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ABSTRACT

Context. To get fully acquainted with Voronoi diagrams, Delaunay triangulations and the relationship between the two. To investigate
a computational side of these tessellations and an application in astronomy in the form of modeling the Cosmic Web.
Aims. First of all, to present and understand Brown’s algorithm, its tools, benefits and drawbacks. Secondly, to familiarize ourselves
with modern views on and models of the Cosmic Web, and one of the new interesting tools used, namely the Delaunay Tessellation
Field Estimator (DTFE). In particular, we are interested in accessing the quality of its reconstructions quantitatively.
Methods. Obvious key concepts are Voronoi diagrams and Delaunay triangulations. For the computational component inversion and
complexity analysis are of importance. For the astronomical component, various sampling methods and Fourier transforms come into
play.
Results. It seems that Brown’s algorithm has clear benefits in higher dimensional computations, but for two and three dimensions
there may be better alternatives. Even though the DTFE reconstructions of the Cosmic Web appear to be visually satisfying, it appears
that it is actually very sensitive to Poisson noise in the point distribution and in principle, minor effects may seriously distort the actual
underlying continuous distribution. Greater care needs to be taken to access this further. There are many further research topics open
here.

Key words. Voronoi diagrams – Delaunay triangulations – Brown’s algorithm – Cosmic Web – Delaunay Tessellation Field Estimator
(DTFE)

1. Introduction

The core component of this paper concerns Voronoi diagrams
and Delaunay triangulations. Many structures and patterns in
nature, in science and in technology possess morphological re-
semblance to them (Davies 1996 and Okabe 2000). Over time
a large amount of literature has accumulated about these topics.
This papers begins by presenting all the necessary tools that we
will need in order to answer our research questions. The first
thing that we investigated is computing Voronoi diagrams. We
studied Brown’s algorithm, which is fairly efficient, but most im-
portantly, it can be generalized to any dimension. Furthermore,
since Voronoi diagrams are so tightly related with Delaunay tri-
angulations, we can essentially compute Delaunay triangulations
with it as well. After that we investigated the application of these
powerful tools in astronomy. More specifically we would like to
model the matter distribution in the Cosmic Web. By means of
the Delaunay Tessellation Field Estimator (DTFE) we can go
from a discrete point distribution to a continuous density field.
This tool is very applicable for astronomy, but not only, as this
is a recurring point of interest in a number of fields. The success
of the DTFE has been published in recent years, we aimed at ac-
cessing its quality in reconstructing an already known continu-
ous field. There are some very interesting points that will require
strong further research. One must always remember the great

cosmological implications that can be made if one is successful
in modeling the continuous distribution of matter in the Cosmic
Web, such as understanding the constituents of the Cosmic Web
better and being able to describe the general structure of the
Universe. Furthermore, it is believed that present day structures
were formed by early fluctuations and are the key to understand-
ing the origin of the Universe.

2. Essential Definitions and Concepts

Let us lay down the basis of this paper immediately by stating
a number of definitions and concepts. These will be strictly ad-
hered to throughout the paper.

Let us work in the m-dimensional Euclidean space Rm from
now onwards, unless explicitly stated otherwise. We will use the
standard metric of Rm, when we speak about distances.

First of all, we begin with some basic definitions.

Definition 1. A closed half-space is a set of the form G ={
x ∈ Rm | aT x ≤ b

}
, where a ∈ Rm, a , 0 and b ∈ R.

Definition 2. A hyperplane is a set of the form H ={
x ∈ Rm | aT x = b

}
, where a ∈ Rm, a , 0 and b ∈ R.
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Remark 3. If G and H are defined as in Definitions 1 and 2, re-
spectively, then one can say that G is generated by H.

Remark 4. A hyperplane is a closed set.

Definition 5. An affine subspace of Rm is any set of the form
{x ∈ Rm | Ax = b}, where A is a m× k matrix with coefficients in
R, b ∈ R and k ∈ {0, . . . ,m}.

Definition 6. An m-sphere centered at t ∈ Rm+1 is a set of the
form S m =

{
x ∈ Rm+1 | ‖x − t‖ = ρ

}
, where ρ ∈ R>0 is the radius

of the m-sphere.

Remark 7. Observe that this is a sphere of the highest possible
dimension in Rm+1.

Definition 8. A k-sphere, for 0 ≤ k < m, centered at t ∈ Rm+1

and of radius ρ ∈ R>0, denoted S k, is defined as the intersection
between S m and an affine subspace of Rm+1 of dimension k + 1,
which contains t.

Secondly, we introduce the concept of convexity.

Definition 9. The straight line segment joining two points p, q ∈
Rm is a set of the form {λp + (1 − λ) q | λ ∈ [0, 1]}.

Definition 10. A set of points S is called a convex set if the
straight line segment joining any two points in S belongs to S
again, i.e.: λp + (1 − λ) q ∈ S∀p, q ∈ S and λ ∈ [0, 1].

Remark 11. An intersection of convex sets is a convex set.

Remark 12. A closed half-space is a convex set.

Remark 13. A hyperplane is a convex set.

Definition 14. Let S = {x1, . . . , xN} ⊂ R
m, where 1 ≤ N. A

convex combination of points x1, . . . , xN is:

x = λ1x1 + . . . + λN xN , (1)

where λi ∈ [0, 1]∀i ∈ {1, . . . ,N} and
∑N

i=1 λi = 1. The set of all
such convex combinations is called the convex hull of S , denoted
CH(S ), i.e.:

CH(S ) =

 N∑
i=1

λixi | λi ∈ [0, 1]∀i ∈ {1, . . . ,N} and
N∑

i=1

λi = 1

 .
(2)

Furthermore, CH(∅) = ∅.

Remark 15. CH(S ) is the unique minimal (inclusion-wise) con-
vex set containing S .

Thirdly, we define more geometrical objects.

Definition 16. A polyhedron is defined as an intersection of
finitely many closed half-spaces.

Definition 17. A polytope is defined as a bounded polyhedron.

Remark 18. Polyhedra and polytopes are closed sets.

Definition 19. Let P be a polyhedron. A point e ∈ P is an ex-
treme point of P if e ∈ {λp + (1 − λ) q}, where p, q ∈ P and
λ ∈ [0, 1], implies that e = p = q.

The set of all extreme points of P is denoted by ext(P).

Definition 20. Let P be a polyhedron. A supporting hyperplane
to P is defined as a hyperplane that has a non-empty intersec-
tion with P and such that all of P lies to only one side of the
hyperplane.

Definition 21. Let P be a polyhedron. A non-trivial face of P is
the intersection of P with a supporting hyperplane. The trivial
faces of P are P and ∅.

Definition 22. Let P be a polyhedron. A polyhedral complex Υ
is defined as a finite non-empty collection of polyhedra such that

1. if P ∈ Υ, then all faces of P are also in Υ;
2. if P,Q ∈ Υ, then P

⋂
Q is a face of both, P and Q.

Similarly to a polyhedral complex, we may define a polytopal
complex.

An example of a polyhedral complex would be Υ ={
F | F is a face of a polyhedron P

}
.

Theorem 23 (Minkowski-Weyl’s theorem). The following
statements are equivalent for P ⊂ Rm:

1. P is a polyhedron;
2. there are finitely many real vectors v1, . . . , vl and r1, . . . , rn

in Rm, where l, n ∈ Z>0, such that P = CH (v1, . . . , vl) +
nonneg (r1, . . . , rn), where nonneg (r1, . . . , rn) denotes all the
non-negative combinations of those vectors.

Corollary 24. A set is a polytope iff it is the convex hull of a
finite set of points.

Finally, we can address Voronoi diagrams.

Definition 25. Let S = {x1, . . . , xN} ⊂ R
m, where 1 ≤ N < ∞,

and xi , x j for i , j and i, j ∈ {1, . . . ,N}. The dominance region
of xi over x j is the closed halfspace given by

H
(
xi, x j

)
=

{
x | ‖x − xi‖ ≤

∥∥∥x − x j

∥∥∥} (3)

for j ∈ {1, . . . ,N} \ {i}. We call the region given by

V (xi) =
⋂

j∈{1,...,N}\{i}

H
(
xi, x j

)
(4)

the Voronoi polyhedron associated with xi.
The set given by

V (S ) = {V (x1) , . . . ,V (xN)} (5)

is the Voronoi diagram generated by S . All of the faces of
V (xi)∀i ∈ {1, . . . ,N} andV (S ) form a polyhedral complex.

An xi ∈ S , where i ∈ {1, . . . ,N}, is called a Voronoi point.
An extreme point of V (xi) ⊂ V (S ), where i ∈ {1, . . . ,N}, is

called a Voronoi vertex.

We see that all of the faces of V (xi)∀i ∈ {1, . . . ,N} and V (S )
form a polyhedral complex from the following. If we pick an
element from this polyhedral complex, then all of its faces are
in the polyhedral complex just from the way we defined it. If
we pick two elements from this polyhedral complex, then their
intersection can be the empty set, which is a face by definition
and in the polyhedral complex by definition. Or it can be a non-
empty set, which will always be a mutual face of some number
of Voronoi polyhedra. The reason being is that any face is an in-
tersection of some dominace regions. Therefore by Definition 22
the specified set is indeed a polyhedral complex.
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Remark 26. An (m − 1)-sphere centered at a Voronoi vertex,
passing through a Voronoi point and not containing any other
Voronoi points in its interior, will pass through at least another
m Voronoi points.

We can also define a so-called farthest-point Voronoi diagram.
To distinguish it from the one defined above, we can term the di-
agram in Definition 25 to be the nearest-point Voronoi diagram.

Definition 27. Let S = {x1, . . . , xN} ⊂ R
m, where 1 ≤ N < ∞,

and xi , x j for i , j and i, j ∈ {1, . . . ,N}. We call the region
given by

V f p (xi) =
⋂

j∈{1,...,N}\{i}

H
(
x j, xi

)
(6)

the farthest-point Voronoi polyhedron associated with xi.
The set given by

V f p (S ) =
{
V f p (x1) , . . . ,V f p (xN)

}
(7)

is the farthest-point Voronoi diagram generated by S . All of the
faces of V f p (xi)∀i ∈ {1, . . . ,N} and V f p (S ) form a polyhedral
complex.

An extreme point of V f p (xi) ⊂ V f p (S ), where i ∈
{1, . . . ,N}, is called a farthest-point Voronoi vertex.

Remark 28. An (m − 1)-sphere centered at a farthest-point
Voronoi vertex, passing through a Voronoi point, outside of
which there are no Voronoi points, will pass through at least an-
other m Voronoi points. (I.e. such an (m − 1)-sphere will contain
all other Voronoi points in its interior, besides the ones it passes
through.)

3. Computing Voronoi Diagrams (Brown’s
Algorithm)

Now a question arises: how can we compute Voronoi diagrams?
Moreover, how can we compute them efficiently? There are
a number of algorithms available nowadays for such purposes
of different complexities, usually depending on the dimension
worked with. In this paper we will study Brown’s algorithm
(Brown 1979). The main reason for focusing on this specific
algorithm is that the algorithm can be easily generalized to m
dimensions. In fact, we will present it here for m dimensions di-
rectly. Furthermore, we can compute nearest-point and farthest-
point Voronoi diagrams simultaneously with it.

We begin by introducing the main tool of Brown’s algorithm,
namely inversion.

Definition 29. Let c ∈ Rm and r ∈ R>0. The inversion with
center of inversion c and radius of inversion r is the following
map:

ι : Rm \ {c} −→ Rm \ {c} (8)
p 7→ p′, (9)

where p ∈ Rm \ {c}, p′ ∈ −→cp and ‖p− c‖ · ‖p′ − c‖ = r2.

A note on notation, above −→cp denotes a ray from c in the direc-
tion of p.

Remark 30. ι is a bijection.

There are some key properties that need to be mentioned imme-
diately and which will form the basis behind Brown’s algorithm:

Fig. 1. Step II of Brown’s algorthm: illustration of Σ.

Fig. 2. Step II of Brown’s algorthm: illustration of inversion.

1. Inversion is involutory, i.e.: ι (ι (p)) = p.
2. A k-sphere that contains c maps onto a hyperplane that does

not contain c, where k ∈ {0, . . . ,m − 1}.
3. A hyperplane that does not contain c maps onto a k-sphere

that contains c, where k ∈ {0, . . . ,m − 1}.
4. A hyperplane that contains c is mapped onto itself.
5. A k-sphere that does not contain c maps onto another k-

sphere that does not contain c, where k ∈ {0, . . . ,m − 1}.

With these tools in mind, we will now go through Brown’s
algorithm step by step.

I. Let S = {x1, . . . , xN} ⊂ R
m, where m + 1 ≤ N < ∞, and

xi , x j for i , j and i, j ∈ {1, . . . ,N}.
Assume that no m + 1 points of S are contained in a hyper-
plane.

Observe that the minimal value of N is m + 1, because other-
wise we could reduce to a lower dimension. The need for the
assumption stated above will become clear at a later stage.

II. Identify Rm with H = Rm × {0}.
Pick a point c ∈ Rm+1 such that c < H.
Let c∗ be the orthogonal projection of c onto H.
Set

r =
1
2

∥∥∥c − c∗
∥∥∥ . (10)

Set
t =

1
2

(
c + c∗

)
. (11)

Let Σ be the m-sphere centered at t and with radius r. View
Fig. 1 for an illustration.
Perform inversion on S with the center of inversion c
and the radius of inversion r to attain the new set S ′ =
{x′1, . . . , x′N} ⊂ Rm+1. View Fig. 2 for an illustration.

Essentially what we did in this step, upon picking such a point
c, is define an m-sphere Σ tangent to H at c∗ and centered at the
midpoint between c and c∗. Then upon performing inversion we
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mapped the points from the set that we started with onto new
points belonging to Σ.

Claim 31. S ′ ⊂ Σ.

Proof. This follows immediately from the third property of in-
version listed earlier in this section. �

III. Construct CH (S ′) with Preparata and Hong’s algorithm
(Preparata and Hong 1977).

Claim 32. CH (S ′) is a polytope inscribed in Σ, hence its faces
form a polytopal complex.

Claim 33. S ′ = ext (CH (S ′)).

Proof. From Claim 32 and the definition of an extreme point of
a polytope (Definition 19) it follows that S ′ ⊃ ext (CH (S ′)).
Observe that for a finite set T = {x | x ∈ Σ}, no x ∈ T belongs to
CH (T \ {x}). This follows from the fact that any (strict) convex
combination of elements of T is in the interior of Σ, i.e. closer to
the center by Pythagoras’ theorem. Therefore it holds that S ′ ⊂
ext (CH (S ′)).
Thus S ′ = ext (CH (S ′)). �

IV. Let F be a face of CH (S ′) of dimension m.
Perform inversion on the supporting hyperplane of F with
the center of inversion c and the radius of inversion r to ob-
tain an m-sphere S m, which intersects with H in an (m − 1)-
sphere S m−1. Do this for all such faces F.

All of this follows directly from the inversion properties listed
earlier in this section.

V. Associate with each F the closed half-space T such that T
is generated by the supporting hyperplane of F and contains
CH (S ′).
If T also contains c, then the center of S m−1 is a nearest-
point Voronoi vertex vF . Otherwise, the center of S m−1 is a
farthest-point Voronoi vertex v f pF .

It is not obvious why this holds. We will now prove why vF is
indeed a nearest-point Voronoi vertex.

Proof. We must prove that vF satisfies the defining property of a
nearest-point Voronoi vertex stated in Remark 26.

1. Consider some vF generated by Brown’s algorithm, where F
is a m-dimensional face of CH (S ′).
In order for F to be an m-dimensional face of CH (S ′) in
Rm+1, it must be that:

|ext (F)| ≥ m + 1. (12)

Since F is a face of CH (S ′), by Claim 33 it must be that:

ext (F) ⊂ S ′. (13)

We have established that ext (F) consists of at least m + 1
points of S ′.
Taking inversion of both sides of equation (13) yields:

ι (ext (F)) ⊂ S . (14)

Then according to equation (12) and the fact that ι is a bijec-
tion (Remark 30):

|ι (ext (F))| ≥ m + 1. (15)

We have established that ι (ext (F)) consists of at least m + 1
points of S .
Since ι (ext (F)) is contained in H and in Σ, it must be that:

ι (ext (F)) ⊂ S m−1. (16)

We have established that S m−1 contains at least m + 1 points
of S .

2. Consider some vF generated by Brown’s algorithm, where F
is an m-dimensional face of CH (S ′).
From the steps of the algorithm, we know that there is a sup-
porting hyperplane to this F, such that CH (S ′) and c lie to
one side of it. Let us denote this supporting hyperplane HF .
If c ∈ HF , then by the fourth property of ι:

ι (HF) = HF . (17)

Since ext (F) ⊂ F and F ⊂ HF , by definition of a supporting
hyperplane (Definition 20), it must be that:

ext (F) ⊂ HF . (18)

Taking inversion of both sides of the above inclusion:

ι (ext (F)) ⊂ ι (HF) = HF . (19)

Since ι (ext (F)) is simultaneously contained in H, it must be
that:

ι (ext (F)) ⊂ H ∩ HF . (20)

Since ι (ext (F)) consists of at least m+1 points of S , H∩HF
will contain at least m + 1 points of S . Since H ∩ HF is a
hyperplane in Rm, this contradicts the assumption of step I.
	
(Now it is clear why that assumption had to be made.)
Therefore it must be that c < HF .
In step IV of the algorithm we inverted HF into S m. We ob-
serve that c ∈ S m, by the third property of ι. Since S ′\ext (F)
lie closer to c than the points on the other side of HF ,
S ′ \ ext (F) will be mapped further away from c, i.e. out-
side of S m. So in the interior of S m there will be no points of
S , and therefore there will be no points of S in the interior
of S m−1.

Both statements of Remark 26 are met. We observe here that
in fact such a sphere is unique, because F is an m-dimensional
face and hence, prior to inversion, these Voronoi points that the
sphere passes through were affinely independent. It must be that
vF is indeed a nearest-point Voronoi vertex. �

Now we will prove why v f pF is indeed a farthest-point Voronoi
vertex.

Proof. We must prove that v f pF satisfies the defining property of
a farthest-point Voronoi vertex stated in Remark 28.

1. Exactly the same as for the nearest-point Voronoi vertex (see
above).

2. Consider some v f pF generated by Brown’s algorithm, where
F is a m-dimensional face of CH (S ′).
From the steps of the algorithm, we know that there is a sup-
porting hyperplane to this F, such that CH (S ′) and c lie to
opposite sides of it and c does not belong to the supporting
hyperplane itself. Let us denote this supporting hyperplane
HF .
In step IV of the algorithm we inverted HF into S m. We ob-
serve that c ∈ S m, by the third property of ι. Since S ′\ext (F)
lie further from c than the points on the other side of HF ,
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S ′ \ ext (F) will be mapped closer to c, i.e. inside of S m. So
in the interior of S m there will be all the remaining points of
S , and therefore there will be all the remaining points of S
in the interior of S m−1.

Since both statements of Remark 28 are met and the same obser-
vation can be made about the uniqueness of this sphere as in the
nearest-point proof, it must be that v f pF is indeed a farthest-point
Voronoi vertex. �

VI. Let E be a (m − h)-dimensional face of CH (S ′) bounded by l
(m − h + 1)-dimensional faces of CH (S ′), F1, . . . , Fl, where
l ∈ Z>0.
Then there will be a h-dimensional face generated by the
Voronoi vertexes acquired from F1, . . . , Fl in the Voronoi
diagram. To determine to which Voronoi diagram these h-
dimensional faces belong we have the following procedure:
– If all the Voronoi vertexes acquired from F1, . . . , Fl are

nearest-point Voronoi vertexes, then the h-dimensional
face belongs to the nearest-point Voronoi diagram.

– If all the Voronoi vertexes acquired from F1, . . . , Fl are
farthest-point Voronoi vertexes, then the h-dimensional
face belongs to the farthest-point Voronoi diagram.

– If some of the Voronoi vertexes acquired from F1, . . . , Fl
are nearest-point Voronoi vertexes and some are farthest-
point Voronoi vertexes, then the h-dimensional face is an
unbounded face of the Voronoi diagram. It will begin at
the nearest-point vertexes and go in the direction of the
farthest-point vertexes, if it is to belong to the nearest-
point Voronoi diagram and vice versa.

From the above step we combinatorially know which Voronoi
vertexes are connected and how. It is quite easy now to get the
Voronoi polytopes. Pick a Voronoi point, then its Voronoi poly-
tope will be the convex hull of its nearest Voronoi vertexes.
This is the same for nearest-point and farthest-point diagrams.
However if the Voronoi point we picked gives rise to a Voronoi
polyhedron, then the situation is no longer trivial. Recall the
Minkowski-Weyl’s theorem (Theorem 23). Compute the convex
hull of the nearest nearest-point (farthest-point) Voronoi vertexes
to the selected Voronoi point (depending on the type of diagram
we are computing), call it C. Consider pairs of nearest-point and
farthest-point vertexes. If the faces that we acquired them from
were “adjacent”, then call the direction vector between those
two d j, where j belongs to some index set. By “adjacent” we
mean those that intersect in an (m − 1)-dimensional face. Take
all the non-negative combinations of all the vectors d j, call it N.
Then the Voronoi polyhedron associated with the Voronoi point
is C + N.

Proof. The initial combinatorial connections presented follow
trivially by construction.
The reason why the convex hull of the nearest Voronoi vertexes
to a certain Voronoi point is indeed the Voronoi polytope asso-
ciated with it follows directly, since we took the convex hull of
the nearest Voronoi vertexes and there will be no other Voronoi
vertexes inside the convex hull by construction and by the defi-
nition of the convex hull (Definition 14). Thus there will indeed
be all the point closest to that Voronoi point and no other inside
that convex hull, and by definition it is then the Voronoi polytope
(Definition 25).
As already mentioned earlier the fact that C + N is a polyhedron
follows from the Minkowski-Weyl theorem (Theorem 23) and
the fact that it is the Voronoi polyhedron has the same reasoning
as for the Voronoi polytope just stated. �

There is still one final claim that remains to be verified.

Claim 34. Brown’s algorithm generates all Voronoi vertexes.

Proof. Consider an arbitrary nearest-point (farthest-point)
Voronoi vertex vF (v f pF ). Then by Remark 26 (28) there will
exist an (m − 1)-sphere centered at vF (v f pF ) such that it passes
through at least m + 1 Voronoi points and does not contain any
(contains all) other Voronoi points in its interior.
By the same method as in the proof of step V, this will mean that
in Rm+1 there will be a hyperplane HF containing the inversions
of the m + 1 Voronoi points belonging to the (m − 1)-sphere.
Furthermore, the inversions of all other Voronoi points will be
to one side of HF , otherwise the (m − 1)-sphere would not be
empty (contain all other Voronoi points). That will also be the
side (opposite to the one) containing c.
Therefore we observe that such a HF would be the supporting
hyperplane of a m-dimensional face of a polytope P, with P and
c lying to the same (opposite) side(s) of it.
Hence Brown’s algorithm finds all nearest-point (farthest-point)
Voronoi vertexes. �

4. Complexity Analysis

Computational complexity is of importance to any algorithm.
Let us address the time complexity of Brown’s algorithm.

The complexity of step I is constant. Step II is of complex-
ity O (N), because inversion is performed on the N points one
starts with. The complexity of step III depends upon the al-
gorithm used to calculate the convex hull. If we were to use
Preparata and Hong’s algorithm, then in two dimensions the
complexity of the computation will be O (Nlog (N)). It may ap-
pear that step IV will be very complex, but actually we already
know through which points the (m − 1)-spheres will pass. This
means that there is only a limited number of locations the centers
of these (m − 1)-spheres will be, therefore the complexity of this
step is O (N). The complexities of both, step V and step VI, are
constant. Adding the complexity of all the six steps together, the
complexity of Brown’s algorithm turns out to be O (Nlog (N)) in
two dimensions. In m dimensions, the complexity will need to
be determined after knowing the complexity of computing the
convex hull. What is clear is the fact that step III appears to be
the most complex and plays the determining role in complexity
analysis.

5. Computing the Convex Hull (Preparata and
Hong’s Algorithm)

It was just established that computing the convex hull in m di-
mensions is the key to quickly computing Voronoi diagrams by
means of Brown’s algorithm. There are a number of algorithms
available for this purpose, however not all work in m dimensions
and not all are applicable to this case, because they may require
additional knowledge about the points, which is not available
here.

Let us quickly mention Preparata and Hong’s algorithm
(Preparata and Hong 1977) here, which was referenced in
Brown’s original paper (Brown 1979). The input for their algo-
rithm is a set of N points in Rm, A = {a1, . . . , aN} ⊂ R

m, which
are sorted with a preliminary step. Namely they are sorted ac-
cording to their first coordinate and relabeled if necessary, so
that ai1 < a j1 ⇔ i < j for i, j ∈ {1, . . . ,N}. Then we can summa-
rize the procedure in three key steps.
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Fig. 3. 2dF Galaxy Redshift Survey
(http://magnum.anu.edu.au/ TDFgg/ 2010).

1. Subdivide A into A1 =
{
a1, . . . , a N

2

}
and A2 ={

a N
2 +1, . . . , aN

}
.

2. Apply this algorithm recursively to A1 and A2 to obtain
CH (A1) and CH (A2).

3. Apply a merge algorithm to CH (A1) and CH (A2) to obtain
CH (A).

The output of the algorithm is in the form of a list of vertexes.
The authors of this algorithm have shown that the time com-

plexity is O (Nlog (N)) in two and three dimensions, while for
higher dimensions O (Nlog (N)) is the lower bound. Therefore
for higher dimensions it may be that it is wiser to use a different
algorithm. For example Chand and Kapur’s algorithm (Chand
and Kapur 1970), which is based on the so-called “gift wrap-
ping” principle. Otherwise, one can apply the Quickhull algo-
rithm of variable complexity depending on conditions (Barber,
Dobkin and Huhdanpaa 1966).

6. The Cosmic Web

Let us now discuss the distribution of baryonic matter in the
Universe on scales of a few up to more than a hundred mega-
parsecs. Generally it is assumed in cosmology that most promi-
nent locators of baryonic matter are galaxies. It is known that
galaxies are not randomly distributed in space. There are regions
in space that have a very high galaxy density, but also regions
where nearly no galaxies are seen at all. In fact, the distribution
is visually similar to a cellular or a foam-like pattern, which has
been termed as the Cosmic Web. For a vivid visualization, see
Fig. 3. The Cosmic Web appears to have four distinctive morpho-
logical components, listed in order of decreasing galaxy density:

1. clusters - spherical gravitationally bound systems of galax-
ies,

2. filaments - thread-like gravitationally bound systems of
galaxies,

3. walls - two dimensional sheets of gravitationally bound
galaxies,

4. voids - convex under-dense regions.

It is possible to make a more quantitative distinction between
the above four constituents by means of the deformation eigen-

values of the Zel’dovich approximation (Platen 2009), but for
our purposes the above qualitative descriptions are sufficient. It
is important to note that the term void, which is an abbreviation
for a “region devoid of galaxies”, is not that trivial to define.
For example, it is not clear how to trace the borders of a void.
Currently, there is no consensus on a definition; however for this
paper the above mentioned one is quite satisfactory. The richest
clusters contain many thousands of galaxies within a relatively
small volume with a diameter of only a few megaparsecs and can
be thought of as cosmic nodes (Weygaert 2009). Meanwhile, the
approximate diameters of voids lie in the range of 20−50h−1Mpc
and can be thought of as cosmic depressions (Weygaert 2009).
Furthermore, hierarchy in the structures of the Cosmic Web has
been observed, suggesting that large components have formed as
a result of small structures merging.

The Cosmic Web has two main characteristics:

1. it is highly anisotropic;
2. clusters weave the Cosmic Web.

The first point is intuitively clear from the above description. The
second point is deduced from the fact that clusters are the most
massive components of the Cosmic Web and the theory about
gravity being the dominant interaction. It is a possibility to study
the Cosmic Web from the point of view of clusters; however it
also makes sense to start with locating the voids, because they
are the largest in size and they are very striking features. The
Watershed Void Finder (WVF) developed by Erwin Platen, Rien
van de Weygaert and Bernard J.T. Jones in 2007 appears to be
one of the best void finders up to date (Platen 2007 and Platen
2009).

The WVF is a multistep process and in this paper the fo-
cus will be on the very first, yet essential, step. The input of
the WVF, in this cosmological context, will either be a sample
of galaxy positions obtained from redshift surveys or the posi-
tions of a large number of particles produced by N-body simula-
tions of cosmic structure formation. The first step of the WVF is
then to construct a continuous density field from the given dis-
crete data by using the Delaunay Tessellation Field Estimator
(DTFE).

7. Further Definitions and Concepts

Before we begin discussing the DTFE, we must understand its
tools. Delaunay triangulations are the key to its procedure. From
now on we will focus only on nearest-point Voronoi diagrams
and will omit “nearest-point” when speaking about them.

Definition 35. The subdivision of a space into simplexes is re-
ferred to as a triangulation (a simplex is a generalization of the
notion of a two dimensional triangle and a three dimensional
tetrahedron to higher dimensions).

Definition 36. Let S = {x1, . . . , xN} ⊂ R
m, where 1 ≤ N <

∞, and xi , x j for i , j and i, j ∈ {1, . . . ,N}. The Delaunay
triangulation of S , denoted by DT (S ), is the triangulation of S
such that no point in S is in the interior of the circumsphere of
any simplex in DT (S ).

An xi ∈ S , where i ∈ {1, . . . ,N}, is called a Delaunay point.

Remark 37. DT (S ) always exists and is unique.

There are a number of interesting connections between Voronoi
diagrams and Delaunay triangulations.
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Fig. 4. Voronoi diagram and Delaunay triangulation relation: The left
figure is the Delaunay triangulation (black lines) of the set of black
points and the circumcircles (grey circles) of the triangles belonging
to it. The centers of these circumcircles are the red points. They in fact
correspond to the set of Voronoi points. They are also shown in the right
figure. If we connect these red points we will acquire the Voronoi dia-
gram. For a detailed discussion on the connection rules refer to Okabe
2000.

Remark 38. The set of Voronoi points is equal to the set of
Delaunay points.

Remark 39. The set of Voronoi vertexes is equal to the set of the
centers of the circumspheres of the simplexes in DT (S ). In fact
this can be used to construct one from the other, see Fig. 4 for
the construction steps and illustration in R2.

Remark 40. In literature it is often loosely spoken about duality
between Voronoi diagrams and Delaunay triangulations. In fact
this is not a trivial matter. One can define duality between the
two in terms of Legendre dual functions (Chynoweth 1996). Yet
another way to define duality between them is via the duality of
polytopes (see Grünbaum 1967 for the definition). However in
R2, one can even view the duality in terms of the non-unique
dual planar graphs (see Grimaldi 2004).

Remark 41. V (S ) is a tessellation of Rm, while DT (S ) is a tes-
sellation of CH (S ).

Observe that one can also define the farthest-point Delaunay tri-
angulations too and relate to them the farthest-point Voronoi di-
agrams, but it will not be useful for our purposes (Okabe 2000).

8. The DTFE

From now onwards we will discuss Voronoi diagrams and
Delaunay triangulations as they are applied in the DTFE for cos-
mological purposes, so we will limit ourselves to R3, at most,
and nearest-point tessellations (as mentioned earlier).

The DTFE is essentially a three step process. We will present
the basics here, for further details refer to Schaap 2007. As men-
tioned earlier, the input into the DTFE is a discrete set of points
in R3, let us call it S . From cosmological reasons, it is logical
to suppose that S consists of finitely many distinct points, i.e.
S = {x1, . . . , xN} ⊂ R

3, where 4 ≤ N < ∞, and xi , x j for
i , j and i, j ∈ {1, . . . ,N}. We require to have at least 4 points,
for the reasons explained in the section on Brown’s algorithm.
Furthermore, for reasons stated in that section, we also assume
that S is not contained in a hyperplane and that no 4 points of
S are contained in a hyperplane. Another assumption that we
cannot avoid when applying the DTFE to cosmological data is
that S is an unbiased sample (see Definition 42 for clarity) of the
underlying continuous density field.

Fig. 5. Contiguous cell associated with xi: Black lines form the
Delaunay triangulation and the red lines form the Voronoid diagram.

Definition 42. An unbiased sample is defined as a sample that
was obtained by a method free from bias.

Now let us go through the DTFE step by step.

I. Construct DT (S ) using some algorithm.

The result of this would be that CH (S ) is tessellated into tetrahe-
dra, which is deduced from the definition of a Delaunay triangu-
lation (Definition 36). Furthermore observe from the construc-
tion that the set of all the extreme points of all the tetrahedra just
obtained is S itself. Before we proceed an additional term needs
to be introduced.

Definition 43. The contiguous cell of a Delaunay point is the
union of all the simplexes that have that Delaunay point as one
of their extreme points (see Fig. 5 for an example in R2).

II. Estimate the density field at each point of S by

ρ̂ (xi) =
4

Vol (Wi)
, (21)

where Wi is the contiguous cell associated with xi and
Vol (Wi) is the volume of it.

Note that we could also have included a relative measure of in-
fluence of xi on the other points in the numerator of the equa-
tion, but since in the cosmological applications the mass of data
points is always assumed to be the same, for now, we have omit-
ted it. The normalization factor of 4 is necessary, because every
tetrahedron has four vertexes. (If we were working in Rm, this
normalization factor would have to be m + 1.) Furthermore, we
assume that the density field is constant inside each tetrahedron.

III. Interpolate the density field by means of
– linear interpolation, or
– spline interpolation, or
– Natural Neighbor Interpolation, or
– other.

7
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Fig. 6. Sensitivity of the Delaunay triangulation: Solid red lines form the
Delaunay triangulation of the set of red points. Obseve how the volume
of the triangles gets smaller as the local point density increases towards
the origin. Furthermore, observe how the shape of the triangles, hence
their volume too, changes as the local geometry of the point distribution
becomes more regular towards the origin.

As a result of this step the density field is no longer discontinu-
ous at the boundaries of the tetrahedra.

Finally one attains the desired output, namely a continuous
map ρ : R3 −→ R representing the underlying continuous den-
sity field of the given discrete point distribution.

It is not immediately clear why the estimate in step II of the
DTFE should make any sense. In order to understand it we must
observe the following qualitative property of the Delaunay trian-
gulation.

Remark 44. The Delaunay triangulation is very sensitive to the
local point density and is very sensitive to the local geometry of
the point distribution. This is quite clear from Fig. 6.

Another point of interest here is the type of boundary conditions
imposed, since the set of points that we are given is always finite.
It has been decided that vacuum boundary conditions would cor-
respond to the optimal model. In other words, there are no other
data points outside of the convex hull of the given discrete set.

The claim by the founders of the DTFE is that it guarantees
a continuous density field which retains the morphological char-
acter of the underlying point distribution and that it is capable of
delineating three fundamental characteristics of the megaparsec
cosmic matter distribution, namely anisotropy, the presence and
shape of voids and even the hierarchy of substructures. Indeed
the results presented in Schaap 2000, 2007, Platen 2007, 2009
and Weygaert 2009 suggest that this might be the case.

9. Evaluating the Quality of the DTFE

A number of methods have been applied to evaluate the similar-
ities between the discrete data that one starts with and the con-
tinuous field one acquires after applying the DTFE. The results
have been quite satisfactory (Schaap 2000, 2007, Platen 2007,
2009 and Weygaert 2009). As well as visually, the results seem
pleasant. However a control test has not been conducted. This is
one of the research questions investigated in this paper.

Fig. 7. The method illustrated.

Fig. 8. The Gaussian cloud: three slices together.

A control test is always a good way to see whether the
method employed is working well. In this paper we did exactly
that with the DTFE by comparing a known continuous distri-
bution with its DTFE reconstruction. Let us present the method
step by step and also illustrate the steps in Fig. 7.

1. Take a known continuous point distribution P (x).
2. Generate a discrete point distribution Pdiscr (x) from P (x).
3. Make a DTFE reconstruction PDT FE (x) from Pdiscr (x).
4. Compute the Fourier spectrum of P (x), denoted FT (P (x)).
5. Compute the Fourier spectrum of PDT FE (x) denoted

FT (PDT FE (x)).
6. Compare the Fourier spectra FT (P (x)) and FT (PDT FE (x)).

Fourier transforms give us insight into the frequencies that
are present in our continuous distributions. By comparing
FT (P (x)) and FT (PDT FE (x)) we will be able to see how spe-
cific frequencies are reconstructed by the DTFE.

10. Results

We have decided to take the Gaussian cloud as our known con-
tinuous distribution, because of its easy, single-peak structure
and smoothness. The Gaussian cloud follows the normal distri-
bution in all directions from its center. Using Vincent Icke’s code
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Fig. 9. The Gaussian cloud: from top to bottom x = y = 0.5 plane,
y = z = 0.5 plane and x = z = 0.5 plane.

we were able to generate such a Gaussian cloud in a unit cube
(a cube that has x, y, z ∈ [0, 1]). The distribution is visualized
in Fig. 9 by means of slices. The relation of the slices to each
other is displayed in Fig. 8. The unit cube was set to have a grid
of 2003 cells. The center of the Gaussian cloud was set to be
(x, y, z) = (0.3, 0.4, 0.5). The peak of the Gaussian cloud is nor-
malized to unity in the code.

Now we had to generate a discrete point distribution from
this Gaussian cloud. Using Chael Kruip and Vincent Icke’s codes
we were able to do that by means of a specific sampling function
(Kruip 2010). The first test was asked to sample the distribution
randomly on the same grid and cube. An important factor here
was the number of sampling points. In Fig. 10 we see a three di-
mensional image of the discrete point distribution obtained from
the continuous Gaussian cloud by sampling it with 5000 points,
in Fig. 11 - with 20000 points and in Fig. 12 - with 80000 points.

Finally, we have applied Erwin Platen’s code to generate the
DTFE reconstructions of the three discrete point distribution, see
Fig. 13, 14 and 15 respectively. The same unit cube was used,
only the number of the grid cells is now 1283.

As we see from these three DTFE reconstructions, the re-
constructions are not anywhere nearly as smooth as the origi-
nal data. We observe a strong piece-wise construction of an im-
age. The general shape and the rough location of the Gaussian
cloud are indeed represented, however the smoothness is gone
and the single-peak is absent. Instead the peaks are now mul-
tiple. As we compare the three reconstructions, we see that the
piece-wise structure increases with the number of points, but on
the other hand the reconstruction appears to be more spherical.
Furthermore, the peaks get lower as the number of points in-
creases.

So it seems that the DTFE did not do a good job, how-
ever there may be another reason for our observations. Recall
that the known continuous distribution was sampled with a ran-
dom process and as we know any random process is accom-
panied by Poisson noise. It may very well be that the DTFE
picks up the Poisson noise present in the discrete point distri-
bution, which is not present in our starting continuous Gaussian
cloud and it may be the reason our DTFE reconstructions are no
good. Furthermore, Poisson noise increases with the number of
points we sample with, which corresponds with the observation
of the reconstructions worsening in some sense with the number
of points too.

At this point we decided to not proceed with the Fourier
spectra analysis, because the results could be already observed
visually. An observation such as the one we just made calls
for another test. What we could do is try a different sampling
method, rather than random, we could do a more regular sam-
pling. The initial random sampling worked as follows:

1. Pick a grid cell.
2. Set a random constant k ∈ [0, 1].
3. Determine the density value in the grid cell. If this value is

higher than k, then place a point.

This cycle keeps repeating itself until the desired number of sam-
ple points is acquired. The new regular sampling has the follow-
ing design:

1. Start at the very first grid cell.
2. Set a random constant k ∈ [0, 1].
3. Determine the density value in the very first grid cell. If this

value is higher than k, then place a point.
4. Move on to the next grid cell, in order.

This cycle keeps going over the whole grid multiple times until
the desired number of points is attained. In fact there will still be
Poisson noise within each cell. However towards the center of
the Gaussian cloud this Poisson noise will be suppressed by the
regularity of the grid, and so we will only feel this Poisson noise
far away from the center of the Gaussian cloud.

Using Vincent Icke’s code we were able to generate such a
sampling procedure. In Fig. 16 we see a three dimensional image
of the discrete point distribution obtained from the continuous
Gaussian cloud by this regular sampling with 5000 points, in
Fig. 17 - with 20000 points and in Fig. 18 - with 80000 points.
The DTFE reconstructions are following in Fig. 19, 20 and 21,
respectively. Furthermore, we do indeed observe the crystalline
structure in the point distribution as a result of the regularity of
the grid. For comparison, see the zoomed in (almost the same
zoom in all) images of the center of the Gaussian cloud with the
two sampling method for all three point numbers in Fig. 22 - 27.
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Fig. 10. The Gaussian cloud sampled randomly by 5000 points.

Fig. 11. The Gaussian cloud sampled randomly by 20000 points.

When we look at these new DTFE reconstructions we ob-
serve that the results are actually not much better and we still
observe the same dependence on the number of points sampled
with. There another possible explanation for this. Perhaps when
the code runs over the grid cells multiple times, it actually hap-
pens quite often that multiple points need to be placed in a grid
cell. The code is designed in such a way that it displaces the
points from the center of the grid cell by a very small random
amount. This may result in recurrent conglomeration of points
close to centers of the grid cells. In turn the DTFE will pick that
up and misinterpret it as a peak.

11. Outlook

At this stage the Poisson noise, if that is indeed the reason for the
observed fluctuations in the reconstruction, has not been solved.
It is very likely that it is the reason, but we were not able to con-
clude that from these results. Therefore, other sampling methods
could definitely be investigated. It seems that the regular grid has
not been as successful as hoped, because it appears that it may
have an additional flaw of its own. A potential solution could lie
with the centroidal distributon.

Fig. 12. The Gaussian cloud sampled randomly by 80000 points.

Fig. 13. The DTFE reconstruction of the Gaussian cloud sampled ran-
domly by 5000 points.

Furthermore, here we have taken a Gaussian cloud - a struc-
ture that does not require high resolution to view. However if this
is applied to cosmological studies a resolution research needs to
be carried out, because one may not be able to view certain fea-
tures if the grid cells are too large. Furthermore the size of the
grid cells limit the part of the Fourier spectrum that can be spoke
of meaningfully. Therefore if the reconstructions can be made
visually satisfying and the analysis via Fourier spectra was to
be carried out, then the resolution study is essential. Also it is
important to note that it would be more representative of the
Cosmic Web to analyze wave superposition rather than “artifi-
cial” distributions such as the Gaussian cloud.

Finally, there are a number of other open interesting ques-
tions here. Perhaps the DTFE can be improved by not assuming
constant density in each tetrahedron.
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Fig. 14. The DTFE reconstruction of the Gaussian cloud sampled ran-
domly by 20000 points.

Fig. 15. The DTFE reconstruction of the Gaussian cloud sampled ran-
domly by 80000 points.

12. Conclusions

In this paper we acquainted ourselves with Voronoi diagrams,
Delaunay triangulations and their relationship to each other. We
studied Brown’s algorithm, which allows to compute Voronoi di-
agrams in any dimension via its main tool of inversion. We then
looked at how Delaunay triangulations were applied in astron-
omy to analyze the Cosmic Web in the WVF, whose first step
was to use them in the DTFE. We studied how the DTFE trans-
forms a discrete point distribution into a continuous density field.

Fig. 16. The Gaussian cloud sampled regularly by 5000 points.

Fig. 17. The Gaussian cloud sampled regularly by 20000 points.

With high hopes for the method’s success we went and tried to
compare a known continuous distribution with its DTFE recon-
struction. The results were quite surprising. We discussed the
possible reasons for that and suggested further tests that can be
done. Taking into account the importance of Voronoi diagrams,
Delaunay triangulations and the popular desire of going from a
discrete distribution to a continuous distribution, not only in as-
tronomy, but in numerous other field too, it is of great interest to
science that further research is to be carried out in this field.
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Fig. 22. The Gaussian cloud sampled randomly by 5000 points: zoom-
ing in on the center.

Fig. 23. The Gaussian cloud sampled randomly by 20000 points: zoom-
ing in on the center.

Fig. 24. The Gaussian cloud sampled randomly by 80000 points: zoom-
ing in on the center.

Fig. 25. The Gaussian cloud sampled regularly by 5000 points: zooming
in on the center.

Fig. 26. The Gaussian cloud sampled regularly by 20000 points: zoom-
ing in on the center.

Fig. 27. The Gaussian cloud sampled regularly by 80000 points: zoom-
ing in on the center.
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