp(a1) − n − m ≤ −2m, then have n ≥ m (since a1 ∈ Zp) and
−3n ≥ νp(a1) − n −m. But then νp(a1) −m − n ≥ −m − n ≥ −2n > −3n since
n > 0, which gives a contradiction. We conclude that νp(a1)−n−m > −2m, hence

−2m = νp(β
2 + a3β + a1αβ) = νp(α

3 + a2α
2 + a4α+ a6) = −3n,

so 2m = 3n.

Proposition 3.1.4. Let E be an elliptic curve defined over Zp and P = (α, β) ∈ E
with α, β ∈ Qp. Then P̃ = Õ if and only if α and β are not both in Zp.

Proof. If α, β ∈ Zp, then P̃ = (α̃, β̃) with α̃, β̃ ∈ Fp, so P̃ 6= Õ. If α and β are not
both elements of Zp, by Lemma 3.1.3 we have νp(β) < νp(α), from which it follows
that |β|pα ∈ Zp and |β|pβ ∈ Z∗p. Write P = [α : β : 1] = [|β|pα : |β|pβ : |β|p]. Since

p divides |β|p and |β|pβ is a p-adic unit, we find P̃ = [0 : 1 : 0] = Õ ∈ Ẽ. So P̃ = Õ
if and only if α and β are not both in Zp.

Remark 3.1.5. As we discussed, we can not reduce an elliptic curve E over Qp that
is not defined over Zp. However, we can show that such a curve is isomorphic to a
curve E′ that is defined over Zp. We can then determine the structure of E(Qp) by
looking at E′(Qp). Let E = Z(f) be an elliptic curve of form (5), defined over Qp.
By making the change of variables (x, y) 7−→ (v−2x, v−3y) for a certain 0 6= v ∈ Qp,
we obtain the elliptic curve

E′ : f(x, y) = y2 + a1vxy + a3v
3y − x3 − a2v2x2 − a4v4x− a6v6 = 0.

We can choose v such that aiv
i ∈ Zp for all i, and thus obtain an equation for E′

with all coefficients in Zp. Since the change of variables is linear and the group law
on E and E′ is defined in terms of intersections of lines with E and E′ respectively,
the structure of the group E(Qp) is the same as the structure of E′(Qp).

3.2 An exact sequence

Let E be an elliptic curve over Zp with reduction Ẽ. Of course, Ẽ is not always an
elliptic curve, since it can contain singular points. We define the following sets:

Ẽns(Fp) = {P ∈ Ẽ(Fp)|P is not a singular point};
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E0(Qp) = {P ∈ E(Qp)|P̃ ∈ Ẽns};

E1(Qp) = {P ∈ E(Qp)|P̃ = O}.
Note that by Proposition 3.1.4, we have

E1(Qp) = {P = (α, β) ∈ E(Qp)|α and β are not both in Zp}.

We will prove that Ẽns(Fp) can be made into a group by giving it a group structure
similar to the group structure of an elliptic curve. Furthermore, we will prove that
E0(Qp) and E1(Qp) are subgroups of E(Qp). We will then show that the sequence

0 −→ E1(Qp) −→ E0(Qp)
ψ−→ Ẽns(Fp) −→ 0,

where ψ is the reduction map, is exact. We start by proving that Ẽns(Fp) can be
made into a group.

Definition 3.2.1. Let E be an elliptic curve over Zp. We define an operation on

Ẽns, denoted by +, as the operation + on an elliptic curve in Definition 2.3.7.

Proposition 3.2.2. Let E = Z(f) be an elliptic curve of form (5) defined over Zp.
The set Ẽns(Fp) is an abelian group under the operation +.

Proof. Note that Õ is not a singular point, so Õ ∈ Ẽns(Fp). Now let f̃ be the

reduction of f modulo p and P̃ = (α̃, β̃) ∈ Ẽns(Fp). As we showed in Example

2.3.10, we have −P̃ = (α̃,−β̃− ã1α̃− ã3). Since P̃ is not singular, either ∂f̃
∂x (P̃ ) 6= 0

or ∂f̃
∂y (P̃ ) 6= 0. First assume that ∂f̃

∂y (P̃ ) 6= 0. Then ∂f̃
∂y (P̃ ) = 2β̃ + ã1α̃ + ã3 6= 0,

hence
∂f̃

∂y
(−P̃ ) = 2(−β̃ − ã1α̃− ã3) + ã1α̃+ ã3 = −∂f̃

∂y
(P̃ ) 6= 0,

so −P̃ is not a singular point. If ∂f̃∂y (P̃ ) = 0, then ∂f̃
∂x (P̃ ) = ã1β̃−3α̃2−2ã2α̃−ã4 6= 0,

hence

∂f̃

∂x
(−P̃ ) = ã1(−β̃ − ã1α̃− ã3)− 3α̃2 − 2ã2α̃− ã4

= ã1

(
β̃ − ∂f̃

∂y
(P̃ )

)
− 3α̃2 − 2ã2α̃− ã4

=
∂f̃

∂x
(P̃ ) 6= 0,

so −P̃ is not a singular point. Hence, for every P̃ ∈ Ẽns(Fp) we have −P̃ ∈ Ẽns(Fp).
Finally, we show that Ẽns(Fp) is closed under the operation +. Let P̃ , Q̃ ∈ Ẽns(Fp)
and let L be the line through P̃ and Q̃. If the third point of intersection of L and
Ẽ were a singular point S, then the intersection multiplicity of Ẽ and L at S would
be bigger than one, so L and Ẽ would intersect in at least four points, counting
multiplicities. But this would contradict Bézout’s theorem, hence, the third point
of intersection of L and Ẽ is not a singular point. Since this point is exactly the
point −(P̃ + Q̃) by Lemma 2.3.9, we have −(P̃ + Q̃) ∈ Ẽns(Fp) and by what we

just proved this means that P̃ + Q̃ ∈ Ẽns(Fp), too. We conclude that Ẽns(Fp) is an
abelian group under the operation +.
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Our next step is to prove that E0(Qp) is a subgroup of E(Qp) and that the reduction
map is a homomorphism. To this end, we first discuss the reduction modulo p of a
line. Let

L : aX + bY + cZ = 0

be a line over Qp. We can multiply by an element of Zp to obtain a, b, c ∈ Zp and at

least one of a, b, c in Z∗p. The reduction of L is L̃ : ãX + b̃Y + c̃Z = 0. Note that if

P ∈ L, then P̃ ∈ L̃. We can now prove the following lemma that we will need later
on.

Lemma 3.2.3. Let E = Z(f) be an elliptic curve of form (5) defined over Zp. Let

P,Q ∈ E0(Qp) with P̃ = Q̃ and let L be the line through P and Q. Then L̃ is

tangent to Ẽ at P̃ .

Proof. First consider the case where P̃ 6= Õ. Let f̃ be the reduction of f and write
P = (α, β), Q = (α + µ, β + λ). Since P̃ 6= O we have α, β ∈ Zp and from P̃ = Q̃

it follows that λ, µ ∈ pZp. Because P ∈ E0(Qp), we have P̃ ∈ Ẽns(Fp), so either
∂f̃
∂y (P̃ ) 6= 0 or ∂f̃

∂x (P̃ ) 6= 0. By symmetry we can assume that ∂f̃
∂y (P̃ ) 6= 0. We will

find the slope of the tangent line to Ẽ at P̃ . To this end, first we prove that λ
µ ∈ Zp.

By writing down the Taylor expansion of f about the point P , we find

f(x, y) = f(α, β) + (x− α)
∂f

∂x
(α, β) + (y − β)

∂f

∂y
(α, β) +A(x, y),

where A(x, y) ∈ Zp[x, y] is a polynomial with only monomials of degree two and
higher. Hence

0 = f(Q) = µ
∂f

∂x
(α, β) + λ

∂f

∂y
(α, β) + aµ2 + bµλ+ cλ2,

with a, b, c ∈ Zp. From ∂f̃
∂y (P̃ ) 6= 0 and ∂f

∂y (P ) ∈ Zp (since α, β ∈ Zp) it follows that

νp(
∂f
∂y (P )) = 0, so we have

νp(λ) = νp

(
λ
∂f

∂y
(P )

)
= νp

(
µ
∂f

∂x
(P ) + aµ2 + bµλ+ cλ2

)
≥ min

{
νp

(
µ
∂f

∂x
(α, β)

)
, νp(aµ

2), νp(bµλ), νp(cλ
2)

}
≥ νp(µ),

since νp(λ) < νp(cλ
2) and ∂f

∂x (α, β), λ, µ, a, b, c ∈ Zp. Hence, νp(λ) ≥ νp(µ), so
λ
µ ∈ Zp. This means that we can reduce λ

µ modulo p. We find:

0 = µ
∂f

∂x
(α, β) + λ

∂f

∂y
(α, β) + aµ2 + bµλ+ cλ2

=
∂f

∂x
(α, β) +

λ

µ

∂f

∂y
(α, β) + aµ+ bλ+ cλ

λ

µ

≡ ∂f

∂x
(α, β) +

λ

µ

∂f

∂y
(α, β) mod pZp,
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since λ, µ ∈ pZp. We can now determine the slope of the tangent line to Ẽ at P̃ by
setting

dy

dx
(P̃ ) = −

∂f̃
∂x

∂f̃
∂y

(P̃ ) = λ̃/µ.

What is left to prove is that the reduction of the line L through P and Q is the line

through P̃ with slope λ̃/µ. Write L : y = nx + m, where n,m ∈ Zp. We calculate

the slope n by n = β+λ−β
α+µ−α = λ

µ . So L̃ has slope λ̃/µ, hence L̃ is tangent to Ẽ at P̃ .

This proves the lemma for P̃ 6= Õ.
Now assume that P̃ = Õ. We can make a linear change of variables such that P is
the point (0, 0) on a curve isomorphic to E. Now the reduction of P is the affine
point P̃ = (0̃, 0̃), hence we can apply the same reasoning as before.

Proposition 3.2.4. Let E = Z(f) be an elliptic curve of form (5) defined over Zp.
The set E0(Qp) is a subgroup of E(Qp) and the map

E0(Qp) −→ Ẽns(Fp) , P 7−→ P̃

is a homomorphism.

Proof. First note that we have Õ ∈ Ẽns(Fp) by Proposition 3.2.2, which means that

O ∈ E0(Qp). Moreover, for P = [α : β : γ] ∈ E(Qp) we have P̃ = [α̃ : β̃ : γ̃], so

−P̃ = [α̃ : −β̃− ã1α̃− ã3 : γ̃] = −̃P ∈ Ẽns(Fp). This means that −P ∈ E0(Qp). Now

let P1, P2 ∈ E0(Qp). We will prove that P̃1 + P2 = P̃1 + P̃2 hence P1 +P2 ∈ E0(Qp),
or in other words, the reduction map is a homomorphism and E0(Qp) is closed
under addition. To this end, let P3 ∈ E(Qp) such that P1 + P2 + P3 = O. Then

there is a line L such that P1, P2, P3 ∈ L, hence P̃1, P̃2, P̃3 ∈ L̃. We will prove that
P̃1 + P̃2 + P̃3 = Õ by distinguishing six different cases.
First assume that P̃1, P̃2 and P̃3 are all distinct. Then, since they are all on L̃, we
have P̃1 + P̃2 + P̃3 = O.
Secondly, assume that P1, P2 and P3 are all distinct and P̃1 = P̃2 6= P̃3. Then, by
Lemma 3.2.3, the line L̃ is tangent to Ẽ at P̃1, so L̃ and Ẽ intersect at P̃1 with
multiplicity bigger or equal to two. From the fact that P̃1 6= P̃3 ∈ L and Bézout’s
theorem it follows that the intersection multiplicity at P̃1 can not be bigger than
two. Hence, 2P̃1 + P̃3 = P̃1 + P̃2 + P̃3 = Õ.
Thirdly, assume that P1, P2 and P3 are all distinct and P̃1 = P̃2 = P̃3. By Lemma
3.2.3, L̃ is tangent to Ẽ at P̃1, hence has intersection multiplicity bigger or equal to
two at P̃1. Assume that L̃ intersects Ẽ at another point Q. If Q were a singular
point, then the intersection multiplicity of L̃ and Ẽ at Q would be bigger then one,
so L̃ would intersect Ẽ in more than three points, counting multiplicities. But this
contradicts Bézout’s theorem, so Q is not a singular point. This means that the
intersection multiplicity of L̃ and Ẽ at Q is one. We make a change of coordinates
such that L is mapped to the line Y = 0 and Q is mapped to the point [0 : 0 : 1].
Let f(x, y) be the polynomial in Z[x, y] that defines the dehomogenization of E,
then f(x, 0) is a polynomial in Z[x] which roots are the x-coordinates of the points
of intersection of L and E. Since L̃ and Ẽ intersect at [0 : 0 : 1] with intersection
multiplicity one, we have f̃ = xg̃(x) in Fp[x], where g̃ ∈ Fp[x] and x - g̃. So f(0) ≡ 0
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mod p and f ′(0) 6≡ 0 mod p, hence by Hensel’s lemma there is an a ∈ Zp such that
f(a) = 0 and a ≡ 0 mod p. This means that E and L intersect at the point [a : 0 : 1].
But this point is unequal to the images of P1, P2 and P3 under the transformation
we performed, since the reduction of [a : 0 : 1] is the point [0 : 0 : 1], which is by
assumption not the image under the trasformation of the point P̃1. So there is a
fourth point of intersection of E and L, which contradicts Bézout’s Theorem. We
conclude that P̃1 is the only point of intersection of Ẽ with L̃. By Bézout’s Theorem
this means that 3P̃1 = P̃1 + P̃2 + P̃3 = O.
Now assume that P1 = P2 6= P3 and P̃1 = P̃2 6= P̃3. Since P1 = P2, the line L is the
tangent line at P1. This means that L̃ is tangent at P̃1, and since P̃1 6= P̃3 ∈ L̃ we
have 2P̃1 + P̃3 = P̃1 + P̃2 + P̃3 = Õ.
In the fifth case, assume that P1 = P2 6= P3 and P̃1 = P̃2 = P̃3. This is proved in
the same way as the third case.
Finally, if P1 = P2 = P3 then L intersects E at P1 with multiplicity three, from which
it follows that L̃ intersects Ẽ at P̃1 with multiplicity three, so 3P̃1 = P̃1+P̃2+P̃3 = Õ.
We now proved that P̃1 + P̃2 + P̃3 = Õ in all cases. Since P̃1, P̃2 ∈ Ẽns(Fp), we find

P̃3 = −(P̃1 + P̃2) ∈ Ẽns(Fp), so P1 + P2 = −P3 ∈ E0(Qp). This means that E0(Qp)

is a subgroup of E(Qp). Furthermore, we have P̃1 + P2 = −̃P3 = −P̃3 = P̃1 + P̃2,
hence the reduction map is a group homomorphism.

We have proved that E0(Qp) and Ẽns(Fp) are groups and the reduction map is a
group homomorphism. It follows by definition that E1(Qp) is the kernel of the
reduction map, hence a group, too. We will now prove that the reduction map ψ is
surjective.

Proposition 3.2.5. Let E = Z(f) be an elliptic curve of form (5) defined over Zp.
Then the map

E(Qp) −→ Ẽns(Fp) , P 7−→ P̃

is surjective.

Proof. We have O 7−→ Õ. Let P̃ = (α̃, β̃) ∈ Ẽns(Fp). Since P̃ is not singular, either
∂f̃
∂x (P̃ ) 6= 0 or ∂f̃

∂y (P̃ ) 6= 0. By symmetry we can assume that ∂f̃
∂y (P̃ ) 6= 0. Let a ∈ Zp

with ã = α̃ and consider the polynomial f(a, y) ∈ Zp[y]. Note that f̃(ã, β̃) = 0 since

P̃ ∈ Ẽns(Fp), and ∂f̃
∂y (ã, β̃) 6= 0 by assumption, so by Hensel’s lemma there exists a

b ∈ Zp with b̃ = β̃ and f(a, b) = 0, hence (a, b) ∈ E(Qp). We find (ã, b̃) = P̃ , so the

reduction map E(Qp) −→ Ẽns(Fp) , P 7−→ P̃ is surjective.

By what we proved above, for an elliptic curve over Zp we have an exact sequence

0 −→ E1(Qp) −→ E0(Qp)
ψ−→ Ẽns(Fp) −→ 0,

where ψ is the reduction map. This means that

E0(Qp)/E1(Qp) ∼= Ẽns(Fp).

About E1(Qp) we know the following:

Proposition 3.2.6. Let p be an odd prime and let E be an elliptic curve over Zp.
Then E1(Qp) ∼= Zp.
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Proof. See [5], p.191.

As the following proposition shows, we can now explicitly calculate E(Qp) for a large
class of elliptic curves.

Proposition 3.2.7. Let p be an odd prime and let E be an elliptic curve over Zp for

which Ẽ is an elliptic curve too. Furthermore, assume that there is a homomorphism
s : Ẽ(Fp) −→ E(Qp) such that ψ ◦ s = id

Ẽ(Fp), where ψ is the reduction map. Then

we have
E(Qp) ∼= Zp × Ẽ(Fp).

Proof. Since Ẽ is non-singular, we have E0(Qp) = E(Qp) and Ẽns(Fp) = Ẽ(Fp), so
we have an exact sequence

0 −→ Zp −→ E(Qp) −→ Ẽ(Fp) −→ 0.

Furthermore, since s is a section this sequence splits.

We know the group Zp, and the group Ẽ(Fp) is easily calculated since it is finite.
So in the case of the previous proposition, we know exactly what the structure of
E(Qp) is. In the next section we give two examples where this is the case.

3.3 Two examples

Example 3.3.1. Consider the elliptic curve

E : f(x, y) = y2 − x3 + 2x = 0

over Q3. If we reduce E modulo 3 (this is possible since E is defined over Z3) we
obtain the reduced curve

Ẽ : f̃(x, y) = y2 − x3 + 2̃x = 0.

Note that ∂f̃
∂x (x, y) = 2̃ 6= 0̃, so Ẽ is an elliptic curve, too. As we have seen in the

previous section, we now have an exact sequence

0 −→ Z3 −→ E(Q3) −→ Ẽ(F3) −→ 0.

We will prove that this sequence splits by constructing a section. First, we calculate
the group Ẽ(F3) and find

Ẽ(F3) = {(2̃, 1̃), (0̃, 0̃), (2̃,−1̃),O}.

So Ẽ(F3) is a group of order four, which means that it is isomorphic to either C4

or V4. We can tell which one by finding the points of order two in Ẽ(F3). A point
O 6= P is of order two if and only if P = −P . As we have showed in Example 2.3.10,
for a point P = (α̃, β̃) ∈ Ẽ(F3) we have −P = (α̃,−β̃), so P is of order two if and
only if β̃ = −β̃, which implies β̃ = 0̃. This means that Ẽ(F3) contains exactly one
point of order two, which is the point (0̃, 0̃). Since V4 has three points of order two,
we conclude that Ẽ(F3) ∼= C4.
Our next step is to construct a section s : Ẽ(F3) −→ E(Q3). Since (2̃, 1̃) is a
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point of order four, hence a generator of Ẽ(F3), the homomorphism s is completely
determined by s(2̃, 1̃). We find a point of order four in E(Q3) by using the fourth
division polynomial of E, denoted by ψ4, which is a polynomial whose roots are
the x-coordinates of the 4-torsion points of E unequal to O (see [5], p.373). We
calculate ψ4(x) using Sage (see the appendix) and after dividing out the polynomial
ψ2 = x3 − 2x (since 2-torsion points have y-coordinate equal to zero) we find that
the x-coordinates of points of order four are the roots of the polynomial

f(x) = x6 − 10x4 − 20x2 + 8.

Note that f(2) = −168 ≡ 0 mod 3 (which confirms that (2̃, 1̃) is a point of order 4 in
E(F3)) and f ′(2) = −200 6≡ 0 mod 3, so we can use Hensel’s lemma to find a point
a ∈ Z3 such that f(a) = 0 and ã = 2̃. Therefore, the equation y2 = a3 − 2a has a
solution modulo 3, hence by Example 1.2.11 it has a solution in Z3. So there is a b
in Z3 such that (a, b) ∈ E(Q3) is a point of order four with (ã, b̃) = (2̃, 1̃) ∈ E(F3).
If we let s(2̃, 1̃) = (a, b), then (ψ ◦ s)(2̃, 1̃) = (2̃, 1̃) (where ψ is the reduction map).
Since s and ψ are homomorphisms and (2̃, 1̃) generates E(F3), we find (ψ◦s)(P ) = P
for all P ∈ E(F3). Hence, ψ ◦ s = id

Ẽ(F3)
, so by Proposition 3.2.7 we have

E(Q3) ∼= Z3 × C4.

Example 3.3.2. Consider the elliptic curve

E : f(x, y) = y2 − x3 − x2 − x− 1 = 0

over Q5. Since E is defined over Z5, we can reduce E modulo 5 to obtain

Ẽ : f̃(x, y) = y2 − x3 − x2 − x− 1̃ = 0.

We have ∂f̃
∂x = −3̃x2 − 2̃x − 1̃ and ∂f̃

∂y = 2̃y, so ∂f̃
∂y = 2̃y = 0̃ implies y = 0̃. The

points on Ẽ with y-coordinate equal to zero are (2̃, 0̃), (3̃, 0̃) and (4̃, 0̃), which do all

have ∂f̃
∂x 6= 0̃, so Ẽ does not contain any singular points, hence it is an elliptic curve.

This gives us the exact sequence

0 −→ Z5 −→ E(Q5) −→ Ẽ(F5) −→ 0.

We find
Ẽ(F5) = {(0̃, 1̃), (0̃, 4̃), (1̃, 2̃), (1̃, 3̃), (2̃, 0̃), (3̃, 0̃), (4̃, 0̃),O}.

Since Ẽ(F5) is a group of order eight, it is isomorphic to either C8, C4 × C2 or
C2×C2×C2. The points of order two are again the points with y-coordinate equal
to zero, so we see that Ẽ(F5) contains exactly three points of order two. Since C8

has one point of order two and C2 ×C2 ×C2 contains seven points of order two, we
conclude that Ẽ(F5) is isomorphic to C4 × C2.
We will construct a section s : Ẽ(F5) −→ E(Q5). By a simple calculation (see [6],
p.31) we find 2(0̃, 1̃) = 2(0̃, 4̃) = 2(1̃, 2̃) = 2(1̃, 3̃) = (3̃, 0̃), so any point of order
two unequal to (3̃, 0̃) together with a point of order four generates Ẽ(F5). We will
take the points (2̃, 0̃) and (0̃, 1̃). Now s is determined by s(2̃, 0̃) and s(0̃, 1̃), so
we will find a point of order two and a point of order four in E(Q5). Note that
ψ2 = x3 + x2 + x+ 1, since points of order two have y-coordinate equal to zero. We
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have ψ2(2) = 15 ≡ 0 mod 5 and ψ′2(2) = 17 6≡ 0 mod 5, so Hensel’s lemma gives us
a point a ∈ Z5 with ψ2(a) = 0 and ã = 2̃. This means that y2 = a3 + a2 + a+ 1 has
a solution modulo 5, so by Example 1.2.11 it has a solution b in Z5, too. It follows
that there is a point (a, b) ∈ E(Q5) of order two with (ã, b̃) = (2̃, 0̃). To find a point
of order four in E(Q5), we calculate ψ4 (see the appendix). After dividing out ψ2

we find that the x-coordinates of the points of order four on E are the roots of the
polynomial

f(x) = x6 + 2x5 + 5x4 + 20x3 + 15x2 + 2x− 5.

We have f(0) = −5 ≡ 0 mod 5 and f ′(0) = −3 6≡ 0 mod 5, so we can again
apply Hensel’s lemma to find a point c ∈ Z5 with f(c) = 0 and c̃ = 0̃. Analogous
to what we have done above, this means that there is a point (c, d) ∈ E(Qp) of
order four with (c̃, d̃) = (0̃, 1̃). We let s(2̃, 0̃) = (a, b) and s(0̃, 1̃) = (c, d). We have
(ψ ◦ s)(2̃, 0̃) = (2̃, 0̃) and (ψ ◦ s)(0̃, 1̃) = (0̃, 1̃) and since ψ and s are homomorphisms
and (2̃, 0̃) and (0̃, 1̃) generate Ẽ(F5), we have (ψ ◦ s)(P ) = P for all P ∈ Ẽ(F5). We
conclude that ψ ◦ s = id

Ẽ(F5)
, so by Proposition 3.2.7 we have

E(Q5) ∼= Z5 × C4 × C2.
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Appendix

Sage code used in Example 3.3.1

E1=EllipticCurve(QQ,[0,0,0,-2,0]);

f=E1.division_polynomial(4);

f.factor()

Sage code used in Example 3.3.2

E1=EllipticCurve(QQ,[0,1,0,1,1]);

f=E1.division_polynomial(4);

f.factor()
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