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1 Preface

In elementary functional analysis, one is taught that all normed vector spaces of given finite dimension
over the reals or the complex numbers are isomorphic. One therefore could conclude that the theory of
finite-dimensional vector spaces is trivial and not worth investigating. In this bachelor thesis, I will try
to convince the reader that this is not the case.
For instance, when investigating general Banach spaces one comes upon the field of local theory. This
research area studies finite-dimensional normed spaces and the relation between a Banach space and its
finite-dimensional subspaces. We will delve into a small part of this theory by introducing the Banach-
Mazur distance, a fundamental tool when studying finite-dimensional normed spaces. Methods developed
in the study of this distance have helped answer several longstanding questions about Banach spaces,
and are used in other areas such as operator theory and harmonic analysis [Tomczak-Jaegermann 1989,
p. x,xi].
The Banach-Mazur distance defines a metric on a set of equivalence classes of normed spaces, thereby
defining the ’space of spaces’ from the title of this thesis. We can then ask ourselves several questions
about this space, amongst which whether the space is bounded and compact. The first questions leads
to the theorem of John (1948), which gives an upper bound for the diameter of this space. The problem
of determining the quality of this upper bound was left open for some time, until it was solved in 1981
by Gluskin. His proof uses an interesting measure-theoretic approach which has since then been used in
several other results. This theorem is the main piece of this thesis, and we will work out in more detail
his short but very technical proof [Gluskin 1981].
In the paragraph following this introduction, we introduce the Banach-Mazur distance as a way of mea-
suring how different two norms on isomorphic vector spaces are. We explore some of the properties of this
distance. Using this distance, we can define a metric on the set of equivalence classes of n-dimensional
(n ∈ N) normed spaces over the reals, and in the third section we go on to explore some of the properties
of this metric space. In the fourth paragraph, we introduce the theorem of Gluskin to which we alluded
previously, and go on to prove it, using the results from two appendices. We conclude with a paragraph
stating some additional results using the same technique as Gluskin’s proof.
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2 Banach-Mazur distance

In this section we introduce the Banach-Mazur distance. This notion was introduced in [Banach 1932],
in collaboration with Mazur, as a quantity expressing how similar two norms on isomorphic vector spaces
are. We will use a function of the Banach-Mazur distance to define a metric on a certain set of equivalence
classes of normed spaces, thereby creating the space of spaces from the title of this thesis. Then we will
go on to investigate some of the properties of this space.
But first let us introduce some notation. For vector spaces E and F , let L(E,F ) be the set of lin-
ear maps from E to F , and define L(E) := L(E,E). For any normed space (X, || · ||) let B(X) =
sup {x ∈ X : ||x|| ≤ 1} be the closed unit ball. If (E, || · ||E) and (F, || · ||F ) are two normed spaces, for
any T ∈ L(E,F ) we can calculate the operator norm ||T || = sup {||Tx||F : x ∈ B(E)}. If T is invertible,
we can do the same for T−1 ∈ L(F,E). If E and F are finite-dimensional T and T−1 are automatically
bounded, and we have ||T || · ||T−1|| <∞.
We are now ready to introduce the classical definition of the Banach-Mazur distance:

Definition 2.1. Let (E, || · ||E) and (F, || · ||F ) be normed vector spaces. We define the Banach-Mazur
distance d(E,F ) between E and F by

d(E,F ) = inf
{

||T || · ||T−1|| : T ∈ L(E,F ) invertible with T−1 bounded
}

.

If E and F are not isomorphic as vector spaces, we define the Banach-Mazur distance to be ∞.

We immediately give an alternative, equivalent definition, one that gives a little more insight into the use
of the Banach-Mazur distance as a measure of the degree to which norms differ.

Proposition 2.2. Let E and F be normed spaces with closed unit balls B(E) respectively B(F ), and
c > 1. Then we have d(E,F ) < c if and only if there exist c1, c2 > 0, with c1c2 < c, and an invertible
T ∈ L(E,F ) such that 1

c1
B(F ) ⊂ TB(E) ⊂ c2B(E) holds.

Proof :
Suppose we have d(E,F ) < c. Then there exists an invertible T ∈ L(E,F ) such that ||T || · ||T−1|| < c
holds. Take c1 = ||T−1|| > 0 and c2 = ||T || > 0. We have TB(E) ⊂ ||T ||B(F ) = c2B(F ) and
T−1B(F ) ⊂ ||T−1||B(E) = c1B(E). From this we find 1

c1
B(F ) ⊂ TB(E) ⊂ c2B(F ).

Now suppose there exists an invertible T ∈ L(E,F ) and c1, c2 > 0, c1c2 < c such that 1
c1
B(F ) ⊂ TB(E) ⊂

c2B(F ) holds. Then we have c2 ≥ ||T || and c1 ≥ ||T−1||, so we find d(E,F ) ≤ ||T ||·||T−1|| ≤ c1c2 < c.

So we can view the Banach-Mazur distance as a way of measuring how the unit balls of two isomorphic
normed spaces fit into each other. Also note that we can assume c1 = 1 holds. For if T ∈ L(E,F ) is
invertible such that 1

c1
B(F ) ⊂ TB(E) ⊂ c2B(F ) holds, then c1T ∈ L(E,F ) is invertible with B(F ) ⊂

c1TB(E) ⊂ c1c2B(F ).
Now we deduce some quantitive properties of this distance.
For instance, since we have 1 = ||T ◦ T−1|| ≤ ||T || · ||T−1|| for all invertible T ∈ L(E,F ), we find

d(E,F ) ≥ 1 (1)

for all normed spaces E and F . Also, if E and F are isometric, there exists an invertible T ∈ L(E,F )
such that ||Tx||F = ||x||E holds for all x ∈ E, or equivalently, an invertible T ∈ L(E,F ) such that
||T || = ||T−1|| = 1 holds. This implies we have

E and F isometric ⇒ d(E,F ) = 1 (2)
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Clearly we also have
d(E,F ) = d(F,E) (3)

for all normed spaces E and F .
Now for R : E → F and S : F → G invertible linear maps between normed spaces, S ◦ R : E → G is
linear and invertible, and we have ||S ◦R|| ≤ ||R|| · ||S||. This implies we have

d(E,G) ≤ d(E,F ) · d(F,G). (4)

Combining these properties, we find that the Banach-Mazur distance defines a multiplicative pseudometric
of sorts; we have (1) instead of d(E,F ) ≥ 0, and the Banach-Mazur distance satisfies the multiplicative
triangle inequality (4) instead of the additive one. We will make this statement more precise in a little
while.
But first, we can ask ourselves if d(E,F ) = 1 implies E and F are isometric. If we restrict ourselves to
finite-dimensional real normed spaces it does. We note here that, since all the norms on a n-dimensional
real normed space are equivalent, any finite-dimensional normed space is complete and thus a Banach
space. Therefore, it provides no restriction to regard Banach spaces when examining finite-dimensional
real spaces.

Proposition 2.3. Let E and F be n-dimensional real Banach spaces (n ∈ N) with Banach-Mazur distance
d(E,F ) <∞. Then there exists an invertible linear map T ∈ L(E,F ) such that ||T || · ||T−1|| = d(E,F )
holds.

Proof :
First remark that, since the vector space structure is the same for any finite-dimensional real normed
space, we can view any such space as R

n with a specific norm on it. This implies that we can view any
linear map T : E → F between normed vector spaces of dimension n as an element of L(Rn), where its
operator norm is ||T : E → F ||, the norm of T viewed as a map from E to F .
Now suppose E = (Rn, || · ||E) and F = (Rn, || · ||F ) are two n-dimensional (n ∈ N) real spaces, so
d(E,F ) <∞ holds. Then there exists a sequence {Tm} ⊂ L(E,F ) of invertible maps such that

lim
m→∞

||Tm : E → F || · ||T−1
m : F → E|| = lim

m→∞
||Tm|| · ||T−1

m || = d(E,F )

holds. By normalizing these maps we can assume ||Tm : E → F || = 1 holds for all m ∈ N (for instance,
use Tm

||Tm:E→F || ).

Now if we endow L(Rn) with the operator norm ||T || = ||T : E → F ||, which views all maps as maps
from E to F , L(Rn) becomes a finite-dimensional Banach algebra with identity, and thus its closed unit
ball is compact (a fact that is equivalent to the finite-dimensionality of the algebra). This implies there
exists a subsequence converging to a T ∈ L(E,F ) with respect to this specific operator norm, so we can
assume {Tm} itself converges with respect to this norm. Since ||Tm|| = 1 holds for all m ∈ N, we then find
||T || = 1. Now, L(Rn) is also a finite-dimensional Banach-algebra with the norm ||T ||′ = ||T : F → E||,
which views linear maps as maps from F to E. It is a well-known fact that all norms on finite-dimensional
are equivalent, so there exists a C > 0 such that ||T || = ||T : E → F || ≤ C||T : F → E|| = C||T ||′ holds
for all T ∈ L(Rn). We will now use this to show T is invertible.
Hereto, we use the following lemma from [Conway 1990, p. 192]:

Lemma 2.4. If A is a Banach algebra with identity 1 ∈ A and we have x ∈ A such that ||x − 1|| < 1
holds, then x is invertible.

To use this lemma on T , we note the following holds, where 1 ∈ L(Rn) is the identity map,

||T−1
m ◦ T − 1|| = ||T−1

m (T − Tm)|| ≤ ||T−1
m || · ||T − Tm||.
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Since we have

d(E,F ) = lim
m→∞

||Tm : E → F || · ||T−1
m : F → E|| = lim

m→∞
||Tm|| · ||T−1

m ||′ = lim
m→∞

||T−1
m ||′,

for m sufficiently large we have ||T−1
m ||′ < 2d(E,F ). Also, since Tm converges to T with respect to the

norm || · ||, for m sufficiently large we have ||T −Tm|| < 1
2d(E,F )C . Now choosing m ∈ N large enough, we

find
||T−1

m ◦ T − 1|| ≤ ||T−1
m || · ||T − Tm|| ≤ C||T−1

m ||′ · ||T − Tm|| < 1.

This implies, using lemma 2.3, that T−1
m ◦T is invertible in L(Rn), and thus that T is invertible. Now by

theorem 2.2 from the same [Conway 1990, p. 192], we know the map x 7→ x−1 on the invertible elements
of L(Rn) is continuous, so we have limm→∞ T−1

m = T−1 with respect to the norm ||·|| on L(Rn). However,
since the norms || · || and || · ||′ on L(Rn) are equivalent and thus define the same topology, this implies
T−1

m also converges to T−1 with respect to the norm || · ||′. So we find

||T−1 : F → E|| = ||T−1||′ = lim
m→∞

||T−1
m ||′ = d(E,F ).

In conclusion, this means we have found an invertible map T ∈ L(Rn) such that ||T || · ||T−1|| = d(E,F )
holds.

Corollary 2.5. Let E and F be finite-dimensional real Banach spaces. Then E and F have Banach-
Mazur distance d(E,F ) = 1 if and only if E and F are isometric.

Now we can expand Proposition 2.2 with these results and the remarks following Proposition 2.2:

Corollary 2.6. Let E and F be finite-dimensional real Banach spaces. Then we have d(E,F ) = c if and
only if there exists an invertible T ∈ L(E,F ) such that B(F ) ⊂ TB(E) ⊂ cB(F ) holds and c cannot be
chosen any smaller.

We have used the finite-dimensionality of E and F in an essential way to produce a convergent subse-
quence. That the finite-dimensionality is indeed essential can be seen by observing the following real
Banach spaces, which have Banach-Mazur distance 1 despite not being isometric. It is an example from
[Pelczynski and Bessega 1979] which we will not work out in detail but only state, since it is not essential
to our goal of introducing the reader to the Banach-Mazur distance.

Example 2.7. Let c0 =
{

x = (x(1), x(2), . . .) ∈ R
N : limm→∞ x(m) = 0

}

be the space of real sequences
converging to zero, and consider the following two norms on c0, for i = 0, 1:

||x||i = sup
j∈N

|x(j)| +





∞
∑

j=1

2−2j |x(j + i)|2




1/2

.

Now let Ei be the space c0 equipped with the norm || · ||i, and for m ∈ N, let Tm : E0 → E1 be the
bounded operator given by Tm(x(1), x(2), . . .) = (x(m), x(1), x(2), . . . , x(m − 1), x(m + 1), . . .). Then
every Tm is an isomorphism from E0 onto E1, and we have limm→∞ ||Tm|| · ||T−1

m || = 1.
However, the norm || · ||0 is strictly convex (||x + y||0 = ||x||0 + ||y||0 implies we have y = cx for some
c > 0), while the norm || · ||1 is not. Therefore E0 and E1 are not isometric.

3 A space of spaces

We introduced the Banach-Mazur distance as a measure of the degree to which norms on isomorphic
vector spaces differ. However, the norms on isometric spaces do not differ essentially, and for this reason

5



it makes sense to examine not the set of all n-dimensional normed spaces, but only those normed spaces
which are not isometric. Since isometry defines an equivalence relation on the set of all n-dimensional
spaces, we can make this more precise.

Definition 3.1. Given n ∈ N, we define Fn to be the set of equivalence classes of n-dimensional real
Banach spaces with respect to the equivalence relation of isometry between spaces.

Thus in Fn, a point defines in fact a whole equivalence class of spaces. Hence the term space of spaces
naturally comes to mind. However, at the moment Fn is but a set without further structure, and we
seek to define a distance of sorts, or more precise, a metric on Fn. To this end, the previous paragraph
provides us with the necessary tools:

Definition 3.2. Let E,F ∈ Fn be equivalence classes of Banach spaces. Then we define the Banach-
Mazur distance d(E,F ) := d(E′, F ′) between them to be Banach-Mazur distance between representatives
E′ ∈ E and F ′ ∈ F of E respectively F .

Now if E′′ ∈ E and F ′′ ∈ F also are representatives, we have d(E′′, F ′′) ≤ d(E′′, E′)·d(E′, F ′)·d(F ′, F ′′) =
d(E′, F ′) and, in the same way, d(E′, F ′) ≤ d(E′′, F ′′), since E′ and E′′ are isometric, as are F ′ and F ′′.
So Definition 2.7 does not depend on the choice of a particular representative, and the distance is well-
defined.
Now we find the properties (1), (3) and (4) hold for the Banach-Mazur distance on Fn as well, so (2) and
corollary 2.5 imply we have d(E,F ) = 1 ⇔ E = F for E,F ∈ Fn. Now we can make more precise what
was meant earlier by a multiplicative metric. For note that if we take the logarithm of the Banach-Mazur
distance, a procedure which changes a multiplicative operation into a additive one, we get a function
d′ : Fn ×Fn → [0,∞), d′(E,F ) = log(d(E,F )), such that the following hold:

d′(E,F ) = 0 ⇔ E = F,

d′(E,F ) = d′(F,E),

d′(E,G) ≤ d′(E,F ) + d′(F,G).

So d′ is in fact a well-defined metric on Fn. This means we now finally have found our space of spaces:

Definition 3.3. We define the Minkowski compactum for dimension n ∈ N to be the metric space
(Fn, d

′).

Now the first thing to note is that from now on, we will still mostly speak of the Banach-Mazur distance
d when discussing the distance on Fn. On the one hand, this is not a well-defined metric. However, since
we can easily produce a well-defined metric d′ by taking the logarithm of d, it does not matter essentially
whether we discuss d′ or d. Therefore, all the statements we make about d can easily be transmuted to
corresponding statements about d′, and therefore to statements about the metric on Fn. We choose to
work with the Banach-Mazur distance since it is easier to work with.
The second thing to note is that the name ‘Minkowski compactum’ is suggestive, and we will go on to
show that this suggestion is correct: that (Fn, d

′) is indeed a compact metric space. To this end, we first
show that Fn is a bounded space, i.e. we have diam(Fn) = {d(E,F ) : E,F ∈ Fn} <∞.
Hereto, we use the fact that there exists for each n-dimensional real normed space (E, || · ||) an Auerbach
system in E: a set of vectors x1, . . . , xn ∈ E and linear functionals x∗1, . . . , x

∗
n ∈ E∗ such that ||xi|| =

||x∗i || = 1 and x∗i (xj) = δij for all i, j, where we have δij = 0 if i 6= j and δii = 1[Bollobás 1990, p. 65].
Then {x1, . . . , xn} is a basis for E.
Now let ln1 = (Rn, || · ||1) be the Banach space R

n with the one-norm, i.e. if e1, . . . , en is the standard
basis of R

n, we have ||∑n
i=1 λiei||1 =

∑n
i=1 |λi|.
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Proposition 3.4. Let (E, || · ||) be an n-dimensional real Banach space. Then we have d(X, ln1 ) ≤ n.

Proof :
Let x1, . . . , xn ∈ E, x∗1, . . . , x

∗
n ∈ E∗ be an Auerbach system. We will show that J : ln1 → E given by

J(ei) = xi, is an isomorphism such that ||J || ≤ 1 and ||J−1|| ≤ n. Since x1, . . . , xn is a basis of E, it is
clearly an isomorphism, and for x =

∑n
i=1 λiei we have

||J(x)|| = ||
n

∑

i=1

λixi|| ≤
n

∑

i=1

|λi| ||xi|| =

n
∑

i=1

|λi| = ||x||1,

and thus ||J || ≤ 1.
Now given x =

∑n
i=1 λixi ∈ E, choose for each i an ai ∈ {−1, 1} such that aiλi = |λi|, and define

f =
∑n

i=1 aix
∗
i ∈ E∗. Then we have ||f || = ||∑n

i=1 aix
∗
i || ≤

∑n
i=1 |ai| ||x∗i || = n and

f(x) = f(

n
∑

i=1

λixi) =

n
∑

i=1

λif(xi) =

n
∑

i=1

λiai =

n
∑

i=1

|λi|.

From this we find

||J−1(x)||1 = ||
n

∑

i=1

λiei||1 =
n

∑

i=1

|λi| = f(x) ≤ n||x||,

and so we have ||J−1|| ≤ n and d(l1, E) ≤ n.

Corollary 3.5. We have diam(Fn) ≤ 2 log(n).

Proof :
Choose E,F ∈ Fn, and let l1 ∈ Fn be the equivalence class of the space ln1 . Then we find d(E,F ) ≤
d(E, l1) · d(l1, F ) ≤ n2, and thus, taking the logarithm,

d′(E,F ) ≤ 2 log(n).

Now that we have established that the space Fn is bounded, we can show the following.

Theorem 3.6. Fn is a compact metric space.

Proof :
Let B1 := B(ln1 ) denote the closed unit ball of ln1 and let Φn denote the set of all norms || · || : R

n → R

such that
1

n
||x||1 ≤ ||x|| ≤ ||x||1.

Since B1 is compact, the set C(B1) of continuous functions on B1 is a Banach space with respect to the
supremum norm || · ||∞. Now any norm | · | : R

n → R on R
n gives by restriction a continuous function on

B1, since all norms on R
n are equivalent. This means we can produce, by restricting the elements of Φn

to B1, a subset Φ′
n = {f : B1 → R : f(x) = ||x|| for some norm || · || ∈ Φn} of C(B1). We now prove the

following lemma:

Lemma 3.7. Φ′
n is compact.
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Proof :
Using the Arzela-Ascoli theorem[Conway 1990, p. 175], we need to show that Φ′

n is closed, bounded and
equicontinuous in C(B1).
To show that Φ′

n is closed, let {fm}∞m=1 be a sequence in Φ′
n converging to f ∈ C(B1). We will show that

f is the restriction of a norm in Φn. Hereto, define || · || : R
n → R by ||x|| = ||x||1f( x

||x||1
), and for any

m ∈ N, let || · ||m be the norm on R
n whose restriction to B1 gives fm.

Now, for any x ∈ R
n we have

lim
m→∞

||x||m = ||x||1 lim
m→∞

∣

∣

∣

∣

∣

∣

∣

∣

x

||x||1

∣

∣

∣

∣

∣

∣

∣

∣

m

= ||x||1 lim
m→∞

fm

(

x

||x||1

)

= ||x||1f
(

x

||x||1

)

= ||x||.

So we find ||x|| = limm→∞ ||x||m ∈ [0,∞), since we have ||x||m ∈ [0,∞) for each m ∈ N.
Now if x 6= 0 holds, we have 0 < 1

n ||x||1 ≤ ||x||m and thus also ||x|| = limm→∞ ||x||m ≥ 1
n ||x||1 > 0. Since

we also have
||λx|| = lim

m→∞
||λx||m = |λ| lim

m→∞
||x||m = |λ|||x||

for any λ ∈ R, we know ||0|| = 0 and || · || is positive definite.
Concerning the triangle inequality, for x, y ∈ R

n we have

||x+ y|| = lim
m→∞

||x+ y||m ≤ lim
m→∞

(||x||m + ||y||m) = lim
m→∞

||x||m + lim
m→∞

||y||m = ||x|| + ||y||.

So || · || is indeed a norm, and f is clearly its restriction to B1.
Finally, we have 1

n ||x||1 ≤ ||x||m ≤ ||x||1 for each m ∈ N, and thus also

1

n
||x||1 ≤ ||x|| = lim

m→∞
||x||m ≤ ||x||1,

so we find f ∈ Φ′
n and Φ′

n is indeed closed.
Now Φ′

n is clearly bounded in (C(B1), || · ||∞), since we have ||f ||∞ = supx∈B1
|f(x)| ≤ supx∈B1

||x||1 = 1
for all f ∈ Φ′

n.
Now finally, to show Φ′

n is equicontinuous, choose ǫ > 0 and x0 ∈ B1. Then we have, for all f ∈ Φ′
n and

x ∈ B1,
|f(x) − f(x0)| ≤ f(x− x0) ≤ ||x− x0||1,

so letting δ = ǫ we find an open neighbourhood Bx0
(δ) ⊂ B1 of x0 such that |f(x)− f(x0)| < ǫ holds for

all f ∈ Φ′
n and x ∈ Bx0

(δ), so Φ′
n is indeed equicontinuous.

Proof of Theorem 3.6:
By proposition 3.4 and corollary 2.6 there exists, for every n-dimensional real Banach space (E, || · ||)
with closed unit ball B(E), an isomorphism T ∈ L(ln1 , E) such that B(E) ⊂ TB1 ⊂ nB(E) holds. By
dividing T by n, we may assume we have 1

nB(E) ⊂ TB1 ⊂ B(E), which implies that we have

1

n
||x||1 ≤ ||Tx|| ≤ ||x||1.

Since T is an isomorphism, we can define a norm || · ||F on R
n by ||x||F = ||Tx||, and this gives us a

Banach space F = (Rn, || · ||F ) which is isometric to E. Now for F we find

1

n
||x||1 ≤ ||Tx|| = ||x||F ≤ ||x||1.

This reasoning implies that for every n-dimensional real Banach space E, there exists a norm || · ||F ∈ Φn

such that E is isometric to F = (Rn, || · ||F ). This means that the natural map φ : Φ′
n → Fn sending the
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restriction to B1 of a norm || · || on R
n to the equivalence class of (Rn, || · ||), is surjective. We show that

it is continuous, so we can conclude that Fn is compact.
Hereto, choose ǫ > 0 and f0 ∈ Φ′

n. We show there exists a δ > 0 such that supx∈B1
|f(x)− f0(x)| < δ for

f ∈ Φ′
n implies d′(φ(f), φ(f0)) < ǫ.

Choose δ > 0 such that log( 1+nδ
1−nδ ) < ǫ and let f ∈ Φ′

n be such that supx∈B1
|f(x) − f0(x)| < δ. Now f

and f0 are restriction of norms g respectively g0 in Φn. So for any x ∈ R
n, x 6= 0, we find

|g(x) − g0(x)|
||x||1

=

∣

∣

∣

∣

g(
x

||x||1
) − g0(

x

||x||1
)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(
x

||x||1
) − f0(

x

||x||1
)

∣

∣

∣

∣

< δ,

and thus |g(x) − g0(x)| ≤ δ||x||1 for all x ∈ R
n. Now, since we have 1

n ||x||1 ≤ g0(x), this implies
|g(x) − g0(x)| ≤ nδg0(x) for all x ∈ R

n.
Now (1−nδ)g0(x) ≤ g(x) ≤ (1+nδ)g0(x) holds for arbitrary x ∈ R

n. If we let Bg and Bg0
be the unit balls

of R
n with the norms g respectively g0, this implies precisely that we have (1−nδ)Bg ⊂ Bg0

⊂ (1+nδ)Bg.
Using proposition 2.2, this implies we have

d′(φ(f), φ(f0)) = log(d(φ(f), φ(f0))) ≤ log(
1 + nδ

1 − nδ
) < ǫ.

So φ is continuous, and we have shown that Fn = φ[Φ′
n] is compact.

4 Gluskin’s theorem

We have estimated the diameter of Fn by giving an upper bound to the Banach-Mazur distance of any
n-dimensional Banach space to ln1 . One can wonder whether this gives the best bound. Fritz John
showed that this is not the case. He improved the estimate by bounding the distance of any space to the
n-dimensional real Euclidean space ln2 .

Theorem 4.1 (John (1948)). Let l2 ∈ Fn be the equivalence class of the space ln2 . Then we have
d(E, l2) ≤

√
n for any E ∈ Fn.

Corollary 4.2. diam(Fn) ≤ log(n) holds.

We will not prove this result, however a proof can be found in [Bollobás 1990, p. 68], amongst others.
Once again, we can ask ourselves whether this bound is optimal. This question was left open for more
than thirty years until Gluskin gave a lower estimate for the diameter of Fn.

Theorem 4.3 (Gluskin(1981)). There exists a c ∈ R>0 such that for every n ∈ N there exist n-
dimensional real Banach spaces E1 = (Rn, || · ||E1

) and E2 = (Rn, || · ||E2
) such that for every T ∈ L(Rn)

with |det(T )| = 1 we have ||T : E1 → E2|| ≥ c
√
n and ||T : E2 → E1|| ≥ c

√
n.

From this we easily find a lower bound for the diameter of Fn:

Corollary 4.4. There exists a c′ ∈ R≥0 such that, for every n ∈ N, we have diam(Fn) ≥ log(n) − c′.

Proof :
Let T ∈ L(Rn) be invertible and E1 and E2 as in Gluskin’s Theorem. Then S := T

n
√

|det(T )|
and

S−1 = T−1 · n
√

|det(T )| are invertible with determinant 1 or −1. We therefore have

||T : E1 → E2|| · ||T−1 : E2 → E1|| = ||det(T ) · S : E1 → E2|| · ||
1

det(T )
S−1 : E2 → E1||

9



= ||S : E1 → E2|| · ||S−1 : E2 → E1|| ≥ c2n.

Taking the infimum over all invertible T ∈ L(Rn) and then the logarithm, we find d(E1, E2) ≥ log(n) +
2 log(c). Now Corollary 4.2 implies we have log(c) ≤ 0 so letting c′ := −2 log(c) ≥ 0, we find the required
result.

The rest of this thesis will expand into the proof of theorem 4.3, a proof which uses an inventive measure-
theoretic approach towards showing the existence of the spaces E1 and E2.
Hereto, first fix a positive interger n ∈ N, let e1, . . . , en denote the standard basis in R

n, Sn−1 the
Euclidean unit sphere and for any m ∈ N, Am = (Sn−1)

m the set of all sequences of m elements from
Sn−1. Let λ denote the unique rotation-invariant Borel measure on Sn−1 such that λ(Sn−1) = 1 holds
[Folland 1999, p. 78].
Now we will construct, for each sequence (f1, . . . , fm) ∈ Am, a n-dimensional Banach space E having
unit ball B(E) = conv {±ei,±fj : i = 1, . . . , n, j = 1, . . . ,m}. To this end, we use the following lemma
from [Conway 1990, p. 102]:

Lemma 4.5. Let X be a vector space over R and V a non-empty convex, balanced set that is absorbing
at each of its points. Then there exists a unique seminorm p on X, given by p(x) = inf {t ≥ 0 : x ∈ tV },
such that V = {x ∈ X : p(x) < 1} holds.

A set V ⊂ X is balanced if αx ∈ V holds for all x ∈ V , α ∈ R with |α| ≤ 1. V is absorbing at v ∈ V if
for every x ∈ V there exists an ǫ > 0 such that v + tx ∈ V holds for all 0 ≤ t < ǫ.
Now we plan to apply this lemma to the interior int(B) ofB := conv {±ei,±fj : i = 1, . . . , n, j = 1, . . . ,m}.
Hereto, first note that any open set is absorbing at each of its points, and that int(B) is non-empty. Also,
the interior of any convex set is itself convex. Now since B contains any convex combination of e1 and
−e1, it contains 0, and so does int(B). The same holds for αx, where we have x ∈ int(B) and 0 ≤ α ≤ 1.
Since B is a convex combination of n + m elements and minus those elements, we have −x ∈ int(B)
for x ∈ int(B), so int(B) is balanced. This implies there exists a unique seminorm p on E such that
int(B) = {x ∈ E : p(x) < 1} holds. B = int(B) = {x ∈ E : p(x) ≤ 1} is the closed unit ball.
Now to show p is in fact a norm, let x ∈ E be such that 0 = p(x) = {t ≥ 0 : x ∈ t · int(B)}. Since
int(B) is bounded with respect to the Euclidean norm || · ||2, ||y||2 ≤ 1 holds for y ∈ int(B), and we
have ||x||2 ≤ inf {t ≥ 0 : x ∈ t · int(B)} = p(x) = 0. Thus x = 0 holds and p is in fact a norm. Since all
finite-dimensional real normed spaces are complete, (Rn, p) is a Banach space
So now we can construct, for each A = (f1, . . . , fm) ∈ Am, a n-dimensional Banach space EA. From now
on, given A ∈ Am, EA will denote such a space and || · ||EA

its norm.
In this way, elements of Am correspond to Banach spaces, and we have a product measure λm on
Am = (Sn−1)

m. So we can attempt to measure the set of Banach spaces which satisfy the requirements
of theorem 4.3. To make this more precise, we will show that the λm × λm-measure of the subset of
Am × Am of pairs satisfying theorem 38.4 is greater than 0, and therefore is non-empty. We will use a
few technical lemmas to estimate the measure of this set. We prove these lemmas for future use, even
though their meaning may not immediately be obvious.
The first lemma gives an upper bound for the λm-measure of a certain subset of Am:

Lemma 4.6. Let α =
√

3e3

π , ρ > 0, m ∈ N, B = (g1, . . . , gm) ∈ Am and T ∈ L(Rn) with |det(T )| = 1.

Then for all n large enough we have

λm

{

A ∈ Am : ||T : EA → EB || ≤ ρ
n3/2

α(m+ n)

}

≤ ρmn,

where λm is the product measure on (Sn−1)
m = Am.
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Proof :
Let B2 = B(ln2 ) denote the Euclidian unit ball and define W1 :=

{

x ∈ B2 : x
||x||2

∈W
}

. If W is Lebesgue

measurable, so is W1, and we have λ(W ∩ Sn−1) = vol (W1)
vol (B2)

, where vol is the usual Lebesgue measure on

R
n.

Now set r = ρ n3/2

α(m+n) . If we have A = (f1, . . . , fm) ∈ Am with ||T : EA → EB || ≤ r, then

fj ∈ {x ∈ Sn−1 : ||Tx||EB
≤ r}

for all j = 1, . . . ,m.
It is easy to show that {A ∈ Am : ||T : EA → EB || ≤ r} and {x ∈ Sn−1 : ||Tx||EB

≤ r} are closed subsets
of Am respectively Sn−1. Thus they are λm- respectively λ-measurable. From all this we find

λm {A ∈ Am : ||T : EA → EB || ≤ r} ≤ (λ {x ∈ Sn−1 : ||Tx||EB
≤ r})m. (5)

We now have

λ {x ∈ Sn−1 : ||Tx||EB
≤ r} = λ

{

x ∈ Sn−1 : x ∈ rT−1(B(EB))
}

= λ(rT−1(B(EB)) ∩ Sn−1). (6)

For any convex, Lebesgue measurable W ∈ R
n with 0 ∈W , we have W1 ⊂W and

λ(W ∩ Sn−1) =
vol (W1)

vol (B2)
≤ vol (W )

vol (B2)
.

Since B(EB) is closed, convex and contains 0, rT−1(B(EB)) is convex, Lebesgue measurable and contains
0. We find

λ(rT−1(B(EB)) ∩ Sn−1) ≤
vol(rT−1(B(EB)))

vol(B2)
. (7)

To estimate this latter quantity, we note that vol(B2) = πn/2

Γ(n/2+1) . Also, since we have |det(T )| = 1, we

find vol(rT−1(B(EB))) = rnvol(B(EB)). In Appendix A we show that

vol(B(EB)) ≤ (2e2
m+ n

n2
)n. (8)

Using Stirling’s formula on the Gamma function Γ(z) =
√

2π
z ( z

e )z(1 + O( 1
z )), and (7), we find, for n

sufficiently large,

λ(rT−1(B(EB)) ∩ Sn−1) ≤ rn vol(B(EB))

vol(B2)
≤ (αr

(m+ n)

n3/2
)n = ρn.

Combining this with (5) and (6) completes the proof.

In the next lemma we bound the cardinality of a net in a certain set of operators.
For any ǫ > 0, an ǫ-net N in a metric space (S, d) is a set such that for x, y ∈ N , x 6= y, we have
d(x, y) ≥ ǫ, and for all x ∈ S, there exists an y ∈ N such that d(x, y) ≤ ǫ. Now for B ∈ Am, define
MB := {T ∈ L(Rn) : ||Tei||EB

≤ √
n for i = 1, . . . , n} and let || · ||op be the Euclidean operator norm on

L(Rn), i.e. ||T ||op = ||T : ln2 → ln2 ||.
Lemma 4.7. There exists a constant a > 1 such that, for n ∈ N sufficiently large and all m ∈ N, if
B ∈ Am and 0 < ǫ ≤ 1 are given, there exists an ǫ-net NB in (MB , || · ||op) such that

cardNB ≤
(

a
m+ n

nǫ

)n2

. (9)
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Proof :
Choose B ∈ Am, ǫ ∈ (0, 1] and let U be unit ball of (L(Rn), || · ||op). Now indentify L(Rn) with R

n2

in
the usual way: T → (T (ei)) ∈ (Rn)n. In this way we identify MB with the subset

MB =
{

(x1, . . . , xn) ∈ (Rn)n : xi ∈
√
n(B(EB)) for all i = 1, . . . , n

}

.

Now we construct a sequence of points yk ∈ MB in the following manner. Choose y1 ∈ MB , and given
y1, . . . , yk ∈ MB , choose yk+1 ∈ MB \ (∪k

i=1Byi
(ǫ)). Now note that this process stops after a finite

number of steps. For since MB is bounded in (Rn)n, any infinite sequence in MB has a convergent
subsequence, and since the elements are ǫ-separated in the norm || · ||op, this process has to stop after
K ∈ N steps. Then the collection NB := {y1, . . . , yK} is easily seen to form an ǫ-net, since the elements
are all ǫ-separated and the existence of an element y ∈ MB such that d(y, yk) > ǫ for all k = 1, . . . ,K
contradicts the maximality of K.
The balls y + ǫ

2U , for y ∈ NB, are disjoint. Now the Cauchy-Schwarz inequality implies, for all x =
∑n

i=1 tiei ∈ R
n,

||x||EB
= ||

n
∑

i=1

tiei||EB
≤

n
∑

i=1

|ti| ||ei||EB
=

n
∑

i=1

|ti| · 1 ≤

√

√

√

√

n
∑

i=1

t2i

√

√

√

√

n
∑

i=1

1 =
√
n||x||2.

From this we find
||T (ei)||EB

≤ √
n||T (ei)||2 ≤ √

n||T : ln2 → ln2 ||
for i = 1, . . . , n, and this implies that U ⊂MB . Now we find that each of the balls y + ǫ

2U , for y ∈ NB ,

are contained in (1 + ǫ
2 )MB . Now the corresponding set NB ∈ L(Rn) of course forms an ǫ-net in MB .

We now find from the above

K
( ǫ

2

)n2

vol (U) = vol
(

∪T∈NB
(T +

ǫ

2
U)

)

≤ vol
(

(1 +
ǫ

2
)MB

)

=
(

1 +
ǫ

2

)n2

vol (MB).

From this we find the inequalityK ≤
(

1 + 2
ǫ

)n2
vol (MB)
vol (U) , so it remains to find an upper bound for vol (MB)

and a lower estimate for vol (U). The lower estimate vol (U) ≥ (bn)n2/2vol (U2), where b > 0 is a universal

constant and U2 is the Euclidean unit ball in R
n2

, is given in Appendix B. For the upper bound, notice
that MB = (

√
nB(EB))n holds. We find, from the estimate in Appendix A, for n sufficiently large,

vol (MB) = (vol (
√
nB(EB)))n ≤

(

2e2
m+ n

n3/2

)n2

.

Combining all this with vol (U2) = πn2/2

Γ(1+n2/2)
and using Stirling’s formula for the Gamma function, we

find, for n sufficiently large, a universal constant a > 0 such that

card (NB) = K ≤
(

1 +
2

ǫ

)n2
(

2e2
m+ n

n3/2

)n2

Γ(1 + n2/2)
(bπn)n2/2

≤
(

a
m+ n

ǫn

)n2

holds. Now note we can always choose a such that a > 1.

With these two lemma we are ready to prove Gluskin’s theorem.

Proof of theorem 4.3:
Choose n sufficiently large for lemmas 4.6 and 4.7 to hold, set m = 2n and let α > 1 and a > 1 be

12



the universal constants as before. Now choose 0 < ρ < 1
18aα and 6aρ2 < ǫ < ρ

3α (the condition on ρ is
precisely what makes this possible). Then we have 0 < ǫ < 1. Now fix a B ∈ A2n and consider the set

B′ =
{

A ∈ A2n : ||T : EA → EB || <
( ρ

3α
− ǫ

)√
n for some T ∈ L(Rn) with |det (T )| = 1

}

.

This set is open in A2n and thus λ2n-measurable. We want to show that

λ2n(B′) ≤
(

3aρ2

ǫ

)n2

<

(

1

2

)n2

. (10)

Hereto, let NB = {Tk} ⊂MB be the ǫ-net constructed in lemma 4.7. Choose A ∈ B′ and let T ∈ L(Rn)
be such that ||T : EA → EB || < ( ρ

3α −ǫ)√n. Since we have ρ
3α −ǫ < ρ

3α < 1, we find T ∈MB. Thus there
exists a Tk ∈ NB with ||(T − Tk) : ln2 → ln2 || < ǫ. Now from the inequality || · ||2 ≤ || · ||EC

≤ √
n|| · ||2, for

any C ∈ A2n, we find that ||S : EA → EB || ≤ √
n||S : ln2 → ln2 || for all S ∈ L(Rn). From all this we find

||Tk : EA → EB || ≤ ||T : EA → EB || + ||(T − Tk) : EA → EB || <
( ρ

3α

)√
n,

and thus we have
B′ ⊂ ∪K

k=1

{

A ∈ A2n : ||Tk : EA → EB || ≤
( ρ

3α

)√
n
}

.

Now we use lemmas 4.6 and 4.7 to conclude that we have

λ2n(B′) ≤
K

∑

k=1

λ2n
{

A ∈ A2n : ||Tk : EA → EB || ≤
( ρ

3α

)√
n
}

≤
(

3a

ǫ

)n2

ρ2n2

=

(

3aρ2

ǫ

)n2

<

(

1

2

)n2

,

so we have shown that (10) holds.
Now consider the subset G ⊂ A2n ×A2n given by

G =
{

(A,B) ∈ A2n ×A2n : ||T : EA → EB || <
( ρ

3α
− ǫ

)√
n or

||T : EB → EA|| <
( ρ

3α
− ǫ

)√
n for some T ∈ L(Rn) with |det (T )| = 1

}

.

Now Fubini’s theorem for λ2n × λ2n and inequality (10) imply that

(λ2n × λ2n)(G) < 2

(

1

2

)n2

≤ 1

holds. This implies the complement of G in A2n ×A2n is non-empty, and this precisely means that there
exists a pair EA, EB of spaces satisfying the conditions of theorem 4.3, for c = ρ

3α − ǫ > 0.
Now we have shown theorem 4.3 holds for n sufficiently large, and we can always choose c > 0 universally
such that this theorem holds for all n ∈ N.

5 Additional results

Now that we have shown that Gluskin’s theorem holds, the first thing we could ask ourselves is: what do
the spaces EA, for A ∈ Am, look like? Fortunately, these spaces are not as exotic as they may appear.
In fact, we can show that these spaces are isometric to quotients of l3n

1 , the space R
3n with the absolute

norm. If we have A = (f1, . . . , f2n) ∈ A2n, the map Q : l3n
1 → EA given by Q(ei) = ei for i = 1, . . . , n

13



and Q(ei) = fi−n for i = n+ 1, . . . , 3n, is a quotient map. So in a sense, we can view the spaces EA and
EB satisfying theorem 4.3 as ’random’ quotients of l3n

1 .
Also, since we can easily show that the Banach-Mazur distance is invariant under the taking of duals, i.e.
d(X,Y ) = d(X∗, Y ∗) holds for all spaces, and the dual of a quotient of l3n

1 is isomorphic to a subspace of
l3n
∞ , we can find subspaces of l3n

∞ satisfying theorem 4.3.
The second thing to remark is that Gluskin’s technique has inspired some other results, two of which we
shall state here. To this end, we must first remark that we can introduce the Banach-Mazur distance for
complex spaces, and most results, including theorem 4.3, transfer unchanged. The two results we discuss
are from [Szarek 1986].
The first is a theorem that asserts that, for n ∈ N, the set of 2n-dimensional real spaces admitting a
complex structure is not dense in F2n.

Theorem 5.1. There exists a constant c > 0 such that for all n ∈ N there exists a 2n-dimensional real
Banach space E which has the following property: whenever F is an n-dimensional complex Banach space
and FR is F treated as a 2n-dimensional real space, then the (real) Banach-Mazur distance between E
and FR satisfies d(E,FR) ≥ c

√
n.

Now our second result, also due to Szarek, is the following:

Theorem 5.2. There exists a constant c > 0 such that for every n ∈ N, there exist n-dimensional
complex Banach spaces E and F which are isometric as 2n-dimensional real spaces, but with complex
Banach-Mazur distance d(E,F ) ≥ cn.

It implies that n-dimensional complex spaces which are isometric as 2n-dimensional real spaces need not
be isometric as complex spaces.

6 Conclusion

We have introduced the Banach-Mazur distance, explored some of its properties and seen how this
distance leads to the introduction of the Minkowski compactum Fn, our ’space of spaces’. We have
seen that this space is bounded and indeed compact, and have in fact that its diameter is bounded by
n. We then wondered how accurate this bound is, and have investigated an answer to this question by
Gluskin. He used a meausure-theoretic approach to prove the existence of spaces with Banach-Mazur
distance approximately n. We have delved into his proof and expanded the short version he originally
gave, expanding it so it can hopefully be understood by a mathematics student at master’s level, with
some effort.
All in all, we hope to have shared with the reader Gluskin’s intriguing technique, and to have raised his
or her interest in general functional analysis and measure theory.
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A Upper bound for the volume of a unit ball

In this appendix we give, for n sufficiently large, the following upper bound for the volume of the unit
ball B(EA) of EA, for A ∈ Am:

vol(B(EA)) ≤
(

2e2
m+ n

n2

)n

.

Hereto, we first show that

vol(B(EA)) ≤
∑

vol(σ(x1, . . . , xn)),

holds, where the summation runs over all choices {x1, . . . , xn} ⊂ {±ei,±gj : i = 1, . . . , n, j = 1, . . . ,m}
of n distinct elements, and where σ(x1, . . . , xn) = conv(0, x1, . . . , xn).
The first thing to note here is that we have

B(EA) ⊂ ∪σ(x1, . . . , xn+1),

where the summation runs over all choices of n+ 1 distinct elements, by Carathéodory’s theorem
[Tyrrell Rockafellar 1970, 155]. So it remains to show we have σ(x1, . . . , xn+1) ⊂ ∪σ(xk1

, . . . , xkn
), where

the union runs over all choices of n distinct elements from {x1, . . . , xn}. To this end, let T : R
n+1 → R

n

be given by T (ei) = xi and denote C := σ(e1, . . . , en+1) ⊂ R
n+1. Then we have T [C] = σ(x1, . . . , xn+1),

and so we need to show that T [C] = ∪n+1
i=1 T (C ∩ Ri) holds, where Ri ⊂ R

n+1 is the subset of elements
whose i-th coordinate is 0.
Hereto, choose x ∈ C and v ∈ ker (T ), v 6= 0. Then we have T (x + λv) = T (x) for all λ ∈ R, and
the line ∪λ∈R(x + λv) ⊂ R

n+1 has non-empty intersection with ∪n+1
i=1 Ri, so there exists an i such that

(∪λ∈R(x+ λv)) ∩Ri 6= ∅ holds. This implies we indeed have T [C] = ∪n+1
i=1 T [C ∩Ri], and thus also

σ(x1, . . . , xn+1) = T [C] = ∪n+1
i=1 T [C ∩Ri] = ∪n+1

i=1 σ(x1, . . . , xi−1, xi+1, . . . , xn+1).

From all this we find B(EA) ⊂ ∑

σ(x1, . . . , xn+1).
Each of the simplices σ(x1, . . . , xn) has volume vol(σ(x1, . . . , xn)) = vol(σ(e1, . . . , en)) · |det(X)|, where X
is the matrix

[

x1 . . . xn

]

. Now Hadamard’s inequality implies we have |det(X)| ≤ ∏n
i=1 ||xi||2 = 1,

since xi ∈ Sn−1 holds. From all this we find

vol(B(EA)) ≤
∑

vol(σ(x1, . . . , xn)) ≤
(

2(m+ n)
n

)

vol(σ(e1, . . . , en)).

Now, we have vol(σ(e1, . . . , en)) =
∫

σ(e1,...,en)
dx = 1

n! , and then Stirling’s formula implies, for n suffi-

ciently large, the bound

vol(B(EA)) ≤
(

2(m+ n)
n

)

1

n!
≤

(

2e2
m+ n

n2

)n

.

B Lower bound for the volume of a unit ball

In this section we give a lower bound for the volume of the unit ball U of the space (Rn2

, || · ||op). Hereto,

let U2 denote the Euclidean unit ball in R
n2

. Since both sets are closed, they are Lebesgue measurable.
We will go on to prove the following

Lemma B.1. We have
vol (U) ≥ vol (U2)(bn)n2/2,

where b > 0 is a universal constant.
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For the moment, let λ be the unique normalized rotation invariant measure on S := Sn2−1. We first show
that

vol(U) = vol(U2) ·
∫

S

||x||−n2

op dλ(x) (11)

holds. Since U is Lebesgue measurable, so is its indicator function I. We now integrate in polar coordi-
nates ([Folland 1999, p. 78]) to find a rotation invariant Borel measure σ on S such that

vol (U) =

∫

Rn2
I(x)dx =

∫

S

∫ ∞

0

I(r · x′)rn2−1dr dσ(x′),

where we have x′ = x
||x|| ∈ S and r = ||x|| ∈ [0,∞). Since this σ is not normalized (σ(S) = 2πn2/2

Γ(n2/2)

[Folland 1999, 79]), we normalize it to find

vol (U) =
2πn2/2

Γ(n2/2)
·
∫

S

∫ ∞

0

I(r · x′)rn2−1dr dλ(x′).

Now there exists, for each x′ ∈ S, a R(x′) ∈ [0,∞) such that I(rx′) = 0 holds for all r > R(x′) and
I(rx′) = 1 for all r ≤ R(x′). We find

vol (U) =
2πn2/2

Γ(n2/2)
·
∫

S

∫ R(x′)

0

rn2−1dr dλ(x′) =
2πn2/2

Γ(n2/2)
· 1

n2

∫

S

R(x′)n2

dλ(x′).

To determine R(x′), note that we have 1 = ||R(x′) ·x′||op = R(x′)||x′||op and thus R(x′) = ||x′||−1
op . From

this we find

2πn2/2

Γ(n2/2)
· 1

n2

∫

S

R(x′)n2

dλ(x′) =
2πn2/2

Γ(1 + n2/2)
·
∫

S

||x′||−n2

op dλ(x′) = vol (U2) ·
∫

S

||x′||−n2

op dλ(x′),

so we have indeed shown (11).
Now Hölder’s inequality and the fact that the Lp-norm is monotonically increasing on S imply that we
have

1 =

∫

S

1dλ(x) ≤ (

∫

S

||x||2opdλ(x))1/2(

∫

S

||x||−2
op dλ(x))1/2 ≤ (

∫

S

||x||2opdλ(x))1/2(

∫

S

||x||−n2

op dλ(x))1/n2

for n > 1, and thus we find

vol (U) = vol (U2) ·
∫

S

||x||−n2

op dλ(x) ≥ vol (U2)(

∫

S

||x||2opdλ(x))−n2/2.

Now we look to give a lower bound for the integral
∫

S
||x||2opdλ(x). Hereto, we pass to Gaussian variables.

Lemma B.2. Let || · || be a norm on R
m, (Ω, µ) a probability space and {gj}, for j = 1, . . . ,m, a sequence

of independent standard Gaussian random variables on Ω. Then we have

∫

Sm−1

||x||2dλ(x) =
1

m

∫

Ω

||
n

∑

j=1

gj(ω)ej ||2dµ(ω), (12)

where {ej} is an orthonormal basis in R
m−1.
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Proof :
We first show that, for general continuous f : Sm−1 → R and f : R

m → R a 2-homogeneous extension of
f to R

m given by f(x) = f( x
||x||2

)||x||22, we have

∫

Sm−1

f(x)dλ(x) =
1

m

∫

Rm

f(x)dγ(x) (13)

holds, where γ is the Gaussian measure on R
m.

To see that this is the case, note that l : C(Sm−1) → R given by l(g) =
∫

Rm g(x)dγ(x), where g is the
2-homogeneous extension given before, is a positive linear functional on C(Sm−1). Also note that this
functional is rotation-invariant. By the Riesz representation theorem we find a regular rotation-invariant
Borel measure λ′ on Sm−1 such that

∫

Rm

g(x)dγ(x) = l(g) =

∫

Sm−1

g(x)dλ′(x)

holds for all g ∈ C(Sm−1). Now since a rotation-invariant Borel measure is unique up to multiplication
by constants, we find a K > 0 such that

∫

Sm−1

f(x)dλ(x) = K

∫

Rm

f(x)dγ(x)

holds. Evaluating for f(x) = ||x||2, we indeed find K = 1
m .

Now because the coordinate functionals x 7→ (x, ej) are independent standard Gaussian random variables
on (Rn, γ), the map ψ : Ω → R

m given by ψ(ω) = (g1(ω), . . . , gm(ω)), is (Rm, γ)-measurable. Thus we
can show that

∫

Rm

||x||2dγ(x) =

∫

Rm

||
m

∑

j=1

(x, ej)ej ||2dγ(x) =

∫

Ω

||
m

∑

j=1

gj(ω)ej ||2dµ(ω). (14)

Combining (13), for f(x) = ||x||2, and (14), we indeed find (12).

Proof of Lemma B.1:
Using Lemma B.2 on the norm || · ||op on R

n2

, we find

vol (U) ≥ vol (U2) · (
1

n2

∫

Ω

||[gij(ω)]||2opdµ(ω))−n2/2,

where (Ω, µ) is a probability space and {gij}, for i, j = 1, . . . , n, is a sequence of independent standard
Gaussian random variables on Ω.
Now we use an inequality from [Chevet 1977], to find

∫

Ω

||[gij(ω)]||2opdµ(ω))1/2 ≤ b′
√
n, (15)

where b′ > 0 is a universal constant. Another more elementary but still quite involved argument showing
(15) can be found as lemma 38.6 in [Tomczak-Jaegermann 1989, p. 288].
From all this we find

vol (U) ≥ nn2 · vol (U2)

(b′
√
n)n2 = (bn)n2/2vol (U2),

where b > 0 is a universal constant.
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