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Part I

1 Introduction

These first sections represent the physics part of the thesis. Vesicular transport
inside a cell is known to be of importance for the movement of proteins from
one compartment to another [1]. Small spherical transport vesicles are used as
ferries for the proteins. We refer to these vesicles as small unilamellar vesicle
(SUV) since their shell consists of one lipid bilayer.

In cells SUVs are directed along cytoskeletal filaments, the cellular railways.
The SUV is the cargo and molecular motors are the engines that drive the
cargo, attached to the motors, along the railway. In our case we focus on mi-
crotubules (MTs) as the railway. Microtubules are long biopolymer proteins
with an intrinsic polarity. Tubulin dimers polymerize into protofilaments, that
bundle then into a helical structure with 13 tubulin units in one turn, each
coming from a different protofilaments. The N terminus is denoted by the plus
end. Molecular motors are proteins that bind to a cytoskeletal filament and
use the energy derived from repeated cycles of ATP hydrolysis to move steadily
along it [1]. There are two types of microtubule motor proteins: kinesins and
dyneins. Kinesin motors walk towards the plus end of an MT. Dyneins are a
family of motors that move to the minus end. These two motors are essential
for bidirectional transport in vivo.

One idea about how bidirectional vesicle transport is mediated, is informally
called tug-of-war. In this scenario both type of motors are present and bound
to the MT at the same time, so they feel each others pulling force mediated by
the vesicle. Another idea is that the motors are turned on and off as a regula-
tion [5]. Both experimentally and theoretically the tug-of-war model has been
studied with kinesin en dynein motors rigidly coupled to beads in [7]. However
in vivo the motors are allowed to diffuse through the membrane or selforganize
in the vesicle.

In this study we imitate bidirectional vesicle transport in vitro. We prepare
rhodamine labeled SUVs with a diameter of about 1 µm and attach both ki-
nesin and dynein motors specifically to them. When the SUVs come into contact
with MTs that are bound to a glass surface the SUVs are walked along the MT.
We look at the position of the vesicle as it is transported. In this way we want to
address the question: if bidirectional transport is force mediated, what behavior
emerges? By differing the ratio of kinesins to dynein motors on the SUV, we
want to see the influence of that on the motility of the vesicle. Furthermore
we perform computer simulations with a developed model, a continuous time
Markov chain based on principles from the model described in [3], to compare
the idea of tug-of-war with the experimental results. Our findings are that SUVs
driven by single kinesins move unidirectionally. SUVs driven by dyneins also
move unidirectionally. SUVs covered with both type of motors move bidirec-
tionally. As the ratio of kinesin to dynein goes up, the movement of the SUV
becomes biased to one direction. When we compare these results to the situa-
tion in vivo, motor ratio could be a regulation mechanism, since at equal motor
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Figure 1: First frame of a movie where an SUV (grey spot in the middle) covered
with kinesin motors is transported along MT, indicated with the grey line. The
SUV moves unidirectionally upwards.

concentrations the SUVs show not much movement, also seen in [15]. But at
higher kinesin concentrations more movement in one direction is seen, which is
necessary for axonal transport. The simulations suggest this as well, though the
one directional distances traveled are longer than in the experiments.

2 Results

Figure 1 shows the first frame of a typical movie where an SUV is transported
by motors. MTs decorating the surface below the SUV are not visible. Experi-
ments were done for the following concentration proportions of kinesin concen-
tration and dynein concentration (cK , cD): (100%,0%), (99%,1%), (95%,5%),
(90%,10%), (75%,25%), (50%,50%), (0%,100%). After inspecting the direction
of the movement by the SUV, we draw the grey line tracing the MT path below.
To trace the position of the SUV in time we analyzed the intensity profile along
the grey line. The resulting kymograph is shown in figure 2a. Here the vertical
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Figure 2: a: Kymograph of SUV from figure 1 covered with kinesin motors. The
vertical axis is the grey line in figure 1 in nm and the horizontal axis denotes
the time in s. The bright line is the path of the SUV along the grey line in
time. b: Kymograph from a SUV covered with dynein motors. Image of SUV is
not shown here. c: Kymograph from a SUV covered with (cK , cD)=(90%,10%)
motors.

axis is the grey line from figure 1, the horizontal axis denotes the time. The
bright line is a cross-section of the SUV moving in time. Figure 2b and 2c are
kymographs of SUVs covered with respectively dynein only (2b) and concentra-
tion proportions (90%,10%) (2c). We have been precise with drawing the lines
along which the kymographs are made, since changing the line a bit results in
a different kymograph. The size of the effect can be significant when the SUV
rotates as it is not always spherical.

To determine the precise location of the edge of the vesicle as it is displaced in
time we set a threshold value as twice the background intensity. We determine
the location at which the intensity exceeds the threshold value. After linear
interpolation we determine the location of the edge of the SUV with subpixel
resolution. This results in a position trace of the vesicle. The method gives ac-
curate position trace for the kymographs in figure 2a and 2b (not shown here).In
figure 3a we see the position for the SUV from kymograph 2c. We have thought
of other ways to analyze the videos. But they all have their own difficulties.
For instance particle tracking software is a nice way to determine the position
in time properly, but then you obtain a 2D path instead of 1D, which gives
rise to the question what can be considered as bidirected motion. Furthermore
fluctuations in vesicle shape also bias the calculation of the position by particle
tracking.

4



Others have shown that one dimensional diffusion along an MT can occur
with dynein coated beads [17]. This implies that an assumption that vesicle
movement is induced purely by the motors walking incorrect. For this we need
to look at the speed distribution, since diffusion results in a much higher velocity
than the single motor velocity for kinesin or dynein. The question arises how
to analyze the velocity. We have chosen to calculate the instantaneous speeds.
The instantaneous velocities are calculated as follows: for every t, we calculate
position(t+windowsize)-position(t) and divide that by the window size to get
the instantaneous velocity. The lower graph are instantaneous velocities calcu-
lated from this position with 4 different time window sizes (3b: 1s, 3c: 2s, 3d:
5s and 3e: 10s). As can be seen by comparing figure 4a and 4b the window
size influences the speed distributions significantly. Still the fact that non zero
velocities occur is clear.

For the traces of figure 2b and 2c, where only kinesin and only dynein are
present, the method gives a peak around the value of the slope of the bright
line in the kymographs (350 nm/s and 20 nm/s). We have tried to optimize
the procedure such that non zero velocity peaks in the histograms are visible.
Therefore most results are shown with a window size of 2s (= 20 data points)
or 5s. When we apply the method to the simulations the single motor velocity
peak of kinesin does appear, so this suggests that the analysis method can say
something about the velocity with which the SUV moves. Velocities lower than
400 nm/s are measured. This suggests that the dynein motors do act as an
opposing force. Figure 4 show histograms of the slope of figure 3c and 3d with
window size 2 s and 5 s respectively. The red line indicates a gaussian fit of the
histograms. We will use the mean µ and standard deviation σ to compare the
results with the simulations and experiments without addition of ATP.

In figure 5 we compare the position traces of three SUVs all with a concen-
tration ratio of (50%, 50%). Figure 5a has ATP, 5b does not and figure 5c is
a position trace obtained by simulations. We notice that the simulation SUV
moves 4 times farther than the real vesicle. According to [15] vesicle motile-
activity is relatively low. In our experiments this is also the case. When we
compare the SUV with ATP (figure 5b) to the case without ATP (figure 5c) we
notice that the first has a maximum displacement of about 1µm, while the SUV
without ATP displaces only 0.2 µm. This indicates the bidirected movement of
the SUVs by motors, but the motility is not much higher (only 5 times) with
walking motors. The displacement of 0.2µm could very well be noise due to our
analysis method or thermal fluctuations while the SUV is bound to the MT.

For a better conclusion on the bidirected motion we refer to figure 6 that
compares the velocity distributions calculated with window size 2s. belonging
to respectively figure 5a, b and c. Figure 6a shows the experimental result
with (µ, σ) = (8 ± 2nm, 93 ± 4nm), figure 6b everything is similar to figure
6a except that no ATP is added, so that the motors can not walk (µ, σ) =
(3 ± 2nm, 108 ± 5nm). Finally 6c shows a histogram obtained by a simulation
(µ, σ) = (17± 1nm, 25± 1nm). In the simulation a shoulder around 350 nm/s,
the kinesin single motor velocity is visible in the histogram in contrast with
the experiments. This indicates that there is a bias in the speed distribution
in favor of the kinesin motors. The shoulder is not clearly visible in the real
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Figure 3: a: Position trace of the kymograph in figure 2c from a SUV with
concentration ratio (90%,10%). The positions are there where the intensity
in the kymograph exceeds the threshold value. , b: Instantaneous velocity as
a function of time, calculated by position(t+window size)-position(t)/window
size. Here the window size is 1s., c: Instantaneous velocity calculated with
window size 2s., d: Instantaneous velocity calculated with window size 5s., e:
instantaneous velocity calculated with window size 10s.
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Figure 4: a: Histogram of instantaneous velocity calculated with a window size
of 2s. The binsize for all histograms in this thesis is 5 nm/s. In red is the single
gaussian fit of the histogram, b: Histogram of instantaneous velocity calculated
with a window size of 5s. Again in red the single gaussian fit of the histogram.
Notice that the width of the histogram is smaller in the 5 s. case. This is because
for a larger window size the small fluctuations average out. Also the shape of
the two histograms is different. in b there seems to be a little shoulder at 100
nm/s, which is not visible in a. This suggests that the window size influences
the velocity distribution.

experiment with ATP, perhaps due to a low signal to noise ratio, though the
velocity distribution is broader than the case where the motors can not walk.
This is another indication for bidirected movement by motors. But the mean
and spread of the gaussian fit of the simulation are lower than the than the
experiment without ATP. This indicates that looking at the mean and spread
of the fits is not always useful.

This becomes even more clear in figure 7 where the control and real experi-
ments have similar mean and spread. So drawing conclusions only on the mean
and standard deviation of the gaussian fits is the least trustworthy step in our
analysis, since it does not distinguish between the experiments and simulations
(see figure 7). Intuitively this is clear since fitting a single peak gaussian to
the velocity histogram disguises the fact that possible other velocity peaks are
present. We could look at the residuals, but then it is hard to say something
quantitative about it again. Another argument is that figure 5a en 5b are not
completely different, therefore it possible that there is in fact not more difference
in the velocity distribution than we obtain via our analysis method. We have
considered this thoroughly and present parameters of the gaussian fits in this
thesis as the most systemic way to quantitatively summarize the measurements.

In figure 8 we see the scatter plots of all experiments without ATP. Since
there is no walking possible the histograms should all result in a single peak
around zero. The spread is a measure of how tightly the SUV is bound to the
MT. We see that in general the controls of dynein have a lower spread than ki-
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Figure 5: Three position traces calculated by setting a threshold value and for
every time determining the location at which the intensity exceeds the threshold
value. This value becomes the position. All three SUVs have a concentration
ratio of (50%,50 %). a: Position trace from a real experiment, with ATP added
so that the motors can walk. b: Also a real experiment, but no ATP was added,
so no bidirected motion due to motors is possible. c: Position obtained by sim-
ulations (in all performed simulation the motors can walk). In the simulations
the SUV moves farther compared to the real SUV, that moves more than the
SUV without ATP.

8



Figure 6: a: Histogram of instantaneous velocity calculated with a window size
of 2s. from the trace of figure 5a. This is an SUV covered with motors with a
ratio of (50%, 50%). ATP was added, so that the motors can walk. In red is the
single gaussian fit of the histogram with parameters (µ, σ) = (8±2nm, 93±4nm),
b:idem as a, but now from trace of figure 5b. No ATP was added, so the
motors could not walk. In red the single gaussian fit of the histogram with
parameters (µ, σ) = (3± 2nm, 108± 5nm), c:idem as b, but now from trace of
figure 5c, the simulation. The single gaussian fit in red has parameters (µ, σ) =
(17± 1nm, 25± 1nm), the histogram reveals a shoulder around 350 mn/s.
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Figure 7: Scatter plot with the mean µ on a log scale and spread σ obtained
by fitting a single gaussian to the histograms of the slopes with window size
2s. of SUVs with a concentration ratio (50%,50%). The error bars indicate the
uncertainty of the fits. All data points have a mean lower than 10 nm/s and a
spread lower than 150 nm/s. This means that by looking at mean and spread
we can not distinguish between different experiments. The blue data point with
the lowest spread represents the fit in figure 7c, where a clear shoulder at 350
nm/s can be seen. This suggests that the analysis method is not optimal in this
case to determine velocities other than zero.
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Figure 8: Scatter plot with the mean µ and spread σ obtained by fitting a single
gaussian to the histograms of the slopes with window size 2s. of experiments
where no ATP was added. This means that the motors can not walk. We see
indeed that al means are below 25 nm/s. In general the dynein covered SUV
have a lower spread in the velocity which indicates that it is more tightly bound
the MT than SUVs covered with kinesin. SUVs with a concentration ratio of
(50%, 50%) have even higher spread than kinesin which suggests that those
SUVs are even more loosely bound to the MT.
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Figure 9: Scatter plot with the mean µ on a log scale and spread σ obtained by
fitting a single gaussian to the histograms of the slopes with window size 2s. of
moving SUVs. The error bars indicate the uncertainty of the fits. Simulations
and real data with the same concentration ratios have the same symbols and
border colors. The simulations have a white interior in contrast to the real data
with filled colors. The red circles emphasize the two data points with a mean
higher than the single motor velocity. Inside the red rectangle are data points
with a mean close to the single motor speed of kinesin (400nm/s).

nesin and the mixture has the biggest spread. That suggests that dynein motors
are more tightly bound to the MTs than kinesin motors. And a vesicle which
has both dynein and kinesin motors attached to it is even more loosely bound.

We end the results part with a scatter plot of all moving SUVs shown in
figure 9. Experiments with different ratios of kinesin to dynein motors are done
to investigate the dependence of the motility of an SUV to the motor popula-
tion. First we notice that two of the 90% K 10% D show a mean that is above
the single motor velocity of kinesin (data points in the red circles. We suggest
that this is due to diffusion [17]. Secondly there seems to be the trend that as
the kinesin motor density goes up, both mean and spread go up. We suggest
that as the ratio favors kinesin, the SUV becomes more motile, since in the
single motor velocity of kinesin is higher. There are measurements from 90%
K 10% D that have higher mean and spread than 95 and 99 % K. There are
several possible explanations for this. The first one is that the motors do not
bind homogeneously, but cooperatively in the sense that it is more likely that
one type of motor can dominate so that the other type of motors get pulled off
more frequently. In this way the motor ratio is not representative for the num-
ber of motors that are bound on the MT. Another explanation could be that
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pipetting errors are responsible for other motor ratios in our experiments than
we calculated. The reason that we did not try a motor ratio which favor dynein,
is that the motility of the SUV is hard to identify because of the slow single mo-
tor speed (40nm/s) and the fact that an unknown fraction of the dynein motors
is dead. This introduces experimental challenges that are difficult to account for.

Furthermore in the simulations there is really the trend that at higher kinesin
density the mean shifts from around 0 to around the single motor velocity of
400 nm/s in the simulations. And experimental verification (100% K) agrees
with that value. A possible explanation for this is that is depends on the spe-
cific SUV movement: when the SUV sits still for a long time the zero velocity
peak dominates, but when SUV moves a considerable time due to the kinesin
motors walking, the non zero peak becomes significant, so the mean shifts to
a position in between the two contributions and the spread increases accordingly.

Finally we discuss some remarks on our simulations. We see repetitively that in
the simulations the SUV moves a larger distance than in our experiments (see
for example figure 5). Some suggestions to improve our model are: use a three
lane model instead of a one lane, since an MT has multiple parallel binding
sites [3]. If we combine that with the rule in our code that if a dynein motor is
situated at site 1 the SUV can not move since the kinesin motors are not strong
enough to pull the dynein motor off, then perhaps the SUV becomes less motile.
Furthermore we have approximated dynein’s dead motor fraction by reducing
the motility of all single dynein motors and the unbinding probability. But is
would be better to really introduce three sorts of motors: walking dyneins, dead
dyneins and kinesins. Another possible improvement would be to make the sin-
gle motor velocity force dependent [2] Because of lack of time I did not get to
these implementations.

3 Conclusion and discussion

We have examined SUV transport along MTs driven by molecular motors of
two types, kinesin and dynein. We varied the concentration ratios (cK , cD) to
see if this influences the motility of the SUVs. Our findings are that SUVs
driven by single kinesins move unidirectionally. SUVs driven by dyneins also
move unidirectionally, though a fraction of dead motors negatively influences
the motility. SUVs covered with both type of motors move bidirectionally. As
the ratio of kinesin to dynein goes up, the movement of the SUV becomes biased
to one direction. When we compare these results to the situation in vivo, motor
ratio could be a regulation mechanism, since at equal motor concentrations the
SUVs do not show much movement, also seen in [15]. But at higher kinesin
concentrations more movement in one direction is seen, which is necessary for
axonal transport. The simulations suggest this as well, though the net distances
traveled are longer than in the real experiments. Further adjustments on the
microscopic details are needed to improve the model for the simulations. From
the experiments without ATP we confirm that dynein motors are more tightly
bound to the MTs than kinesin motors. When the SUVs are covered with
both dynein en kinesin without the addition of ATP, they are the least tightly
bound to the MT. Further experiments with dynein motors that walk faster
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could reveal more of the motility of the SUVs. Tipping the concentration ratio
towards dynein is then a logical continuation. Also a smaller fraction of dead
motors is likely to influence the behavior. A last suggestion is use dynein motors
that are known to be completely immobile.

4 Methods and materials

4.1 Experiments

All lipids are purchased from Avanti Polar Lipids. The lipid mixture consists
of 94.9 mol% 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine(DOPC), 4
mol% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000] (PEG(2000)-DOPE), 1 mol% 1,2-distearoyl-sn-glycero-3-phospho
ethanolamine-N-[biotinyl(polyethylene glycol)-2000](Bio-PEG(2000)-DSPE), 0.1
mol% 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl)(TRITC-DOPE). The small unilamellar vesicles were preparated by a
method called the freeze-thaw-sonication method [13]. First the lipids are sus-
pended in chloroform and mixed together (total weight 0.5 mg) after which the
mixture is dried with nitrogen. Then it is suspended in 50 mM (600 µl) KCl
and 5 times subsequently frozen and thawed. Finally the vesicles are sonicated
for 15 min. If the mixture is still milky, SUVs are not fully formed and the
freeze-thaw-sonication cycle is repeated. At last the SUVs were checked under
the microscope.

The microtubules were polymerized by the following standard procedure. 2
µl tubulin, 0.4 µl GTP (50mM) and 2.5 µl MRB80 (80 mM K-Pipes/1 mM
EGTA/4 mM MgCl2) were mixed on ice and incubated at 37°C for 13 min.
Afterwards the MTs were stabilized with 70 µl of 10 µM taxol in MRB80 (taxol
buffer).

Coverslips were cleaned and preparated with N-[3-(trimethoxysilyl)-propyl]
demethylenetriamine (DETA) as described in [16]. A coverslide was wiped clean
with ethanol and the flow chamber was put together consisting of the coverslip
put on top of two lanes of vacuum grease on the coverslide. All incubations
were at room temperature. 1.5 µl of MTs diluted with 13.5 µl of taxol buffer
were flowed into the chamber and incubated for 10 min. Then the chamber was
rinsed twice with taxol buffer. 0.4 mg/ml casein in taxol buffer was incubated
in the chamber for 7 minutes. Finally the chamber was rinsed two more times
with taxol buffer. In parallel 1 µl Streptavidin (2 mg/ml) was added to 13 µl of
1:500 diluted SUV mix and incubated for 10 min. Then 1 µl of motors (kinesin
and/or dynein) was added and incubated for 10 min. The motors were purified
as described in [18](kinesin) and [11](dynein). Finally glucose (0.2µl), oxygen
scavenger (0.2µl), ATP (0.3µl of 100mM MgATP), methylcellulose (0.5µl) and
taxol/casein buffer (0.5µl of 0.4mg/ml) were added to the SUV mix.

Data was acquired on a spinning disc microscope comprised of a confocal scan-
ner unit (CSU22, Yokogawa Electric Corp.) attached to an inverted microscope
(DMIRB, Leica) equipped with a 100x/1.3 NA oil immersion lens (PL FLUO-
TAR, Leica) and a built-in 1.5x magnification changer lens. The sample was
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illuminated using a 514 nm laser (Coherent Inc.). Images were captured by an
EM-CCD (C9100, Hamamatsu Photonics) controlled by software from VisiTech
International. Images were acquired with a 100ms exposure at 10Hz. The data
were stacked .tiff square images of 512 pixels. Kymographs were made in imageJ
and further analysed with MATLAB and Origin.

4.2 Model of SUVs and simulations

The introduction explained several possible mechanisms for bidirectional trans-
port along microtubules. We assume the transport is not regulated by any
cofactors and that the motors are the only proteins that influence the motility
of the SUV. In order to make quantitative predictions on the movement of the
SUVs we introduce a model system. We discretize the SUV into parts of a = 8
nm, the lattice spacing of a microtubule [3]. In figure 10, a cartoon modified

Figure 10: Cartoon of an SUV with kinesin (shown in red)and dynein (shown
in blue) motors bound to it. The MT lattice is shown near the green thick
line that represents the MT. The membrane lattice is shown above the vesicle.
Underneath the MT we see the resulting configuration. K represents a kinesin
motor and D a dynein. The sites are numbered 1 up to L. Different parameters
are used, the rate to step forward (different values for K and D), the binding
rate, the unbinding rate, and the diffusion rate.

from Campàs [3], we illustrate the model system. We divide the SUV into two
discrete lattices, one on the MT and another that we call the membrane lattice.
We ignore the three dimensional shape of the SUV because we approximate the
MT as a one dimensional structure and we assume that only one motor can
attach to a binding place on the MT (along a single protofilament) [1], so that
the position of the motors only fall in one dimension. We are interested in the
position of the single motors along the membrane and MT lattice. The mem-
brane lattice corresponds to the part of the SUV that is not near the MT. Here
the motors freely diffuse because they are not bound to a MT and they can
therefore occupy the same site. And as noted above, a motor that is on the MT
lattice is assumed to be bound to the MT. In this way only one motor can be at
a site of the MT lattice. Figure 11 gives an example of a possible configuration
for a SUV that is of diameter L · a, where L is the number of consecutive sites.
The lower grid denotes the MT lattice and the upper one the membrane lattice.
K denotes a kinesin motor and D a dynein.
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Figure 11: An example of a configuration. The lower grid represents the MT
lattice, the upper one the membrane layer. Every box is referred to as a site,
which can be empty, a kinesin (K) can be bound at that site or a dynein motor
(D) can be bound. In the membrane layer multiple motors can occupy one site,
as we see at site 1 and site L.

We determine S, the space of all possible configurations. We fix a number
of kinesin motors, NK , and for dynein, ND. Then S can be constructed as
follows.

SMT := {f |f : {1, 2....L} → {0, D,K}}

SM := {g|g : {1, 2....L} → {0,K, ..., NK ·K} × {0, D, ..., ND ·D}}

S :=

{
(f, g)|f ∈ SMT , g ∈ SM ,

L∑
i=1

f(i) + g(i) = NK ·K +ND ·D

}
Where SMT is the space of configurations of the MT lattice and SM the state
space of the membrane lattice. We will denote throughout this thesis an element
of S by η and ignore in this notation the fact that it is a function because it
is rarely needed, except in the definition of the position of the SUV. For that
we define ηi = f(i) and ηi = g(i) if η = (f, g) ∈ S with i ∈ {1, 2....L}. So, for
instance ηL = K if the configuration is of the form as shown in 12. Whenever a

Figure 12: A configuration of a SUV with diameter L · a with unspecified site
occupation except for site L of the MT lattice, which is occupied with a kinesin
motor. This is denoted by ηL = K.

certain motor steps, binds or unbinds to/from the MT or diffuses the configura-
tion changes. We call this a jump or transition from configuration η to η′, both
elements of S. The times at which the jump η 7→ η′ occur, follow a Poissonian
distribution with a rate q(η, η′). We use the hardcore exclusion principle for the
MT lattice and individual motors can step forward, bind from the membrane
lattice to the MT lattice, unbind from the MT to the membrane or diffuse in
the membrane layer. For more details on the possible transitions I refer to ap-
pendix A. The associated single motor rates (kKf , k

D
f , kb, ku, kd) are all known

parameters, obtained either via the literature or by measurement. Table 1 gives
the single motor rates, also indicated in figure 10.
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parameter value source
kKf 50s−1 single motor velocity V K measured, and kKf = V K

a

kDf 5s−1 single motor velocity V D measured, and kDf = V D

a

kb 4.7s−1 [3]
ku 0.42s−1 [3]
kd 0.42s−1 [3] measured diffusion constant D, and kd = D

a2

Table 1: Numerical values of the single motor parameters that are used in the
model. The source indicates whether the values are obtained by measurement
ourselves (measured) or by others (article reference)

Finally we want specify what movement of an SUV means in the context of
our model. Motors at he ends of the SUVs (sites 1 and L) that are bound to the
MT are the only motors that feel load. These motors are influenced by motors
on the other side of the SUV that want to step in the opposite direction. Motors
in the rest of the SUV (all sites except for 1 and L) walk through a fluid bilayer
and therefore do not feel any load. As kinesin walks towards the plus end of the
MT, the SUV makes a step of 8 nm when a transition occurs in which ηL = K
and specifically that K takes a step. An example of such an transition is given
in figure 13. Notice that the lattice (which represents the SUV) shifts along
with the kinesin at the end. The motors that are bound to the MT do not shift
along. Now we define the set R+ that contains transitions η 7→ η′ in which the

Figure 13: Transition from the left configuration to the right in which the kinesin
motor bound to the MT at site L makes a step forward. The lattice shifts along
but the bound motors stay put. The position function Zt increases with 8 nm
as this jumps occurs.

kinesin motor ηL = K steps forward, i.e. the transitions in which a lattice shift
occurs. Analogously R− is formed by the transitions η 7→ η′ with η1 = D steps
forward (towards the minus end of the MT). Thus we define position Zt of the
SUV as

Zt = a ·
∑

η 7→η′∈R+

| {η 7→ η′at s, s ∈ [0, t]} | − a ·
∑

eη 7→eη′∈R− | {η̃ 7→ η̃′at s̃, s̃ ∈ [0, t]} |

This expression simply tells how many transitions from R+ occurred in the
time interval [0, t] and multiplies this with the lattice spacing a (=8 nm) which
is equal to the distance that kinesin motor pulls towards the plus end. Then of
course we must subtract the displacement in the minus direction.

In appendix A we find two matlab codes for the simulations. The codes were
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adapted from an existing code in the group one used to simulate motor dynamics
in a similar manner. There we specify the transitions that are element of R+ and
R−. Because the model is a Markov chain, this process can be simulated with
a Gillespie algorithm [3], but the structure of the codes is a little different since
we do not have Poissonian times at which the configuration changes, but after
a fixed time interval the motors do something with a probability that is derived
from the rates of the jumps. In this way we approximate the Gillespie algo-
rithm. For details on and differences between the codes we refer to appendix A.
In section 3 all simulations were performed with the code tugowar-deadmotors.

Part II

5 Construction of continuous time Markov chains

The following sections are the mathematics part of this thesis. The aim is to
investigate the formal mathematical structures behind the model introduced in
section 4.2 and derive theorems for these structures. As we know from section
4.2 we want to model the motility of SUVs under the influence of kinesin en
dynein motors. Therefore we construct a stochastic process which includes the
following idea: once you know the position of every motor, it does not matter
for the future behavior of the SUV, how the motors got there. This is plausible
because at any time motors have a constant rate with which they bind, unbind
or walk. This idea is an instance of the Markov property. We’ll make that more
precise by defining the Markov process, a process with exactly that property [14].

We begin with some definitions that are taken from [12]. A probability measure
is a triplet (Ω,F ,P) with Ω a set on which a σ-algebra F is defined. P is a
probability measure, i.e. a measure on F with the restriction that P(Ω) = 1.
From now on we assume that when we speak of a measure, it is in fact a proba-
bility measure. E ∈ F is called an event. Now let (S,A) be a measurable space.
We refer to S as the state space, or configuration space. A random variable X
from Ω to S is a (F/A)-measurable map X : Ω → S. Almost surely is just
a saying for almost everywhere with respect to a probability measure. Finally
X is a stochastic process when X = {Xt : 0 ≤ t < ∞} holds with ∀t : Xt a
(S,A)-valued random variable from (Ω,F ,P).

After these general definitions from probability theory we proceed with defin-
ing the Markov process, a special kind of stochastic process. let Y be a metric
space with the Borel σ-algebra, analogous to (S,G) and likewise let Ω be equal
to DY , the space of right continuous functions with left limits (RCLL functions)
from [0,∞) into Y . So the followings holds for ω ∈ DY : ∀t ∈ [0,∞) : ω(t) =
lims↓t ω(s) and the limit ω(t−) = lims↑t ω(s) exists. Think of it as ω being a
path in Y . Our process X = {Xt : t ≥ 0} now consists of the coordinate map-
pings Xt : DY → Y with Xt(ω) = ω(t), which tells us the configuration the
system is in at time t. Now for our purposes we confine ourselves to Y being
countable, then the singletons η with η ∈ Y are measurable. If we want X to
become a stochastic process we need every Xt to be measurable. We construct
now F in such a way that we have this desired property.
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We define E as the set of subsets E of DY that are of the form:

E = X−1
t (η) = {ω ∈ DY : ω(t) = η}

Then we define F := σ(E), the σ-algebra generated by E . A shorthand notation
for this is: F =: σ{Xt : t ≥ 0} and similarly Ft := σ{Xs : t ≥ s ≥ 0}. We will
use this notation later on. Notice that now Xt is F-measurable for every t ≥ 0.

Let θt : DY → DY be the shift map defined by θtω(s) = ω(t + s). θtω is
the path that starts at ω(t) and walks along ω onwards. For an event A ∈ F :
θ−1
t A = {ω : θtω ∈ A} and it can be seen as the event that A happens from

time t onwards. After all these preparations we are now ready for the definition
of a (countable state) Markov process[14]. As we have chosen Y to be countable
this process is also referred to as a continuous time Markov chain.

Definition 1. A Markov process is a collection {P η : η ∈ Y } of probability
measures on DY with these properties:

1. P η{ω ∈ DY : ω(0) = η} = 1

2. P η[θ−1
t A|Ft](ω) = Pω(t)(A) for P η-almost every ω, for every η ∈ Y and

A ∈ F

The first requirement states that η is the configuration in which the process
starts under the measure P η. Notice that is does make sense to have a measure
P η for every starting point because not every path will be equally probable
when the begin state is changed. The second requirement is exactly the Markov
property. The object on the left hand side is the probability that concerns the
future from time t onwards given that we know the past up to time t. In a
Markov process this is equal to the probability to start in ω(t). A thorough
reader might object that we haven’t defined conditional probability yet. This
is of course true. In fact P η[A|Ft](ω) = Eη(1A|Ft) · 1A, with 1A the indicator
of A. For the definition of Eη(1A|Ft), a conditional expectation, we refer to
appendix C on martingale theory. The (unconditional) expectation Eη[g] of a
measurable function g : DY → R is defined by:

Eη[g] =
∫
g(ω)P η(dω)

6 Generators and properties of Markov processes

After this rather abstract section, let us focus on our objectives once more. We
want to model the motility of SUVs but all we know are the different states the
model can be in and the rates at which they jump from one configuration to
another. These rates are in fact important for Markov chains. Since we have
a countable state space we can ask ourselves: starting from state η what is the
probability to be in η′ at time t. Let us call this probability pt(η, η′), then we
have the following equality:

pt(η, η′) = P η[{ω : ω(t) = η′}]

This probability returns in a linear operator on Cb(Y ) called the generator
L. Let X be a Markov process as described above. Furthermore Cb(Y ) is the
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space of bounded functionals endowed with the supremum norm, which makes
it a Banach space. This makes sure that the image Lf exists and that is has
nice continuity properties.

Definition 2. The operator L : Cb(Y ) → Cb(Y ) is called the generator of X if

Lf(η) = lim
t→0

Eη[f(ω(t)]− f(η)
t

In a countable state space the domain is indeed Cb(Y ) completely, but in
general the limit does not exist for every f ∈ Cb(Y ). But we focus on a countable
space. In that case the generator reduces even further to:

Lf(η) =
∑
η′∈Y

q(η, η′)[f(η′)− f(η)]

with q(η, η′) = d
dtpt(η, η

′) We see that the derivative of the probability to go
from η to η′ appears. It is called a rate. They can be seen as the average
velocity at which a jump from η tot η′ occurs [14]. This is exactly what we
know in our model. So we have now an expression for the generator. It appears
to be important for several quantities that we are interested in. For instance
the average velocity of the SUV. To get there we need a notion of invariance or
equilibrium. After that we discuss a theorem which relates the generator and
an invariant measure. Then we will be able to calculate the average velocity of
the SUV.

A measure µ on Y is an invariant measure for a Markov process if ∀f ∈ Cb(Y )
and ∀t ≥ 0: ∫

Eη[f(ω(t)]µ(dη) =
∫
f(η)µ(dη)

To make this definition more clear, we look at the left hand side fist. Although
f ∈ Cb(Y ), not in Cb(DY ) we can see it as though it sends ω to f(ω(t). So
the expectation is well defined. Notice that when t is held fixed, Eη[f(ω(t)] is
a (bounded) function from Y into R, so it is an element of Cb(Y ). But when
η is fixed, it is a function from [0,∞). Because Y is countable η 7→ Eη[f(ω(t)]
is measurable. We use both properties in this definition because for invariance
we expect the left hand side to be independent of time and integrated over the
state space, the expectation of f should be equal to f . Invariance means that
the probability to be in state η is constant over time [14]. Like most physical
systems, our Markov process will converge to such an equilibrium.

As noted earlier Lf is the expected infinitesimal change of f . We can now
elegantly link this to invariance [14]:

Theorem 1. Let µ be a probability measure on Y and and L the generator of
X, then µ is invariant for X if and only if ∀f ∈ Cb(Y ):∫

Lfdµ = 0

Proof. ⇒ Let f ∈ Cb(Y ) and µ invariant for X, then because convergence in
the supremum norm is uniform convergence we have∫

Lfdµ =
∫

lim
t→0

Eη[f(ω(t)]− f(η)
t

dµ
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= lim
t→0

1
t

[∫
Eη[f(ω(t))]dµ−

∫
f(η)dµ

]
= 0

The last step comes of course from the invariance of µ
⇐ Assume that for all g ∈ Cb(Y )

∫
Lgdµ = 0, choose now a f ∈ Cb(Y ), then

we know from lemma 1 that

d

dt
Eη [f(ω(t))] = L [Eη [f(ω(t))]]

Integrating both sides gives us∫ t

0

L [Eη [f(ω(s))]] ds =
∫ t

0

d

ds
Eη[f(ω(s))]ds

= Eη[f(ω(t)]− Eη[f(ω(0))]

But ω(0) is by assumption η so the second term is just f evaluated in η. Now
we integrate over the state space with respect to µ and use Fubini’s theorem:∫ t

0

(∫
L [Eη [f(ω(s))]] dµ

)
ds =

∫
Eη[f(ω(t)]dµ−

∫
f(η)dµ

We saw that for fixed t, Eη[f(ω(t)] lies in Cb(Y ), so the state space integral is
0 for all t. This gives us the desired result: for all t ≥ 0

0 =
∫

Eη[f(ω(t)]dµ−
∫
f(η)dµ

In the section with applications we will see that we need µ for the calculation
of the average speed of the SUV. To find µ, we use theorem 1. In our model the
state space is finite, so we can see L as a matrix: L = (q(η, η′))η,η′∈S and f(η) as
a column vector and µ(η) as a row vector. So requiring that the right hand side
of the theorem is true, is in fact equivalent to saying that µL = 0, with 0 the
row vector filled with zeros. This is a finite system of linear equations that we
can solve with techniques from linear algebra. Existence and uniqueness issues
for µ are then immediately resolved.

The last important property of Markov processes that we need, is the following
theorem [14]. For details about martingale theory we refer to appendix C.

Theorem 2. Let X be a Markov process with generator L then for any
f ∈ Cb(Y ) the process M with

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds (1)

is a martingale with respect to the filtration {Ft}t≥0
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Proof. M is adapted by construction of every Ft. Secondly fix a t ≥ 0 then

EX0 [|Mt|] ≤ 2‖f‖∞ + t‖Lf‖∞ <∞

because both f and Lf are bounded. For the last requirement fix an s ≥ 0, we
start with the first two terms:

EX0 [f(Xt)− f(X0)|Fs] = EXs [f(Xt−s)]− f(X0)

by the use of Markov property 2. from definition 1. The second terms comes
out because of (7). We proceed with the integral term, by (8):

EX0

[∫ t

0

Lf(Xr)dr|Fs
]

= EX0

[∫ s

0

Lf(Xr)dr|Fs
]

+ EX0

[∫ t

s

Lf(Xr)dr|Fs
]

Again by (7), the first term comes out. And because of convergence in the
supremum norm we can interchange the expectation and integral. So

EX0

[∫ t

0

Lf(Xr)dr|Fs
]

=
∫ s

0

Lf(Xr)dr +
∫ t

s

EX0 [Lf(Xr)|Fs] dr

=
∫ s

0

Lf(Xr)dr +
∫ t

s

EXs [Lf(Xr−s)] dr

=
∫ s

0

Lf(Xr)dr +
∫ t

s

d

dr
EXs [f(Xr−s)] dr

=
∫ s

0

Lf(Xr)dr + EXs [f(Xt−s)]− EXs [f(X0)]

=
∫ s

0

Lf(Xr)dr + EXs [f(Xt−s)]− f(Xs)

The second equality is because of the Markov property. then we use lemma 1
[14] and evaluate the boundary terms. Putting it altogether gives

EX0 [Mt|Fs] = f(Xs)− f(X0)−
∫ s

0

Lf(Xr)dr = Ms

so we conclude that M is a martingale.

Lemma 1.
Eη [Lf(ω(t)] =

d

dt
Eη [f(ω(t))] = L [Eη [f(ω(t)]]

Proof. Fix a t ≥ 0 and let h > 0. ξ is like ω a generic element of DY . Then

Eη
[

Eω(t) [f(ξ(h))]− f(ω(t))
h

]
=

Eη
[
Eω(t) [f(ξ(h))]

]
− Eη [f(ω(t))]

h

=
Eη [Eη [f(ω(t+ h))|Ft]]− Eη [f(ω(t))]

h

Eη
[

Eω(t) [f(ξ(h))]− f(ω(t))
h

]
=

Eη [f(ω(t+ h))]− Eη [f(ω(t))]
h

(2)
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The second equality uses the Markov property at last we use (9). Let h ↘ 0
then the right hand side of (2) is by definition the derivative. And because the
expectation is a bounded linear operator, it is continuous as well. So the left
hand side converges to the expectation of Lf . For the second equality we start
from the right hand side (2) and use again the Markov property but now at
time h:

Eη [f(ω(t+ h))]− Eη [f(ω(t))]
h

=
Eη [Eη [f(ω(t+ h))|Fh]]− Eη [f(ω(t))]

h

=
Eη

[
Eω(h) [f(ξ(t))]

]
− Eη [f(ω(t))]

h

Take the limit h↘ 0 and we get the desired result for the second equality.

7 Applications to model

In this section we apply the results of the preceding sections to our model
defined in section 4.2. Finally we will see some results of our efforts to become
acquainted with the theoretical framework. We will find an expression for the
asymptotic velocity of the SUV:

lim
t→∞

Zt
t

and see that (asymptotically) the position Zt has a normal distribution. The
latter is an example of a central limit theorem (abbreviation: CLT) for additive
functionals on a Markov process. Now let us make the last theoretical steps
towards this goal.

As we saw earlier Zt increases or decreases with 8 nm when certain transitions
η 7→ η′ occur. The times at which these transitions occur follow a Poissonian
distribution. This reminds us of a Poisson process Nt with rate λ. Because there
Nt increases with 1 at Poisson distributed times. It has the following property:

Proposition 1. The process M on N with

Mt = Nt − λt

is a martingale with respect to {Ft}t≥0 with Ft = σ{Ns : t ≥ s ≥ 0}

Proof. The first property of definition 4 is accounted for by construction and
we have the second requirement since ∀t ≥ 0 :

E [Mt] = E [Nt]− λt = λt− λt = 0

For checking the third property of a martingale we choose an s, s′ such that
t ≥ s′ ≥ s ≥ 0. Then because of (7) we have

E [Nt − λt|Fs] = E [Nt − λt−Ns + λs|Fs] +Ns − λs

= E [Nt −Ns|Fs] + λ(s− t) +Ns − λs
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= lim
s′↘s

E [Nt −Ns′ |Fs] + λ(s− t) +Ns − λs

= lim
s′↘s

λ(t− s′) + λ(s− t) +Ns − λs

= Ns − λs

Another way to prove Prop. 1 is to recognize the Poisson process as a Markov
process on N with generator Lg(n) = λ [g(n+ 1)− g(n)]. If we apply Th. 2 with
f(n) := n, then we get the same result.

This result is important for us since

Mt = Zt −
∫ t

0

ψ(ω(t))ds (3)

is also a martingale analogous to Nt − λt. We will specify ψ in a moment. In
both cases the second term is an integral over the rates. Such an integral over
time of a functional on S is called an additive functional on a stochastic process.
Mt represents the fluctuation of the process away from its average increment
over time. Intuitively this varies around zero and that is exactly what a (mean
zero) martingale does. ψ represents the average rate at which the SUV moves,
so we have defined it as follows for ζ in S:

ψ(ζ) = ψ+(ζ)− ψ−(ζ) =
∑

η 7→η′∈R+

q(η, η′)1{ζ=η} −
∑

eη 7→eη′∈R− q(η̃, η̃
′)1{ζ=eη} (4)

We want to know an expression for the asymptotic velocity. If we take the limit
t→∞ of both sides of (3) the LHS will converge in distribution to zero since it
is a martingale. So we have in distribution:

lim
t→∞

Zt
t

= lim
t→∞

1
t

∫ t

0

ψ(ω(t))ds

Using Birkhoff’s ergodic theorem [4] the integral term converges almost surely
to the integral of ψ over the state space with respect to the invariant measure
µ:

lim
t→∞

1
t

∫ t

0

ψ(ω(t))ds =
∫
ψ(η)µ(dη)

So this is almost surely our expression for the velocity:

lim
t→∞

Zt
t

=
∫
ψ(η)µ(dη) =

∑
η∈S

µ (η)ψ (η) := v (5)

v can explicitly be calculated as we know ψ and in chapter 6 we noted that
finding µ comes down to solving a (finite) system of linear equations.

At the same time this imposes a practical problem, because when the size of
the vesicle becomes in the order if 1µm (which is experimentally reasonable),
the number of different sites will be a little more than 100. But the number
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of possible configurations η will be enormously bigger, at least 2000. In princi-
ple solving a linear system of 2000 equations can be done then the entries are
numeric,but the biggest problem is to define the L matrix in a computer. Insert-
ing every entry by hand takes too much time and there is no way to automate
the assignment of configurations and rates. So eventually we did not obtain an
explicit formula for the velocity of our model from section 2.2 this way. Never-
theless it did work for a much simpler model. See appendix B for the explicit
calculations with this simple model that consists of a MT lattice of only two sites.

We have dealt with the mean velocity. Now it is time to shift our attention
to the asymptotic distribution of Zt. We will proof that as t → ∞ in distribu-
tion

Zt − vt√
t

−→ N(0, σ2)

From (3) it follows that for all t ≥ 0 :

Zt − vt =
∫ t

0

ψ(ω(t))− vds+Mt (6)

We recognize the first term of the RHS of (6) as a additive functional on S. Now
we want to apply theorem 2 to replace that term by a martingale. But we can
not yet insert theorem 2 immediately because we have an integral over ψ − v
instead of Lf . We proof now that ψ− v lies in the image of L. Notice from the
construction of v that for the invariant measure µ:

∫
[ψ − v]dµ = 0.

Proposition 2. Let X be a finite Markov chain with generator L, then the
following equality holds:

Im (L) =
{
ψ ∈ Cb(S) :

∫
ψdµ = 0

}
Proof. From linear algebra we know that

Im (L) = Ker
(
LT

)⊥
Furthermore

Ker
(
LT

)
=

{
µT ∈ Cb(S) : LTµT = 0

}
= {µ′ : µ′L = 0}

But we know that this is a one dimensional subspace, since we have found the
unique measure µ such that µL = 0. So

Im (L) = {µ}⊥

= {ψ ∈ Cb(S) : 〈ψ, µ〉 = 0}

=
{
ψ ∈ Cb(S) :

∫
ψdµ = 0

}
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This proposition relies heavily on the fact that we have a finite state space.
The general case is much more subtle. We refer to the next chapter for details
about ψ lying in the image of L in the infinite dimensional case. Putting (1)
and (6) together we obtain:

Zt − vt = M̃t + φ(X0)− φ(Xt) +Mt

with −Lφ = ψ−v and M̃ the martingale from theorem 2 and M the martingale
from (3). The sum of two martingales is again a martingale and since E[M0] =
E[M̃0] = 0, we conclude with the aid of theorem 4 and the fact that φ is bounded
(so the φ terms vanish in the limit): if t → ∞ then we have the following
convergence in distribution

Zt − vt√
t

−→ N(0, σ2)

Stationarity and ergodicity is met since we have an irreducible finite Markov
chain. This is the central limit theorem for Zt, the additive functional on our
Markov process X. It remains unclear if we can say anything more about the
value of σ2.

8 CLT for additive functionals on a stationary
ergodic Markov process

In the previous section, we proved a CLT for additive functionals on a Markov
process. Zt, the position of the SUV converges to a normal distribution with an
unknown σ2. The proof relied heavily on the fact that in our model the state
space is finite. In this chapter we focus on the general case of a Markov process
with a possibly uncountable state space. Then situation becomes much more
intricate. First of all L is not necessarily a bounded operator anymore, so the
domain is not equal to Cb(Y ) but only the set of bounded functions f for which
the limit

Lf(η) = lim
t→0

Eη[f(ω(t)]− f(η)
t

exists for all η ∈ Y .

Secondly and this even more important for our CLT, the condition that
∫
ψdµ =

0 is not sufficient anymore for the existence of a φ: Lφ = ψ, in contrast with
Prop 2. Kipnis and Varadhan prove in [6] the CLT for additive functionals
under virtually no assumptions other than the necessary ones.

Theorem 3. Let X be a Markov process with generator L, reversible with respect
to a probability measure µ, and let us suppose that the reversible stationary
process P with µ as invariant measure is ergodic. Let ψ be a function on the
state space that lies in L2(µ), satisfying

∫
ψdµ = 0 and ψ ∈ D((−L)−

1
2 ). finally

let

Z̃t =
∫ t

0

ψ(Xs)ds
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then there exists a square integrable martingale M with respect to filtration
{Ft}t≥0 such that M has stationary increments and

lim
t→∞

1√
t

sup
t≥s≥0

|Z̃s −Ms| = 0

in probability with respect to P where Z̃0 = M0 = 0.

Here we give an overview of the theorem and its proof rather than a detailed
account. Kipnis and Varadhan proof this theorem in [6] with the additional
constraint that the process is reversible. This means that the generator L is a
symmetric operator [8] in L2(µ):

∀f, g ∈ L2(µ) : 〈Lf, g〉 = 〈f,Lg〉

In our case the process does not satisfy reversibility so then an uncountable
state space would become even more difficult.

We see that the Markov process needs to be stationary and ergodic. This guar-
antees in fact the conditions of stationary and ergodic increments in theorem 4.
This requirement is met in our model. Notice that if we would ignorantly (and
erroneously because of the reversibility) apply this theorem to our model, Z̃t
would not be the position Zt but only the integral term of the RHS of (6) as the
notation also suggests. This is also one of the main reasons why we have not
found an explicit expression for the variance of the normal distribution, because
of the possible covariance of the two martingale terms in (6).

The special necessary requirement that is different from the finite dimensional
case, for the existence of φ is that it needs to be in the domain of (−L)−

1
2 . If

that is satisfied we can apply theorem 4 once again and prove the CLT.

The outline of the proof is as follows. Since X is a reversible Markov pro-
cess, the generator L is self-adjoint on L2(µ). This implies that L admits a
spectral decomposition such that ∀ψ ∈ L2(µ):

〈ψ,Lψ〉 =
∫
σ(L)

λ µψ(dλ)

where σ(L) is the spectrum of L and µψ(dλ) the spectral measure of ψ. If we
want σ2 to be finite, this comes down to checking that

∫
1
λµψ(dλ) <∞ Which

is in fact equivalent to saying that ψ needs to lie in Im((−L)
1
2 ), which can be

expressed as ψ ∈ D((−L)−
1
2 ). Digging deeper into the proof of this theorem

would go beyond the purposes of this thesis. But it is nice to end with this, as
it makes clear that for me there is still a lot to learn.
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A Matlab code of simulations
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See next page for the code.
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B Simplified model of two bindingsites

In this appendix we discuss a simplified model with one lattice containing of 2
sites. The reason that we have developed this, is that the number of configura-
tions for our model from section 4.2 is always too big for symbolic calculations
as we discussed in section 7. The left site (denotes minus end) can either be
empty or dynein can bind to it. Likewise for the right (plus end) but there a
kinesin can bind. In this way we have four possible configurations (see figure
14), which is manageable.

Figure 14: All possible configurations. The enumeration comes in handy when
we define our generator matrix L. Note that configuration 1 represents the SUV
not being bound to the MT.

We proceed with all possible transitions. Not every transition rate can be
expressed in the single motor parameters from section 4.2 since we use here
a sort of mean field approximation. We denote the rate with which a dynein
binds with c and the binding rate for kinesin with j the other parameters are
the same. For clarity we have named the parameters from section 4.2 differ-
ently. In this way we do not have to deal with all the sub- and superscripts.
l = kKf , e = kDf , f = kDu ,m = kKu . Note that we distinguish now between the
unbinding rate of kinesin versus dynein. Later on we can always insert the
known value from section 4.2. A last parameter is the back stepping rate h of
dynein. See figure 15 for the possible transitions.

This results in the following generator matrix L.

L =


−c− j c j 0
f −f − j 0 j
m 0 −c−m c

0 m+ em
e+m f + fl

f+l −f − fl
f+l −m− em

e+m


With mathematica we have solved the equation xL = 0. This resulted in.

x =


− f+ fl

f+l

j +
(−c−m)(−(−f−j)j(−f− fl

f+l−m−
em

e+m )+j(−c(f+ fl
f+l )+j(m+ em

e+m )))
j(−c(−f−j)j−cj(−c−m))

+2cefm+ef2m+2efjm+2celm+2eflm+2ejlm+cfm2+2efm2+f2m2+fjm2+clm2+2elm2+2flm2+jlm2+fm3+lm3

j(f+l)(e+m)(c+f+j+m)

−−(−f−j)j(−f− fl
f+l−m−

em
e+m )+j(−c(f+ fl

f+l )+j(m+ em
e+m ))

−c(−f−j)j−cj(−c−m)

1


We want a probability measure µ so we normalize x to obtain µ.

µ =
x∑

η∈Ω x (η)
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Figure 15: All possible transition. The rates of the transitions are situated above
the arrows. Some transitions involve two motors, that is why there are three
transition rates that are not just a single motor parameter. The transitions that
induce the SUV to step towards the plus end have a R+ ont the right, similarly
for movement of the SUV to the minus end we have R−
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We proceed with the velocity. We use equation (4) to get:

ψ =


0
−e
l

lf
l+f + lh

l+h −
em
e+m


Now we have a expression for equation (5), the speed v. Unfortunately since we
do not know the parameters c and j , we can not insert numerical values. c and
j are related to the single motor binding rates and the invariant measure µ.

C Martingales and conditional expectations

This section presents some definitions and properties of martingales. For this we
need a notion of conditional expectation. For a more detailed account, including
proofs, we refer to [12].

Definition 3. let (Ω,A,P) be a probability space and X a random variable on
it with E [|X|] <∞. Furthermore F denotes a σ-algebra that is contained in A.
Then there exists a random variable Y such that:

1. Y is F measurable.

2. E [|Y |] <∞

3. for every set F ∈ F we have
∫
F
XdP =

∫
F
Y dP

We denote Y as E [X|F ]. The existence is guaranteed by the Radon-Nikodym
theorem, and Y is P almost surely unique. We present now some properties of
the conditional expectation that we used in this thesis. Let X,X1 and X2 be
random variables with the necessary properties and H a sub σ-algebra of F ,
then

1. if X is F measurable then almost surely

E [X|F ] = X (7)

2. (linearity)
E [X1 +X2|F ] = E [X1|F ] + E [X2|F ] (8)

3. almost surely
E [E [X|F ] |H] = E [X|H] (9)

We proceed with the definition of a martingale as we have considered all the
preliminary definitions.

Definition 4. A process M is called a martingale with respect to {Ft}t≥0 if

1. ∀t ≥ 0 : Mt is Ft-measurable.

2. E [|Mt|] <∞

3. E [Mt|Fs] = Ms for t ≥ s ≥ 0 almost surely
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For the sake of simplicity we use the discrete time martingale in the remain-
der of this section, but everything is also valid in the continuous case. Now we
notice that we can write every martingale as a sum of increments:

Mn =
n∑
i=1

∆i

with ∆i defined as
∆i = E [Mn|Fi]− E [Mn|Fi−1]

When these increments are all independent and identical distributed we obtain
the classical central limit theorem that we all know from secondary school. But
the requirements can be loosened without the loss of convergence. Here we
present the central limit theorem for martingales that we used in section 7 [8].
Note that the theorem also holds for continuous time martingales.

Theorem 4. Let M = {Mj}j≥0, with M0 = 0, be a martingale with respect
to filtration {Fj}j≥0 and assume that the increments are stationary and er-
godic. Then the distribution function of Mn√

n
converges to a normal distribution

N
(
0, σ2

)
as n→∞, with σ2 = E(M2

1 ).

We see that only stationary and ergodic increments are required. The first
says that ∀k, i1..ik, τ ∈ N the following equality of the joint distribution func-
tions holds:

F∆i1 ..∆ik
(xi1 , ...xik) = F∆i1+τ ..∆ik+τ

(xi1 , ...xik)

The joint distribution function is invariant under time shifts. And ergodicity
means in this case that the increments satisfy Birkhoff’s ergodic theorem [4].
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