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Chapter 1

Abstract

This thesis deals with two main issues. 1; the elasticity disordered of materi-
als.2; the mathematics of systems consisting of elastic materials. It consists of
two main parts.

part 1
In the first part we present our experiments designated to measure the shear
modulus, G and bulk modulus, B, of foams.

Essential in the description of disordered materials consisting of well de-
fined elements, such as collection of grains or foams, is the concept of jamming.
Jamming is the physical process by which these materials become rigid. The
jamming transition happens when the density is increased; the crowding of the
constituent particles prevents them from exploring phase space, making the
aggregate material behave as a solid.

Instead of using the density we use the packing fraction, φ, to describe the
condition of the foam. The packing fraction refers to the fraction of the volume
of the material that is occupied by the particles, and is obviously related to
the density. The jamming point is characterized by a critical packing fraction
denoted as φc.

Data from simulations predicts that G ∼ √
∆φ and that B is essentially

independent of ∆φ, where ∆φ is defined as φ − φc. Our main aim is to verify
these predictions empirically.

In chapter 2 we present our setup and strategy to measure B and G. These
experiments are referred to as shear(modulus) experiment and bulk(modulus)
experiment, respectively.

In chapter 3 we derive the elastic equations staring from a first order Taylor
expansion. These equations fully describe the system and are implemented to
derive equations for the shear modulus and bulk modulus in quantities pertain-
ing to the measurements.

Subsequently we present the results of our measurements in chapter 4. Using
the raw data we are able to compute plots of the shear modulus and bulk
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modulus versus the packing fraction. This enables us to confirm the prediction
for the shear modulus. Unfortunately, our data in the bulk experiment is not
convincing enough to make a statement about the validity of the predictions for
the bulk modulus.

part 2
The second part deals with the mathematics and physics of systems consisting
of two layers of bubbles in a Taylor-Couette geometry.

We consider each layer of bubbles as a chain of particles subordinated to a
periodic potential, i.e. the other layer of bubbles. Additionally the interaction
potential between the particles of the chain is approximated with a harmonic
potential. The resulting model is known as the Frenkel-Kontorova model. This
model and its Hamiltonian are presented in chapter 5.

Solving the Frenkel-Kontorova system in general is not possible, only under
certain conditions solutions can be obtained. These solutions are described.
Subsequently we take the continuum limit of the Frenkel-Kontorova model to
obtain the sine-Gordon equation. This equation and its solutions will also be
studied in some detail in chapter 5.

The sine-Gordon equation represents a Hamiltonian system, however we can
easily add a dissipative term. The resulting equation is analyzed in chapter
6 using perturbation techniques. Using the Melnikov function, we are able to
confirm the existence of traveling wave solutions and make some qualitative
statements about them.



Chapter 2

Setup, measurement
procedure and data analysis

2.1 Measurement procedure and setup

The experiments we have done are quite straight forward. The experiments
concerning the shear modulus are done in a two-dimensional Taylor-Couette
geometry. We rotate the inner wheel, which is connected to a rheometer, over
a certain angle (θ) and measure the resultant torque (T). The setup used in
the bulk modulus experiments contains a reservoir with a fixed wall and a wiper,
which is attached to the axis of the rheometer. A bidisperse monolayer of bubbles,
placed in the compartment enclosed by the fixed wall and the wiper, is compressed
as a torque (T) is applied on the wiper. The resultant deflection angle θ of the
wiper is measured. The measured quantities in these experiments can directly
be related to G and B respectively. In this section the measurement procedures
and the corresponding setups are dealt with in detail.

2.1.1 Shear modulus

The shear experiments are done in a two-dimensional Taylor-Couette geometry,
shown in Figure 2.1. The rheometer(Anton-Paar dsr301) is the central element.
The rheometer can apply very small torques or deflection angles1 about an axis.
Moreover the rheometer can measure the resultant deflection angle and torque,
respectively, very accurately1.

The axis of the rheometer is connected to a gear wheel, situated in the
reservoir, through a centered circular hole in the top plate(thickness 9 mm). In
the experiments we use two wheels. One has a radius ri of 5 cm and the other
2,5 cm. The circular reservoir has an outer radius ro equal to 112.5 mm and
has a height of 25 mm from the bottom to the top plate. Note that the outer
radius is also grooved, providing no-slip boundary conditions.

1 order µNm and µ
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Above the reservoir we place a mirror so that the foam can be imaged by
the camera(baslerA622F) equipped with a lens(nikon sigma edxg).

The reservoir is situated on a stage which has three stands denoted by a,b
and c, shown in Figure 2.1. Before the measurement we level the stage, by
adjusting the three stands until the level confirms that stage is leveled.

When the stage is leveled we pour some soapy solution, consisting of 5 %
volume fraction Dawn dishwashing liquid and 15 % glycerol in demineralized
water (viscosity η = 1.8± 0.1 mPa·s and surface tension σ = 28± 1 mN/m), in
a bowl. We create a bidisperse bubble monolayer, by flowing nitrogen through
two syringe needles immersed at fixed depth in the solution. The resulting
bubbles of 1.8 ± 0.1 and 2.7 ± 0.1 mm diameter(65:35 number ratio respectively)
are gently mixed to produce a disordered bidisperse monolayer. The weighted
average bubble diameter 〈d〉 is 2.25 mm. We also fill the reservoir completely
with soapy solution.

Subsequently we use a simple spoon to skim of the bubbles in the extern
reservoir and transport them through the other circular hole in the glass plate,
by putting them on top of the hole and extract some soapy solution from the
sides of the reservoir. This creates a bidiperse monolayer in the reservoir trapped
by a top plate.

We then make a picture of the bubble layer in order to determine its packing
fraction with help of image analysis (for more details see appendix A1).

After calibrating the rheometer (which is done automatically by the pro-
gramme) we perform the measurement. Each measurement is divided in a num-
ber of time intervals of equal length. During each interval the rheometer applies
a certain deflection angle on the tooth-wheel in the center, and measures the
resultant torque a designated number of times. In our experiment we take 200
measurement points per interval which where 0,3 second apart, resulting in 60
second intervals. Every interval the resultant torque relaxes to a certain equilib-
rium value. We ensure that the time-intervals are long enough to let the system
attain its equilibrium value.



Figure 2.1: Schematic representation of the setup of the shear experiment. On
the right hand side an enlarged schematic representation of the stage on which
the reservoir is situated, is shown.
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Figure 2.2: Plot of the controlled parameter θ versus the time. Recall that our
intervals last 60 seconds.

The controlled parameter θ is increased and decreased during the measure-
ment in single steps, in order to check whether the system has linear response.
Additionally as we impose the same value of θ on the wheel several times, we
can also see whether the data reproduces. The measurements consist of 24 in-
tervals. Each measurement θ equals -3 milirad during the first interval, reached
in a single step. Then θ ascends one milirad every interval until it has reached a
value of 10 milirad. After the fourteenth interval we let θ descend a milirad per
interval for five intervals. During the last five intervals θ is again increased one
milirad every interval(Fig. 2.2) The resultant measurement points and their
corresponding deflection angle,time and resultant T are saved in a table by
the software used to control the rheometer. Moreover the measured torque as
function of time is recorded by the rheometer’s software.



Figure 2.3: An other schematic representation of the reservoir used in the shear
modulus experiment. The tooth-wheel is rotated a certain amount with help of
the rheometer, the resultant torque are measured. The packing fraction can be
varied by adding or subtracting soapy solutions from the sides.

When we are done with the measurements at this particular packing fraction,
we vary the packing fraction. This can easily be done by adding some soapy
solution, which then pushes some bubbles out the reservoir making the foam
wetter(Fig.2.3). The packing fraction of the foam can be increased, i.e. making
the foam dryer, by subtracting some soapy solution from the sides in order to get
some more bubbles in the Taylor-Cougette geometry (without creating double
layers of bubbles). We again make a picture to determine the new packing
fraction and subsequently do some measurements. This process is repeated at
several packing fractions, resulting in sets of data for various packing fractions.

2.1.2 bulk modulus

For the bulk experiment the reservoir used in the shear experiment is replaced,
creating a whole new geometry in a quite similar setup (Fig. 2.4). The new
reservoir contains two fixed walls and a smooth outer radius. Moreover it has
the same dimensions as the reservoir used in the shear experiments. The top
plate, which is also used in the shear experiments, is placed on the reservoir.
The axis of the rheometer is connected to a wiper, which has arms r′ that are
97 mm long(Fig. 2.4).

The mirror is placed is such a way that the camera, which is the same one
encountered in the previous experiment, can take pictures of the compartment
enclosed by the wiper and fixed wall.

After leveling the stage, on which the reservoir is situated, we make bidis-
perse bubble monolayer similar to the one in the shear experiment.

Subsequently we transport the bubbles in the compartment enclosed by the
wiper and the solid wall through the circular hole using a spoon. Finally the
glass plate is rotated in order to transport the circular hole away from the



Figure 2.4: Schematic representation of the setup of the bulk modulus experi-
ment. An enlarged schematic representation of stage with the new reservoir is
enlarged and shown on the right.



Figure 2.5: Schematic representation of the reservoir used in the bulk modulus.
The wiper compresses the foam as a certain amount of torque is applied on the
wiper in each interval. The resulting deflection angle is measured.

compartment of bubbles, to prevent the bubbles from escaping as the wiper
starts the compress the compartment filled with the bubbles.

Then, the measurement can be started. Again we divide the measurement
in intervals. During every interval the wiper is applied with a constant torque
T. The wiper then compresses the bubble layer (Fig. 2.5), by diminishing the
compartment enclosed by the fixed wall, wiper, soapy solution and top plate.
The resultant deflection angle θ is measured at the designated measuring points.
The intervals are long enough to let the wiper attain its equilibrium value. The
measurements are divided in 16 or 8 intervals. Every interval consists of 300
measuring points, which are parted by 0.3 second resulting in intervals of 1,5
minute.
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Figure 2.6: Plots of the controlled parameter T versus time t, for the measure-
ments consisting of 8 and 16 intervals.Remember that the measurements consist
of 90 second intervals,

We take logarithmic steps for T (Fig. 2.6). Or to put it in formalistic
language, the torque in mNm is a simple function of the index i of the interval.
When the measurement consists of sixteen interval this function is 2

T (mNm) = (10)−
(7+i)

8 (2.1)

For the measurements consisting of 8 intervals this function is modified to2,

T (mNm) = (10)−
(3+i)

4 (2.2)

Note that every interval the system is compressed, so the packing fraction
alters as it relaxes to a new equilibrium. Therefore we take pictures every 0.5
second to ensure we can calculate the packing fraction at the reached equilibria.
The time, torque and resultant deflection angle are stored by the rheometer’s
software.

2 with i in the appropriate range



Figure 2.7: The typical Torque as a function of time, measured in our quasi-
static experiment.

2.2 data analysis

In this section the steps used to analyze the data are presented. The analysis for
both the shear modulus and bulk modulus experiments are shown in steps, which
gives a kind of ’algorithm-like’ touch but ensures that the data is presented in a
rather clear and structured way.

2.2.1 shear modulus

step 1 exporting the data
First of all the table with the measurement points and their deflection angle
are exported as tex-files. The column of the torque is then extracted from this
table and loaded in an idl-program. The column with the torques measured at
the measuring points is also loaded in orgin in order to look at the data. We
can then already mark the measurements displaying rearrangements.

step 2 Analysis with idl
step 2a The plot of the torque versus the time typically looks like the graph
displayed in figure 2.7. We measure in the elastic response region (see Chapter
” Theory of elasticity ” for more details). As the system relaxes, one can expect
that the system will reach equilibrium like a damped harmonic oscillator, since
in the elastic approximation the system is treated as a harmonic system, with
a damping coefficient. Due to dragforces exerted by the top plates this com-
parative description is not entirely valid. However, motivated by the empirical
results, we fitted the data of every interval with an natural exponent. This is
done by a simple idl-script (see appendix A2). The column with the torque
is loaded into the program. Then for every interval the data is fitted with a
exponent, i.e. A+B exp(− t

τ ), where τ has the interpretation of a characteristic



time. These plots are exported and saved. Notice however that every point
represents 0,3 second as the measurement points are 0,3 second apart rather
than one second. The A, that represents the value of the the torque the system
relaxes to every interval of the measurement, and the characteristic time τ are
stored in array.

step 2b The value of A of each interval is put in a plot versus the deflection
angle(θ) of the inner wheel in that interval. Subsequently a line is fitted to these
points, to determine the slope, i.e. the ratio between the torque T and deflection
angle θ in that measurement. This final plot is also exported and saved, as well
as the parameters of the fit (Fig. 2.7). These parameters give already a rough
indication of the ratio of T and θ. However we can not trust them a priori due
to possible rearrangements.

step 3 Verification step
If there are rearrangements, the corresponding points should be omitted to find
the correct ratio between torque and deflection angle. We load the array with
the values of A of each interval in origin and and plot these points as function
of θ. The points, corresponding to rearrangements are omitted. Subsequently
we fit a line through the data. The slope of the line, i.e. the ratio of T and θ,
is compared with value obtained from the idl-script.

step 4 Determining the packing fraction
The packing fraction is determined from the picture taken with help of an other
idl-program (See appendix A1 for more details).

step 5 processing the data
From the ratio of T and θ, obtained using origin, the shear modulus is calculated
with help of formula 3.73. Recall that during some measurements we used an
inner wheel with a radius of 25 mm while during other measurements we used
a wheel with a radius of 50 mm. In origin we make a table. The measurement
is put in the table along with the number of this measurement the packing
fraction, shear modulus and the radius of the inner wheel used. Subsequently
G is plotted versus φ.

2.2.2 bulk modulus

step 1 exporting the data
First of all, the table with the measurement point and their resultant deflection
angle θ are exported as tex-files. The column containing θ of each measurement
point is then extracted from this table and loaded in an other idl-program (see
appendix A3).

step 2 Analysis with idl
step 2a The plot of θ versus the time typically looks like the graph displayed in
figure 2.8. In the idl-program we again fit each interval with a natural exponent,
i.e. A + B exp(− t

τ ). These fits are also exported and saved. The values of A
represent the angle the wiper relaxes to during that interval and are stored in
an array. We will denote this values by θe(i). Where the i is the index of the
interval.



Figure 2.8: The deflection of the wiper, used in the bulk experiments, as a
function of time,due to the various constant torques put on the wiper during the
intervals.This is a example how our data looks like.

step 3 Determining the packing fraction
The packing fraction is determined from the pictures taken during the mea-
surement. The best3 picture of the system in equilibrium, in that interval, is
selected. It is very easy to determine wether the system has reached equilib-
rium by looking at the motion of wiper and bubbles. In equilibrium the wiper
and bubbles do not move anymore. With help of the same programme used in
the shear modulus experiment the packing fraction from this interval is then
determined from this picture (See appendix A1 for more details).

step 4 Calculating the angles in equilibrium and making the table
The picture used to analyze the data is also used to calculate θv(i), i.e. the angle
of the compartment in equilibrium during interval i. This can easily be done
with help of the program ImgeJ. We basically load the picture4 in the program
and draw lines over the edges of the compartment enclosed by the fixed wall
and the wiper. The program calculates the angle between these lines. Then we
calculate ∆θ = θe(i + 1)− θe(i) and ∆T = T (i + 1)− T (i) where T (i) denotes
the torque at interval i. Subsequently, G+B is calculated with help of formula
3.85. Using the table and the results from the previous experiment,the bulk
modulus can be plotted versus the packing fraction.

3With best we mean the picture which shows the best contrast between the bubbles and
the bottom of the reservoir

4Which is scaled t



v
(i)

Figure 2.9: Schematic illustration of the compartment and the corresponding
angles.



Chapter 3

Theory of elasticity

This chapter will deal with the concepts of stress and strain, and their relating
equations. Starting from a simple Taylor expansion I will derive some general
results, in a rather alternative manner. From these general results I shall then
derive some equations describing the physics of our specific experiments.

Generally, the displacement of a body has two components; a rigid-body dis-
placement, i.e. translations and rotations that do not alter the body’s size, and a
deformation, which is the change in shape and/or size of the body from an initial
or undeformed configuration. However, in this discussion of the displacement
of a continuum body it will assumed that there are enough physical constraints
to prevent the body from moving as a rigid body, so that no displacements of
particles of the body are possible without a deformation of it. Which is obviously
the case in our experiments.

3.1 Elasticity in
3-dimensional cartesian coordinates

3.1.1 Strain in 3 dimensional cartesian coordinates

Consider a continuum body and a three dimensional cartesian coordinate-system,
with standard variables x,y and z. A change in the configuration of the body re-
sults in a displacement. This can be represented by a vector-field; ψ: R3 7−→ R3,
with components ui(x, y, z), i ∈ {1, 2, 3}, which are assumed to be very small
and continuously varying over the volume of the body. Therefore it is justified
to apply a Taylor expansion up to first order to calculate the displacement of
the body, i.e. an elastic approximation.

To implement this idea consider a small element, dx,dy,dz 1 (Fig. 3.1), of
the body around a point ~% 2 undergoing such a displacement. We can use the
Taylor expansion to approximate φ(~α)

1of course dx, dy, dz are parallel to the x-axis, y-axis and z-axis respectively.
2where the notation~%xis used to denote the x-component of ~%
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Figure 3.1: Small cubic element around a point ρ in the body. dx, dy and dz
are parallel to the x̂, ŷ and ẑ direction respectively. The points α, β and δ are
approximated with a first order Taylor expansion, as the element is assumed to
be very small.

φ(~α) ≈



u1(~ρ)
u2(~ρ)
u3(~ρ)


 +




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z


 (~ρ− ~α) (3.1)

Using the fact that dx,the line element that connects ~ρ and ~α, is parallel to the
x axis equation 1.1 reduces to

φ(~α) ≈



u1(~ρ)
u2(~ρ)
u3(~ρ)


 +




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







dx
0
0


 (3.2)

In exactly the same manner one obtains the following equations for φ(~β) and
φ(~δ) respectively

φ(~β) ≈



u1(~ρ)
u2(~ρ)
u3(~ρ)


 +




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z





 dy

0


 (3.3)



φ(~δ) ≈



u1(~ρ)
u2(~ρ)
u3(~ρ)


 +




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







0
0
dz


 (3.4)

The first terms in equations 3.2,3.3 and 3.4 are the translations. Using
the assumed continuity of ψ and the obvious linearity of its first order Taylor
expansion one can find φ(dx) ≡ dx′, φ(dy) ≡ dy′, φ(dz) ≡ dz′, up to first order,
by calculating φ(~α)−φ(~ρ), φ(~β)−φ(~ρ), φ(~δ)−φ(~ρ) respectively.These are exactly
the deformations we were looking for.

dx′ ≈ φ(~α)− φ(~ρ) ≈



u1(~ρ)
u2(~ρ)
u3(~ρ)


 +




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







0
0
dz


−




u1(~ρ)
u2(~ρ)
u3(~ρ)




(3.5)
Resulting in the following equation;

dx′ ≈




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







dx
0
0


 (3.6)

Analogously one finds dy’, dz’

dy′ ≈




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







0
dy
0


 (3.7)

dz′ ≈




∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u1(~ρ)
∂z

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

∂u2(~ρ)
∂z

∂u3(~ρ)
∂x

∂u3(~ρ)
∂y

∂u3(~ρ)
∂z







0
0
dz


 (3.8)

The increase in length of dx in the x̂ direction due to deformation is obviously
ψ(dx)− dx = ∂u1(~ρ)

∂x dx− dx . Additionally its unit elongation in this direction,
γxx, can easily be found upon dividing the found component by dx

γxx =
∂u1(~ρ)

∂x

1
dx

=
∂u1(~ρ)

∂x
(3.9)

Likewise we obtain γyy= ∂u2(~ρ)
∂y and γzz=

∂u3(~ρ)
∂z to be the unit elongations

of dy and dz in the ŷ-direction and ẑ-direction respectively.
Now the distortion of the angles between dx, dy and dz has to be taken into

account. For that purpose consider the the angle between dx and dy after a
displacement (Fig.3.2). Using equations 3.6 and 3.7 one finds that for dx the
deformation in the y-direction equals ∂u2(ρ)

∂x (dx) . Likewise dy has a displace-
ment in the x-direction given by; ∂u1(ρ)

∂y (dy).



Figure 3.2: Schematic illustration of the distortion in angle between dx and dy,
resulting in the new angle between dx′ and dy. This illustration looks the same
for the angle between dx and dz and dy and dz. As can be seen from equations
3.2 and 3.3 m = u1(~ρ) + ∂u1(ρ)

∂y (dy) and o = u2(~ρ) + ∂u2(ρ)
∂x (dx). Accordingly,

equations 3.6 3.7 determine n and p; n = ∂u1(ρ)
∂y (dy), p = ∂u2(ρ)

∂x (dx).

As first order Taylor approximation is being used ϕ1=tanϕ1=
∂u2(ρ)

∂x (dx)

dx =∂u2(ρ)
∂x .

Similarly ϕ2 = ∂u1(ρ)
∂y . Therefore the angle between dx and dy after the deforma-

tion is diminished by ∂u2(ρ)
∂x + ∂u1(ρ)

∂y . Applying the same method and equation
3.8 in combination with 3.6 and 3.7 to calculate the distortion of angle between
dx and dz, and dy and dz respectively one obtains γxz = ∂u1(ρ)

∂z + ∂u3(ρ)
∂x and

γyz = ∂u2(ρ)
∂z + ∂u3(ρ)

∂y .
Using the symmetry of the found components it is is immediately clear that

γab = γba, with a, b ∈ {x, y, z}. Thus we have found the components of strain
in three dimensional coordinates, which can be represented in matrix-form.




γxx γxy γxz

γyx γyy γyz

γzx γzy γzz


 =




∂u1(~ρ)
∂x

∂u2(~ρ)
∂x + ∂u1(~ρ)

∂y
∂u1(~ρ)

∂z + ∂u3(~ρ)
∂x

∂u2(~ρ)
∂x + ∂u1(~ρ)

∂y
∂u2(~~ρ)

∂y
∂u2(~ρ)

∂z + ∂u3(~ρ)
∂y

∂u1(~ρ)
∂z + ∂u3(~ρ)

∂x
∂u2(~ρ)

∂z + ∂u3(~ρ)
∂y

∂u3(~~ρ)
∂z




(3.10)

3.1.2 Components of stress in
3-dimensional cartesian coordinates

There are two kinds of forces that may act on the body. On one hand there
are the forces distributed over the surface of the body, like pressure of one body
on an other body or hydrostatic pressure.These forces are denoted by surface



Figure 3.3: Schematic illustration of the forces resolved in the direction of the
basis-elements of the three dimensional cartesian coordinate system

forces. On the other hand there are forces distributed over the volume of the
body like gravity, magnetic forces inertia forces when the body is in motion.
These forces are referred to as body forces.

Consider our small cubic element again(Fig.3.3), experiencing surface forces.
One can resolve the surface forces per unit of area in the direction of the basis,
i.e. in this case the x-direction, y-direction and z-direction. Each plane thus has
one force per unit area perpendicular to that plane, a normal stress, and two
forces per unit area with a direction parallel, the so-called shearing stresses. For
example for the plane perpendicular to the x-axis one has the following forces
per unit area; τxx, τyx and τzx. Here the first subscript indicates the direction
of the force3, and the second subscript denotes the axis to which the plane is
perpendicular to. This thus results in 9 components of stress which can be
represented in matrix-form




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 (3.11)

However in equilibrium some simple considerations can reduce the number
of shearing stresses from 6 to 3. When a body is in equilibrium there are no
effective moments, by definition. So consider a small area perpendicular to the
x-axis. As there is no effective moment we obtain the following identity;

τzydxdydz = τyzdxdydz =⇒ τzy = τyz (3.12)

3the stress or strain is considered positive in this discussion if the part of the force resolved
in that direction points in the positive direction with respect to the basis.



Analogously using planes perpendicular to the y-axis and z-axis the following
identities can be derived, which effectively ensure that the matrix in equation
3.11 is symmetric

τxy = τyx (3.13)

τzx = τxz (3.14)

3.1.3 Hooke’s law

The relations between stresses and strain are described by the empirical verified
law of Hooke. Imagine an elemental rectangular piece of isotropic material
with sides parallel to the axes and submitted to normal stresses τxx distributed
uniformly. Experiments show that in this case there is no distortion of angles
and that the ratio of the magnitude of unit elongation and the stress is constant,
denoted by E. 4 This constant is referred to as the modulus of elasticity in
tension.

τxx = γxxE (3.15)

However, as one can imagine, in the elastic regime extension of the element
in the x-direction is accompanied by lateral contractions, in the ŷ and ẑ di-
rections.These are also, verified empirically, related by a constant, ν,called the
Poisson ratio;

γyy = −ντxx

E , γzz = −ντxx

E (3.16)

If our element is submitted to the action of normal stresses, uniformly dis-
tributed over the sides, one can easily obtain the resultant strain components
using the superposition principle and equations 1.14 and 1.15. This method
of superposition is obviously only valid in this regime of very small deforma-
tions as the strain components are then linear and changes in dimension of the
body and small displacements of the points of application due to external forces
can safely be neglected. Thus we obtain the following set of equations relating
normal stresses and unit elongations;

γxx =
1
E

(τxx − ν(τyy + τzz)) (3.17)

γyy =
1
E

(τyy − ν(τxx + τzz)) (3.18)

γzz =
1
E

(τzz − ν(τxx + τyy)) (3.19)



Figure 3.4: Schematic illustration of the cross-section of the rectangular paral-
lelepiped,experiencing pure shear, cut parallel to the x-axis. With the triangle
Obc shown enlarged next to it.

Additionally one can find a relation between the shearing strain and shear
stress.This must depend on ν and E of course, as these completely determine
the response of the material by the preceding equations.

Consider a rectangular parallelepiped with τyy=τzz and τxx=0. Cutting
out an element parallel to the x-axis and at 45 degrees to the z-axis and y-
axis(Fig.3.4 ), it is easy to see that the forces along and perpendicular to bc add
to zero. Which means that the normal stresses are equal to zero. Moreover for
the shearing stresses on the sides it holds that τ= 1

2 (τzz − τyy) = τzz. This is
called pure shear.

Vertical elongation of Ob is equal to the shortening of Oa and Oc. Neglecting
all quantities of at least second order, one must conclude that the lengths of ab
and bc do not change as result of the deformation. The angle does change and
the shearing strain γ me easily be found by examining triangle Obc .

As a result of the deformation one finds;

Oc

Ob
= tan(

π

4
− γ

2
) =

1 + γyy

1 + γyy
(3.20)

Inserting the elastic equations

γzz = 1
E (τzz − ντyy) = (1+ν)τzz

E

γyy = − (1+ντzz)
E

(3.21)

For small γ we can approximate as follows;

4It is still assumed that we are dealing with very small displacements, i.e. an elastic
approximation. This will only be valid up to a certain yield stress, from which on the system
stops to respond elastically.



tan(
π

4
− γ

2
) =

tan(π
4 )− tan(γ

2 )
1 + tan(π

4 ) tan(γ
2 )

=
1− γ

2

1 + γ
2

(3.22)

And so

γ =
2(1 + ν)τzz

E
=

2(1 + ν)τ
E

(3.23)

or
γ =

τ

G
(3.24)

Where G is the so-called modulus of elasticity in shear or the modulus of
rigidity;

G =
E

2(1 + ν)
(3.25)

If the shearing stresses only work on the sides, the distortion of the angle between
any two axes only depends on shearing components parallel to these axes and
we obtain in the same manner as above;

γxy = τxy

G γxz = τxz

G γyz = τyz

G (3.26)

3.1.4 Bulk modulus

The bulk modulus, B, is defined as

B = −v
dp

dv
(3.27)

Here v is claerly the volume and p is the pressure. Or to put it otherwise5,

p = −B
∆v

v
(3.28)

It is clear that we will use equation 3.28, as the ∆v
v can easily be linked to

the concept of strain. Consider for example the small rectangular of figure 3.1
again. The when a pressure p is applied to the three sides, in the elastic regime
we had already derived that6

γxx = −1
E (τxx − ν(τyy + τzz))

γyy = −1
E (τyy − ν(τxx + τzz))

γzz = −1
E (τzz − ν(τxx + τyy))

(3.29)

So we obtain
5When the elastic approximation is valid off course
6It assumed that the volume is compressed, therefore the minus signs appear in the equa-

tions



Figure 3.5: Small square element around the point ρ in the body. Once again dx
and dy are parallel to the x̂ and ŷ direction respectively. The points η and ζ are
approximated with a first order Taylor expansion, as the element is assumed to
be very small.

∆dx
dx = γxx = −1

E (τxx − ν(τyy + τzz)) = −p
E (1− 2ν)

∆dy
dy = γyy = −1

E (τyy − ν(τxx + τzz)) = −p
E (1− 2ν)

∆dz
dz = γzz = −1

E (τzz − ν(τxx + τyy)) = −p
E (1− 2ν)

∆v
v = ∆dx

dx + ∆dy
dy + ∆dz

dz = −3 p
E (1− 2ν)

∴ B = E
3(1−2ν)

(3.30)

3.2 Elasticity in
2-dimensional cartesian coordinates

3.2.1 Strain in
2-dimensional cartesian coordinates

The components of strain in 2-dimensional cartesian coordinates can be found
in exactly the same way as in de 3 dimensional case, therefore the the end results
will be stated briefly.

We now consider a very small square element(Fig.3.5). This element is
basically the cubic element of figure 1, but now with δ=ρ, i.e. dz=0, so again
dx and dy are parallel to the basis vectors x̂ and ŷ. Calculating ζ and η up to
first order results into;



φ(~ζ) ≈
[

u1(~ρ)
u2(~ρ)

]
+

[
∂u1(~ρ)

∂x
∂u1(~ρ)

∂y
∂u2(~ρ)

∂x
∂u2(~ρ)

∂y

] [
dx
0

]
(3.31)

φ(~η) ≈
[

u1(~ρ)
u2(~ρ)

]
+

[
∂u1(~ρ)

∂x
∂u1(~ρ)

∂y
∂u2(~ρ)

∂x
∂u2(~ρ)

∂y

] [
0
dy

]
(3.32)

Exploiting the linearity and continuity of the first order approximations one
finds the deformations of dx and dy

dx′ ≈
[

∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

] [
dx
0

]
(3.33)

dy′ ≈
[

∂u1(~ρ)
∂x

∂u1(~ρ)
∂y

∂u2(~ρ)
∂x

∂u2(~ρ)
∂y

] [
0
dy

]
(3.34)

Evidently the unit elongations are; γxx= ∂u1(~ρ)
∂x and γyy= ∂u2(~ρ)

∂y . Addition-

ally γxy=γyx= ∂u2(~ρ)
∂x + ∂u1(~ρ)

∂y , applying the same method as in 3 dimensions and
the same argument based upon the symmetry of the derived equations. Again
we can represent these identities in matrix-form.

[
γxx γxy

γyx γyy

]
=

[
∂u1(~ρ)

∂x
∂u2(~ρ)

∂x + ∂u1(~ρ)
∂y

∂u2(~ρ)
∂x + ∂u1(~ρ)

∂y
∂u2(~ρ)

∂y

]
(3.35)

3.2.2 Stress in
2-dimensional cartesian coordinates

Also determining the stresses is straight forward using the theory in 3 dimen-
sions, the only difference is that one resolves the forces in 2 dimensions. Using
the exact same notation as in 3 dimension one obtains 4 components

[
τxx τxy

τyx τyy

]
(3.36)

Again in equilibrium there is no effective torque which is to say

τxydxdy = τyxdxdy =⇒ τxy = τyx (3.37)

So in that case we only have 3 components.

3.2.3 Elastic relations
in 2-dimensional cartesian coordinates

The unit elongations are related to the normal stresses in exactly the same way
as in 3 dimensions, with the z components set to zero. This is physically easy to
comprehend. The unit elongations are the same only we have two components.



Additionally the same isotropic substance will also yield a constant ratio of
stress and strain, in normal and lateral direction, in the elastic regime. Again
superposition can be used in this regime providing the following identities;

γxx =
1
E

(τxx − ντyy) (3.38)

γyy =
1
E

(τyy − ντxx) (3.39)

γyy =
1
G

(τxy) (3.40)

3.2.4 Bulk in
two dimensional cartesian coordinates

The bulk is also exact analogously to the three dimensional case,7

∆dx
dx = γxx = −1

E (τxx − ντyy) = −p
E (1− ν)

∆dy
dy = γyy = −1

E (τyy − ντxx+) = −p
E (1− ν)

∆v
v = ∆dx

dx + ∆dy
dy = −2 p

E (1− ν)

∴ B = E
2(1−ν)

(3.41)

3.3 Elasticity in
2-dimensional polar coordinates

In our 2 dimensional experiment it is quite useful to use polar coordinates, due
to the rotational symmetry about the axis of the rheometer. This means that
instead of using x̂, ŷ and ẑ,one uses the basis elements

r̂ = cos(θ)x̂ + sin(θ)ŷ (3.42)

θ̂ = − sin(θ)x̂ + cos(θ)ŷ (3.43)

3.3.1 Strain in
2 dimensional polar coordinates

Once again we consider a small element but around ρ(r, θ) now with sides parallel
to the basis in polar coordinates( Fig.3.6) and a vector field ψ: R2 7−→ R2, with
components u1(r, θ), u2(r, θ). It appears, using the formalism introduced in the
preceding sections, to be easy to calculate the deformations dr and rdθ using
the Jacobian in polar coordinates

7still v is used to denote a two dimensional volume, i.e an area



Figure 3.6: Schematic illustration of a small element around ~ρ. The lines that
connect ~ρ with b and c are parallel to the basis vectors, r̂ and θ̂ at every point.
Notice the rigid rotation, which is clearly u2

r and the difference in arc length at
the altered value of the radial component which is equal to u1(~ρ)

r

φ(~b) ≈
[

u1(~ρ)
u2(~ρ)

]
+

[
∂u1(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ

∂u2(~ρ)
∂r

1
r

∂u2(~ρ)
∂θ

] [
dr
0

]
(3.44)

φ(~c) ≈
[

u1(~ρ)
u2(~ρ)

]
+

[
∂u1(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ

∂u2(~ρ)
∂r

1
r

∂u2(~ρ)
∂θ

] [
0

rdθ

]
(3.45)

Exploiting the linearity and continuity of the first order approximations one
finds, presumably, the deformations of dr and rdθ;

dr′ ≈
[

∂u1(~ρ)
∂r

1
r

∂u1(~ρ)
∂θ

∂u2(~ρ)
∂r

1
r

∂u2(~ρ)
∂θ

] [
dr
0

]
(3.46)

rdθ′ ≈
[

∂u1(~ρ)
∂r

1
r

∂u1(~ρ)
∂θ

∂u2(~ρ)
∂r

1
r

∂u2(~ρ)
∂θ

] [
0

rdθ

]
(3.47)

Analogously to the theory discussed in the preceding chapters, this evidently
yields the following strain components

[
γrr γrθ

γθr γθθ

]
=

[
∂u1(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r
1
r

∂u2(~~ρ)
∂θ

]
(3.48)

However one has to be careful. First of all the tangential displacement
depends on the position in the R2, as r determines the factor with which this
displacement increases per unit of θ. So the translational constant, u1(~ρ) in the
r̂ direction alters the arc-length,rdθ, providing a unit elongation

r′dθ − rdθ

rdθ
=

(r + u1(~ρ))dθ − rdθ

rdθ
=

u1(~ρ)
r

(3.49)



Additionally, the translational part in the θ̂ direction adds a small angle to
~ρθ, i.e. an angular displacement, which is equal to8; u2

r . This term is is not
part of the angle distortion, but of a rigid rotation, and so has to be subtracted
from the initial shear components in equation 3.48. This results in the following
strain components in 2 dimensional polar coordinates;

[
γrr γrθ

γθr γθθ

]
=

[
∂u1(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r − u2(~ρ)
r

1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r − u2(~ρ)
r

1
r

∂u2(~~ρ)
∂θ + u1(~ρ)

r

]
(3.50)

3.3.2 Stress in 2-dimensional polar coordinates

To find the stresses in 2 dimensional polar components we examine a small el-
ement, again with sides parallel to the basis vectors (Fig.3.7,next subsection).
One can now, analogously to the formulation of stresses in the cartesian coor-
dinate system, resolve the forces per unit of area in the direction of the basis
vectors. Using the same notation as above,t he result is once again rather a
definition than a calculation.

[
τrr τrθ

τθr τθθ

]
(3.51)

3.3.3 Stress-balance
in 2-dimensional polar coordinates

When the material is in equilibrium, one can find explicit relations for the
stresses. This subsection will derive these relations, as they are important in
our quasi-static measurements. Per definition of a quasi-static measurement
the material is examined in attained equilibrium positions under various cir-
cumstances.

Consider figure 3.7. The stresses on sides 1,2,3 and 4 are not equal, due
to the variation of the stresses through the material. In order to keep track of
different stresses, extra subscripts denoting the sides are added, e.g. (τrr)1 is
the normal stress on side 1.

Now, the forces parallel to r̂ on sides one and three are evidently9; (τrr)1(r+
dr)dθ, −(τrrr)3dθ. The normal force on side 2 has a component along the ra-
dius of −(τθθ)2(r1 − r3) sin(dθ

2 ) ≈ −(τθθ)2(dr)dθ
2 . Likewise one verifies the cor-

responding component from side 4 to be approximately −(τθθ)4(dr)dθ
2 . The

shearing forces of these sides are found in the same manner with as result
((τrθ)2 − (τrθ)4)dr

Summing up all the forces including a body force χ one obtains the equation

8in first order as usual
9notation;(τrr)1r1=(τrrr)1



Figure 3.7: Schematic illustration the stresses acting on an infinitesimal element
around a point, ~ρ, in polar coordinates. Again the forces per unit of length (as
it is a two dimensional geometry ) are resolved with respect to the basis element,
i.e. r̂ and θ̂

.

of equilibrium

(τrr)1(r+dr)dθ−(τrrr)3dθ−(τθθ)2(dr)
dθ

2
−(τθθ)4(dr)

dθ

2
+((τrθ)2−(τrθ)4)dr+χrdθdr

(3.52)
Dividing this term by drdθ yields

(τrr)1(r + dr)− (τrrr)3
dr

− ((τθθ)2 − (τθθ)4)
2

+
((τrθ)2 − (τrθ)4))

dθ
+χr = 0 (3.53)

Now if one takes the limit dr, dθ ↓ 0 one gets the following expression;

∂(rτrr)
∂r

+ τθθ +
∂(τrθ)

∂θ
+ rχ = 0 (3.54)

dividing by r10 yields;

∂(τrr)
∂r

+
1
r

∂(τrθ)
∂θ

+
((τrr)− (τθθ))

r
+ χ = 0 (3.55)

A same method gives an additional equation for the equilibrium in the tan-
gential direction

1
r

∂(τθθ)
dθ

+
∂(τrθ)

∂r
+

2τrθ

r
= 0 (3.56)

10We assume r 6= 0, as r ∈ [ri, ro] this means the inner radius of the Taylor-Cougette 6= 0



3.3.4 Elastic relations in 2 dimensional polar coordinates

The stress strain relation stay the same under the assumption of isotropy, yield-
ing the same equations in the r̂, θ̂ basis. 11;

γrr =
1
E

(τrr − ντθθ) (3.57)

γθθ =
1
E

(τθθ − ντrr) (3.58)

γrθ =
τrθ

G
(3.59)

3.3.5 Bulk modulus in
two dimensional cartesian coordinates

Again it is straight forward and analogous to the three dimensional case,

∆dr
dr = γrr = −1

E (τrr − ντθθ) = −p
E (1− ν)

∆rdθ
rdθ = γθθ = −1

E (τθθ − ντrr+) = −p
E (1− ν)

∆v
v = −2 p

E (1− ν)

∴ B = E
2(1−ν)

(3.60)

3.4 Theory applied to our experiment

To interpret the data, the theory described has to be applied to obtain equations.
This section will derive the general equations used in analyzing the data. We will
treat the material as an elastic material described in the general setting above.
We assume that various little details, such as the drag force of the top plate, can
be neglected due to the fact that the measurements are performed quasistatically.
This allows the system to relax to its equilibrium values.

3.4.1 Shear modulus

In the Taylor-Cougette geometry, with inner radiusri and outer radius ro used
in the shear experiments, equation 3.56 describes the balance of stresses in the
tangential direction. Moreover in the tangential stress balance 1

r
(τθθ)

dθ is equal
to zero and therefore equation 3.56 reduces to a simple differential equation

(τrθ)
dr

+
2τrθ

r
= 0 (3.61)

11still in the elastic regime so that we have linear superpositions and a constant ratio between
stress and strain



With solution 1213

τ(r, θ) = τ(ri,θ)r2
i

r2 r ∈ [ri, ro] (3.62)

We use polar coordinates, consequently we know the strain components;

[
γrr γrθ

γθr γθθ

]
=

[
∂u1(~ρ)

∂r
1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r − u2(~ρ)
r

1
r

∂u1(~ρ)
∂θ + ∂u2(~ρ)

∂r − u2(~ρ)
r

1
r

∂u2(~~ρ)
∂θ + u1(~ρ)

r

]
(3.63)

Due to the rotational symmetry it is obvious that equation 3.58 and 1
r

∂u2(~~ρ)
∂θ

equal zero;

γθθ =
1
E

(τθθ − ντrr) = 0 (3.64)

Accordingly, equation 3.50 then implies that u1 = 0. Invoking equations
3.59 and 3.62 we get;

γrθ = 1
G

τ(ri,θ)r2
i

r2 r ∈ [ri,ro] (3.65)

So we can determine γrθ,

γrθ = γrθ(ri,θ)r2
i

r2 r ∈ [ri,ro] r ∈ [ri,ro] (3.66)

Using the rotational symmetry to conclude 1
r

∂u1(~ρ)
∂θ = 0, equation 3.50 re-

duces to

γrθ = ∂u2(~ρ)
∂r − u2(~ρ)

r
(3.67)

But equations 3.66 and 3.67 then imply that u2(r, θ) is a combination of α
r

and the trivial solution, a rotation βr 14.
Our experiment allows only no-slip solutions.Therefore the boundary condi-

tions are fixed,; u2(ri, θ) = riθ and u2(ro, θ) = 0. This allows us to determine
α and β and consequently solve u2(r, θ)15 explicitly,

u2(r, θ) =
−(r0ri)2θ
r(r2

i − r2
0)

+
r(r2

i θ)
r2
i − r2

0

(3.68)

Using equation 3.67 we obtain γrθ(r, θ),

12Here the boundary condition τ(ri) is assumed implicitly determining the constant of
integration. Morevover the subscript of the stress is dropped, as we know which stress is
meant

13the torque and strain can have no θ dependence due to the rotational symmetry
14with r in the specified domain and α and β constants
15As usual , due to the symmetry u2(r, θ) can have no θ dependence



γrθ(r, θ) = ∂
∂r (−(r0ri)

2θ
r(r2

i−r2
0)

+ r(r2
i θ)

r2
i−r2

0
)− 1

r (−(r0ri)
2θ

r(r2
i−r2

0)
+ r(r2

i θ)

r2
i−r2

0
)

γrθ(r, θ) = (r0ri)
2θ

r2(r2
i−r2

0)
+ (r0ri)

2θ
r2(r2

i−r2
0)

= −2(r0ri)
2θ

r2(r2
o−r2

i )

(3.69)

This result is plugged into equation 3.65 to obtain

−2(r0ri)
2θ

r2(r2
o−r2

i )
= 1

G
τ(ri,θ)r2

i

r2 r ∈ [ri,ro] (3.70)

For r = ri this reduces to,

G = r2
i (r2

o−r2
i )τ(ri,θ)

−2(r0ri)2θ r ∈ [ri,ro] (3.71)

As described, we measure θ and the torque, T (r, θ). This constant torque
can easily be related to the stress, as the torque imposed on the wheel is equal
to the torque of the sample in opposite direction(quasi-static measurement).

τ(ri, θ)r2
i (2πr2)

r2
= 2τ(ri, θ)πr2

i = −T (r, θ) (3.72)

Exploiting the identities derived above, we can express G in the quantities
obtained from the shear-experiments.

G = (r2
o−r2

i )T (ri,θ)
4π(r0ri)2θ r ∈ [ri,ro] (3.73)

3.4.2 Bulk modulus

In the setup used in the bulk-measurements, a constant torque is applied on the
wiper in order to compress the elastic sample and the resultant deflection angle
and the initial angle of the wiper are measured. Due to the symmetry round the
axis to which the wiper is attached, we will use 2 dimensional polar coordinates
once again.

Examining the setup and recalling the very definition of torque (~r × ~F ), we
conclude that the wiper only exerts a force in the θ-direction. This force acts
upon the plane crossing through the axis and parallel to the wiper, i.e. the plane
perpendicular to the θ-direction. Consequently, we have a normal stress in the
r̂-direction.The normal force of the wiper induces proportional strains, γθθ and
γrr, due to Hooke’s law. 16 However the γrr-component in strain matrix has to
be 0 as the rigid inner and outer radius prevent the material from expanding,
so there must be a compressional normal stress in the r̂-direction.

[
τrr τrθ

τθr τθθ

]
=

[
τrr 0
0 τθθ

]
(3.74)

16of course we assume elastic response



Using the argument above we conclude u1(r, θ) is equal to zero, as there
is no displacement in the r̂-direction. And so γrr = 0, according to equation
3.58. Additionally equation 3.74 in combination with equation 3.59 assure that
γrθ = 0.17

We plug these results in the elastic equations and obtain 18

γrr = 0 = 1
E (τrr − ντθθ)

∴ τrr = ντθθ

γθθ = 1
E (τθθ − ντrr)

∴ γθθ = 1−ν2

E (τθθ)

(3.75)

So we have found the following identity;

τθθ

γθθ
=

E

1− ν2
(3.76)

We had already found direct expressions for the bulk modulus and shear
modulus19;

G = E
2(1+ν)

B = E
2(1−ν)

(3.77)

We now notice that

τθθ

γθθ
=

E

1− ν2
=

E

2(1 + ν)
+

E

2(1− ν)
= G + B (3.78)

We want to link the measured parameters, θ and T (r, θ) to τθθ and γθθ. For
that purpose, let us calculate the last unknown component of the strain matrix
explicitly.

17Obviously G6= 0
18The stress τθθ is negative, i.e. compressional state. The minus sign is absorbed in value

of τθθ
19This is always two dimensional as the surface perpendicular does participate in creating

shear



Figure 3.8: Schematic compression of infinitesimal element of the material.
.

Consider fig. 3.8, with help of this schematic illustration we conclude that

u2(r, θ) = −r∆θ
θ

θ0
(3.79)

Here the factor θ
θ0

arises from the fact that the left side is fixed20. Remember
that u1(r, θ) = 0. Using equation 3.50 we obtain

γθθ(r, θ) =
1
r

∂ − r∆θ θ
θ0

∂θ
=
−∆θ

θ0
(3.80)

It seems that we have to be careful; the rheometer provides data in the O′-
system (fig. 3.8), that is with respect to the angle the wiper was situated at
the beginning of the experiment. The angles in the system of the rheometer are
denoted by a prime. However we can easily express the data in our system with
θ = 0 at the fixed wall;

θ = O′ − θ′ (3.81)

Notice that
|θe(i)|+ |θv(i)| = O′. (3.82)

Notice that the starting angle for intervali is exactly θe(i − 1). We obtain
for θ0(i), the starting angle during interval i;

θ0(i) = O′ − θe(i− 1)′ = θv(i− 1) (3.83)

Moreover∆θ = θe(i + 1) − θe(i) is a difference between to angles, so this
quantity is the same in every system. Therefore we can determine θ0 and ∆θ

20We have a freedom of reference, i.e. angle where we choose θ = 0, we use this freedom to
chose θ = 0 at the fixed edge



directly from the data, we do not need to express angles first in our reference
system. Therefore the prime of θ′ will be dropped.

The normal stress τθθ due to the action of the wiper can easily be related to
the Torque,21

T =
∫ ro

ri

−τθθrdr =
−1
2

τθθ(r2
o − r2

i ) (3.84)

Notice the physical interpretation 1
2τθθ(r2

o − r2
i ) = τθθ(ro − ri) 1

2 (ro − ri) =
F × r̄

Now we can relate the bulk modulus and shear modulus to the measured
parameters. Suppose that the sample has attained is equilibrium value dur-
ing interval i, characterized by θv(i) and packing fraction φ. Then using the
identities above we can express ∆T = T (i + 1)− T (i), θv(i) and ∆θ in B + G;

τθθ

γθθ
=

2∆Tθv

∆θ(r2
o − r2

i )
= G + B (3.85)

21of course T = T (r, θ), but due to the symmetry the Torque can have no θ dependence.
Additionally in this experiment the Torque is constant and is therefore denoted by T



Chapter 4

Results

This chapter deals with the results of the measurements. In the first section
the results of the experiments concerning the shear modulus will be presented.
We find that the data seems to agree reasonably well with the predictions. Sub-
sequently the data of the bulk modulus experiment is discussed in the second
section. This data is not convincing enough to make a legitimate statement
about the prediction for the bulk modulus.

4.1 Shear modulus

Our goal is to find the dependence of G on φ. We determine the ratio of ∆θ
and T from the data. This ratio can directly be related to B. The φ of each
packing fraction can subsequently be established using data analysis. The best
eleven measurements are presented, these are indicated with their measurement
number.

First of all, consider the measured torque T versus time t diagrams (Figure
4.1), i.e. the raw data. The graphs display exactly what we anticipated. In each
one-minute interval the imposed constant deflection angle makes the system
relax to a new equilibrium. Moreover the line connecting the equilibria seems
to have a constant slope. In linear response the line should have a constant
slope (in absolute value of course) during the whole measurement. This seems
to be the case, however we shall make this more precise with help of figures 4.2
and 4.3.
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Figure 4.1: Plots of the raw data of the Torque T of the eleven best measure-
ments. This means that the torque is plotted versus the time. We see that every
interval the system relaxes to a equilibrium value. Every interval is fitted with a
exponential function, motivated by the empirical results. The controlled param-
eter ∆θ is also shown. The measurements should be interpreted with respect to
the axis on the left. The axis on the right represents the deflection angle.
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Data: A60relaxeerwa_A
Model: Line
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Figure 4.2: Examples of plots of the equilibrium values of the torque versus the
deflection angle of each interval. In the graphs the fits and their parameters are
shown. The parameters are also listed in the table below. Notice that in general
the lines really represent straight lines,meaning that the ratio of torque and de-
flection angle is constant. This is absolutely crucial as this confirms the linear
response of the system, validating our elastic model of the system. Also notice
that due to the fixed parameter which ascends one millirad per interval in some
regions and descends a millirad in other, we get an extra confirmation of the
linearity of the system. In a linear system the absolute value of the slope should
be the same in all regions of the measurement( provided that measurement stays
within the elastic response region). This is obviously the case as all point lie on
a straight line. This also ensures the reproducibility of the obtained equilibrium
values, as we obtain the same T if ∆θ is the same (within experimental error).
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Chî 2/DoF = 0.00153
R^2 =  0.99881
  
A -0.54139 ±0.02672
B 0.35355 ±0.00431

The equilibrium values of the torque versus the deflection angle. 
                                              ( Measurement 62)

T
 (

m
N

m
)

   θ (mrad)

5 6 7 8 9 10

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Data: A63relaxeerwa_A
Model: Line
Equation: y = A + B*x
Weighting: 
y No weighting
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Figure 4.3: More examples of plots of the equilibrium values of the torque versus
the deflection angle of each interval.In the graphs the fits and their parameters
are shown. These parameters are also included in the table below. The results
are similar to the graphs in the previous figure, confirming linear response at
those values of φ.
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Figure 4.4: Measurement 59 and 64 along with their idl-fit. The slope of the
fitted line is denoted by the parameter A. In this program no points are omitted,
thus a rearrangement has a big influence on the calculated slope of the line. Con-
sider the graph belonging to measurement 59, clearly there is a rearrangement
at the beginning of the measurement. The line fitted by the programme does
not even approximate the slope. The slope can therefore only be found correctly
when using the last 10 points only. For measurement 64 holds the same. Also a
representative example of one of the other fits is shown. Clearly this fit is much
better and gives a good impression of the slope. This is also confirmed by the
fact that the fit parameters, for these measurements, obtained by the idl-program
deviate only slightly from the ones obtained from origin.



Figures 4.2 and 4.3 show the graphs of the obtained equilibrium values of
each interval versus the the deflection angle during that interval. Also their
accompanying fits, made with help of the program origin, are included. Notice
that these graphs indicate linear correspondence1 between these parameters,
confirming the linear response of the system. This is absolutely vital as this
validates the elastic theory applied to the experiment. The elastic model as-
sumes stresses and strains are proportional, yielding a constant ratio which is by
definition the shear modulus. Therefore the ratio of T and ∆θ, which is directly
proportional to the stress-strain ratio, can easily and legitimately be linked to
the shear modulus with help of formula 3.73. The results are listed in table 4.1.

We also obtain these graphs with corresponding fits, directly from the idl-
programme. The only difference is that some points showing rearrangement are
deleted in the origin analysis. For completeness, the idl-plots and fits of the two
measurements for which points were omitted, measurement 57 and 64, are shown
in Figure 4.4. One can clearly see that the idl-fits can not be trusted a priori and
have to be checked. The measurement points representing a rearrangement of
bubbles in the system show big deviations. Consequently the fit is not accurate
for the other points, which do show a linear correspondence. Therefore the
points showing rearrangements should be omitted, in order to find the correct
ratio of T and ∆θ.

For the other measurements presented the parameters obtained from the fits
in idl and in origin agree within 7 percent. These are included in the table (
figure 4.1), along with the packing fraction of each measurement.

1i.e. straight lines with a constant absolute value of the slope in all regions(ascending and
descending deflection angle)



Table 4.1: The table with the most important data. The first column denotes
the number of the measurement. In the second column the radii of the inner
wheels used for that measurement are listed, followed by the the column showing
the packing fractions. The fourth and last column display the slope obtained
with origin and idl respectively. Notice that, except for measurements 59 and
64, the slopes obtained from origin and idl seem to agree reasonably well(within
7 percent). The fifth column is obviously the most important one; it shows the
calculated shear modulus. In the next column the corresponding errors of G are
shown
Measurement ri φ Slope G Error Slope

number (meter) (Nm/rad) (N/m) (absolute) (Nm/rad)
43 0, 025 0.954 0.225 5.8081 0.36707 0.243
50 0, 025 0.931 0.16824 4.34291 0.33006 0.16653
57 0, 05 0.939 0.187 4.82718 0.3379 0.1901
59 0, 05 0.88 0.11714 3.02383 0.24191 0.0689
60 0, 05 0.855 0.04651 1.2006 0.09605 0.04849
61 0, 05 0.864 0.08504 2.1952 0.20635 0.08283
62 0, 05 0.966 0.35355 9.12646 0.41982 0.35491
63 0, 05 0.96 0.33001 8.51881 0.6815 0.32413
64 0, 05 0.95 0.1933 4.98983 0.39919 0.223
67 0, 05 0.894 0.13879 3.5827 0.28662 0.14879
68 0, 05 0.9 0.14895 3.84496 0.3076 0.14893



Our main purpose finding the relation between the G and the φ is now
within our grasp2. We have to remember that we used different inner wheels
(Table 4.1). Referring to equation 3.73 we see that the conversion factor used
to express the ratio of T and θ in G depends on ri. Recalling the radius of the
inner wheel we are able to calculate G for each measurement using equation
3.73. The results are included in Table 4.1. Additionally G is plotted versus φ
(Fig. 4.5).

The plot seems to suggest a well defined relation between G and φ, except
for the last three points. The points with the three highest packing fraction
are clearly distinct from the rest of the set. These points are still well within
the elastic response limit3, as shown in figures 4.2 and 4.3. The reason why G
makes a jump at higher values of φ is not entirely clear to us.

2Notice that analyzing the equilibrium values of each interval as a function of T , actually
means that you interpret the quasi-statical measurement as a continuous measurement. In
O’hern et al it is argued that this is legitimate.

3in fact the shear modulus would make no sense outside this regime
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Figure 4.5: The most important graph of this section; the plot of the shear
modulus versus the packing fraction. Notice that the last three points seem to
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square root function, to check the predictions.
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            A=15.8958 N/m, A=11.9550 N/m,

Figure 4.6: Fits made in idl to determine the relation between the shear mod-
ulus and packing fraction(φ) quantitatively. In the left picture the function
A

√
(φ− φc) is used to fit the data. The resulting fitting parameters are shown

as well. On the right the result of the fit with a general power law, i.e A|φ−φc|b,
is shown. The last three points are omitted.

.

More importantly, we want to see wether the prediction agrees with our
measurement. Recall that the simulations predict that the relation between the
shear modulus, G, and the packing fraction looks like

G ∼
√

φ− φc (4.1)

Therefore we fitted the plot of the shear modulus versus the packing fraction
(φ) in idl with a simple square root function. In order to avoid a biased view,
we also fitted the graph with a general power function. The results are displayed
in Figures 4.6 and 4.7. The only difference between figures 4.6 and4.7 is that
in figure 4.6 the three points with the highest packing fraction are omitted, for
clarity.



A=15.8958 N/m, A=11.9550 N/m,

Figure 4.7: This is exactly the same illustration as the previous one, but now
the last points are not omitted.

.

.
The fits shown in Figures 4.6 and 4.7 both seem to be legitimate. The best

general power law, obtained with the least square estimator of the programma
idl, has a exponent equal to 0.44. This is 14 percent off the predicted 0.5.
However the fit with the square root function seems to be legitimate. Notice
that the exponent of the fitted curve depends to a great extend on the values
of G at packing fractions close to φc. More measurements at those packing
fraction, should give more convincing evidence.

The fit parameters φc also seem to make sense for both fits. This parameter
denotes the critical packing fraction(Jamming point). We know from standard
results that this critical point occurs at a packing fraction of about 0, 84. We
find values of 0.847 and 0.853 for the square root fit and general power law
fit,respectively.

Based on this data we may conclude that the prediction for G holds to
a great extend, the fit seems very legitimate and its parameters make sense.
Nevertheless more measurements at packing fractions near φc are needed to
definitely exclude other power laws, with exponents close to 0.5.



.

4.2 Bulk modulus

From the data of the bulk modulus experiment we want to obtain the depen-
dence of B on φ, by determining the ratio of ∆θ and ∆T and using the results
from the shear experiments. Remember that all measurements are basically
identical; the packing fraction is now automatically varied every interval.We
present out best 3 measurements, that are denoted by their measurement num-
ber4.

Let us first look at the raw data(Fig. 4.8), which are the plots of the mea-
sured deflection angles θ versus time t.

The interpretation of the results is straightforward. Due to the constant
torque put on the wiper the wiper compresses the material, until a new equilib-
rium is reached. The deflection angle of the wiper is measured. In the beginning
the wiper does not touch the sample of bubbles yet. Due to the air-bearings
of the rheometer the wiper can move practically frictionless until it reaches the
bubbles. We can see this in the graphs. During the first interval the deflection
angle of the wiper shoots up to the value, where it first touches the bubbles, so
fast that we see discrete points rather than a continue line. From that point on,
the system relaxes to the new equilibrium in a exponential way, just as is the
case during the other intervals.

We can also see that after a certain point the torque T is so small that
the material is decompressed completely. The slope of the plot then drastically
changes and goes down rapidly. Subsequently the wiper rotates until it comes
to rest at a certain point, i.e. the constant line at the end of the graph.

42 of the measurements presented, 71 and 72, consists of 8 intervals. The other measure-
ment,73, consists of 16 intervals.
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Figure 4.8: Plot of the raw data of measurements71,72 and 73. This means that
the deflection angle θ is plotted versus the time. We see that the measurements
reproduce quite well. Notice that in the first interval we can see that the wiper
first has to rotate slightly until it touches the sample of bubbles. At the end of
measurement the torque is so small that the sample is completely decompressed,
we see that the wiper keeps rotating until a certain value of θ where it comes
to rest. In this region the graphs suddenly goes down rapidly(at ≈580 seconds
in measurements 71 and 72 and at ≈900 seconds in measurement 73). The
controlled parameter T is also shown.



Table 4.2: The table with the main results from the bulk experiment. Only
the intervals for which the packing fraction can be determined are included.
During the other intervals T is so small that the wiper comes completely lose.
Consequently holes form in the sample making it impossible to determine φ.
Each interval is included separately in chronological order. In the first column
the number of the measurement to which the interval belongs is presented, the
second shows the controlled parameter. The third column displays the packing
fraction. the two last column display the quantities obtained from the data, i.e
the equilibrium values of the deflection angle and the angle of the compartment
in equilibrium, respectively.
Measurement T φ θe(i) θv

number (mNm) (mrad) (mrad)
71 0.1 0.945 1157.89 973.37012
71 0.05625 0.93 1068.21 1007.92764
71 0.03162 0.91 991.559 1077.91535
71 0.01778 0.89 929.614 1157.32783
71 0.01 0.87 859.5 1211.43303
72 0.1 0.95 1181.69 925.89717
72 0.05625 0.935 1076.48 1000.24819
72 0.03162 0.92 1003.08 1073.20296
72 0.01778 0.89 933.673 1149.29931
72 0.01 0.868 877.653 1200.43746
73 0.1 0.954 1186.17 915.07613
73 0.07498 0.948 1115.99 955.91683
73 0.05625 0.94 1073.71 992.56875
73 0.04216 0.925 1037.35 1028.52253
73 0.03162 0.911 1004.03 1083.84947
73 0.02371 0.905 970.897 1091.52891
73 0.01778 0.897 942.124 1135.16215
73 0.01334 0.883 909.355 1170.4178
73 0.01 0.873 885.699 1202.70639

Using the idl script(A3) we obtain θe(i)5. From the pictures we can deter-
mine θv with ImageJ). Each interval is also characterized by a certain packing
fraction reached at equilibrium. These are once again determined from the pic-
tures of the equilibrium states, using the data analysis(A1). The results are
presented in table 4.2

The data in table gives rise to several plots, which help to interpret the data
from this table more easily. The results are given in figure 4.9.

5Again this means that we interpret the quasi-statical measurement as a direct measure-
ment consisting of the equilibria points
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Chî 2/DoF = 0.00006
R^2 =  0.94562
  
A 11.39342 ±2.30548
B -25.96705 ±5.06433
C 14.8102 ±2.77898

Torque versus the packing fraction

T
( 

m
N

m
)

Ф

0,00 0,02 0,04 0,06 0,08 0,10

850

900

950

1000

1050

1100

1150

1200

Data: Data1_73
Model: Power0
Equation: y = A*|x-xc|^P + y0
Weighting: 
y No weighting
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Figure 4.9: Plots of the obtained data displayed in the previous table. In the top
left corner the equilibrium values of the deflection angles are plotted versus the
torque T . Notice the reproducibility of the measurements. The function is fitted
with the function y = yo + a|x−x0|p. On the top right hand side, the deflection
angles in equilibrium, i.e θe(i), are plotted versus the packing fraction. Notice
that at low packing fractions the tail seems to be a linear . To make this precise
a line is fitted through these points. The graphs on the bottoms shows the torque
as function of the packing fraction, where the one on the right also shows the
to which measurement the data points belong. We see a quadratic dependence.
This would indicate a linear bulk modulus as the bulk modules is the slope of this
curve.



The plots in Figure 4.9 show some interesting features.
The first graph, in the top left corner, shows the plots of the equilibrium

values θe(i), versus the torque of that interval . The graphs shows that our
measurement reproduce. Moreover the points seem to form a power law. There-
fore the function is fitted with the function y = yo + a|x − x0|p. The fitting
parameters are shown in Figure 4.9. Notice that the optimal parameter for p
equals 0, 55.

The plot on the right shows (θe(i)) versus the packing fraction of the three
measurements. We see that for the lower packing fractions the measurements
reproduce reasonably well. Moreover we see a linear behavior in this region,
that is why we fitted a linear function to this data. Notice the points at high
packing fractions make a jump. This jump also came forward in the results in
the shear experiment.

The remaining plot of Figure 4.9 shows the torque T versus the packing
fraction. This plot is essential, as we already get a impression of the bulk mod-
ulus, because B is the slope of this curve. The plot seems to show a quadratic
dependence, therefore we fitted these results with a quadratic polynomial. This
indicates that the bulk modulus has a linear dependence on the packing frac-
tion, while predictions from simulation suggest that B should be independent
of φ.



Table 4.3: Table with θv, ∆T,∆θ and more importantly the obtained value of
G + B, i.e. the sum of the shear and bulk modulus.
Measurement ∆T Packing ∆θ θv Bulk+Shear

number (mNm) fraction (mrad) mrad modulus (N/m)
73 0.02502 0.954 70.18 915.07613 60.59914
73 0.01873 0.948 42.28 955.91683 78.66077
73 0.01409 0.94 36.36 992.56875 71.44684
73 0.01054 0.925 33.32 1028.52253 60.43447
73 0.00791 0.911 33.133 1083.84947 48.06401
73 0.00593 0.905 28.773 1091.52891 41.78689
73 0.00444 0.897 32.769 1135.16215 28.57018
73 0.00334 0.883 23.656 1170.4178 30.69597
73 0.873 1202.70639
71 0.04375 0.945 89.68 973.37012 88.20552
71 0.02463 0.93 76.651 1007.92764 60.16047
71 0.01384 0.91 61.945 1077.91535 44.7352
71 0.00778 0.89 70.114 1157.32783 23.85429
71 0.87 1211.43303
72 0.04375 0.95 105.21 925.89717 71.51861
72 0.02463 0.935 73.4 1000.24819 62.3464
72 0.01384 0.92 69.407 1073.20296 39.75117
72 0.00778 0.89 56.02 1149.29931 29.64865
72 0.868 1200.43746

Using Table 4.2 we can calculate ∆T = T (i+1)−T (i) and ∆θ. Additionally
we can determine φ and θv(i) with image analysis. Therefore we can obtain the
value of G + B for each interval using equation 3.85. The results are presented
in Table 4.3.
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Figure 4.10: Plot of G+B as function of the packing fraction φ. Referring to the
previous section, we see that the shear modulus is much smaller (≈ factor10).
Consequently, this graph is already a strong indication of how the plot of the
bulk modulus as function of the packing fraction fraction, will look like. This
plot seems to show a linear curve.
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Figure 4.11: Plot of the bulk modulus B versus the packing fraction φ, The
graph seems to show a linear dependence. This is confirmed by the linear fit,
which is included. The critical packing fraction φc, i.e. the packing fraction for
which B = 0 (according to the fit), is also shown.

In order to interpret the data, we plot the sum of the bulk modulus and
shear modulus as a function of φ. the result is shown in Figure 4.10. Notice
that Figure this plot already gives a strong indication of what the plot of the
bulk modulus versus the packing fraction will look like; The values of G + B
lie between 20 N/m and 80 N/m, referring to the previous section we find the
shear modulus to be approximately a factor 10 smaller.

The plot seems to show a linear relation between the sum of the shear and
bulk modulus and the packing fraction. So again the bulk modulus seems to
have a linear dependence on the packing fraction.

We also can obtain the plot of the bulk modulus versus the packing fraction.
We simple subtract from the results in table 4.3 G(φ), using the fit found in the
previous section. The result is shown in figure above.



Figure 4.11 shows that B has a linear dependence on φ, exactly as we an-
ticipated. This is made precise by the linear fit. The parameters are displayed
in the plot. Extrapolating the fit we obtain the value of φ for which B equals
zero, i.e φc

6. The value (0.8555) is higher than the values of φc from the fits of
the previous section.

Referring to the data we see that our data does not cover the region below a
packing fraction of 0,88. Below this packing fraction we are not able to measure.
The main problem is due to the fact that the walls of the reservoir are made
of plexiglass, which do not stay flat. Therefore the top plate cannot be leveled
properly, creating a drift in the sample. This has as result that at low packing
fractions we do not get a uniform sample of a low packing fraction but rather a
foam with holes and regions where the packing fraction is still high. The setup
will be altered in the future, i.e. made from other materials (black aluminium
rather than plexiglass) to overcome this problem.

Data obtained by simulations predicts that the plot of the bulk modulus
versus the packing fraction is essentially constant. From the data of the mea-
surements above we have to conclude that B has a linear dependence on the
packing fraction. However, the predictions are actually based on low packing
fractions, i.e. near the Jamming point(≈ 0.84). It could well be that around the
Jamming point the bulk modulus is essentially constant and becomes linear for
higher values of φ, i.e. the region we analyzed. This could also explain the high
value of φc as compared to value obtained in the square root fit in the previous
section. This cannot be made more quantitative using this data. Consequently
we are not able to make any legitime statement about the predictions for B.

To conclude with, consider figure 4.12. The plot shows the torque versus
the packing fraction. Notice that this is the raw data, we encountered already
in Figure 4.9. Measurement 72 and 73 are given an offset, equal to 0.03 and
0.06 respectively, for clarity. Remember that the slope of this graph is equal
to the bulk modulus. Therefore according to the predictions the plot should
show a linear correspondence at low packing fractions7. As noted above, we
essentially see a quadratic dependence of T on φ resulting in a linear correspon-
dence between B and φ, at higher packing fractions8. Nevertheless if the tail of
the T versus φ plot becomes linear this would indicate that the bulk modulus
becomes independent of φ at low packing fractions7. Consequently the tails
of the plots are fitted with linear fits. We see that, although our data is not
convincing enough to make real statements, the linear fits are qualitatively not
too bad. The slopes of the fitted lines (0.389, 0.354 and 0.324 for measurements
71,72 and 73 respectively) seems to reproduce quite well. We have to keep in
mind that every quadratic function becomes approximately linear at low values.
Clearly, more measurement at lower packing fractions should be done to obtain
a decisive answer.

6If the fit also applies to the lower packing fractions
7i.e. values of φ just above φc
8i.e. above ≈ 0.89
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Figure 4.12: Plot of the torque versus the packing fraction per measurement.
The data of measurement 72 and 73 are given an offset, equal to 0.03 N/m and
and 0.06 N/m respectively, for clarity. The graphs look flatter than the ones
encountered previously as the axis is rescaled by a factor 1.6. The curves are
fitted with linear functions. The slopes of the fitted lines equal 0.389, 0.354 and
0.32372 for measurements 71,72 and 73 respectively.





Chapter 5

Frenkel-Kontorova model
and sine-Gordon equation

This chapter will deal with the physics and mathematics of systems consisting
of two layers of bubbles in a Taylor-Couette geometry (fig. 5.1).

We will again treat these systems in the elastic limit, i.e. approximate the
inter-bubble potential by a quadratic estimate. This leads to the well-known
Frenkel-Kontorova model, also called the discrete sine-Gordon model. This
model was first introduced by Frenkel and Kontorova in 1938, in order to de-
scribe dislocations in crystals and has become popular in many fields of physics.

Eventually we take the continuum limit of this discrete model to obtain the
sine-Gordon equation. This equation will then be studied, in some more detail.

Figure 5.1: Schematic representation of the real systems considered in this (and
the subsequent) chapter. It consists of two layers of bubbles in a Taylor-Couette
symmetry, providing for prefect periodic boundary conditions. The bubbles are
contained between the teeth of the gear wheel, in order to be able to move the
rings of bubbles past each other by rotating the inner tooth-wheel.
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Figure 5.2: Schematic representation of the Frenkel-Kontorova model in one
dimension

5.1 Formulation of the Frenkel-Kontorova model

We treat the rings of bubbles as chains of particles subordinated to a periodic
potential (the other rings of bubbles) denoted by Vsub. In the Frenkel-Kontorova
model the interaction potential of the particles is approximated with a harmonic
potential 1acting between nearest neighbors only. Consequently in our one-
dimensional situation the Frenkel-Kontorova model can be visualized by a chain
of particles connected by springs in a periodic potential (Fig. 5.2).

The periodic potential can be any periodic function, e.g. V (~r) = cos(~k·~r). In
any case the function representing the potential is assumed to be differentiable
in its arguments.

The potential energy of such a chain, consisting of N particles, can easily
be calculated. Recall that the system has periodic boundary conditions; Xi =
xi+jN , with xi the position of the particle, i ∈ {0, 1, 2, ..., N} and j ∈ Z. Using
the periodic boundary conditions and the inter-bubble potential defined above
we arrive at the expression for the potential energy;

Vtotal = ΣN−1
i=0

1
2
k(xi+1 − xi − a)2 + ΣN−1

i=0 Vsub(xi) (5.1)

Here a is the average distance between the particles (the unstressed length
of the springs) and k is the spring constant2, which is assumed to be the same
between every set of neighbors.

5.1.1 Hamiltonian systems

When one examines the one dimensional periodic Frenkel-Kontorova model it is
already clear that there is no energy dissipation. This means that that this an
example of a Hamiltonian system. In this section this is examined a bit more
thoroughly.

Definition 1 A Hamiltonian system on R2N is system that is represented by a
Hamiltonian function3. A Hamiltonian function is a function
H(~x, ~p) : R2N −→ R, that obeys the Hamiltonian equations;

1Note that is effectively a second order Taylor expansion of the interacting potential
2Which is exactly 2 times the coefficient of the second term in the Taylor expansion of the

inter bubble potential.
3xiandpi are considered as components of a vector



∂
∂qi

H(~x, ~p) = −ṗi
∂

∂pi
H(~x, ~p) = q̇i

(5.2)

The classical Hamiltonian4 representing the energy E is the sum of the
kinetic energy T and the potential energy V ,

E = T + V (5.3)

We claim that the Frenkel-Kontorova, without friction, as described in the
preceding section is Hamiltonian and is represented by

H(~x, ~p) = ΣN−1
i=0

1
2m

p2
i + ΣN−1

i=0

1
2
k(xi+1 − xi − a)2 + ΣN−1

i=0 Vsub(xi) (5.4)

Where pi = mẋi.

Confirmation 1 Observe that,using the chain rule, for m ∈ {0, 1, 2, ..., N}

∂ΣN−1
i=0 Vsub(xi)

∂xm
=

[
∂Vsub(x1)

∂x1

∂Vsub(x2)
∂x2

. . . ∂Vsub(xN )
∂xN

]
·




∂x1
∂xm
∂x2
∂xm

.

.

.
∂xN

∂xm




=
∂Vsub(xm)

∂xm

(5.5)
We obtain using the very definition of potential energy and Newton’s second

law;

mẍi = F = − ∂

∂xi
Vtotal = k(xi+1 + xi−1 − 2xi)− ∂

∂xi
Vsub(xi) (5.6)

Applying these identities to equation 5.4, we get

∂
∂xi

H(~x, ~p) = ∂
∂xi

(ΣN−1
i=0

1
2mp2

i + ΣN−1
i=0

1
2k(xi+1 − xi − a)2 + ΣN−1

i=0 Vsub(xi))

So, ∂
∂xi

(H(xi, ẋi)) = −(k(xi+1 + xi−1 − 2xi+)− ∂
∂xi

Vsub(xi) =

−mẍi = − d
dt (mẋi) = −ṗi

(5.7)
Confirming the second equation is as simple as the first one,

F = mẋi = d
dt (mẋi) = ṗi

∴ ∂
∂pi

H(~x, ~p) = ∂
∂pi

(ΣN−1
i=0

1
2mp2

i + ΣN−1
i=0

1
2k(xi+1 − xi − a)2 + ΣN−1

i=0 Vsub(xi)) =

pi

m = ẋi

(5.8)
4if it exists



What makes Hamiltonian systems so important is the fact that the Hamil-
tonian function is a first integral or constant of motion. That is, H(~x, ~p) is con-
stant along every solution of the system. This means Ḣ(~x, ~p) = d

dt (H(~x, ~p)) = 0.
Again the verification is rather a confirmation than a proof, when one uses the
chain rule.

Confirmation 2

d
dt (H(~x, ~p)) = ΣN−1

i=0
∂H(~x,~p)

∂xi
ẋi + ∂H(~x,~p)

∂pi
ṗi =

ΣN−1
i=0

∂H(~x,~p)
∂xi

∂H(~x,~p)
∂pi

+ ∂H(~x,~p)
∂pi

(−∂H(~x,~p)
∂xi

) = 0
(5.9)

5.1.2 Equation of motion

The equation of motion of the particles in the Frenkel-Kontorova model is
straight forward using Newton’s second law of motion5.

F = mẍi

mẍi = (xi+1 + xi−1 − 2xi)− Vsub(xi)′
(5.10)

When we assume the periodic potential is given by V (x) = 1 − V0 cos(yx),
equation 5.10 reduces to

mẍi = k(xi+1 + xi−1 − 2xi)− yV0 sin(yxi) (5.11)

This is a Hamiltonian system. However one can include a frictional term
which is, due to empirical, assumed to be proportional to time derivative of the
position. Obviously such a system is not Hamiltonian anymore. Additionally
one can add a constant force, F to equation 5.11. Resulting in the following
expression;

mẍi + γẋ = k(xi+1 + xi−1 − 2xi)− yV0 sin(yxi) + F (5.12)

If we now define ζi = yxi and τ =
√

k
m t, then we obtain with help of the

chain-rule

xi = 1
y ζi,

∴ dV (xi)
dx = d

dζ (1− V0 cos(ζi)) dζ
dx = V0y sin(ζi)

(5.13)

and

d
dt (xi) = 1

y
dζi

dτ
dτ
dt =

√
k

my2
dζi

dτ ≡
√

k
my2 ζ̇i,

∴ d2

dt2 (xi) =
√

k
my2

dζ̇i

dt =
√

k
my2

dζ̇i

dτ
dτ
dt ≡ k

my
dζ̇i

dτ = k
my ζ̈i

(5.14)

5The dot refers to the derivative with respect to time and ’ refers to the derivative with
respect to position



Equation5.12 can be simplified by rescaling the space and time coordinates
as suggested above. This results in

k

y
ζ̈i + γ

√
k

my2
ζ̇i =

k

y
(ζi+1 + ζi−1 − 2ζi)− V0y sin(ζi) + F (5.15)

Multiplying this with the constant y
k and replacing the dummy variable ζ

with x again yields

ẍi + γ√
km

ẋi = (xi+1 + xi−1 − 2xi)− V0y2

k sin(xi) + yF
k

(5.16)

The periodic boundary conditions of the chain are also imposed on the pe-
riodicity of Vsub. If χ is the number of periodic potentials and P the period of
the potential, χ ∈ N<∞, then

xi = xi + pχ (5.17)

Here we are confronted to two cases; χ = N and χ 6= N the first case
the system is to be known as commensurate and in the latter incommensurate.
We conclude from the above discussion that, due to the periodic boundary
conditions xi is invariant under the following operations;

xi −→ xi+N

xi −→ xi + pχ
(5.18)

5.2 Modes in the Frenkel-Kontorova system

Stable solutions to the equation of motion, i.e.6

ẍi = ηẋi = xi−1 + xi+1 − 2xi + b sin(xi) + F (5.19)

can be divided in two two classes;

1. Pinned modes, which are modes in which the particles have an average
velocity equal to zero.

2. Sliding modes, i.e. modes in which particles have nonzero average velocity.

5.2.1 Pinned modes

The pinned modes, i.e. the configurations of least energy, are obvious when we
examine the asymptotes of κ = V0

k . Here V0 nd k are the parameters defined in
equation 5.11. When κ −→ 0 the particles will arrange at distance a no matter

6η, b, F ∈ R and unequal to zero



what the potential7is. If κ −→∞ the particles will all be situated at the minima
of the harmonic potentials.

Let us now look at the pinned modes a bit more thoroughly and go back to
equation 5.19. For pinned modes we get the following equation,

xi−1 + xi+1 − 2xi + b sin(xi) + F = 0 (5.20)

As in equilibrium the harmonic interaction averages to zero over the whole chain
we see that pinned solutions can only exist whenever b sin(xi) + F has zeros,8

i.e. F < b. In the commensurate case the minimal solution is of course the
one in which the particles are placed in the minima of the effective potential
b cos(x)− FX, so

xi = −π + arcsin(
F

b
) + 2πi (5.21)

5.2.2 Sliding solutions

Let us define the velocity of the center of mass.

vcm =
1
N

ΣN
j=1

˙xj(t) (5.22)

Additionally we define the time average of the preceding equation as

v = lim
T−→∞

1
T

∫ T

0

ΣN
j=1

˙xj(t) (5.23)

Solid sliding
The solid sliding mode is the mode in which all particles move as rigid object
and do not move with respect to each other9, i.e.

xi(t) = x1(t) + 2π(i− 1) (5.24)

Consequently we can see the system in the equivalent case of one particle moving
trough a effective potential b cos(x)− Fx;

ẍ + ηẋ = b sin(x) + F (5.25)

This nonlinear equation cannot be solved analytically. However in the limit
b = 0 we can see that the solution attains a constant velocity, x1(t) = F

η t.
Additionally if F >> η2 we may consider limη−→0. We find that there is a
critical force (Fc), i.e. a value of F such that for lower values sliding solutions
are not possible anymore, and a corresponding value for b (bc). We can use
conservation of energy, as we eliminated the dissipative, to calculate the values
explicitly. We get

7V0 is of course assumed to be finite and constant
8Notice that these are exactly the minima of the Energy
9Notice that this is the sliding case of κ −→ 0



ẋ2

2
= b cos(x) = E =

v2
0

2
+ b (5.26)

where v0 is the velocity with which the particles at the maxima of the external
potential.Soving the pervious equation for v0 we obtain

˙x(t) =
√

v2
0 + 2b(1− cos(x)) (5.27)

At the critical value, v0 −→ 0 so in that case equation 5.27 reduces to 10

˙x(t) =
√

v2
0 + 2b(1− cos(x)) = 2

√
bc sin(

x

2
) (5.28)

We determine the energy loss due to friction and the energy gain due to the
driving during one period. As the system is Hamiltonian, in this limit, these
contribution should be equal

Uη =
∫ T

0
ηvvdt =

∫ 2π

0
ηvdx

= 2η
√

b
∫ 2π

0
sin(x

2 )dx = 8η
√

b

(5.29)

UF =
∫ 2π

0
Fdx = 2πF (5.30)

Resulting in

bc =
π2

16
(
F

η
)2 (5.31)

Assuming that η and F are of the same order, i.e. examining the system at
about constant speed, we obtain F >> η2 for η −→ 0 . Because the ratio F

η
is constant. This makes sense qualitatively as in this region the driving force
should be much bigger than the frictional term. This equation also makes that
quantitative.

Uniform sliding
Uniform sliding is far more complicated than pinned or solid slide solutions.
These sliding modes are characterized by different particle densities each having
its own sliding average velocity. In uniform sliding the particles all perform the
same motion, but at different times,

xi(t) = ai + vt + f(ai + vt) (5.32)

Here a is once again the average inter particle distance and v is the average
sliding velocity, defined above. When we substitute this equation in the equation
of motion, we can describe f . Using the translational symmetry we know that
f should be periodic and should have a period of 2π. If we look at the distance
between two neighboring particles at time t,

10In lowest order of F and η



xi+1 − xi = a + f(ai + a + vt)− f(ai + vt) (5.33)

we note that when a = 2π the particles do not move with respect to each
other. Solid sliding is therefore just a special case of uniform sliding, with
a = 2π Solving the equation for uniform sliding is rather difficult in the dis-
crete case, and can be obtained using simulations. One can make the problem
easier by taking the continuum limit. And so approximate a discrete system
by a continuum one. However it is up to the specific problem whether such an
approximation makes sense.

5.3 The sine-Gordon equation

The Frenkel-Kontorova model describes a chain of a certain amount of parti-
cles with specified masses in the elastic limit, resulting in equation 5.11 as the
equation of motion of the system. One can take the continuum limit of this
equation by keeping the size of the system constant while letting the particle
number N go to infinity, i.e. making the distance between the particles to zero.
This basically means that we treat the discrete values xi as function values of
a continuous parameter x, i.e. xi = x(ia), and subsequently let N and a go to
infinity and zero, respectively.

Let us consider the Frenkel-Kontorova without friction and external force.
Equation 5.16 then reduces to

ẍi = (xi+1 + xi−1 − 2xi)− V0y2

k sin(xi)

ẍi + (xi+1 − xi−1 − 2xi) + V0y2

k sin(xi) = 0
(5.34)

Notice that (xi+1 + xi−1 − 2xi) is the discrete Laplacian. This becomes
the ordinary continuous Laplaciaan when a = xi+1 − xi −→ 0. In order to
avoid confusional notation, φ will be used to denote the function depending on
the position x and time t. With these considerations in mind it is clear that
equation 5.34 reduces, in the continuum limit, to

∂2φ(x, t)
∂t2

− c
∂2φ(x, t)

∂x2
+ a sin(φ(x, t)) = 0 (5.35)

Where a and c are constants, assumed to be equal to one11. Additionally we will
use the shorthand notation to denote the partial derivatives, so that equation
5.35 reduces to

φ(x, t)tt − φ(x, t)xx + sin(φ(x, t)) = 0 (5.36)

11This can be done by simply rescaling the variables. However it should be pointed out that
when examining real physical problems the constants are of great importance as they will also
appear in the Lagrangian and Hamiltonian. For example c should then be set to a mass, also
the speed of light will appear.



The equation above is known as the sine-Gordon equation. Note that in ab-
sence of the sin(φ(x, t))-term, equation 5.35 reduces to the Helmholtz-equation.
This equation has well-known wave solutions, i.e. φ(x, t) = µf(x− ct) + νg(x +
ct). Where µ, ν are constant determined by the boundary conditions and f and
g are are at least C2 with respect to t and x.

5.3.1 Transformation of the sine-Gordon equation

As noted before the sine-Gordon equation looks like the Helmholtz-equation.
This can be used to transform the equation. The transformations stated beneath
will be used frequently as we expect traveling wave solutions.

Let
ξ =

1
2
(x− t) (5.37)

and
η =

1
2
(x + t) (5.38)

Then, by the chain rule,

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
=

1
2
(

∂

∂ξ
+

∂

∂η
) (5.39)

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+

∂η

∂t

∂

∂η
=

1
2
(

∂

∂η
− ∂

∂ξ
). (5.40)

This gives,

∂2φ(x, t)
∂x2

=
1
4
(

∂

∂ξ
+

∂

∂η
)(

∂φ(ξ, η)
∂ξ

+
∂φ(ξ, η)

∂η
) =

1
4
(
∂2φ(ξ, η))

∂ξ2
+2

∂2φ(ξ, η)
∂ξ∂η

+
∂2φ(ξ, η)

∂η2
)

(5.41)

∂2φ(ξ, η)
∂t2

=
1
4
(

∂

∂η
− ∂

∂ξ
)(

∂φ(ξ, η)
∂η

−∂φ(ξ, η)
∂ξ

) =
1
4
(
∂2φ(x, t)

∂ξ2
−2

∂2φ(ξ, η)
∂ξ∂η

+
∂2φ(ξ, η)

∂η2
).

(5.42)
Plugging these result into equation 5.35, we get12

φ(ξ, η)ηξ = sin(φ(ξ, η)) (5.43)

This was the original form in which the equation was considered in the
course of investigation of surfaces of constant Gaussian curvature K = -1, also
called pseudospherical surfaces. Gaussian curvature is an intrinsic measure of
curvature, i.e. its value depends only on how distances are measured on the
surface, not on the way it is embedded in space. In this thesis this aspect will
not be discussed, besides this notification.

12From now on the notation fx is used to denote the partial derivative to x



5.3.2 Soliton en breather solutions

The sine-Gordon equation cannot be solved in all generality. However by making
the right ansatz several classes of solutions can be found. It is obvious that the
solution φ(x, T ) should not change13 when the time and space variables are
interchanged, due to the symmetry of the sine-Gordon equation.Observe that

arctan(θ) = − 1
2π − arctan( 1

θ ) for θ < 0
arctan(θ) = 1

2π − arctan( 1
θ ) for θ > 0 (5.44)

This means that interchanging space and time variables preserves the solution.
Therefore we make the ansatz,

φ(x, t) = 4 arctan(
χ(x)
ψ(t)

) (5.45)

Plugging the ansatz into the sine-Gordon equation we obtain

ψ2

χ
χxx +

χ2

ψ
ψtt = (ψ2 + 2ψ2

t − ψψtt) + (−χ2 + 2χ2
x − χχxx) (5.46)

The right-hand side contains two terms, one depends only on t and the other
only on x, so it can be eliminated by differentiating the equation with respect
to t and x. Doing this and dividing the result by −2ψψtχχx results into

(
χxxx

χ2χx
− χxx

χ3
) + (

ψttt

ψ2ψt
− ψtt

ψ3
) = 0, (5.47)

Or equivalently,

(χxx

χ )x

χχx
+

(ψtt

ψ )t

ψψt
= 0. (5.48)

Notice that the left term only depends on x, whereas the right one only depends
on t. Therefore we can rewrite the equation

(χxx

χx
)x

χχx
= −

(ψtt

ψt
)t

ψψt
= −6v2 (5.49)

Here v ∈ R is a separation constant, which is assumed to be positive. Sepa-
rating the two equations then gives

d
dx (χxx

χ ) = −6v2χχx
d
dt (

ψtt

ψ ) = −6v2ψψt
(5.50)

These can be integrated directly to give

13That is, change more than by some constant



χxx

χ = −3v2χ2 + m
ψtt

ψ = 3v2ψ2 +
√

(m2 − 1)
(5.51)

Here m and
√

(m2 − 1) are constants of integration which are connected
through equation 5.45. When we clear the denominators we find the final form

χxx = −3v2χ3 + mχ

ψtt = 3v2ψ3 +
√

(m2 − 1)ψ
(5.52)

Definition 2 A soliton is a stable isolated (i.e., solitary) traveling nonlinear
wave solution to a set of equations that obeys a superposition principle and so
have the following properties;
1. They are of permanent form
2. They are localized within a region
3. They can interact with other solitons, and emerge from the collision un-
changed, except for a phase shift.

The sine-Gordon equation has various soliton solutions. The most simple one is
a single-soliton solution, that can be found considering equation 5.52 with v = 0
under the condition that χxx = χx and ψxx = ψx . The solutions of χ and ψ
are then straightforward.

χ(x) = exp(mx)

ψ(t) = exp(
√

(m2 − 1)t
(5.53)

plugging this into equation 5.45 we obtain

φ(x, t) = 4 arctan(exp(m(x−
√

(m2−1)

m t))) =

φ(x, t) = 4 arctan(exp( x−βt√
(1−β2)

))

β = m2−1
m

(5.54)

We immediately see that this solution has a lorentz contraction, showing the
relativistic invariance of the sine-Gordon equation. In the next section this single
soliton will be derived in an alternative way, examining the lorenz invariance
more thoroughly.

Notice that the integration constant can be negative. We then get the same
solution, only with −x instead of x. The positive solution is known as the kink
solution, while the negative solution is a so-called anti-kink solution.

We can illustrate what a kink-soliton represents by looking at a pinned
commensurate situation. Consider the chain in its trivial ground state, i.e. all



Figure 5.3: A schematic illustration to get an idea of what a kink and antikink
solution represent physically is shown.

Figure 5.4: Schematic plot of the kink solution.

the particles at the bottoms of the potential wells. Now move a group consisting
of g ∈ 0, 1...N particles one well to the right. Consequently there is a well that
contains no particles and, about ga14 to the right, a well that contains two
particles (provided that the potential barrier is high enough to prevent the
system going back to its trivial ground state). One now speaks of a kink at
the site of the empty well and an antikink at the site of the doubly occupied
well. In figure 5.3 this is illustrated and one sees that a kink (or antikink) has
a certain width, because particles in wells nearby are pulled towards the kink
and away from the antikink. Because of this effect, only a very small force is
needed to make the kink move one well. In the continuum case we can represent
this analogously in terms of densities,i.e a wave of a lower respectively higher
density travels through the continuum.

A two-soliton solution can be found in a similar way by considering 5.52
with v = 0 and m > 1;

14were a denotes the average particle distance.



Figure 5.5: Schematic plot of the breather function. During time the solution
curve expands and contract.

φ(x, t) = 4 arctan(exp(
β sinh(βmx)
cosh(βmx)

. (5.55)

Finally also a so-called breather solution can be derived when the case v = 0
and m2 < 1 is considered;

−4 arctan(

√
1−Ω2

Ω sin(Ωt)

cosh x
√

(1− Ω2)
) (5.56)

Here Ω =
√

1−m2. The breather is solution is named that way, because the
solution( fig 5.5) contacts and expands continuously in time.

From now on we will concentrate on the kink and anti kink solutions.

5.3.3 Lorentz invariance and solutions

Let us recall the sine-Gordon equation, in shorthand notation,

φ(x, t)tt − φ(x, t)xx + sin(φ(x, t)) = 0 (5.57)

In the static case it becomes,

−φ(x, t)xx + sin(φ(x, t)) = 0 (5.58)

It is easy to see that this equation allows only two bound, i.e. φ(x, t) −→ 0
mod 2π as x −→∞, solutions.

φ(x, t)+ = 4 arctan(exp(x− q)),

φ(x, t)− = 4 arctan(exp(−(x− q))),
(5.59)



Where we used exp(−mq) and exp(mq) as integration constants respectively.
We see that these solutions satisfy our boundary condition and that and that
the maximum modulo 2π is attained at x = q. So q can be interpreted as our
” φ − packet” or ”kink”. The plus and minus signs refer to the positive and
negative helicities.

We expect traveling waves so we define

ξ = x− ct (5.60)

and use it to make make the ansatz15,

φ(x, t) = φ(x− ct) = φ(ξ) (5.61)

We assume that c is positive from now on, this assumption is not a restriction.
We can simply get the exact same solutions(equation 5.63 is not altered if ξ is
replaced with η). Additionally when c=0 we also get the same solutions, but
with the identity that 1− c2 = 1. Now using the chain rule to obtain

∂φ(x,t)
∂x = ∂ξ

∂x
∂φ(ξ)

∂ξ = ∂φ(ξ)
∂ξ

∂2φ(x,t)
∂x2 = ∂

∂x (∂φ(ξ)
∂ξ ) = ∂ξ

∂x
∂φ(ξ)
∂ξ2 = ∂φ(ξ)

∂ξ2

∂φ(x,t)
∂x = ∂ξ

∂x
∂φ(ξ)

∂ξ = −c∂φ(ξ)
∂ξ

∂2φ(x,t)
∂x2 = ∂

∂x (−c∂φ(ξ)
∂ξ ) = −c ∂ξ

∂x
∂φ(ξ)
∂ξ2 = c2 ∂φ(ξ)

∂ξ2

(5.62)

We get the sine -Gordon equation in the ξ variable,

(c2 − 1)φ(ξ)ξξ + sin(φ(ξ)) = 0 (5.63)

Upon comparison with equation 5.59 we get

φc(ξ) = 4 arctan(exp(
+

(1− c2)
1
2
(x− q(t))) (5.64)

Here the subscript c refers to the traveling wave at speed c. Moreover q(t) =
q(0) = ct, which is the position of the kink at time t. the width of this running
kink is then(1 − c2)

1
2 . This Lorentz contraction is a result of the relativistic

invariance of this equation which can most easily be understood by looking
at the Lagrangian and Hamiltonian and their connection to the Klein-Gordon
equation.

15Which is equivalent to the method of characteristics



5.3.4 Hamiltonian, Lagrangian and phase portrait

The sine-Gordon equation contains a lot of physical and mathematical con-
cepts.The sine-Gordon is actually the beginning of the field theory, which de-
scribes the physical solutions of many particles in the context of a relativistic
continuum. Most physical concepts are contained in the Lagrangian and Hamil-
tonian.

Recall once again the sine-Gordon equation, in the characteristic variable
variable ξ;

(1− c2)φ(ξ)ξξ = sin(φ(ξ)) (5.65)

or equivalently

φ(ξ)ξξ =
1

(1− c2)
sin(φ(ξ)) (5.66)

Let us find the Hamiltonian, in this setting;

φ(ξ)ξ =
∂H(φ(ξ), φ(ξ)ξ)

∂(φ(ξ)ξ)
(5.67)

and

φ(ξ)ξξ =
1

(1− c2)
sin(φ(ξ)) =

−∂H(φ(ξ), φ(ξ)ξ

∂(φ(ξ))
(5.68)

then we obtain, defining a new constant µ,

H(φ(ξ), φ(ξ)ξ) =
1
2
(φ(ξ)ξ)2 +

1
(1− c2)

(cos(φ(ξ))) + µ (5.69)

Better still is the Hamiltonian in x and t coordinates, as this gives more
physical insight;

H(φ(x, t)t, φ(x, t)x, φ) =
1
2
(φ(x, t)2t + φ(x, t)2x + 2(1− cos(φ(x, t)))) + α (5.70)

Here α is a constant.
In this case the Hamiltonian equations are as follows

φ(x, t)tt = −∂H((φ(x,t),φ(x,t)t))
∂φ(x,t) = φ(x, t)xx − sin(φ(x, t))

φ(x, t)t = −∂H((φ(x,t),φ(x,t)t))
∂φ(x,t)t

(5.71)

We can now we can identify 1
2φ(x, t)2t as kinetic energy and 1

2φ(x, t)2x + (1−
cos(φ(x, t))) as potential energy. Therefore the Lagrangian, L = T − V equals

L(φ(x, t)t, φ(x, t)x, φ) = − 1
2 (φ(x, t)2x − φ(x, t)2t + 2(1− cos(φ(x, t)))) + β

(5.72)



or equivalently

L(φ(x, t)t, φ(x, t)x, φ) = − 1
2 (φ(x, t)2x − φ(x, t)2t + 4(sin2(φ(x,t)

2 ))) + β (5.73)

With β a constant.
Notice that the well-known Klein-Gordon Lagrangian(equation 5.7516) does

not have the desired translational invariance dictated by our situation,

LKG(φ) 6= LKG(φ + 2π) (5.74)

In our situation φ(x, t) is the most simple non-trivial manifold, i.e. the unit
circle S1. Clearly the usual Klein-Gordon Lagrangian should be replaced by the
Lagrangian stated in equation 5.73.

For small φ(x, t) we can expand sin2(φ(x, t)) in first order, resulting in
sin2(φ(x, t)) ≈ φ(x, t)2. Consequently equation 5.73 exactly reduces to equa-
tion 5.75. This has a simple interpretation; As the unit locally sphere looks
flat the Lagrangian of the solution φ(x, t) approaches the normal Klein-Gordon
Lagrangian.

LKG(φ(x, t)t, φ(x, t)x, φ) = −1
2
(φ(x, t)2x − φ(x, t)2t ) + φ(x, t)2 (5.75)

To conclude this paragraph we examine the phase portrait of our system.
Define ~x(ξ) ≡ (φ(ξ), φ(ξ)ξ)T , using equation 5.65 and definitions above we ob-
tain

d

dξ
~x(ξ) = F (φ(ξ), φ(ξ)ξ) (5.76)

Here F is a vector function with components φ(ξ)ξ and sin(φ(ξ))
1−c2 . Expanding

F in first order around an equilibrium point, φ̃(ξ), results17 in the linearized
system;

d

dξ

[
φ(ξ)
φ(ξ)ξ

]
=

[
0 1

cos(φ̃(ξ))
1−c2 0

] [
φ(ξ)
φ(ξ)ξ

]
(5.77)

Referring to the definition of F we conclude that the equilibrium points
with respect to the defined coordinates are (0, kπ), k ∈ Z. However recall that
all points modulo 2π are equivalent due to the translational invariance.

The sine-Gordon equation is a Hamiltonian system so every solution is a
curve of constant energy. Moreover due to the symmetry of the equations, the
curves representing the solution must be symmetric in both axes18.

16Remember that the expected mass, is put to one
17Note that the constant term in the first order expansion vanishes per definition of an

equilibrium point
18The axis with respect to the defined coordinates



Figure 5.6: Schematic illustration of the phase portrait. Notice the periodic
solutions around (0,0). All the curves are of constant energy as the system is
Hamiltonian. The heteroclinic connection are traveling wave solutions

Examining the eigenvalues of the linearized system around (0,0) in 5.77 yields
λ2 = 1

1−c2 . When c2 > 1 we obtain eigenvalues that are purely imaginary.
Notice that around the other two equilibrium points we get λ = 1

−1+c2 , giving a
positive and negative real value of lambda (i.e. λ = 1√−1+c2 and λ = −1√−1+c2 ).
Consequently, the other points are saddle points in this case. This results in
the phase portrait depicted in Figure 5.6. The points at ±π are connected by
heteroclinic orbits, which represent the traveling solutions. However it can be
proven that the kink solutions are only stable when |c| < 1 (see for example
[4]). This is physically interpretable if we recall the relativistic invariance of the
equation. In our notation c = 1, so from a physical point of view we could have
expected stable solutions only to occur when c < 1.

If c2 < 1, the eigenvalues of the linearized system around (0,0) are now the
positive and negative real root of λ − 1

−1+c2 = 0 and the eigenvalues around
the other points are purely imaginary. It looks like the system has been trans-
lated (nπ with n ∈ Z). Again we have heteroclinic connections that represent
traveling waves. It can be shown that these traveling waves are stable.





Chapter 6

Perturbation of the
sine-Gordon equation

In the previous chapter we encountered the sine-Gordon and its solutions. This
was an example of a Hamiltonian system. In this chapter we add a energy-
dissipative term to the equation, resulting in an equation that cannot be solved
in general. We will therefore assume that the dissipative terms are small and
subsequently apply perturbation methods to study the behavior of kink and an-
tikink solutions. We find traveling solutions for small perturbations, using the
Melnikov function and Fenichel’s theorem

6.1 General starting point

We study the following perturbed sine-Gordon equation

φ(x, t)xx − φ(x, t)tt + sin(φ(x, t)) = ε(ι− κφ(x, t)t) (6.1)

In this equation ε, ι and κ are real constants and ε ≥ 0 for definiteness. in
the case ε = 0 we get the sine-Gordon equation with its Hamiltonian structure.
Using standard perturbation series, i.e. φ(x, t) = φ0(x, t)+εφ1(x, t)+ε2φ2(x, t)...
we get,

O(1) φ0(x, t)xx − φ0(x, t)tt + sin(φ0(x, t)) = 0

O(ε) φ1(x, t)xx − φ1(x, t)tt + sin(φ1(x, t)) + κφ0(x, t)t − ι = 0 (6.2)

Of course the O(1) equation is just the sine-Gordon equation. If we use the
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(anti)kink solutions(with c positive) we get for the O(ε) equation

φ1(x, t)xx − φ1(x, t)tt + sin(φ1(x, t)) + κφ0(x, t)t − ι = 0

φ1(x, t)xx − φ1(x, t)tt + sin(φ1(x, t)) + −4cκ√
(c2−1)

exp( x−ct√
C2−1

)

1+exp(
2(x−ct)√

C2−1
)
− ι = 0

(6.3)

This equation cannot be solved, therefore we will apply other methods.

6.2 Traveling waves with speed c=1

When we look at solutions with c=1,i.e ξ = x − t1we can find a closed form if
ι < −1. In this case we do not need perturbation theory. In other words we will
study the equation

φ(x, t)xx − φ(x, t)tt + sin(φ(x, t)) + κφ(x, t)t + µ = 0 (6.4)

Where µ = −ι > 1. We specify our traveling-wave Ansatz as seen above 2:

ξ ≡ ±x− t, φ(x, t) = u(ξ)− π. (6.5)

Accordingly we use the chain rule to see that

∂2

∂x2 = ∂
∂x ( ∂ξ

∂x
∂
∂ξ ) = ∂

∂x ( ∂
∂ξ ) = ∂2

∂ξ2

∂2

∂t2 = ∂
∂t (

∂ξ
∂t

∂
∂ξ ) = ∂

∂t (− ∂
∂ξ ) = ∂2

∂ξ2

(6.6)

Consequently plugging the Ansatz in (6.4) results into

κu(ξ)ξ = µ− sin(u(ξ)) (6.7)

Assuming u(ξ)ξ is not identically zero, we separate the equation

dξ =
κdu

(µ− sin(u(ξ)))
(6.8)

Integrating then yields3

ξ − ξ0 = κ

u∫

u0

ds

µ− sin s
(6.9)

1Note that this are characteristics
2Where the π is introduced to give the sine term of the sine-Gordon equation a minus sign,

which will turn out to be useful in the following transformations. It also fixes the solution
with respect to obvious boundary conditions

3As µ > 1 the denominator is positive



Observe that

sin(α) = 2 sin(α) cos(α) =
2 sin(α)

cos(α)

cos2(α)
=

2 tan(α)
1 + tan2(α)

, (6.10)

and that

cos(2α) =
cos2(α)− sin2(α)
cos2(α)− sin2(α)

=
1− tan2(α)
1 + tan2(α)

(6.11)

As a result we obtain

sin(4α) = 2 sin(2α) cos(2α) =
4 tan(α)(1− tan2(α))

(1 + tan2(α))2
. (6.12)

We are looking for traveling waves in the perturbed system. Consequently we
make the ansatz that u(ξ) = 4 arctan(Z(ξ)). Plugging the ansatz into equation
6.7 and using equation 6.12 we obtain

4κ
Z(ξ)ξ

1 + Z(ξ)2
= µ− 4

Z(ξ)(1− Z(ξ)2)
(1 + Z(ξ)2)2

(6.13)

This equation can easily be simplified by introducing a new variable p(ξ).
Define Z(ξ) = p(ξ) +

√
(1 + p(ξ)2), subsequently the previous equation reduces

to

2κp(ξ)ξ = 2p(ξ) + µ(1 + p(ξ)2) (6.14)

Notice that due to our translational invariance these transformations are le-
gitimate. Even when |p(ξ)| diverges at some point, the continuity (and smooth-
ness) of u(ξ) at that point is preserved; In the worst case , one of the right or
left limits is ∞ and other is −∞. In this case p(ξ) → ±∞ implies F → ∞, 0
respectively, whence g → 0 mod 2π in either case.

Putting all definitions from above together we see that we are actually look-
ing for solutions of the form

φ±(x, t) = 4 arctan(p(±x− t) +
√

1 + p(±x− t)2)− π. (6.15)

were we denoted the corresponding solutions with ξ = ±x− t as φ±.
Only for µ ≤ 1 the solutions,p± = −µ−1 ±

√
µ−2 − 1 , of the second degree

equation p(ξ)2 + 2p(ξ)
µ + 1 = 0 are real and therefore give constant solutions.

We are interested in nonconstant solutions and so we separate equation 6.144

to obtain

dξ =
2κ

µ

dp

(p(ξ)2 + 2
µp(ξ) + 1)

(6.16)

4This can be done piecewise on each interval where p(ξ)ξ keeps its sign



Notice that due to the fact that µ > 1 the discriminant of the equation
p2 + 2pµ + 1 = 0 is negative. Additionally p± are complex conjugated and do
not vanish for any value of p(ξ). We rewrite equation 6.14 by setting h(ξ) =
(p(ξ)µ+1)√

µ2−1
. Using h2 + 1 = p2µ2 + 2µp + µ2 we get

dξ = dξ =
2κ√

µ2 − 1

dh

1 + h2
(6.17)

The resulting equation equation can subsequently be integrated to give

ξ − ξ0 = 2κ arctanh/
√

µ2 − 1 (6.18)

Therefore

p(ξ) = −µ−1 +
1√

1− µ−2
tan(

√
µ2 − 1
2κ

(ξ − ξ0)) (6.19)

Here ξ0 is an integration constant.
Notice that the solution found in equation 6.19 is a periodic function with

period τ = 2πκ√
µ2−1

. In fact, if we chose ξ0 = 0 for simplicity, we see that as ξ

varies from −τ/2 to τ/2, p(ξ) varies from −∞ to ∞. Subsequently Z(ξ) varies
from 0 to ∞ and u(ξ) varies from 0 to 2π.

The solutions have the desired property that φ±(x+τ, t) = φ̌±(x, t) ± 2π.
and can be proven to be stable.

The derived identities describe arrays of evenly spaced kinks traveling with
velocities ±1. The condition that µ > 1 is physically also interpretable. The
driving force in the equation, i.e. µ, should be large enough to keep the wave
going. Otherwise they will die out due to the friction and rerun to the fixed
point solutions φ(x, t) = − arcsin(µ) and φ(x, t) = arcsin(µ)+π. Note that these
points only exist when|µ| ≤ 1. So we have obtained traveling wave solutions
and have found the value of the driving force needed overcome the friction and
keep the wave going.



6.3 Traveling waves and the Melnikov function

Let us return to the equation 6.1. We look at stable kink solutions5 with initial
condition x0 = 0, i.e.

φc(x, t) = 4 arctan(exp(ζ)) withζ = x−ct√
1−c2 (6.20)

Equation 6.1 is transformed in new variables ζ, t and φ(x, t) = u(ζ, t) to
simplify notation. We obtain

u(ζ, t)tt − 2 c√
1−c2 u(ζ, t)ζt − u(ζ, t)ζζ + sin(u(ζ, t)) =

ε(ι− κu(ζ, t)t + cκ√
1−c2 u(ζ, t)ζ)

(6.21)

using that

∂
∂t −→ ∂

∂t − c√
1−c2

∂
∂ζ

∂
∂x −→ 1√

1−c2
∂
∂ζ

(6.22)

For the traveling wave solutions (i.e. u ∼ u(ζ)) the above equation becomes

u(ζ, t)ζζ − sin(u(ζ, t)) = −ε(ι + cκ√
1−c2 u(ζ, t)ζ) (6.23)

Theorem 1 For κ > 0 and ι fixed, κ, ι ∈ R, there exist an unique smooth
curve of parameter ε 7−→ cε and an unique curve of wave shapes ε 7−→ uε(ζ)
such that for small ε, the waves are traveling solution of equation 6.23 with
cε = c. Moreover

limε−→ uε(ζ) = 4 arctan(exp(ζ)) where ζ = x−c0t√
1−c2

0
(6.24)

were c0 is a solution of the equation

3πι + 12 κc√
1−c2 = 0 (6.25)

Proof 1 We write the problem in a system(slow system) and obtain

x(ζ) = u(ζ)ζ

y(ζ) = x(ζ)ζ = u(ζ)ζζ = sin(u(ζ))− ε(ι + κc√
1−c2 x)

(6.26)

When we look at the fast variable6, σε = ζ, we can write the system as

5which means that |c| < 1
6Note that this corresponds with the concept of scaling, the variable is basically scaled to

obtain the fast variable.consequently ∂
∂ζ

= ∂σ
∂ζ

∂
∂σ

= 1
ε

∂
∂σ



x(σ) = εu(σ)σ

y(σ) = ε(sin(u(σ))− ε(ι + κc√
1−c2 x))

(6.27)

In the asymptotic case, ε = 0, this slow system reduces to

x(ζ) = u(ζ)ζ

y(ζ) = u(ζ)ζζ = sin(u(ζ))
(6.28)

whereas the fast system reduces to

u(σ) = u(σ)0

x = x(σ)0
(6.29)

Notice that we are dealing with a nonsingular perturbation problem 7. If we
had added an other perturbation term like u(ζ)ζζζ , we would get a singularly
perturbed problem, that can be written in the form8;

ȧ = f(a, b, ε)

ḃ = εg(a, b, ε)0
(6.30)

Although the system is then singularly perturbed, we can still analyze it in the
same way as presented here using Fenichel’s theorem( [6],[7],[9],[10],[14],[17]).

Let us return to the system we are considering. From the above discussion
(especially equation 6.26) it is clear that the dynamics is given by

uζ = x

uζζ = y = sin(u) + εh1(u, x, 0) + O(ε2)
(6.31)

Where h1(u, x, ε) satisfies

h1(u, x, ε) = −(ι +
κc√

1− c2
x) (6.32)

We can determine the Hamiltonian of this perturbed Hamiltonian system in
the ζ variable. Using the chain rule we see that for ζ = ξ√

1−c2 it holds that

7i.e. the system can be approximated by setting ε = 0.
8where I used the dot notation again



∂
∂ξ = ∂ζ

∂ξ
∂
∂ζ = 1√

1−c2
∂
∂ζ

∂2

∂ξ2 = ∂ζ
(

1√
1−c2

∂
∂ζ ) = 1

1−c2
∂2

∂ζ2

(6.33)

As a result equation 5.65 reduces to

φ(ζ)ζζ = sin(φ(ζ)) (6.34)

In the same manner as above we find the Hamiltonian;

H(φ(ζ), φ(ζ)ζ) =
1
2
(φ(ζ)ζ)2 + (cos(φ(ζ))) + µ (6.35)

In this situation we have a non-Hamiltonian perturbation9,i.e.

G(u, x, ε) = ε(0, h1(u, x, 0) + O(ε2) (6.36)

In the case that ε = 0 we get the sine-Gordon equation, with heteroclinic
solution u0(ζ) = 4 arctan(exp(ζ)). This solution has a well defined u0(ζ)ζ ;

u0(ζ)ζ =
4 exp(ζ)

1 + exp(2ζ)
=

2
1
2 (exp(−ζ) + exp(ζ))

= 2sech(ζ) = x0(ζ). (6.37)

Subsequently we use a Melnikov argument. Calculating the Melnikov function

([5],[6],[10],[13],[17]) is easy;

M(ε) =
∫ ∞

∞
∇H(u0(ζ)) ·G(u0(ζ), xo(ζ), 0)dζ + O(ε) (6.38)

which results, using the explicit solution calculated above, into

M(0) =
∫∞
∞ ∇− ιxo(ζ)− κc√

1−c2 x0(ζ)2dζ

= −2πι− 8 κc√
1−c2

(6.39)

For completeness we want to point out that the Melnikov function can also be
directly calculated from an alternative definition( [5], page 187 equation 4.5.6)
Write equation 6.31 as

d
dζ x = f(x) + εg(x) x = (u(ζ), u(ζ)ζ)T (6.40)

Then we get

M(ε) =
∫ ∞

∞
f(q0(ξ − ξ0)) ∧ g(q0(ξ − ξ0))dξ (6.41)

9Of course; this is exactly the dissipative term



Where q0 refers to the orbits and the wedge product is defined by a∧b = a1b2−2

b1
10. Consequently

M(0) =
∫∞
∞ ∇− ιxo(ζ)− κc√

1−c2 x0(ζ)2dζ

= −2πι− 8 κc√
1−c2

(6.42)

It follows from the Melnikov-formalism that the heteroclinic connections be-
tween the fixed point solutions arcsin(ει) and arcsin(ει)+2π exist when M(ε) = 0.
Hence we obtain for the lowest order

0 = −2πι− 8 κc√
1−c2

0 = 3πι + 12 κc√
1−c2

(6.43)

This gives the existence of a curve of heteroclinic connections and a curve of
paramors specified in the theorem.

¤

This truly represents the strength of the Melnikov function. Although we
cannot solve the system analytically, we do know when there are heteroclinic
connections, representing the traveling waves. Moreover we see that most of the
physics and mathematic is contained in the speed of the wave. Physically this
also seems plausible. Adding a small dissipative friction term, mainly changes
the speed of the wave and when this term goes to zero solution should look the
same as in the unperturbed system.

10Notice that this is the projection on the normal



Chapter 7

Conclusion

Results from the experiments designated to measure the shear modulus G and
the bulk modulus B show linear response. This confirms our elastic model and
its resulting equations. Consequently the quantities pertaining to our measure-
ments can legitimately be linked to G and B.

The data obtained from the experiments concerning the shear modulus seems
to agree with the prediction that G ∼ √

∆φ. The plot of G can legitimately
be fitted with a square root function. Moreover the fit parameters make sense,
showing a value of the critical packing fraction φc equal to 0.847. However in
order to rigourously rule out other power laws, with exponents close to 0.5, more
measurements are required.

Unfortunately the results from the measurement concerning B are not con-
vincing enough to make a valid statement about the prediction that B is es-
sentially independent of φ near φc. We are not able to make measurements at
packing fractions near the critical packing fraction. In the region of φ, where
we are able to measure the bulk modulus, we find that B has a linear depen-
dence on the packing fraction. It may well be that at lower packing fractions B
becomes independent of φ. More measurements in a sightly altered setup are
needed to obtain a decisive answer.

In our analysis of systems consisting of two layers of bubbles in a Taylor-
Couette geometry we find the sine-Gordon equation, if we take the limit of a
Hamiltonian approximation. The sine-Gordon has so-called soliton solutions,
representing traveling waves. If we subsequently add a dissipative term to the
equation we are able to find a explicit wave solution traveling with speed equal
to unity. Moreover, when the dissipative term can be regarded as a perturbation
we can confirm the existence of traveling wave solutions.
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Chapter 8

Appendix

8.1 A1:Image analysis

We extract our crucial control parameter φ, as well as the average contact
number Z from the experimental images by advanced image analysis, see Figure
8.1). The procedure is straight forward. We first binarize the image, after which
both the bubble centers and the interstices appear bright. We then remove the
interstices by morphological operations and end up with an image consisting of
bright bubble centers. We dilate these centers and add up a negative of the
original binary image, in which the bubbles appear as bright rings, to arrive at
the final image. In this final image the bubbles are represented by bight discs
against a black background. From this image we can readily calculate the area
fraction of the white fringes, i.e.φ. We can locate the center of mass of each
bubble in the image, and after Delaunay triangulation and a subsequent removal
of bond vectors for non-touching bubbles, we obtain the contact network of the
bubbles in the image, from which we calculate Z. However as the values of Z
are not convincing enough, Z is not referred to in the rest of this thesis.

Figure 8.1: Illustration of the most important stages of the image analysis,
shown from left to right. Starting from the original image (presented on the far
left), the binarized and the final version are shown respectively. The last stage
shows the final stage with the triangulation.
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8.2 A2: idl -code shear modulus

fl = file_lines(’z:\slager\shear relax\68torque.txt’)
data = fltarr(fl)
openr, 1, ’z:\slager\shear relax\68torque.txt’
readf,1, data
close, 1
x = findgen(fl/23-14)
y = fltarr(fl/23-14)

err =1+0*x
parr=fltarr(fl/200)
Carr=fltarr(fl/200)
phiarr= fltarr(fl/200)
count=0
for i =0, fl/200.-1 do begin
y = data(i*200:(i+1)*200-15)
a=[1,2,y(184)]
result=mpfitexpr(’p(0)*(exp(-(x)*(p(1))))+p(2)’,x,y,err,a,/quiet)

p=[result(0), 1/result(1), result(2)]

tmpnum=string(i)
filename=’figuur68.’ + tmpnum
print,filename
set_plot,’ps’
device,filename = ’Z:\slager\anshaer\’+filename+’.eps’,/encapsulated
plot, x, y, psym=4
oplot, x, p(0)*(exp(-(x)/(p(1))))+p(2)
device,/close
set_plot,’win’
wait, .5
if p(1) lt 30 then begin
parr(count) = p(1)
count=count+1

endif
Carr(i)=p(2)
endfor

for j=0,15.-2 do begin
phiarr(j)=-3+j
endfor

for j=0,1 do begin
phiarr(j+14)=9-j
endfor

for j=0,1 do begin



phiarr(j+16)=6-j
endfor

for j=0,4 do begin
phiarr(j+18)=6+j
endfor

filename2=’eindresultaatoverallfit68’
set_plot,’ps’
device,filename = ’Z:\slager\anshaer\’+filename2+’.eps’,/encapsulated
plot, phiarr, Carr, psym=4
b=[0.5,0.02]
line=mpfitexpr(’p(1)*x + p(0)’,phiarr,Carr,err,b)
h=[line(0), line (1)]
oplot, phiarr, h(1)*phiarr + h(0)
device,/close
set_plot,’win’
print, mean(parr(0:count-1))
print, h
print, variance(parr)

end

8.3 A3: idl -code bulk modulus

temp = file_lines(’Z:\slager\bulk\73torque.txt’)
data = fltarr(temp)
openr, 1, ’Z:\slager\bulk\73torque.txt’
readf,1, data
close, 1
x = findgen(temp/16-14)
y = fltarr(temp/16-14)
err =1+0*x
parr=fltarr(temp/300)
Carr=fltarr(10)
torquearr= fltarr(temp/300)
y = data(0:300-15)
a=[1,2,y(280)]
result=mpfitexpr(’p(0)*(exp(-(x)*(p(1))))+p(2)’,x,y,err,a)

p=[result(0), 1/result(1), result(2)]
Carr(0)=p(2)
plot, x, y,psym=4
oplot, x, p(0)*(exp(-(x)/(p(1))))+p(2)

filename=’bulk73. 0’



print,filename
set_plot,’ps’
device,filename = ’Z:\slager\anbulk\’+filename+’.eps’,/encapsulated

plot, x, y
oplot, x, p(0)*(exp(-(x)/(p(1))))+p(2)

device,/close
set_plot,’win’

wait,2

for i =1, 9 do begin

y = data(i*300:(i+1)*300-15)
a=[-1,2,y(280)]
result=mpfitexpr(’p(0)*(exp(-(x)*(p(1))))+p(2)’,x,y,err,a)

p=[result(0), 1/result(1), result(2)]
plot, x, y,psym=4
oplot, x, p(0)*(exp(-(x)/(p(1))))+p(2)

tmpnum=string(i)
filename=’bulk73.’ + tmpnum
print,filename
set_plot,’ps’
device,filename = ’Z:\slager\anbulk\’+filename+’.eps’,/encapsulated

plot, x, y
oplot, x, p(0)*(exp(-(x)/(p(1))))+p(2)

device,/close
set_plot,’win’

wait,2
parr(i)=p(1)
Carr(i)=p(2)
endfor
temp2 = file_lines(’Z:\slager\bulk\73eerste10.txt’)
torqueapplied = fltarr(temp2)
openr, 2, ’Z:\slager\bulk\73eerste10.txt’
readf,2, torqueapplied
close, 2
filename3=’bulkrelaxeerwaardentegentorque73(eerste10).’
set_plot,’ps’
device,filename = ’Z:\slager\anbulk\’+filename3+’.eps’,/encapsulated



device,/close
set_plot,’win’

filename2=’eindresultaatoverallfit73’
set_plot,’ps’
device,filename = ’Z:\slager\anbulk\’+filename2+’.eps’,/encapsulated
plot, torqueapplied,Carr,psym=4
b=[-1200,1000]
line=mpfitexpr(’p(1)*x + p(0)’,torqueapplied,Carr,err,b)
h=[line(0), line (1)]
oplot, torqueapplied, h(1)*torqueapplied + h(0)
device,/close
set_plot,’win’
print, h
print, variance(Carr)
end

8.4 Acknowledgements

I wish to thank my thesis supervisors prof.dr.M van Hecke and dr. V. Rottschäfer
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