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1 PageRank

1.1 Introduction

PageRank is developed at Stanford University by the two PhD-students Sergey
Brin and Larry Page and first introduced in [18]. Its purpose was to solve the
problem of the growing Web1. Search engines used to return a lot of results
at a given search term, but could not provide a useful order for this results.
Because of the exponentially growing Web, the usability of these results was
getting worse and worse. PageRank is a web ranking system. Its ranking is
based on the link structure of the Web. The main idea is that webpages are
important, if linked to by important webpages.

PageRank is implemented by Google for its search results. PageRank is often
stated as the most important factor in Google’s scoring. This is not - at least not
any more [16]- the case. It is nevertheless clear that knowledge about PageRank
is useful in other areas, f.e. to determine which webpages to crawl (see chapter
7.4).

Calculating PageRank is quite time and memory consuming. This cannot be
done online at the moment a user is searching (query time), because it takes
weeks to calculate, and the user wants an answer within several seconds or
even less. Fortunately, the PageRank score is independent of the search queried
by the user. Therefore it is possible to calculate the PageRank scores for all
webpages offline. The PageRank scores are saved in memory and can be used
whenever a user searches online.

The PageRank that is described in [18] gives a universal score for the pages of
the web. It is however possible to change the calculations so that the results will
reflect someone’s personal preferences. One could think that these personalized
calculations could make personalized PageRanks for all users, thereby improving
the personal search experiences. However the calculations are requiring so many
resources, that this is not possible to do for all users.

In this thesis we describe other - smarter - ways to personalize PageRanks. We
also describe some experiments and give some general acknowledgements. In
the section 7 we comment on some articles in this field, f.e. on [13], for which
we did quite some work to clarify.

1Web stands for World Wide Web
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1.2 Notation

For the purpose of general understanding we first introduce the notation in this
thesis.

All vectors in this thesis are recognizable by their overline and will be expressed
by row vectors (e.g. u is a row vector, which makes uT a column vector). For
all vectors in this thesis we have

||v|| =
∑

i

|v(i)| ≤ 1.

The vector should be seen as distributions rather than arrows. The i’th compo-
nent of a vector is denoted by v(i). Scalars are in lower case (e.g. c). Matrices
will be written in upper case (e.g. A). Matrices are always of size n2, where n
is the size of the web. Matrices are often (sub-)stochastic, but can be binary.
The element in the i’th row and j’th column is denoted by Aij .

e is the vector consisting of ones only, often used to sum rows or columns or to
find a norm:

e = [1, 1, . . . , 1, 1] .

ei is the i’th unit vector.

In this thesis the words webpage and node are synonyms just like the words link
and arc.
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1.3 Web as a directed graph

The web can be seen as a directed graph (V, Ã). Each webpage is a node v ∈ V
and a link from webpage v1 to webpage v2 is an arc a ∈ Ã. This graph can be
represented by its adjacency (binary) matrix B

Bij =
{

1 if vi links to vj ,
0 elsewhere.

Now
O

T
= BeT

is the vector with components equal to the number of outgoing links for all
webpages (e.g. O(i) is the number of outgoing links on webpage i). We also
have

I = eB

the vector with components equal to the number of incoming links for all web-
pages (e.g. I(i) is the number of incoming links for webpage i).

We call nodes {i : O(i) = 0} ⊂ V dangling nodes (in words: webpages without
outgoing links). Now

Cij =
{ 1

O(i) if O(i) 6= 0 (or i is no dangling node),
0 elsewhere

is a sub-stochastic matrix (rowsums is 1 or 0).

To create a stochastic matrix we alter C by introducing a distribution vector
w : ||w|| = 1.

Aij =
{ 1

O(i) if O(i) 6= 0 (or i is no dangling node),
w(j) i is a dangling node.

In terms of the web this can be seen as altering the web so that all dangling
nodes are connected to the nodes for which the corresponding element in w
is nonzero. Now A is a stochastic matrix. The right eigenvector is eT with
eigenvalue 1:

AeT = eT .

This implies that there exists also at least 1 left eigenvector corresponding to
eigenvalue 1.
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1.4 Random Walk on the Web

On this web (or in this matrix) we can observe a random walk. Start in any
node vi of the graph and walk to vj with probability Aij . Now the distribution
of the position in the long run yields information about which nodes can be
viewed as more important then others.

To calculate this distribution we can use Markov theory. In Markov theory
this distribution is called the stationary distribution of a Markov chain. Here
A is the transition matrix of the Markov chain and the stationary distribution
satisfies

π = πA,

where π is the left eigenvector corresponding to eigenvalue 1. This π is not
necessary unique, but is unique if the Markov chain is irreducible and aperiodic.
Therefor we alter A one more time.

First we introduce a so called teleportation vector u : ||u|| = 1. This vector
describes a uniform distribution on all webpages. Note that u can be equal to
w. We also introduce a damping factor c (in [18] c is chosen 0.85).

P = cA+ (1− c)eTu.

One can interpret this modification as follows: the random walker has prob-
ability (1 − c) at every step to be teleported to a random page of the web,
independent of the outgoing links of the webpage of its position. It is clear that
this modification makes P irreducible and aperiodic: all nodes are connected.

PageRank is the unique vector π with

π = πP.

Because P is aperiodic and irreducible (or ergodic), this stationary distribution
π can be found by the powermethod:

π1 = π0P

π2 = π1P

. . .

πN = πN−1P

with N →∞, for any probability vector π0.

Applying this gives
πN = π0PN−1.
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Because P is irreducibel and aperiodic,

lim
n→∞

Pn =


π
π
...
π
π

 .

π0Pn → π for all initial probability vectors π0.

This method does not find a approximation, but is able to find the exact solution
to a certain precision.

If N denotes the number of steps then we can approximate π by precision
ε = (1 − c)(cN+1 + cN+2 + . . .) = cN+1. This method is described in [18] as a
very fast way to calculate a satisfactory PageRank π.
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1.5 Alternative notation

Now the PageRank formula can be described as

π = πP

= π(cA+ (1− c)eTu)
= πcA+ (1− c)πeTu

= πcA+ (1− c)u,
(1)

where we have used πT e = 1 since ||π|| = 1 in the last equation. Hence,

π(I − cA) = (1− c)u
(2)

and so

π = (1− c)u(I − cA)−1

= (1− c)u
∞∑

n=0

cnAn. (3)

In this notation, it is easier to see that the PageRank vector defines a probabil-
ity: the probability of being in node i during a random walk of N steps with
probability (1 − c)cN over the graph defined by A, when started in an initial
node according to probability distribution u.

Note that the formula for π in equation 3 does not provide a good way to
calculate π. Calculating An in the summation involves the multiplication of
two n2 matrices. Matrix multiplication is too complex to be done with matrices
of size n > 1 trillion, which [2] claimed as the size of the web.
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2 Personalization of PageRank

In this section we will discuss a property of PageRank and we will prove a the-
orem on convex combinations. Together these create insight in how to combine
specific PageRanks, so that they can be used to create personalized PageRanks.

Personalizing search results improves user experience by choosing another (than
default) order of the search results.

Example 2.1. Person A is basketball fan and likes to read the latest transfer
details of players from the Chicago Bulls (the basketball team from Chicago,
USA). He will use the query ”bulls prices”. Person B is farmer and wants
to have up to date information about the value of his stock. He will also use
the query ”bulls prices”. Without personalizing, the search engine has to give
the same results to both persons. At least one of the persons will not have the
best search experience possible. When the search engine has knowledge of the
background of the user, it will be able to serve the user with the right personalized
results, thereby providing the user a better search experience.

(Of course this can be influenced by inserting extra search terms).
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2.1 Teleportation vector u and Point of View PageRank

In the PageRank formula the teleportation vector u has a great influence on
determining the outcome. The biasing of the PageRank by this vector is first
suggested in [17], and thereafter explored many times ([9],[10],[11]). In this
thesis the goal of biasing the PageRank with the teleportation vector is to
personalize the search results. However, it may also be used for other purposes,
f.e. to fight spam in the search results by giving spam pages probability 0 in u.

By changing the teleportation probabilities u we can personalize PageRank in
quite an intuitive way: by increasing the probability of teleporting to a page in
the user’s field of interest and by decreasing the probability of teleporting to a
page outside the user’s field of interest.

In theory one could provide one’s personal u (think of a uniform distribution
over the pages one has bookmarked). It is nevertheless impossible to calculate
a personalized pagerank for every user, because the calculations are requiring
so many resources.

One of the possibilities is to take u = ei. This gives a special PageRank πi.
One can look at this PageRank as the ranking of the web from page i’s point
of view. In the light of the random walk, this special model describes a random
walk starting on page i, for N steps.

Under πi, pages in the ’neighborhood’ of page i will have a relative high PageR-
ank. Pages are in the ’neighborhood’ of i when the number of steps to get from
i to the page is relative small. The web is a small world [1], so relative small
should be thought of as in 1, 2 maybe 3 steps.
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2.2 Convex Combinations of PageRanks

Theorem 2.1. For any convex combination of two teleportation vectors u1, u2:

λu1 + (1− λ)u2 = u3

we have
λπu1 + (1− λ)πu2 = πu3 .

Proof.

λπu1 + (1− λ)πu2 = λ(1− c)u1

∞∑
n=0

cnAn + (1− λ)(1− c)u2

∞∑
n=0

cnAn

= (λu1 + (1− λ)u2)(1− c)
∞∑

n=0

cnAn

= u3(1− c)
∞∑

n=0

cnAn.

So a convex combination of teleportation vectors will lead to the same convex
combination of PageRank vectors. This result is true for all PageRank combi-
nations, but of special value for Point of View PageRank. This result makes
it easy to generate new PageRanks from existing Point of View PageRanks.
We believe the proof is more transparent than the proof given in [13], due to
representation (3) of π .
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2.3 Personalization in N dimensions

As stated in [13] these results can be used to introduce personalization to a
certain level. One can calculate the Point of View PageRank for a number
of webpages, π1, . . . , πN . One can than define a convex combination for each
user, λ1, . . . , λN

∑N
i=1 λi = 1, which doesn’t need any calculations per se and

is very easy (small) to store. During query time a Personalized PageRank can
be calculated simply by applying theorem 2.1 on the user defined λi’s and the
precalculated πi’s.

Complexity for calculating the πi’s is growing linear with N . In [13] is stated
how decomposition of A can be used to decrease complexity for bigger N .

Example 2.2. The Open Directory Project is a directory of links maintained
by volunteers. It exists of 16 topics (e.g. Arts, Business and Science). Each
topic has a webpage that links to webpages of subtopics and webpages that are
relevant for the topic.

One can calculate the Point of View PageRank for each webpage of these 16
topics. By letting users score their interest in each topic, one can create a
Personalized PageRank based on these Point of View PageRanks.

This is the example given for personalization in N dimensions in [9],[10] and
[11].
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3 Decomposition of A using a taboo set

Random walks can be observed in different ways. One such way is to decompose
the walks in different smaller parts. We use the last exit decomposition described
in [7] and first applied to PageRank in [13].

i j

h

Figure 1: Last exit decomposition with the rectangle H

First we look at all the walks that do not pass any state in a subset2 H. These
walks run on the matrix

HAij =
{

0 j ∈ H,
Aij else.

(HA)0 = I.

All others walks will pass subset H. You can decompose each of such ’passing
H’-walks into two segments. The first segment of the walks passing H consists
of the part where H may be visited, up to the time of the last visit. The last
segment starts in h ∈ H and consists of the walk that does not visit H anymore.
This is called the last exit decomposition.

For the last exit decomposition of A over a subset H ⊂ V , we get

An
ij =

n−1∑
l=1

∑
h∈H

Al
ih(HA)n−l

hj + (HA)n
ij

for i, j /∈ H.

In the next section we apply this decomposition to the Point of View Pagerank.

2also known as a taboo set
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3.1 Point of View PageRank

The last-exit-decomposition can be applied to the Point of View PageRank:

πi = (1− c)ei

∞∑
n=0

cnAn

= (1− c)eiI + (1− c)ei

∞∑
n=1

cnAn.

Hence for i, j /∈ H,

πi(j) = (1− c)ei(j) + (1− c)ei(i)
∞∑

n=1

cnAn
ij

= (1− c)ei(j)

+(1− c)ei(i)
∞∑

n=1

cn(
n−1∑
l=1

∑
h∈H

Al
ih(HA)n−l

hj + (HA)n
ij) (4)

= (1− c)ei(j) + (1− c)ei(i)
∞∑

n=1

cn(HA)n
ij

+(1− c)ei(i)
∞∑

n=1

cn(
n−1∑
l=1

∑
h∈H

Al
ih(HA)n−l

hj ),

where the empty sum
∑0

l=1 in equality (4) equals zero. We have for

(1− c)ei(i)
∞∑

n=1

cn(
n−1∑
l=1

∑
h∈H

Al
ih(HA)n−l

hj )

= (1− c)ei(i)
∑
h∈H

∞∑
l=1

Al
ihc

l
∞∑

n=l+1

(HA)n−l
hj cn−l (5)

= (1− c)ei(i)
∑
h∈H

∞∑
l=1

Al
ihc

l
∞∑

n=1

(HA)n
hjc

n.

We have used interchange of summation to obtain equality (5):

∞∑
n=1

n−1∑
l=1

=
∞∑

l=1

∞∑
n=l+1

.

So:

πi(j) = (1− c)ei(j) + (1− c)ei(i)
∞∑

n=1

cn(HA)n
ij

+(1− c)ei(i)
∑
h∈H

∞∑
l=1

Al
ihc

l
∞∑

n=1

(HA)n
hjc

n.
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3.2 Explanation

πi(j) is the PageRank value of page j from page i’s Point of View. It consists
of three parts:

(1− c)ei(j)

equals 1− c when i = j and 0 when i 6= j. This describes the random walk from
i to itself by teleportation (in zero steps);

(1− c)ei(i)
∞∑

n=1

cn(HA)n
ij

is the part of the equation standing for all random walks from i to j without
passing any site in H (site i and j both not in H);

(1− c)ei(i)
∑
h∈H

∞∑
l=1

Al
ih(1− c)l

∞∑
n=1

(HA)n
hjc

n

is the part of the equation standing for all random walks from i to j that pass
a site in H. In the sum over all h ∈ H this product of two sums is written in
a special form. The first sum is a new random walk from i to h (with walks
consisting of at least one step) or in formula form: πi(h) − (1 − c)ei(h). Note
that this formula is independent of endpoint j. The last sum is the random walk
from h to the end-point j without passing H. Note that this is independent of
starting point i.

Therefore, both parts of this equation can be calculated once for all h ∈ H, and
reused for all i and for all j.

A shorter notation for πi(j) is therefore:

πi(j) = (1−c)ei(j)+(1−c)
∞∑

n=1

cn(HA)n
ij+

∑
h∈H

(πi(h)−(1−c)ei(h))
∞∑

n=1

(HA)n
hjc

n.

In [13] is a proof of three pages added for the above result. It was part of this
thesis research to make this more clear. We believe that using taboo theory
and introducing a more formal notation, the result can be achieved in a more
transparent manner.
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4 Dangling nodes

Dangling nodes are webpages which do not have outgoing links. Without the
solution proposed in 1.3 of restarting a new random walk, these nodes become
probability sinks. This is an unwanted effect. Other than the addition of w,
there are several solutions for this problem.

In [6] is suggested to remove the dangling nodes before the calculations and add
them after. It is not shown there how this should be done. In [14] is suggested
to add the nodes for the final few iterations of the computations.

Another solution is lumping all dangling nodes into a single node [12].

Because the number of dangling nodes can be quite high (up to 50% of all nodes
[12]), it may be very beneficial to find a solution that reduces the amount of
work per dangling node.

In the next section we introduce solutions that reduces the number of nonzero
elements by at least (n− 1)× d, where d is the number of dangling nodes. We
do this by introducing an extra node to the graph. This solution is new and
developed as a part of the research project for this thesis.

17



4.1 Extra Node Solution

We introduce two solutions for the dangling nodes. These solutions can be
compared to the solution in subsection 1.3 with w = u.

Add another node v and link all dangling nodes to v. The outgoing link distri-
bution of v is equal to the teleportation vector u. By renumbering the nodes so
that the dangling nodes have highest numbers, this can be presented as

P ′ =

 Pnd 0
Pd 1
u 0

 ,

where Pnd (n × #nd) are the rows corresponding to the non-dangling nodes
and Pd (n×#d) are the rows corresponding to the dangling nodes (#nd is the
number of non-dangling nodes and #d is the number of dangling nodes).

A step further is to remove the teleportation from the rows itself, by using the
sub-stochastic matrix A (n× n) and change it so that the teleportation is done
by adding a link to the extra node with probability (1− c).

P ′′ =

 cAnd (1− c)
Ad 1
u 0

 .

In the next subsection we will prove that this does not change the order of the
PageRanks of the legitimate webpages, compared to the solution in subsection
1.3 with w = u.
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4.2 Proof of Extra Node Solution

It is not straightforward that the Extra Node Solution is indeed correct and
does not affect the order of the PageRanks of the legitimate webpages.

The proof comes from general Markov Chain theory. We define f (n)
ij the first

entrance probability of j starting in i at time n. Now

f∗ij =
∞∑

n=1

f
(n)
ij

is the probability that that a random walk will reach j at least once starting in
i. Further,

mij =
∞∑

n=1

nf
(n)
ij

is the mean first entrance time of j. mii is the mean recurrence time of i. The
stationary probability can be described as

π(i) =
f∗ii
mii

=
1
mii

.

By [7] we know that

π(j)
π(i)

=
mii

mjj
=
∞∑

n=0

ip
(n)
ij =: ip

∗
ij , (6)

where ip
∗
ij can be interpreted as the expected number of visits of j before re-

turning to i.

Now we compare probabilities p and π(i) in the original web, with the proba-
bilities p̃ and π̃(i) in the web with the extra node.

ip
∗
ij = ip̃

∗
ij , i, j 6= v.

The extra node does not change the probability ip
∗
ij for any i, j 6= v. So the

proportion remains the same for any two pages. This implies

π(j)
π(i)

=
π̃(j)
π̃(i)∑

j 6=v π(j)
π(i)

=

∑
j 6=v π̃(j)
π̃(i)

1
π(i)

=
1− π̃(v)
π̃(i)

.
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So
π(i)(1− π̃(v)) = π̃(i).

The absolute PageRank for any page does change, because some probability
weight will remain in the extra node. It is important to keep this in mind,
when using an algorithm resulting in convergence to a certain precision. The
next section will provide insight in the amount of PageRank that remains in the
extra node.

In [12] is suggested to lump all dangling nodes before calculations. Also a
proof that this does not change the order of the PageRanks of the legitimate
webpages is given. The construction in the proof above can also be used to proof
the legitimacy of lumping all dangling nodes. Simply by lumping the dangling
nodes so that

ip
∗
ij = ip̃

∗
ij

with i, j non-dangling nodes. This can be done by using the same distribution
for outgoing links in the dangling nodes as in the lumped node. We believe
the proof is more transparent than the proof given in [12], due to use of taboo
theory.

The taboo decomposition in equation 6 can be interpreted as

π(j) = π(i)ip
∗
ij

and for j /∈ A:
π(j) =

∑
a∈A

π(a)Ap
∗
aj ,

where Ap
∗
aj can be interpreted analog as ip

∗
ij . By applying this substitution

again for
π(a) =

∑
b∈B

π(b)Bp
∗
ba,

we get for j /∈ A:
π(j) =

∑
a∈A

∑
b∈B

π(b)Bp
∗
baAp

∗
aj .

In section 5.2 we introduce an algorithm based on this double taboo decompo-
sition.

Note that this taboo decomposition is different than the last exit decomposition
described in section 3.
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4.3 Weight in Extra Node

We have
πP = π

π̃P̃ = π̃.

V

N

D

1- c

1

Figure 2: Weight in extra node v

Let d be the set of dangling nodes and let nd be the set of non-dangling nodes.
Let

∑
j∈d π̃(j) := π̃d and

∑
j∈nd π̃(j) := π̃nd (with the analogon for π).

π̃(v) = π̃d + π̃nd(1− c)
= (1− π̃(v))πd + πnd(1− π̃(v))(1− c)
= 1− π̃(v)− cπnd(1− π̃(v)).

The last equation is derived because πd = 1− πnd. This also implies that

π̃(v) = 1− π̃(v)− c(1− πd)(1− π̃(v))
= 1− π̃(v)− c+ cπ̃(v) + cπd(1− π̃(v)) (7)
= 1− π̃(v)− c+ cπ̃(v) + cπ̃d. (8)

For equation 7 we have

π̃(v)(2− c+ cπd) = 1− c+ cπd

π̃(v) =
1− c+ cπd

2− c+ cπd
.

21



So π̃(v) is determined by πd (and c, but c can be chosen).

We are interested in the extreme values of π̃(v) (0 ≤ πd ≤ 1), so we continue:
let x = πd,

d

dx
(
1− c+ cx

2− c+ cx
) =

c(2− c+ cx)− c(1− c+ cx)
(2− c+ cx)2

=
c

(2− c+ cx)2
> 0.

So we find the maximum π̃(v) = 1
2 for πd = 1 and the minimum π̃(v) = 1−c

2−c for
πd = 0.

For equation 8 we have

π̃(v)(2− c) = 1− c+ cπ̃d

π̃(v) =
1− c+ cπ̃d

2− c
Again we are interested in the extreme values (0 ≤ π̃d ≤ 1− π̃v). This is a linear
equation so we find the maximum π̃(v) = 1

2 for π̃d = 1− π̃v and the minimum
π̃(v) = 1−c

2−c for π̃d = 0.

Now we know
1− c
2− c

≤ π̃(v) ≤ 1
2
.

This implies
1

2− c
≥ 1− π̃(v) ≥ 1

2
.

For c = 0.85 this gives

0.8696 ≈ 1
2− 0.85

≥ 1− π̃(v) ≥ 1
2
.

These provide boundaries for the precision of π calculated with the extra node
solution.

Note that πd = 1 implies that there are no non-dangling nodes in the original
graph. In that case a random walk on the graph with the extra node consists
of a jump from a dangling node to the extra node v with probability 1 followed
by a jump from v to a dangling node with probability 1. It is clear that this
will result in π̃(v) = 1

2 .
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5 Algorithms to retrieve Points of View PageR-
ank

In the previous section we discussed how to decompose the calculations to re-
trieve a Point of View PageRank. This decomposition is done because it reduces
the amount of work to calculate a Point of View PageRank. The decomposition
gives us parts that can be reused and combined during query time.
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5.1 A remark on the pages in H

The idea behind the decomposition is to minimize the effect of the random
walks not passing H. Therefore it is beneficial to choose H in such a way that
the walks passing H have a relatively large probability. For a random starting
point, these pages are precisely the high PageRank pages, because pages with
high PageRank distribute more PageRank [3].

For the use of personalized PageRank however, the starting points are not ran-
dom. Now it can be beneficial to choose H in another way. Further research is
needed to find a H dependent on the starting points.
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5.2 Double Taboo Algorithm

An instance of this algorithm in Matlab code:

% preH: adjacency matrix of the graph
% n: the size of the web
% H: substochastic matrix
% NOL: vector with ones for the dangling nodes, and zeros otherwise
[n H NOL] = zeroOneToSubStochastic(preH);

%G, the matrix for the extra node solution
%v, the distribution for the extra node
G = alpha * H;
v = (1/n)*ones(1,n);
v(1,n+1) = 0;
% create extra node
% link all nodes to this extra node
% with probability 1− alpha and the dangling nodes with
% probability 1
G(:,n+1) = (1−alpha)*ones(1,n) + alpha*NOL';
G(n+1,:) = v;
n = n+1;

% taboos: vector with indices of the taboo nodes as components
tabooSize = size(taboos,1);

% nottaboos: vector with indices of the non taboo nodes as components
nottaboos = setdiff(1:n,taboos);

% Gaa: rows and columns of G corresponding to the non taboo nodes
Gaa = G;
Gaa(taboos,:) = [];
Gaa(:,taboos) = [];

% Gab: rows of G corresponding to the non taboo nodes
% and columns of G corresponding to the taboo nodes
Gab = G;
Gab(taboos,:) = [];
Gab(:,nottaboos) = [];

% Gba: rows of G corresponding to the taboo nodes
% and columns of G corresponding to the non taboo nodes
Gba = G;
Gba(:,taboos) = [];
Gba(nottaboos,:) = [];

% Gbb: rows and columns of G corresponding to the taboo nodes
Gbb = G;
Gbb(nottaboos,:) = [];
Gbb(:,nottaboos) = [];

% pi,pi0: starting distribution
pi = 1/(n−tabooSize)*ones(1,n−tabooSize);
pi0 = pi;
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GabtimesIminGbbInv = sparse(Gab*inv(speye(tabooSize)−Gbb));
M = GabtimesIminGbbInv*Gba;

prevpi = zeros(1,n−tabooSize);
residual = 1;
k = 1;

% Step 1 Aggregation
while (residual > eps)

if(mod(k,2) == 1)
pi = pi*M;
residual=sum(abs(pi−prevpi));
prevpi = pi;

else
residualb = 1;
p = 1;
pi0 = pi;

% power algorithm
while(residualb > eps)

prevpib = pi;
pi = pi * Gaa + pi0;
p = p+1;
display(p);
residualb=sum(abs(pi−prevpib));

end;
end;
k = k+1;

end;
sigmaa = pi';

% Step 2 Disaggregation
sigmab = sigmaa'* GabtimesIminGbbInv;

% building pi
pi(1:n−tabooSize) = sigmaa;
pi(n−tabooSize+1:n) = sigmab;

This algorithm is still in development.
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6 Experiments

We did some experiments to test different kinds of algorithms. We use three
different datasets.
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6.1 Example graph

A graph of only five nodes. This graph was used to check whether an algorithm
was correct.

A =


0 1 1 1 1
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 1 0


Node 2 and 4 are dangling nodes. For damping factor c = 0.85 the PageRank is

π =


0.1822
0.1550
0.1550
0.3527
0.1550


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6.2 Hollins dataset

A dataset of the hollins.edu domain crawled on January 15, 2004, which con-
sists of 6012 nodes and is mentioned in [4]. It is now freely available on
http://www.limfinity.com/ir/data/hollins.dat.gz. It has 23875 links, which makes
the average number of incoming (or outgoing) links 3.97.

The maximum number of incoming links is 829 and the maximum number of
outgoing links is 184. The number of dangling nodes is 3,189, which is 53% of
the total number of nodes.

Figure 3: Outgoing links for Hollins dataset (10 log)

29



Figure 4: Incoming links for Hollins dataset (10 log)

Figure 5: PageRank for Hollins dataset (10 log) c = 0.85, 189 iterations
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6.3 Stanford dataset

A dataset of the stanford.edu domain crawled in September 2002 by the Stanford
WebBase project, which consists of 281,903 nodes and is and now freely available
on http://kamvar.org/assets/data/stanford-web.tar.gz. It has 2,312,497 links
which makes the average number of incoming (or outgoing) links 8.2. The
maximum number of incoming links is 38,606 and the maximum number of
outgoing links is 255. The number of dangling nodes is 172 (0.06%), which
seems extremely low. For more information on possible drawbacks using this
data set for testing purposes, see [19].

Figure 6: Outgoing links for Stanford dataset (10 log)
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Figure 7: Incoming links for Stanford dataset (10 log)

Figure 8: PageRank for Stanford dataset (10 log) c = 0.85, 198 iterations
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7 Discussion

7.1 Personalized search by Google

Google nowadays provides personalized results. As a user you can’t have direct
influence on how your results are personalized. The personalization is based on
your Web History: a complete overview of all searches and sites visited by the
(registered) user.

This restricts the way personalization is done. It is for example not possible to
use the ’profile’ of someone else to personalize your own results.

Although it is clear why Google provides personalization in this way3, there
may be valuable alternatives possible.

3Google has usability as a high value, so personalization should be as simple as possible.
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7.2 Incoming links versus PageRank

A high number of incoming links has a big influence on the score of the PageR-
ank. The x websites with the most incoming links were in our experiments the
same as the x websites with the highest PageRank.
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7.3 About ”Scaling Personalized Search” [13]

The third algorithm called ”Repeated Squaring Algorithm” is invalid.

The algorithm describes an iteration by doing

D2k[p] = Dk[p] +
∑

q∈Qk(p)

Ek[p](q)Dk[q].

This may be a correct approach, but only D0[p] = 0 is defined. In that case
D2k is not a very good approach, because of two reasons:

k = 0⇒D2k[p] = D0[p] = 0

and
D2k[p] = 0 +

∑
q∈Qk(p)

Ek[p](q)0 = 0.

In other words, this algorithm needs a specific D1[p], which - of course - may
be achieved by one of the other two algorithms described in [13].
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7.4 Using PageRank to select the webpages to crawl

On any moment in time outgoing links are known to exist to yet unknown
pages. These pages can be handled as dangling nodes in the graph. Calculating
PageRank can provide insight into which dangling nodes to check first. There
is reason to assume that the dangling nodes with the highest PageRank have
more value to the web than dangling nodes with lower PageRank.
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