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1
I N T R O D U C T I O N

The reader of this thesis is assumed to know what a category, a func-
tor, and a natural transformation is. For an introduction to Category
Theory we refer to (Stevenhagen 2011, §27) (Dutch) or to the first
chapters of (MacLane 1971).

Let k be a field and G a group. A k-linear group action of G on a
k-vector space V is called a representation of G over k. Such a represen-
tation is a pair (V, ρ) where V is a k-vector space and ρ is a group ho-
momorphism G → Aut(V). The dimension of a representation (V, ρ)

is defined as dim V.
The finite dimensional k-vector spaces form a category, denoted with

Veck. The finite dimensional representations of G over k form a cate-
gory as well, which we denote with Repk(G). Now assume G is finite.
In this thesis we ‘reconstruct’ G from the category Repk(G). Strictly
speaking, this is not exactly what we do.

To reconstruct the group we need more data. The tensor product on
vector spaces induces a tensor structure on Repk(G) and Veck in a nat-
ural way. Let F : Repk(G)→ Veck be the forgetful functor defined by
(V, ρ) 7→ V. Now consider the subgroup Aut⊗(F) ⊂ Aut(F) consisting
of those natural isomorphisms that respect the tensor structure.

We construct an isomorphism G ∼→ Aut⊗(F), hence recovering G
from Repk(G), the tensor structure, and the forgetful functor F. This
is the main theorem of this thesis, and is called Tannaka duality for
finite groups. The precise statement is in Theorem 4.3.

Tannaka duality is a more general theorem by Grothendieck about
reconstructing an affine group scheme from its category of finite di-
mensional representations. Finite groups can be viewed as a particular
kind of affine group schemes. For more about Tannaka duality we refer
to (Rivano 1972, §III; Deligne and Milne 1982, §2)

It is also natural to try to generalize the statement to infinite groups.
In §5 we take G = Z and k an algebraic extension of a finite field. We
then construct a canonical isomorphism Ẑ → Aut⊗(F). In particular
Aut⊗(F) and Z are not isomorphic. Probably it can be shown in the
case where k is not algebraic over a finite field, that Aut⊗(F) is not
isomorphic to Z, nor to Ẑ, using the theory of Tannakian categories.
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2
R E P R E S E N TAT I O N S A N D T E N S O R P R O D U C T S

2.1 representations

Given a field k and a finite-dimensional vector space V over k, we
can look at the automorphism group Aut(V) of V and consider group
homomorphisms of other groups to Aut(V). This is the basic idea of
representations.

Definition 2.1. Let G be a group, and k a field. A representation of G
over k is a pair (V, ρ) where V is a vector space over k, and ρ a homo-
morphism ρ : G → Aut(V). «

We define the dimension of a representation to be the dimension of
the underlying vector space.

Example 2.2. Let k be a field and G a group. Consider kG, the vector
space of k-valued functions on G. Define

τ : G → Aut(kG)

s 7→ ( f 7→ f ◦ rs),

where rs is the right multiplication with s on G.
Note that τ is a homomorphism, since for all s, t ∈ G and f ∈ kG we

have(
τ(s) ◦ τ(t)

)
( f ) = τ(s)( f ◦ rt) = f ◦ rt ◦ rs = f ◦ rst = τ(st)( f ).

So (kG, τ) is a representation. «

Definition 2.3. Let (V1, ρ1) and (V2, ρ2) be two representations of G
over k. A morphism of (V1, ρ1) to (V2, ρ2) is a k-linear map φ : V1 → V2

such that for all s ∈ G the diagram

V1 V2

V1 V2

φ

ρ1(s) ρ2(s)

φ

commutes. «

Later on we will see that the finite-dimensional representations form
a category. First we will introduce the tensor product on vector spaces,
which will induce the tensor product on representations.
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2.2 tensor products

Definition 2.4. Let V and W be k-vector spaces. The tensor product V⊗
W of V and W is defined as the free k-vector space on {(v, w) : v ∈
V, w ∈W} modulo the equivalence relations generated by

(v, (w1 + w2)) ∼ (v, w1) + (v, w2)

((v1 + v2), w) ∼ (v1, w) + (v2, w)

λ(v, w) ∼ (λv, w) ∼ (v, λw),

for all v, v1, v2 ∈ V and w, w1, w2 ∈W and λ ∈ k. «

For (v, w) ∈ V ×W the equivalence class of (v, w) in V ⊗W is writ-
ten as v ⊗ w, and is called a pure tensor. Note that the pure tensors
generate V ⊗W as k-vector space.

We will now state some properties of the tensor product.

Lemma 2.5. Let V and W be k-vector spaces. Then for any k-vector space Z
and any k-bilinear map φ : V ×W → Z there exists a unique k-linear map
ψ : V ⊗W → Z, with the property that the diagram

V ×W V ⊗W

Z

⊗

φ
!ψ

commutes. This property is called the universal property of the tensor prod-
uct. The map V ×W → V ⊗W is called the universal bilinear map. «

Proof. Observe that there indeed exists a k-linear map ψ : V ⊗W → Z,
since we can define ψ on the pure tensors

ψ : v⊗ w 7→ φ(v, w).

This is independent of the representative for v⊗ w precisely because
φ is bilinear. By linearity this induces the entire map, hence proving
existence.

On the other hand, it is clear from the diagram that there is no other
definition possible on the pure tensors, which proves uniqueness. �

Lemma 2.6. Let V and W be two finite-dimensional k-vector spaces. Then
dim(V ⊗W) = dim V · dim W. «

Proof. Note that k⊗ k ∼= k holds, since any pure tensor λ⊗ µ ∈ k⊗ k is
equivalent to λµ · 1⊗ 1.

Let V1 and V2 be k-vector spaces such that V = V1 × V2. We claim
that (V1 ×V2)⊗W ∼= (V1 ⊗W)× (V2 ⊗W).

Define the bilinear map

⊗′ : (V1 ×V2)×W → (V1 ⊗W)× (V2 ⊗W)(
(v1, v2), w

)
7→ (v1 ⊗ w, v2 ⊗ w).
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Using the universal property of the tensor product on V1 ×V2 and W,
we see that there exists a unique k-linear map α such that

(V1 ×V2)×W (V1 ×V2)⊗W

(V1 ⊗W)× (V2 ⊗W)

⊗

⊗ ′
!α

commutes. We will now show that ⊗′ is the universal bilinear map
from (V1 × V2)×W to (V1 ⊗W)× (V2 ⊗W) and deduce that α is an
isomorphism.

Let Z be any k-vector space, and φ : (V1 × V2)×W → Z a bilinear
map. Then φ = (φ1, φ2) where φ1 : V1 ×W → Z and φ2 : V2 ×W → Z
are bilinear maps.

The universal property now states that φ1 factors through V1 ⊗W
inducing a map ψ1. Analogously we obtain a map ψ2. Define ψ =

(ψ1, ψ2) and observe that φ = ψ ◦ ⊗′ holds.
Finally, ψ is unique, since φ determines its image on all ‘pure’ ele-

ments (v1⊗w, v2⊗w). Hence ⊗′ satisfies the universal property of the
tensor product and it follows that α is an isomorphism.

Analogously to the claim above, V ⊗ (W1 ×W2) ∼= (V ⊗W1)× (V ⊗
W2) holds. Combining the proven claim, and the fact k ⊗ k ∼= k it is
immediate that dim(V ⊗W) = dim V · dim W. �

Definition 2.7. Let V1, W1, V2, and W2 be k-vector spaces. Using the
universal property of ⊗ : V1 ×W1 → V1 ⊗W1, we define the tensor
product of two k-linear maps φ : V1 → V2 and ψ : W1 → W2 to be the
unique k-linear map φ⊗ ψ such that

V1 ×W1 V1 ⊗W1

V2 ⊗W2

⊗

⊗ ◦ (φ, ψ)

!φ⊗ ψ

commutes. «

Definition 2.8. Let k be a field and G a group. If (V1, ρ1) and (V2, ρ2)

are two representations of G over k, then we define the tensor product
of representations as

(V1, ρ1)⊗ (V2, ρ2) = (V1 ⊗V2, ρ1 ⊗ ρ2),

where ρ1 ⊗ ρ2 is the homomorphism

ρ1 ⊗ ρ2 : G → Aut(V1 ⊗W1)

s 7→ ρ1(s)⊗ ρ2(s). «
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3
T H E C AT E G O R I E S Veck A N D Repk(G)

3.1 tensor categories

Let k be a field and G a group.

Definition 3.1. The category Veck is defined as the category with

• as objects the finite-dimensional vector spaces over k;
• as morphisms the k-linear maps. «

Definition 3.2. Let C and D be categories. The product category C × D
is defined as the category with

• as objects the pairs (X, Y) with X ∈ ob C and Y ∈ obD;
• as morphisms

morC×D
(
(X1, Y1), (X2, Y2)

)
= morC(X1, X2)×morD(Y1, Y2),

for all X1, X2 ∈ ob C and Y1, Y2 ∈ obD;
• and componentwise composition. «

Definition 3.3. A tensor structure on a category C is a functor

⊗C : C × C → C
(X, Y) 7→ X⊗C Y. «

Definition 3.4. A tensor category is a pair (C,⊗C) of a category C to-
gether with a tensor structure ⊗C on C. «

Lemma 3.5. (Veck,⊗) is a tensor category. «

Proof. In Lemma 2.6 we proved that the tensor product of two finite-
dimensional vector spaces is again finite-dimensional.

It is immediate that _⊗ _ preserves identity and composition. �

As mentioned before, the finite-dimensional representations of a fi-
nite group G over a field k form a category. This category will play a
very important role in this thesis.

Definition 3.6. The category Repk(G) is defined as the category with

• as objects the finite-dimensional representations of G over k;
• as morphisms the morphisms of representations (Definition 2.3).«

We will write Veck respectively Repk(G) for the tensor categories
(Veck,⊗) and (Repk(G),⊗).
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3.2 the fibre functor F : Repk(G)→ Veck

Definition 3.7. Let (C,⊗C) and (D,⊗D) be two tensor categories. A
tensor functor is a pair (F, f ), consisting of a functor F : C → D and a
natural isomorphism

f : ⊗D ◦(F, F)→ F ◦ ⊗C . «

Recall that a natural isomorphism, as appearing in the previous def-
inition is an isomorphism

fX,Y : F(X)⊗D F(Y)→ F(X⊗C Y),

for all X ∈ ob C and Y ∈ obD, such that for all X1 → X2 ∈ mor C and
Y1 → Y2 ∈ morD the diagram

F(X1)⊗D F(Y1) F(X1 ⊗C Y1)

F(X2)⊗D F(Y2) F(X2 ⊗C Y2)

fX1 ,Y1

fX2 ,Y2

commutes.
We will often write F for the pair (F, f ).
Now we define a particular functor Repk(G) → Veck forgetting all

about a representation but its underlying vector space. This functor is
called the fibre functor of Repk(G) to Veck.

Definition 3.8. The fibre functor of Repk(G) to Veck is defined as

F : Repk(G)→ Veck

(V, ρ) 7→ V

φ 7→ φ,

where φ denotes the morphisms of Repk(G). «

Note that F is indeed a functor, since it preserves identities of mor-
phisms and composition of morphisms by definition of the morphisms
of Repk(G). Besides that, observe that for all finite-dimensional repre-
sentations (V1, ρ1) and (V2, ρ2) it holds that F

(
(V1, ρ1) ⊗ (V2, ρ2)

)
is

equal to F
(
(V1, ρ1)

)
⊗ F

(
(V2, ρ2)

)
. Hence F = (F, id) is a tensor functor.

3.3 the tensor automorphism group of F

Definition 3.9. Let (C,⊗C) and (D,⊗D) be tensor categories, and let
(F, f ) and (G, g) be tensor functors (C,⊗C)→ (D,⊗D). A tensor natural
transformation η : (F, f ) → (G, g) is a natural transformation F → G
such that

F(X)⊗D F(Y) G(X)⊗D G(Y)

F(X⊗C Y) G(X⊗C Y)

ηX ⊗D ηY

fX,Y gX,Y

ηX⊗CY
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commutes, for all X, Y ∈ ob C. A tensor natural transformation that is
a natural isomorphism is called a tensor natural isomorphism. «

Definition 3.10. Let C and D be categories and F : C → D a functor.
The automorphism group of F, written as Aut(F), is the group of natural
isomorphisms F → F. «

Definition 3.11. Let (C,⊗C) and (D,⊗D) be tensor categories and F
a tensor functor (C,⊗C) → (D,⊗D). The tensor automorphism group of
F, written as Aut⊗(F), is the group of tensor natural isomorphisms
F → F. «

Note that for every tensor functor F : (C,⊗C) → (D,⊗D) the tensor
automorphism group Aut⊗(F) is a subgroup of Aut(F).

Example 3.12. In this example we compute the automorphism group
of the identity functor on Veck, id : Veck → Veck.

Let η ∈ Aut(id) be a natural isomorphism of id. Note that ηk is a
k-linear isomorphism k→ k, hence multiplication with some λ ∈ k∗.

Let V be a k-vector space, and let v ∈ V. Define the k-linear map
φ : k → V by x 7→ x · v. By definition of natural isomorphism the
diagram

k k

V V

∼
ηk

φ φ

∼
ηV

commutes. Thus we have

ηV(v) = ηV ◦ φ(1) = φ ◦ ηk(1) = φ(λ) = λ · v,

and find Aut(id) ⊂ k∗. Since it is trivial that k∗ ⊂ Aut(id) holds, we
conclude Aut(id) = k∗. «
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4
TA N N A K A D U A L I T Y F O R F I N I T E G R O U P S

Tannaka duality for finite groups gives an isomorphism between a fi-
nite group G and the tensor automorphism group of the fibre functor
from Repk(G) to Veck. The construction of this isomorphism is the
subject of this section. Therefore, let G be a finite group, k a field, and
F the fibre functor from Repk(G) to Veck.

4.1 statement of the theorem

We will first discuss the elements of Aut(F). Such an element is by defi-
nition a natural isomorphism F → F. In other words, it is a collection of
k-linear maps η(V,ρ), such that for all representations (V1, ρ1), (V2, ρ2) ∈
ob Repk(G) and for all morphisms φ : (V1, ρ1)→ (V2, ρ2) the diagram

V1 V1

V2 V2

∼
η(V1 ,ρ1)

φ φ

∼
η(V2 ,ρ2)

commutes.
We define the map

T : G → Aut(F)

s 7→
(
ρ(s)

)
(V,ρ).

Lemma 4.1. The map T : G → Aut(F) is a homomorphism of groups. «

Proof. Let (V, ρ) ∈ ob Repk(G) be a finite-dimensional representation.
By definition T(s)(V,ρ) = ρ(s) is an automorphism of V, for all s ∈ G.
Moreover, we find

T(s)(V,ρ) ◦ T(t)(V,ρ) = ρ(s) ◦ ρ(t)

= ρ(st)

= T(st)(V,ρ),

for all s, t ∈ G, proving that T is indeed a homomorphism. �

The homomorphism T is often called the ‘tautological’ homomor-
phism. We will now prove that the image of T lies in Aut⊗(F). In other
words that T factors as follows.

G Aut(F)

Aut⊗(F)

T

∼
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Lemma 4.2. The image of T : G → Aut(F) lies in Aut⊗(F). «

Proof. Fix s ∈ G. Observe that for all (V1, ρ1), (V2, ρ2),∈ ob Repk(G),
by definition of the tensor product of representations, we have

ρ1(s)⊗ ρ2(s) = ρ1 ⊗ ρ2(s),

and hence

T(s)(V1,ρ1) ⊗ T(s)(V2,ρ2) = T(s)(V1,ρ1)⊗(V2,ρ2).

Recall that F = (F, id) to conclude that T(s) is a tensor natural isomor-
phism of F. Hence im T ⊂ Aut⊗(F) holds. �

We can now state the main theorem of this thesis, which we will
prove in the next section.

Theorem 4.3. The map T : G → Aut⊗(F) is an isomorphism. «

4.2 proof of the theorem

In this section we will prove that T : G → Aut⊗(F) is an isomorphism
of groups. First we will prove that T is injective, then we prove the
surjectiveness of T. In the entire proof the representation (kG, τ), which
we introduced in Example 2.2, will play an important role.

But first we define the indicator functions on G. For all s ∈ G we
define

es : G → k

t 7→
{

1 if t = s

0 otherwise,

Lemma 4.4. The homomorphism T : G → Aut⊗(F) is injective. «

Proof. Consider the representation (kG, τ), fix s ∈ G, and assume that
T(s)(kG ,τ) = id kG. Then f = τ(s)( f ) = f ◦ rs holds for all f ∈ kG.
In particular we have eid = eid ◦ rs = es−1 . Hence s = id and T is
injective. �

To prove that the map T is also surjective, we state and prove several
lemmata. First note that kG is a k-algebra, since we can add and mul-
tiply functions pointwise. Next, we define the evaluation functions on
kG.

πs : kG → k

f 7→ f (s).

Lemma 4.5. Let φ : kG → k be a k-algebra homomorphism. Then there exists
a unique s ∈ G such that φ = πs. «
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Proof. Because φ is surjective, kG/ ker φ ∼= k holds, and hence ker φ is
a maximal ideal of kG.

Because kG is isomorphic to k|G| as k-algebra, the ideals of kG are
products of the ideals of k. Since k is a field, the only ideals of k are 0
and k. So the maximal ideal ker φ is equal to { f ∈ kG : f (s) = 0} for a
certain s ∈ G. Thus φ = πs. �

Lemma 4.6. Let (α(V,ρ))(V,ρ) ∈ Aut⊗(F) be a tensor natural transforma-
tion. Then α(kG ,τ) is a k-algebra homomorphism. «

Proof. Since multiplication on kG is bilinear, the universal property of
the tensor product states that it factors through kG ⊗ kG. Call the in-
duced k-linear map µ. Observe that µ is a morphism of representations,
since for all s ∈ G the diagram

kG ⊗ kG kG

kG ⊗ kG kG

µ

τ(s)⊗ τ(s) τ(s)

µ

commutes, i.e., because for all f , g ∈ kG we have ( f ◦ rs)(g ◦ rs) =

f g ◦ rs.
To keep notation concise, write α = α(kG ,τ). By definition of tensor

natural transformation we know that α(kG ,τ)⊗(kG ,τ) = α ⊗ α, and by
definition of natural transformation the diagram

kG ⊗ kG kG

kG ⊗ kG kG

µ

α⊗ α α

µ

commutes. Hence for all f , g ∈ kG we have α( f )α(g) = α( f g). Since α

is an isomorphism of vector spaces, it has an inverse α−1. Thus α(1) =
α(1)α(α−1(1)) = α(1 · α−1(1)) = 1 holds, and we conclude that α is a
k-algebra homomorphism. �

Denote the left multiplication with s on G with ls : G → G, t 7→ st.
We define

τ′ : G → Aut(kG)

s 7→ ( f 7→ f ◦ ls).

Lemma 4.7. Let (α(V,ρ))(V,ρ) ∈ Aut⊗(F) be a tensor natural transforma-
tion. Then there exists a unique s ∈ G such that α(kG ,τ) = τ(s). «

Proof. Again write α = α(kG ,τ). Note that rs and lt commute for all
s, t ∈ G and hence so do τ(s) and τ′(t). Hence we have τ′(t) ∈
mor

(
(kG, τ), (kG, τ)

)
.

13



By definition of natural transformation α commutes with all auto-
morphisms of (kG, τ), and hence with τ′(t) for all t ∈ G.

By Lemma 4.6 the map α is a k-algebra homomorphism, hence so is
πid ◦ α. Now Lemma 4.5 gives that there exists a unique s ∈ G such
that πid ◦ α = πs. We claim α = τ(s).

Using that α commutes with τ′ we compute for t, u ∈ G,

α(eu)(t) = α(eu) ◦ lt(id)

= α(eu ◦ lt)(id)

= πid ◦ α(et−1u)

= et−1u(s).

Hence we have

α( f )(t) = α

(
∑

u∈G
f (u)eu

)
(t)

= ∑
u∈G

f (u)α(eu)(t)

= ∑
u∈G

f (u)et−1u(s)

= f (ts)

= τ(s)( f )(t).

Thus we conclude α = τ(s). �

Lemma 4.8. Let α, β ∈ Aut⊗(F) such that α(kG ,τ) = β(kG ,τ). Then α = β. «

Proof. Let (V, ρ) be a finite-dimensional representation and let v ∈ V.
We define

φ : (kG, τ)→ (V, ρ)

f 7→ ∑
s∈G

f (s)ρ(s−1)v, (4.9)

so that φ(eid) = v. Note that φ ∈ mor
(
(kG, τ), (V, ρ)

)
, since for all

t ∈ G we have

φ ◦ τ(t)( f ) = ∑
s∈G

( f ◦ rt)(s)ρ(s−1)v

= ∑
st−1∈G

f (s)ρ(ts−1)v

= ∑
s∈G

f (s)ρ(t)ρ(s−1)v

= ρ(t) ◦ φ( f ).

By definition of natural isomorphism, the following diagram com-
mutes.

kG V

kG V

φ

α(kG ,τ) = β(kG ,τ) α(V,ρ)β(V,ρ)

φ

14



Since v ∈ im φ holds, α(V,ρ)(v) = β(V,ρ)(v) follows and we conclude
α = β. �

Remark 4.10. Note that we really use the finiteness of G here. If we re-
define Repk(G) (resp. Veck) to include infinite-dimensional represen-
tations (resp. vector spaces), the proof presented in this thesis would
not be valid for Lemma 4.8. The map φ defined in (4.9) would not be
well defined.

Allthough we could amend Lemma 4.8 by substituting k(G) for kG in
the entire thesis, the proof would then fail at Lemma 4.5. (k(G) is the
k-subalgebra of kG of all functions with finite support.)

I do not know whether the proof can be amended in another way
such that a similar result can be proven for infinite groups and infinite-
dimensional vector spaces and representations. «

Proposition 4.11. The map T : G → Aut⊗(F) is surjective. «

Proof. Let α ∈ Aut⊗(F). By Lemma 4.7 there exists a unique s ∈ G
such that α(kG ,τ) = τ(s) = T(s)(kG ,τ). Finally Lemma 4.8 states that
α = T(s). �

The injectiveness and surjectiveness imply our main theorem.

Proof (of Theorem 4.3). By Lemma 4.1 the map T is a homomorphism,
by Lemma 4.4 it is injective and by Proposition 4.11 it is surjective.
Hence T is an isomorphism of groups. �
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5
A N E X A M P L E W I T H A N I N F I N I T E G R O U P

Let k be an algebraic extension of a finite field. Let F be the fibre func-
tor F : Repk(Z) → Veck. In this section we show that Aut⊗(F) is not
isomorphic to Z.

Therefore we define a group, Ẑ 6∼= Z, and construct a natural iso-
morphism Ẑ ∼= Aut⊗(F).

Definition 5.1. The group Ẑ consists of infinite sequences (sn)n∈Z>0

with sn ∈ Z/nZ, such that sn ≡ sm mod m if m|n. The group law is
the componentwise addition. «

Define the injection i : Z → Ẑ by n 7→ (n + mZ)m∈Z>0 . For all n ∈
Z>0 define πn : Ẑ→ Z/nZ by (sm)m∈Z>0 7→ sn.

Lemma 5.2. Let (V, ρ) be a finite-dimensional representation of Z over k.
Then there is a unique map ρ̂ : Ẑ→ Aut(V) such that ρ = ρ̂ ◦ i holds. «

Proof. Note that ρ is determined by ρ(1). Choose a basis for V. Observe
that there exists a finite subfield l ⊂ k such that all entries of the matrix
representing ρ(1) are in l. Since V is finite-dimensional, and l is finite,
ρ(1) is of finite order n, for some n ∈ Z>0.

Hence ρ factors through Z/nZ, inducing a map ρ. If we define ρ̂ as
ρ ◦ πn we have the following commutative diagram.

Z/nZ

Ẑ

Z Aut(V)
ρ

ρ̂

mod n
πn

ρ

i

�

Define

φ : Ẑ→ Aut⊗(F)

s 7→
(
ρ̂(s)

)
(V,ρ),

and observe that, analogous to Lemma 4.1 and Lemma 4.2, it is a group
homomorphism.

Proposition 5.3. The map φ : Ẑ→ Aut⊗(F) is an isomorphism. «

Before we prove this proposition, we first state some lemmata analo-
gous to the case for finite groups.

Consider G = Z/nZ, n ∈ Z>0 and observe that we can view (kG, τ)

as a representation of Z (with some abuse of notation).

17



Lemma 5.4. The map φ is injective. «

Proof. Assume φ(s) = id and consider (kG, τ), with G = Z/nZ, n ∈
Z>0. Then we have

id(kG ,τ) = φ(s)(kG ,τ) = τ̂(s) = τ(sn),

which implies sn = 0. Since n was arbitrary, this implies s = 0. �

Lemma 5.5. Let α, β ∈ Aut⊗(F) such that α(kZ/nZ,τ) = β(kZ/nZ,τ) holds, for
all n ∈ Z>0. Then α = β. «

Proof. Let (V, ρ) ∈ ob Repk(Z) and v ∈ V. As observed above, ρ fac-
tors through Z/nZ for some n ∈ Z>0. Put G = Z/nZ and analogous
to Lemma 4.8 we deduce α = β. �

Lemma 5.6. The map φ is surjective. «

Proof. Let α ∈ Aut⊗(F) be a tensor automorphism of F.
Recall that we can view (kZ/nZ, τ) as representation of Z over k,

for all n ∈ Z>0. By Lemma 4.7, there exists an sn ∈ Z/nZ such that
α(kG ,τ) = τ(sn). We claim that (sn)n ∈ Ẑ, i.e., for all m, n ∈ Z>0 it holds
that sn ≡ sm mod m if m|n.

Suppose m|n holds for n, m ∈ Z>0. Define

f : kZ/mZ → kZ/nZ

g 7→ (a + nZ 7→ g(a + mZ)).

Note that f is well defined, and a morphism of representations since

kZ/mZ kZ/mZ

kZ/nZ kZ/nZ

τ(s)

f f

τ(s)

commutes for all s ∈ Z.
By definition of automorphism of F, and the construction of sn and

sm we then find that

kZ/mZ kZ/mZ

kZ/nZ kZ/nZ

τ(sm)

f f

τ(sn)

commutes, which means sn ≡ sm mod m. Hence (sn)n ∈ Ẑ holds.
Since α agrees with φ(s) on (kZ/nZ, τ) for all n ∈ Z>0, Lemma 5.5

gives α = φ(s), which proves surjectiveness of φ. �

Proof (of Proposition 5.3). By Lemma 5.4 the map φ is injective, and by
Lemma 5.6 it is surjective. �
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