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Preface

In January 2010 Marcell A. Marosvölgyi and Hans J. van Gorkom published an article
named Cost and color of photosynthesis [1]. In this article an equation is derived that
gives the optimal energy production through photosynthesis relative to the cost in main-
taining the `light harvesting' system. In this bachelor thesis we set out to understand the
model assumptions and the equations which follow from the model derived in [1]. We also
wanted to see if the method of `map iteration' worked for �nding solutions to the equa-
tions obtained. That is, �rstly to investigate whether these iterations would converge to a
solution for each starting point and secondly if the obtained solution is unique. Since this
was not possible by hand MATLAB was used for simulation and iteration.
Due to the limited amount of time available for this bachelor project we were not able to
solve all the questions we came up with. A lot of time was used in understanding the main
article because of its interdisciplinary character; covering biology, biochemistry, physics
and of course mathematics. Unfortunately we could not exchange views with the authors
to verify our ideas, clarify possible misunderstandings from our side or possible errors from
their in the article. We hope that this will be done in near future, after the completion of
this bachelor project and the writing of this thesis.

Daniëlle Verburg
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1 Introduction

This thesis is on the mathematics related to the question stated in the title: `Why are plants
green?'. Plants are green because the pigments, which play a role in the photosynthesis
process, especially chlorophyll, do not absorb the green part of the light spectrum. So
actually the question is why this is the case. There are several ways to approach this
question, e.g. looking at the pigment's chemical structure. Interestingly in [1] the answer
is sought using an evolutionary perspective, connected to a `power budget-reasoning'. In
order to provide some background for the way this problem was addressed in [1] and the
mathematical issues resulting from that paper, which are the subject of this thesis, we
begin with some explanation of the relevant biological and biophysical processes in plants.

1.1 Biological background

Plants get most of their energy from the biochemical process photosynthesis. The plant
uses the light energy from the sun in the photosystem to produce chemically stored en-
ergy, e.g. in the form of sugar (glucose). The absorption of energy is taking place in the
photosystem as a result of the products from the light reactions. These reactions use the
sunlight and water to form chemicals which are used in the dark reactions (Calvin cycle)
to produce glucose which will be stored for later use, e.g. in the form of starch.
The goal of this thesis is to study the system of nonlinear equations that results from the
problem of optimizing the energy that can be used for growth, reproduction and defence.
The assumption is made, that plants with optimal functioning photosystem have evolution-
ary advantage over those that do not. The process of evolution has resulted in plants with
such an optimal system. So one would expect the solution to the optimisation problem to
be observable in nature.

Figure 1: Energy �ows in the photosynthesis system

Figure 1 show a model for the energy �ows in the photosystem. Pin is the maximal power
the photosystem can produce from sunlight on theoretical grounds, given the parameter
setting σ (to be explained below in further detail). The chemical storage system, with
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parameter p, is able to turn a fraction ε (e�ciency) into chemically stored energy. Of
course energy is needed for the support of the photosystem and for the chemical storage.
The required power needed to invest in maintenance of the photosynthesis system is Pinv.
It is split into two parts: one for maintenance of the photosystem, P foto

inv , and the other for
the chemical storage system, P chem

inv . PO is the net power available for other processes in
the plants: PO = Puit − Pinv. A more detailed explanation can be found below.

1.2 Mathematical modelling approach

As mentioned in the biological background the plant uses sunlight for energy. The �rst
step in the approach in [1] is, that the continuous light frequency spectrum is discretized.
That is, the light frequency spectrum will be divided in small frequency bands, ranging
from ν0 until νn. We put ∆νi := νi+1 − νi, (i = 0, 1, . . . , n− 1). These steps will not be all
equal. There will be no need to look at frequencies ν < ν0 and ν > νn since those are too
low, respectively high frequency for photopigments to be absorbed for biochemical reasons.

Beer-Lambert's Law (I(x) = I0e
−αx) applies to the absorption of light energy, in this

case sunlight. In this law I0 is the intensity of the light at the surface of a particular
absorbing material, α is the absorption coe�cient and I(x) is the intensity at penetration
depth x into the substance, in our case leaf tissue. The coe�cient α depends on frequency
in general. For this thesis we will look at the most e�ective αi for every frequency interval
νi ≤ ν ≤ νi+1. The product σi := αix will be the so-called absorption cross-section. Notice
that the fraction of the incoming sunlight energy in the frequency band νi ≤ ν ≤ νi+1 that
will be absorbed is 1− e−σi . The goal of this thesis is to �nd a distribution for the σi such
that the net power available to the plant's biological processes, PO, is optimal.

Now some equations will be introduced and together they will give the master equation
which will be used for the optimisation of PO. The reader may consult [1] or [2] for further
details of the derivation. The total number of absorbed photons per time per unit area,
the excitation frequency for the frequency band from ν0 to νn will be given by

JL =
n−1∑
i=0

I0,i · (1− e−σi), (1)

where I0,i denotes the number of incoming photons per unit time per unit area onto the
leaf surface from sunlight in the frequency band [νi, νi+1]. In absence of sunlight, there
is still some energy for the plant to absorb caused by thermal radiation. We assume an
ideal situation: that of black-body radiation from the surroundings. The resulting photon
�ux in the frequency band [νi, νi+1] is denoted by IBB,i, in which BB stands for black-body
radiation. It can be calculated by Planck's Law, (see forthcoming Section 3.2),

I(ν, T ) = hν · 2ν2

c2
· 1

ehν/kT − 1
. (2)
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The excitation in darkness due to black-body radiation then equals

JD =
n−1∑
i=0

σi · IBB,i, (3)

according to [1], [4]. JL and JD are called excitation frequency respectively for the light
and the darkness. Looking at these excitation frequencies in relation to each other we get

Q =
JL + JD
JD

= 1 +
JL
JD
≈ JL
JD

(4)

The approximation is because JL is much bigger than JD, typically. According to [1], [4]
the maximal power that can be produced from the light by this process is given by

Pin = JL · kT · lnQ ≈ JL · kT · ln
JL
JD

(5)

In (5) kT , the thermodynamic energy, is a constant, where T is the absolute temperature
and k is the Boltzmann constant, namely k ≈ 8.617 × 10−5eV · K−1. For this thesis
T = 295K (room temperature) will be used and so kT = 0.0254 eV = 4.07 × 10−21 J For
simplicity we write

µ := kT · ln JL
JD

. (6)

Part of the energy absorbed in the photosystem is converted into a form suitable for further
use in the plant. The power that is �nally produced during the photosynthesis process will
be called

Puit = ε(p, Pin)Pin, 0 ≤ ε ≤ 1, (7)

where ε is the e�ciency in the conversion of energy, from Pin to Puit. p is a parameter. As
shown in Figure 1 energy is needed to keep the photosystem and chemical storage going.
In the model these are assumed to be given by

P foto
inv = a

n∑
i=0

σi, P chem
inv = bp. (8)

Then
PO = Puit − Pinv = ε(p, Pin)Pin − a

∑
i

σi − bp. (9)

In [1] one makes the particular choice

ε(p, x) =
p

p+ x
. (10)

Thus, p is the level of Pin at which ε = 1
2
. This completes the model.
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1.3 The master equation

Given a ≥ 0 and b ≥ 0, and the particular choice for ε as in (10) one is looking for solutions
for σ = (σ0, σ1, . . . , σn) and p such that PO is optimal. In [1] one then imposes the critical
point conditions

∂PO
∂σi

= 0,
∂PO
∂p

= 0. (11)

From these conditions, equation (9) and the particular form of ε as in (10), one obtains
the condition

∂Pin

∂σi
=

a

2(1−
√
b)
. (12)

Implicitly, we obtain the condition that 0 ≤ b < 1. Computing ∂Pin

∂σi
from (5) now yields

the system of equations, that is the starting point of this thesis:

I0,i · e−σi =
kT

µ(σ) + kT
·
[
IBB,i ·

JL(σ)

JD(σ)
+

a

kT · 2(1−
√
b)

]
. (13)

We want to solve for σi.

1.4 Comparison with the paper's master equation

We have derived (13) but this one is a little di�erent from the master equation in [1] derived
along similar lines. There the equation reads as follows:

I0,i · e−σi =
kT

µ+ kT
·

[
IBB,i ·

JL
JD

+
CPin

CPin
+ CG

· JL · µ
hνi(

∑
j σi/hνj)

]
. (14)

We would like to make three remarks at this point.
First, the system of equations (14) for a critical point of PO as derived in [1] di�ers from
(13), as the last term within the brackets on the right is σ-dependent. It appears that
this might be caused by a minor mistake, or `hidden assumption' in the derivation of dPG

dPsat

in the Supplementary Material of [1], p4. Note however, that for vanishing cost of the
photosystem, i.e. CPin = 0 in (14) or a = 0 in (13), the two master equations agree. In
that case we would expect an in�nitely large absorption cross-section σi for all i to be a
solution: all light is harvested. In that case JD, as expressed by (3), becomes in�nitely
large though, while JL remain �nite. Therefore the approximation made in (4) fail and so
should the remainder of the derivation, hence master equations (13) and (14).

Second, having a critical point at some σ∗ does not guarantee the existence of a maxi-
mal (or minimal) value for PO at σ∗. Further conditions are required.
Third, the domain of PO as a function of σ and p is not the open set Rn+1 × R, but the
closed cone Rn+1

+ ×R+, where R+ = [0,∞). Thus we are looking for extreme values of PO
on a domain with boundary. This deserves particular attention, because of the possibility
of extreme values lying on the boundary, where ∂PO

∂σi
need not all vanish.
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1.5 Conditions for optimal net power

We can say that we are looking for the optimum of PO with (σ, p) in Ω = Rn
+ × R+.

We will see that for a σi ∈ Ω the derivation of condition (12) needs the condition that
∂PO
∂σi

= 0, i = 0, . . . , n − 1 and ∂PO
∂p

= 0. It is possible that σi lies on ∂Ω. We may

write Ω as a disjunct union of subsets Ω∅ and ∂ΩI , where I is a (non-empty) subset of
{0, 1, . . . , n− 1} ∪ {∗} when we put

∂ΩI = {(σi, p) ∈ Ω|σi = 0 if i ∈ I and p = 0 if ∗ ∈ I} (15)

Then PO has a maximal value in ∂ΩI if{ ∂PO
∂σi

= 0 if i /∈ I,
∂PO
∂σi

< 0 if i ∈ I. (16)

and ∂PO
∂p

= 0 if ∗ ∈ I.

2 Finding solutions to the equation - abstract approach

We want to solve for σi in the system (13). We �rst observe, that (13) does not have any
solution when some I0,i = 0. In fact, IBB,i > 0 and JL

JD
> 0 for σ 6= 0. Therefore the part

between brackets in the right hand side of (13) cannot become zero, nor can the factor in
front.

So we must assume I0,i > 0 for all i. Now we can divide by I0,i in (13) and obtain

e−σi =
1

1 + ln
(
JL
JD

) · [IBB,i
I0,i
· JL(σ)

JD(σ)
+

a

kT · I0,i
· 1

2(1−
√
b)

]
. (17)

We further rewrite (13) by de�ning ti := e−σi , which is the transmission of light for
frequency νi. Since σi ≥ 0, we have 0 < ti ≤ 1. Thus σi = − ln ti. The master equation
now becomes

ti =
1

ln
(
JL
JD

)
+ 1
·
[
IBB,i
I0,i
· JL
JD

+
a

kT · I0,i
· 1

2(1−
√
b)

]
. (18)

Thus, if we de�ne a map F : (0, 1]n → Rn component-wise by the right hand side of (18),
the problem we need to face is to determine all �xed points of F .

We approach the problem of �nding �xed points of F by means of successive iteration
which is also used in [1]. That is, we start with an initial value t0 ∈ (0, 1]n and de�ne

tn := F (tn−1). (19)
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If limn→∞ tn =: t∗ exists, and F is continuous at t∗, then t∗ is a �xed point of F , because

F (t∗) = F ( lim
n→∞

tn) = lim
n→∞

F (tn) = t∗. (20)

In the middle step we need continuity of F at t∗. However, it is not clear from (18) that
F maps (0, 1]n into itself. We will �rst examine the iteration process numerically.

3 Simulation

We implemented the simulation of the iteration procedure in MATLAB (version 7.6.0
R2008a). See the Appendix for the code. In order to get interpretable t values, we modi�ed
F into F̃ , such that F̃i(t) = 1 when Fi(t) > 1 and F̃i(t) = 0 when Fi(t) < 0.

3.1 Solar radiation data

Before we are able to start the simulation we need realistic values for the solar photon
�ux density distribution, I0,i. We took I0,i from [3], which is provided by the American
Society for Testing and Materials (ASTM). It was founded in 1898 with initial plans to �nd
and solve problems in railtracks. Since 2005 there are more then 12,000 ASTM standards
known. Some of these standards concern the sunlight spectrum, which are used for testing
the performance of photovoltaic cells. Since 2005 ASTM is called ASTM International
because the members are situated all over the world.

We used the sunlight irradiance distribution relative to wavelength (in nm) at a per-
pendicular incidence on the surface at sea level. See Figure 2, (right panel). It provides
a sampling of F0(λ), which is the continuous distribution of solar irradiance (transmitted
power per unit area per wavelength unit) at wavelengths λi ranging from 280 nm up to 4000
nm. The energy �ux density associated to the wavelength in the range [λi, λi+1) equals

jE,i =

∫ λi+1

λi

F0(λ)dλ. (21)

The corresponding photon �ux density equals

I0,i ≈
jE,i
hνi

. (22)

Using an approximation for the integral in (21), we have

jE,i ≈
1

2
[F0(λi+1) + F0(λi)] ·∆λi (23)

≈ F0(λi) ·∆λi, (24)
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and we obtain1

I0,i ≈
F0(λi)

hc
· λi ·∆λi (25)

(in number of photons per m2 per second). We have λ = c
ν
in which ν is our chosen interval

and c = 299.8 × 106 m/s, the speed of light. h = 4.136 × 10−15 eV/s which is Planck's
constant.

Figure 2: Solar Radiation Spectrum. Left: the energytransmission of the sun in wave-
lengths outside the atmosphere and on sealevel,[3]. Right: the energytransmission at sea
level according to ASTM data used.

Figure 2 shows that the data used for I0,i is consistent with information found elsewhere,
([3]). Notice the gaps in the graphs around 1300 nm and around 1800 nm. These are
caused by absorption of sunlight in the atmosphere by water vapour. In the data there are
some zeros which will be a problem for (13) because we have to divide by I0,i (see remark
in Section 2). This problem is solved since we only have to look at 400 nm - 700 nm since
this is the visible light range, so e�ectively we will not have problems with the gaps.

3.2 Black-body photon �ux distribution

A similar approach applies to the computation of IBB,i. The photon �ux density distribu-
tion relative to frequency in the interior of a black box, (see Figure 3), may be computed
to be

FBB(ν) = 8π ·
(ν
c

)2
· 1

ehν/kT − 1
(26)

(in number of photons per m2 per second per unit frequency).2 Then

1In the implementation we use the vector Iss for (F0(λi))
n−1
i=0

2This expression has been derived from the formula for the spectral energy density per unit volume of
therodynamic equilibrium cavity radiation as found on Wikipedia,(`Planck's law'), for which we could not
�nd an appropiate reference in the physics literature.
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Figure 3: Black-body radiation from the `walls' representing the environment.

IBB,i =

∫ νi+1

νi

FBB(ν)dν (27)

=∗ −
∫ λi+1

λi

FBB

( c
λ

)
· c
λ2
dλ (28)

= −8πc ·
∫ λi+1

λi

1

λ4
· 1

e
hc
kT
· 1
λ − 1

dλ (29)

≈ 8πc · 1

2

[
1

λ4i
· 1

e
hc
kT
· 1
λi − 1

+
1

λ4i+1

· 1

e
hc
kT
· 1
λi+1 − 1

]
·∆λi (30)

≈ 8πc · 1

λ4i
· 1

e
hc
kT
· 1
λi − 1

·∆λi (31)

≈ 8πc · kT
hc
· 1

λ3i + 1
2
· hc
kT
· λ2i
·∆λi (32)

(∗ν = c
λ
, λi = c

νi
, dν = − c

λ2
dλ). Notice that νi+1 > νi so λi+1 < λi and the minus sign in

front of (29) is `absorbed' into the integral by exchanging the bounds of the integral.

Figure 4: Left: I0,i vs νi, middle: IBB,i vs νi, right:
I0,i
IBB,i

vs νi
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In Figure 4 we plotted I0,i and IBB,i and
I0,i
IBB,i

as function of νi. Notice in the left panel

and middle panel that we have some `jumps' in the graphs. These `jumps' are the result
of the choice made in the data from ASTM ([3]), since there the wavelength starts at 280
nm and goes up to 4000 nm, but not in equal steps. In the beginning there are steps of
0.5 nm, later it become 1.0 nm and in the end even 5.0 nm.

3.3 Simulation 1

We have simulated (17) for di�erent a and b. Notice that we use the notation 1 for a
vector with ones at each component (of the appropriate dimension. Notice that a (power
required per unit cross-section per m2 of leaf surface) has unit eV/m2s. As said we have

Figure 5: Simulation a=0.5, b=0.5, t0 = 0.9×1. Left is 1 iteration, the middle 4 iterations
and the right 10 iterations

changed all the data from wavelength to frequency and by using (18) we have iterated F
to obtain a possible solution. The results are not as expected. Figure 5 shows the iteration
for a = 0.5, b = 0.5 and t0 the initial vector 0.9 × 1. We see that after several iterations
the graph is becoming smaller and after 10 iterations the graph has become a line at 0.
So, looking at this in a biological sense it says that the plant should not absorb in order
to become a `strong' plant.
Of interest in Figure 6 and Figure 7 is the change of a and b. Between Figure 5 and Figure
6 we do not see a big di�erence in the �rst two graphs, since b has only changed from 0.5
to 0.01. The di�erence between Figure 6 and Figure 7 is not noticable which is strange
because now we changed a from 0.5 to 0.

12



Figure 6: Simulation a=0.5, b=0.01, t0 = 0.9×1. Left is 1 iteration, the middle 4 iterations
and the right 10 iterations

Figure 7: Simulation a=0, b=0.5, t0 = 0.9× 1. Left is 1 iteration, the middle 4 iterations
and the right 10 iterations

3.4 Discussion of simulation

Of course we have done several more simulations, also varying t0 between 0 and 1 (results
are not shown). Although the graphs are a little bit di�erent the result is every time the
same. After a small number of iterations we end up with the �nal graph of the three
simulations shown here. It appears that something is completely `wrong', since the �nal
result makes no sense at all, in particular in the cost a = 0. The result we got for a = 0
was the one that raised most questions: looking at (17) you would not expect that the
simulation goes to zero since only the second term between brackets becomes zero. Both
in an approach, using (13) and the one from [1], which has the same master equation for
CPin

= 0, the method of iteration converges to a result which is not a reasonable solution:
biologically one would expect the system to harvest on all light frequencies when there is
no cost. Thus we had the idea that the equation used in [1] must be wrong. This made us
start to have another look at the equations and see what should be di�erent.
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4 A modi�ed master equation

We go back to (1), this equation still holds. In our opinion (3) has to change to

JD =
n−1∑
i=0

IBB,i · (1− e−σi), (33)

because it is unclear why absorption of photons from black-body radiation should be treated
di�erent from those in sunlight. Also the approximation in (4) should not be made. We
will continue with

Q = 1 +
JL
JD

(34)

in the deriviation, instead of the approximation Q ≈ JL
JD

made in (4). So (5) changes into

Pin = JL · kT · lnQ = JL · kT · ln
(

1 +
JL
JD

)
. (35)

Again for simplicity we take µ := kT · ln
(

1 + JL
JD

)
. Condition (12) will still hold in this

case but (13) will not be the same. Our calculations to get a new equation for e−σi are as
follows:

∂Pin

∂σi
=

∂JL
∂σi
· µ+ JL · kT ·

1

1 + JL
JD

· ∂
∂σi

(
JL
JD

)

=
∂JL
∂σi
· µ+ JL · kT ·

1

1 + JL
JD

·
∂JL
∂σi
· JD − JL · ∂JD∂σi

J2
D

=
∂JL
∂σi

(
µ+ JL · kT ·

1

JD
· 1

1 + JL
JD

)
− J2

L

J2
D

· kT · 1(
1 + JL

JD

) · ∂JD
∂σi

=
∂JL
∂σi

(
kT · ln

(
1 +

JL
JD

)
+ kT ·

JL
JD

1 + JL
JD

)
− J2

L

J2
D

· kT · 1(
1 + JL

JD

) · ∂JD
∂σi

= kT · I0,ie−σi
(

ln

(
1 +

JL
JD

)
+

JL
JD

1 + JL
JD

)
− IBB,i · e−σi · kT ·

1

1 + JL
JD

· J
2
L

J2
D

.

This combined with (12) yields a new master equation:

e−σi =
a

2(1−
√
b)kT

· 1

IBB,i
·

 I0,i
IBB,i

(
ln

(
1 +

JL
JD

)
+

JL
JD

1 + JL
JD

)
−

J2
L

J2
D

1 + JL
JD

−1 . (36)

This equation looks more reasonable, because when a = 0 we get immediately that the
iteration becomes 0 and so the absorptance (1−e−σi) becomes 1. This is what we expected
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if you look at it from the biological point of view.

Let us put as before ti = e−σi , i = 0, . . . , n − 1. We may rewrite (36) as a �xed point
equation t = F (t). Notice that the right hand side of (36) actually is a function of

x = Q(t). Put vi =
I0,i
IBB,i

. Then

vi

(
ln

(
1 +

JL
JD

)
+

JL
JD

1 + JL
JD

)
−

J2
L

J2
D

1 + JL
JD

= vi(lnx+ 1− 1

x
)− (x− 2 +

1

x
) (37)

by noticing that

J2
L

J2
D

1 + JL
JD

=

(
J2
L

J2
D
− 1
)

+ 1

1 + JL
JD

=

(
JL
JD
− 1

)
+

1

1 + JL
JD

= x− 2 +
1

x
. (38)

(37) may be rewritten into

vi(1 + ln x)− vi + 1

x
− (x− 2) =

vix(1 + ln x)− (x2 − 2x+ vi + 1)

x

= vi(1 + ln x)− [(x− 1)2 + vi]

x
.

Thus, with x = Q(t) and recalling that vi =
I0,i
IBB,i

,

Fi(t) = Gi(x) =
a

2(1−
√
b) · kT

· 1

IBB,i
· x

vix(1 + lnx)− vi
[
1 + (x−1)2

vi

] (39)

=
a

2(1−
√
b) · kT

· 1

I0,i
· x

x(1 + ln x)−
[
1 + (x−1)2

vi

] , (40)

provided vi 6= 0 of course.

4.1 Properties of the iteration map

Now recall

Q(t) = 1 +

∑
i I0,i(1− ti)∑
i IBB,i(1− ti)

. (41)

Then it is clear that:

Lemma 1: t 7→ Q(t) is continuous on [0, 1]n\ {1} and Q(t) > 1 for all t ∈ [0, 1]n\ {1}.

From (40) we see that Gi(x) is discontinuous on (1,∞) only at points x at which x(1 +
lnx) = 1 + 1

vi
(x− 1)2.
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Lemma 2: For each i there exists a unique x∗i > 1, such that x(1 + lnx) > 1 + 1
vi

(x− 1)2

for 1 < x < x∗i , x(1 + ln x) < 1 + 1
vi

(x− 1)2 for x > x∗i and equality holds for x = x∗i .

Proof: Clearly, x(1 + lnx) = 1 + 1
vi

(x− 1)2 for x = 1. The right hand side is a parabola
with minimum at x = 1, while the left hand side is a convex function with tangent slope
at x = 1 equal to 2, ([x(lnx + 1)]′ = 2 lnx). So there exists an interval (1, α), possible
α = +∞ on which x(1 + ln x) > 1 + 1

vi
(x− 1)2. Now consider the equation

x(1 + ln x) = 1 +
1

vi
(x− 1)2 (42)

on (1,∞). It is equivalent to

1 + ln x =
1 + 1

vi
(x− 1)2

x
. (43)

Moreover,

hi(x) :=
1 + 1

vi
(x− 1)2

x
=

1

vi
x− 2

vi
+

1 + 1
vi

x
. (44)

That is, the right hand side in (43) has 1
vi
x − 2

vi
as asymptote as x → ∞. x 7→ 1 + lnx

intersects this asymptote at some point x′ > 1.

At x = 1, the slope of x 7→ 1 + lnx equals 1, while that of x 7→
1+ 1

vi
(x−1)2

x
= hi(x) equals

1
vi
−
(

1 + 1
vi

)
= −1. One has h′′i (x) = 2 ·

1+ 1
vi

x3
> 0 so the graph of hi is convex. Moreover

the minimum of hi lies at
√
v2i + 1 and the minimal value lies above the asymptote, so hi

lies above the asymptote on (1,∞). Since x 7→ 1 + lnx is concave, there must exist x∗i > 1
such that (43) holds for x = x∗i .

Thus, we obtain

Proposition 1: F : [0, 1]n\{1} → R is continuous except on the surfaces Q(t) = x∗i , i =
0, . . . n− 1.

Note that near t = 1, Q(t) `blows up', so for each i, {t ∈ [0, 1]n\ {1} |Q(t) = x∗i } 6= ∅.
Moreover,

Proposition 2: Fi(t) > 0 for t ∈ [0, 1]n\ {1} such that Q(t) < x∗i .

Proof: This follows directly from Lemma 2.
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We would further like to remark that the set Q(t) = x∗i is a hyperplane:

Q(t) = x∗i ⇔
∑
j

I0,j(1− tj) = x∗i
∑
j

IBB,j(1− tj) (45)

⇔
∑
j

(I0,j − x∗i IBB,j)tj =
∑
j

(I0,j − x∗i IBB,j) (46)

⇔ ni · t = c (47)

for some vector ni ∈ Rn and scalar c.

Figure 8: A possible con�guration of the set of Q(t) < x∗i

Note that

Fi(t) = Gi(x) =
a

2(1−
√
b) · kT

· 1

I0,i
· 1

(1 + ln x)− hi(x)
(48)

The previous discussion reveals that Gi(x) can become arbitrarly large for x ∈ (1, x∗i ). On
the other hand the di�erence (1 + lnx)− hi(x) is bounded on (1, x∗i ). Thus for each i thee
exists δi > 0 such that Fi(t) ≥ δi for all t ∈ [0, 1]n\{1} for which Q(t) < x∗i .

In Figure 8 a sketch is presented of a possible con�guration of t ∈ [0, 1]2\{1} for which
Q(t) < x∗i for all i is yellow. Moreover we have indicated the location of δi. Unfortunately,
we are not able (yet) to prove or disprove the existence of a subset C of

n−1⋂
i=0

{t ∈ [0, 1]n\{1}|Q(t) < x∗i } (49)

that is mapped to itself by F . We continue our investigations by means of numerical
simulations.
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4.2 Simulation 2

The new master equation gives much more reasonable results. Figure 9 shows three sim-
ulations for di�erent values of a and b. The �rst simulation shows what we would expect,
namely when a = 0 we have that t = 0 so the best thing to do for the plant is to absorb
all light. In both other cases we have taken a high value for a, namely a = 1018 (in eV/m2

per second). That is, the production of photopigments is costly. In both cases we only had
to do a few iterations, since more iterations just gave a result hardly distinguistable from
the previous iterations. This suggests that the method used is either very fast in �nding
the �xed point or convergence is very slow. We discuss this further below.

Figure 9: Left: a=0, b=0.5, t0 = 0.9 × 1. Middle: a = 1018, b=0.5, t0 = 0.9 × 1. Right:
a = 1018, b=0.01, t0 = 0.9× 1. In all cases four iterations have been done.

Figure 10 are the same simulations as before only now we looked at the interval we needed.
As mentioned before the visible light is between 400 nm and 700 nm. We looked at a range
from 100 nm to 900 nm in this case.

Figure 10: Left: a=0, b=0.5, t0 = 0.9× 1. Middle: a = 1018, b=0.5, t0 = 0.9× 1. Right:
a = 1018, b=0.01, t0 = 0.9× 1. In all cases four iterations have been done.
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Figure 11: Plot for log10 ||F (tk)− tk||

In order to investigate the rate of convergence experimentally, we computed for each iter-
ation step k the value log10 ||F (tk)− tk||. In Figure 11 we plotted the numerical result. It
suggests that there is a fast convergence of the iteration process.

5 Discussion

During this project we have tried to follow [1]. In this article it seems that the au-
thors created a model built upon (too) many approximations, which in the `extreme case'
a = 0, (CPin = 0), no cost, totally fails, while in other cases there are no convincing con-
vergence towards a `reasonable' solution, see Section 3.4 and 3.5. This triggered us to
derive a new master equation. The computation of solutions to this equation using the
successive iteration technique seems to give an explanation why the green spectrum could
have disappeared from the plants photosystem. This is illustrated in Figure 12.

Figure 12: For all a = 1018 and t0 = 0.9 × 1 but b = 0.8, b = 0.82, b = 0.83 from left to
right, respectively.

Figure 12 shows that the green light, which is around 555 nm disappears. If we would
take b = 0.84, then we would get that t = 1. This result seems odd as well. We have no
explanation of the latter behaviour at this moment.
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At the end of this project we still have some open questions:

One question is related to the convergence. The numerical resul on the decrease of the
distance ||F (tk)−tk|| shown in Figure 11 is remarkable. The question is, whether one could
explain or prove this result analytically.

Another is related to the di�erence between the original expressions for the excitation fre-
quency for light and darkness. Why should (3) be di�erent from (1)? Is our approach,(33),
for JD not more logical?

Another point we still have open is: how do solutions to the problem depend on the
discretization of the (sun)light frequency spectrum? I.e. the choice of cut-o� ν0 and νn
and the stepsize ∆νi? In the data we used (ASTM) the stepsize started with 0.5 nm,
later it became 1.0 nm and in the end the stepsize was even 5.0 nm. We experimented
with a di�erent cut o�. This did not seem to matter for the result of the iteration procedure.

At this point we would like to remark, that a totally di�erent approach is possible, namely
by using (non-linear) optimalisation techniques directly on the explicit form of PO. This
could be a totally new project.

We hope that it will be possible to investigate these questions in the future.
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A Main program

clear all
clc

n = 2002;
kT = 0.0254; in eV
A = solardata;
h = 4.136e−15; in eV*s
c = 299.8e6; in m/s
hc = h ∗ c; in eV*m
[Issfr,wavelength, energy, IBfr, freq] = waveeng(A, h);
I = Issfr;
IB = IBfr;
a = .5;
b = .5;
t = ones(1, 2002) ∗ 0.9;

for i = 1 : 2002
Isup(i) = I(i);
if I(i) == 0

Isup(i) = 1.5663e−041;
end

end

�gure(1)
hold on
xlabel('frequency in THz');
ylabel(′I′0,i);
plot(freq, Isup);
hold o�

for i = 1 : 2002
IBsup(i) = IB(i);
if IB(i) == 0

IBsup(i) = 1.5663e−041;
end

end

v = Isup./IBsup;

�gure(2)
hold on;
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xlabel('frequency in THz');
ylabel(′I0,i/I

′
BB,i);

plot(freq,v);
hold o�

�gure(3)
hold on
xlabel('frequency in THz');
ylabel(′I′BB,i);
plot(freq, IBsup);
hold o�

for j = 1 : 2
[t, l] = iterF(t, kT, a, b, IBsup, Isup);
e(j) = log(l)/log(10);
t;

end

�gure(10);
hold on
plot([1:length(e)],e([1:length(e)]));
hold o�

wavekort = wavelength([100 : 900]);
tkort = t([100 : 900]);
figure(4);
clf reset;
hold on;
xlabel(′wavelength nm′);
ylabel(′1− t Absorptance′);
plot(wavekort, 1− tkort,′ r−′);
plot(wavelength, 1− t);
hold off

B From wavelength to frequency representation

function[Issfr,wavelength, energy, IBfr, freq] = waveeng(A, h)

c = 299.8e6; in m/s
hc = 6.626e−34 ∗ 299.8e6 ∗ 1e9; in J*nm
kT = 4.07e−21; in J
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b = zeros(1, 2002);

for i = 0 : 199
for j = 1 : 10

b(10 ∗ i + j) = A(i + 1, j);
end

end
b(1, 2001) = A(201, 1);
b(1, 2002) = A(201, 2);

in nm
wavelength = [linspace(280.0, 400, 241), linspace(401, 1700, 1300), 1702, 1705, linspace(1710, 4000, 459)];

in eV
energy = (4.136 ∗ 299.8)./wavelength;

for i = 1 : 2001
dellambda(i) = wavelength(i + 1)− wavelength(i);

end
dellambda(2002) = dellambda(2001);

freq=(c./wavelength)/1000;in Thertz

Iss = b([1 : 2002]);
Issfr = (Iss. ∗ wavelength. ∗ dellambda)./hc;

IBfr = (8 ∗ pi ∗ (kT/hc) ∗ c. ∗ dellambda)./(wavelength. ∗ wavelength. ∗ (wavelength + 0.5 ∗ (hc/kT)));

figure(6)
hold on
xlabel(′Wavelength(nm)′);
ylabel(′Spectral irradiance (W/m−2/nm)′);
plot(wavelength, Iss);

return

C Iteration

C.1 Original article

function F = iterF(t,kT,a,b,IB,Isup)
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Jl = Isup. ∗ (1− t);
Jd = −log(t). ∗ IB;
Sl = sum(Jl);
Sd = sum(Jd);

Fh = (1/(log(Sl/Sd)) + 1) ∗ [(IB./Isup) ∗ (Sl/Sd) + (a./(kT ∗ Isup)) ∗ (1/(2 ∗ (1− sqrt(b))))];

for i = 1 : 2002
if Fh(i) > 1

Fh(i) = 1;
end

end

F = Fh;

return

C.2 New iteration

function [F,l] = iterF(t,kT,a,b,IB,Isup)
Jl = Isup. ∗ (1− t);
Jd = IB. ∗ (1− t);
Sl = sum(Jl);
Sd = sum(Jd);
d1 = (Isup./IB). ∗ (log(1 + (Sl/Sd)) + ((Sl/Sd)/(1 + (Sl/Sd))));
d2 = ((Sl/Sd)2)/(1 + (Sl/Sd));

F = (a./(kT ∗ IB)). ∗ ((1/(2 ∗ (1− sqrt(b)))));
Fh = F./(d1− d2)

for i = 1 : 2002
if Fh(i) > 1

Fh(i) = 1;
end
if Fh(i) < 0

Fh(i) = 0;
end

end

F = Fh;
d = F− t;
l = sqrt(d ∗ d′)
return
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