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1 Abstract

We study the dynamics of nucleosomes, DNA-wrapped proteins, along a DNA
chain. First we show that a single nucleosome makes a simple symmetric random
walk with respect to the DNA sequence. To obtain an estimate for the diffusion
coefficient, we study a specific random walk in the quarter plane, absorbed by
its boundary. There are exact results in two limiting cases, and in general we
derive a continuum approximation. Then we show that a DNA chain filled with
multiple nucleosomes cannot be transcribed by RNA polymerase if there is only
hard-core interaction between the polymerase and the nucleosome. In the end,
we suggest an alternative interaction between RNA polymerase and nucleosomes
which allows the DNA to be transcribed without the help of other proteins.

2 Preface

This thesis is the result of my bachelor project in physics and mathematics. It
is written for an audience of mathematicians and physicists of at least bachelor
level. I assume the reader to be familiar with basic analytical tools, and to have
some background knowledge of biophysics and probability theory. In fact, I use
quite a lot of statistical physics and theory of stochastic processes without much
explanation. For readers who are not familiar with these subjects, I recommend
the very well-written books of Liggett [9], Spitzer [12] and van Kampen [7].

3 Introduction

3.1 DNA and nucleosomes

DNA is the key to life. All of the genetic information about an organism is
stored on one or a couple of DNA molecules. These DNA molecules consist
of two polymers of sugar and phosphate groups, wrapped together in a double
helix structure. Each sugar group is attached to a base, and the hydrogen bonds
between these bases is what keeps the two polymers together. There are four
possible bases that can be bound to this sugar group: guanine (G), adenine (A),
thymine (T), and cytosine (C). A thymine will only pair with a cytosine, and
thymine only with adenine. The bases on both strands are exactly matched, so
that each pair of adjacent bases is compatible with each other. These matched
pairs are called base pairs.

A standard human DNA molecule is very long, consisting of 107 or 108 base
pairs. A normal polymer of this length will form a blob with a diameter of
about 100µm, whereas the diameter of a cell nucleus will not exceed 10µm.
The DNA has to fit inside the nucleus, so there has to be some compaction
mechanism which reduces the size of the DNA coil. Actually, there are many
forms of compaction on different length scales, but we will focus on the very
first, the nucleosomes.
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Figure 1: Compaction of DNA into chromatin [10]. We focus on the first level
of compaction, the nucleosomes.

A nucleosome consists of a histone octamer, which is strongly bound to a
piece of DNA (Details about the molecular structure and dynamics of nucleo-
somes can be found in [14]). This binding causes the DNA to wrap almost twice
around the nucleosome core particle. This comes at a cost, however, as the DNA
has to bend very sharply in order to wrap. An estimate for the bending energy
can be obtained from the worm like chain model (WLC). As it turns out, the
bending energy is just a little bit lower than the binding energy.

3.2 Breathing

When we zoom in on a nucleosome, we see that there are only fourteen points
where the DNA actually makes contact with the octamer. At each of these
fourteen binding sites, the DNA and the octamer are held together by hy-
drogen bonds as well as electrostatic attraction. Because the energy gained by
establishing this bond is higher than the energy required to bend the DNA, the
DNA will be wrapped. That is, if the system is in its lowest energy state. But
there are always thermal fluctuations which put the system out of that ground
state.

Let us now take the thermal fluctuations of the system into account. Suppose
the DNA is fully wrapped around the nucleosome. All of the binding sites are
very stable, except the two on the outer ends. If any of those bonds would
break, the DNA would immediately straighten, and a lot of energy would be
gained. Once the first binding site has opened up, the second binding site has
a chance to open, and so on. This wrapping and unwrapping process is called
breathing. In principle, the breathing of the nucleosome could cause the DNA



Figure 2: The crystal structure of a nucleosome [14].

to completely detach. However, breaking any bond will always cost more energy
than it will gain, so wrapping is always favorable to unwrapping. Furthermore,
the DNA is negatively charged, so the two turns of DNA repel each other.
Once one of the turns has unwrapped, this repulsion won’t be present, and
the unwrapping process will be much slower. In effect, we can say that the
probability for a nucleosome to fall off the DNA chain is negligible. This agrees
with experiments conducted by Polach and Widom [22], which measure the
probability for a given binding site to be open at a specific time. A dynamical
study of the breathing rates is performed by Koopmans and van Noort [19].

3.3 Sliding

Apart from breathing, there are other thermal fluctuations that affect the nu-
cleosome. If a nucleosome is fully wrapped, there are 147 base pairs associated
with the nucleosome. But not all of these base pairs can directly attach to the
nucleosome, as there are only fourteen binding sites. In order to minimize the
bending energy, the DNA binds to the nucleosome every 10bp, and the last 10bp
on either end are essentially straight. But again, this is only the ground state.
It could be that the DNA segments between two consecutive binding sites are
11 or 9 base pairs. These disturbances are called defects and antidefects,
respectively. The defects and antidefects can only form at the ends of the nu-
cleosome, and from the WLC it follows that the energy needed to form a defect
or antidefect is equal (See also [23]).

When a stretch of DNA between two binding sites has a defect (or antide-
fect), the tension can resolve by moving either one of its binding sites by 1 bp.
This causes a defect to appear in the neighboring stretch. But if the binding
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Figure 3: A schematic version of the breathing process [10]. The outer binding
sites open and the length of DNA attached to the nucleosome decreases.

sites happens to be the last one on the nucleosome, the defect simply disap-
pears. Suppose now a defect is generated at one end of the nucleosome, then
moves through the structure, and eventually falls off at the other end. Then
the nucleosome has effectively shifted 1bp with respect to DNA molecule. This
process is called sliding. It has been verified experimentally that nucleosomes
move in this way along the DNA [16]. Because the defects and antidefects are
generated at a very low rate, there will almost never be more than one defect
(or antidefect) in the structure.

3.4 RNA transcription

Until now, we have discussed the dynamics of the DNA and the nucleosome, but
we haven’t said anything about the purpose of the DNA. Actually, the DNA is
just a very sophisticated storage device. The important part is the information
stored on the DNA, the specific sequence of base pairs. This DNA sequence is
read off by a polymerase molecule, which translates it into RNA.

At this point, there is a problem. How is it possible that an RNA polymerase
can read the information on the DNA, if that DNA is attached to a nucleosome?
Both the polymerase and the nucleosome are large proteins, and they cannot
move through each other. As it happens, the breathing and sliding of the
nucleosomes are crucial to answering this question.

In the first part of this thesis, we will focus on the dynamics of a single
nucleosome attached to a DNA chain, and ignore its interaction with any other
proteins. We will discover that the nucleosome makes a simple symmetric ran-
dom walk with respect to the underlying DNA sequence, and we try to calculate
the diffusion coefficient of this random walk. Then, in the second part, we will
zoom out a bit, and look at the large scale behaviour of a DNA chain filled with
many nucleosomes, using a simplified model of the single nucleosome dynamics.



Figure 4: The sliding process [10]. A defect is created at one of the ends, moves
to the other end, and then disappears. As a result, the nucleosome has shifted
with respect to the DNA sequence.

4 Single nucleosome dynamics

We consider a single nucleosome with a DNA chain wrapped around it. The
relative position of this nucleosome with respect to the DNA sequence can only
change through the motion of defects and antidefects. Remember that there will
never exist more than one defect or antidefect simultaneously. This (anti)defect
makes a complicated random walk, but its effect on the position of the nucleo-
some is determined by three factors only: whether it is a defect or an antidefect,
where it enters, and where it exits. If the entrance site and exit site are the
same, there is no effect. If a defect goes from right to left, the nucleosome moves
forward. If it goes from left to right on the other hand, the nucleosome moves
backwards. For an antidefect the effect is exactly the opposite.

Defects and antidefects are generated at the same rate at both ends, so for
a single one, there is a probability of 1

2 that it is a defect, and 1
2 that it is



an antidefect. Also, the probability that it enters at the right is equal to the
probability that it enters at the left. All of this is independent of the exact
details of the internal random walk. However, the probability that the exit site
and entrance site are different does depend on the details of the random walk.

4.1 Simplifications

In order to do any mathematical analysis, we have to consider a simplified model.
We assume that all binding sites are equally strong, and that the binding and
bending energies are independent of the underlying DNA sequence. Of course,
this is not true. The effect of the DNA sequence on the bending energy can
actually be quite strong (there exists a specific DNA sequence, the Widom-
601 sequence with an affinity multiple orders of magnitude higher than random
DNA [21]). But, if we neglect any DNA sequence effects, the situation becomes
highly symmetrical, as there is no real difference anymore between defects and
antidefects. Even more, it does not matter where the defect or antidefect enters.
Therefore, we may assume without loss of generality that we are dealing with a
defect, which enters at the left. This defect makes a simple symmetric random
walk through the nucleosome, and we want to know the probability that it exits
at the right.

Meanwhile, the nucleosome is also breathing. At both ends, the nucleosome
will unwrap some of its binding sites. Let us assume -incorrectly, of course- that
the rate at which the outer ends unwrap and rewrap are the same, independent
of how much have already unwrapped. This means that the nucleosome can
completely disassemble, but that does not pose a real problem. The sliding
process is observed to be much faster than the breathing, and we only look at a
single defect moving through. This defect will fall off long before the nucleosome
detaches from the DNA.

4.2 Markov model

Let us start by labeling the segments between consecutive binding sites of the
nucleosome with the numbers 1 to 13. Then we can describe the entire state of
a nucleosome with a defect in one of its loops by three parameters: the most
unwrapped loop from the left (at), from the right (bt), and the position of the
defect (Dt). If there are no loops unwrapped from the left, we put at = 0,
and we set bt = 14 if this happens at the right. Then each of the numbers
at, bt and Dt makes a simple symmetric random walk on the set {0, 1, . . . , 14},
independent of each other. In the beginning, a0 = 0, D0 = 1, b0 = 14, and the
process ends whenever at = Dt or Dt = bt. Let us say that at and bt move with
rate λ, and Dt with rate µ. It will be convenient to normalise λ and µ so that

4λ+ 2µ = 1. (1)

The dynamics of the defect are modeled with the following Markov process.



Figure 5: The definition of at, bt and Dt. In this case, at = 3, bt = 10 and
Dt = 7.

Definition 1. Let N = 14, and consider the continuous time Markov chain
with state space {(a,D, b) ∈ Z3 : 0 ≤ a ≤ D ≤ b ≤ N} and transition rates

a→ a+ 1 λ

a→ a− 1 λ

b→ b+ 1 λ

b→ b− 1 λ

D → D + 1 µ

D → D − 1 µ

for all 0 < a < D < b < N . If a = 0 or b = N , the jumps to a = −1 and
b = N + 1 are prohibited. Now set τ := inf{t ≥ 0 : at = Dt ∨ Dt = bt}, and
define

f(a,D, b) := P (bτ = Dτ |a0 = a,D0 = D, b0 = b). (2)



Remark that f depends also on µ, λ and N , but we suppress this dependence
as these are model parameters.

0 1413121110987654321
Defect Right endLeft end

λ λμ

Figure 6: The Markov process: Both ends make a symmetric random walk with
rate λ, the defect moves with rate µ. The process ends whenever the defect hits
either end.

4.3 Infinite lattice approximation

This process turns out to be too difficult to calculate in full detail (except when
λ = 0, when it is trivial), so we start with a rather crude approximation. We
ignore the fact that the nucleosome has only 14 binding sites. This means that
the ends at and bt can diffuse away to ±∞. But the ends move very slowly, so
they will not drift too far out. The upshot is that now the relative positions
xt = Dt−at and yt = bt−Dt perform a translation invariant random walk. This

0 1413121110987654321
Defect Right endLeft end

λ λμ

15 ...-2 -1...

ytxt

Figure 7: The process is extended to an infinite lattice. The state of the process
is then determined by xt and yt.

random walk has state space Z2
+ := {(x, y) ∈ Z2 : x ≥ 0, y ≥ 0} and transition

rates:

(x, y)→ (x, y + 1) λ

(x, y)→ (x, y − 1) λ

(x, y)→ (x+ 1, y) λ

(x, y)→ (x− 1, y) λ

(x, y)→ (x− 1, y + 1) µ

(x, y)→ (x+ 1, y − 1) µ



It starts at a position (x, y) = (1, N −1), and it ends whenever xt = 0 or yt = 0.
Then we have τ = inf{t ≥ 0 : xt = 0 ∨ yt = 0}, and

f(x, y) = P (yτ = 0|y0 = y, x0 = x). (3)
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Figure 8: The transition probabilities of (xt, yt).

Now that the model is accurately described, we begin with the mathematical
analysis. The main points of the following sections are summarized in theorem 1,
theorem 4, eqn. 44, and theorem 8.

4.3.1 Asymptotic relations

In the infinite lattice approximation, the starting point is not really special. The
process will always start with x = 1, but the value of y can just as easily be
generalized to be any positive integer. We will now show that limn→∞ f(1, n) =
0, and we find an asymptotic relation for f(1, n). But before we get to that,
there are some basic results we will need later on.

Lemma 1. The probability function f(x, y) satisfies the following relations for
all x, y > 0:



(a) f(x+ 1, y) ≥ f(x, y) ≥ f(x, y + 1),

(b) f(x, y) + f(y, x) = 1,

(c) f(0, y) = 0,

(d) f(x, 0) = 1,

(e) f(x, y) = λ[f(x, y + 1) + f(x, y − 1) + f(x− 1, y) + f(x+ 1, y)]
+ µ[f(x+ 1, y − 1) + f(x− 1, y + 1)],

Proof.

(a) Because the random walk has only nearest neighbour jumps, any path
leading from the starting point (1, N − 1) to the x-axis will cross the line
y = 1. So if we define τ ′ := inf{t ≥ 0 : xt = 0 ∨ yt = 1}, then τ ′ ≤ τ
almost surely. Furthermore, if xτ ′ = 0, then xτ = 0. Therefore:

P (yτ = 0) = P (yτ = 0|yτ ′ = 1)P (yτ ′ = 1) ≤ P (yτ ′ = 1). (4)

For a random walk started at (x, y + 1), this means:

f(x, y + 1) = P (yτ = 0|y0 = y + 1, x0 = x)

≤ P (yτ ′ = 1|y0 = y + 1, x0 = x)

= P (yτ = 0|y0 = y, x0 = x) = f(x, y). (5)

The other inequality can be proven in the same way.

(b) Because the transition probabilities are symmetric, we have

f(j, i) = P{yτ = 0|x0 = j, y0 = i} = P{xτ = 0|y0 = j, x0 = i}
= 1− P{yτ = 0|x0 = i, y0 = j} = 1− f(i, j). (6)

(c,d,e) This is a direct application of theorem 14 of the appendix.

Theorem 1. There exists a constant c ≥ 0 such that

f(1, n) ≈ c

n
(7)

in the Cesaro sense, i.e.

lim
n→∞

∑n
j=0 f(1, j)∑n
j=0

(
c
n

) = 1. (8)

For the proof of this asymptotic relation, we use a method reminiscent of the
method used in [17]. First we introduce generating functions, which converge on
a particular domain. Inside that domain, these functions satisfy an important
functional equation. We will then examine the functional equation to find the
dominant singularity of the generating functions outside the domain of conver-
gence. We then investigate the way in which that singularity is approached and
finish the proof by means of a Tauberian Theorem.



Proof.

Definition 2. Define the generating functions V : R2 → R, and V1,2 : R → R
by

V (x, y) =
∑∞
i=1

∑∞
j=1 f(i, j)xiyj , (9)

V1(x) =
∑∞
i=1 f(i, 1)xi, (10)

V2(y) =
∑∞
j=1 f(1, j)yj . (11)

Lemma 2. The power series V (x, y), V1(x) and V2(y) converge uniformly for
|x| < 1, |y| < 1, and in that region the following functional equation is satis-
fied:

D(x, y)V (x, y) +xy{(µy+λ)V2(y)− (µx+λ)V2(x)} =
x2y

1− x
(µy+λy−µx−λ),

(12)
where D(x, y) = xy − λ(x2y − y2x− x− y)− µ(x2 − y2).

Proof. Because the coefficients of V (x, y) are probabilities, they are bounded,
and as a result V (x, y) converges uniformly on D := {(x, y) ∈ R2 : |x| < 1, |y| <
1}. The same reasoning applies to V1(x) and V2(y). By applying the recurrence
relation (eqn. 1) and a straightforward manipulation with power series, we can
derive that

D(x, y)V (x, y) + xy(µx+ λ)V1(x) + xy(µy + λ)V2(y) =
(µ+ λ)x2y2

1− x
. (13)

Finally, from lemma 1 we obtain V1(x) + V2(x) = x
1−x .

We want to derive the leading asymptotic behaviour of f(1, n), so we consider
the generating function with those coefficients, which is V2(x). This function is
continuous in the region −1 < x < 1, and we look how it diverges as x → 1
or x → −1. We will repeatedly use eqn. 12 in the limit (x, y) → (1, 1), but
along different curves. Each curve will provide some new information, which we
eventually put together in order to finish the proof.

Lemma 3. limx→1(x− 1)V2(x) = 0.

Proof. First, let y be constant, and let x go to 1. Then the functional equation
simplifies to

(y − 1)2 lim
x→1

(x− 1)V (x, y) + y lim
x→1

(x− 1)V2(x) = y(y − 1), (14)

provided those limits exists. But V (x, y) is a power series with positive coeffi-
cients, so it is increasing for 0 < x < 1 and 0 < y < 1. Furthermore, we can
estimate V (x, y):

|
∞∑
i=1

∞∑
j=1

f(i, j)xiyj | ≤
∞∑
i=1

∞∑
j=1

|f(i, j)xiyj |

≤
∞∑
i=1

∞∑
j=1

|x|i|y|j =
|xy|

(1− |x|)(1− |y|)
. (15)
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Figure 9: The various curves used in the proof. For lemma 3, we let x go to 1,
and then y too. For lemma 4, we let x and y go to 1 simultaneously.

This means that (x − 1)(y − 1)V (x, y) is increasing and bounded, so the limit
exists. The same reasoning applies to V2(x).

Let us now take the limit y → 1 at both sides of eqn. 14. By the estimate
above, the first term goes to zero. The right hand side also goes to zero as
y → 1, so the second term has to go to zero.

Lemma 4. The limit

La := lim
t↓0

[V2(1− t)− V2(1− at)] (16)

exists for all a > 0.

Proof. Consider a curve given by xt = 1 − at, yt = 1 − t, and let t approach
zero from above. Both xt and yt are increasing, and we can use the same
argument as above to show that (xt − 1)(yt − 1)V (x, y) converges. The factor



D(xt,yt)
(xt−1)(yt−1) also approaches some finite value, so D(xt, yt)V (xt, yt) converges.

By direct computation, we see that the last term does not diverge. Thus,
the limit of the second term must also exist. This second term is equal to
(µ+λ)[V2(1− t)−V2(1−at)]+µt(V2(1−at)−aV2(1− t)). The last contribution
will vanish as t ↓ 0, because limt↓0 tV2(1− t) = 0.

Remarkably, this last lemma is all we need to prove the theorem. But we
have not used that much details about the transition probabilities of the random
walk, which suggests that theorem 1 holds for other random walks too. We will
not investigate the conditions necessary to invoke on the transition probabilities
to ensure that theorem 1 holds, because that would take us too far from the
original problem.

Lemma 5. La = c log(a) for some c > 0.

Proof. We start with showing that La + Lb = Lab:

La + Lb = lim
t↓0

[V2(1− t)− V2(1− at)] + lim
t↓0

[V2(1− t)− V2(1− bt)]

= lim
t↓0

[V2(1− t)− V2(1− at)] + lim
t̃↓0

[V2(1− at̃)− V2(1− abt̃)]

= lim
t↓0

[V2(1− t)− V2(1− abt)] = Lab (17)

Furthermore, we have that

a ≤ b ⇐⇒ 1− at ≥ 1− bt ⇐⇒ V2(1− at) ≥ V2(1− bt) ⇐⇒ La ≤ Lb. (18)

Therefore, a → La is a nondecreasing homomorphism from (0,∞) to R. That
means it has to be continuous, and, even stronger, La = c log(a) for some
c ≥ 0.

Lemma 6. V2(1− t) = −c log(t) + o(log(t)) as t ↓ 0.

Proof. Define W (t) := V2(1 − t) + c log(t), and φ(x) =:= eW ( 1
x ). Then for all

a > 0 we have that limt↓0[W (t)−W (at)] = 0, and therefore, limx→∞
φ(ax)
φ(x) = 1.

In other words, φ is a slowly varying function. We can use the following fact
about these functions, which can be found in [2]:

Theorem 2. Let f(x) be a slowly varying function. Then there exists B ≥ 0
and η, ε : R → R such that limx→∞ η(x) exists, limx→∞ ε(x) = 0, and for all
x ≥ B:

f(x) = eη(x)+
∫ x
B
ε(t)
t dt. (19)

So we can write W ( 1
x ) = η(x) +

∫ x
B
ε(t)
t dt, and therefore, limx→∞

W ( 1
x )

log x = 0.

In other words, limt↓0
W (t)
log t = 0, which proves that V2(x) = −c log(1 − x) +

o(log(1− x)).

Lemma 7. limx→−1 V2(x) exists.



Proof. Because f(1, j) is decreasing and always positive, the limit
limj→∞ f(1, j) exists. Suppose that this limit is equal to ε > 0. Then

V2(x) =

∞∑
j=1

f(1, j)xj ≥ ε
∞∑
j=1

xj =
εx

1− x
. (20)

But this means that V2(1− t) diverges like 1
t or faster as t ↓ 0. Since that is in

contradiction with the previous lemma, we must have that limj→∞ f(1, j) = 0.
Therefore, by the Leibniz criterium, V2(−1) =

∑∞
j=1(−1)jf(1, j) exists. And

because a power series is always continuous inside its domain of convergence,
limx→−1 V2(x) exists.

Now we can complete the proof of the main theorem by means of the fol-
lowing tauberian theorem [2].

Theorem 3. Karamata’s Tauberian Theorem
Let an be a sequence of non-negative real numbers such that the power series
A(x) :=

∑∞
n=1 anx

n converges for x ∈ [0, 1). Then, for c, ρ ≥ 0 and g a slowly
varying function, the following are equivalent:

n∑
k=0

ak ∼
c

Γ(1 + ρ)
nρg(n) as n→∞, (21)

and

A(x) ∼ c

(1− x)ρ
g

(
1

1− x

)
as x→ 1, (22)

When we apply theorem 3, with an = f(1, n), ρ = 0, g(n) = log(n), we see
that

V2(x) ∼ −c log(1− x) ⇐⇒
n∑
j=1

f(1, j) ∼ c log(n), (23)

which completes the proof.

4.3.2 Limiting cases

By now we have some idea about the dependence of f on the starting point
(1, n). As a next step, we will focus on the effect on µ and λ. Remark that the
asymptotic relation (theorem 1) holds for all λ and µ. With that in mind, we
do not expect huge differences in the behaviour of f as we change the ratio of
µ versus λ. It turns out that we can give exact results for the cases µ = 0 and
λ = 0.

Theorem 4. If λ = 0, the probability f(x, y) is given by

f(x, y) =
x

x+ y
. (24)
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Figure 10: If λ = 0, the random walk has to stay on a single diagonal.

Proof. In this case, there are only diagonal jumps, so the random walk will stay
on the set {(x′, y′) ∈ Z2

+ : x′ + y′ = x+ y}. The resulting process is equivalent
to a simple symmetric random walk on the set {1, 2, . . . , x+y}, started at x and
stopped upon reaching 0 or x + y. So we have to solve the Dirichlet problem
φ(0) = 0, φ(N) = 1, ∆φ = 0, where N := x+ y, and

∆φ(x) = φ(x− 1) + φ(x+ 1)− 2φ(x). (25)

The solution to this Dirichlet problem is given by the linear equation φ(x) = x
N ,

which means that f(x, y) = x
x+y .

Note that this formula is in agreement with the above asymptotic. The other
limit, where µ goes to zero, is trickier to calculate. In the previous calculation
the problem essentially reduced one dimension, and that did the trick. In the
present case, however, the problem is still manifestly 2-dimensional. Luckily,
the resulting random walk happens to be one of the most studied stochastic
processes in history. It is again a simple symmetric random walk, only this
time in two dimensions. The generator of the process is called the discrete



Laplacian, and it is given by

∆f(x, y) :=
1

4
[f(x, y+1)+f(x, y−1)+f(x+1, y)+f(x−1, y)]−f(x, y). (26)
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Figure 11: In the limit µ → 0, the diagonal jumps disappear. However, the
process is still 2-dimensional.

The main tool we will use to solve the Dirichlet problem is the following the-
orem, which is explained and proven in the appendix. It is a slight modification
of a result of Chung and Yau ([6, 15]). The theorem applies to a more general
case than necessary for this paper, because in our case all edge weights will be
equal to 1. However, we prefer to state the theorem in its strongest form.

Theorem 5. Let xt be a Markov chain with finite state space X, and edge
weights wxy. Consider S ⊂ X, and let LS be the normalized Laplacian of S.
Let {(φi, λi), i ∈ I} be an orthonormal eigensystem of LS. The solution to the
Dirichlet problem is then given by:

f(x) =
∑
i∈I

1

λi

∑
z∈S

z∼y∈δS

wyzφi(z)σ(y)d−1/2z d−1/2x φi(x). (27)



This theorem enables us to solve the Dirichlet problem for any given bound-
ary condition, once we know the orthonormal eigenfunctions of the (normalized)
Laplacian. However, the theorem only works for Markov chains with finite state
space, while we are dealing with an infinite lattice. Therefore, we will adopt the
following limiting procedure:

Definition 3. Let τN be the first time the walker exits an N ×N -box, i.e.

τN = inf{t ≥ 0 : xt = 0 ∨ yt = 0 ∨ xt = N ∨ yt = N}. (28)

Let fN (x, y) be the probability that the N ×N -box is left because the walker hits
the x-axis:

fN (x, y) = P (yτN = 0|x0 = x, y0 = y). (29)

Because the random walk is recurrent, fN converges to f as N goes to
infinity. The functions fN also satisfy the laplace equation, but with boundary
conditions fN (0, y) = fN (x,N) = fN (y,N) = 0 and fN (x, 0) = 1 for all 0 <
x < N and 0 < y < N . So we can apply theorem 5 to find fN .

Lemma 8. The orthonormal eigenfunctions of the Laplacian of an N ×N -box
are given by

φmn(x, y) =
2

N
sin(

πmx

N
)sin(

πny

N
), (30)

with corresponding eigenvalues

λmn = 1− 1

2
cos(

nπ

N
)− 1

2
cos(

mπ

N
), (31)

for m,n ∈ {1, 2, . . . , N − 1}.

Proof. The graph of an N ×N -box is regular in the sense that all vertices have
the same degree, and the random walk is regular in the sense that all edge
weights are equal to 1. Therefore, the normalized Laplacian is equal to the
discrete Laplacian. It is easily verified that ∆φmn = λmnφmn for all m,n <
N .

Now we can apply theorem 5, which gives

fN (k, l) =
1

4

N−1∑
m=1

N−1∑
n=1

1

λmn

N−1∑
x=1

φmn(x, 1)φmn(k, l) (32)

=
1

N2

N−1∑
m=1

N−1∑
n=1

N−1∑
x=1

sin(πmxN ) sin(πnN ) sin(πmkN ) sin(πnlN )

1− 1
2 cos(nπN )− 1

2 cos(mπN )
(33)

The summation over x can be done explicitely:

N−1∑
x=1

sin(
πmx

N
) =

{
0 m even
sin(mπN )

1−cos(mπN ) m odd
(34)



which yields

fN (k, l) =
1

N2

N−1∑
m=1
m odd

N−1∑
n=1

sin(πmN ) sin(πnN ) sin(πmkN ) sin(πnlN )

(1− cos(πmN ))(1− 1
2 cos(nπN )− 1

2 cos(mπN ))
. (35)

Now, in the limit of N → ∞, the summations become integrals. The first
summation is only over the odd integers, so that results in an overall factor of
1
2 . Because the summand involves functions of πn

N rather than n
N , there is also

a factor of 1
π2 .

f(k, l) =
1

2π2

∫ π

0

∫ π

0

sin(u) sin(v) sin(ku) sin(lv)

(1− cos(u))(1− cos(u)
2 − cos(v)

2 )
dudv (36)

The integrand can be simplified by introducing the Chebyshev polynomials of

the second kind, defined by Uk(cos(u)) = sin((k+1)u)
sin(u) .

f(k, l) =
1

2π2

∫ π

0

∫ π

0

sin(u)2 sin(v)2Uk−1(cos(u))Ul−1(cos(v))

(1− cos(u))(1− cos(u)
2 − cos(v)

2 )
dudv (37)

Using the trigonometric identities sin(u)2

1−cos(u) = 1+cos(u), and 1− cos(u)
2 − cos(v)

2 =

sin2(u/2) + sin2(v/2), we can rewrite the integral to

f(k, l) =
1

2π2

∫ π

0

∫ π

0

(1 + cos(u))
sin(v)2Uk−1(cos(u))Ul−1(cos(v))

sin2(u/2) + sin2(v/2)
dudv (38)

From this point on, we describe a method to solve this integral, but won’t keep
track of the exact numbers. Note that the integral is a linear combination of
integrals of the type

Imn =

∫ π

0

∫ π

0

sin(v)2 cosm(u) cosn(v)

sin2(u/2) + sin2(v/2)
dudv (39)

Those integrals can be transformed by changing variables to x = u
2 and y = v

2 ,
and using the double angle formulas sin(2x) = 2 sin(x) cos(x), cos(2x) = 1 −
2 sin2(x).

Imn = 4

∫ π
2

0

∫ π
2

0

(sin2(x)− sin4(x))(1− 2 sin2(x))m(1− 2 sin2(y))n

sin2(x) + sin2(y)
dxdy (40)

Expanding the nominator produces a lot of integrals of the form

Jmn =

∫ π
2

0

∫ π
2

0

sin2m(x) sin2n(x))

sin2(x) + sin2(y)
dxdy. (41)

Finally, we use long division to convert this integral into the sum of easier

integrals, by noting that xmyn

x+y = xmyn−1 − xm+1yn−2 + ...+ (−1)n x
m+n

x+y . The
resulting integrals can then be directly solved for all m,n > 0:∫ π

2

0

∫ π
2

0

sin2m(x) sin2n(x)dxdy =
π2

22m22n

(
2m− 1

m− 1

)(
2n− 1

n− 1

)
(42)



∫ π
2

0

∫ π
2

0

sin2m(x)

sin2(x) + sin2(y)
dxdy =

π2nΓ(m2 )2

16Γ(m)
(43)

The integral in eqn. 36 is a sum of these terms, with the appropriate prefactor.
However, the number of terms necessary to compute the value of the integral
gets out of hand quite quickly. We need to find the value of f(1, 13), which is
just doable with a normal computer algorithm. The result is quite unusual:

f(1, 13) = 42344121− 1198449065536

9009π
≈ 0.048969 . . . (44)

4.3.3 Remarks

We have obtained an expression for f(1, 13), so from a physics point of view,
we are done. From a mathematical point of view, however, there are some
interesting remarks to be made. The integral in eqn. 42 is always of the form π2

times a rational number, whereas the second integral (eqn. 43) will be π2 times
a rational number if m is odd and π times a rational if m is even. Because f is
a Q-linear combination of these integrals, we know that

∀m,n > 0 : ∃qmn, rmn ∈ Q : f(m,n) = qmn +
rmn
π
. (45)

Because π is irrational, the only way that f can satisfy the recurrence relation
(eqn. 1) is if that recurrence relation holds for qmn and rmn too.

From the table it appears that qmn is always an integer (except on the
diagonal). So we hypothesise:

∀m 6= n : qmn ∈ Z. (46)

If we look closer at the specific numbers, particularly just below and above the
diagonal, there is another interesting observation:

qm,m+1 =

{
−m m ≡ 0 mod 2
m+ 1 m ≡ 1 mod 2

(47)

If eqn. 47 holds, then eqn. 46 follows by mathematical induction.

4.3.4 Continuum limit

This method does not generalise from the limiting cases µ = 0 or λ = 0 to the
general case µ, λ > 0. In order to use theorem 5, it is necessary to know the
eigenfunctions of the normalized Laplacian. For a general graph, determining
the eigenfunctions is just as hard as solving the Dirichlet problem directly.

At this point we have to introduce a new approximation before we can pro-
ceed. This new approximation is the continuum limit. We will first try to explain
the philosophy behind this approximation, then give a precise mathematical def-
inition. The result in eqn. 44 is not quite what one expects beforehand, and we
suspect this happens because we are dealing with a discrete lattice. Therefore,
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Table 1: Specific values of qmn and rmn, for m,n ≤ 6. It is most remarkable
that all off-diagonal values of qmn are integers.

we refine the lattice by adding extra vertices and edges in a reasonable way, in
the hope that this effect smoothens out.

So we introduce vertices at the middle of every edge, and at the center of each
square. Then we connect the new vertices such that the new graph is similar
to the old one, but with a finer grid. The process on this grid will evolve much
slower than the original one, so we also speed up the time by an appropriate
factor. This procedure is iterated, and finally, we end up with a process on a
continuous lattice. For more information on continuum limits, see [9, 1].

Definition 4. Define Xt = (xt, yt), viewed as a process on R2 instead of Z2 but

started at (x, y) ∈ Z2. Then set X
(N)
t = 1

NXN2t. Furthermore, let Xc
t denote

the process with state space R2 and generator

Lc = λ
∂2

∂x2
+ λ

∂2

∂y2
+ µ

(
∂

∂x
− ∂

∂y

)2

. (48)

Lemma 9. X
(N)
t converges to Xc

t in the sense that SN (t)f → Sc(t)f uniformly
for all f ∈ C(X) and t in compact sets.

Proof. In order to show convergence of the process, it is sufficient to show a
certain type of convergence of the generator of the process. That type of con-
vergence is made clear in the following definition and theorem by Trotter and
Kurtz [9, 5].



Figure 12: Visualization of the continuum limit. The process X
(N)
t is defined

on the state space 1
NZ2

+ = {
(
x
N ,

y
N

)
: (x, y) ∈ Z2

+}. As N →∞, X
(N)
t converges

to a continuous process.

Definition 5. A core for a Markov generator L is a linear subspace D ⊂ D(L)
such that L is the closure of its restriction to D.

Theorem 6. Trotter-Kurtz Theorem
Let LN and L be the generators of the semigroups Sn(t) and S(t), respectively.

Suppose that there exists a core D for L such that D ⊂ D(Ln) for all n, and
Lnf → Lf uniformly for all f ∈ D. Then

Sn(t)f → S(t)f (49)

uniformly for all f ∈ C(X) and t in compact sets.



Therefore, we compute the generator LN of X
(N)
t :

LNf(x, y) = λN2[f(x, y +
1

N
) + f(x, y − 1

N
)− 2f(x, y)

+ f(x− 1

N
, y) + f(x+

1

N
, y)− 2f(x, y)]

+ µN2[f(x+
1

N
, y − 1

N
) + f(x− 1

N
, y +

1

N
)− 2f(x, y)]

(50)

It is possible to show that LNf → Lcf uniformly for all f ∈ C∞0 (X), the
set of all infinitely differentiable functions for which all derivates go to zero
uniformly at large distances. Because the transition kernel of Brownian motion
decays exponentially, this set is mapped into itself by Sc(t). Also, the set of
those functions lies dense in Cc(X), the space of all continuous functions with
compact support, which contains the domain of Lc. the following theorem [5]
then guarantees that C∞0 (X) is a core for Lc.

Theorem 7. Let L be the generator of a Markov process, and S(t) the semigroup
of that process. If D is a dense subset of D(L), and

∀f ∈ D, t ≥ 0 : S(t)f ∈ D, (51)

then D is a core for L.

Let us see what effect the continuum limit has on our object of study, f(x, y).
We define

τN := inf{t ≥ 0 : x
(N)
t = 0 ∨ y(N)

t = 0}, (52)

and
fN (x, y) := P (x(N)

τN = 0|x(N)
0 = x, y

(N)
0 = y). (53)

Analogously, for the continuous process, we have

τc := inf{t ≥ 0 : xct = 0 ∨ yct = 0}, (54)

and
fc(x, y) := P (xcτc = 0|xc0 = x, yc0 = y). (55)

Because the continuum limit only involves scaling in space and time, fN simpli-
fies a lot. First of all, the event {xt = 0 ∨ yt = 0} is invariant under scaling of

space coordinates, so τN = τ . Furthermore, the event that x
(N)
τ = 0 is invariant

under time rescaling. Combining these remarks, we can say that

fN (x, y) = P (x(N)
τN = 0|x(N)

0 = x, y
(N)
0 = y)

= P (x(N)
τ = 0|x(N)

0 = x, y
(N)
0 = y)

= P (xτ = 0|x(N)
0 = x, y

(N)
0 = y)

= P (xτ = 0|x0 = Nx, y0 = Ny)

= f(Nx,Ny) (56)



Meanwhile, becauseX
(N)
t converges toXc

t , fN converges to fc at least pointwise,
and therefore

fc(x, y) = lim
N→∞

fN (x, y) = lim
N→∞

f(bNxc, bNyc), (57)

where we have to floor Nx and Ny because f is defined only on Z2, and fc on
R2. From this expression it immediately follows that

fc(kx, ky) = fc(x, y) (58)

for all k > 0. Therefore, we can approximate

f(x, y) = fN

( x
N
,
x

N

)
≈ fc

( x
N
,
x

N

)
= fc(x, y). (59)

So it remains to calculate fc(x, y). By theorem 14, the function fc is the solution
to the Dirichlet problem

fc(x, 0) = 1

fc(0, y) = 0

Lcfc = 0. (60)

Theorem 8. The solution of the Dirichlet problem is given by

fc(x, y) =
1

2
+

arctan(αx−yx+y )

2 arctan(α)
, (61)

where α := 1√
1+2µλ

.

Proof. We start by rewriting the generator to

Lc =
λ

2

(
∂

∂x
+

∂

∂y

)2

+
λ+ 2µ

2

(
∂

∂x
− ∂

∂y

)2

, (62)

then introduce the new coordinates u := x+y√
λ

, v := x−y√
λ+2µ

. In these new

coordinates, the generator takes on the simple form

Lc =
1

2

(
∂2

∂u2
+

∂2

∂v2

)
. (63)

In other words, if Lcfc = 0, then fc is an harmonic function of the coordinates
u and v. We will try to construct this harmonic function as the imaginary part
of a holomorphic function φ:

fc(u, v) = =(φ(u+ iv)). (64)

The domain of this function is a wedge in the complex plane: Dφ := {z ∈
C\{0} : − arctan(α) < arg(z) < arctan(α)}. This domain can be mapped
holomorphically onto the upperhalf complex plane H := {z ∈ C : =(z) > 0} by

g : Dφ → H
z → iz(

π
2 arctanα ) (65)
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Figure 13: The function g is a biholomorphic mapping from the wedge to the
upperhalf plane.

This function stretches the wedge so that its opening angle becomes π, then
rotates it by π

2 . The upper part of the boundary is mapped to the negative part
of the real axis, and the lower part to the positive real axis. Now consider h(z) =
1
π log(z), where log denotes the principal continuation of the real logarithm. This
function maps the positive real line to the real numbers, and the negative real
line to the complex numbers with imaginary part 1. So the boundary conditions
are satisfied if we choose

φ(z) = h(g(z)). (66)

If we now work out the expression for fc(x, y), we obtain

fc(x, y) =
1

2
+

arctan(α · x−yx+y )

2 arctan(α)
. (67)

4.3.5 Quality of the continuum approximation

The continuum limit proved to be very effective in solving the Dirichlet problem,
and we even obtained an exact solution. However, one may wonder how useful

this formula is, because we approximated the discrete process X
(N)
t with the

continuous process Xc
t . In this section, we show that the continuous and the

discrete case are indeed different, but that the difference is very small.
If fc would be equal to f , then all the previous results about f should hold

for fc as well. We can verify that the asymptotic relation holds by making a



Taylor expansion of fc(1, n) in ε = 1
n+1 .

fc(1, n) =
1

2
+

arctan(α( 1−n
1+n ))

2 arctan(α)
=

arctanα− arctan(α− 2α
n+1 ))

2 arctanα

≈ 2α

n+ 1

d
dt (arctan t)t=α

2 arctanα
=

α

(1 + α2) arctanα

1

n+ 1
. (68)

This expansion also suggests that the prefactor c is equal to α
(1+α2) arctanα .

Let us now look at the behaviour of fc around λ = 0. Small values of λ
correspond to small values of α, so we make a Taylor expansion of fc in terms
of α:

fc(x, y) =
1

2
+

arctan(αx−yx+y )

2 arctan(α)
≈ 1

2
+
α(x−yx+y )

2α
=

x

x+ y
. (69)

So the formula is also correct in the limit λ→ 0. However, in the limit µ→ 0,
the result is different. If µ = 0, then α = 1, and arctanα = π

4 , so

fc(x, y) =
1

2
+

2

π
arctan

(
x− y
x+ y

)
, (70)

fc(1, 13) =
1

2
− 2

π
arctan

(
6

7

)
≈ 0.048875 . . . (71)

This number is actually rather close to the result of eqn. 44, but it is not
the same. So the continuum limit is a very good approximation, but still an
approximation.

Of course, after all these calculations there is still the question how the
function f(x, y, µ, λ) actually looks like. To get an idea, we simulated the infinite
lattice process, and fitted the data with the curve obtained by the continuum
limit. To see how good the infinite lattice approximation is, we also simulated
the original process. The curve from the infinite lattice process is almost exactly
fitted by the continuum curve. However, the infinite lattice curve and the finite
lattice curve are quite far apart, although similar in form. In the next section,
we will refine the approximation in order to get more agreement with the original
process.

4.4 Triangle approximation

Remember that we modeled the finite state space random walk with another
random walk which has the same transition probabilities, but an infinite state
space. This has the advantage that the calculations are easier, but it comes at a
very high cost. The new process behaves in a similar manner as the original one,
but the actual numbers are different. Now we would like to get more agreement
between our approximation and the actual process. This will almost necessarily
mean that the calculations become more difficult, but we hope that they’re still
doable.



μ/λ

f(1,13)

Original process
Infinite lattice approximation
Continuum curve

Figure 14: Graph of f(1, 13) as a function of µλ . Shown are the original Markov
chain, the infinite lattice approximation and the continuum limit. Remark that
the horizontal axis has a logarithmic scale.

The crucial difference between the approximation and the original process
is that on the infinite lattice, the endpoints at and bt can move arbitrarily far
apart. In the original process, however, the maximal distance max{bt−at, t ≥ 0}
is 14. We can ensure that this is always the case, by conditioning on the event
that ∀t : xt + yt ≤ 14. This means that whenever xt + yt = 14, the jumps
xt → xt + 1 and yt → yt + 1 are prohibited.

Motivated by earlier success, we will again switch to a continuum limit. In
that limit, the process becomes the same anisotropic Brownian motion as before,
but this time on the triangle {(x, y) ∈ R2

+|x+y ≤ 14}. Both coordinate axes are
absorbing, and the hypothenuse is a reflecting boundary. We can remove this
reflecting boundary by adding another triangle and form a square (see figure ??).
When the Brownian particle would be reflected by the boundary, imagine that it
continues its path inside the other triangle. If we then identify the upper side of



Reflecting boundary

Reflecting boundary

Figure 15: To get the triangle approximation, we use three steps. First, we
confine the process to the triangle {(x, y)|x + y ≤ 14}. Then we switch to
continuum. Finally, we add another triangle to get a square.

the square with the left side, as well as the lower and right sides, all boundaries
are absorbing. Because of these identifications, it doesn’t matter whether the
particle is absorbed at the bottom or at the right, or whether it hits the upper
or left side of the square. It only matters which of these combinations (bottom
+ right vs. upper + left) it hits.

4.4.1 Calculations

Let us also give a mathematically precise statement of our model.

Definition 6. The probability f̃c(x, y) is the solution to the Dirichlet problem

f̃c(0, y) = f̃c(x, 14) = 0, (72)

f̃c(x, 0) = f̃c(14, y) = 1, (73)

λ
(
∂
∂x + ∂

∂y

)2
f̃c + (λ+ 2µ)

(
∂
∂x −

∂
∂y

)2
f̃c = 0. (74)

We will try to solve this Dirichlet problem using the same techniques as
before. So we again change coordinates to u := x+y√

λ
, v := x−y√

λ+2µ
. Again,



the function f̃c has to be harmonic in u and v, so we try to find a holomorphic
function φ such that =(φ) satisfies the right boundary conditions. At this point,
the difficulties begin. In the previous case, the domain of φ was a wedge, and
there was an obvious holomorphic mapping from Dφ to H. In this case, the
domain of φ is a rhombus with exterior angles θ, π − θ,θ and π − θ, where
θ := 2 arctan(α). We can find no simple holomorphic mapping to H, but the
following theorem from complex analysis [3] guarantees its existence.

Theorem 9. Riemann Mapping Theorem
Let U ⊂ C be a simply connected open subset of the complex plane, and U 6= C.
Then there exists a biholomorphic mapping ψ : U → D, where D = {z ∈
C : |z| < 1}. If π is another such map, then there a map g(z) = az+b

cz+d with
ad− bc = 1, such that π = g ◦ ψ.

This theorem states that there exists a biholomorphic mapping between Dφ

and D, but it does not tell how to find it. In general, this is a very difficult
problem. Fortunately, we are not in a general case. The domain Dφ is a polygon,
and for polygons the mapping can be made explicit [4].

Theorem 10. Christoffel-Schwarz Mapping
Let P ⊂ C be a polygon with exterior angles θ1, . . . , θn. Then, for any set of
different constants a1, . . . , an ∈ R there exists a constant K ∈ C such that the
map

z →
∫ z

0

K

(w − a1)θ1/π . . . (w − an)θn/π
dw (75)

is a biholomorphic mapping from H onto P .

It is possible to choose one of the ai in this last theorem equal to ±∞. Then
the corresponding term is effectively absorbed in the constant K. Let us now
try to use this theorem to find the holomorphic mapping, and see how far it
gets us. In order to use the Christoffel-Schwarz mapping, we have to choose the
ai ∈ R. We can forget about one of the vertices, so we choose −1, 0, 1,∞. Then
we need to solve the integral∫ z

0

K

(w + 1)θ/πw1−θ/π(w − 1)θ/π
dw. (76)

This is an elliptic integral, and the answer can not be given in terms of ele-
mentary functions. That is something we can live with, but there is a bigger
problem. The Christoffel-Schwarz mapping gives a map from H to Dφ. We need
to find a map the other way around, so we need to invert this holomorphic func-
tion. For a given holomorphic function, it is not easy to find its inverse. But in
our case the holomorphic function itself is not even given, so inverting it is prac-
tically impossible. Therefore, we will have to use a numerical approximation to
the integral in eqn. 76.

Before we delve into more complex analysis and numerical integration, let us
think back to the original problem. We want to know what the probability is,



for a random walk started somewhere inside the triangle, to exit through the x-
axis. We could of course use a numerical simulation to find this probability. We
simulate the random walk, see where it exits, and repeat that procedure many
times. Now the main disadvantage of numerical simulations is that the result
will always be an approximation, and never exact. But even if we try to solve
the problem exactly, we still need to evaluate the integral numerically. Because
it is inevitable to use a simulation somewhere, there is no point in continuing
the exact analysis.



4.4.2 Validity of the triangle approximation

μ/λ

f(1,13)

Original process
Infinite lattice approximation
Triangle approximation

Figure 16: Graph of f(1, 13), now also with the triangle approximation.

From figure 16 we can see that the triangle approximation is a lot better
than the infinite lattice approximation. However, there is still some difference
between the original process and the approximation. We will now explain why
the triangle approximation is different from the original process, and why that
difference is so small. Suppose that, in the original process, the defect makes a
jump to the right. This means that, in the triangle approximation, xt increases
by 1 and yt decreases by 1. Then both ends also make a jump to the right, so
xt decreases to its original value, as well as yt. Afterwards, both xt and yt are
back to normal, and nothing has changed. But that is not true. When the right
end moves to the right, it gets closer to the end of the nucleosome. When it hits
the end, there is a definite change in the dynamics of the system, because then
the jump yt → yt + 1 is prohibited.

There is only one conclusion we can draw from this previous argument.
Knowing the value of xt and yt is not sufficient to determine the state of the
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Figure 17: When both ends and the defect make a jump to the right, the
triangle approximation makes a triangular loop. This means that the triangle
approximation neglects any effects caused by such motion, and is therefore not
perfect.

original process. So the triangle approximation is based on incomplete informa-
tion, and therefore, it fails to describe the process exactly. However, to get a
difference between the triangle approximation and the original Markov chain,
we supposed that both ends make a jump. That means that such an event will
occur with a probability of order λ2. As λ is assumed to be small compared to
µ, the effect of these events is negligible.

5 Multiple nucleosome Dynamics

Until now, we have only looked at the behaviour of a single nucleosome on a
DNA chain. In short, this nucleosome makes a symmetric nearest neighbour
random walk on the chain with some diffusion constant D. However, it makes
no sense to study a single nucleosome in a vacuum. In a human cell, there are
many other proteins with which the nucleosome interacts. Not in the least, the
nucleosomes interact with each other.

Suppose two nucleosomes attached to a single DNA chain happen to diffuse



towards each other. These nucleosomes are large proteins, which cannot pass
each other without letting go of the DNA chain. But that will not happen,
because they are strongly attached to the DNA. So these nucleosomes hit, stay
close for a while, and then they diffuse away. Now envision a DNA chain with
many nucleosomes attached to it. All of these nucleosomes perform a symmetric
random walk, all with the same diffusion constant, and they never interchange
positions.

We will model the behaviour of nucleosomes on a DNA chain as a Markov
process. The DNA is represented by a line of binding sites, which can be oc-
cupied by nucleosomes. If a site is occupied, there will be a region of 14 sites
around it which cannot be occupied anymore. For the moment, let us be sat-
isfied with requiring that there is never more than one nucleosome per binding
site. This means the nucleosomes can get quite close to each other, but they
cannot change their relative positioning. The entire state of the DNA chain and
the nucleosomes can be described by a sequence of zeros and ones, where a 1
indicates that a certain site is occupied, and a 0 indicates it isn’t. In principle,
the DNA has only a finite number of base pairs, and this should be a finite
sequence. In practice, we are working on a length scale of single base pairs,
whereas a DNA chain can be millions to billions of base pairs long. Therefore,
it is probably not very harmful to assume that the sequence is infinite. The
dynamics of the nucleosomes are then described by the symmetric exclusion
process. It is discussed in great detail by Liggett [9] and Seppäläinen [11].

Definition 7. The symmetric exclusion process is the stochastic process with
state space {0, 1}Z = {η : Z→ {0, 1}} and generator

Lf(η) =
1

2

∑
x∈Z

[f(ηx,x+1)− f(η)], (77)

where ηx,y denotes the configuration after interchanging η(x) and η(y):

ηx,y(z) =

 η(z) z /∈ {x, y}
η(x) z = y
η(y) z = x

(78)

5.1 The asymmetric tagged particle process

The main question raised at the beginning of this article is: How can a DNA
chain be transcribed, when there are so many nucleosomes attached to it? Part
of the answer has already been given. The full information stored on the DNA
is never visible, because the DNA is covered in nucleosomes. But these nu-
cleosomes move around, and any specific site becomes available every once in
a while. So an RNA polymerase can attach itself to the DNA at any specific
point, but only after the site has cleared.

But what happens after the polymerase is attached? The polymerase wants
to move forward, but every step it makes, it has to wait before the site in
front of it is clear. Only when the nucleosome in front of the polymerase moves



forward, the polymerase can advance. And after that, the nucleosome can never
go back to its previous position. So this nucleosome gets pushed forward by the
polymerase in a special way. After a few steps, this nucleosome hits a second
one, which will then have to move forward too. In this way, nucleosomes will
accumulate in front of the polymerase, and the entire bulk slows down.

It is clear that whenever an RNA polymerase is attached to a DNA chain, it
gets slowed down by a bulk of nucleosomes. It is not clear, however, how much
and how fast it slows down. In the end, we will show that the average speed
of the polymerase decreases like v(t) ∝ t−1/2. But first we have to adapt our
model to include the polymerase.

To take the polymerase into account, we modify the symmetric exclusion
process by enforcing that one of the particles only jumps forward, and never
backwards. This special particle represents the polymerase, and as such, it will
move at a different rate than the nucleosomes. Of course, the polymerase is
still hindered by the nucleosomes, so it can only move if the site in front of
it is unoccupied. We normalise time such that the rate of movement of the
nucleosomes is 1. The rate at which the polymerase tries to move is called α.

Whenever the polymerase would move forward, we shift all other particles
backwards instead. In this way, the dynamics are exactly the same, but the
polymerase remains at its original position, which we assume to be the origin.
Finally, it only matters what happens in front of the polymerase, so we discard
all information about the particles behind it. We call this new process the
asymmetric tagged particle process.

5.1.1 Invariant measures

Definition 8. The asymmetric tagged particle process is the process with state
space Ω := {η ∈ {0, 1}N : η(0) = 1} and generator

Lf(η) =
1

2

∞∑
x=1

[f(ηx,x+1)− f(η)] + α(1− η(1))[f(τ1η)− f(η)], (79)

where

τ1η(x) =

{
1 x = 0
η(x+ 1) x ≥ 1

(80)

Now that the process is accurately described, let us turn to the question
at hand: At what speed does the polymerase move? Although the tagged
particle stays fixed in the origin, the information about the relative position of
the particle is not lost. We can simply count the number of shifts that have
occurred. So the speed of the polymerase is equal to the rate at which shifts
occur, which is α(1− η(1)).

Within the model, it is obvious that there will be infinitely many particles
attached to the DNA. If we start the process from a measure for which the
particle number is almost surely infinite, then that will remain so for all time.
If the process converges a limiting measure, that will be an invariant measure
with infinitely many particles.
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Figure 18: The Asymmetric Tagged Particle Process. The nucleosomes all make
a symmetric random walk, and the polymerase moves forward with rate α.
Whenever any jump would cause two particles to be at the same site, that jump
is prohibited. Also, when the polymerase moves, the entire configuration is
shifted backwards, and the first site is discarded.

Theorem 11. The only invariant measure of the process such that
∑∞
x=1 η(x) =

∞ almost surely is the Bernoulli product measure with parameter 1, i.e.

∀x : ν1{η(x) = 1} = 1. (81)

Proof. The proof of this theorem will be easier if we switch to a different rep-
resentation of the process. Let ζt(j) denote the number of unoccupied sites
between the j-th and the j + 1-th particle. Formally, for a given η ∈ Ω, let
fη(x) = η(x)

∑x
i=0 η(i). Then

ζ(j) =

{
f−1η (j + 1)− f−1η (j)− 1 j > 0
f−1η (1)− 1 j = 0.

(82)

Remark that fη : N → N is surjective because
∑∞
x=1 η(x) = ∞. The transition

rules in this representation take a different form than before. If the j-th particle
makes a jump to the right, then ζ(j) decreases by one, and ζ(j − 1) increases
by one. Of course, this can only happen if the site in front of the particle is
empty, in other words, if ζ(j) 6= 0. If the polymerase moves, ζ(0) decreases by
one, and that’s all that happens.

The process in terms of ζt can also be described as a stochastic process. The
state space of the process is NN := {ζ : N→ N}. In order to give the generator
we need some definitions. g(x) := 1x>0, ∂x is the configuration with no particles
except at site x, and summation is done pointwise. Furthermore,

Lsf(ζ) := g(ζ(0)){f(ζ − ∂0)− f(ζ)}, (83)



Lx,yf(ζ) := g(ζ(x)){f(ζ − ∂x + ∂y)− f(ζ)}, (84)

The generator is then given by

L = αLs +
1

2

∞∑
x=0

[Lx,x+1 + Lx+1,x]. (85)

This representation of the process is called the zero range process.
Let µ be an invariant measure for this new process. This means that µS(t) =

µ for all t ≥ 0. So for all continuous functions f : NN → R we have∫
S(t)fdµ =

∫
fd(µS(t)) =

∫
fdµ. (86)

This does not depend on t, so the derivative d
dt

∫
S(t)fdµ vanishes.∫

Lfdµ =

∫
d

dt
S(t)fdµ =

d

dt

∫
S(t)fdµ =

d

dt

∫
fdµ = 0. (87)

This equation holds for all continuous functions f , but in order to get something
useful out of it, we will have to make a clever choice. This turn out to be
fx(ζ) = g(ζ(x)). Then we have that Lsfx(ζ) = −δx,0fx(ζ), and Lx,yfz(ζ) =
fx(ζ)(δy,z−δx,z). If we introduce px = Pµ{ζ(x) 6= 0} =

∫
fxdµ, and use eqn. 87,

we get
∀x ≥ 1 : 2px = px+1 + px−1, (88)

p1 = (1 + 2α)p0. (89)

The unique solution to this system is px = (2x + 1)p0, but this solution is
unbounded if p0 6= 0. So p0 = 0, which means px = 0 for all x. So there are
no holes at all in the system, which means that the configuration is entirely
filled.

5.1.2 Speed of the polymerase

We have argued that the speed of the polymerase is proportional to the proba-
bility that η(1) = 0. Consequently, as t tends to infinity, this probability reduces
to zero and the polymerase slows down. Now we investigate how fast the speed
of the polymerase decreases. The results in this section are similar to results
obtained by Olla and Landim [20].

The exact behaviour of the system will of course depend on its starting
distribution. When the polymerase attaches to the DNA chain, the nucleosomes
have not felt its influence yet, so we assume they are in equilibrium. The
equilibrium states for the symmetric exclusion process are Bernoulli product
measures νρ, defined by νρ{η(x) = 1} = ρ for all x. So the starting distribution
will be νρ for some 0 < ρ < 1.

We will work again in a continuum limit. As before, we rescale the space
coordinate x → x

N , while simultaneously scaling time by t → N2t. We then



suppose that the measures

πNt :=
1

N

∑
x∈Z

ηN2t(x)δ
( x
N

)
(90)

converge in probability to a macroscopic profile Ψ(x, t)dx. Here δ denotes the
Dirac measure, and dx the Lebesgue measure. This macroscopic profile will
then obey the differential equation

∂Ψ

∂t
=

1

2

∂2Ψ

∂x2
− v(t)

∂Ψ

∂x
, (91)

with boundary conditions Ψ(0, t) = 1,Ψ(x, 0) = ρ, and

v(t) := α
∂Ψ

∂x
(0, t). (92)

We do not attempt to prove these facts here, because the proof is rather long
and complicated. In [8], an analogous result is proven for other types of exclu-
sion processes. We expect that a similar technique can be used to prove the
convergence in this case. So let us suppose that the continuum limit works, and
try to solve the differential equation (eqn. 91).

Before we begin, let us remark that the function v(t) can indeed be associated
to the speed of the polymerase α(1 − ηt(1). To be more precise, if the system
starts from a Bernouilli measure with parameter 0 < ρ < 1, and we define
ṽt = α(1− ηt(1), then

1

t

∫ t

0

ṽsds ∼ v(t), (93)

as t→∞.

Theorem 12. There exists a constant C such that

v(t) =
C√
t
, (94)

and

erfc(C
√

2)Ce2C
2

=

√
2

π
α(1− ρ), (95)

where erfc denotes the complementary error function: erfc(x) := 2√
π

∫∞
x
e−y

2

dy

Proof. We will use the method of separation of variables. If we can find new
coordinates y(x, t) and τ(x, t) such that

∂t

∂y
= 0,

∂t

∂τ
= 1,

∂x

∂y
= 1,

∂x

∂τ
= −v(t),



then the differential equation in terms of y and τ simplifies to the heat equation

∂Ψ

∂τ
=

1

2

∂2Ψ

∂y2
. (96)

From the conditions on y and τ it follows that τ = t and y = x+
∫
v(t)dt. Here

we will adopt a somewhat circular procedure. We assume that v(t) = Ct−1/2

for some C, and use that to find a solution to the differential equation (eqn. 91),
with the right boundary conditions. From that solution, we can calculate v(t)
by using eqn. 92, and see whether it is consistent with our assumption. It will
turn out that the consistency condition is indeed satisfied, and we can even
determine the constant C. So then we have found a solution to the differential
equation

∂Ψ

∂t
=

1

2

∂2Ψ

∂x2
− α∂Ψ

∂x

∣∣
x=0

∂Ψ

∂x
(97)

This does not prove that v(t) has the right form, because there could be other
solutions to the differential equation. But, most of the time, the solution to
a differential equation is uniquely determined by its boundary conditions. So
we stop looking for another solution. With this idea in mind, we return to the
calculations. Assume that v(t) = Ct−1/2, so that y = x + 2C

√
t. A complete

set of solutions of the heat equation is given by

Ψa(y, t) =
1√
2πt

e−
(y−a)2

2t . (98)

We can substitute y and then integrate over a to find

Ψ(x, t) = ρ+ (1− ρ)
erfc

(
x√
2t

+ C
√

2
)

erfc(C
√

2)
. (99)

We can see this solution satisfies all the boundary conditions

lim
t→0

Ψ(x, t) = ρ, (100)

lim
x→0

Ψ(x, t) = 1, (101)

lim
t→∞

Ψ(x, t) = 1, (102)

lim
x→∞

Ψ(x, t) = ρ. (103)

(104)

And furthermore that

∂Ψ

∂x
(0, t) = −

√
2

π
(1− ρ)

e−2C
2

erfc(C
√

2)
· 1√

t
(105)

So the consistency equation (eqn. 92) is satisfied if and only if erfc(C
√

2)Ce2C
2

=√
2
πα(1− ρ).



Figure 19: Graph of Ψ(x, t) for t = 0, 10, 20, 50, 100, 200. As t→∞, the density
of nucleosomes at the beginning increases to 1.

Now something very strange happens. The theorem states that v(t) is in-
versely proportional to the square root of time, and that the proportionality
constant satisfies some consistency equation. But this consistency equation is
not really what we expect of it. The function on the left hand side is strictly in-
creasing and continuous, so it is injective. Therefore, the constant C is uniquely
determined by α and ρ. The function is not surjective, however, as

lim
C→∞

erfc(C
√

2)Ce2C
2

=

√
1

2π
, (106)

which implies that the solution only works if 2α(1− ρ) < 1.
It is not clear why our calculation fails if α becomes larger than 1

2(1−ρ) .

Suppose we consider the asymmetric tagged particle process, with α� 1. This
means that the polymerase is continuously trying to move forward. Once the
first nucleosome makes a step to the right, the polymerase immediately follows,
so it can never turn back. Then the first nucleosome effectively takes on the role
of the polymerase, but it moves forward with rate 1

2 , instead of α. We expect
that, if α → ∞, the density evolves completely like it would if α = 1

2 (at least
for large x).



Figure 20: 3-dimensional graph of Ψ(x, t). The limits in eqn. 100 are clearly
visible.

5.2 A more realistic process

By now we know that after a polymerase has attached to a DNA chain, it gets
hindered by the nucleosomes on that DNA chain so much that it is practically
unable to move forward. The speed of the polymerase decreases like t−1/2, so
its position is proportional to t1/2.

Our model predicts that a polymerase is unable to transcribe a DNA chain,
because of the nucleosomes. If this were true, all of the information stored on
the DNA could not be read. Therefore, the model has to be incorrect. That is,
we have to include another ingredient to make it work.

At this point, we would like to describe an experiment conducted by ten
Heggeler-Bodier ([18]). There a DNA chain with nucleosomes attached to it
was put into solution along with RNA polymerase. The polymerase attached
to the chain, as it should, and then it started to move. While it was moving
forward, the nucleosomes in front of it detached from the DNA. Curiously, the
nucleosomes did not reassemble after the polymerase had moved through. Then
the same experiment was repeated, but with some cell nucleus extract added to
the solution. The same thing happened, but now the nucleosome did reassemble



on the DNA chain.
This experiment is relevant to us because it shows that the polymerase is

able to push nucleosomes forward, and even disassemble them from the DNA,
without the help of other proteins. In order to see how this can happen, we
need to go back to single nucleosome dynamics. Let us focus our attention to
the first nucleosome after the polymerase. When the first stretch of DNA on
the side of the polymerase unwraps, those 10 base pairs become available to the
polymerase. If the polymerase moves forward before the DNA stretch rewraps,
the nucleosome has effectively lost a binding site. If this happens fourteen times
in a row, the nucleosome will have completely disassembled, and it falls off. Of
course, the rate with which a DNA stretch rewraps is a lot larger than the rate
with which it unwraps, especially for the inner binding sites. But in this case
the DNA stretch cannot rewrap anymore, so it is only a matter of time before
the nucleosome falls off.

There are quite a few things necessary for a nucleosome to disassemble. First
of all, the first binding site has to open. Then the polymerase has to move before
it closes, which will not always be the case. And then this process has to repeat
itself fourteen times. So the rate at which the first nucleosome falls off will be
very small, but nevertheless, it will be nonzero.

Let us now turn to calculations. We start with defining the new generator,
then we calculate the equilibrium distribution.

Definition 9. The generator of the new process is given by

Lf(η) =

∞∑
x=1

[f(η(x,x+1))− f(η)] + α(1− η(1))[f(τ1η)− f(η)] + ε[f(η†)− f(η)].

(107)
We use the same notations as before, and

η†(x) :=

{
0 x = 1
η(x) x 6= 1

(108)

Furthermore, ε is assumed to be small compared to α, and 1.

Lemma 10. If µ is an invariant measure for this new process, then

µ{η(1) = 1} < 1. (109)

Proof. As before, let fx(η) := η(x), and let µ denote the equilibrium distribu-
tion. Again, it has to hold that

∫
Lfxdµ = 0. Let us now define px =

∫
fxdµ,

and c(x) = covµ(η(x), η(1)). If we now plug in the explicit form of the generator,
we get

∀x ≥ 2 : px+1+px−1−2px+α(1−p1)(px+1−px)−α(c(x+1)−c(x)) = 0, (110)

p2 − p1 + α(p2(1− p1) + c(2))− εp1 = 0. (111)

Suppose now that p1 = 1. Then η(1) = 1 almost surely, and consequently
c(x) = 0 for all x ≥ 2. If we then look at the second equation, we get that
p2 = 1 + ε > 1. That is a contradiction, so p1 cannot be exactly 1.



This lemma is actually great news, because it proves that the speed of the
polymerase will not decrease to zero in the new model. There will still be nucleo-
somes accumulating in front of the polymerase, but the size of this accumulation
will remain bounded. As a last order of business, let us estimate the speed at
which the polymerase moves in this new description.

Theorem 13. If the system starts out from the Bernoulli measure νρ,

lim
t→∞

v(t) =
ε

ρ
+O(ε2). (112)

Proof. From earlier observations, we know that v(t) = α(1 − P{ηt(1) = 1}),
which implies that v := limt→∞ v(t) = α(1 − p1). We would like to calculate
β := 1− p1 from equations 110 and 111, but there is a contribution c(x) which
may be problematic. But we know that the covariance of two random variables
is smaller in magnitude than the product of their respective standard deviations.
We expect p1 to be close to unity, so the variance of η(1) will be very small.
Therefore, c(x) will be negligible, so we assume c(x) = 0 for all x ≥ 2. Then
eqn. 110 reduces to a linear recurrence relation

px+1 + px−1 − 2px + αβ(px+1 − px) = 0. (113)

for all x ≤ 2. This equation has linearly independent solutions px = 1 and
px = (1 + αβ)−x. The full solution is a linear combination of those:

∀x ≥ 1 : px = ρ+ (1− ρ− β)(1 + αβ)−x+1. (114)

Remark that limx→∞ px = ρ, so ρ is indeed the density of nucleosomes at
infinity. The other equation, eqn. 111 allows us to determine β, which results
in

β =
ε

αρ+ ε
=

ε

αρ
+O(ε2), (115)

and finally,

v = αβ =
ε

ρ
+O(ε2). (116)

The most remarkable thing about theorem 13 is that the asymptotic speed of
the polymerase does not depend on α. That is, as long as α is much larger than
1. This is not illogical. If the polymerase pushes harder on the nucleosomes,
there will be a larger accumulation, and the polymerase gets dragged more. In
the end, the effects balance out precisely.

In a way, this is the only result that could have come out of the analysis. The
polymerase has to push the nucleosomes forward, or it has to disassemble them.
The symmetric exclusion process admits no flux of particles, so the polymerase
has to detach all the nucleosomes it encounters. The speed at which it detaches
nucleosomes is ε, and the number it encounters is ρ per unit length. So the time
it needs to advance a unit length is ρ

ε , or equivalently, its speed is ε
ρ .



6 Concluding Remarks

By now we understand quite well what happens when a DNA chain is tran-
scribed by a polymerase. The nucleosomes on the DNA wiggle around, until
the promotor site for the polymerase is free, and the polymerase binds to the
DNA. It then starts to move forward, carrying some of the nucleosomes in front
of it along. As it progresses, more and more nucleosomes will block its path,
and the polymerase slows down. Eventually, the first nucleosome gets pushed
so hard that it falls off the DNA. Then the polymerase can advance, until it
encounters the second nucleosome, and the entire story repeats itself.

There are two crucial ingredients for this to happen. First of all, the sliding.
If the nucleosome were not sliding, the promotor site of the polymerase would
never be totally free, and nothing would happen. Second, there is the breathing.
The first nucleosome in front of the polymerase has to be breathing, otherwise
it would not fall off the DNA. Then the polymerase gets dragged almost to a
full stop.

We have discussed both these processes, but there is a lot we did not discuss.
In the single nucleosome part, we used a very simplified model of the breathing
process, which can definitely be improved on. Instead of assuming that the rate
with which a nucleosome unwraps and rewraps are the same, a better approx-
imation would be to assume that the rate of unwrapping is always a certain
factor smaller than the rewrapping rate. Also, in the multiple nucleosome part,
we ignored the size of the nucleosomes, which means we also ignored all excluded
volume effects.

Perhaps the most important factor that we left out is the DNA itself. The
binding and bending energies of a DNA chain are strongly dependent on its
sequence ([23, 16, 21]). This means that the nucleosomes do not make a sym-
metric random walk along the DNA, but a random walk governed by a potential
landscape. Therefore, we should also consider the symmetric exclusion process
in a potential landscape. Although this is a very interesting process to study,
both from a physical as well as a mathematical point of view, doing so would
take us too far for this thesis. That might be a good topic for future study.

7 Appendix

Definition 10. In the following chapter, xt will denote a Markov process on X,
which is a compact metric space with a sigma-algebra generated by Borel subsets.
The semigroup associated to this process is called S(t), and the generator L.

7.1 Relation between hitting times and Dirichlet prob-
lems

Definition 11. A hitting time for a Markov process xt is a time τ of the form
τA = inf{t ≥ 0|xt ∈ A}, where A is a Borel set.



Lemma 11. If xt is a Feller process and A ⊂ X a closed set, then the hitting
time τA is a (not necessarily bounded) stopping time.

Proof. If τA = t, there exists a decreasing sequence of times tn ≥ t such that
xtn ∈ A for all n and tn → t as n → ∞. The trajectory of a Feller process is
almost surely right continuous. This means that xt = limn→∞ xtn , and because
A is closed, xt ∈ A. So the question whether τA ≤ t is determined by the
trajectory up to time t.

Lemma 12. Let τ = τA be a hitting time for a Feller process xt, with A ⊂ X
closed. Let L be the generator of xt, and D(L) its domain. Then the stopped
process yt = xmin(t,τ) is also a Markov process, and its generator L′ satisfies

L′g(x) =

{
Lg(x) : x ∈ A
0 : x /∈ A (117)

for all g ∈ D(L).

Proof. First of all, remark that the evolution of the stopped process after time t
depends only on xt and whether τ ≤ t. For a hitting time, however, the question
whether τ ≤ t is also completely determined by xt. So the future of the process
only depends on the position at time t, or in other words, it is Markov.

It is trivial to show that L′g(x) = 0 if τ = 0. Therefore, we will assume
τ > 0. By definition of the generator we have that:

L′g(x)− Lg(x) = lim
t↓0

E[g(xmin(t,τ))− g(xt)]

t
. (118)

By general theory, we know that Mt = g(xt) − g(x0) −
∫ t
0
Lg(xs)ds is a mar-

tingale. Because τ is a stopping time for the process, τ ′ = min(τ, t) is also a
stopping time for any fixed t > 0. This τ ′ is bounded above by t, so we may
apply the optional stopping theorem to obtain:

E[g(xτ ′)− g(xt)] = E[

∫ t

τ ′
Lg(xs)ds]. (119)

Therefore, we can estimate

|E[g(xτ ′)− g(xt)]| ≤ E[t− τ ′] sup
x∈X
|Lg(x)|. (120)

The generator L maps D(L) into C(X), so Lg is continuous. This means Lg
is a continuous function on a compact space, which is necessarily bounded.
Furthermore, by using the law of total expectation, we can see that

E[t− τ ′]
t

= P (τ < t)
E[t− τ |τ < t]

t
. (121)

In the limit t ↓ 0, the probability P (τ < t) decreases to 0, while the second term
is bounded. In conclusion, we have proved that

E[g(xmin(t,τ))− g(xt)]

t
as t→ 0, (122)

which is exactly what we need.



Theorem 14. Let A,B ⊂ X be disjoint closed subsets of X, and τ = τA∪B. It
is assumed that A and B are such that P (τ < ∞) = 1. Denote with f(x) the
probability that the process, starting from x ∈ X, reaches the set A before B,
i.e.

f(x) = P x{xτ ∈ A}. (123)

Then, the following hold:

∀x ∈ A : f(x) = 1, (124)

∀x ∈ B : f(x) = 0, (125)

∀x ∈ X\(A ∪B) : Lf(x) = 0. (126)

Proof. The first two conditions are trivial, the third requires some work. Con-
sider the stopped process yt = xmin(t,τ), and note that it holds that

f(x) = P x{xτ ∈ A} = Ex[1A(xτ )] = lim
t→∞

Ex[1A(xmin(t,τ))] = lim
t→∞

Ex[1A(yt)].

(127)
If we apply the generator of the stopped process to f , we see that

L′f(x) = lim
t→∞

L′S′(t)1A(x) = lim
t→∞

d

dt
S′(t)1A(x) = 0. (128)

As shown in the previous lemma, the generator L′ of the stopped process satisfies

L′g(x) =

{
Lg(x) : x /∈ A ∪B
0 : x ∈ A ∪B (129)

for all g ∈ D(L). Therefore, the condition L′f(x) = 0 is automatically met for
x ∈ A ∪B, but for x ∈ X\(A ∪B) it means that Lf(x) = 0.

Remark 1. The proof above is actually not correct. We cannot apply the gen-
erator to an indicator function, because that function is not continuous, in gen-
eral. However, given the correct regularity conditions on S(t), A and B, this
does not pose a real problem. In our case, these regularity conditions will always
be satisfied. A more rigorous version of this theorem is proven in [13].

7.2 Dirichlet problems for finite Markov chains

A very important class of Markov processes are Continuous time Markov chains
with finite state space. The generator then takes on a relatively simple form,
which makes the Dirichlet problem easier to solve.

Definition 12. In this section, xt will be a reversible Markov chain with finite
state space X and transition rates rx→y. The generator of this process is given
by

Lf(x) :=
∑
y∈X

rx→y[f(y)− f(x)], (130)



for all f : X → R. Now let π denote the stationary distribution of this process,
and define dx := #{y : rx→y 6= 0}. We will assume that the rates are normalized
such that ∀x ∈ X :

∑
y∈X rx→y = dx

π(x) , and that dx 6= 0 for all x ∈ X. Note

that rescaling the rates results in another process viewed in continuous time, but
with the same jump process.

Definition 13. The edge weights are given by wxy := π(x)rx→y. From this
definition it immediately follows that

∀x, y ∈ V : wxy = wyx, and (131)

∀x ∈ V :
∑
y∈V wxy = dx. (132)

We can now define the graph of X by x ∼ y ⇐⇒ wxy 6= 0.

Definition 14. For any S ⊂ X, let FS denote the real vector space of all
functions from S to R. Remark that the generator L now acts as a linear map
from fX to itself. For S′ ⊂ S, and f ∈ FS, fS′ denotes the function f restricted
to S′. Also, for a matrix A defined on S, we define AS′ as the submatrix
consisting of those elements A(x, y), where x, y ∈ S′.

Definition 15. For a given S ⊂ X, let δS denote the set of all vertices not in
S, but adjacent to S: δS = {x /∈ S : ∃y ∈ S : x ∼ y}. The Dirichlet problem
is to find, for a given S ⊂ X and σ : δS → R, a function f ∈ FS∪δS such that:

(Lf)S = 0, (133)

fδS = σ. (134)

Remark 2. If S is not connected, we can solve the Dirichlet problem for each
of its connected components, then put those solutions together. Therefore, we
will from now on assume that S is connected.

Remark 3. We can rewrite the generator to see that (Lf)S = 0 ⇐⇒ (∆f)S =
0, where

∆(x, y) =

{
1− wxx

dx
: x = y

−wxydx : x 6= y
∀x, y ∈ S ∪ δS. (135)

Note that this matrix is in general not symmetric. However, it is similar to
a symmetric matrix L = T 1/2∆T−1/2, where T (x, y) = 1x=ydx. This matrix
is called the normalized Laplacian of S. Of course, any submatrix of L is
also symmetric. Therefore, there exists an orthonormal basis of eigenfunctions
of LS .

Theorem 15. Let {(φi, λi), i ∈ I} be such an orthonormal eigensystem of LS.
The solution to the Dirichlet problem is then given by:

f(x) =
∑
i∈I

1

λi

∑
z∈S

z∼y∈δS

wyzφi(z)σ(y)d−1/2z d−1/2x φi(x). (136)



Proof. We need to solve (Lg)S = 0, where g = T 1/2f . Observe now that for all
x ∈ S:

(Lg)S(x) =
∑

y∈S∪δS

L(x, y)g(y) = LSgS(x) +
∑
y∈δS

L(x, y)g(y) = 0. (137)

So we need to solve the equation LSgS = α, where

α(x) = −
∑
y∈δS

L(x, y)g(y) =
∑
y∈δS

d−1/2x wxyσ(y) (138)

The matrix-tree theorem [6] states that the number of spanning trees of S equals
detLS ×

∏
x∈S dx. Because S is assumed to be connected, there is at least one

spanning tree, so the determinant of LS is nonzero. In other words, LS is
invertible. If we use that LS =

∑
i∈I λiφiφi

T , we can compute

gS = LS−1α =
∑
i∈I

1

λi
φiφi

Tα, (139)

fS = T−1/2gS =
∑
i∈I

1

λi
T−1/2φiφi

Tα. (140)

If we work out this last expression, we see that :

fS(x) =
∑
i∈I

1

λi

∑
y∈S

∑
z∈δS

σ(y)wyzφi(z)d
−1/2
y d−1/2x φi(x) (141)
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