
Optimal strategies for an evacuation problem
Irwin, M.A.

Citation
Irwin, M. A. (2009). Optimal strategies for an evacuation problem.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596820

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596820

M.A. Irwin

Optimal strategies for

an evacuation problem

Bachelorscriptie, 17 juni 2009

Scriptiebegeleider: dr. F.M. Spieksma

Mathematisch Instituut, Universiteit Leiden

1

Contents

1 Introduction 3

2 The model 4
2.1 Assumptions of the model . 5
2.2 Characteristics of the model . 6

3 The algorithm 9
3.1 Leiden’s algorithm . 9
3.2 An example of Leiden’s algorithm 12
3.3 Proof of Leiden’s algorithm . 14

4 Results 15
4.1 Analysis of Step 1 of Leiden’s Algorithm 15
4.2 Analysis of optimal strategies . 17

5 Conclusion 19

A Matlab code of Leiden’s algorithm 21

2

1 Introduction

From 2500 B.C. until 1311 the tallest structure in the world was the Great
Pyramid of Giza. At construction the pyramid was 280 Egyptian cubits tall,
equivalent to 146 meters. It is believed to have been built as a tomb for the
Egyptian King Khufu (Cheops in Greek). This is in fact still not sure. What is
sure though, is that everyday life in those days was spent on the ground. Today
the tallest building in the world is the Burj Dubai at an incredible height of 818
meters! In fact, everyday taller and taller buildings are being designed and built.
These buildings are no longer shrines or temples to be admired, but really serve
a purpose. For instance, the Burj Dubai, although not yet completely finished,
will consist of a hotel, private apartments and corporate offices.

One of the most important issues when building these massive structures is
safety. People have to feel safe in order to be willing to live or work in such a
supertall skyscraper. Therefore the chances of an accident occurring should not
be (much) greater than in any other building. However, it is of course always
possible that something will happen. Just take the events of 9/11 as a tragic
example, or watch the movie ’The towering inferno’ ! In such cases a quick and
clear evacuation strategy might be needed.

This study will make a start at solving the question:

For any given building: What is an optimal evacuation
strategy?

In order to answer this question we will analyze a simplified model of a random
building that has just one lift. Chapter 2 will introduce some notation used in
the model as well as the assumptions that were made to simplify the model. If
an assumption needs clarification this will also be given. The simplified model
has some intrinsic characteristics making it possible to analyze the problem.
Chapter 3 introduces these characteristics, and proves their correctness. Using
these characteristics an algorithm has been constructed that gives an optimal
evacuation strategy for our simplified model. The details of this algorithm are
given in Chapter 4. Some interesting results of our analysis are presented in
Chapter 5, after which Chapter 6 will conclude with some discussion of these
results. Also possible follow-up studies are discussed in this chapter.

3

2 The model

As mentioned in the Introduction we will only study buildings with one lift. In
this study the numbering of the floors is done in the reverse order. So the top
floor is numbered 0, and the ground floor is numbered n (where n > 0). This is
done to simplify calculations. As a result a building consists of n + 1 floors.

To be able to study the model we will have to introduce some further nota-
tion.
First of all, we have the following three parameters of the model:

• p = time it takes a person to ascend or descend 1 floor

• l = time it takes the lift to ascend or descend 1 floor

• t = stopping period, i.e. time it takes the lift to open and close the doors

These parameters are considered to be known for each building.

Next we define the following decision variables:

• Si = floor where the i -th stop is planned

• wi = waiting time at the i -th stop

• W(R) = total amount of waiting time under strategy R =
∑

i wi

• T(R) = total evacuation time under strategy R

And finally we have variables that are related to the building:

• HOi = the highest occupied floor when planning stop i

• Ci = cutfloor belonging to stop i

These last two variables need some further explanation. As soon as we have
planned where Si will be and what wi we can calculate from which floors it is
possible to reach this floor in time to enter the lift. The lowest of these floors is
called the cutfloor. For the remaining floors below Si the new highest occupied
floor HOi+1 can be determined.

Now that all parameters and variables have been defined it is possible to
give a more precise definition of an evacuation strategy.

Definition 2.1. An evacuation strategy R={S,w} decides where the lift stops
and how long it waits at each stop.

In fact, an evacuation strategy should also contain some information on
where the people of each floor should go. However once the stops have been
planned, everybody is automatically sent to the nearest stop. Therefore this
information is not included. An evacuation strategy R is called an optimal
evacuation strategy if it minimizes the time needed to clear the building.

4

2.1 Assumptions of the model

The problem has been studied under certain basic assumptions. Some of which
have already been mentioned, but not formally stated as such. Here we will
clarify which assumptions have been made, as well as some consequences of
these assumptions.

a) The number of people in the building as well as their location in
the building is known.

If this assumption is not made, a general evacuation strategy could still be
determined. This strategy would presume that every floor is occupied. However
this is not the goal of this study.

b) p is constant.

In practice, not everyone walks or runs at the same speed. Also, one could
presume that it takes longer to ascend a flight of stairs than to descend this same
flight. This is all not the case in this study however. Finally we do not take
into account delays due to crowdedness. No matter how busy it is, a person’s
speed is always the same.

c) p > l

If this is not the case then the optimal strategy would be to just let everybody
walk down. Therefore this is not really an assumption, but rather the only case
we will study.

d) The lift always starts at the top floor.

This is in fact not really a necessary assumption, but merely done to simplify
the calculations.

e) The lift has an infinite capacity.

A direct implication of this assumption is that it is not necessary to unload
anyone at the ground floor and then return to pick up some more people.

f) t is constant.

No matter how many people want to enter the lift, t is always the same.
This assumption combined with the fact that p is constant has a very important
implication, namely

It is only important to know if a floor is occupied or not,
not the number of people on a floor.

The last assumption we made in the model is

5

g) Every time a person enters the lift a new stopping period of length
t starts.

In practice this means that it is not possible to sneak in while the doors are
closing. If a person arrives at a floor where the lift is in the process of opening
and closing the doors, then for him to be able to enter the lift a new process of
opening and closing will have to be started. All the time that lift had already
spent on this floor hereby becomes waiting time.

2.2 Characteristics of the model

From these assumptions some important characteristics of the model can be
defined. These characteristics will make it possible to find an optimal evacuation
strategy. Each characteristic is presented as a lemma.

Lemma 2.2. For every evacuation strategy R with total evacuation time T (R),
there is a strategy R∗ with all waiting time at the first stop S1 and T (R∗) ≤
T (R).

Proof:
Consider an evacuation strategy R with k stops, and waiting time W (R).
Case k = 1: The statement is certainly true since R∗ = R.
Case k > 1: If all waiting in R is done at the first stop then again the state-
ment is trivially true. Let stop i be the first stop with waiting time wi > 0,
i = 2, ..., k. Now let strategy R′ be the same as with wi transferred to w1 (so
w′1 = w1 + wi and w′i = 0). Since the departure time of the lift at Si is the
same in R and R′ nothing changes for the floors below Ci. For stops Sj where
j = 1, .., i the departure time will be the same or wi later, which means that
the people from all floors assigned to Sj under R, will also be able to reach Sj

under R′ before departure. Therefore R′ is also a feasible evacuation strategy
with total waiting time W (R′) ≤ W (R). We can repeat this process until we
obtain a feasible strategy R∗ where all waiting is done at the first stop S1.

One important consequence of this lemma is the following:

Theorem 2.3. For every building there is an optimal strategy.

Proof:
The total number of possible stopping strategies is

∑n+1
k=0

(
n+1

k

)
which is finite.

For each stopping strategy we need only consider the cases where all waiting
time is done at S1. Because each stopping strategy has a minimum amount
of waiting time needed to evacuate, there are only a finite number of evacua-
tion strategies to be considered. Therefore there must be an optimal strategy.

This proof is based on the fact that we can first fix the floors where the lift
should stop, and then calculate the corresponding minimal amount of waiting
time needed to evacuate the building. However it is also possible to fix the
evacuation time first, and then determine all possible corresponding evacuation
strategies. This fact is used in the following Lemma.

6

Lemma 2.4. For every optimal evacuation strategy R with S1 and w1 there
is also an optimal evacuation strategy R∗ with S∗1 = max{k|(k − HO1) · p ≤
k · l + w1, k = 0, 1, .., n}

Proof:
Consider an optimal evacuation strategy R with S1 and w1.
If S1 = max{k|(k −HO1) · p ≤ k · l + w1, k = 0, 1, .., n} then R∗ = R.
Otherwise S1 < max{k|(k − HO1) · p < k · l + w1, k = 0, 1, .., n}, because
HO1 must be able to reach floor S1 within the w1 waiting time. However,
S∗1 = max{k|(k−HO1) · p < k · l + w1, k = 0, 1, .., n} is also reachable for HO1

within the w1 waiting time. This means that all floors above S∗1 will be able
to reach S∗1 in time. Because S∗1 > S1 all floors i with S∗1 < i ≤ C1 have less
distance to travel in R∗. This means they will definitely be able to arrive at S∗1
in time. For all stops and floors below C1 everything is kept the same as in R.
Because we have not changed the amount of waiting time or the number of
stops, but merely replaced the stops, T (R∗) = T (R) and R∗ is also an optimal
evacuation strategy.

In perhaps simpler words, for every optimal strategy R with W (R) we can
plan S1 as low as possible given w1. The new strategy R∗ is also an opti-
mal evacuation strategy. As a result, when determining a possible evacuation
strategy, we will always choose the stopping floors Si, i = 1, . . . ,M , as low as
possible given a number of stops M and a total amount of waiting time W . An
important consequence of choosing the stops as low as possible is the following:

Lemma 2.5. For any optimal evacuation strategy R∗ from Lemma 2.4 with M
stops and total waiting time W (R∗) it is possible to distribute the waiting time
in such a way that the lift waits until the people from HOi reach Si and then
immediately continues to the next stopping floor.

Proof:
This fact is due to the property that p is the same for everybody in the building.
Suppose for some optimal strategy R∗ constructed with Lemma 2.4 this is not
possible. This would mean that the lift would have to wait at some stopping
floor Si after the people from HOi have arrived at Si. The only reason to wait
any longer at Si is to let some people from below Ci enter at Si. If they do not
enter there, the lift might as well wait at Si+1.
The instant HOi reaches Si all other people will also exactly reach a certain
floor. Nobody can be between floors. This means that if the lift would wait any
longer, it would have to wait at least an amount of p time for someone from
below to reach Si. But in that case it is better to stop one floor lower, since the
extra time the lift needs to wait for HOi at that floor is p− l. This reduces the
total waiting time by at least l. But this in contradiction with the fact that R∗

is an optimal evacuation strategy.

This last Lemma seems to be in contradiction to Lemma 2.2 a little bit.
After all, Lemma 2.2 more or less states that all waiting should be done at the

7

first stop S1, because this benefits everyone in the building. Now Lemma 2.5
states that this need not be the case. This is not true.
The main idea behind Lemma 2.2 is that transferring all waiting time in a given
strategy to the first stop might result in an improvement, i.e. fewer stops or
less total waiting time. In any case, the total evacuation time will never be
larger. Lemma 2.5 on the other hand focuses on optimal evacuation strategies,
therefore the total evacuation time can never be decreased by transferring all
waiting time to the first stop.
A useful corollary of this lemma is the following:

Corollary 2.6. For any optimal evacuation strategy R the total waiting time
W (R) =

∑M
i=1 (HOwt at S∗i), where S∗i is the i-th stop in the transformed

optimal evacuation strategy created using Lemma 2.4.

8

3 The algorithm

3.1 Leiden’s algorithm

Before presenting the algorithm proposed in this paper it is useful to first present
another algorithm. This algorithm will be called the ”0-waiting algorithm”.

0-waiting algorithm

Initialize: M = 0

Determine HO1

WHILE ((n−HOM+1) · p > n · l + M · t)

• SM+1 = max{k|(k −HOM+1) · p ≤ k · l + M · t, k = 0, 1, .., n}
• CM+1 := 2 · SM+1 −HOM+1 + 1

• Send all floors between HOM+1 and CM+1 to SM+1

• Determine HOM+2

• M := M + 1

END(while)

This algorithm determines an evacuation strategy S where the lift does not
wait at any of the stops. Essentially, it checks if the people from the HO can
exit the building before the lift reaches the ground floor. Every time this is not
the case an extra stop is planned and the corresponding cutfloor is determined.
This leads to a new HO for which we now do the follow procedure. As soon as
the people from HO are able to exit the building in time, the algorithm stops.
Unfortunately, this algorithm will most likely not return an optimal evacua-
tion strategy. Even though there is no waiting time, it is very probable that
an improvement could be found by choosing a different stopping floor, where,
after some additional waiting time, people from several floors can be picked up
at the same time. Hereby the total number of stops could be reduced. If the
gain of the reduction of stops is greater than the added waiting time, a better
evacuation strategy has been found. Thus, finding a maximal number of stops
required is essential to solving the problem.

This has resulted in creating a 2-step algorithm to solve the evacuation prob-
lem. A computer program with the exact details of the algorithm has been made
with Matlab and is presented in the Appendix. In this paper only the basic idea
of the algorithm will be discussed. Also it will be proven that the algorithm
finds an optimal evacuation strategy.

9

Leiden’s algorithm

1. (a) M=0

(b) WHILE ((n−HOM+1) · p ≥ n · l + M · t + t)

• SM+1 := max{k|(k−HOM+1) ·p ≤ k · l +m · t+ t, k = 0, 1, .., n}
• CM+1 := 2 · SM+1 −HOM+1 + 1
• Send all floors between HOM+1 and CM+1 to SM+1

• Determine HOM+2

• M := M + 1

END

2. (a) lowerbound = 0, upperbound = t

(b) FOR i = 1 : M

• Determine HOi

• si := max{k|k · l + (i− 1) · t + lowerbound > (k −HOi) · p}
• HOwt := max{0, (si −HOi) · p− (si · l + (i− 1) · t)}
• Found = FALSE

WHILE (!Found AND HOwt < upperbound)

• Determine si+1 up to sM using ’0-waiting’-algorithm
• Determine HOM+1

IF ((n−HOM+1) · p ≤ n · l + M · t + HOwt)

• upperbound := HOwt
• Sopt := s
• Found = TRUE

ELSE

• lowerbound := HOwt
• si := si + 1
• HOwt := (si −HOi) · p− (si · l + (i− 1) · t)

END(if)
END(while)
si := si − 1
END(for)

The final step of the algorithm could be to transfer all waiting time to the
first stop S1. The way the algorithm constructs possible evacuation strategies
and lemma 2.5 makes this extra step pointless.

In essence, the first step of this algorithm is almost an exact copy of the
”0-waiting algorithm”. The only difference is that instead of not waiting at all,
an extra amount of t waiting time is added. The idea behind this is based on
the following lemma:

10

Lemma 3.1. For every evacuation strategy R with i stops and total waiting
time W(R) ≥ t it is possible to construct an evacuation strategy R∗ with i+1
stops and total evacuation time T (R∗) ≤ T (R).

Proof:
The proof is quite trivial. From Lemma 2.2 we know that for every evacuation
strategy R we can transfer all waiting time to the first stop. The resulting
evacuation strategy R∗ will never be worse than R. If the total waiting time
W (R) ≥ t then adding a stop at any of the floors above S1 without waiting will
not increase the total evacuation time. In the worst case the lift will have to
wait the remaining waiting time W (R)− t at S1.

Obviously it is better to not just plan the extra stop anywhere, but try to
plan it so that not all of the remaining waiting time W (R)− t is needed.
As a result, step 1 of the algorithm returns the maximal number of stops M
needed in an optimal evacuation strategy. There might be optimal strategies
that consist of less stops. These will however require a large amount of total
waiting time W . No optimal evacuation strategy will consist of more than M
stops, since this will always increase the total evacuation time T .
Along with the maximal number of stops, an upper bound for an evacuation
strategy with M stops is returned. The strategy constructed in the first step is
the current optimal evacuation strategy is stored in an array called Sopt.
The second step in Leiden’s algorithm is to determine the minimal amount of
waiting time in an optimal evacuation strategy consisting of M stops. This is
done by using a Branch and Bound-technique. Instead of considering all possi-
ble evacuation strategies with M stops, we define lower and upper bounds for
the waiting time of an optimal strategy with M . The algorithm tries to lower
the upper bound as far as possible until we have an optimal strategy.
One of the important parameters in the algorithm is HOwt. This is the amount
of time the lift needs to wait for people from HO. As stated in Lemma 2.5
the instant that people from floor HO reach a stopping floor is crucial, since
any additional waiting time at that floor is then pointless. Once we have fixed
a stopping floor, the remaining floors can be seen as a new, smaller building
which has to be evacuated.
It is possible for HOwt to be negative. This is the case when the people from
HO have to wait for the lift, instead of vice versa. For instance, this is always
the case if the people from HO stay where they are. Obviously negative waiting
time does not make any sense in practice. In these cases HOwt is set to 0.
Because we always choose the lowest floor where this is possible, this can only
happen once though.
For each HOwt a temporary strategy s is stored in an array. Every time it
proves impossible to evacuate the building with a certain HOwt > lowerbound
amount of waiting time the lower bound is raised. This lower bound can be
seen as a minimal amount of waiting time needed to evacuate the building with
M stops. The lower bound is initially set equal to 0. As mentioned above, the
first step results in upperbound = t.

11

The IF-check determines whether or not it is possible for all people that have
not been sent to a stopping floor to exit the building before the lift reaches
the ground floor. If this is the case, we have found an evacuation strategy
with HOwt < upperbound waiting time. The upper bound will then be set to
HOwt Also the corresponding strategy s is set to be the new optimal strategy
Sopt. Every time the IF-check is not satisfied the lower bound gets raised until
HOwt > upperbound. If no strategy is found in the WHILE-loop this does not
imply that no improvement can be found. The algorithm uses ’0-waiting’ to
determine the remaining stops. It might be possible though that just a little
bit of extra waiting time will clear the building. This in fact also happens when
a better strategy has been found, since the upper bound may still be greater
than the lower bound giving us some time to ’play’ with. Therefore after each
WHILE-loop the short but very significant statement si := si − 1 has been
added. If an improvement can be found this will have to be by stopping one
floor earlier and then pick up the rest with a small amount of extra waiting
instead of 0-waiting.

3.2 An example of Leiden’s algorithm

An example might help to clarify the whole process even more.
We are given a building with the following parameters: n = 100, p = 4 and
t = 5. In this case l has been set to 1. The top 25 floors of this building are
shown in figure 3.

Figure 1: Top 25 floors of building with n = 100, p = 4 and t = 1

Step 1 of the algorithm would return M = 4 and the corresponding ’t-
waiting’ strategy Sopt = [4 15 34 73]. The final HO in this case would be floor
98, and it is clear that people from this floor or below will have more than

12

enough time to leave the building before the lift reaches the ground floor.
Now step 2 of the algorithm starts. Floors 5 and lower will not have to be
considered for S1, since at floor 5 HOwt = 7 > 5 = upperbound . Also, floors
0 and 1 will not have to be considered for S1, since floor 2 is the lowest floor
where the people from HO1 have to wait for the lift. The results of the first
iteration of the second step of the algorithm are given in the table 1 below.

First stop Strategy s HO5 Is HO5 out Lower bound Upper bound
2 [2 9 20 42] 58 no 0 5
3 [3 10 23 49] 67 no 1 5
4 [4 15 34 73] 98 yes 1 4

Table 1: HO1 = 2.

After the first step of the algorithm an evacuation strategy s has been found
with T (s) ≤ T (Sopt). The stopping floors are actually the same in both strate-
gies, but the amount of waiting has been lowered. Sopt is therefore adjusted. If
a further improvement of Sopt is to be found this will have to be realized by
making the first stop at floor 3. At this floor the lift will have to wait a period
of 1 for the people from HO1 to arrive, before proceeding to the next stopping
floor. As a result we do not need to consider floor 9, the lowest floor where HO2

arrives no later than the lift.

Second stop Strategy s HO5 Is HO5 out Lower bound Upper bound
10 [3 10 23 49] 67 no 1 4
11 - - - 1 4

Table 2: HO2 = 6,S1 = 3.

Because at floor 11 HOwt = 4, this does not need to be considered. There
already is an evacuation strategy with W = 4. If an improvement of Sopt is to
be found, this will have to been done by setting S1 = 3 andS2 = 10

Third stop Strategy s HO5 Is HO5 out Lower bound Upper bound
24 [3 10 24 51] 70 yes 1 2

Table 3: HO3 = 15,S1 = 3 and S2 = 10.

In the final iteration the improvement would have to be found by setting
S1 = 3, S2 = 10 and S3 = 23. Since there is no floor where lowerbound <
HOwt < upperbound, with HO4 = 33, no strategy is constructed.
The optimal strategy Sopt = [3102451] with W (Sopt = 2.

13

3.3 Proof of Leiden’s algorithm

Now that the idea behind the algorithm is clear, it remains to prove that the
algorithm finds an optimal solution.

Proof (Leiden’s algorithm finds an optimal solution):
The proof is constructive.
Because of lemma’s 2.2 and 3.1 there is always an optimal evacuation strategy
R with M stops and total waiting time W (R) ≤ t. Also this waiting time is
done at the first stop S1. (Every optimal strategy that does not possess one
of these characteristics can be transformed into an optimal strategy that does
possess these characteristics)
The first step of the algorithm chooses the stops as low as possible. Lemma 2.4
states that this is always the best decision. Therefore the algorithm will find
the maximal number of stops M in an optimal evacuation strategy.
The second step considers all possible strategies with M stops and total wait-
ing time between 0 and t. However, it only looks at the lowest possible stop-
ping floors reachable within a certain amount of HOwt waiting time. Since
W (R) ≤ t, this amount of waiting time is also considered by the algorithm.
Due to the way the algorithm constructs an evacuation strategy and Lemma 2.4
it will find an optimal evacuation strategy with M stops and total waiting time
W (R).

Finally a note on the complexity of Leiden’s algorithm. It can be proven
that M is O(log n). As a result step 1 is O(log n). Step (2) consists of a FOR-
loop of M iterations with a WHILE-loop in it. The while loop will never make
more than n loops. Therefore the algorithm seems to be O(n log n). However,
due to the Branch and Bound-technique a great number of possibilities will not
have to be considered. Therefore it might be the case that the algorithm is even
better than O(n log n). In any case Leiden’s algorithm seems to be able to find
an optimal evacuation strategy in almost linear time.

14

4 Results

In the previous chapter a description of Leiden’s Algorithm was given. As
mentioned before, the exact code of this algorithm has been written in Matlab
and is provided in the Appendix. The program has given us the opportunity to
do multiple simulation runs and examine the optimal evacuation strategies.
There were two main questions we wanted to answer by doing these simulation
runs. These were,

1. How much improvement is obtained by doing step 2 of the algorithm ?

2. Can the optimal strategy be predicted beforehand, e.g. is there a formula
for the stops ?

All simulation runs were done with several different parameters p, l and t.
Since we are not working with real units we are only interested in the propor-
tions of these parameters. Therefore, l is always set to 1, and only p and t are
varied. Also the number of floors, parameter n, could easily be changed.

4.1 Analysis of Step 1 of Leiden’s Algorithm

Since step 1 of the algorithm already returns a possible evacuation strategy, it
would be nice to know something about the quality of this evacuation strategy.
It is not difficult to understand that the evacuation strategy has an absolute
performance guarantee of t. This means that the total evacuation time of an
optimal strategy Ropt will never be more than t less than the total evacuation
time of the evacuation time returned by step 1 of the algorithm R1. Therefore
it seems logical to presume that if t is small, than the difference between Ropt

and R1 will not be that great.

t-values number of stops percentage T (Ropt) = T (R1) percentage W (Ropt) = 0
t = 1 4 11,97 68,52
t = 2 3 40,43 26,18
t = 3 3 0,02 26,58
t = 4 3 0,08 29,65
t = 5 3 0,12 34,57
t = 6 3 0,79 49,55
t = 7 3 1,05 50,76
t = 8 3 0,76 49,97
t = 9 3 3,03 49,22
t = 10 3 12,08 49,34
t = 11 2 36,19 0,06
t = 12 2 0,06 0

Table 4: For each t: 10.000 runs with n = 1000, p = 1.5

15

As can be seen in Table 1 a strange phenomenon occurs. Initially the per-
centage of times T (Ropt) = T (R1) decreases, as was to be expected. However,
this percentage starts to increase at t = 9 and t = 10. For different values of n
and p a similar pattern can be witnessed. For example. Table 2, where p = 3,
shows this pattern even more significantly.

t-values number of stops percentage T (Ropt) = T (R1) percentage W (Ropt) = 0
t = 1 8 31,11 68,89
t = 2 7 36,66 43,11
t = 3 7 4,51 34,92
t = 4 6 16,71 45,96
t = 5 6 22,43 23,73
t = 6 6 0,18 8,57
t = 7 6 0,57 15,26

Table 5: For each t: 10.000 runs with n = 1000, p = 3

A reason for these jumps seems to be that the number of stops needed
to evacuate the building is lowered at these values of t. As t gets raised the
advantage of making an extra stop gets smaller. This is due to the fact that
stopping at a floor takes longer, and therefore walking loses less time. For several
values of t the number of stops needed is the same, e.g. in case p = 1.5 we find
that for t = 2, 3, . . . , 9 three stops are needed. For t = 10 and t = 11 however
we see that optimal strategies only need two stops.
The last columns in Table 1 and Table 2 show that it frequently occurs that
no extra waiting time is needed. Therefore the error bound of t is quite often
attained. In other words, the second step of the algorithm really does result in
an improvement.

16

4.2 Analysis of optimal strategies

Another point of interest was to examine where the stops are mostly planned
in optimal evacuation strategies. If some kind of pattern can be detected, this
might make it possible to develop evacuation strategies which are more or less
independent of the occupation of the building. Because the number of stops will
be less in a small building than in a tall building, we have chosen to simulate
unrealistically tall buildings, n = 100000. The reason being that this makes it
easier to observe a pattern.

Figure 2: Optimal stop floors, n = 10000 and t = 1

In figure 1 the location of the stops in an optimal evacuation strategy Ropt

have been plotted as a function of the number of the stop. For example, the
stops in the optimal evacuation strategy when p = 2 were 0, 5, 20, 71, 232,
707, 2140 and 6435. The results seemed to suggest an exponential relationship
between the numbers of the stops and the floors where the stops are planned.
This was further examined by choosing several values of t, and then taking the
logarithm of the stopping floors in Ropt.

17

Figure 3: Logarithm of Ropt, n = 10000 and t = 1, 2, . . . , 20

The results in figure 2 more or less confirmed the idea of the exponential
relationship. Even more remarkable though, is the fact that the slopes of the
graphs in figure 2 seem to be independent of t. Parameter p clearly does have
an effect on the slope. As p is increased the slopes become less steep. However,
when t is increased, while keeping p constant, the graph only shifts a little bit,
but the slopes of the graphs eventually are the same. The values of these slopes,
given in Table 3, indicate that as p is increased the slope tends to 2·l

p . Again,
since we are only interested in the relative proportions of l and p, this can also
be seen as 2

p .

p-values slope of log(Ropt)
p = 2 1,100
p = 5 0,406
p = 10 0,201
p = 20 0,100

Table 6: Slopes of Ropt

18

5 Conclusion

This thesis is a first start at trying to answer the question:

For any given building: What is an optimal evacuation
strategy?

This has been done by making some basic assumptions which enabled us to
make a simplified model of a random building. These assumptions were clari-
fied in chapter 2. As a result of the assumptions certain specific characteristics
could be witnessed. These characteristics were also explained and proved in
chapter 2. For the simplified model Leiden’s Algorithm has been constructed
which constructs an optimal evacuation strategy for any random building. An
explanation of the algorithm as well as a proof of its correctness was given in
chapter 3. Finally Leiden’s Algorithm was analyzed and some interesting results
were set out in chapter 4.

It is clear that no definitive answer has been given yet to the main question
posed. Unfortunately, a definitive answer might not be possible in reality. The
biggest problem will always be that the occupation of a building is not fixed.
People walk in and out of buildings all the time. Also within the building they
are not confined to one floor, but travel from floor to floor. Even if it were
possible to know the occupation of the building at any given moment exactly,
it would still be virtually impossible to model every person’s individual walking
speeds. Making some basic assumptions is therefore more or less inevitable.
Still, Leiden’s Algorithm is a starting point from which further analysis can be
done. This analysis should focus mainly on dropping as many assumptions as
possible. After all, every time an assumption is dropped the model becomes
more realistic.
One of the first assumptions that should be dropped is the assumption that the
lift always waits at the top floor. In fact, this will not require a major modifica-
tion of Leiden’s Algorithm since it only effects the location of the first stopping
floor. The reason why this assumption needs to be dropped first is that if Lei-
den’s Algorithm is modified in such a way that the lift can start from any floor,
especially the ground floor, other assumptions might be dropped a lot easier.
For example, dropping the assumption that the lift has an infinite capacity has
a major implication. Now it is no longer possible to merely focus on occupied
or unoccupied floors, but the number of people on an occupied floor will have
to be taken into account as well. As a result the lift may have to drop off some
people at the ground floor, after which it will have to go up again to pick up
some more people. Each time the lift is unloaded at the ground floor we can
consider the new situation as a new evacuation problem where the lift starts at
the ground floor. Therefore it might be possible to find an optimal evacuation
strategy by repeating Leiden’s Algorithm several times.

The results set out in chapter 4 also warrant further analysis. The main
focus here should be the fact that the stopping floors in an optimal evacuation

19

strategy resemble some kind of exponential structure of the form e
2·l
p . It seems

logical that the ratio between l and p is important. Also, the factor 2 could
well be due to the fact that people come from above and below to the stopping
floors. The exact explanation for this structure is still unclear however. Even
more of a mystery is the fact that the factor t does not seem to have an effect
on this relationship.
One practical advantage of this insensitivity of t is that the algorithm could be
that Leiden’s algorithm is a good heuristic for real-life problems. After all, in
general a stopping period will take longer if more people want to enter. There-
fore the parameter t is most likely not constant. Leiden’s algorithm is however
not affected much by fluctuating t’s.
Also, the relationship between the two steps of Leiden’s Algorithm yielded some
remarkable results. Especially the fact that the quality of step 1 of the algo-
rithm is fairly erratic when t is varied has not been completely explained.
However, in order to answer the main question posed in this thesis further anal-
ysis of the results could be irrelevant. As mentioned before, Leiden’s Algorithm
is a first step in solving this question. The final answer might result in an al-
gorithm that merely uses some properties of Leiden’s Algorithm, but has some
completely new properties of its own.

20

A Matlab code of Leiden’s algorithm

clear all;

clc;

n=1000;

t=7;

p=3;

l=1;

building=unidrnd(2,n,1)-1;

HO=1;

while building(HO)==0

 HO=HO+1;

end

HO=HO-1;

esv=floor((HO*p)/(p-l))

%aantal stops bepalen

w=t;

numberofstops=0;

numberisknown=0;

highestoccupied=HO;

while numberisknown==0

 Stops(numberofstops+1)=floor((w+numberofstops*t+highestoccupied*p)/(p-l));

 if Stops(numberofstops+1)>n

 numberisknown=1;

 else

 n2=floor(2*Stops(numberofstops+1)-highestoccupied+1);

 highestoccupied=n2;

 while highestoccupied<n && building(highestoccupied+1)==0

 highestoccupied=highestoccupied+1;

 end

 if highestoccupied==n

 numberisknown=1;

 else

 if (n-highestoccupied)*p<=n*l+w+numberofstops*t

 numberisknown=1;

 end

 end

 numberofstops=numberofstops+1;

 end

end

 21

Sopt=Stops'

numberofstops

lowerbound=0;

upperbound=w

h=HO*ones(numberofstops,1);

s=zeros(numberofstops,1);

for i=1:numberofstops

 s(i)=floor((h(i)*p+lowerbound+(i-1)*t)/(p-l));

 for counter=i+1:numberofstops

 s(counter)=floor((h(counter)*p+lowerbound+(i-1)*t)/(p-l));

 end

 lw=0;

 ew=(s(i)-h(i))*p-(s(i)*l+lowerbound+(i-1)*t);

 if ew<0

 ew=0;

 end

 found=0;

 while found==0 && ew<upperbound-lowerbound

 for j=i+1:numberofstops

 h(j)=floor(2*s(j-1)-h(j-1)+1);

 while h(j)<=n && building(h(j)+1)==0

 h(j)=h(j)+1;

 end

 s(j)=floor((lowerbound+ew+(j-1)*t+h(j)*p)/(p-l));

 end

 finalhighest=floor(2*s(numberofstops)-h(numberofstops)+1);

 while finalhighest<n && building(finalhighest)==0

 finalhighest=finalhighest+1;

 end

 if (n-finalhighest)*p<n*l+lowerbound+ew+numberofstops*t

 found=1;

 else

 s(i)=s(i)+1;

 lw=ew;

 ew=(s(i)-h(i))*p-(s(i)*l+lowerbound+(i-1)*t);

 if ew<0

 ew=0;

 end

 end

 end

22

 if found == 1

 upperbound=lowerbound+ew

 Sopt=s

 hopt=h

 if s(i)>esv

 s(i)=s(i)-1;

 end

 omlaag = 0;

 test=floor(2*s(i)-h(i)+1);

 while building(test)== 0

 test=test+1;

 omlaag = 1;

 end

 if omlaag == 1

 test = test-1;

 end

 h(i+1)=test;

 end

 lowerbound=lowerbound+lw

end

Sopt

waitingtime=upperbound

23

