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Introduction

Dynamics and number theory long were quite dinstinct fields of mathematics.
Recently, however, progress has been made in the application of number the-
ory to dynamics. This text seeks to elucidate a small bit of this progress.
The focus will be on the special case of discrete dynamical systems, which
consist of a set X associated with a map φ : X → X. As in this text we
will mainly consider X = Pn(Q), the first section serves as an introduction
to projective geometry. To provide the reader with some intuition, it starts
out with P1(C) and eventually switches attention to Pn(Q).
The second section introduces the basic notions of discrete dynamics.
In the third section, ‘height functions’ are defined. These are functions of
the form h : Pn(Q) → R, and they serve as the main tool in applying number
theory to dynamics. As we restrict attention to projective spaces over Q,
their definitions can remain quite simple; when working over an arbitrary
number field K, one runs into the problem that the ring of integers of K
may not be a principal ideal domain, making the definition of h substantially
more complicated. For this, refer to [1].
After having defined them, some important properties of the height functions
are derived. Section 4 then utilizes these properties to quickly derive some
interesting theorems relating arithmetic to discrete dynamical systems.
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1 Some projective geometry

Definition 1.1. Let V be a vector space. The projective space over V ,
denoted P(V ), is the set of 1-dimensional subspaces of V .

Remark 1.2. When in this text we speak of a vector space, we mean a
finite-dimensional vector space.

Example 1.3. Let V = R2. Then P(V ) = P(R2) is the set of lines through
the origin. Note the following: almost every p ∈ P(R2), being a subset of R2,
has exactly one point in common with the line ` := {(x, y) ∈ R2 | y = 1},
the only exception being ∞ := {(x, y) ∈ R2 | y = 0} ∈ P(R2). One can thus
identify P(R2)\{∞} with `, which, in turn, is just a copy of R. This leads
to an identification of P(R2) with R ∪ {∞}.

Example 1.4. For V = C2, we see analogously that almost every p ∈ P(C2)
has exactly one point x ∈ C2 in common with ` := {(w, z) ∈ C2 | z = 1}.
Namely, if p = {λ(p1, p2) | λ ∈ C} for some p1, p2 ∈ C\{0}, then x = (p1

p2
, 1).

The unique exception is ∞ := {(w, z) ∈ C2 | z = 0} ∈ P(C2). Since ` is
a copy of C, this observation gives rise to an identification of P(C2) with
C ∪ {∞}.

Definition 1.5. Let V be an n-dimensional vector space. The dimension
of P(V ) is n− 1.

Notation 1.6. Motivated by the preceding definition, if K is a number
field, P(Kn+1) is often denoted as Pn(K). If n = 1 and K equals R or C, we
respectively speak about the real projective line and the complex projective
line.

As we have seen, the complex projective line can be identified with C∪{∞}.
In turn, the complex plane can be identified with the unit sphere S2 without
its north pole N . To see this, we identify C with {(x, y, z) ∈ R3 | z = 0},
set S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} and N = (0, 0, 1) ∈ R3. For an
arbitrary point z ∈ S2\{N}, the line through N and z will cut C in exactly
one point z∗. This way of relating points to each other is called stereographic
projection (see figure 1) and it yields the asserted identification. We can go
a step further by sending N to the point ∞ ∈ C ∪ {∞}, giving rise to a
bijection f : S2 → P1(C).

Definition 1.7. Let S2 ⊂ R3 be the unit sphere, let | · | denote the Euclid-
ean norm on R3, let f be as above and let g := f−1. The chordal metric is
the metric ρ on P1(C) given by ρ(x, y) = |g(x)− g(y)|.
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Figure 1: stereographic projection

Theorem 1.8. Identify P1(C) with C ∪ {∞} as in example 1.3 and let | · |
denote the Euclidean norm on C. The chordal metric is given by

ρ(x, y) =


2|x−y|√

|x|2+1
√
|y|2+1

if x 6= ∞ 6= y

2√
|x|2+1

if x 6= ∞ = y

Proof. Let g be as in definition 1.7 and let a = a1 + a2i ∈ C. In order to
calculate g(a), let us identify a with (a1, a2, 0) ∈ R3. Now the image of a
under g is the unique intersection point of S2 = {(x, y, z) ∈ R3 | x2+y2+z2 =
1} and ` = {(1 − λ)(0, 0, 1) + λ(a1, a2, 0) | λ ∈ R>0}. Hence we solve for λ
the equation

(λa1)2 + (λa2)2 + (1− λ)2 = 1,

finding

λ =
2

a2
1 + a2

2 + 1
,

from which it follows that

g(a) =
(

2a1

a2
1 + a2

2 + 1
,

2a2

a2
1 + a2

2 + 1
,
a2

1 + a2
2 − 1

a2
1 + a2

2 + 1

)
. (1)

Next, observe that if a = (a1, a2, a3) and b = (b1, b2, b3) are points on S2,
then
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|a− b| =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

=
√

(a2
1 + a2

2 + a2
3) + (b2

1 + b2
2 + b2

3)− 2a1b1 − 2a2b2 − 2a3b3

=
√

2− 2a1b1 − 2a2b2 − 2a3b3. (2)

Now let x = x1 + x2i, y = y1 + y2i ∈ C. We identify these points with
(x1, x2, 0) and (y1, y2, 0) ∈ R3 respectively. Let g(x)i and g(y)i denote the
ith coordinates of the images of x and y under g. We know from (2) that

|g(x)− g(y)| =
√

2− 2g(x)1g(y)1 − 2g(x)2g(y)2 − 2g(x)3g(y)3, (3)

and it follows from (1) that this equals√
2− 2 · 2x1 · 2y1 − 2 · 2x2 · 2y2 − 2 · (x2

1 + x2
2 − 1) · (y2

1 + y2
2 − 1)

(x2
1 + x2

2 + 1) · (y2
1 + y2

2 + 1)

=

√
4(x2

1 + x2
2) + 4(y1 + y2)− 8x1y1 − 8x2y2

(x2
1 + x2

2 + 1)(y2
1 + y2

2 + 1)

=

√
4((x1 − y1)2 + (x2 − y2)2)
(x2

1 + x2
2 + 1)(y2

1 + y2
2 + 1)

=
2
√

(x1 − y1)2 + (x2 − y2)2√
x2

1 + x2
2 + 1

√
y2
1 + y2

2 + 1
=

2|x− y|√
|x|2 + 1

√
|y|2 + 1

.

If y is the point at infinity, we know that g(y) = (0, 0, 1). Hence in this case,
(3) equals

|g(x)− g(y)| =
√

2− 2g(x)1 · 0− 2g(x)2 · 0− 2g(x)3 · 1
=

√
2− 2g(x)3

=

√
2− 2

x2
1 + x2

2 − 1
x2

1 + x2
2 + 1

=

√
4

x2
1 + x2

2 + 1
=

2√
|x|2 + 1

.

�

The following will play an important role in our study of height functions.

Definition 1.9. A rational function on C is an ordered pair (f, g) of poly-
nomials f, g ∈ C[X] satisfying exactly one of the following conditions:
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(1) f = 0 and g = 1.

(2) f is monic and f and g have no common factors.

Definition 1.10. A rational map on P1(C) is a map φ : C∪{∞} → C∪{∞},
denoted C ∪ {∞} 99K C ∪ {∞}, satisfying the following conditions:

(1) There is a rational function (f, g) on C such that for every z ∈ C with
g(z) 6= 0: φ(z) = f(z)/g(z).

(2) For every z ∈ C with g(z) = 0 : φ(z) = ∞.

(3) φ(∞) = limz→∞ f(z)/g(z), where the limit function is defined with
respect to the chordal metric.

Note that for a given rational map φ on P1(C), the rational function satis-
fying condition (1) is unique. This justifies the following definition.

Definition 1.11. Let φ be a rational map on P1(C) with associated rational
function (f, g). The degree of φ is deg(φ) = max{deg(f),deg(g)}.

For V an n-dimensional vector space with scalar field K, we can define an
equivalence relation ∼ on V ∗ := V \{0} as follows:

x ∼ y ⇐⇒ ∃λ ∈ K : x = λy

Note that the map φ : V ∗/ ∼ → P(V ), given by p 7→ p ∪ {0}, is a bijection.
This is another way of looking at P(V ), and instead of φ(p) = q we will
write p = q. We have lain the ground for the following definition.

Definition 1.12. Let V , n, K and ∼ be as above and fix a basis B for
V . Let p ∈ V ∗ and let (p1, p2, ..., pn) be the coordinates of p relative to B.
We denote the equivalence class of p relative to ∼ by (p1 : p2 : ... : pn).
The scalars (p1, p2, ..., pn) ∈ Kn\{0} are called homogeneous coordinates of
(p1 : p2 : ... : pn) ∈ P(V ).

Note that one cannot talk about homogenous coordinates of a point p ∈ P(V )
without having chosen a basis for V . Note also that homogeneous coordi-
nates of p are not unique: (p1 : p2 : ...pn) = (λp1 : λp2 : ... : λpn) for every
λ ∈ K∗.

Definition 1.13. Let P(V ) be an n-dimensional projective space with a
chosen basis for V and let p = (p0 : p1 : ... : pn) ∈ P(V ) be such that
pn 6= 0. Affine coordinates of p are scalars (a0, a1, ..., an−1) for which
p = (ao : a1 : ... : an−1 : 1). We will write p = (a0, a1, ..., an−1).
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Lemma 1.14. Let φ : P1(C) 99K P1(C) be a rational map of degree
d with associated rational function (f, g). For F,G ∈ C[X, Y ] defined
by F = Y df(X/Y ) and G = Y dg(X/Y ), the map φ can be writen as
(x : y) 7→ (F (x, y) : G(x, y)).

Proof. We wish to define

π : P1(C) → P1(C)
(x : y) 7→ (F (x, y) : G(x, y))

and prove that φ(p) = π(p) for every p ∈ P1(C). We must first, however,
verify that π is actually a map, i.e., that π is well defined and that F (x, y) =
G(x, y) = 0 if and only if x = y = 0.
Let us begin with the latter. Observing that F and G have no constant
terms, the equality F (0, 0) = G(0, 0) = 0 follows immediately. Now let
(x, y) ∈ C2 be such that F (x, y) = G(x, y) = 0. Suppose y 6= 0. Then

f(x
y ) =

F (x, y)
yd

= 0 =
G(x, y)

yd
= g(x

y ),

from which it follows that f and g share a factor (X− x
y ), which, by definition

1.9, is a contradiction. We conclude y = 0. Now since at least one of the
polynomials F and G have exactly one monomial with no factor Y , it follows
from F (x, 0) = G(x, 0) = 0 that x = 0.
For the well definedness of π, we observe that F and G have the property
that for any x, y, z ∈ C:

F (zx, zy) = zdF (x, y) and G(zx, zy) = zdG(x, y).

Now let p = (x : y) 6= (1 : 0) be such that g(x
y ) 6= 0. Then φ(p) =

f(x
y )/g(x

y ) = (f(x
y )/g(x

y ) : 1) = (f(x
y ) : g(x

y )) = (F (x, y) : G(x, y)), as
desired.
Next, let p = (x : y) 6= (1 : 0) be such that g(x

y ) = 0. Then G(x, y) =
ydg(x

y ) = 0 and F (x, y) = ydf(x
y ) 6= 0, so π(x : y) = (1 : 0) = ∞ = φ(p).

Now let us look at the point (1 : 0). If deg(g) < deg(f), then every
monomial of G has a factor Y , so G(1, 0) = 0. In F , on the other hand,
there is precisely one monomial with no factor Y , so F (1, 0) 6= 0 and thus
π(1 : 0) = (1 : 0) = ∞ = limz→∞ f(z)/g(z). If deg(g) = deg(f), both
f and g have exactly one monomial with no factor Y , so that π(1 : 0) =
(af : ag) = af

ag
= limz→∞ f(z)/g(z), where af and ag denote the leading

coefficients of f and g respectively. Lastly, if deg(g) > deg(f), we see that
π(1 : 0) = (0 : 1) = 0 = limz→∞ f(z)/g(z). �

As the main focus of this text is to derive some interesting theorems ra-
garding maps from Pn(Q) to itself, we shift attention from P1(C) to Pn(K),
where K is a number field.
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Consider F and G as defined in the above lemma. The property F (zx, zy) =
zdF (x, y) and G(zx, zy) = zdG(x, y) from the proof is an important one,
which can be defined rigorously for polynomials over arbitrary number fields
in any number of variables. For this, we will need to have a notion of degree
for such polynomials.

Definitions 1.15. Let K be a number field.

(1) For f = a
∏

i X
ai
i ∈ K[X1, ..., Xn] a monomial in n variables, the degree

of f is deg(f) =
∑

i ai.

(2) For {f1, ..., fm} ⊂ K[X1, ..., Xn] a finite set of monomials and g =∑
i bifi ∈ K[X1, ..., Xn] a polynomial, the degree of g is deg(g) =

maxi(deg(fi)).

Definition 1.16. Let K be a number field and let X̄ denote a finite sequence
of n variables. A polynomial F ∈ K[X̄] of degree d is called homogeneous if
F (λX̄) = λdF (X̄) for every λ ∈ K.

Example 1.17. Let K be a number field. The following are homogeneous
polynomials in K[X, Y, Z] of degree 1, 4 and 7 respectively:

• X

• X3Y −X2Y 2

• XY Z5 + XY 6 + Y 7

Inspired by lemma 1.14, we now give a definition of rational maps over num-
ber fields and higher dimensions.

Definition 1.18. Let K be a number field, let m,n ≥ 1 and let U ⊆ Pn(K)
be open1 and nonempty. A rational map is a map

φ : U → Pm(K)
x = (x0 : x1 : ... : xn) 7→ (F0(x) : F1(x) : ... : Fm(x))

for homogeneous polynomials F0, F1, ..., Fm of equal degree d for which there
is no factor h ∈ K[X0, ..., Xn] dividing every Fj ∈ {F1, ..., Fm}. The degree
of φ is deg(φ) = d. Rational maps are denoted as U 99K Pm(K).

Definition 1.19. Let K and φ be as in definition 1.17 and let K̄ denote
the algebraic closure of K. We say that φ is defined at x ∈ Pm(K̄) if there
is an i ∈ {0, 1, ..., n} such that Fi(x) 6= 0.

1According to the Zariski topology: see appendix A.
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Definition 1.20. Let K and φ be as in definition 1.17 and let K̄ denote
the algebraic closure of K. We call φ a morphism if φ is defined at every
x ∈ Pm(K̄).

Example 1.21. Let K be any number field and let F0 = X2, F1 = Y 2,
F2 = Z2 ∈ K[X, Y, Z]. Since F0, F1 and F2 have no common factors and
the only common root of F0, F1 and F2 in K̄3 is (0,0,0), the map

P2(K) 99K P2(K)
(x : y : z) 7→ (F0(x, y, z) : F1(x, y, z) : F2(x, y, z))

is a morphism.

Example 1.22. Let F0 = X2 + Y 2, F1 = X2 + Z2, F2 = X2 + Y Z. Since
F0, F1 and F2 have no common factors in Q[X, Y, Z], the map

P2(Q) 99K P2(Q)
(x : y : z) 7→ (F0(x, y, z) : F1(x, y, z) : F2(x, y, z))

is a rational map. It is not a morphism, since (i, 1, 1) ∈ Q̄3 is a common
root of F0, F1 and F2.

Example 1.23. Let F = X4+Y 4, G = X4. Then F and G have no common
factors in Q[X, Y ]. They also have no common roots in Q̄2, so consequently

P1(Q) 99K P1(Q)
(x : y) 7→ (F (x, y) : G(x, y))

is a morphism. This is not a coincidence.

Theorem 1.24. Let U ⊆ P1(Q̄) and let F and G ∈ Q[X, Y ] be homogeneous
polynomials such that

φ : U 99K P1(Q̄)
(x : y) 7→ (F (x, y) : G(x, y))

is a rational map. Then φ is a morphism.

Proof. We need to show that F and G have no common roots in Q̄2\{(0, 0)}.
Suppose therefore that they do: let F (a, b) = G(a, b) = 0 for some a, b ∈ Q̄
not both 0. Assume b 6= 0. First, we define polynomials f, g ∈ Q[X] by
f = F (X, 1) and g = G(X, 1). Observe that

f(X/Y ) =
d∑

i=0

ai
Xi

Y i
=

∑d
i=0 aiX

iY d−i

Y d
=

F (X, Y )
Y d

. (4)

Now since F is homogeneous, we see that
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f(a
b ) = F (a

b , 1) = F (b−1a, b−1b) = b−dF (a, b) = b−d · 0 = 0,

and analogously, we see g(a
b ) = 0. This means the minimal polynomial

h ∈ Q[X] of a
b ∈ Q̄ is a divisor of both f and g:

f = h · f ′ and g = h · g′

for some f ′, g′ ∈ Q[X]. Let e = deg(h). By (4):

F (X, Y ) = Y d · f(X/Y )
= Y d · h(X/Y )f ′(X/Y )
= Y eh(X/Y ) · Y d−ef ′(X/Y ),

and analogously we see G(X, Y ) = Y eh(X/Y ) · Y d−eg′(X/Y ). Thus F and
G share a factor Y eh(X/Y ) ∈ Q[X, Y ].
Now suppose F (a, 0) = G(a, 0) = 0 for some a ∈ Q̄\{0}. Then

0 = F (a, 0) =
d∑

i=0

aia
i0d−i = ad · ad,

so ad = 0. The same reasoning shows that bd = 0. Thus

F =
d−1∑
i=0

aiX
iY d−i and G =

d−1∑
i=0

biX
iY d−i,

so F and G have a common factor Y .
We conclude that if F and G have a common root, then they have a common
factor, which contradicts the assumption of φ being a rational map. �

2 Discrete dynamical systems

Definition 2.1. A discrete dynamical system is a set X associated with a
map φ : X → X. Notation: (X, φ).

Definition 2.2. Let (X, φ) be a discrete dynamical system. A point x ∈ X
is called periodic under φ if there is an n ≥ 1 such that φn(x) = x. The set
of periodic points under φ is denoted by Per(φ).

Example 2.3. If X is a finite set, then for any φ : X → X we have
#Per(φ) ≥ 1. For suppose Per(φ) = ∅, then for any x ∈ X and any
i, j ∈ Z≥0 with i 6= j:

φi(x) 6= φj(x),
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from which it would follow that X is infinite.

Example 2.4. Let X = P1(Q) and let φ : P1(Q) → P1(Q) be given by
(x : y) 7→ (x2 : y2). Suppose (a : b) ∈ P1(Q) is periodic under φ, i.e.,
suppose (a2n : b2n) = (a : b) for some n ≥ 1. Then a2n = λa and b2n = λb
for some λ ∈ Q, so for a 6= 0 6= b, we see a2n−1 = λ = b2b−1 and thus a = b.
It follows that (1:1) is the only rational non-zero periodic point under φ.
A check shows that (0 : 1) and (1 : 0) are also periodic under φ, and we
conclude

Per(φ) = {(0 : 1), (1 : 1), (1 : 0)}.

Definition 2.5. Let (X, φ) be a discrete dynamical system. A point x ∈ X
is called preperiodic under φ if there is an m ≥ 0 such that φm(x) is periodic.
The set of preperiodic points under φ is denoted by PrePer(φ).

Note that for every discrete dynamical system (X, φ): Per(φ) ⊆ PrePer(φ).

Example 2.6. If X is a finite set, then for any φ : X → X: PrePer(φ) = X.
To see this, let n = #X. For any x ∈ X, the set {x, φ(x), φ2(x), ..., φn(x)}
contains at most n elements. That is to say, there are i, j ≤ n with i < j
such that φi(x) = φj(x). Thus x is preperiodic under φ.

Example 2.7. Let X = Z and let φ : Z → Z be given by

φ(n) =
{

n + 2 if n is even
|n| if n is odd

Then n ∈ Z is preperiodic under φ if and only if n is odd. If n is odd and
n > 0, then n is periodic under φ.

Definition 2.8. Let (X, φ) be a discrete dynamical system and let x ∈ X.
The orbit of x under φ is the set Oφ(x) = {φn(x) | n ≥ 0}.

Note that for every discrete dynamical system (X, φ) and every x ∈ X, the
orbit of x under φ is finite if and only if x is preperiodic under φ.

Principal goal of discrete dynamics. For a given discrete dynamical
system (X, φ), to classify its points according to their orbits.

In section 4, we will chase this goal for X = Pn(Q) and φ a morphism. We
shall do this with the help of a ‘height function’ h : Pn(Q) → R. We will see
that if deg(φ) ≥ 2, then h(p) = 0 if and only if p is preperiodic (theorem 4.4).
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3 Height functions on Pn(Q)

Let n ≥ 1. We want to define a function H : Pn(Q) → R that measures the
‘arithmetic complexity’ of the points in Pn(Q). For example, for n = 1, we
would like the point (41 : 42) to have a higher complexity than (1 : 1). Also,
for a given B ∈ R>0, we want to have only finitely many points p ∈ Pn(Q)
satisfying H(p) ≤ B. These wishes lead to the following definition.

Definition 3.1. Let p = (x0 : x1 : ... : xn) ∈ Pn(Q) be such that
x0, x1, ..., xn are coprime integers. The multiplicative height of p is H(p) =
maxi |xi|.

Note that for any p = (x0 : ... : xn) ∈ Pn(Q), we may assume x0, ..., xn

to be coprime integers. For if xi = ai
bi

, we may multiply by the lowest
common multiple of b0, ..., bn and then divide by any common factors. By
the uniqueness (up to a factor −1) of such a representation of p, the height
function is well defined. Note also that this definition fulfills our wish of
only finitely many points p = (x0 : ... : xn) satisfying H(p) ≤ B for a given
B ∈ R>0: since it holds for every i ∈ {0, ..., n} that |xi| ≤ B, every xi can
attain at most 2B + 1 values, so there are at most (2B + 1)n+1 possibilities
for p.
Up to a scalar factor, morphisms of degree d turn out to raise the height
of a point to the d-th power. The height function thus translates geometric
information into arithmetic information.

Theorem 3.2. Let φ : Pn(Q) → Pm(Q) be a morphism of degree d. There
are constants C1, C2 > 0 such that for every p ∈ Pn(Q) :

C1H(p)d ≤ H(φ(p)) ≤ C2H(p)d.

For the computation of the lower bound scalar, we will use Hilbert’s Null-
stellensatz. This we quote and elucidate in appendix A.

Proof of theorem 3.2. Let us begin with a new notation. For a polynomial

f =
∑

i0,...,in

ai0,...,inXi0
0 · · ·Xin

n ∈ C[X0, X1, ..., Xn],

let |f | denote the absolute value of the coefficient of f with the greatest
absolute value: |f | = maxi0,...,in |ai0,...,in |.
The following observation will prove itself useful. If

F =
∑

i0,...,in

ai0,...,inXi0
0 · · ·Xin

n ∈ Q̄[X0, ..., Xn]
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is homogeneous of degree d, then the number of terms of F is at most the
number of monomials of degree d in n + 1 variables, and this equals

(
n+d

d

)
.

So if p = (x0, ..., xn) ∈ Pn(Q) is such that x0, ..., xn ∈ Z and gcdi(xi) = 1,
then by the triangle inequality we have:

|F (p)| =

∣∣∣∣∣∣
∑

i0,...,in

ai0,...,inxi0
0 · · ·x

in
n

∣∣∣∣∣∣ ≤
∑

i0,...,in

|ai0,...,inxi0
0 · · ·x

in
n |

≤
(

n + d

d

)
· |F | · (max

i
|xi|)d

=
(

n + d

d

)
· |F | ·H(p)d. (5)

Now let φ be given by φ(p) = (F0(p) : F1(p) : ... : Fm(p)). We note first
that we may assume the coefficients of the Fj to be integers. For if not, we
multiply every Fj by a common multiple c of all the denominators in their
coefficients, giving polynomials cFj ∈ Z[X0, ..., Xn], for which it holds that
(cF0(p) : ... : cFm(p)) = (F0(p) : ... : Fm(p)) for all p ∈ Pn(Q).
Let p = (x0 : x1 : ... : xn) ∈ Pn(Q) be such that x0, x1, ..., xn are coprime
integers. For the computation of the upper bound scalar C2, we observe
that by (5):

H(φ(p)) ≤ max
j
|Fj(p)| ≤

(
n + d

d

)
·max

j
|Fj | ·H(p)d,

so it suffices to choose C2 =
(
n+d

d

)
·maxj |Fj |.

Before we continue with the computation of the lower bound scalar C1, we
do some ‘preparation work’. Since φ is a morphism, we know the Fj to have
no common zeros in Pn(Q̄), so by Hilbert’s Nullstellensatz we may conclude:√

(X0, X1, ..., Xn) =
√

(F0, F1, ..., Fm) ⊆ Q̄[X0, X1, ...Xn].2

In particular, Xi ∈
√

(F0, F1, ..., Fm) for every i ∈ {0, 1, ..., n}, i.e., Xai
i ∈

(F0, F1, ..., Fm) for some integers ai, thus

Xe
0 , Xe

1 , ..., Xe
n ∈ (F0, F1, ..., Fm)

for some common multiple e of the ai. Hence there are polynomials Gij ∈
Q̄[X, Y ] such that for every i ∈ {0, 1, ..., n}:

Xe
i =

∑
j

GijFj , (6)

and these polynomials Gij may be assumed to be homogeneous of degree
e − d and to have coefficients in Q. Multiplying every Gij by a common

2For the definition of
√

I, see appendix A.
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multiple b of all the denominators in the coefficients of the Gij , we find
polynomials Hij = b ·Gij ∈ Z[X0, ..., Xn] such that for every i ∈ {0, 1, ..., n}:

bXe
i =

∑
j

HijFj . (7)

Now let p = (x0 : ... : xn) ∈ Pn(Q̄) be such that x0, ..., xn ∈ Z and gcdi(xi) =
1. Evaluating (7) in p, we find for every xi:

bxe
i =

∑
j

Hij(p)Fj(p),

from which it follows that gcdj(Fj(p)) is a divisor of bxe
i for every i ∈

{0, 1, .., n}. Since gcdi(xe
i ) = 1, it follows that gcdj(Fj(p)) is a divisor of b.

Now because maxj(Fj(p)) = H(φ(p)) · gcdj(Fj), we find

max
j

(Fj(p)) ≤ H(φ(p)) · b. (8)

Let us now compute a lower bound scalar C1. Evaluating (6) in p and
applying (5) and (8), we find

H(p)e = max
i
|xi|e

= max
i

∣∣∣∣∣∣
m∑

j=0

Gij(p)Fj(p)

∣∣∣∣∣∣
≤ max

i


(

n + e− d

e− d

)
H(p)e−d

m∑
j=0

|Gi,j | · |Fj(p)|


≤

(
n + e− d

e− d

)
H(p)e−d(m + 1) ·max

i,j
{|Gi,j | · |Fj(p)|}

≤
(

n + e− d

e− d

)
H(p)e−d(m + 1) ·max

i,j
{|Gi,j |} · b ·H(φ(p)).

Dividing both sides by H(p)e−d gives

H(p)d ≤
(

n + e− d

e− d

)
(m + 1) ·max

i,j
{|Gi,j |} · b ·H(φ(p)),

whereupon we choose C1 =
((

n+e−d
e−d

)
(m + 1) ·maxi,j{|Gi,j |} · b

)−1
. �

Theorem 3.2 tells us that a morphism of degree d raises the height of a
point approximately to the d-th power. This means that H is a multiplica-
tive kind of function. Notationally, it is often more convenient to work with
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an additive function.

Definition 3.4. The logarithmic height of a point p ∈ Pn(Q) is given by
h(p) = log(H(p)).

Notation 3.5. Let X be a set and let f, g : X → R. We write f = g +O(1)
if there is a constant C such that |f(x)− g(x)| ≤ C for every x ∈ X.

Using this notation, theorem 3.2 says that for a morphism φ of degree d:
h ◦ φ = dh + O(1).
Consider the morphism φ : P1(Q) → P1(Q) given by φ(x0 : x1) = (xd

0 : xd
1).

It is clear from the definition of the height function that

h(φ(p)) = dh(p) (9)

for all p ∈ P1(Q). But theorem 3.2 gives us the less precise statement
h(φ(p)) = dh(p) + O(1). We would like to define a new height function so
that it gives us (9). For this we will use the following theorem.

Theorem 3.8. Let X be a set, d > 1 a real number and let φ : X → X and
h : X → R be functions such that h(φ(x)) = dh((x)) + O(1) for all x ∈ X.
The limit

ĥ(x) := lim
n→∞

1
dn

h(φn(x))

exists for all x ∈ X. The function ĥ satisfies:

(a) ĥ = h + O(1)

(b) ĥ ◦ φ = dĥ(x).

If ĥ′ : X → R is another function satisfying (a) and (b), then ĥ′ = ĥ.

Proof. Let x ∈ X. To prove the existence of ĥ(x), we will show that the
sequence (d−nh(φn(x)))n is Cauchy. Now we are given a constant C such
that |h(φ(y)− dh(y)| ≤ C for all y ∈ X. For integers n > m ≥ 0, we apply
this with y = φi−1(x) to the telescoping sum:

∣∣∣∣ 1
dn

h(φn(x))− 1
dm

h(φm(x))
∣∣∣∣ =

∣∣∣∣∣
n∑

i=m+1

1
di

(h(φi(x))− dh(φi−1(x))

∣∣∣∣∣
≤

n∑
i=m+1

1
di
|h(φi(x))− dh(φi−1(x))|

≤
n∑

i=m+1

C

di
≤

∞∑
i=m+1

C

di
=

C

(d− 1)dm
(10)
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From this we see that

lim
m,n→∞

∣∣∣∣ 1
dn

h(φn(x))− 1
dm

h(φm(x))
∣∣∣∣ = 0,

which shows that (d−nh(φn(x)))n is a Cauchy sequence. By the completeness
of R, we conclude that ĥ(x) exists.
To prove (a), we consider (10) with m = 0:∣∣∣∣ 1

dn
h(φn(x))− h(x)

∣∣∣∣ ≤ C

d− 1
.

Letting n approach infinity, it follows that

|ĥ(x)− h(x)| ≤ C

d− 1
,

or ĥ(x) = h(x) + O(1).
Property (b) is a direct consequence of the definition of ĥ:

ĥ(φ(x)) = lim
n→∞

1
dn

h(φn+1(x)) = d · lim
n→∞

1
dn+1

h(φn+1(x)) = dĥ(x).

Now let ĥ′ : X → R be another function satisfying (a) and (b). We define
g = ĥ− ĥ′ and observe: g = O(1) and g(φ(x)) = dg(x) for all x ∈ X. Thus
for every positive integer n and every x ∈ X:

|dng(x)| = |g(φn(x))| ≤ C

for some constant C. Since we can take n arbitrary large, it follows that
g ≡ 0, so ĥ′ = ĥ. �

The following definition is now justified.

Definition 3.9. Let φ : Pn(Q) → Pn(Q) be a morphism of degree d ≥ 2.
The canonical height associated to φ is the unique function ĥφ : Pn(Q) → R
satisfying ĥφ = h + O(1) and ĥφ(φ(p)) = dĥ(p) for every p ∈ Pn(Q).

We have now developed enough terminology to state and prove some results
relating heights to dynamics.

4 Arithmetic dynamics

Notation 4.1. In this section, H is as in definition 3.1, h is as in definition
3.4 and for φ a morphism, ĥφ is as in definition 3.9.

Theorem 4.2. Let φ : Pn(Q) → Pn(Q) be a morphism of degree d ≥ 2.
There is a constant B > 0 such that for every preperiodic point p ∈
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PrePer(φ) ⊆ Pn(Q): h(p) ≤ B.

Proof. By theorem 3.2, there is a constant C > 0 such that for any r ∈
Pn(Q):

h(φ(r)) ≥ dh(r)− C. (11)

Applying this inequality to φn−1(r) yields h(φn(r)) ≥ dh(φn−1(r)−C). But
to the right side of this inequality, we can apply (11) again, this time for
φn−2(r). Continuing with this process, we find that

h(φn(r)) ≥ dnh(r)− C(1 + d + d2 + ... + dn−1) ≥ dn(h(r)− C) (12)

for every r ∈ Pn(Q). Now let p ∈ Pn(Q) be a preperiodic point, i.e., let
φm+n(p) = φm(p) for some m ≥ 0 and n ≥ 1. We can apply (12) with
r = φm(p), from which we see

h(φm(p)) = h(φm+n(p)) = h(φn(φm(p)) ≥ dn(h(φm(p))− C),

and thus

h(φm(p)) ≤ dn

dn − 1
C. (13)

But since d ≥ 2 and n ≥ 1, we can bound the right side of (13) by 2C, upon
which we see that h(φm(p)) ≤ 2C. Combining this with (12) for r = p and
n = m yields

h(p) ≤ 1
dm

h(φm(p)) + C ≤ 1
dm

2C + C ≤ 3C,

so setting B = 3C gives the desired result. �

Since we have seen there are only finitely many points of bounded height,
the next result follows immediately.

Corollary 4.3. The set of preperiodic points PrePer(φ) of a morphism
φ : Pn(Q) → Pn(Q) of degree d ≥ 2 is finite. �

Theorem 4.4. Let φ : Pn(Q) → Pn(Q) be a morphism of degree d ≥ 2. A
point p ∈ Pn(Q) is preperiodic under φ if and only if ĥφ(p) = 0.

Proof. Let p ∈ Pn(Q) be preperiodic. Then φn(p) attains only finitely
many values, so

ĥφ(p) = lim
n→∞

1
dn

h(φn(p)) = 0.
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Now let p ∈ Pn(Q) be such that ĥφ(p) = 0. Then

h(φn(p)) = ĥφ(φn(p)) + O(1) = dnĥφ(p) + O(1) = O(1)

for all integers n ≥ 0. There is thus a constant B > 0 such that h(φn(p)) ≤
B for all integers n ≥ 0, so φn(p) attains only finitely many points. We
conclude that p is preperiodic. �

A The Zariski topology and Hilbert’s Nullstellen-
satz

This appendix presents the Zariski Topology, to which we refer in our def-
inition of rational maps, and Hilbert’s Nullstellensatz, a classic result from
algebraic geometry that we utilize in the proof of theorem 3.2.

Notation A.1. With K we will denote a number field. It’s algebraic closure
is K̄.

Definition A.2. Let I ⊆ K̄[X0, ..., Xn] be an ideal. The radical of I is the
set

√
I = {f ∈ K̄[X0, ..., Xn] | fn ∈ I for some n ≥ 0},

where fn denotes the nth power of f and not its nth iterate.

Definition A.3. An ideal I ⊆ K̄[X0, ..., Xn] is called homogeneous if it is
generated by homogeneous polynomials.

Definition A.4. Let I ⊆ K̄[X0, ..., Xn] be a homogeneous ideal. The
algebraic set of I is the set

V (I) = {p ∈ Pn(K̄) | f(p) = 0 for all f ∈ I}.

Definition A.4: the Zariski topology. Let I denote the set of homoge-
neous ideals in K̄[X0, ..., Xn]. The Zariski topology on Pn(Q) is the set

{U ⊆ Pn(Q) | Pn(Q)\U = V (I) for some I ∈ I}.

Theorem A.5: Hilbert’s Nullstellensatz. Let I, J ( K̄[X0, ..., Xn] be
homogeneous ideals. Then V (I) = V (J) if and only if

√
I =

√
J .
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B Theorem 3.2 for n = m = 1

It turns out that for n = m = 1, theorem 3.2 can be proven without the
use of Hilbert’s Nullstellensatz. For convenience, we introduce one more
definition before showing how it is done.

Definition B.1. A polynomial

f =
∑

i0,...,in

ai0,...,inXi0
0 · · ·Xin

n ∈ Z[X1, ..., Xn]

is called primitive if gcdi0,...,in{ai0,...,in} = 1.

Theorem B.2. Let φ : P1(Q) → P1(Q) be a morphism of degree d. There
are constants B1, B2 > 0 such that for every p ∈ P1(Q):

B1H(p)d ≤ H(φ(P )) ≤ B2H(p)d.

Proof, not involving Hilbert’s Nullstellensatz. Since we didn’t use
the Nullstellensatz for the computation of the upper bound scalar C2 in
the proof of theorem 3.2, our computation of B2 comes down to setting
n = m = 1 in that proof.
Let φ be given by φ(p) = (F0(p) : F1(p)). We assume F0 and F1 to have
coefficients in Z and to be primitive. For if the first is not the case, we
multiply F0 and F1 by a common multitple of the denominators in the
coefficients of F0 and F1, and if the second is not the case, we divide by any
common factors these coefficients might have. Since for any c ∈ Q∗ and any
p ∈ P1(Q) we have (cF0(p) : cF1(p)) = (F0(p) : F1(p)), our assumptions are
justified.
Let f0 = F0(X, 1) and f1 = F1(X, 1) ∈ Q[X]. Suppose f0 and f1 have a
common factor. As we saw in the proof of theorem 1.24, this would mean F0

and F1 have a common factor, contradicting definition 1.18. Thus f0 and f1

have no common factors. Also, from the fact that F0 and F1 are primitive,
it follows directly that f0 and f1 are primitive. We conclude gcd(f0, f1) = 1.
Noting that Q[X] is a Euclidean domain, we apply the Euclidean algorithm
to f0 and f1, finding polynomials g0, g1 ∈ Q[X] such that

g0f0 + g1f1 = 1. (14)

Let b = deg(g0) = deg(g1) and define G10, G11 ∈ Q[X, Y ] by G10 = Y bg0(X
Y )

and G11 = Y bg1(X
Y ). Since F0 = Y df0(X

Y ) and F1 = Y df1(X
Y ), it follows

from (14) that
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G10F0 + G11F1 = Y bg0(X
Y ) · Y dF0(X

Y ) + Y bg1(X
Y ) · Y dF1(X

Y )

= Y b+d
(
g0(X

Y )f0(X
Y ) + g1(X

Y )f1(X
Y )

)
= Y b+d.

In a similar way, we find polynomials G0 and G1 ∈ Q[X, Y ] of equal degree
a such that

G0F0 + G1F1 = Xa+d. (15)

Without loss of generality we may assume a ≤ b. Multiplying both sides of
(15) by Xb−a, we find polynomials G00 = Xb−aG0 and G01 = Xb−aG1 such
that

G00F0 + G01F1 = Xb+d.

For i, j ∈ {0, 1}, we multiply every Gij by a common multiple c of all
the denominators in their coefficients, obtaining polynomials Hij = cGij ∈
Z[X, Y ] such that

H00F0 + H01F1 = cXb+d and H10F0 + H11F1 = cY b+d. (16)

Now let p = (x : y) ∈ P1(Q) be such that x and y are coprime integers.
Evaluating (16) in p gives

H00(p)F0(p) + H01(p)F1(p) = cxb+d

H10(p)F0(p) + H11(p)F1(p) = cyb+d,

and it follows from this that gcd(F0(p), F1(p)) is a divisor of both cxb+d and
cyb+d. Since xb+d and yb+d are coprime, it must be that gcd(F0(p), F1(p))
divides c. So by max(F0(p), F1(p)) = H(φ(p)) · gcd(F0(p), F1(p)), we con-
clude

max(F0(p), F1(p)) ≤ H(φ(p)) · c. (17)

We now compute:
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H(p)b+d = max{|xb+d|, |yb+d|}
= max

i∈{0,1}
|Gi0(p)F0(p) + Gi1(p)F1(p)|

≤ 2 · max
i,j∈{0,1}

|Gij(p)Fj(p)|

≤ 2 · max
i,j∈{0,1}

∣∣∣(b + 1) · |Gij | ·H(p)b · Fj(p)
∣∣∣

≤ 2(b + 1)H(p)b · max
i,j∈{0,1}

{|Gij | ·H(φ(p)) · c}

= 2c(b + 1)H(p)b max
i,j∈{0,1}

{|Gij |} ·H(φ(p)).

Dividing both sides by H(p)b gives

H(p)d ≤ 2c(b + 1) max
i,j∈{0,1}

{|Gij |} ·H(φ(p)),

and thus we choose

C1 = 2c(b + 1) max
i,j∈{0,1}

{|Gij |} .

�
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