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Notation and Convention

Only symbols not generally agreed upon are mentioned below.

We make the convention that 0 is not a natural number, so N = {1, 2, ...} .

When z is a complex number, Rez and Imz will denote the real and imagi-
nary part respectively and |z| will denote its absolute value.

When r is a real and positive number, log(r) will denote its natural logarithm.

When z is a complex number different from zero, log(z) will denote the function
log(r) + iθ, where r is the absolute value of z and θ is its argument lying in the
interval (−π, π].

With arctan(x) we will denote the inverse of the tangent function (over the
real numbers) satisfying −π/2 < arctan(x) < π/2.

If {ζn} and {zn} are two sequences such that a number n0 exists such that
|ζn| < K|zn| whenever n > n0, where K is independent of n, we will write
ζn = O(zn).

If we are given a sequence {an}∞n=1 of complex numbers, then we will write∏∞
n=1 an to mean limN→∞

∏N
n=1 an, provided this last limit exists. An infinite

product
∏∞
n=1 an is said to converge if the following holds

1. only finitely many factors are equal to zero,

2. if N0 is so large that an 6= 0 for n > N0, then limN→∞
∏N
n=N0+1 an exists

and is nonzero.

An infinite product
∏∞
n=1 (1 + an) is said to converge absolutely if

∏∞
n=1 (1 + |an|)

converges.

Some other symbols are defined when used.



1 Introduction

The meaning of the term ‘closed-form expression’ could be defined as follows.

Definition 1.1. A subfield F of C is closed under the taking of exponential and
logarithm if

1. ex ∈ F for all x ∈ F ,

2. log(x) ∈ F for all nonzero x ∈ F .

The field E of numbers in closed-form expression is the intersection of all sub-
fields of C that are closed under the taking of exponential and logarithm.

It can be shown (see [6]) that this definition fits the intuition of the term ’closed-
form expression’. However, we will also be satisfied with some expressions in-
volving the logarithm of the Gamma function and its derivatives (see chapter
5).

Suppose we are given a convergent series
∑∞
n=1 f(n) which we want to eval-

uate in closed-form. Let us, for now, assume that f(n) ≥ 0, for example
f(n) = 1

/
n2. There are many clever ways to evaluate this particular series

(see for example [7]). We will derive a method to rewrite the general series∑∞
n=1 f(n), and this will eventually enable us to evaluate the series in closed-

form in some cases.
The series can be interpreted in three dimensions as the sum of the lengths

of the line segments ln between the points (n, 0, 0), (n, f(n), 0) ∈ R3. The idea
is to project these line segments on a half sphere with radius R and to calculate
the sum of the lengths of the corresponding arcs σR(ln) on the sphere. We shall
denote the length of an arc a on a sphere by ‖a‖ .

Let S be the half sphere
{

(ξ, η, ζ) ∈ R3
∣∣ ξ2 + η2 + (ζ −R)2 = R2 and ζ < R

}
with radius R > 0 and with center M := (0, 0, R). One can derive that the
stereographic projection of the xy-plane onto S corresponds to the mapping
σR :

{
(x, y, z) ∈ R3

∣∣ z = 0
}
→ S, where

σR(x, y, 0) :=

(
R · x√

R2 + x2 + y2
,

R · y√
R2 + x2 + y2

, R− R2√
R2 + x2 + y2

)
.

The vector pointing from M to σR(n, 0, 0) is parallel to and in the same direction
as the vector that starts at (0, 0, 0) pointing to (n, 0,−R). Likewise, the vector
starting at M pointing to σR(n, f(n), 0) is parallel to and in the same direction
as the vector that starts at (0, 0, 0) pointing to (n, f(n),−R). It therefore follows
that the length of σR(ln) is given by

‖σR(ln)‖ = R arccos
(

(n, 0,−R) · (n, f(n),−R)
|(n, 0,−R)| |(n, f(n),−R)|

)
= R arccos

(√
R2 + n2

R2 + n2 + f(n)2

)
,
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where | · | indicates the standard Euclidean norm in three dimensions. This
expression for ‖σR(ln)‖ can be rewritten using

arccos(x) = arctan
(√

1− x2
/
x
)
, for x > 0. (1.1)

We then get ‖σR(ln)‖ = R arctan
(
f(n)

/√
R2 + n2

)
, where we have made use

of our assumption that f(n) ≥ 0.
Intuitively it is clear that limR→∞ ‖σR(ln)‖ = f(n), because as the radius of

the sphere grows larger the sphere itself becomes essentially flat near the origin.
So we definitely have that

∑∞
n=1 f(n) =

∑∞
n=1 limR→∞ ‖σR(ln)‖, which raises

the question: under what conditions on f(n) do we have that
∑∞
n=1 f(n) =

limR→∞
∑∞
n=1 ‖σR(ln)‖?

The interest in an answer to this question comes from the observation that
if in some particular case we are able to evaluate

∑∞
n=1 ‖σR(ln)‖ explicitly (not

’too complicated’) as a function of R, then simply taking the limit as R goes to
infinity returns us the value of the original series, which would be a closed-form
evaluation provided we can calculate this last limit in a closed-form. Things
don’t seem to have gotten much easier with this since the formulas for ‖σR(ln)‖
seem rather complicated. Therefore we will now adjust the method slightly,
resulting in simpler formulas. For this we interpret the series as the sum of the
lengths of the line segments bn between the points (0, 0, 0), (f(n), 0, 0) ∈ R3 and
again we project these line segments on a half sphere of radius R and calculate
the sum of the lengths of the corresponding arcs σR(bn) on the sphere.

Let S be the same half sphere as before with center M := (0, 0, R) and
let σR be the same mapping of the xy-plane onto S. We now have that the
vector pointing from M to σR(0, 0, 0) = (0, 0, 0) is the same as the vector that
starts at (0, 0, 0) pointing to (0, 0,−R). The vector starting at M pointing to
σR(f(n), 0, 0) is parallel to and in the same direction as the vector that starts
at (0, 0, 0) pointing to (f(n), 0,−R) (using the definition of the map σR). It
therefore follows that the length of σR(bn) is given by

‖σR(bn)‖ = R arccos
(

(0, 0,−R) · (f(n), 0,−R)
|(0, 0,−R)| |(f(n), 0,−R)|

)
= R arccos

(
R√

R2 + f(n)2

)
.

Using equation (1.1) and f(n) ≥ 0, we get ‖σR(bn)‖ = R arctan (f(n)/R) .
As before it is intuitively clear that limR→∞ ‖σR(bn)‖ = f(n) and again we

come to the question whether we can switch the order of this limit and the
summation. We will give an answer to this question in the next chapter.
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2 Preliminary Lemma’s

Dropping the assumption that f(n) ≥ 0, we have the following.

Proposition 2.1. Let
∑∞
n=1 f(n) be an absolutely convergent series and let

‖σR(bn)‖ := R arctan (f(n)/R) . Then

∞∑
n=1

f(n) = lim
R→∞

∞∑
n=1

‖σR(bn)‖ (2.1)

Proof. First we show that limR→∞ ‖σR(bn)‖ = f(n).
We have for |x| ≤ 1 the Taylor series arctanx =

∑∞
m=0 (−1)mx2m+1/(2m+ 1),

and so for R large enough

|R arctan
(
f(n)
R

)
− f(n)| = |R

∞∑
m=1

(−1)m

2m+ 1

(
f(n)
R

)2m+1

|

=
1
R2
|
∞∑
m=1

(−1)m

2m+ 1

(
f(n)2m+1

R2m−2

)
|,

so limR→∞ ‖σR(bn)‖ = f(n).
Now given ε > 0 we choose, using absolute convergence, N ∈ N large enough

such that
∑∞
n=N+1 |f(n)| < ε/3. Then

|
∞∑
n=1

R arctan
(
f(n)
R

)
−
∞∑
n=1

f(n)|

= |
∞∑
n=1

R arctan
(
f(n)
R

)
−

N∑
n=1

f(n) +
N∑
n=1

f(n)−
∞∑
n=1

f(n)|

≤
N∑
n=1

|R arctan
(
f(n)
R

)
− f(n)|+

∞∑
n=N+1

{
|f(n)|+ |R arctan

(
f(n)
R

)
|
}
.

Since for all n, limR→∞ ‖σR(bn)‖ = f(n), we can choose R large enough such
that the first sum in this last estimate is smaller than ε/3. The last sum in the
estimate is bounded by 2ε/3, by virtue of the choice of N and the inequality
|R arctan (f(n)/R) | = R arctan (|f(n)|/R) ≤ |f(n)|. We see that there exists
an M = M(ε) ∈ R such that

R > M ⇒ |
∞∑
n=1

R arctan
(
f(n)
R

)
−
∞∑
n=1

f(n)| < ε,

which is what we set out to prove.

Note 2.1. Since the inverse tangent is an odd function we could also take the
limit |R| → ∞ in (2.1).
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Before giving an application we state and prove some elementary lemma’s and
a corollary, see also [1], pages 125-128, and [2], page 38.

Lemma 2.1. For all z ∈ C,

ez = lim
n→∞

(
1 +

z

n

)n
.

Proof. For n ∈ N and z ∈ C we have that

ez −
(

1 +
z

n

)n
=

( ∞∑
k=0

zk

k!

)
−

(
n∑
k=0

n!
k!(n− k)!

zk

nk

)

=

(
n∑
k=0

cnk
zk

k!

)
+

( ∞∑
k=n+1

zk

k!

)
,

where

0 ≤ cnk = 1− n!
(n− k)!nk

= 1−
k−1∏
j=0

n− j
n
≤ 1.

Now note that for each fixed k and fixed z, limn→∞ cnkz
k
/
k! = 0. Given z and

given ε > 0, we choose m ∈ N large enough such that
∑∞
k=m+1 |z|k

/
k! < ε/3.

We also choose N > m such that for n > N ,
∑m
k=0 |cnkzk

/
k!| < ε/3 holds.

Using |cnk| ≤ 1, this gives that for n > N∣∣∣ez − (1 +
z

n

)n∣∣∣ ≤ m∑
k=0

∣∣∣∣cnkzkk!

∣∣∣∣+ n∑
k=m+1

∣∣∣∣cnkzkk!

∣∣∣∣+ ∞∑
k=n+1

|z|k

k!
≤ ε

3
+
ε

3
+
ε

3
= ε,

proving the lemma.

Before stating and proving the next lemma we derive some basic inequalities,
the first three of which are known as Weierstrass’s inequalities (see [5], page
104).
If, for L ∈ N, we are given a sequence {ai}Li=0 ⊂ [0, 1), then with induction one
can prove the inequalities

L∏
i=0

(1 + ai) ≥ 1 +
L∑
i=0

ai (2.2)
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L∏
i=0

(1− ai) ≥ 1−
L∑
i=0

ai. (2.3)

Combining (2.3) with 1 + ai ≤ (1− ai)−1 and assuming
∑L
i=0 ai < 1, gives

L∏
i=0

(1 + ai) ≤
L∏
i=0

(1− ai)−1 ≤

(
1−

L∑
i=0

ai

)−1

. (2.4)

For some other inequalities we suppose that we are given 0 < ε < 1 and a
sequence {bk}Lk=0 ⊂ C, with

∑L
k=0 |bk| < ε/2. Writing bk = ρke

iθk and 1 + bk =
rke

itk , with ρk = |bk|, rk = |1+bk| and θk = arg(bk) ∈ (−π, π], tk = arg(1+bk) ∈
(−π, π], we have that 1+bk = (1+ρk cos θk)+iρk sin θk. So using ρk = |bk| < 1/2
we have

|tk| = | arctan
(

ρk sin θk
1 + ρk cos θk

)
| = arctan

(
|ρk sin θk|

1 + ρk cos θk

)
≤ arctan

(
ρk

1− ρk

)
< arctan (2ρk) ≤ 2ρk.

From this follows

|
L∑
k=0

tk | < 2
L∑
k=0

ρk < ε, (2.5)

and from (2.4) it follows that

L∏
k=0

rk ≤
L∏
k=0

(1 + ρk) ≤

(
1−

L∑
k=0

ρk

)−1

<

(
1− 1

2
ε

)−1

< 1 + ε. (2.6)

Also, using (2.3),

L∏
k=0

rk ≥
L∏
k=0

(1− ρk) ≥ 1−
L∑
k=0

ρk ≥ 1− ε. (2.7)

Writing

b :=
L∏
k=0

(1 + bk) =

(
L∏
k=0

rk

)
ei
∑L
k=0 tk ,

we have

|b− 1| ≤ |−1 + cos

(
L∑
k=0

tk

)
L∏
k=0

rk |+ |sin

(
L∑
k=0

tk

)
L∏
k=0

rk |,

where by (2.5), (2.6) and (2.7)

|sin

(
L∑
k=0

tk

)
L∏
k=0

rk | ≤ ε(1 + ε) ≤ 2ε and − 1 + cos

(
L∑
k=0

tk

)
L∏
k=0

rk ≤ ε,
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and

1− cos

(
L∑
k=0

tk

)
L∏
k=0

rk ≤ 1− cos(ε)(1− ε) ≤ 1− (1− ε)(1− ε2

2
)

=
ε2

2
− ε3

2
+ ε ≤ 2ε.

We conclude that
|b− 1| ≤ 4ε. (2.8)

The following lemma is the multiplicative analogue of Tannery’s theorem, see
[5], page 136, for the additive version. In chapter 4, lemma 4.1, we will see and
use a continuous analogue.

Lemma 2.2. For n ∈ N, let Pn :=
∏u(n)
i=0 (1 + vi(n)), where u(n) ∈ Z≥0 is

strictly increasing and for all n we have {vi(n)}u(n)
i=0 ⊂ C. Suppose there exist

sequences {wk}∞k=0 ⊂ C and {Mk}∞k=0 ⊂ R≥0 satisfying

1.
∑∞
k=0Mk <∞,

2. limn→∞ vk(n) = wk, for all k,

3. |vi(n)| ≤Mi, for all n and correspondingly, i = 0, 1, ..., u(n).

Then

lim
n→∞

Pn =
∞∏
k=0

(1 + wk).

Proof. Because of assumption 1 we have that M :=
∏∞
k=0 (1 +Mk) converges

absolutely (see appendix, lemma 6.1). Assumption 2 and 3 show that for all
k, |wk| ≤ Mk and together with assumption 1 and lemma 6.1 we see that∏∞
k=0 (1 + wk) converges absolutely, so it also converges. Now Let 0 < ε < 1

be given and let q = q(ε) ∈ N be such that
∑∞
k=qMk < ε/2. If there is some

l ∈ {0, 1, ..., q − 1} with wl = −1 then, assuming that n > q,

|
q−1∏
i=0

(1 + vi(n))−
∞∏
k=0

(1 + wk)| = |
q−1∏
i=0

(1 + vi(n))|

≤ |1 + vl(n)|
q−1∏

i=0,i6=l

(1 + |vi(n)|) ≤M |1 + vl(n)| ,

otherwise

|
q−1∏
i=0

(1 + vi(n))−
∞∏
k=0

(1 + wk)|

6



≤ |
q−1∏
k=0

(1 + wk)||
∏q−1
i=0 (1 + vi(n))∏q−1
k=0 (1 + wk)

−
∞∏
k=q

(1 + wk)|

≤M |
∏q−1
i=0 (1 + vi(n))∏q−1
k=0 (1 + wk)

− 1|+M |1−
∞∏
k=q

(1 + wk)|

≤M |
∏q−1
i=0 (1 + vi(n))∏q−1
k=0 (1 + wk)

− 1|+ 4εM,

where we used (2.8) in the last step. Because limn→∞ vk(n) = wk, we see that
in either case there exists an N1 = N1(ε) ∈ N bigger than q, such that

n > N1 ⇒ |
q−1∏
i=0

(1 + vi(n))−
∞∏
k=0

(1 + wk)| ≤ 5εM. (2.9)

Since N1 > q, we have that n > N1 implies u(n) > q. So that when n > N1,

|
u(n)∏
i=0

(1 + vi(n))−
q−1∏
i=0

(1 + vi(n))| ≤ |
q−1∏
i=0

(1 + vi(n))||
u(n)∏
i=q

(1 + vi(n))−1| ≤ 4εM,

(2.10)
where we used (2.8) again in the last step. Combining (2.9) and (2.10) gives

n > N1 ⇒ |Pn −
∞∏
k=0

(1 + wk)| = |
u(n)∏
i=0

(1 + vi(n))−
∞∏
k=0

(1 + wk)| ≤ 9εM,

proving the lemma.

We can use the previous lemma’s to prove

Lemma 2.3. For all z ∈ C,

sin z = z

∞∏
k=1

(
1− z2

π2k2

)
. (2.11)

Proof. Lemma 2.1 gives that sin z = (eiz − e−iz)
/

2i = limn→∞ Pn(z), where
Pn(z) is the polynomial

Pn(z) =
1
2i

(
1 +

iz

n

)n
− 1

2i

(
1− iz

n

)n
.

This polynomial vanishes when z = 0 and also when [(1− iz/n)/(1 + iz/n)]n =
1, that is, when (1− iz/n)/(1 + iz/n) = w, or z = in(w − 1)/(w + 1), with

7



wn = 1, w 6= ±1. We may assume that that n is even, say n = 2m, m ∈ N, so
that our polynomial has degree n − 1 = 2m − 1 and the 2m − 2 nonzero roots
are given by

in
e−2ikπ/2m − 1
e−2ikπ/2m + 1

= in
e−ikπ/2m − eikπ/2m

e−ikπ/2m + eikπ/2m
= 2m tan(kπ/2m),

with k = ±1,±2, ...,±(m− 1). Since at z = 0, Pn(z)/z = 1 (the coefficient of z
in Pn(z)), we find the factorization

Pn(z) = P2m(z) = z

m−1∏
k=1

(
1− z2

[2m tan(kπ/2m)]2

)
,

and thus

sin z = lim
m→∞

P2m(z) = z lim
m→∞

m−1∏
k=1

(
1− z2

[2m tan(kπ/2m)]2

)
.

In order to invoke the previous lemma note that
∑∞
k=1 |z|2

/
k2π2 <∞ and

|z|2

|2m tan(kπ/2m)|2
≤ |z|2

|2m(kπ/2m)|2
=
|z|2

k2π2
.

Furthermore

lim
m→∞

z2

(2m tan(kπ/2m))2 = lim
m→∞

z2

k2π2
(

tan(kπ/2m)
kπ/2m

)2 =
z2

k2π2
,

and lemma 2.2 now concludes the proof.

Corollary 2.1. Let z, a ∈ C, where a is not an integral multiple of π. Then

sin(z + a)
sin a

=
z + a

a

∞∏
k=1

{(
1− z

kπ − a

)(
1 +

z

kπ + a

)}
.

Proof. By lemma 2.3,

sin(z + a)
sin a

=
(z + a)

∞∏
k=1

(
1− (z+a)2

k2π2

)
a
∞∏
k=1

(
1− a2

k2π2

) =
z + a

a

∞∏
k=1

(
k2π2−(z+a)2

k2π2

)
(
k2π2−a2

k2π2

) ,

8



and (
k2π2−(z+a)2

k2π2

)
(
k2π2−a2

k2π2

) =
k2π2 − (z + a)2

k2π2 − a2
=

(kπ − (z + a)) (kπ + (z + a))
(kπ − a)(kπ + a)

=
(

1− z

kπ − a

)(
1 +

z

kπ + a

)
,

proving the corollary.

9



3 An Application

First we prove the following proposition (see also [2], page 39), which will also
be used in chapter 5.

Proposition 3.1. Let x, b ∈ R, where b is not an integral multiple of π. Then

arctan (tanh(x) cot(b))

= arctan
(x
b

)
+
∞∑
k=1

{
arctan

(
x

kπ + b

)
− arctan

(
x

kπ − b

)}
(3.1)

Proof. By corollary 2.1

Imlog (sin(b+ ix)/sin b)

= Imlog

[(
1 +

ix

b

) ∞∏
k=1

{(
1− ix

kπ − b

)(
1 +

ix

kπ + b

)}]

= arctan
(x
b

)
+
∞∑
k=1

{
arctan

(
x

kπ + b

)
− arctan

(
x

kπ − b

)}
+ lπ,

with l ∈ Z only depending on the first few terms of the infinite product and on
the term 1 + (ix/b), because as k gets large, the imaginary parts of the factors
in the infinite product become arbitrary small in absolute value. On the other
hand

Imlog (sin(b+ ix)/sin b)
= Imlog ((cos ix sin b+ sin ix cos b)/sin b)
= Imlog (cos ix+ cot b sin ix)
= Imlog (coshx+ i cot b sinhx) = arctan(cot b tanhx) + l′π,

with l′ ∈ Z. We are done if we show that l − l′ = 0. When x = 0 then (3.1) is
clearly true, so in that case l − l′ = 0. If we now prove that both sides of (3.1)
are continuous functions of x, holding b fixed, then l− l′ must also be continuous
and so equal to its value at x = 0, that is zero. To prove continuity it suffices
to show that

∞∑
k=1

{
arctan

(
x

kπ + b

)
− arctan

(
x

kπ − b

)}
(3.2)

is a continuous function of x, holding b fixed. For that we invoke the addition
formulas

arctan y + arctan z =

arctan
(
y+z
1−yz

)
if yz < 1,

arctan
(
y+z
1−yz

)
+ πsign(y) if yz > 1.

(3.3)
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In our case we have that yz = −x2
/

(k2π2 − b2), and

y + z

1− yz
=

x
kπ+b −

x
kπ−b

1 + x
kπ+b

x
kπ−b

=
−2bx

k2π2 − b2 + x2
.

So if we choose K ∈ N, with K2π2 − b2 > 0, then yz < 1 for all k ≥ K and so
(3.2) equals

K−1∑
k=1

{
arctan

(
x

kπ + b

)
− arctan

(
x

kπ − b

)}
+
∞∑
k=K

arctan
(

−2bx
k2π2 − b2 + x2

)
.

Now it only remains to show the continuity of this last infinite sum. For this
we assume x ∈ [−N,N ], N > 0, so that for k ≥ K

arctan
(

−2bx
k2π2 − b2 + x2

)
≤ |2bx|
|k2π2 − b2 + x2|

≤ 2N |b|
k2π2 − b2

.

Since
∑∞
K 2N |b|

/
(k2π2 − b2) <∞, the Weierstrass M-test implies that∑∞

k=K arctan
(
−2bx

/
(k2π2 − b2 + x2)

)
converges uniformly for x ∈ [−N,N ]

and so it is continuous there. Because N was arbitrary we are done.

Remark 3.1. It is clear that the above approach will work for many infinite
products to produce series involving the inverse tangent function. In chapter 5
we will see a method that allows us to express many such series in terms of the
Gamma function. There exist more methods to derive series like (3.1), see [4]
for a nice account of these.

Example 3.1. Let us sum the series
∑∞
n=1 1

/
(w2 − n2) in closed-form, where

w ∈ R\Z. Proposition 2.1 indicates that we should attempt to sum

∞∑
k=1

arctan
(

1
Rw2 −Rk2

)
and proposition 3.1 and its proof show that we could try to find b, x ∈ R such
that

−2bx
k2π2 − b2 + x2

=
1

Rw2 −Rk2
=

1
π2

−2bxk
2 + x2−b2

−2bx

,

so we get that R = π2
/

2bx and Rw2 = (b2 − x2)
/

2bx. Using the quadratic
formula one can calculate that a solution is given by

x = (1/2)π
(√

w2 + (1/R)−
√
w2 − (1/R)

)

11



and
b = (1/2)π

(√
w2 + (1/R) +

√
w2 − (1/R)

)
.

With these values we claim that for k = 1, 2, ...

arctan
(

x

kπ + b

)
− arctan

(
x

kπ − b

)
= arctan

(
−2bx

k2π2 − b2 + x2

)
.

To prove the claim we need to show, by (3.3), that for k = 1, 2, ...,
−x2

/
(k2π2 − b2) < 1, that is

−w2 +
√
w4 − (1/R2)

2k2 − w2 −
√
w4 − (1/R2)

< 1. (3.4)

Because the numerator is always negative and the denominator 2k2 − w2 −√
w4 − (1/R2) > 2k2 − 2w2, we see that if 2k2 − 2w2 ≥ 0 then indeed (3.4)

holds, so we now assume that for some k, the denominator is negative and that
k2 < w2. Then for R large enough

(2k2 − w2)−
√
w4 − (1/R2) < −w2 +

√
w4 − (1/R2) < 0, so indeed

−w2 +
√
w4 − (1/R2)

2k2 − w2 −
√
w4 − (1/R2)

<
−w2 +

√
w4 − (1/R2)

−w2 +
√
w4 − (1/R2)

= 1.

Since w ∈ R\Z we have for sufficiently large R that b is not an integral multiple
of π, thus by proposition 2.1 and 3.1

∞∑
n=1

1
w2 − n2

= lim
R→∞

R

∞∑
k=1

arctan
(

1
Rw2 −Rk2

)
= lim
R→∞

R
(

arctan (tanh(x) cot(b))− arctan
(x
b

))
. (3.5)

We calculate the limit in (3.5) using the limits lim
R→∞

b = π|w| /∈ πZ, lim
R→∞

x =

0 and the standard limits lim
u→0

arctan(u)/u = lim
u→0

tanh(u)/u = 1. Usage of

l’Hôpital’s rule is indicated with **, we get

lim
R→∞

R (arctan (tanh(x) cot(b))− arctan (x/b))

= lim
R→∞

(
R tanh(x) cot(b)

arctan (tanh(x) cot(b))
tanh(x) cot(b)

− R(x/b)
arctan (x/b)

(x/b)

)
= lim
R→∞

(R tanh(x) cot(b)) · 1− lim
R→∞

(R(x/b)) · 1

= cot(π|w|) lim
R→∞

(
Rx

tanh(x)
x

)
− lim
R→∞

(R(x/b))

= cot(π|w|) lim
R→∞

(Rx) · 1− lim
R→∞

(R(x/b))

12



= cot(π|w|) lim
y→0+

(
1
2
π

√
w2 + y −

√
w2 − y

y

)

− lim
y→0+

 √
w2 + y −

√
w2 − y

y
(√

w2 + y +
√
w2 − y

)


∗∗= cot(π|w|) lim
y→0+

(
1
2
π

(
1

2
√
w2 + y

− −1

2
√
w2 − y

))

− 1
2|w|

lim
y→0+

(√
w2 + y −

√
w2 − y

y

)
∗∗=

1
2
π cot(π|w|) 1

|w|
− 1

2|w|
1
|w|

,

where every step that replaces a limit of a sum/product by the sum/product of
the limits can be justified by reading this string of equalities backwards. The
closed-form evaluation thus becomes

∞∑
n=1

1
w2 − n2

=
π cot(πw)

2w
− 1

2w2
, w ∈ R\Z. (3.6)

The significance of (3.6) could be inferred from the following easy corollary.

Corollary 3.1. For k ∈ N let ζ(k) :=
∑∞
n=1 1/nk and let Bk denote the kth

Bernoulli number. Then when k is even

ζ(k) = −1
2

(2πi)kBk
k!

.

Proof. see [10], page 4.

Remark 3.2. Example 3.1 is by no means the fastest way to prove (3.6): log-
arithmic differentiation of (2.11) yields this almost at once. However, we are
describing methods to find closed-form expressions for infinite series. We started
out with a series and found the answer. It is a constructive approach. Also, it
shows that proposition 2.1 can be useful. In chapter 5 we will see many more
useful applications of proposition 2.1, but not after we establish some properties
of the Gamma function.
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4 The Gamma Function

The following is a continuous analogue of lemma 2.2. To avoid confusion we will
use the broad setting of the Lebesgue integral.

Lemma 4.1. For n ∈ N, let fn : (0,∞) → C be Lebesgue integrable and put
In :=

∫ p(n)

0
fn(t)dt, where p(n) ∈ Z≥0 is strictly increasing. Suppose that In is

finite for all n and suppose there exist Lebesgue integrable functions f : (0,∞)→
C and M : (0,∞)→ R≥0 satisfying

1.
∫∞

0
M(t)dt <∞,

2. limn→∞ fn = f uniformly on finite interval subsets of (0,∞),

3. for all n we have |fn(t)| ≤M(t), holding for all t ∈ (0, p(n)).

Then

lim
n→∞

In =

∞∫
0

f(t)dt. (4.1)

Proof. Because of conditions 2 and 3, we know that the right hand side of (4.1)
is finite. Let ε > 0 be given and let q = q(ε) ∈ N be such that

∫∞
q
M(t)dt < ε/3.

Then

|
q∫

0

fn(t)dt−
∞∫

0

f(t)dt| ≤
q∫

0

|fn(t)− f(t)|dt+

∞∫
q

|f(t)|dt

≤
q∫

0

|fn(t)− f(t)|dt+ ε/3,

Now because of condition 2 we see that there exists an N = N(ε) ∈ N such that

n > N ⇒ |
q∫

0

fn(t)dt−
∞∫

0

f(t)dt| ≤ 2ε/3. (4.2)

We may assume that N is such that for all n > N we have p(n) > q. Then if
n > N,

|
p(n)∫
0

fn(t)dt−
q∫

0

fn(t)dt| ≤
p(n)∫
q

|fn(t)|dt ≤ ε/3. (4.3)

Combining (4.2) and (4.3) gives

n > N ⇒ |
p(n)∫
0

fn(t)dt−
∞∫

0

f(t)dt| ≤ ε,

14



proving (4.1).

Before we apply lemma 4.1 we first establish a useful inequality (see [5], page
506).

Since the derivative of 1 − et(1 − t/n)n equals et(1 − t/n)n−1(t/n), we have
for 0 < t < n that

0 ≤
t∫

0

ev
(

1− v

n

)n−1 v

n
dv = 1− et

(
1− t

n

)n
≤ et

t∫
0

v

n
dv =

ett2

2n
,

or

0 ≤ e−t −
(

1− t

n

)n
≤ t2

2n
. (4.4)

Armed with this last inequality we apply lemma 4.1 to

In :=
∫ n

0

(1− t/n)ntz−1dt,

where the real part x of the complex number z is assumed positive. So in
this case we take p(n) := n, fn(t) := (1 − t/n)ntz−1 and f(t) := e−ttz−1.
We claim that with M(t) := e−ttx−1 conditions 1, 2 and 3 of lemma 4.1 are
satisfied. Firstly, inequality (4.4) shows that |f(t) − fn(t)| ≤ tx−1t2/2n, so
fn → f uniformly on finite interval subsets of (0,∞). Secondly, choosing C > 0
such that tx−1 ≤ Cet/2 for all t ∈ (1,∞), we have

∞∫
0

M(t)dt =

1∫
0

e−ttx−1dt+

∞∫
1

e−ttx−1dt ≤
1∫

0

tx−1dt+ C

∞∫
1

e−t/2dt <∞.

Finally, for 0 < t < n, |fn(t)| = (1− t/n)ntx−1 ≤ e−ttx−1 = M(t), by inequality
(4.4). So we find that

Γ(z) := lim
n→∞

In =

∞∫
0

e−ttz−1dt, (4.5)

which is Euler’s integral expression for the Gamma function, valid when the real
part of z is positive. Using integration by parts on this expression one can show
that the Gamma function satisfies

Γ(z + 1) = zΓ(z). (4.6)

Starting out again with In =
∫ n

0
(1− t/n)ntz−1dt and making the substitution
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t = nτ , gives that In = nz
∫ 1

0
(1− τ)nτz−1dτ and repeated integration by parts

gives

1∫
0

(1− τ)nτz−1dτ =
1
z
τz(1− τ)n

∣∣∣∣1
0

+
n

z

1∫
0

(1− τ)n−1τzdτ

=
n(n− 1)
z(z + 1)

1∫
0

(1− τ)n−2τz+1dτ = ...

=
n!

z(z + 1)...(z + n− 1)

1∫
0

τz+n−1dτ =
n!

z(z + 1)...(z + n)
.

So
Γ(z) = lim

n→∞

n!nz

z(z + 1)...(z + n)
. (4.7)

Letting γ := limn→∞ (
∑n
k=1 1/k) − log(n) be the Euler-Mascheroni constant,

we manipulate somewhat further

1
Γ(z)

= z lim
n→∞

1
nz

n∏
k=1

(
1 +

z

k

)
= z lim

n→∞
e−z(log(n)−

∑n
k=1 1/k)

n∏
k=1

e−z/k
(

1 +
z

k

)
= zeγz

∞∏
k=1

e−z/k
(

1 +
z

k

)
, (4.8)

which is Weierstrass’ product expression for Γ(z)−1.

Next we establish some fundamental properties of the Gamma function.

Lemma 4.2. Weierstrass’s product expression extends the Gamma function to
a meromorphic function on the entire complex plane, with only simple poles,
located at z = 0,−1,−2, .... Furthermore we have

1. Γ(z + 1) = zΓ(z), for z 6= 0,−1,−2, ...,

2. Γ(z)Γ(1− z) = π/ sin(πz), whenever z is not an integer.

Proof. We let N be a positive integer and take |z| ≤ (1/2)N. Then if n > N ,

| log
(

1 +
z

n

)
− z

n
| = |

∞∑
k=2

(−1)k+1

k

( z
n

)k
|

≤ |z|
2

n2

∞∑
k=0

(
|z|
n

)k
≤ 1

4
N2

n2

∞∑
k=0

(
1
2

)k
=

1
2
N2

n2
.
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So
∑∞
n=N+1 {log (1 + z/n)− z/n} converges absolutely and uniformly in the

disc |z| ≤ (1/2)N and because each term of this series is analytic in the disc |z| <
(1/2)N , it follows that the series itself is analytic in the disc |z| < (1/2)N (see
appendix, theorem 6.1). Consequently its exponential

∏∞
k=N+1 e

−z/k (1 + z/k)
is analytic in this disc, so Γ(z)−1 is analytic in every disc |z| < (1/2)N, with N
a positive integer, which proves the analyticity of Γ(z)−1 in the entire complex
plane.

The convergence of
∑∞
n=N+1 {log (1 + z/n)− z/n} in the disc |z| ≤ (1/2)N ,

for every N ∈ N, reveals that Γ(z)−1 has only zeros at z = 0,−1,−2, . . . , which
are all simple, so Γ(z) is analytic for z ∈ C\{0,−1,−2, ...}, with simple poles at
the excluded points.

The analyticity of the Gamma function on C\{0,−1,−2, ...} implies the
persistence of the functional equation (4.6) here (see appendix, theorem 6.2),
proving 1.

Combining the Weierstrass product expression with lemma 2.3 we further
deduce

Γ(z)Γ(−z) = − 1
z2

∞∏
k=1

{
e−z/k

(
1 +

z

k

)}−1 ∞∏
k=1

{
ez/k

(
1− z

k

)}−1

=
−π

z sin(πz)
,

and with the functional equation (4.6) this becomes

Γ(z)Γ(1− z) =
π

sin(πz)
,

proving 2.

Remark 4.1. Formula 2 in lemma 4.2 is known as Euler’s reflection formula.

The next theorem is actually another application of Weierstrass’s product ex-
pansion.

Theorem 4.1. Let

P :=
∞∏
n=1

{
(n− a1)...(n− ak)
(n− b1)...(n− bk)

}
be absolutely convergent, where the ai and bi are fixed complex numbers and k
is a fixed positive integer, ai, bi /∈ N. Then

P =
k∏

m=1

Γ(1− bm)
Γ(1− am)

.
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Proof. Using the geometric series, we have for n large enough that

k∏
m=1

{
n− am
n− bm

}
=

k∏
m=1

(
1− am

n

)(
1− bm

n

)−1

=
k∏

m=1

(
1− am

n

)(
1 +

bm
n

+Amn

)

=
k∏

m=1

(
1− am − bm

n
+Bmn

)
= 1 + Cn −

1
n

k∑
m=1

(am − bm),

where all of Amn , B
m
n and Cn are O(n−2). We know by lemma 6.1 (see appendix)

that P is absolutely convergent if and only if
∑∞
n=1 |Cn − n−1

∑k
m=1 (am − bm)| <

∞, so ∆ :=
∑k
m=1 (am − bm) = 0 is a sufficient condition. It is also necessary

since we have

N∑
n=1

{
|Cn| − |

1
n

k∑
m=1

(am − bm)|

}
≤

N∑
n=1

|Cn −
1
n

k∑
m=1

(am − bm)|

and convergence of the smallest member as N → ∞ is only possible if ∆ = 0.
Knowing that ∆ = 0 we can insert the factor en

−1∆ = 1 into the general factor
of the product without altering its value, that is

P =
∞∏
n=1

{
k∏

m=1

eam/n
(

1− am
n

)
e−bm/n

(
1− bm

n

)−1
}

=
k∏

m=1

{[ ∞∏
n=1

eam/n
(

1− am
n

)][ ∞∏
n=1

e−bm/n
(

1− bm
n

)−1
]}

,

where this last equality holds since according to lemma 4.2 the infinite products
on the right all converge and can be expressed in terms of the Gamma function.
Doing so and using the functional equation (4.6) together with ∆ = 0 we get

P =
k∏

m=1

{[
−amΓ(−am)e−γam

]−1 [−bmΓ(−bm)e−γbm
]}

=
k∏

m=1

Γ(1− bm)
Γ(1− am)

,

which is what we set out to prove.

Remark 4.2. Some of the proofs and derivations in this chapter have been taken
partially from [11], which however takes Weierstrass’s product as the definition
of the Gamma function.
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5 More Applications

We will need the following.

Theorem 5.1. Let

S :=
∞∑
n=1

f(n)

be a real and absolutely convergent series. Then

S = lim
r→0

{
1

2ir
log

[ ∞∏
n=1

1 + irf(n)
1− irf(n)

]}
,

where r takes only real values.

Proof. We set σ(R) :=
∑∞
n=1 arctan(f(n)/R), with R real and |R| large enough

to ensure |σ(R)| < π/2. With the aid of a picture it is seen that

ei arctan(f(n)/R) =
1 + if(n)/R√
1 + f(n)2/R2

,

so that

e2iσ(R) =
∞∏
n=1

{
(1 + if(n)/R)2

1 + f(n)2/R2

}

=
∞∏
n=1

{
(1 + if(n)/R)2

(1 + if(n)/R)(1− if(n)/R)

}
=
∞∏
n=1

{
1 + if(n)/R
1− if(n)/R

}
. (5.1)

By the assumption on R this never lies on the negative real axis so that we can
take the logarithm of both sides. Together with some algebraic manipulation
this results in

Rσ(R) =
R

2i
log

{ ∞∏
n=1

{
1 + if(n)/R
1− if(n)/R

}}
.

Letting |R| go to infinity and using proposition 2.1 and note 2.1 we finally get

S = lim
|R|→∞

R

2i
log

{ ∞∏
n=1

{
1 + if(n)/R
1− if(n)/R

}}
= lim
r→0

1
2ir

log

{ ∞∏
n=1

{
1 + irf(n)
1− irf(n)

}}
,

which is the desired result.
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Note 5.1. For the upcoming examples, in which we will want to use theorem
4.1 as well, let us show that the infinite product in the statement of theorem 5.1
converges absolutely. We have

|1 + irf(n)
1− irf(n)

− 1| = | 2irf(n)
1− irf(n)

| = |f(n)|
|(1/2ir)− (1/2)f(n)|

≤ |f(n)|,

for r in a small enough interval around zero. The absolute convergence of the
series for S together with lemma 6.1 in the appendix now furnishes the claimed
absolute convergence of the infinite product.

The following examples are applications of some of the preceding material.

Example 5.1. Let x, b ∈ R, where b is not an integral multiple of π. According
to proposition 3.1 and its proof we have for some m ∈ Z
∞∑
n=1

arctan
(

−2bx
n2π2 − b2 + x2

)
= mπ + arctan(tanh(x) cot(b))− arctan

(x
b

)
.

With f(n) := (−2bx)/(n2π2 − b2 + x2) and R := 1 in equation (5.1) we get

e2i(arctan(tanh(x) cot(b))−arctan(x/b)) =
∞∏
n=1

{
n2π2 − b2 + x2 − i2bx
n2π2 − b2 + x2 + i2bx

}

=
∞∏
n=1

{
n2 + (x− ib)2/π2

n2 + (x+ ib)2/π2

}
.

So with note 5.1 and theorem 4.1 we finally find

e2i(arctan(tanh(x) cot(b))−arctan(x/b)) =
Γ(1− (−b+ ix)/π)Γ(1− (b− ix)/π)
Γ(1− (−b− ix)/π)Γ(1− (b+ ix)/π)

,

(5.2)

which can be confirmed using lemma 4.2.2, although it is cumbersome.

Example 5.2. Let us, for k ∈ N>1 and a ∈ R not a negative integer, consider
the series S :=

∑∞
n=1 (n+ a)−k. According to theorem 5.1

S = lim
r→0

{
1

2ir
log

[ ∞∏
n=1

(n+ a)k + ir

(n+ a)k − ir

]}
.

Since (−i)1/k = e−iπ/(2k)e2iπm/k = eiπ(−1+4m)/(2k) and i1/k = eiπ/(2k)e2iπm/k =
eiπ(1+4m)/(2k), for m = 0, 1, . . . , k − 1, we have the factorization

(n+ a)k ± ir =
k−1∏
m=0

(n− (r1/keiπ(∓1+4m)/(2k) − a)).
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In this last equation and in the remainder of this example, both r and r1/k are
taken real and positive. Using note 5.1 and theorem 4.1 we get

S = lim
r→0+

{
1

2ir
log

[
k−1∏
m=0

Γ(1− (r1/keiπ(1+4m)/(2k) − a))
Γ(1− (r1/keiπ(−1+4m)/(2k) − a))

]}
.

We calculate the limit

S = lim
r→0+

{
k−1∑
m=0

1
2ir

log
(

Γ(1− (r1/keiπ(1+4m)/(2k) − a))
Γ(1− (r1/keiπ(−1+4m)/(2k) − a))

)}

=
k−1∑
m=0

lim
r→0+

1
2irk

[
log(Γ(1− reiπ(1+4m)/(2k) + a))

− log(Γ(1− reiπ(−1+4m)/(2k) + a))

]

=
k−1∑
m=0

lim
r→0+

1
k!2i


(
−eiπ(1+4m)/(2k)

)k
ψk−1(1− reiπ(1+4m)/(2k) + a)

−
(
−eiπ(−1+4m)/(2k)

)k
ψk−1(1− reiπ(−1+4m)/(2k) + a)

,
where interchanging the limit and the sum will be justified when we show that
the limits in the last line exists and where we used l’Hôpital’s rule k times in
the last step together with the notation

ψl(z) :=
(
d

dz

)l(Γ′(z)
Γ(z)

)
, l ∈ Z≥0.

By lemma 4.1, these functions are continuous for z ∈ C\{0,−1,−2, ...} (even
analytic), so

S =
(−1)kψk−1(1 + a)

k!2i

k−1∑
m=0

[
eiπ(1+4m)/2 − eiπ(−1+4m)/2

]
=

(−1)kψk−1(1 + a)
k!2i

k−1∑
m=0

2i

=
(−1)kψk−1(1 + a)

(k − 1)!
=
∞∑
n=1

1
(n+ a)k

(5.3)

Note 5.2. A nice consequence of (5.3) is the Taylor series

log Γ(1 + z) =
∞∑
k=1

ψk−1(1)
k!

zk = −γz +
∞∑
k=2

(−1)kζ(k)
k

zk,

where we used that ψ0(1) = −γ, which can be proved by logarithmic differentia-
tion of Weierstrass’s product expansion.
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Example 5.3. In the previous example we have seen that for k ∈ N>1,

∞∏
n=1

{
(n+ a)k + ir

(n+ a)k − ir

}
=

k−1∏
m=0

{
Γ(1− (r1/keiπ(1+4m)/(2k) − a))

Γ(1− (r1/keiπ(−1+4m)/(2k) − a))

}
.

Taking r = 1 and using (5.1) we find

e2i
∑∞
n=1 arctan(1/(n+a)k) =

k−1∏
m=0

{
Γ(1− (eiπ(1+4m)/(2k) − a))

Γ(1− (eiπ(−1+4m)/(2k) − a))

}
.

For the remainder we assume k to be even and a to be zero, so we have

e2i
∑∞
n=1 arctan(1/nk) =

k−1∏
m=0

{
Γ(1− eiπ(1+4m)/(2k))

Γ(1− eiπ(−1+4m)/(2k))

}
.

It can be seen that when we replace each element in the set {eiπ(1+4m)/(2k) : m =
0, 1, ..., k − 1} by its complex conjugate, we get the set {eiπ(−1+4m)/(2k) : m =
0, 1, ..., k − 1} Also, when we replace each element in the set {eiπ(1+4m)/(2k) :
m = 0, 1, ..., (2k − 4)/4} by its negative, we get the set {eiπ(1+4m)/(2k) : m =
2k/4, 1 + (2k/4), ..., k − 1}. These observations entail that

e2i
∑∞
n=1 arctan(1/nk) =

(2k−4)/4∏
m=0

{
Γ(1− eiπ(1+4m)/(2k))Γ(1 + eiπ(1+4m)/(2k))

Γ(1− e−iπ(1+4m)/(2k))Γ(1 + e−iπ(1+4m)/(2k))

}
,

so that with b = −π cos (π(1 + 4m)/(2k)) and x = π sin (π(1 + 4m)/(2k)) in
(5.2), this equals

(2k−4)/4∏
m=0

e2i{arctan(tanh[π sin(π 1+4m
2k )] cot[−π cos(π 1+4m

2k )])−arctan(− sin(π(1+4m)/(2k))
cos(π(1+4m)/(2k)) )}.

After taking logarithms we find, for some βk ∈ Z, the closed-form expression (in
the sense of definition 1.1)

βkπ +
∞∑
n=1

arctan
(

1
nk

)
=

(2k−4)/4∑
m=0

− arctan
(

tanh
[
π sin

(
π

1 + 4m
2k

)]
cot
[
π cos

(
π

1 + 4m
2k

)])
+ arctan (tan (π(1 + 4m)/(2k)))

,
and numerical evidence strongly suggests that βk is always zero.
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Remark 5.1. This last formula appears to be new. Mathematica 7 gives no
closed-form expression, except when k=2, and the author has been unable to
find this expression in the literature. The case k = 2 can be found in [9]. Notice
that the above method, where we use (5.2) to eliminate the Gamma function,
heavily exploits the assumption that k is even. The analogies with ζ(k) are re-
markable, which also behaves very different depending on whether k is even or
odd. Furthermore, we can evaluate ζ(k) when k is even using the evaluation
(3.6) (corollary 3.1) and we found the above expression using a similar looking
evaluation (except for the symbol ’arctan’), appearing in example 5.1.

Example 5.4. Let us now turn to the general series S :=
∑∞
n=1 n

q(g(n))−1,
where g(n) := (n − α1)(n − α2)...(n − αk), k ∈ N>1, q ∈ {0, 1, ..., k − 2} and
α1, α2, ..., αk ∈ R\N are fixed and all different. According to theorem 5.1

S = lim
r→0

{
1

2ir
log

[ ∞∏
n=1

(n− α1)(n− α2)...(n− αk) + irnq

(n− α1)(n− α2)...(n− αk)− irnq

]}
.

The theory of algebraic functions (see e.g. [3]) tells us that there exist, for
j = 1, 2, . . . , k, sequences of complex numbers {cj,m}∞m=1 such that near r = 0,

(n− α1)(n− α2)...(n− αk) + irnq =(
n− α1 −

∞∑
m=1

c1,mr
m

)(
n− α2 −

∞∑
m=1

c2,mr
m

)
...

(
n− αk −

∞∑
m=1

ck,mr
m

)
,

where each of the power series converges near r = 0. Similarly, for j =
1, 2, . . . , k, there exist sequences of complex numbers {dj,m}∞m=1 such that near
r = 0

(n− α1)(n− α2)...(n− αk)− irnq =(
n− α1 −

∞∑
m=1

d1,mr
m

)(
n− α2 −

∞∑
m=1

d2,mr
m

)
...

(
n− αk −

∞∑
m=1

dk,mr
m

)
,

where each of the power series converges near r = 0. So by note 5.1 and theorem
4.1 we have that near r = 0,

∞∏
n=1

(n− α1)(n− α2)...(n− αk) + irnq

(n− α1)(n− α2)...(n− αk)− irnq
=

k∏
j=1

{
Γ(1− αj −

∑∞
m=1 dj,mr

m)
Γ(1− αj −

∑∞
m=1 cj,mr

m)

}
,
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and thus we get

S = lim
r→0

 1
2ir

log

 k∏
j=1

Γ(1− αj −
∑∞
m=1 dj,mr

m)
Γ(1− αj −

∑∞
m=1 cj,mr

m)


=

k∑
j=1

lim
r→0

1
2ir

log
[

Γ(1− αj −
∑∞
m=1 dj,mr

m)
Γ(1− αj −

∑∞
m=1 cj,mr

m)

]

=
k∑
j=1

{
(−dj,1) Γ′(1− αj)− (−cj,1) Γ′(1− αj)

2iΓ(1− αj)

}
,

where we used l’Hôpital’s rule in the last step. It turns out that all of the
coefficients cj,1, dj,1 can be determined explicitly in general, as we show now.
In the following, the symbol O(r2) will be used several times to denote a power
series in r with only terms of degree two and higher, which converges near r = 0.
This same symbol is used for different power series. With induction one can see
that for p ∈ N,(

αj + cj,1r +
∞∑
m=2

cj,mr
m

)p
= (αpj + pcj,1α

p−1
j r) +O(r2),

Writing g(n) =
∑k
p=0 apn

p, ap ∈ C, we have near r = 0,

0 = ir

(
αj + cj,1r +

∞∑
m=2

cj,mr
m

)q
+

k∑
p=0

ap

(
αj + cj,1r +

∞∑
m=2

cj,mr
m

)p

= ir
(

(αqj + qcj,1α
q−1
j r) +O(r2)

)
+

k∑
p=0

ap

(
(αpj + pcj,1α

p−1
j r) +O(r2)

)
= irαqj + g(αj) + cj,1rg

′(αj) +O(r2),

and by the uniqueness of power series expansions we must have 0 = iαqj +
cj,1g

′(αj) or cj,1 = (−iαqj)/g′(αj), which is well defined since we assumed that
g(n) has no multiple zeros. Similarly, dj,1 = (iαqj)/g

′(αj). Together with the
notation introduced in the previous example we have found that

∞∑
n=1

nq

g(n)
=

k∑
j=1

{(
−(iαqj)/g

′(αj)
)
ψ0(1− αj)−

(
(iαqj)/g

′(αj)
)
ψ0(1− αj)

2i

}

= −
k∑
j=1

αqj
ψ0(1− αj)
g′(αj)

,

so that when h(n) is a polynomial of degree at most q with coefficients in C,

∞∑
n=1

{
h(n)

(n− α1)(n− α2)...(n− αk)

}
= −

k∑
j=1

h(αj)
ψ0(1− αj)
g′(αj)

(5.4)
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Note 5.3. When g(n) has multiple roots we don’t have ordinary power series
expressions for the zeros like above, but then we have fractional power series
(Newton–Puiseux expansions, see [3]), which can also be used to achieve results.
Neither time nor place permit further investigation of this. Furthermore, in this
case partial fraction decomposition together with (5.3) and (5.4) also does the
job of finding similar expressions.
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6 Appendix

Lemma 6.1. Let {an}∞n=1 be a sequence of complex numbers. The infinite
product

∏∞
n=1 (1 + an) converges absolutely if and only if

∑∞
n=1 an converges

absolutely. If the infinite product converges absolutely, then it converges.

Proof. See [8], pages 258-260.

Theorem 6.1. Let fj : U → C, j ∈ N, be a sequence of analytic functions on
an open set U in C. Suppose that there is a function f : U → C such that,
for each compact subset E of U , the sequence fj |E converges uniformly to f |E.
Then f is analytic on U .

Proof. See [8], pages 88-89.

If Z is a subset of the complex numbers then z ∈ C is said to be an accumulation
point of Z if there is a sequence {zn}∞n=1 ⊆ Z\{z} with limn→∞ zn = z.

Theorem 6.2. Let U ⊆ C be a connected open set and let f , g be analytic
functions on U . If {z ∈ U : f(z) = g(z)} has an accumulation point in U , then
f = g.

Proof. See [8], page 92.
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