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Introduction

This thesis is about a class of geometric shapes that can be constructed through iterative
processes. We shall use the Sierpinski triangle as an example of that kind of geometric
shapes. During the development of the theory on the whole, we will return to that example
as a guideline. Before we derive some properties of the Sierpinski triangle, we will show
how one can construct it.

Example 0.0.1 (Construction of the Sierpinski triangle). In this example we are going to
construct the Sierpinski triangle. We take a solid equilateral triangle T1 as initial object.
Then we obtain a new shape T2 by taking the triangle, reducing it by a factor of two
and placing copies of that reduction in all of the three corners of the triangle. We repeat
this iteration again and again using the last shape obtained by the iteration instead of the
triangle. In the limit the Sierpinski triangle, a shape that looks like T , appears. That is,
T =

⋂∞
n=1 Tn.

T1 T2 T3 T

In this thesis we will use the term attractor for the limit set of such an iteration. In the
example above the attractor is the Sierpinski triangle T .

In Chapter 1 we will introduce some necessary definitions with regard to metric spaces and
contractive functions.

Chapter 2 is about hyperspaces. Here we will derive some properties of attractors.

In Chapter 3 we will look at some measure theory. We will construct a unique measure
that is related to the attractor obtained in the previous chapter.

In Chapter 4 we are going to introduce a more general notion of dimension, the so called
Hausdorff dimension. Then we will determine the Hausdorff dimension of the attractor.
It will turn out that the dimension of the attractor is not an integer in most of the cases.
Thus we speak about fractal dimensions.
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Chapter 1

Metric spaces

1.1 Definitions

Definition 1.1.1 (Metric space). Let S be a non-empty set. A metric d is a function
d : S × S → R such that for all x, y, z ∈ S :

(i) d(x, y) = 0⇔ x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

The ordered pair (S, d) is called a metric space.

Definition 1.1.2. A metric space (S, d) is complete if each Cauchy sequence has a limit
in S.

From this point on let (S, d) be a complete metric space.

Definition 1.1.3. Let (S1, d1) and (S2, d2) be metric spaces. A function f : S1 → S2 is a
Lipschitz function if there exists a c ∈ R≥0 such that

d2(f(x), f(y)) ≤ cd1(x, y) for all x, y ∈ S1.

The Lipschitz constant of f is

|f |Lip := inf{c ≥ 0 : d2(f(x), f(y)) ≤ cd1(x, y) for all x, y ∈ S1}.

The set of Lipschitz functions f : S1 → S2 is notated by Lip(S1, S2). The notation
Lip<c(S1, S2) is used for the set Lipschitz functions with |f |Lip < c. If |f |Lip, then f is
called contractive or a contraction mapping.
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Contraction mappings f : S → S play an important part in the constuction of geometric
objects such as the Sierpinski triangle.

Example 1.1.1. Let us take a closer look at the Sierpinski triangle, introduced in Example
0.0.1. Since its construction is done in R2, the Sierpinski triangle is a subset of R2, which
is a metric space. The associated metric dE is given by

dE : R2 × R2 → R

dE(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2). We refer to dE as the Euclidean metric.

We can describe the iteration in Example 0.0.1 in terms of functions from R2 to R2. For
each corner pi of the triangle we take a function fi(x) that maps x to the nearest point such
that dE(f(x), pi) = 1

2
dE(x, pi). We obtain the next subset in the iteration by applying those

three functions on the points of the previous subset and taking the union of their outputs.
By the way we defined the functions fi, we see that they are contraction mappings with
|fi|Lip = 1

2
.

Lemma 1.1.1. Let (Si, di) be a metric space and fi ∈ Lip(Si, Si+1) for all i ∈ N. Then
Fi := fi ◦ · · · ◦ f1 : S1 → Si+1 is a Lipschitz function with |Fi|Lip ≤

∏n
i=1 |fi|Lip.

Proof. For all x, y ∈ S1:

d3(f2 ◦ f1(x), f2 ◦ f1(y)) ≤ d3(f2(f1(x)), f2(f1(y)))

≤ |f2|Lip · d2(f1(x), f1(y)) ≤ |f2|Lip · |f1|Lip · d1(x, y).

Proceeding inductively we get for all x, y ∈ S1:

di+1(Fi(x), Fi(y)) ≤ d1(x, y) ·
n∏
i=1

|fi|Lip.

We conclude that Fi ∈ Lip(S1, Si+1) with |Fi|Lip ≤
∏n

i=1 |fi|Lip.

1.2 Banach Fixed Point Theorem

The well-known Banach Fixed Point Theorem states that a contraction mapping on a com-
plete metric has a unique fixed point. The importance of this theorem will find expression
when we are going to prove the uniqueness and existence of attractors.

Theorem 1.2.1 (Banach Fixed Point theorem). Let (S, d) be a complete metric space and
f : S → S a contraction mapping. Then the following statements hold:

(i) There exists a unique point xf ∈ S such that f(xf ) = xf .
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(ii) limn→∞f
n(x0) = xf for all x0 ∈ S.

Proof. Let c = |f |Lip. By Lemma 1.1.1 we get that for all n ∈ N:

d(fn(x), fn(y)) ≤ cnd(x, y).

Let x0 ∈ S and define the sequence (xn)∞n=0 by xn := fn(x0). The distance d(x0, xn) is
bounded:

d(x0, xn) = d(x0, f
n(x0)) ≤

n−1∑
i=0

d(f i(x0), f
i+1(x0)) (1.1)

≤
n−1∑
i=0

cid(x0, f(x0)) = d(x0, f(x0))
n−1∑
i=0

ci

≤ d(x0, f(x0))
∞∑
i=0

ci =
1

1− c
d(x0, f(x0)). (1.2)

The inequality in (1.1) is justified by the triangle inequality. In justification of (1.2) observe
that

∑∞
i=0 c

i is a geometric series. Now it is easy to see that (xn)∞n=0 is a Cauchy sequence:
let m,n ∈ N, m ≥ n, then

d(xm, xn) = d(fm(x0), f
n(x0)) = d(fn(fm−n(x0)), f

n(x0))

≤ cnd(fm−n(x0), x0) ≤
cn

1− c
d(x0, f(x0)).

Since limn→∞
cn

1−c = 0, it follows that (xn)∞n=0 is a Cauchy sequence. Because S is complete,
(xn)∞n=0 does have a limit in S, say xf . Using the continuity of f we see

f(xf ) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = xf .

So xf is a fixed point of f .

To prove the uniqueness of xf we suppose that z and y are fixed points of f . Then

d(y, z) = d(f(y), f(z)) ≤ cd(y, z).

Now we find that d(y, z) = 0, hence y = z. Therefore the fixed point is unique.

We derive that limn→∞f
n(x0) = xf for all x0 ∈ S as a direct consequence of the way the

sequence (xn)∞n=0 is defined.
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Chapter 2

Hyperspaces

Let (S, d) be a complete metric space. It is possible to turn the set H(S) of closed and
bounded subsets of S into a metric space with distance function dH , the Hausdorff distance.
There is no universal name for H(S), we will call it the hyperspace of S, following [5]. It
will turn out that attractors and in particular the Sierpinski triangle are elements of this
space.

2.1 The Hausdorff distance

Let (S, d) be a complete metric space.

We define the distance between a point x ∈ S and a subset A ⊂ S by

d(x,A) = inf{d(x, a) : a ∈ A},

and we define the semi-distance of two subset A,B ⊂ S by

δ(A,B) = sup{d(b, A) : b ∈ B}.

Observe that there exist subsets A,B ⊂ S such that δ(A,B) 6= δ(B,A). For instance, we
can take (S, d) = (R, dE), A = [1, 2], and B = [0, 3]. Then 0 = δ(A,B) 6= δ(B,A) = 1.
For that reason we refer to δ(A,B) as the semi-distance from A to B. A proper notion of
distance is symmetrical. Therefore we introduce the Hausdorff distance dH :

Definition 2.1.1 (Hausdorff distance). Let (S, d) be a metric space and let A,B ⊂ S. The
Hausdorff distance between A and B is given by

dH(A,B) = max{δ(A,B), δ(B,A)}.

7



Lemma 2.1.1. Let A,B,C ⊂ S be bounded subsets of S. Then δ(A,B) ≤ δ(A,C) +
δ(C,B).

Proof. Let a ∈ A, b ∈ B, c ∈ C. Then

d(a,B) ≤ d(a, b) ≤ d(a, c) + d(c, b).

This holds for all b ∈ B, so

d(a,B) ≤ d(a, c) + d(c, B) ≤ d(a, c) + δ(C,B).

The latter inequality holds for all c ∈ C, thus

d(a,B) ≤ d(a, C) + δ(C,B).

We take the supremum over all a ∈ A and obtain that

δ(A,B) ≤ δ(A,C) + δ(C,B).

Theorem 2.1.1. (H(S), dH) is a metric space.

Proof. Let A,B ∈ H(S). Since A is bounded,

δ(A,B) = sup{d(a,B) : a ∈ A} <∞.

Since B is bounded, the same is true for d(B,A). So dH : H(S)×H(S)→ R. We have to
verify that dH is a metric on H(S):

(i) Let A ∈ H(S), then

dH(A,A) = δ(A,A) = sup{inf{d(a, b) : b ∈ A} : a ∈ A}
= sup{d(a, a) : a ∈ A} = 0.

Let A,B ∈ H(S) such that dH(A,B) = 0, then

0 = δ(A,B) = sup{inf{d(a, b) : b ∈ B} : a ∈ A}.

So for every a ∈ A we obtain that inf{d(a, b) : b ∈ B} = 0. Consequently A ⊂ B = B.
Interchanging the role of A and B yields B ⊂ A = A, hence A = B.
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(ii) For all A,B ∈ H(S) : dH(A,B) = max(δ(A,B), δ(B,A)) = dH(B,A).

(iii) From Lemma 2.1.1 it follows that for all A,B,C ∈ H(S) we have δ(A,B) ≤ δ(A,C)+
δ(C,B) and δ(B,A) ≤ δ(B,C) + δ(C,A). So

dH(A,B) = max(δ(A,B), δ(B,A))

≤ max(δ(A,C) + δ(C,B), δ(B,C) + δ(C,A))

≤ max(δ(A,C), δ(C,A)) + max(δ(C,B), δ(B,C))

= dH(A,C) + dH(C,B).

Thus dH is a metric on H(S).

2.2 Completeness of hyperspaces

Earlier we mentioned the importance of the Banach Fixed Point Theorem. Before we can
apply this theorem to contraction mappings on the hyperspace H(S), we need H(S) to be
a complete metric space.

Theorem 2.2.1. Let (S, d) be a complete metric space. Then (H(S), dH) is a complete
metric space.

Proof. Let {An}∞n=1 a Cauchy sequence in H(S). Define

A :=
∞⋂
k=1

cl

(
∞⋃
n≥k

An

)
.

We observe that A is closed by definition.

Let ε > 0. Since {An}∞n=1 is a Cauchy sequence, there exists an N ∈ N such that
dH(An, Am) < ε for all n,m ≥ N . We are going to show that A is bounded. Because
dH(An, Am) < ε we see that δ(An, AN) < ε for all n ≥ N . And we get

A ⊂ cl

(
∞⋃
n≥N

An

)
⊂ {x ∈ S : d(x,AN) ≤ ε}.

We easily see that δ(A,AN) ≤ ε. AN is bounded, so we see that A is bounded.

First we will give an upper bound for δ(AN , A). Let y0 ∈ AN0 := AN . For all i ∈ N let
εi = ε · 2−i and define inductively Ni such that Ni ≥ Ni−1 and dH(An, Am) < εi for all
n,m ≥ Ni. Since dH(ANi

, ANi+1
) < εi for all i ∈ N0, we can choose an yi+1 ∈ ANi+1

such
that d(yi, yi+1) < εi.
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Consider the sequence {yi}∞i=0. For all n,m ∈ N0, n < m we see

d(yn, ym) ≤
m−1∑
j=n

d(yj, yj+1) <
m−1∑
j=n

ε · 2−j <
∞∑
j=n

ε · 2−j = ε · 21−n.

So {yi}∞i=0 is a Cauchy sequence. S is complete, therefore {yi}∞i=0 has a limit in S, say y.
Now we see that d(y0, y) = limm→∞ d(y0, ym) < 2ε.

Observe that for all m ∈ N:

y ∈ cl ({yi : i ≥ m}) ⊂ cl

(⋃
i≥m

ANi

)
⊂ cl

(⋃
n≥m

An

)
.

In the first inclusion we use that yi ∈ ANi
for all i ∈ N0, in the second that Ni ≥ m for

all i ≥ m. Consequently y ∈ A. Since y0 ∈ AN is arbitrary, δ(AN , A) < 2ε. Recall that
δ(A,AN) ≤ ε, so dH(A,AN) < 2ε.

Now we can show that A is the limit of {An}∞n=1. For all n ≥ N :

dH(A,An) ≤ dH(A,AN) + dH(AN , An) ≤ 2ε+ ε = 3ε.

2.3 Hyperspaces and contraction mappings

In the previous section we saw that the condition on (S, d) to be complete ensures the
completeness of the hyperspace H(S). Now we are going to look at contraction mappings
that map from H(S) to H(S). We know that this kind of functions have a fixed point and
in this case it is a closed and bounded subset of S. For an iterative process we will define
the Hutchinson function. We will prove that it is a contraction mapping with the property
that its fixed point equals the limit set of the iteration.

Let A be any set and f be a function on the elements of A. We define f(A) := {f(a) : a ∈
A}.
Lemma 2.3.1. Let (S1, d1) and (S2, d2) be metric spaces. Let f ∈ Lip(S1, S2). Then for
all A ⊂ S1:

diam(f(A)) ≤ |f |Lipdiam(A).

Proof.

diam(f(A)) = sup{d2(f(a), f(b)) : a, b ∈ A}
≤ sup{|f |Lip · d1(a, b) : a, b ∈ A}
= |f |Lip · diam(A).
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Lemma 2.3.2. Let (S1, d1) and (S2, d2) be metric spaces. Let f ∈ Lip<1(S1, S2). Then
f : H(S1)→ H(S2) given by f(A) = cl(f(A)) is a contraction mapping with |f |Lip ≤ |f |Lip.

Proof. Let A ∈ H(S1).

Observe f(A) is closed by definition. Lemma 2.3.1 yields

diam(f(A)) = diam(f(A)) ≤ |f |Lipdiam(A) <∞.

So f(A) is bounded. Therefore f maps from H(S1) to H(S2). Further we need to show
that f is a contraction mapping with |f |Lip ≤ |f |Lip. Let c = |f |Lip.

δ(f(A), f(B)) = sup
a∈f(A)

inf
b∈f(B)

d(a, b) = sup
a∈A

inf
b∈B

d(f(a), f(b))

≤ sup
a∈A

inf
b∈B

c · d(a, b) = c · sup
a∈A

inf
b∈B

d(a, b)

= c · δ(A,B).

In a similar way we obtain δ(f(B), f(A)) ≤ c · δ(B,A). Consequently

dH(f(A), f(B)) = max(δ(f(A), f(B)), δ(f(B), f(A))

≤ max(c · δ(A,B), c · δ(B,A))

= c ·max(δ(A,B), δ(B,A)) = c · dH(A,B).

Thus F is a contraction mapping with |f |Lip ≤ |f |Lip.

Definition 2.3.1 (Iterated Function System). An iterated function system (IFS) is a finite
set of contraction mappings on a complete metric space. We use the notation

F := {fi : S → S|i = 1, 2, · · · , n}.

We define its Lipschitz constant by |F|Lip := max1<i<n |fi|Lip.

The (closed) Hutchinson function F : H(S)→ H(S) associated to this IFS is defined by

F (A) =
n⋃
i=1

f i(A).

Note that when we define an IFS F , we implicitly define n, the number of elements of F ,
and n-number contractive functions fi : S → S, i = 1, 2, · · · , n. To prevent unnecessary
repetition, We mension only F when no unclearities will arise.

In the next lemma ”∨” denotes maximum and ”∧” denotes the minimum of two reals.
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Lemma 2.3.3. Let A,B,C,D ∈ H(S), then

dH(A ∪B,C ∪D) ≤ [dH(A,C) ∨ dH(B,D)] ∧ [dH(A,D) ∨ dH(B,C)] .

In particular the following inequality is true:

dH(A ∪B,C ∪D) ≤ dH(A,C) ∨ dH(B,D). (2.1)

Proof. Let A,B,C,D ∈ H(S). We observe that for all E ⊂ B:

δ(A,B) = sup
a∈A

inf
b∈B

d(a, b) ≤ sup
a∈A

inf
e∈E

d(a, e) = δ(A,E).

Since B ⊂ (B ∪ C) and C ⊂ (B ∪ C), it is easily been seen that

δ(A,B ∪ C) ≤ δ(A,B) ∧ δ(A,C). (2.2)

We will need the following equality.

δ(A ∪B,C) = sup
a∈A∪B

d(a, C) = sup
a∈A

d(a, C) ∨ sup
a∈B

d(a, C)

= δ(A,C) ∨ δ(B,C). (2.3)

Using (2.2) and (2.3) we obain that

δ(A ∪B,C ∪D) = δ(A,C ∪D) ∨ δ(B,C ∪D)

≤ [δ(A,C) ∧ δ(A,D)] ∨ [δ(B,C) ∧ δ(B,D)]

≤ [δ(A,C) ∨ δ(B,D)] ∧ [δ(B,C) ∨ δ(A,D)] .

By definition δ(A,B) ≤ dH(A,B) and dH(A,B) = dH(B,A). Now we can derive the
requested inequalities.

δ(A ∪B,C ∪D) ≤ [dH(A,C) ∨ dH(B,D)] ∧ [dH(B,C) ∨ dH(A,D)]

and
δ(C ∪D,A ∪B) ≤ [dH(A,C) ∨ dH(B,D)] ∧ [dH(B,C) ∨ dH(A,D)] .

Thus

dH(A ∪B,C ∪D) ≤ min(dH(A,C) ∨ dH(B,D), dH(B,C) ∨ dH(A,D)).

In particular we see that

dH(A ∪B,C ∪D) ≤ dH(A,C) ∨ dH(B,D).
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The next lemma states that the Hutchinson function is a contraction mapping. We need
Lemma 2.3.2 and (2.1) from Lemma 2.3.3 to prove it.

Lemma 2.3.4. Let F be an IFS. Then the associated Hutchinson function F is a contrac-
tion mapping on H(S) with Lipschitz constant |F |Lip ≤ |F|Lip.

Proof. Let cF = |F|Lip. For all A,B ∈ H(S):

dH(F (A), F (B)) = dH(
n⋃
i=1

f i(A),
n⋃
i=1

f i(B))

≤ max
1≤i≤n

(dH(f i(A), f i(B))

≤ max
1≤i≤n

(|fi|Lip · dH(A,B)) ≤ cF · dH(A,B).

The first inequality is the result of applying Lemma 2.3.3 (2.1) (n− 1) times. The second
inequality is justified by Lemma 2.3.2. So dH(F (A), F (B)) ≤ cF · dH(A,B). Thus F is a
contraction mapping with |F |Lip ≤ |F|Lip.

Theorem 2.3.1. Let F be an IFS on a complete metric space S and let F be the associated
Hutchinson funcion. Then there exists a unique X ∈ H(S) such that F (X) = X. Moreover

lim
n→∞

F
n
(A) = X for all A ∈ H(S).

Proof. H(S) is complete by Theorem 2.2.1. F is a contraction mapping onH(S) by Lemma
2.3.4. With the help of the Banach Fixed Point Theorem we conclude that there exists a
unique point X ∈ H(S) such that F (X) = (X) and

lim
n→∞

F
n
(A) = X for all A ∈ H(S).

We call X the attractor of the IFS F .

Example 2.3.1. The IFS of the Sierpinski triangle is given by {f1, f2, f3}, where f1, f2, f3
are the three contraction mappings from Example 1.1.1. Therefore the Hutchinson function
is given by F (A) = ∪3i=1fi(A). By Theorem 2.3.1 we see that T is the unique attractor of
this IFS. Observe that we can take any closed bounded subset of S as the initial object. For
example we could begin with the solid cube K1 drawn in figure 2.1.

Lemma 2.3.5. Let F be an IFS. Let F be its Hutchinson function. Let A ∈ H(S). Then
for all k ∈ N:

F
k
(A) =

n⋃
ik=1

n⋃
ik−1=1

· · ·
n⋃

i1=1

f ik ◦ f ik−1
◦ · · · ◦ f i1(A).
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K1 K2 K3 K4 K5

Figure 2.1: from cube to Sierpinski triangle

Proof. Let A ∈ H(S). Then

F
2
(A) =

n⋃
i2=1

f i2

(
n⋃

i1=1

f i1(A)

)
.

When we use f(C ∪B) = f(C) ∪ f(B), we get

n⋃
i2=1

f i2

(
n⋃

i1=1

f i1(A)

)
=

n⋃
i2=1

n⋃
i1=1

f i2 ◦ f i1(A).

By induction we easily see that for all k ∈ N:

F
k
(A) =

n⋃
ik=1

n⋃
ik−1=1

· · ·
n⋃

i1=1

f ik ◦ f ik−1
◦ · · · ◦ f i1(A).

Lemma 2.3.6. Let F be an IFS and let X be its attractor. Then X is compact in S.

Proof. Let cF = |F|Lip. Since X is closed by definition, we only need to show that X is
totally bounded. By Lemma 2.3.5 we see that for all k ∈ N:

X = F
k
(X) =

n⋃
ik=1

n⋃
ik−1=1

· · ·
n⋃

i1=1

f ik ◦ f ik−1
◦ · · · ◦ f i1(X).

Observe that

diam
(
f ik ◦ f ik−1

◦ · · · ◦ f i1(X)
)
≤ |f ik ◦ f ik−1

◦ · · · ◦ f i1|Lip · diam(X)

≤ cF
k · diam(X).

Let x = f ik ◦ f ik−1
◦ · · · ◦ f i1(x0) for a x0 ∈ X, then

f ik ◦ f ik−1
◦ · · · ◦ f i1(X) ⊂ Bx(cF

k · diam(X)).
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It follows that
X = F

k
(X) ⊂

⋃
x∈Fk

({x0})

Bx(cF
k · diam(X)).

It can easily been seen that F
k
({x0}) exists of finitely many point, so for all ε > 0 we can

choose a k ∈ N such that X is covered by finitely many open balls of diameter less or equal
to ε. So X is totally bounded, hence compact.
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Chapter 3

Measures on attractors

3.1 Measure theory

Let X be a non-empty set. By P(X) we denote the power set of X, i.e. the collection of
all subsets of X.

Definition 3.1.1. A non-empty set M⊂ P(X) is called a σ-algebra if

(i) E ∈M implies Ec ∈M,

(ii) Ej ∈M, j ∈ N implies ∪∞j=1Ej ∈M.

The ordered pair (X,M) is called a measurable space. The elements of M are called
measurable subsets.

Definition 3.1.2. Let (X,M) be a measurable space.

A (signed) measure on M is a function µ :M→ R such that

(i) µ(∅) = 0,

(ii) µ attains only one of the values −∞ or +∞,

(iii) for all Ej ∈M such that Ei ∩ Ej = ∅ if i 6= j, the following holds

µ
(
∪∞j=1Ej

)
=
∞∑
j=1

µ(Ej).

The ordered triplet (X,M, µ) is called a measure space.

Let µ be a measure. µ is called a positive measure if µ(E) ≥ 0 for all E ∈ M. µ is called
a finite measure if µ(X) <∞. It is a probability measure if µ(X) = 1.
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Definition 3.1.3. Let (X, T ) be a topological space. The Borel σ-algebra BX is the smallest
σ-algebra that contains the open subsets of X.

A metric space (S, d) is a topological space defined by the open subsets induced by the
metric d. Therefore the Borel σ-algebra BS is a natural σ-algebra to associate with the
metric space (S, d). So we see that (S,BS) is a measurable space. A measure on the BS is
called a Borel measure.

We will use the following notations for certain sets of Borel measures. The set of finite
Borel measures is denoted byM(S). We will useM+(S) for the set of positive finite Borel
measures and P(S) is the set of positive probability Borel measures.

Let E ∈ BS be a Borel measurable subset of S. We define addition of Borel measures µ and
ν by (µ + ν)(E) := µ(E) + ν(E). And we define scalar multiplication of a Borel measure
µ by r ∈ R by (rµ)(E) := rµ(E). It is easy to verify that µ + ν and rµ are also Borel
measures, so the addition and scalar multiplication are well defined. Moreover one can
prove that M(S) is a vector space over R with respect to these operators. The necessary
properties follow easily from the properties of R.

Definition 3.1.4 (support of a measure). The support of a measure µ ∈M+(S) is defined
by

supp(µ) := {x ∈ S : µ(U) > 0 for all U ⊂ S such that U is open and x ∈ U}.

Lemma 3.1.1. Let µ ∈M+(S). Then supp(µ) is a closed subset of S.

Proof. Let {xi}∞i=1 be a sequence in supp(µ) such that xn → x in S. Let U ⊂ S be open
such that x ∈ U . Then there is an N ∈ N such that xn ∈ U for n ≥ N . Since xN ∈ supp(µ),
we see that µ(U) > 0. So x ∈ supp(µ). We conclude that supp(µ) contains all of its limit
points. As a consequence supp(µ) is closed.

Definition 3.1.5 (measurable function). Let (X,M) and (Y,N ) be measurable spaces. A
function f : X → Y is (M,N )-measurable if

f−1(E) ∈M for all E ∈ N .

If X, Y are topological spaces and f is (BX ,BY )-measurable, then we say that f is Borel
measurable.

Lemma 3.1.2. Let S1, S2 be metric spaces and let f : S1 → S2 be a continuous function.
Then f is Borel measurable.

Proof. Observe that if A is an open subset of S2, then f−1(A) is an open subset of S1. So
we see that {A : A ⊂ S2, A is open } ⊂ {E ∈ P(S2) : f−1(E) ∈ BS1}. Since f−1(E) ∈ BS1

implies f−1(EC) = f−1(E)
C ∈ BS1 and f−1(E1), f

−1(E2) ∈ BS1 implies f−1(E1 ∪ E2) =
f−1(E1)∪f−1(E2) ∈ BS1 , we see that {E : f−1(E) ∈ BS1} is a σ-algebra. By definition BS2
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is the smallest σ-algebra containing {A : A ⊂ S2, A is open }, so BS2 ⊂ {E : f−1(E) ∈
BS1}. Thus f is Borel measurable.

Lemma 3.1.3. Let f : S → S be a Borel measurable function. Define µ ◦ f−1(E) :=
µ(f−1(E)), E ∈ BS. Then µ ◦ f−1 is a Borel measure. Moreover if µ is a probability
measure, then µ ◦ f−1 is a probability measure.

Proof. Since f is Borel measurable, we see that f−1(E) ∈ BS if E ∈ BS. So µ◦ f−1 : BS →
R. We see that µ ◦ f−1(∅) = µ(∅) = 0. Let {Ei}∞i=1 , Ei ∈ BS and Ei ∩Ej = ∅ for all i 6= j.
We use the fact that f−1(Ei) ∩ f−1(Ej) = ∅ for all i 6= j and obtain that

µ ◦ f−1(∪∞i=1Ei)) = µ(∪∞i=1f
−1(Ei)) =

∞∑
i=1

µ(f−1(Ei)) =
∞∑
i=1

µ ◦ f−1(Ei).

So µ ◦ f−1 is a Borel measure. Moreover, if µ(S) = 1, then µ ◦ f−1(S) = µ(S) = 1.

3.2 Hutchinson space

In this section we are going to define the Hutchinson space, that we denote by P1(S). The
elements are positive probability measures that have a finite first moment.

P1(S) := {µ ∈ P(S) : for some x0 ∈ S,
∫
S

d(x, x0)dµ(x) <∞}.

Soon we will see that it is a metric space for the Hutchinson metric, that we define by

d(µ, ν) := sup

{∣∣∣∣∫
S

fdµ−
∫
S

fdν

∣∣∣∣ such that f ∈ Lip≤1(S,R)

}
.

Lemma 3.2.1. Let µ ∈M+ be such that
∫
S
d(x, x0)dµ(x) <∞ for some x0 ∈ S. Then∫

S

d(x, y)dµ(x) <∞ for all y ∈ S.

Proof. Let y ∈ S. Then∫
S

d(x, y)dµ(x) ≤
∫
S

(d(x, x0) + d(x0, y))dµ(x) ≤
∫
S

d(x, x0)dµ(x) +

∫
S

d(x0, y)dµ(x)

=

∫
S

d(x, x0)dµ(x) + d(x0, y) · µ(S) <∞.
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Lemma 3.2.2. (P1(S), d) is a metric space.

Proof. We define D := Lip≤1(S,R). Let x0 ∈ S. For all µ and ν ∈ P1(S), f ∈ D:∣∣∣∣∫
S

f(x)dµ(x)−
∫
S

f(x)dν(x)

∣∣∣∣ ≤ ∣∣∣∣∫
S

f(x)− f(x0)dµ(x)−
∫
S

f(x)− f(x0)dν(x)

∣∣∣∣
≤

∣∣∣∣∫
S

f(x)− f(x0)dµ(x)

∣∣∣∣+

∣∣∣∣∫
S

f(x)− f(x0)dν(x)

∣∣∣∣
≤

∫
S

|f(x)− f(x0)|dµ(x) +

∫
S

|f(x)− f(x0)|dν(x)

≤
∫
S

d(x, x0)dµ(x) +

∫
S

d(x, x0)dν(x).

The latter expression is finite according to Lemma 3.2.1. So d(µ, ν) ∈ R. We still have to
verify that d is a metric. Let µ, ν, ρ ∈ P1(S). Then

(i) d(µ, ν) = 0, if µ = ν. If d(µ, ν) = 0, then

sup
f∈D

∣∣∣∣∫
S

fdµ−
∫
S

fdν

∣∣∣∣ = 0.

So
∫
S
fdµ =

∫
S
fdν for all f ∈ D. By [2, Lemma 6] we get µ = ν.

(ii) d(µ, ν) = supf∈D
∣∣∫
S
fdµ−

∫
S
fdν

∣∣ = supf∈D
∣∣∫
S
fdν −

∫
S
fdµ

∣∣ = d(ν, µ).

(iii)

d(µ, ν) = sup
f∈D

∣∣∣∣∫
S

fdµ−
∫
S

fdν

∣∣∣∣ = sup
f∈D

∣∣∣∣∫
S

fdµ−
∫
S

fdρ+

∫
S

fdρ−
∫
S

fdν

∣∣∣∣
≤ sup

f∈D

∣∣∣∣∫
S

fdµ−
∫
S

fdρ

∣∣∣∣+

∣∣∣∣∫
S

fdρ−
∫
S

fdν

∣∣∣∣
≤ sup

f∈D

∣∣∣∣∫
S

fdµ−
∫
S

fdρ

∣∣∣∣+ sup
f∈D

∣∣∣∣∫
S

fdρ−
∫
S

fdν

∣∣∣∣ = d(µ, ρ) + d(ρ, ν).

Theorem 3.2.1. Let S be a complete metric space. Then (P1(S), d) is a complete metric
space.

For the proof of this theorem we refer to [3, Theorem 4.2].
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3.3 Contraction mappings and measures

Lemma 3.3.1. Let g : S → R be Borel measurable and let µ be a Borel measure. If
f : S → S is Borel measurable, then∫

S

g ◦ fdµ =

∫
S

gd[µ ◦ f−1].

Proof. Since we can split any measurable function into a positive and a negative part, it
suffices to prove the statement for positive g.

Let φ(x) =
∑n

i=1 aiχEi
(x) be a measurable step function, as defined in [4]. Observe that

χE(f(x)) = χf−1(Ei)(x) for all E ∈ BS. So (φ ◦ f)(x) =
∑n

i=1 aiχf−1(Ei)(x) is also a
measurable step function.

∫
S

φ ◦ fdµ =
n∑
i=1

aiµ(f−1(Ei)) =
n∑
i=1

ai[µ ◦ f−1(Ei)] =

∫
S

φd[µ ◦ f−1]. (3.1)

By [4, Theorem 3.2.1] there exist step functions {φn}∞n=1 such that 0 ≤ φn ≤ φn+1 ≤ g for
all n ∈ N and limn→∞ φn(x) = g(x) for all x ∈ S. Observe that 0 ≤ φn◦f ≤ φn+1◦f ≤ g◦f
for all n ∈ N and that limn→∞ φn ◦ f(x) = g ◦ f(x) for all x ∈ S. We use (3.1) and the
Monotone Convergence Theorem [4, Theorem 3.3.1] twice to obtain that∫

S

gd[µ ◦ f−1] = lim
n→∞

∫
S

φnd[µ ◦ f−1] = lim
n→∞

∫
S

φn ◦ fdµ =

∫
S

g ◦ fdµ.

Definition 3.3.1. Let F := {fi : S → S|i = 1, 2, · · · , n} be an IFS. The associated Markov
operator M : P1(S)→ P1(S) is given by

M(µ) :=
1

n

n∑
i=1

µ ◦ fi−1.

Lemma 3.3.2. The Markov operator M maps P1(S) to P1(S).

Proof. Let µ ∈ P1(S). Observe that if ν, ρ ∈ M+, then (ν + ρ) ∈ M+, and if r ∈ R, ν ∈
M+, then (rν) ∈M+. Using this and Lemma 3.1.3 we see that M(µ) ∈M+(S).

M(µ)(S) =
1

n

n∑
i=1

µ ◦ fi−1(S) =
1

n

n∑
i=1

1 = 1.
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So M(µ) ∈ P(S). We still need to show that M(µ) has a finite first moment. Fix x0 ∈ S
and let d : S → R : x 7→ d(x, x0). Observe that d is continuous, hence it is Borel measurable
by Lemma 3.1.2.∫

S

d(x, x0)dM(µ)(x) =

∫
S

d(x, x0)d(
1

n

n∑
i=1

µ ◦ f−1i )(x)

=
1

n

n∑
i=1

∫
S

d(x, x0)d(µ ◦ f−1i )(x) =
1

n

n∑
i=1

∫
S

d(fi(x), x0)dµ(x)

≤ 1

n

n∑
i=1

∫
S

[d(fi(x), fi(x0)) + d(fi(x0), (x0))] dµ(x)

≤ 1

n

n∑
i=1

∫
S

|fi|Lipd(x, x0)dµ(x) +
1

n

n∑
i=1

d(fi(x0), x0)

≤ 1

n
cF

∫
S

d(x, x0)dµ(x) +
1

n

n∑
i=1

d(fi(x0), x0).

Since µ ∈ P1, the latter expression is finite by Lemma 3.3.1. Thus M(µ) ∈ P1(S).

Lemma 3.3.3. Let F be an IFS and M : P1(S)→ P1(S) the associated Markov operator.
Then M is a contraction mapping with Lipschitz constant cF = |F|Lip.

Proof. Let µ, ν ∈ P1. We have to show that d(M(µ),M(ν)) ≤ cFd(µ, ν).

If cF = 0, then each fi ∈ F(S) map onto a single point xi ∈ S. Therefore

d(M(µ),M(ν)) = sup
|g|Lip≤1

∣∣∣∣∫
S

gdM(µ)−
∫
S

gdM(ν)

∣∣∣∣
= sup

|g|Lip≤1

∣∣∣∣∣ 1n
n∑
i=1

∫
S

g ◦ fidµ−
1

n

n∑
i=1

∫
S

g ◦ fidν

∣∣∣∣∣
= sup

|g|Lip≤1

∣∣∣∣∣ 1n
n∑
i=1

(g(xi)− g(xi))

∣∣∣∣∣ = 0.

If cF 6= 0, let g : S → R be a Lipschitz function with |g|Lip ≤ 1. Let fi ∈ F . Lemma 1.1.1
yields

|g ◦ fi|Lip ≤ |g|Lip · |fi|Lip ≤ |g|Lip · cF ≤ cF .

Therefore

{g ◦ fi
cF

: g ∈ Lip≤1(S,R)} ⊂ Lip≤1(S,R).
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Thus

d(µ ◦ f−1i , ν ◦ f−1i ) = sup
g:|g|Lip≤1

∣∣∣∣∫
S

g ◦ fidµ−
∫
S

g ◦ fidν
∣∣∣∣

= cF sup
g:|g|Lip≤1

∣∣∣∣∫
S

g ◦ fi
cF

dµ−
∫
S

g ◦ fi
cF

dν

∣∣∣∣
≤ cF sup

f :|f |Lip≤1

∣∣∣∣∫
S

fdµ−
∫
S

fdν

∣∣∣∣ = cFd(µ, ν).

And we conclude that the Markov operator is a contraction mapping:

d(M(µ),M(ν)) = sup
g:|g|Lip≤1

∣∣∣∣∫
S

gdM(µ)−
∫
S

gdM(ν)

∣∣∣∣
= sup

g:|g|Lip≤1

∣∣∣∣∣ 1n
n∑
i=1

∫
g ◦ fidµ−

1

n

n∑
i=1

∫
g ◦ fidν

∣∣∣∣∣
≤ 1

n

n∑
i=1

sup
g:|g|Lip≤1

∣∣∣∣∫
S

g ◦ fidµ−
∫
S

g ◦ fidν
∣∣∣∣

≤ 1

n

n∑
i=1

cFd(µ, ν) = cFd(µ, ν).

Corollary 3.3.1. There exists a unique measure µ∗ ∈ P1 such that M(µ∗) = µ∗. Moreover,
for all k ∈ N:

µ∗ =
1

nk

n∑
i1=1

· · ·
n∑

ik=1

(
µ∗ ◦ f−1i1 ◦ · · · ◦ f

−1
ik

)
. (3.2)

Proof. The existence and the uniqueness of µ∗ are direct consequences of the Banach Fixed
Point Theorem. Equation (3.2) can be obtained by writing out µ∗ = Mk(µ∗).

3.4 The support of µ∗

Lemma 3.4.1. Let f : S → S be a continuous map and µ any Borel measure on S, then
the following statements hold:

(i) f(supp(µ)) ⊂ supp(µ ◦ f−1),

(ii) if f is a homeomorphism, then equality holds in (i).
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Proof. (i): Let x ∈ f(supp(µ)) and U ⊂ S be an open subset, such that x ∈ U . There
exists a y ∈ supp(µ) such that f(y) = x. Observe that f−1(U) is open and y ∈ f−1(U).
So µ ◦ f−1(U) = µ(f−1(U)) > 0 and x ∈ supp(µ ◦ f−1).

(ii): We use the result of (i) and the continuity of f−1.

supp(µ ◦ f−1) = f ◦ f−1(supp(µ ◦ f−1)) ⊆ f(suppµ ◦ f−1 ◦ f)) = f(supp(µ)).

Lemma 3.4.2. Let µi be a Borel measure for i = 1, 2, · · · , n. Then

supp(
n∑
i=1

µi) ⊂
n⋃
i=1

supp(µi).

Proof. Let x ∈
⋃n
i=1 supp(µi). Then x ∈ supp(µk) for some k ∈ {1, . . . , n}. So for all U ⊂ S

such that U is open and x ∈ U we get
∑n

i=1 µi(U) > 0. Therefore x ∈ supp(
∑n

i=1 µi).

Lemma 3.4.3. Let F be an IFS and X its attractor. Let µ∗ be the fixed point of the
associated Markov operator function M . Then supp(µ∗) is a bounded set. Moreover
supp(µ∗) ⊂ X.

Proof. Let x ∈ X and let δx be the dirac measure of x. It is easy to see that supp(δx) =
{x} ∈ X.

supp(M(δx)) = supp(
1

n

n∑
i=1

δx ◦ f−1i ) = supp(
n∑
i=1

δfi(x)) =
n⋃
i=1

supp(δfi(x)).

Since fi(x) ∈ X, we get that supp(M(δx)) ⊂ X. Inductively we can show that supp(Mk(δx)) ⊂
X for all k ∈ N.

Let f(z) := d(z,X). Then f ∈ Lip≤1(S,R). Since µ∗ is the fixed point of the contraction
mapping M , we see that∣∣∣∣∫

S

fd[Mk(δx)]−
∫
S

fdµ∗
∣∣∣∣ ≤ d(Mk(δx), µ

∗)→ 0

as we take the limit k → ∞. Using that f(z) = 0 for all z ∈ X and supp(Mk(δx)) ⊂ X,
we obtain

∫
S
fd[Mk(δx)] = 0. Therefore

∫
S
fdµ∗ = 0 and∫

S

fdµ∗ =

∫
X

fdµ∗ +

∫
XC

fdµ∗ = 0 +

∫
XC

fdµ∗.

Since f(z) > 0 for z /∈ X, we get µ∗(XC) = 0. Since XC is open, supp(µ∗) ⊂ X. Moreover,
X is bounded, thus supp(µ∗) is bounded.
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Theorem 3.4.1. Let F := {fi : S → S|i = 1, 2, · · · , n} be an IFS and X its attractor. Let
µ∗ be the fixed point of the associated Markov operator function M , then supp(µ∗) = X.

Proof. If we show that X ⊂ supp(µ∗), then Lemma 3.4.3 will complete the proof.

supp(µ∗) is closed by Lemma 3.1.1 and bounded by Lemma 3.4.3. So supp(µ∗) ∈ H(S).
By Theorem 2.3.1

lim
n→∞

F
n
(supp(µ∗)) = X. (3.3)

We show that F (supp(µ∗)) ⊂ supp(µ∗) by using Lemma 3.4.2 and Lemma 3.4.1. The
removal of closure operator is justified by Lemma 3.1.1.

F (supp(µ∗)) =
n⋃
i=1

f i(supp(µ∗)) =
n⋃
i=1

cl(fi(supp(µ∗))) ⊂
n⋃
i=1

cl(supp(µ∗ ◦ f−1i ))

⊂ supp(
n∑
i=1

µ∗ ◦ f−1i ) = supp(
1

n

n∑
i=1

µ∗ ◦ f−1i ) = supp(M(µ∗)) = supp(µ∗).

Now it follows easily that F
k
(supp(µ∗)) ⊂ supp(µ∗) for all k ∈ N. Combining this with

(3.3) we obtain that X ⊂ supp(µ∗).
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Chapter 4

Dimension of fractals

4.1 Hausdorff measure and dimension

Let (S, d) be a metric space. For p ≥ 0, δ > 0 and A ⊂ S we define

Hp,δ(A) := inf

{
∞∑
i=1

diam(Bi)
p : A ⊂

∞⋃
i=1

Bi and diam(Bi) ≤ δ

}
.

Observe that
Hp,δ(A) ≥ Hp,ε(A) for all δ ≤ ε,

because the infinum is taken over less.

Definition 4.1.1. The p-dimensional Hausdorff measure of A ⊂ S is

Hp(A) := lim
δ↓0

Hp,δ(A).

Lemma 4.1.1. Hp restricted to the Borel sets is a measure.

For the proof we refer to [1, Lemma 11.16] and [1, Lemma 11.17].

Lemma 4.1.2. Let A ∈ BS and let Hp(A) be the Hausdorff measure of A. Then there is
a unique p ∈ R≥0 ∪ {∞} such that

Hq(A) = 0 for all q > p,

Hq(A) =∞ for all 0 ≤ q < p.

Proof. First we show that Hp(A) <∞ implies Hq(A) = 0 for all q > p.

Suppose Hp(A) = M < ∞. Since Hp(A) = limδ↓0Hp,δ(A), we see that for all δ > 0 holds
Hp,δ(A) ≤M . Therefore for all δ > 0 there exists a collection of subsets {Bδ

i }∞i=1 such that
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(i) A ⊂
⋃∞
i=1B

δ
i ,

(ii) diam(Bδ
i ) ≤ δ,

(iii)
∑∞

i=1 diam(Bδ
i )
p ≤M + 1.

For all q > p:

Hq(A) = lim
δ↓0

inf Hq,δ(A) ≤ lim
δ↓0

inf
∞∑
i=1

diam(Bδ
i )
q

= lim
δ↓0

inf
∞∑
i=1

diam(Bδ
i )
q−p · diam(Bδ

i )
p ≤ lim

δ↓0
inf δq−p ·

∞∑
i=1

diam(Bδ
i )
p

≤ lim
δ↓0

inf δq−p · (M + 1) = 0.

From this it follows that Hp(A) > 0 implies Hq(A) =∞ for all q < p. Thus there exists a
unique p ∈ R≥0 ∪ {∞} such that

Hq(A) =∞ for all 0 ≤ q < p,

Hq(A) = 0 for all q > p.

Definition 4.1.2 (Hausdorff Dimension). Let A ∈ BS. The Hausdorff dimension of A,
dimH(A), is the unique value of p given by Lemma 4.1.2.

The next example, Example 4.1.1, will show the calculation of the Hausdorff dimension of
a p-dimensional cube. The outcome of the example is in accordance with our intuitive idea
of dimension. The method we will use to calculate the Hausdorff dimension is instructive,
since it resembles in the main features the determination of the Hausdorff dimension of
attractors.

Example 4.1.1. Let p, n ∈ N, p ≤ n and let Kp ⊂ (Rn, dE) be the p-dimensional closed
unit cube. Then dimH(Kp) = p.

Proof. We divide this proof into two parts. First we show that Hp(K
p) < ∞ and after

that we show that Hp(K
p) > 0. Then it follows from the definition that dimH(Kp) = p.

For all δ > 0 there exists an N ∈ N such that diam(Kp)
N

≤ δ. Then Kp can be covered by

Np p-dimensional cubes with diameter diam(Kp)
N

. Let {Ki}N
p

i=1 be such a covering. Then for
all δ > 0:

Hp,δ(K
p) ≤

Np∑
i=1

diam(Ki)
p = Np ·

(
diam(Kp)

N

)p
= diam(Kp)p <∞.

Therefore Hp(K
p) = limd↓0Hp,δ(K

p) <∞.
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To prove Hp(K
p) > 0 we need to show that limδ↓0Hp,δ(K

p) > 0. For each covering {Bi}∞i=1

of Kp, we construct a new covering {Ri}∞i=1 by taking closed p-dimensional cubes Ri with
length of the sides diam(Bi), such that Bi ⊂ Ri. Observe that diam(Ri) = diam(Bi)

√
p

and Kp ⊂ ∪∞i=1Ri.

Let I(Ri) the volume of Ri. It is easy to see that I(Ri) ≤ diam(Bi)
p. Now we derive that

for each covering {Bi}∞i=1 of Kp :

∞∑
i=1

diam(Bi)
p ≥

∞∑
i=1

I(Ri) ≥ I(Kp) = 1.

So for all δ > 0:

Hp,δ(K
p) = inf

{
∞∑
i=1

diam(Bi)
p : Kp ⊂

∞⋃
i=1

Bi and diam(Bi) ≤ δ

}

≥ inf

{
∞∑
i=1

I(Ri) : Kp ⊂
∞⋃
i=1

Ri and diam(Ri) ≤ δ · √p

}
≥ I(Kp) = 1.

So Hp(K
p) = limδ↓0Hp,δ(K

p) ≥ 1 > 0. Thus dimH(Kp) = p.

4.2 The Hausdorff dimension of attractors

In this section we will give expression to the Hausdorff dimension of attractors of iterated
function systems. The approach is similar to the calculation of the Hausdorff dimension
of the p-dimensional cube in Example 4.1.1: we will show that for the attractor X there
exists a p such that 0 < Hp(X) and Hp(X) <∞. We will see that the proof of Hp(X) <∞
is easy and can be given for a general IFS. On the other hand 0 < Hp(X) is much harder
to prove and requires some more conditions on the IFS. On the condition that the IFS has
a separating set (Definition (4.2.1)) and the elements of the IFS are similitudes (Definition
(4.2.2)) we will achieve the following result:

Theorem 4.2.1. Let F := {fi : Rm → Rm|i = 1, 2, · · · , n} be an IFS that has a separating
set and let X be its attractor. Suppose that each fi ∈ F is a contractive similitude with
Lipschitz constant ci. Then dimH(X) = p where p is the unique solution to the equation

n∑
i=1

ci
p = 1. (4.1)

As we already claimed before, p is not necessarily an integer. The Intermediate value
Theorem yields the uniqueness of the solution p to (4.1) since f(x) :=

∑n
i=1 ci

x is a strictly
decreasing function.
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Lemma 4.2.1. Let F := {fi : S → S|i = 1, 2, · · · , n} be an IFS on a complete space S.
Let ci be the Lipschitz constant of fi and let X be the attractor of F . If p is such that

n∑
i=1

ci
p = 1,

then Hp(X) <∞.

Proof. Let δ > 0 and take k ∈ N such that cF
k · diam(X) ≤ δ, where cF := max1<i<n ci.

By lemma 2.3.5 we see that

F
k
(X) =

n⋃
ik=1

n⋃
ik−1=1

· · ·
n⋃

i1=1

f ik ◦ f ik−1
◦ · · · ◦ f i1(X).

From Lemma 1.1.1 it follows that

diam(f ik ◦ f ik−1
◦ · · · ◦ f i1(X)) ≤ (cik · cik−1

· . . . · ci2 · ci1)diam(X) ≤ δ.

So X can be covered with nk subsets with diameter less or equal δ. Observe that

n∑
ik=1

n∑
ik−1=1

· · ·
n∑

i1=1

(cik · cik−1
· . . . · ci2 · ci1)p =

n∑
ik=1

n∑
ik−1=1

· · ·
n∑

i2=1

(cik · cik−1
· . . . · ci2)p ·

n∑
i1=1

cpi1 .

By repeating this we obtain that

n∑
ik=1

n∑
ik−1=1

· · ·
n∑

i1=1

(cik · cik−1
· . . . · ci2 · ci1)p =

n∑
ik=1

cpik ·
n∑

ik−1=1

cpik−1
· . . . ·

n∑
i2=1

cpi2 ·
n∑

i1=1

cpi1

= 1,

since
∑n

i=1 ci
p = 1. So

Hp,δ(X) ≤
n∑

ik=1

n∑
ik−1=1

· · ·
n∑

i1=1

(
(cik · cik−1

· . . . · ci2 · ci1)diam(X)
)p

= diam(X)p ·
n∑

ik=1

n∑
ik−1=1

· · ·
n∑

i1=1

(cik · cik−1
· . . . · ci2 · ci1)p

= diam(X)p <∞.

δ > 0 was arbitrary. Therefore Hp(X) = limd↓0Hp,δ(X) <∞.
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Let F be an IFS. For A ⊂ S we define the open Hutchinson funcion by

F (A) :=
n⋃
i=1

fi(A).

Definition 4.2.1. [separating set] A separating set of an IFS F is a non-empty bounded
open subset U such that

(i) F (U) ⊂ U ,

(ii) fi(U) ∩ fj(U) = ∅ if i 6= j,

where F is the associated open Hutchinson function of F .

The first condition of the separating set ensures that U is not too small. In Lemma (4.2.2)
we will prove that this condition implies that X ⊂ U . As a result we can obtain that
f i(X) ⊂ f i(U). The second condition ensures that U is not too big. Consequently if i 6= j,
then overlap of f i(X) and f j(X) can only occur on their bounderies, so that the counting
argument of Lemma (4.2.3) can be used.

Lemma 4.2.2. Let F be an IFS and X its attractor. Suppose that U is a separating set
of F , then X ⊂ U .

Proof. Let F be the Hutchinson function of F and let F be the open Hutchinson function
of F . First we show that F k(U) ⊆ U for all k ∈ N.

For continuous functions f we see that f(U) ⊂ f(U). Therefore

F (U) =
n⋃
i=1

fi(U) ⊂
n⋃
i=1

fi(U) = F (U) ⊂ U. (4.2)

The last inclusion is a consequence of the separating set property. By repeating (4.2) we
obtain that

F k(U) ⊂ F k−1(U) ⊂ . . . ⊂ F (U) ⊂ U.

Due to the definition of the semi-distance δ, if δ(X,U) = 0, then X ⊂ U . We com-
plete the proof by showing that δ(X,U) = 0. Observe that limn→∞ dH(X,F n(U)) =
limn→∞ dH(X,F

n
(U)) = 0 by Theorem 2.3.1.

δ(X,U) ≤ δ(X,F n(U) + δ(F n(U), U) = δ(X,F n(U)),

using δ(F n(U), U) = 0, since F n(U) ⊂ U . By taking the limit n→∞ we obtain δ(X,U) =
0. Thus X ⊂ U .

Lemma 4.2.3. Let {Un}∞n=1 be a set of disjoint open subsets in Rn. Let a, b, δ ∈ R be such
that for all n ∈ N:

(i) Un contains a ball of radius aδ.
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(ii) Un is contained in a ball of radius bδ.

Let N be the number of non-empty intersections of a ball with radius δ with the sets Un.
Then N ≤ (2b+ 1)na−n.

Proof. Let B = Bx(δ) i.e. B is a closed ball with radius δ around x. Suppose that
Um ∩ B 6= ∅ for some m ∈ N. Since Um is contained in a ball of radius bδ we see that
d(y,B) ≤ 2bδ for all y ∈ Um. So d(y, x) ≤ 2bδ + δ and Um ⊂ Bx(2bδ + δ).

Let {U i}Ni=1 be the elements {Un}∞n=1 that intersect with B. We know that the volume of
a ball with radius r in Rn is given by cnr

n where cn is a constant depending on n. Since
Ui ∩ Uj = ∅ if i 6= j, we see that the volume of

⋃N
i=1 Ui ≥ Ncn(aδ)n. On the other hand

we see that de volume of Bx(2bδ + δ) ≤ cn((2b+ 1)δ)n. Then
⋃N
i=1 U i ⊂ Bx(2bδ + δ). As a

result of that we get
Ncn(aδ)n ≤ cn((2b+ 1)δ)n

or equivalently N ≤ (2b+ 1)na−n.

Definition 4.2.2. Let f : S1 → S2 be a Lipschitz function. If for x, y ∈ S1:

d2(f(x), f(y)) = |f |Lipd1(x, y),

then f is called a similitude.

We will prove a special case of Theorem 4.2.1. We make the assumption that all contractive
similitudes of F have the same Lipschitz constant cF = |F|Lip. We will follow the prove of
[1]. A full proof of Theorem 4.2.1 can be found in [6].

proof of Theorem 4.2.1 (Special case). The proof of Hp(X) < ∞ has already been given
in Lemma 4.2.1. We still need to show that 0 < Hp(X). Let U be the separating set that
is assumed to exist for the IFS.

Since ci = cF for all i ∈ {1, . . . , n}, we see
∑n

i=1 ci
p = ncF

p = 1. So n = 1
cFp .

Let δ > 0. Since X is compact (Lemma 2.3.6), there exists a covering {Ei}∞i=1 of X with
diam(Ei) ≤ δ for all i ∈ N. We are going to prove that 0 < Hp(X) by showing that

Hp,δ(X) = inf

{
∞∑
i=1

diam(Fi)
p : X ⊂

∞⋃
i=1

Fi and diam(Fi) ≤ δ

}
(4.3)

is greater than zero for some δ > 0. Let E ∈ {Ei}∞i=1 and let k ∈ N be such that
cF

kdiam(U) < 2diam(E) ≤ cF
k−1diam(U). Let Uk := {A ⊂ Rm : A = fik ◦ · · · ◦

fi1(U), i1, . . . , ik ∈ {1, . . . , n}} be the collection of sets that can be obtained by apply-
ing k-number of functions of the IFS to the separating set U . Moreover, let Uk be the
collection of the closure of the same sets. Observe that the sets of Uk are open. By using
Definition 4.2.1 (ii) for separating sets inductively, we see that the sets of Uk are disjoint.
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Let A ∈ Uk. Lemma 2.3.1 yields

diam(A) = cF
kdiam(U) < 2 · diam(E), (4.4)

and

diam(A) = cFcF
k−1diam(U) ≥ 2 · cFdiam(E). (4.5)

The equalities in (4.4) and (4.5) are justified, since the elements of F are similitudes. From
(4.4) it follows that A is contained in a ball of radius diam(E). Since U is an open subset,
it contains a ball with radius R > 0. Because each fi is a similitudes, A contains a ball
with radius R · cFk. Using (4.5) we obtain that

R · cFk =
R · diam(A)

diam(U)
≥ 2R · cF

diam(U)
· diam(E).

So A contains a ball of R·cF
diam(U)

· diam(E). By Lemma 4.2.3 we see that a ball of radius

diam(E) intersects at most N , the greatest integer less or equal to
(

3·diam(U)
R·cF

)m
, of the

elements of Uk. Since E can be contained in a closed ball of radius diam(E), it intersect
no more than N of the sets in Uk. Observe that N does not depend on E or δ.

Let i1, . . . , ik ∈ {1, . . . , n}. Then

supp
(
µ∗ ◦ f−1i1 ◦ · · · ◦ f

−1
ik

)
= f ik ◦ · · · ◦ f i1 (supp(µ∗)) (4.6)

= f ik ◦ · · · ◦ f i1(X) ⊂ f ik ◦ · · · ◦ f i1(U) ∈ Uk. (4.7)

In (4.6) we used Lemma 3.4.1 k times. The equality in (4.7) is justified by Theorem 3.4.1.
We justify the inclusion in (4.7) by Lemma 4.2.2. Now we can give an upper bound for
µ∗(E). Recall that n = 1

cFp and cF
kdiam(U) < 2diam(E).

µ∗(E) =
1

nk

n∑
i1=1

· · ·
n∑

ik=1

(
µ∗ ◦ f−1i1 ◦ · · · ◦ f

−1
ik

(Ei)
)
≤ N

1

nk
= NcF

(kp) ≤ 2pN · diam(E)p

diam(U)p
.

For the first inequality we used the fact that each µ∗ ◦ f−1i1 ◦ · · · ◦ f
−1
ik
∈ P and that E

intersects no more than N of their supports.

We return to (4.3) and continue:

· · · ≥ inf

{
diam(U)p

2pN
·
∞∑
i=1

µ∗(Fi) : X ⊂
∞⋃
i=1

Fi and diam(Fi) ≤ δ

}

≥ inf

{
diam(U)p

2pN
· µ∗(X)

}
=

diam(U)p

2pN
.

Taking the limit δ ↓ 0, we get that Hp(X) ≥ diam(U)p

2pN
> 0. Thus dimH(X) = p.
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Example 4.2.1. The IFS of the Sierpinski triangle has a separating set, namely the inte-
rior of the initial triangle T1. By Theorem 4.2.1 the Hausdorff dimension of the Sierpinski
triangle T is the unqiue p such that

1 =
3∑
i=1

(
1

2

)p
=

3

2p
.

So dimH(T ) = log2 3.
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