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Introduction

At the core of particle physics theory lies the Standard Model, which is
widely accepted as a good model for elementary particles and forces. But
even though this model it is in accordance with experimental data, there are
reasons to search for a di�erent theory.

Firstly, the Standard Model does not explain why the electric charge of
the electron and the proton are equal in magnitude.

Secondly, theoretical physicists were inspired to think that the four fun-
damental forces, namely gravity, the electromagnetic interaction, and the
weak and strong interactions could be manifestations of an encompassing
force. This idea stems from the already existent uni�cation of the electro-
magnetic and weak interaction. This electroweak uni�cation has proven to
be very successful in providing predictions for experimental data.

Hence the rise of grand uni�ed theories (GUT's), which unify the elec-
troweak and the strong interaction, and theories of everything (TOE's),
which unify all the fundamental interactions into one force. Apart from
the aesthetic appeal of such theories, it turns out that they also correctly
predict the connection between the electric charge of the proton and the
electron.

In this thesis we shall elaborate the simplest of the grand uni�ed theories,
namely the su(5)-GUT, initially developed by Howard Georgi and Sheldon
Glashow in 1973. Firstly we need to have the mathematical tools for this
uni�cation, which are essentially contained in the theory of Lie algebras and
their representations. This will be the subject of the �rst part of this thesis.
In the second part we shall show how the su(5) uni�cation works, and we
will try to see if it is a good model for the physical world.
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Part I

Lie algebras and their representations





1 Lie algebras

In this section k is a �eld, and V is a k-vectorspace.

De�nition 1.1. A Lie bracket [., .] on V is a map [., .] : V × V → V that
satis�es the following properties:

1. Right linearity : ∀x, y, z ∈ V, ∀λ, µ ∈ k, [λx+ µy, z] = λ[x, z] + µ[y, z],

2. Antisymmetry : ∀x, y ∈ V, [x, y] = −[y, x],

3. Jacobi identity : ∀x, y, z ∈ V, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Remark 1.2. Properties 1 and 2 of a Lie bracket give us left-linearity:

∀x, y, z ∈ V,∀λ, µ ∈ k, [x, λy + µz] = λ[x, y] + µ[x, z].

So the Lie bracket is bilinear.

De�nition 1.3. A k-Lie algebra g is a k-vectorspace equipped with a Lie
bracket. The dimension of g is the dimension over k of its underlying vec-
torspace.

De�nition 1.4. Let (A,+, ·) be a k-algebra, and let x, y ∈ A. We de�ne on
(A,+) the commutator of x and y as:

[x, y] := (x · y)− (y · x). (1.1)

It is easy to see that the commutator is a Lie bracket for the k-vectorspace
(A,+) (the notation [., .] is thus justi�ed). From now on any k-algebra
inherits a natural structure of a k-Lie algebra, where the Lie bracket is just
the commutator.

De�nition 1.5. A k-Lie algebra g is commutative (or abelian) if for any
x, y ∈ g, [x, y] = 0.

Remark 1.6. If (A,+, ·) is a k-algebra, the associated k-Lie algebra is com-
mutative i� the algebra (A,+, ·) is commutative.

De�nition 1.7. Let g and g′ be two k-Lie algebras. A k-linear map
φ : g→ g′ is called a Lie algebra morphism if for all x, y ∈ g we have:

φ([x, y]) = [φ(x), φ(y)]. (1.2)
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Example 1.8. By de�nition, gl(V ) is the k-Lie algebra associated to the
k-algebra End(V ) as constructed in 1.4. If dim(V ) = n (for a positive integer
n), then dim(gl(V )) = n2. We also de�ne gl(n, k) := gl(kn), which is the
k-Lie algebra that has Mn(k) (the set of n×n matrices with entries in k) as
its underlying vectorspace.

De�nitions 1.9. Let g be a Lie algebra and a a sub vectorspace of g. If
[a, a] ⊂ a then a is called a Lie subalgebra of g. A Lie subalgebra a of g

is called an ideal if [g, a] ⊂ a. Note that due to the bilinearity of the Lie
bracket this is equivalent to [a, g] ⊂ a.

Remarks 1.10. 1. A Lie subalgebra is also a Lie algebra, when equipped
with the induced Lie bracket.

2. If g1 and g2 are ideals of a Lie algebra g, then [g1, g2] ⊂ g1 ∩ g2.

3. If g is a Lie algebra over R (resp. over C), then g is called a real (resp.
a complex ) Lie algebra.

Examples 1.11. Here are some more examples of Lie algebras.

1. A trivial k-Lie algebra consists of the zero dimensional k-vectorspace
with the trivial Lie bracket. It is denoted by 0.

2. Let n ∈ Z≥1. The (n2 − 1)-dimensional k-Lie algebra sl(n, k) = {x ∈
gl(n, k) : Tr(x) = 0} is an ideal of gl(n, k). This is because for x, y ∈
gl(n, k) we have that Tr([x, y]) = Tr(xy)−Tr(yx) = 0, since the trace
is linear and cyclic in its argument. We shall also use the notation
sl(n) to denote sl(n,C).

3. Let i, j ∈ {1, 2, 3}, and let Eij ∈ M3(R) denote the matrix with a 1
in row i and column j, and with all other entries 0. The Heisenberg

algebra is the 3-dimensional R-Lie algebra with basis {E12, E23, E13}.
The Lie brackets are:

[E12, E23] = E13, [E23, E13] = [E13, E12] = 0. (1.3)

It is the space of upper triangular matrices in gl(3,R).

4. Let n ∈ Z≥1. The R-Lie algebra su(n) is (n2 − 1)-dimensional, and
consists of traceless anti-hermitian matrices in Mn(C).

5. The 1-dimensional R-Lie algebra u(1) consists of all the elements of
iR (imaginary numbers). Its Lie bracket is trivial.
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Remark 1.12. There is a deep reason why we use the notation sl(n), su(n),
and u(1). It stems from the fact that these are the tangent spaces of the Lie
groups SL(n), resp. SU(n), resp. U(1). We have not de�ned these concepts
here, but it is nice to keep this in mind when we encounter Lie groups.

De�nition 1.13. Let g be a Lie algebra and let {g1, . . . , gm} be a collection
of �nite dimensional Lie subalgebras of g. We say that g is a direct sum of
the g1, . . . , gm (notation g1 ⊕ . . . ⊕ gm) if the underlying vectorspace of g

is a direct sum g1 ⊕ . . . ⊕ gm of the underlying vectorspaces of g1, . . . , gm.
So g = g1 ⊕ . . . ⊕ gm if every x ∈ g can be uniquely written as a sum
x = x1 + . . .+ xm, where xi ∈ gi for all i ∈ {1, . . . ,m}.
If in addition the g1, . . . , gm are ideals of g, then we write g1 × . . .× gm.

Remark 1.14. Suppose that g = g1 × . . . × gm. If x ∈ gi, y ∈ gj for
i, j ∈ {1, . . . ,m}, i 6= j, then in particular [x, y] = 0.

2 Representations of Lie algebras

In this section k is a �eld, g is a k-Lie algebra, and V is a k-vectorspace.

De�nition 2.1. A representation of g is a Lie algebra morphism
φ : g → gl(V ). The dimension of the representation is the dimension of the
vectorspace V over k.

Example 2.2. For any real or complex Lie algebra with elements in gl(n,C)
(for any given n), the de�ning representation is the canonical morphism
g→ gl(n,C).

Example 2.3 (Adjoint representation). Using the notation g for the under-
lying vectorspace of g, we can consider gl(g) as a k-Lie algebra. For all x ∈ g

we de�ne a map
ad(x) : g→ g, y 7→ [x, y]. (2.1)

The map ad(x) is linear for every x ∈ g. The assignment x 7→ ad(x) gives
us a linear map

ad : g→ gl(g). (2.2)

We will now show that for any x, y ∈ g we have [ad(x), ad(y)] = ad([x, y]),
so that ad is a representation of g. For x, y, z ∈ g we have:

[ad(x), ad(y)](z) = ad(x) ad(y)(z)− ad(y) ad(x)(z),
= [x, [y, z]]− [y, [x, z]].
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And the Jacobi identity gives

[x, [y, z]]− [y, [x, z]] = [[x, y], z],
= ad([x, y])(z).

Thus [ad(x), ad(y)](z) = ad([x, y])(z). The map ad is called the adjoint

representation of g. The dimension of the adjoint representation is equal to
the dimension of g.

Examples 2.4. Let φ : g→ gl(V ) be a representation of g.

1. If a is a Lie subalgebra of g, then the restriction of φ to a, φ|a, is a
representation of a. Note that dim(φ) = dim(φ|a).

2. If there is a linear subspace V ′ ⊂ V such that φ(g)(V ′) ⊂ V ′ (we
say that V ′ is invariant under φ), then φ induces a representation
φ′ : g → gl(V ′), de�ned as φ′(x)v := φ(x)v for all x ∈ g; v ∈ V ′. We
say that φ′ is a subrepresentation of φ.

De�nition 2.5. Let V ′ be another k-vectorspace. Two representations
φ : g→ gl(V ) and φ′ : g→ gl(V ′) of g are called equivalent if there exists a
vectorspace isomorphism f : V → V ′ such that for all x ∈ g we have:

φ(x) = f−1 ◦ φ′(x) ◦ f. (2.3)

3 Direct sum of representations and semisimple Lie

algebras

Let k be a �eld, V a �nite-dimensional k-vectorspace, and let g be a �nite
dimensional k-Lie algebra.

De�nition 3.1. Given two �nite dimensional representations φ : g→ gl(V )
and φ′ : g → gl(V ′) we shall de�ne a new representation φ ⊕ φ′ : g →
gl(V ⊕ V ′), called the direct sum of φ and φ′. Let x ∈ g, v ∈ V, v′ ∈ V ′. We
de�ne (φ⊕ φ′)(x) as:

(φ⊕ φ′)(x)(v + v′) := φ(x)v + φ′(x)v′. (3.1)

Remark 3.2. Note that φ ⊕ φ′ is well de�ned. It is a linear map, because
φ and φ′ are linear. And it respects the Lie bracket, since for all x, y ∈ g;
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v ∈ V, v′ ∈ V ′:

(φ⊕ φ′)([x, y])(v + v′) = φ([x, y])v + φ′([x, y])v′,
= [φ(x), φ(y)]v + [φ′(x), φ′(y)]v′,
= φ(x)φ(y)v − φ(y)φ(x)v,
+ φ′(x)φ′(y)v′ − φ′(y)φ′(x)v′,
= [(φ⊕ φ′)(x), (φ⊕ φ′)(y)](v + v′).

We can consider ⊕ to be an operation on the set of �nite dimensional
representations of g. This operation is commutative, since
V ⊕ V ′ = V ′ ⊕ V gives us that

φ⊕ φ′ = φ′ ⊕ φ. (3.2)

We shall denote by 0 the zero dimensional representation. Then 0 is the
identity element for the operation ⊕:

φ⊕ 0 = φ. (3.3)

Finally ⊕ is associative, for if we have another representation ψ : g→ gl(W )
(where W is a �nite dimensional k-vectorspace), then it is easy to see that:

φ⊕ (φ′ ⊕ ψ) = (φ⊕ φ′)⊕ ψ. (3.4)

We have now proved the following lemma.

Lemma 3.3. The set of �nite dimensional representations of g together with

the operation ⊕ forms a commutative monoid. �

De�nitions 3.4. A Lie algebra g is called simple if it is non-abelian and
has no nontrivial ideals. If g has no nonzero abelian ideals, then it is called
semisimple. Note that a simple Lie algebra is also semisimple.

Example 3.5. For all n ∈ Z≥1, the Lie algebra sl(n,C) from example 1.11
is simple. We shall prove this in section 4.

De�nitions 3.6. If g 6= 0, then a representation φ : g → gl(V ) is called
irreducible if V has exactly two invariant subspaces under the action of φ
({0} and V ). Otherwise it is called reducible. We say that φ is completely

reducible or semisimple if it is a direct sum of irreducible representations.

The following theorem is very important in the theory of semisimple Lie
algebras. For the proof see [9, paragraph 10.2].
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Theorem 3.7 (H. Weyl). Every (�nite-dimensional) linear representation

of a semisimple Lie algebra is completely reducible. �

De�nition 3.8. Let k = C, suppose that g is semisimple, and let h be a Lie
subalgebra of g. Then h is called a Cartan subalgebra if it is maximal with
respect to the following two conditions:

1. The subalgebra h is abelian;

2. There exists a basis (of the underlying vectorspace) of g with respect
to which for all h ∈ h the matrix ad(h) is diagonal.

Remarks 3.9. 1. The second part of de�nition 3.8 tells us that the el-
ements of {ad(h) : h ∈ h} all have the same eigenvectors, which span
the underlying vectorspace of g.

2. Actually, we can de�ne a Cartan subalgebra for any Lie algebra, see
[8, chapter 3].

We will state the next theorem without proof. For the proof see [8,
chapter 3].

Theorem 3.10. Every semisimple Lie algebra g has a Cartan subalgebra,

and all Cartan subalgebras of g have the same dimension. This dimension is

called the rank of g. �

Remarks 3.11. Because all Cartan subalgebras of a semisimple Lie algebra
have the same dimension, they are isomorphic as vectorspaces. Also, because
they are abelian, they are actually isomorphic as Lie algebras. Furthermore,
the theorem 3.10 is actually also true for any Lie algebra (see [8, chapter 3]).

The dual of V , denoted V ∗ is by de�nition the k-vectorspace of linear
maps V → k. We have a natural pairing

V × V ∗ → k, (v, f) 7→ f(v).

If b : V × V → k is a bilinear form on V we de�ne its associated morphism:

χb : V → V ∗, v 7→ (w 7→ b(v, w)).

And any morphism χ : V → V ∗ yields a bilinear map

V × V → k, (v, w) 7→ (χ(v))w.
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If V ∗∗ denotes the dual of V ∗, usually called the bidual of V , we have a
canonical map

V → V ∗∗, v 7→ (f 7→ f(v)).

Note that k, equipped with the commutator, is an abelian Lie algebra.
So any x ∈ g∗ (here we view g as its underlying vectorspace) is actually a
Lie algebra morphism g→ k.

For the rest of this section let k = C, and g a semisimple Lie algebra,
and let h be a �xed Cartan subalgebra of g.

De�nition 3.12. Let α ∈ h∗. An element x ∈ g is said to have weight α if
for all h ∈ h we have:

ad(h)(x) = α(h)x. (3.5)

The subspace of g spanned by all x ∈ g with weight α is called the eigenspace
corresponding to α, notation gα. If α 6= 0 and gα 6= 0, then α is called a root

of h. The set of roots of h of will be denoted R.

Remarks 3.13. 1. Note that the map α in def. 3.12 is really a linear
map, because ad(h) is a linear map for all h ∈ h.

2. We immediately see that if α ∈ R, then −α ∈ R.

3. Note that g0 = h, because h is a maximal abelian Lie subalgebra of g.

Theorem 3.14 (Cartan decomposition of g). Let R be the set of roots of h.

We can write g as a direct sum:

g = h⊕
⊕
α∈R

gα (3.6)

proof. Let α, β ∈ h∗, α 6= β. Then there is a h ∈ h such that α(h) 6= β(h).
Suppose that there is a nonzero x ∈ gα ∩ gβ . That would mean that for
all h ∈ h we have that ad(h)x = α(h)x = β(h)x. Then, because x 6= 0,
we see that α(h) = β(h) for all h ∈ h. This is a contradiction, so we see
that gα ∩ gβ = 0. And we have seen in remark 3.9 that the eigenvectors of
{ad(h) : h ∈ h} span the space g, so the elements of all the gα span g. Now,
we have seen in remark 3.13 that g0 = h. Because of the way we de�ned R,

we see now that gα 6= 0 precisely when α ∈ R ∪ {0}. So g =
⊕

α∈R∪{0}

gα.
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4 The Lie algebra sl(n)

Let n ∈ Z≥1, and de�ne I := {1, . . . , n}. We have de�ned the complex
Lie algebra sl(n) in example 1.11. It consists of all the matrices of Mn(C)
with trace zero, and has dimension n2 − 1. In this section we shall explore
properties of sl(n).

De�nitions 4.1. We shall de�ne Hλ1...λn ∈ Mn(C) to be the traceless di-
agonal matrix diag(λ1, . . . , λn) ∈ Mn(C). Let the matrix Hij ∈ Mn(C) be
the matrix with 1 on its ith diagonal entry, −1 on its jth diagonal entry,
and everywhere else 0. And by Eij (i, j ∈ I) we shall denote the matrix in
Mn(C) with entry (Eij)ij = 1 and with all other entries 0.

Remark 4.2. Note that the set {Eij ∈ Mn(C); i 6= j} consists of n2 − n
independent elements of sl(n), and that

h := {Hλ1...λn ∈ sl(n)} (4.1)

is a (n−1)-dimensional abelian Lie subalgebra of sl(n). Now we can see that
{Eij ∈ Mn(C); i 6= j} and h together generate a subvectorspace of sl(n) of
dimension (n2 − n) + (n− 1) = n2 − 1. We know that dim(sl(n)) = n2 − 1,
so this subvectorspace must be sl(n) itself.
Note that the set {Hij ∈Mn(C) : i < j} is a basis of h.

We would like to derive the Lie brackets for the generators of sl(n) that
we have found in remark 4.2. Let Hλ1...λn ∈ h, let i, j, k, l ∈ I, i 6= j , and let
δkl ∈ C be Kronecker symbols. Then:

[Hλ1...λn , Eij ] =
n∑
k=1

λk[Ekk, Eij ] =
n∑
k=1

λk(EkkEij − EijEkk),

=
n∑
k=1

λk(δkiEkj − δjkEik) = (λi − λj)Eij , (4.2)

[Eij , Ekl] = EijEkl − EklEij = δjkEil − δliEkj . (4.3)

Now that we know all the Lie brackets for the generators of sl(n), we can
prove that sl(n) is simple for all n ∈ Z≥1.

Proposition 4.3. The Lie algebra sl(n) is simple.

proof. Suppose that a is a nonzero ideal of sl(n). If Eij ∈ a for some i, j ∈
I, i 6= j, then a = sl(n), because of the following:

[Eij , Eji] = Hij ∈ a, so: [Hij , Eji] = −2Eji ∈ a.
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So:
Eij ∈ a =⇒ Hij , Eji ∈ a. (4.4)

For n = 2 we are now �nished, because we now have that the basis of sl(2)
is in a. If n > 2 then there is a k ∈ I, such that i, j and k are pairwise
di�erent. Then for all such k we have:

[Eij , Ejk] = Eik ∈ a, so: [Eki, Eij ] = Ekj ∈ a,

Now we are done for n = 3, because with equation 4.4 we see that the basis
of sl(3) is in a. If n > 3 then there is a l ∈ I, such that i, j, k and l are
pairwise di�erent. Then for all such l we have:

[Ekj , Ejl] = EkjEjl − EjlEkj = Ekl ∈ a.

Now we are also done for n > 3, because with equation 4.4 we see that the
basis of sl(n) is in a. So for all n ∈ Z≥1 we have: Eij ∈ a =⇒ a = sl(n).
We shall now show that there is an element of the form Eij in a.

Let A ∈ a, A 6= 0. If A ∈ h, then there exist some a ∈ C∗, i, j ∈ I, i 6= j,
such that [A,Eij ] = aEij 6= 0, which means that Eij ∈ a and we are �nished.
So without loss of generality we can assume that

A = H +
∑

k,l∈I,k 6=l
aklEkl, (4.5)

where H ∈ h, akl ∈ C, and there exist i, j ∈ I, i 6= j such that aij 6= 0. If

A = H + aijEij + ajiEji, (4.6)

then

[Hij , A] +
1
2

[Hij , [Hij , A]] = (2aijEij − 2ajiEji) + (2aijEij + 2ajiEji),

= 4aijEij ,

so in this case Eij ∈ a, and we are �nished. If there are nonzero terms in
4.5, other than the Eij , Eji and H terms, then the element

B := [Eij , [Hij , A]] (4.7)

is of the form 4.6, but without the Eij and Eji terms. Now if there are some
k, l ∈ I, k 6= l such that the Ekl term of B is nonzero, then we can repeat 4.7,
only this time we replace ij by kl. And we can keep doing this (removing
terms Ekl and Elk in this way) until we have an element in a that is of the
form 4.6 (but maybe with ij replaced with some other index). And we know
how to construct an element in {Eij ∈Mn(C); i 6= j} from this.
So indeed a = sl(n).
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Now we can use the results from the previous section for sl(n). First we
shall show that h is a Cartan subalgebra of sl(n).

Proposition 4.4. The Lie subalgebra h ⊂ sl(n) as de�ned in remark 4.2 is

a Cartan subalgebra of sl(n).

proof. Equation 4.2 tells us that for any H ∈ h, Eij ∈ {Eij ∈Mn(C); i 6= j}
we have that ad(H)(Eij) = [H,Eij ] = αijEij for some αij ∈ C. Also, since
h is abelian we now see that ad(H) is diagonal in the basis of sl(n) consisting
of the elements in {Hij ∈Mn(C) : i < j} and {Eij ∈Mn(C); i 6= j}.
Finally, it su�ces to prove that h is maximal with respect to its abelian
property. Suppose that it is not maximal abelian. Then there is an element
A /∈ h such that [h, A] = 0. Now, A is of the form 4.5, where there exist
i, j ∈ I, i 6= j such that the Eij term is not zero. But then [Hij , A] 6= 0,
which gives a contradiction. So h is a maximal abelian Lie subalgebra of
sl(n).

Corollary 4.5. The rank of sl(n) is n− 1. �

For all i, j ∈ I, i 6= j we de�ne a linear map αij : h→ C as:

∀Hλ1...λn ∈ h : αij(Hλ1...λn) := λi − λj . (4.8)

From equation 4.2 we can see that an element Eij ∈ {Eij ∈ Mn(C); i 6= j}
has weight αij . And we see that the set of roots R corresponding to h is
R = {αij : i, j ∈ I, i 6= j}, and #R = n2 − n.

The elements from {Eij ∈ Mn(C); i 6= j} are linearly independent, so
gαij is 1-dimensional for all αij ∈ R. A Cartan decomposition of sl(n) is:

sl(n) = h⊕
⊕
αij∈R

CEij . (4.9)

Lemma 4.6. (Properties of roots) Let αij , αkl ∈ R. Then:

1. αji = −αij,

2. αij + αkl is a root i� i = l, j 6= k or j = k, i 6= l. In particular 2αij is
not a root.

proof. 1. This is clear from equation 4.8. See also remark 3.13.2.
2. For all Hλ1...λn ∈ h:

(αij + αkl)(Hλ1...λn) = λi − λj + λk − λl. (4.10)
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It is easy to see that αij + αkl is a root if i = l, j 6= k or if j = k, i 6= l.
In the case that i = l and j = k, we have that αij + αkl = αij + αji = 0.
But 0 /∈ R, so in this case αij + αkl is not a root. If i 6= l and j 6= k then
equation 4.10 can never be of the form 4.8, since both equations are true for
all Hλ1...λn ∈ h. So also in this case αij + αkl is no root. The last claim
follows from this.

We now know the structure of sl(n), but we know little about its rep-
resentations. In the next section we shall derive all the �nite dimensional
representations of sl(2).

5 Representations of sl(2)

In the previous section we have seen the structure of sl(2), and we know
that sl(2) is simple. In this section we shall derive all the �nite dimensional
representations of sl(2).

Let V be a �nite dimensional complex vectorspace, and let φ : sl(2) →
gl(V ) be a representation. If V = 0, then the representation is trivial. Now
take V 6= 0. Note that we know that there exists a nontrivial representation
of sl(2), namely its two dimensional de�ning representation.

We de�ne in sl(2) the following matrices:

H :=
1
2

(
1 0
0 −1

)
, X+ :=

1√
2

(
0 1
0 0

)
, X− :=

1√
2

(
0 0
1 0

)
. (5.1)

The set {H,X+, X−} is a basis for sl(2). The commutator relations are:

[H,X+] = X+, [H,X−] = −X−, [X+, X−] = H. (5.2)

De�nitions 5.1. Let λ ∈ C. v ∈ V is said to have weight λ, if:

φ(H)v = λv. (5.3)

The subspace of V spanned by all v ∈ V with weight λ is called the eigenspace
corresponding to λ, notation V λ. Let E be the set of eigenvalues of φ(H). A
nonzero element v ∈ V is called primitive of weight λ if v ∈ V λ andX+v = 0.

Remark 5.2. If we compare 5.1 with the de�nition 3.12 of roots, we see
that these are closely related.

Proposition 5.3. The element φ(H) is diagonalizable.
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We can see from equation 5.2 that in the basis {H,X+, X−} we have
ad(H) = diag(0, 1,−1). Then the proposition 5.3 is a corollary of the fol-
lowing theorem that can be found in [8, page 7].

Theorem 5.4. Let g be a semisimple Lie algebra, let ψ : g → gl(V ) be

a representation, and let x ∈ g. If ad(x) is diagonalizable, then ψ(x) is

diagonalizable. �

Notation 5.5. We shall be using the following notation forX ∈ sl(2), v ∈ V :

Xv := φ(X)v. (5.4)

Proposition 5.6. 1. We have a decomposition V =
⊕
λ∈E

V λ,

2. If v ∈ V λ, then X+v ∈ V λ+1 and X−v ∈ V λ−1,

3. There exists a λ ∈ E, such that V contains a primitive element of

weight λ.

proof. 1. We know from proposition 5.3 that φ(H) is diagonalizable, so the
set of eigenspaces of φ(H) spans V . The sum of the V λ is direct, because
eigenvectors corresponding to di�erent eigenvalues are linearly independent.
2. We know that φ([H,X±]) = [φ(H), φ(X±)] = φ(H)φ(X±)−φ(X±)φ(H).
So, for all v ∈ V λ:

HX±v = X±Hv + [H,X±]v = (λ± 1)X±v. (5.5)

3. Since φ(H) is diagonalizable, we know that E 6= ∅. Let λ′ ∈ E, v ∈ V λ′
,

v 6= 0. Since dim(V ) < ∞, we can see from part 1 and 2 of this theorem
that there must be a smallest positive integer k such that (X+)kv = 0. Then
(X+)k−1v is a primitive element of weight λ = λ′ + k − 1.

Remark 5.7. Part two of proposition 5.6 is the reason why we use the
notation X+ and X−. The matrix X+ is called the raising operator, and
X− is called the lowering operator.

Lemma 5.8. Let e ∈ V be a primitive element of weight λ. Then de�ne

e−1 = 0 and ek := (X−)ke/k! for k ∈ Z≥0. We then have for all k ≥ 0:

1. ek ∈ V λ−k,

2. X−ek = (k + 1)ek+1,

3. X+ek = (λ− k−1
2 )ek−1.
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proof. 1: This follows from proposition 5.6.2.
2: This is clear from the de�nition of ek.
3. We will prove this with induction on k. Because e is a primitive element,
we haveX+e0 = X+e = 0 = (λ+1)e−1, so the formula is true for k = 0. Now
suppose that the formula is true for k−1, with k > 1. Using the results from
formulas 1 and 2, and remembering that φ([X+, X−]) = [φ(X+), φ(X−)], we
have:

kX+ek = X+X−ek−1 = [X+, X−]ek−1 +X−X+ek−1,

= Hek−1 + (λ− k − 2
2

)X−ek−2,

= ((λ− k + 1) + (λ− k

2
+ 1)(k − 1))ek−1,

= k(λ− k − 1
2

)ek−1.

In the second line we have used the induction assumption. The formula 3 is
proved if we divide by k.

Proposition 5.9. Let e ∈ V be a primitive element of weight λ, and let

W ⊂ V be the subspace spanned by the ek's.

1. There is a unique positive integer n such that ei = 0 for any i ≥ n,
and en−1 6= 0. So W is spanned by the set {e0, . . . , en−1}.

2. We have λ = (n− 1)/2.

3. If φ is irreducible then V λ = Ce, dim(V ) = n.

proof. We know that ek ∈ V λ−k. Also: ek = 0 if k ≥ dim(V ), since eigen-
vectors corresponding to di�erent eigenvalues are linearly independent. So
there must be a smallest positive integer n ≤ dim(V ) such that en = 0.
For k ≥ n:

ek =
1
k!

(X−)ke =
n!
n!k!

(X−)k−n(X−)ne =
n!
k!

(X−)k−nen = 0,

soW is spanned by the set {e0, . . . , en−1}. Also: 0 = X+en = (λ− n−1
2 )en−1

and en−1 6= 0, so λ = (n − 1)/2. Now, because {H,X+, X−} is a basis for
sl(2), we can see with proposition 5.6 that φ(sl(2))(W ) ⊂W . And for every
k ∈ {0, . . . , n− 1} we have (X−)ke ∈ Cek, so there is no nontrivial subspace
of W that is invariant under φ. The last two claims follow from this.
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We can now classify all the �nite dimensional representations of sl(2).
Namely for every positive integer n, if there exists an irreducible n-dimensional
representation ψ of sl(2), then this is the only irreducible n-dimensional rep-
resentation of sl(2) (up to equivalence). In particular we have that ψ̄ = ψ.
We shall now show that there exists such a representation ψ. Firstly, we
know the eigenvalues of ψ(H):

{λ, λ− 1, . . . ,−λ+ 1,−λ}, (5.6)

where λ = (n− 1)/2. We de�ne a linear map ψ′ : sl(2)→ gl(n,C):

H 7→ diag(λ, λ− 1, . . . ,−λ+ 1,−λ), (5.7)

X+ 7→



0 1 0 . . . 0

0
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 0 0


, X− 7→



0 0 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 0


. (5.8)

It is a simple computation to show that ψ′ respects the Lie brackets 5.2,
so it is a representation of sl(2). Furthermore it is easy to show that it is
irreducible. Then we see that for any positive integer n there indeed exists
an irreducible n-dimensional representation of sl(2).

We have now found every �nite dimensional representation of sl(2), since
it is a direct sum of irreducible representations, by theorem 3.7.

6 Complexi�cation

In this section g is a R-Lie algebra. We shall denote by Vg its underlying
vectorspace.

If V is a real vectorspace, we know how to extend the scalars to C and
thus construct a complex vectorspace V ⊗R C, the complexi�cation of V . If
dimR(V ) is �nite, we have dimC(V ⊗R C) = dimR(V ). Note that we can
view

V ⊗R C = {v1 + iv2 : v1, v2 ∈ V }, (6.1)

with scalar multiplication i(v1 + iv2) = (−v2 + iv1).
It is straightforward to show that there is a unique complex Lie algebra

f such that g ↪→ f is a Lie algebra morphism, and such that Vf = Vg ⊗R C.
We shall denote f by g⊗R C, the complexi�cation of g.
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Examples 6.1. Recall the Lie algebras from example 1.11. We have:

1. gl(n,R)⊗R C = gl(n,C),

2. sl(n,R)⊗R C = sl(n),

3. su(n)⊗R C = sl(n).

Let V be a complex vectorspace. If φ : g ⊗R C → gl(V ) is a repre-
sentation, we can restrict φ to g and �nd a representation of g. This so
called complex representation of g is R-linear, not C-linear. Conversely, if
φ : g → gl(V ) is a complex representation, we can construct a canonical
representation φ⊗R C of g⊗R C, namely for x ∈ g, λ ∈ C:

(φ⊗R C)(x⊗R λ) = λ(φ⊗R C)(x⊗R 1) = λφ(x). (6.2)

Example 6.2. The de�ning representation from example 2.2 is a complex
representation of dimension n.

Example 6.3. (Complex conjugate representation) Suppose that V = Cn

(where n is a positive integer), Vg ⊂ Mn(C), and let φ : g → gl(V ) be a
complex representation of g. We de�ne a map φ̄ : g → gl(V ) by φ̄(x) :=
−φ(x)∗, where φ(X)∗ is the conjugate transpose of φ(x). For all x, y ∈ g we
have φ̄([x, y]) = [φ̄(x), φ̄(y)], since

φ̄([x, y]) = −φ([x, y])∗ = −[φ(x), φ(y)]∗,

and

[φ̄(x), φ̄(y)] = [−φ(x)∗,−φ(y)∗] = −[φ(x), φ(y)]∗.

Note that φ̄ is R-linear, so it is actually a complex representation of g, and
it is called the complex conjugate of φ.

Proposition 6.4. Let V be a complex vectorspace, and let φ : g→ gl(V ) be

a complex representation of g. Then φ is irreducible i� φ⊗RC is irreducible.

proof. Suppose φ is irreducible, and suppose W ⊂ V is invariant under
φ ⊗R C. Then W is invariant under φ (as a restriction of φ ⊗R C to g).
So W = V or W = {0}. Conversely, suppose φ ⊗R C is irreducible, and
suppose W ⊂ V is invariant under φ. Now, (φ ⊗R C)(g ⊗R C)(W ) ⊂
Cφ(g)(W ) + Cφ(g)(W ) ⊂W , since W is invariant under φ. But φ⊗R C is
irreducible, so W = V or W = {0}.

Remark 6.5. In particular, we see that there is a one to one correspondence
between representations of sl(n) (for any n ∈ Z≥1) and complex representa-
tions of su(n).
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7 More operations on representations

In section 3 we de�ned a direct sum of representations. In this section
we shall de�ne some more operations on representations, and explore their
properties. This shall prove to be very useful in the second part of this thesis,
when we discuss the su(5) uni�cation theory.

Let g be a �nite dimensional Lie algebra over a �eld k, let V and V ′ be
�nite dimensional k-vectorspaces of dimension n resp. m, and let φ : g →
gl(V ) and φ′ : g→ gl(V ′) be two representations of g.

7.1 Tensor product of representations

We know how to construct a tensor product of vectorspaces. Let us now
de�ne a tensor product of representations.

De�nition 7.1. Given the two representations φ : g→ gl(V ) and
φ′ : g→ gl(V ′) we shall de�ne a new representation φ⊗φ′ : g→ gl(V ⊗ V ′),
called the tensor product of φ and φ′. Let x ∈ g, v ∈ V, v′ ∈ V ′. We de�ne
(φ⊗ φ′)(x) as the linear extension of:

(φ⊗ φ′)(x)(v ⊗ v′) := φ(x)v ⊗ v′ + v ⊗ φ′(x)v′. (7.1)

Remark 7.2. Note that φ ⊗ φ′ is well de�ned, because it is linear and it
respects the Lie bracket, since for all x, y ∈ g, v ∈ V, v′ ∈ V ′ we have that:

(φ⊗ φ′)([x, y])(v ⊗ v′) = φ([x, y])v ⊗ v′ + v ⊗ φ′([x, y])v′,
= [φ(x), φ(y)]v ⊗ v′ + v ⊗ [φ′(x), φ′(y)]v′,
= φ(x)φ(y)v ⊗ v′ − φ(y)φ(x)v ⊗ v′,
+ v ⊗ φ′(x)φ′(y)v′ − v ⊗ φ′(y)φ′(x)v′,

and

[(φ⊗ φ′)(x), (φ⊗ φ′)(y)](v ⊗ v′) = (φ⊗ φ′)(x)(φ(y)v ⊗ v′ + v ⊗ φ′(y)v′),
− (φ⊗ φ′)(y)(φ(x)v ⊗ v′ + v ⊗ φ′(x)v′),
= φ(x)φ(y)v ⊗ v′ +((((((((

φ(y)v ⊗ φ′(x)v′,
+((((((((
φ(x)v ⊗ φ′(y)v′ + v ⊗ φ′(x)φ′(y)v′,

− φ(y)φ(x)v ⊗ v′ −((((((((
φ(x)v ⊗ φ′(y)v′,

−((((((((
φ(y)v ⊗ φ′(x)v′ − v ⊗ φ′(y)φ′(x)v′.
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Remark 7.3 (Matrix notation). Let v ⊗ v′ ∈ V ⊗ V ′. If we write out the
vectors v and v′ in some basis of V resp. V ′, say vT = (v1, . . . , vn) and
v′T = (v′1, . . . , v

′
m), then we can identify v ⊗ v′ as vv′T , which is just the

usual matrix product:

v ⊗ v′ ' vwT :=

v1v
′
1 . . . v1v

′
m

...
. . .

...
vnv
′
1 . . . vnv

′
m

 (7.2)

We can now easily see that we can identify V ⊗ V ′ as the vectorspace
Mn×m(k) of n×m matrices over k. Then, for M ∈Mn×m(k) we have

(φ⊗ φ′)(x)(M) = φ(x)M +Mφ′(x)T , (7.3)

since for all v ∈ V, v′ ∈ V ′:

(φ⊗ φ′)(x)(v(v′)T ) = φ(x)v(v′)T + v(φ′(x)v′)T ,

= φ(x)v(v′)T + v(v′)Tφ′(x)T .

Lemma 7.4. We shall denote by 1 the one dimensional trivial representa-

tion. Let ψ : g → gl(W ) be another �nite dimensional representation of g.

Then:

1. φ⊗ 1 ' φ,

2. φ⊗ φ′ ' φ′ ⊗ φ,

3. φ⊗ (φ′ ⊗ ψ) = (φ⊗ φ′)⊗ ψ,

4. φ⊗ 0 = 0⊗ φ = 0,

5. Distribution over ⊕: ψ ⊗ (φ⊕ φ′) = (ψ ⊗ φ)⊕ (ψ ⊗ φ′),
and (φ⊕ φ′)⊗ ψ = (φ⊗ ψ)⊕ (φ′ ⊗ ψ).

proof. Let x ∈ g, v ∈ V, v′ ∈ V ′, w ∈W .

1. Note that V ⊗ V ′ is isomorphic to V ′ ⊗ V via the linear map
f : V ⊗ V ′ → V ′ ⊗ V : v ⊗ v′ 7→ v′ ⊗ v. Then:

(φ′ ⊗ φ)(x)(f(v ⊗ v′)) = (φ′ ⊗ φ)(x)(v′ ⊗ v),
= φ′(x)v′ ⊗ v + v′ ⊗ φ(x)v,
= f(v ⊗ φ′(x)v′ + φ(x)v ⊗ v′),
= f((φ⊗ φ′)(x)(v ⊗ v′)).
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2. Let φ′ = 1, and let e′1 be the basis of V
′. Then v′ = λe′1 for some λ ∈ k,

and the linear map g : V ⊗ V ′ → V : v ⊗ v′ 7→ λv is a vectorspace
isomorphism. Then:

g((φ⊗ 1)(x)(v ⊗ v′)) = g(φ(x)v ⊗ v′ + v ⊗ 0),
= g(φ(x)v ⊗ v′),
= λφ(x)v = φ(x)(g(v ⊗ v′)).

3. This is a straightforward computation.

4. (φ⊗ 0)(x)(v ⊗ 0) = 0 = (0⊗ φ)(x)(0⊗ v).

5. Finally, we shall prove the distributive property:

(ψ ⊗ (φ⊕ φ′))(x)(w ⊗ (v + v′))
= ψ(x)w ⊗ (v + v′) + w ⊗ (φ⊕ φ′)(x)(v + v′),
= ψ(x)w ⊗ v + ψ(x)w ⊗ v′ + w ⊗ φ(x)v + w ⊗ φ′(x)v′,
= (ψ ⊗ φ)(x)(w ⊗ v) + (ψ ⊗ φ′)(x)(w ⊗ v′),
= ((ψ ⊗ φ)⊕ (ψ ⊗ φ′))(w ⊗ (v + v′)).

The other distribution property is proved similarly.

We can de�ne operations ⊕ and ⊗ in a natural way on the space of equiv-
alence classes of �nite dimensional representations of g. Let's call this space
EQR(g). For a �nite dimensional representation φ of g, the corresponding
element in EQR(g) is [φ]. The previous lemma will be important to prove
that EQR(g) together with the operations ⊕ and ⊗ has a natural structure
of a semiring. The precise de�nition of a semiring will follow shortly, but
for now we can imagine it to be a �ring without inverse elements for the
summation�.

De�nition 7.5. For elements [φ], [φ′] ∈ EQR(g) we de�ne:

[φ]⊕ [φ′] := [φ⊕ φ′], (7.4)

[φ]⊗ [φ′] := [φ⊗ φ′]. (7.5)

Remark 7.6. We need to check that these operations are well de�ned. Let
ψ : g → gl(W ), and ψ′ : g → gl(W ′) be two other �nite dimensional rep-
resentations of g. We need to show that if [φ] = [ψ] and [φ′] = [ψ′], then

22



[φ ⊕ φ′] = [ψ ⊕ ψ′] and [φ ⊗ φ′] = [ψ ⊗ ψ′]. We know that there are vec-
torspace isomorphisms f : V →W and f ′ : V ′ →W ′, such that for all x ∈ g:
f ◦ φ(x) = ψ(x) ◦ f , f ′ ◦ φ′(x) = ψ′(x) ◦ f ′. We de�ne two new vectorspace
isomorphisms g and h as follows:

g : V ⊕ V ′ →W ⊕W ′ : g(v + v′) := f(v) + f ′(v′),

h : V ⊗ V ′ →W ⊗W ′ : h(v ⊗ v′) := f(v)⊗ f ′(v′).

Then:

g((ψ ⊕ ψ′)(x)(v + v′)) = g(φ(x)v + φ′(x)v′),
= f(φ(x)v) + f ′(φ′(x)v′),
= ψ(x)(f(v)) + ψ′(x)(f ′(v′)),
= (ψ ⊕ ψ′)(x)(f(v) + f ′(v′)),
= (ψ ⊕ ψ′)(x)(g(v + v′)),

and

h((ψ ⊗ ψ′)(x)(v ⊗ v′)) = h(φ(x)v ⊗ v′ + v ⊗ φ′(x)v′),
= f(φ(x)v)⊗ f ′(v′) + f(v)⊗ f ′(φ′(x)v′),
= ψ(x)(f(v))⊗ f ′(v′) + f(v)⊗ ψ′(x)(f ′(v′)),
= (ψ ⊗ ψ′)(x)(f(v)⊗ f ′(v′)),
= (ψ ⊗ ψ′)(x)(h(v ⊗ v′)).

So indeed the operations ⊕ and ⊗ are well de�ned on EQR(g).

De�nition 7.7. Let R be a set, and let +, · be two operations on R. Then
(R,+, ·) is called a semiring if:

1. (R,+) and (R, ·) are monoids with identity elements 0 resp. 1, and
(R,+) is commutative.

2. Distribution over +: For all x, x′, y ∈ R we have y ·(x+x′) = y ·x+y ·x′,
and (x+ x′) · y = x · y + x′ · y.

3. The element 0 annihilates R: For all x ∈ R we have 0 · x = x · 0 = 0.

A semiring is called commutative if (R, ·) is commutative.

With lemmas 3.3 and 7.4 we have now proved the following proposition.

Proposition 7.8. The set EQR(g) equipped with operations ⊕ and ⊗ is a

commutative semiring, with distribution over ⊕. �
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7.2 Symmetric and antisymmetric tensor product

De�nitions 7.9. We shall now de�ne a linear map S : V ⊗ V → V ⊗ V,
called symmetrization map. For all v1, v2 ∈ V :

S(v1 ⊗ v2) := v1 ⊗ v2 + v2 ⊗ v1. (7.6)

The linear subspace S(V ⊗ V ) of V ⊗ V is called the symmetrization of

V ⊗ V . In a similar way we de�ne a linear map A : V ⊗ V → V ⊗ V , called
the antisymmetrization map. For all v1, v2 ∈ V :

A(v1 ⊗ v2) := v1 ⊗ v2 − v2 ⊗ v1. (7.7)

The linear subspace A(V ⊗ V ) of V ⊗ V is called the antisymmetrization of

V ⊗ V .

Remark 7.10 (Matrix notation). If we identify V ⊗ V as Mn(k), then for
all v1, v2 ∈ V we have that:

S(v1v
T
2 ) = v1v

T
2 + v2v

T
1 = v1v

T
2 + (v1v

T
2 )T ,

A(v1v
T
2 ) = v1v

T
2 − v2v

T
1 = v1v

T
2 − (v1v

T
2 )T .

So for all M ∈ Mn(k): S(M) = M + MT , and A(M) = M −MT . We
now see that we can identify S(V ⊗ V ) and A(V ⊗ V ) as the subspace of
symmetric resp. antisymmetric matrices in Mn(k).

Remarks 7.11. Let {e1, . . . , en} be a basis of V . Then

{S(ei1 ⊗ ei2)|1 ≤ i1 ≤ i2 ≤ n} (7.8)

is a basis of S(V ⊗V ). Furthermore, if n ≤ 1, then A(V ⊗V ) = 0. Otherwise,
if n ≥ 2, then A(V ⊗ V ) has a basis

{A(ei1 ⊗ ei2)|1 < i1 < i2 < n}. (7.9)

We can now calculate the dimensions of S(V ⊗ V ) and A(V ⊗ V ) with
standard combinatorics:

dim(S(V ⊗ V )) =
(
n+ 1

2

)
= n(n+ 1)/2, (7.10)

dim(A(V ⊗ V )) =
(
n

2

)
= n(n− 1)/2. (7.11)
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In the case that n ≥ 2 we get:

dim(S(V ⊗ V )) + dim(A(V ⊗ V ))) =
(
n+ 1

2

)
+
(
n

2

)
= n2 = dim(V ⊗ V ).

Also, we can easily see that S ◦A ≡ 0 ≡ A ◦ S, so for v1, v2 ∈ V we have:

V ⊗ V = S(V ⊗ V )⊕A(V ⊗ V ). (7.12)

In particular, for v1, v2 ∈ V we have:

v1 ⊗ v2 = 1/2(S(v1 ⊗ v2) +A(v1 ⊗ v2)). (7.13)

If we have a representation φ ⊗ φ : g → gl(V ⊗ V ), then this induces
representations on S(V ⊗ V ) and on A(V ⊗ V ), because
(φ⊗ φ)(S(V ⊗ V )) ⊂ S(V ⊗ V ) and (φ⊗ φ)(A(V ⊗ V )) ⊂ A(V ⊗ V ), since
for all x ∈ g; v1, v2 ∈ V we have:

(φ⊗ φ)(x)(S(v1 ⊗ v2)) = (φ⊗ φ)(x)(v1 ⊗ v2 + v2 ⊗ v1),
= S(φ(x)v1 ⊗ v2 + v1 ⊗ φ(x)v2),
= S((φ⊗ φ)(x)(v1 ⊗ v2)),

(φ⊗ φ)(x)(A(v1 ⊗ v2)) = (φ⊗ φ)(x)(v1 ⊗ v2 − v2 ⊗ v1),
= A(φ(x)v1 ⊗ v2 + v1 ⊗ φ(x)v2),
= A((φ⊗ φ)(x)(v1 ⊗ v2)).

We will denote these induced representations as S(φ⊗φ) : g→ gl(S(V ⊗V ))
and A(φ⊗ φ) : g→ gl(A(V ⊗ V )).

Example 7.12. For n ≥ 2 we can see from equation 7.13 that

φ⊗ φ =
1
2

(S(φ⊗ φ)⊕A(φ⊗ φ)). (7.14)

7.3 Direct product of representations

In this subsection let g1, g2 be �nite dimensional k-Lie algebras, and let
φ1 : g1 → gl(V1) and φ2 : g2 → gl(V2) be �nite dimensional representations.

De�nition 7.13. Suppose that g = g1 × g2. We shall de�ne a represen-
tation φ1 × φ2 : g → gl(V1 ⊗ V2) of g, which we shall call a direct product

representation of g. Let x ∈ g, x1 ∈ g1, x2 ∈ g2, v1 ∈ V1, v2 ∈ V2 such that
x = x1 + x2. Then:

(φ1 × φ2)(x)(v1 ⊗ v2) := φ1(x1)v1 ⊗ v2 + v1 ⊗ φ2(x2)v2. (7.15)
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Remark 7.14. Note that φ1 × φ2 really is a representation: It is a linear
map because φ1 and φ2 are linear. We shall show that it also respects the
Lie bracket. Let x, y ∈ g such that x = x1 + x2, y = y1 + y2, where x1, y1 ∈
g1, x2, y2 ∈ g2. From remark 1.14 we can see that [x, y] = [x1, y1] + [x2, y2].
Then we have:

(φ1 × φ2)([x, y])(v1 ⊗ v2) = φ1([x1, y1])v1 ⊗ v2 + v1 ⊗ φ2([x2, y2])v2,

= [φ1(x1), φ1(y1)]v1 ⊗ v2 + v1 ⊗ [φ2(x2), φ2(y2)]v2,

= φ1(x1)φ1(y1)v1 ⊗ v2 − φ1(y1)φ1(x1)v1 ⊗ v2,

+ v1 ⊗ φ2(x2)φ2(y2)v2 − v1 ⊗ φ2(y2)φ2(x2)v2,

and

[(φ1 × φ2)(x), (φ1 × φ2)(y)](v1 ⊗ v2),
= (φ1 × φ2)(x)(φ1 × φ2)(y)(v1 ⊗ v2)− (φ1 × φ2)(y)(φ1 × φ2)(x)(v1 ⊗ v2),
= (φ1 × φ2)(x)(φ1(y1)v1 ⊗ v2) + (φ1 × φ2)(x)(v1 ⊗ φ2(y2)v2),
− (φ1 × φ2)(y)(φ1(x1)v1 ⊗ v2)− (φ1 × φ2)(y)(v1 ⊗ φ2(x2)v2),

= φ1(x1)φ1(y1)v1 ⊗ v2 +
((((((((((
φ1(y1)v1 ⊗ φ2(x2)v2 +

((((((((((
φ1(x1)v1 ⊗ φ2(y2)v2,

+ v1 ⊗ φ2(x2)φ2(y2)v2 − φ1(y1)φ1(x1)v1 ⊗ v2 −((((((((((
φ1(x1)v1 ⊗ φ2(y2)v2,

−
((((((((((
φ1(y1)v1 ⊗ φ2(x2)v2 − v1 ⊗ φ2(y2)φ2(x2)v2.

Lemma 7.15. Let ψ1 : g1 → gl(W1) and ψ2 : g2 → gl(W2) be representa-

tions, where W1 and W2 are �nite dimensional k-vectorspaces. Then:

(φ1 × φ2)⊗ (ψ1 × ψ2) ' (φ1 ⊗ ψ1)× (φ2 ⊗ ψ2). (7.16)

proof. Let x ∈ g, x1 ∈ g1, x2 ∈ g2, v1 ∈ V1, v2 ∈ V2, w1 ∈ W1, w2 ∈ W2, such
that x = x1 + x2. Then:

((φ1 × φ2)⊗ (ψ1 × ψ2))(x)((v1 ⊗ v2)⊗ (w1 ⊗ w2))
= (φ1 × φ2)(x)(v1 ⊗ v2)⊗ (w1 ⊗ w2) + (v1 ⊗ v2)⊗ (ψ1 × ψ2)(x)(w1 ⊗ w2),
= (φ1(x1)v1 ⊗ v2)⊗ (w1 ⊗ w2) + (v1 ⊗ φ2(x2)v2)⊗ (w1 ⊗ w2),
+ (v1 ⊗ v2)⊗ (ψ1(x1)w1 ⊗ w2) + (v1 ⊗ v2)⊗ (w1 ⊗ ψ2(x2)w2),

and

((φ1 ⊗ ψ1)× (φ2 ⊗ ψ2))(x)((v1 ⊗ w1)⊗ (v2 ⊗ w2))
= (φ1 ⊗ ψ1)(x1)(v1 ⊗ w1)⊗ (v2 ⊗ w2) + (v1 ⊗ w1)⊗ (φ2 ⊗ ψ2)(x2)(v2 ⊗ w2),
= (φ1(x1)v1 ⊗ w1)⊗ (v2 ⊗ w2) + (v1 ⊗ ψ1(x1)w1)⊗ (v2 ⊗ w2)
+ (v1 ⊗ w1)⊗ (φ2(x2)v2 ⊗ w2) + (v1 ⊗ w1)⊗ (v2 ⊗ ψ2(x2)w2).
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Now note that (V1⊗V2)⊗(W1⊗W2) is isomorphic to (V1⊗W1)⊗(V2⊗W2),
via the isomorphism (v1 ⊗ v2)⊗ (w1 ⊗ w2) 7→ (v1 ⊗ w1)⊗ (v2 ⊗ w2).

Remarks 7.16. Let g3 be another �nite dimensional k-Lie algebra with
�nite dimensional representation φ3 : g3 → gl(V3). Now suppose that g =
g1 × g2 × g3. Then, it can easily be checked that

(φ1 × φ2)× φ3 = φ1 × (φ2 × φ3),

so we can use the notation φ1 × φ2 × φ3 for this representation. We shall
introduce another notation which we shall use in the second part of this
thesis, because it is used in particle physics: (φ1, φ2, φ3).
Now, let ψ1, ψ2 be as in lemma 7.15, and let ψ3 : g3 → gl(W3) be another
�nite dimensional representation. It is easy to see that the lemma can be
extended:

(φ1, φ2, φ3)⊗ (ψ1, ψ2, ψ3) ' (φ1 ⊗ ψ1, φ2 ⊗ ψ2, φ3 ⊗ ψ3). (7.17)
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Part II

Application: the su(5) grand uni�cation





8 Particle physics and the Standard Model

With the mathematical theory from the previous sections we shall model
interactions between elementary particles. In this section we will present the
results of the Standard Model, which describes the basic principles of particle
physics theory.

We distinguish fermions and forces (interactions): forces act on fermions
in some way. We shall discuss the relation between fundamental or elemen-

tary forces and fermions. These are without substructure, which means that
all the other forces and particles are composites of the fundamental ones.

8.1 Fermions

Fermions consist of matter and antimatter. The fundamental fermions of
matter resp. antimatter are called elementary particles resp. antiparticles.
For every particle there is an antiparticle that has same mass as the parti-
cle, but opposite electric charge. All the stable fermions that exists in the
universe are particles, which are divided in two groups: leptons and quarks.

Quarks and leptons consist of six types of particles, also called �avors:
Lepton �avors: e (electron), ν (electron-neutrino), µ (muon), νµ (muon-
neutrino), τ (tauon) and ντ (tauon-neutrino). Quark �avors: u (up), d
(down), s (strange), c (charm), t (top), b (bottom). Of course all of these
�avors have their antiparticle counterpart, which is denoted with a bar, for
example ē (antielectron) and ū (anti up quark). The antielectron is also
called the positron. We should note that the three neutrinos have negligible
mass, and they also have electric charge zero.

There are three generations (or families) of particles/antiparticles, each
selected by the mass of the fermions (except for the neutrinos, which are
selected di�erently): the �rst generation consists of the lightest, and the
third of the heaviest fermions.

Leptons Quarks

1st generation e, ν u, d

2nd generation µ, νµ s, c

3rd generation τ, ντ t, b

Figure 8.1: Elementary particles
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8.2 Fundamental forces

In particle physics there are four fundamental forces: the electromagnetic,
the weak, the strong, and the gravitational force. The �rst three of these act
on fermions in a way that can be modeled by representations of Lie algebras.
These forces are mediated by particles called bosons, which are identi�ed by
a basis of the Lie algebra in question.

Model 8.1 (Relation between Lie algebra theory and particle physics).
A force is modeled as a real Lie algebra g, particles/antiparticles are modeled
as elements of a complex vector space V . And the action of the force on a
particle resp. antiparticle is modeled as a complex representation φ : g →
gl(V ) resp. complex conjugate representation φ̄ : g → gl(V ). There are
dim(g) independent bosons that are mediators of the force.

In �gure 8.2 we can see which Lie algebra is associated with which fun-
damental force. Note that dim(su(3)) = 8, and we know from physics
theory that there are eight independent bosons for the strong force, the
gluons. There are three independent bosons for the weak interaction, the
W+,W−, Z0 bosons, and we see that dim(su(2)) = 3. There is one indepen-
dent photon, dim(u(1)) = 1.

The way forces act on a fermion depends on the properties of the fermion
in question. The physical property connected to the strong force is called
color. The only fermions with color are quarks and antiquarks. Furthermore,
electric charge is connected to the electromagnetic interaction, and weak

isospin is connected to the weak interaction. Whether or not a fermion has
weak isospin depends on another physical property, the so called helicity.

De�nition 8.2. Every fermion has a property called spin, which is a vector
in R3. The component of spin in the direction of motion is called helicity.
A particle is said to be right-handed (R) (resp. left-handed (L)) if it has
positive (resp. negative) helicity.

Remark 8.3. If a particle has helicity h, then its antiparticle has helicity
−h. Note that helicity is not an intrinsic property of fermions (like mass and
electric charge), except when the fermion is massless. Because of relativity
theory, a massive fermion can be right- or left-handed depending on its frame
of reference. A massless fermion however must be either right- or left-handed,
because its velocity is the same is all frames of reference. For example, we
have never seen right-handed neutrinos or left-handed antineutrinos, but only
left-handed neutrinos and their antiparticles the right-handed anti-neutrinos.
We will treat neutrinos and antineutrinos as particles with only one possible
helicity, which means that we will treat them as massless particles.
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We know from experiments that the weak force acts di�erently on par-
ticles with di�erent handedness, it only acts on left handed particles and
right handed antiparticles. See �gure 8.2 for an overview of the fundamental
interactions.

Interaction Acts nontrivially on Lie alg. Bosons

Strong quarks, antiquarks su(3) gluons

Weak L-particles, R-antiparticles su(2) Z,W bosons

Electromagnetic electrically charged fermions u(1) photon

Gravitational all fermions - graviton*
*The graviton is a postulated particle, its existence has not yet been veri�ed

Figure 8.2: Fundamental interactions.

As it turns out, the electromagnetic and the weak interaction can be
uni�ed into the so called electroweak interaction, which is nicer to work with
than the two separate interactions when we want to make a grand uni�cation
model. This force is modeled as su(2) × u(1), and has four independent
bosons. These are the W+,W−,W 0 bosons, which are a basis for su(2), and
the weak hypercharge boson Y , which generates u(1). The photon and the
Z0 boson are linear combinations of the W 0 and Y bosons.

8.3 The Standard Model

In this subsection we will give the mathematical formulation of the Standard
Model, which tells us how the strong and the electroweak interaction act
on fermions. In essence this model is a collection of representations of the
Lie algebra su(3) × su(2) × u(1), where su(3) denotes the strong force and
su(2)× u(1) denotes the electroweak force.

It turns out that we can treat the three generations of fermions separately.
All three are modeled in the same way, so we can just make the model for
the �rst generation without loss of generality. Let's introduce some notation
before we present the Standard Model.

Notations 8.4. We shall denote by

(φ3, φ2, φ1) (8.1)

a direct product representation of su(3)× su(2)× u(1), see subsection 7.3.
Let n be a positive integer. For the de�ning representation of su(n) we shall
use the notation n. Also, if φ is an m-dimensional complex representation
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of su(n), m 6= n, then (if there is no confusion) we shall use the notation m
for this representation. Note that the 1-dimensional representation of su(n)
is trivial, since su(n) is a simple Lie algebra.

Representations of u(1) will be denoted di�erently, since we will be using
only 1-dimensional complex representations of u(1). Let s ∈ C, and recall
that the underlying vectorspace of u(1) is iR. Then the s-representation of
u(1) is:

s : u(1)→ gl(C) : x 7→ sx, x ∈ u(1). (8.2)

In �gure 8.3 we present the Standard Model for the �rst generation of
particles (see [2, chapter 18]). It consists of representations of Lie algebras
su(3), su(2) and u(1) (using notations 8.4) corresponding to the fundamental
interactions. When we compare this model to �gure 8.2, we see that indeed
the weak force acts nontrivially only on left-handed particles (and right-
handed antiparticles), and that the strong force acts nontrivially only on
quarks (and antiquarks).

uR dR eR

(
dL
uL

) (
eL
νL

)
su(3) strong (color) 3 3 1 3 1
su(2) weak isospin 1 1 1 2 2
u(1) weak hypercharge 2

3 −1
3 −1 1

6 −1
2

Figure 8.3: The Standard Model

For the 2 representation of su(2) we have 2̄ = 2, and for the 3 representa-
tion of su(3) we have 3̄ 6= 3. And it is easy to see that the s̄ representation of
u(1) is equivalent to the −s∗ representation (here ∗ denotes complex conjuga-
tion in C). We can now deduce from �gure 8.3 that together the right-handed

fermions uR, dR, eR,

(
d̄R
ūR

)
and

(
ēR
ν̄R

)
transform according to the complex

representation:

(3, 1, 2/3)⊕ (3, 1,−1/3)⊕ (1, 1,−1)⊕ (3̄, 2,−1/6)⊕ (1, 2, 1/2). (8.3)

9 The su(5) grand uni�cation

Now that we know the structure of the Standard Model, we can try to unify
the fundamental forces into an encompassing force. If we look at our model

34



8.1, we see that this can be done by �nding a suitable Lie algebra g and a
representation φ of g, which contain all the information of the fundamental
forces that we know from the Standard Model. Note that since gravity
cannot be modeled by a Lie algebra, we cannot include it in this uni�cation.
But we can try to �nd a force that will unify the strong and the electroweak
interaction. The Lie algebra g corresponding to this force must then have
su(3) × su(2) × u(1) as a Lie subalgebra, such that φ is equivalent to the
representation 8.3 when restricted to su(3)× su(2)× u(1).

What properties do we know that g must have? Firstly, the dimension
of g should be at least dim(su(3)× su(2)× u(1)) = 8 + 3 + 1 = 12.

Just like sl(n), it turns out that su(n) is simple, with rank n− 1 (see [5,
chapter 9] resp. [8, chapter 3.6]). So rank(su(3)) = 2 and rank(su(2)) = 1.
and u(1) is a 1-dimensional abelian Lie algebra. This means that g should
have an abelian subalgebra of dimension at least 2 + 1 + 1 = 4. Also, if a
Cartan subalgebra of su(3) resp. su(2) is diagonalizable in a basis B resp. B′,
then this abelian subalgebra of g is diagonalizable in the basis B ∪B′ ∪{x},
where x ∈ u(1), x 6= 0. If g would be a simple Lie algebra, this condition
could be stated as: rank(g) ≥ 4.

Now, we know a simple Lie algebra g, such that dim(g) ≥ 12 and
rank(g) = 4, namely su(5). Recall that dim(su(5)) = 52 − 1 = 24. Further-
more, we can easily see that su(5) contains su(3)× su(2)×u(1) as a Lie sub-
algebra via the following linear map ι. For all x ∈ su(3), y ∈ su(2), z ∈ u(1):

ι : su(3)× su(2)× u(1)→ su(5) : (9.1)

x 7→
(
x 0
0 0

)
, y 7→

(
0 0
0 y

)
, z 7→z

(
−1

3I3 0
0 1

2I2

)
, (9.2)

where I2 and I3 are identity matrices of dimension 2 resp 3, and the 0's
denote zero matrices of the corresponding size.
For ease of notation, we de�ne:

a := ι(su(3)× su(2)× u(1)). (9.3)

Clearly a ' su(3)× su(2)× u(1). We shall prove that su(5) is a good Lie
algebra for the uni�cation.

Let us now look at what should be the dimension of the representa-
tion φ. It should be the same as the dimension of the representation 8.3,
since the last representation would be a restriction of φ to a. From the
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de�nition of a representation (φ3, φ2, φ1), we know that it has dimension
dim(φ3) dim(φ2) dim(φ1). So, the representation 8.3 has dimension:

(3 · 1 · 1) + (3 · 1 · 1) + (1 · 1 · 1) + (3 · 2 · 1) + (1 · 2 · 1) = 15. (9.4)

Proposition 9.1. For the de�ning representation 5 of su(5) we have:

5|a ' (3, 1,−1/3)⊕ (1, 2, 1/2). (9.5)

proof. An element in a is of the form x + y + z, where x ∈ ι(su(3)), y ∈
ι(su(2)), z ∈ ι(u(1)). Consider C5 to be the direct sum V ⊕ W , where
dim(V ) = 3,dim(W ) = 2. Then:

5(x+ y + z)(v + w) = (x+ y + z)(v + w) = (x− z 1
3
I3)v + (y + z

1
2
I2)w.

Let us de�ne vectorspaces V1, V2, V3,W1,W2,W3, such that dim(V1) = 3,
dim(V2) = 1,dim(V3) = 1,dim(W1) = 1, dim(W2) = 2,dim(W3) = 1.
And let (3, 1,−1/3) : a→ gl(V1⊗V2⊗V3), (1, 2, 1/2) : a→ gl(W1⊗W2⊗W3).
Let v1 ∈ V1, v2 ∈ V2, v3 ∈ V3. Then:

(3, 1,−1/3)(x+ y + z)(v1 ⊗ v2 ⊗ v3)
= (3(x)v1)⊗ v2 ⊗ v3 + v1 ⊗ v2 ⊗ (−1/3zv3)
= (3(x)v1)⊗ v2 ⊗ v3 + (−1/3zv1)⊗ v2 ⊗ v3

= ((3(x)− 1/3zI3)v1)⊗ v2 ⊗ v3.

Let w1 ∈W1, w2 ∈W2, w3 ∈W3. Then:

(1, 2, 1/2)(x+ y + z)(w1 ⊗ w2 ⊗ w3)
= w1 ⊗ (2(y)w2)⊗ w3 + w1 ⊗ w2 ⊗ (1/2zw3)
= w1 ⊗ (2(y)w2)⊗ w3 + w1 ⊗ (1/2zw2)⊗ w3

= w1 ⊗ ((2(y) + 1/2zI2)w2)⊗ w3.

And V ' V1, W ' W2. We are �nished when we see that there are natural
identi�cations: V1 ⊗ V2 ⊗ V3 → V1 : v1 ⊗ v2 ⊗ v3 7→ v1, and
W1 ⊗W2 ⊗W3 →W2 : w1 ⊗ w2 ⊗ w3 7→ w2.

Now if we can �nd a representation ψ of su(5) that is equivalent to
(3, 1, 2/3)⊕ (1, 1,−1)⊕ (3̄, 2,−1/6) when we restrict it to a, then the desired
representation is 5 ⊕ ψ and we are done. The dimension of ψ must be
15−5 = 10. We already know one representation of su(5) that has dimension
10, namely A(5⊗5) (see equation 7.11). To simplify notation we shall de�ne
the 10-representation of su(5) as

10 := A(5⊗ 5). (9.6)
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Proposition 9.2. For the 10 representation of su(5) we have:

10|a ' (3̄, 1,−2/3)⊕ (1, 1, 1)⊕ (3, 2, 1/6). (9.7)

proof. We �rst explore (5⊗5)|a. It is easy to see that (5⊗5)|a = 5a⊗5a. Let
us write 5 : su(5) → gl(V ), V = V1 ⊕ V2 where dim(V1) = 3,dim(V2) = 2,
such that (3, 1,−1/3) : a→ gl(V1), (1, 2, 1/2) : a→ gl(V2).

Let v1, v
′
1 ∈ V1, v2, v

′
2 ∈ V2. It is instructive to use matrix notation for

(v1 +v2)⊗ (v′1 +v′2) (see remark 7.3). Let us construct a matrixM ∈M5(C)
as follows:

M =
(
M11 M12

M21 M22

)
,

such that

M11 =

v11v
′
11 . . . v11v

′
12

...
. . .

...
v13v

′
11 . . . v13v

′
12

M12 =

v11v
′
21 . . . v11v

′
22

...
. . .

...
v13v

′
21 . . . v13v

′
22



M21 =

v21v
′
11 . . . v21v

′
12

...
. . .

...
v23v

′
11 . . . v23v

′
12

M22 =

v21v
′
21 . . . v21v

′
22

...
. . .

...
v23v

′
21 . . . v23v

′
22

 .

Then we see that

M ' (v1 + v2)⊗ (v′1 + v′2);
M11 ' v1 ⊗ v′1;M12 ' v1 ⊗ v′2;
M21 ' v2 ⊗ v′1;M22 ' v2 ⊗ v′2;

Let x ∈ a, and let us write out what happens when we let (5 ⊗ 5)|a(x)
work on M .

(5⊗ 5)|a(x)M ' ((3, 1,−1/3)⊕ (1, 2, 1/2))(x)(v1 + v2)
⊗ ((3, 1,−1/3)⊕ (1, 2, 1/2))(x)(v′1 + v′2),
= ((3, 1,−1/3)⊗ (3, 1,−1/3))(x)M11

⊕ ((3, 1,−1/3)⊗ (1, 2, 1/2))(x)M12

⊕ ((1, 2, 1/2)⊗ (3, 1,−1/3))(x)M21

⊕ ((1, 2, 1/2)⊗ (1, 2, 1/2))(x)M22.
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Now, if s and s′ are representations of u(1), then it is easy to see from
the de�nition of the tensor product of representations 7.1 that s⊗s′ ' s+s′.
Then, with remark 7.16 and lemma 7.4.1 we deduce the following:

(3, 1,−1/3)⊗ (3, 1,−1/3) ' ((3⊗ 3), 1,−2/3),
(3, 1,−1/3)⊗ (1, 2, 1/2) ' (3, 2, 1/6),

(1, 2, 1/2)⊗ (3, 1,−1/3) ' (3, 2, 1/6),
(1, 2, 1/2)⊗ (1, 2, 1/2) ' (1, (2⊗ 2), 1),

But we are actually interested in 10a = A(5⊗5)|a. Let's see what happens
when we antisymmetrize (5 ⊗ 5)|a. From remark 7.10 we can see that we
should just take an antisymmetric matrix M in (5⊗ 5)|a(x)M . We have the
following:

M = −MT =⇒ M11 = −MT
11,M22 = −MT

22,M21 = −MT
12. (9.8)

We see that after the antisymmetrization of M the matrices M11,M22,M12

are independent, butM21 is completely determined byM12. We are now able
to construct 10a from (5 ⊗ 5)|a. We should antisymmetrize (3, 1,−1/3) ⊗
(3, 1,−1/3) and (1, 2, 1/2) ⊗ (1, 2, 1/2). And from the two (3, 2, 1/6) repre-
sentations we should keep only one. So:

10|a ' A((3, 1,−1/3)⊗ (3, 1,−1/3))⊕A((1, 2, 1/2)⊗ (1, 2, 1/2))⊕ (3, 2, 1/6)
' (A(3⊗ 3), 1,−2/3)⊕ (1, A(2⊗ 2), 1)⊕ (3, 2, 1/6).

We know from equation 7.11 that dim(A(3⊗3)) = 3, dim(A(2⊗2)) = 1.
We can work out that A(3⊗ 3) = 3̄ by straightforward computation (or see
[2, chapter 18]). This concludes the proof.

Since for su(2) we have 2̄ = 2, we see that:

1̄0|a ' (3, 1, 2/3)⊕ (1, 1,−1)⊕ (3̄, 2,−1/6). (9.9)

So 1̄0 is the representation ψ that we are looking for. Now we see that

5⊕ 1̄0, (9.10)

when restricted to a, is equivalent to the representation 8.3 of the right
handed fermions. It can be shown that both the 5 and 1̄0 representations
are irreducible (see [2]), but we will not do that here since it is a tedious
computation.
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9.1 Implications of the su(5) grand uni�cation

In the previous section we have found that su(3)× su(2)× u(1) ' a ⊂ su(5),
such that (5⊕ 1̄0)|a is the representation 8.3. This means that the strong and
the electroweak force could be realizations of one force that is modeled by
su(5), but that this force for some reason has broken down into three distinct
interactions: the electromagnetic, weak and strong interaction. This process
is called spontaneous symmetry breaking. For the details see [4, chapter 18].

Since dim(su(5)) = 52 − 1 = 24, this encompassing force would have 24
force mediating bosons, instead of the 12 bosons corresponding to su(3) ×
su(2) × u(1). This arises the immediate question: If the su(5) uni�cation
is correct, why have we never seen the 12 remaining bosons? The absence
of these bosons in experiments could lead us to think that the uni�cation is
not physical, but on the other hand there could be some reason why we have
never seen them.

Now there is another implication of the su(5) uni�cation that could in-
dicate that this theory is possibly correct, namely it explains the relation
between quark and electron charges.

Because the hydrogen atom is found to be electrically neutral to any
degree of experimental accuracy so far, there is every reason to believe that
the electric charges of the proton (which consists of three quarks) and the
electron are equal, but with opposite sign. Only there is no reason in physics
theory why these two charges should be linked. For if we look at �gure 8.3,
we see that the fundamental forces can transform quarks into each other,
and they can transform leptons into each other, but there is no relation
whatsoever linking quarks to leptons in the Standard Model. It turns out
that the su(5) grand uni�cation gives a very elegant way of explaining this
link between electric charge.

Let us look at the 5 representation of su(5). Proposition 9.1 indicates
that the 5 representation of su(5) works on the �ve dimensional space cor-
responding to vectors

((dR)1, (dR)2, (dR)3, ēR, ν̄R)T . (9.11)

So dR forms a triplet, and ēR and ν̄R are singlets in this representation.
We know that ν̄R is electrically neutral, since is does not interact with the

electromagnetic force. Then the electric charge generator Q corresponding
to the 5 representation is:

Q = diag(qd, qd, qd, qē,0), (9.12)
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where qd is the electric charge of dR, and qē is the electric charge of ēR. Since
Q ∈ su(5), we have that Tr(Q) = 0 = 3qd + qē, so

3qd = −qē. (9.13)

This is the correct relation, since qē = +1, and qd = −1/3. So the 5 represen-
tation would explain the link between the charges of the quarks and leptons,
which gives us hope that the su(5) grand uni�cation could be a good model.

But there is something that this uni�cation implicates that seems to
make it impossible for su(5) to be a good physical theory, namely it predicts
proton decay in such a rate that it contradicts experimental data. To be
precise, there is no experiment that indicates instability of the proton.

The Standard Model forbids us to change quarks into leptons and vice
versa, since there is no particle multiplet in �gure 8.3 that combines these
two kinds of particles. It does allows us to switch the u and the d quark,
which in a proton e�ectively does not change anything (since the proton
consists of two u quarks and one d quark), indicating that the proton is
stable.

Let us see why the proton should decay as a result of our uni�cation.
We have seen that the 5 representation of su(5) works on vectors of the form
((dR)1, (dR)2, (dR)3, ēR, ν̄R)T . And proposition 9.2 indicates that the 1̄0 rep-
resentation works on antisymmetric matrices in M5(C) corresponding to a
mixture of the particles uR, eR, d̄R and ūR. Now since both representations
are irreducible, we see that the su(5) force can transform quarks into leptons
and vice versa. With the su(5) interaction there is nothing that can stop
us from doing these transformations, which would result in the decay of the
proton.

The lifetime of a proton that the su(5) uni�cation predicts is at most
4.5 × 1029±1.7 years, while experiments have shown that the lifetime is at
least 6 × 1031 years (see [4, chapter 18.5]). We see that these numbers are
far o�, which indicates that the su(5) model is not physical. Actually there
is an even bigger problem with GUT's known as the hierarchy problem (see
[4, chapter 18.6]), where the su(5)-GUT gives even worse predictions. These
are all reasons why in physics the su(5) uni�cation is not anymore under
consideration as a grand uni�ed theory.
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10 What is the current condition of GUT's in physics?

As we already noted, the Georgi-Glashow su(5) uni�cation model has been
ruled out as a candidate for a GUT. But there are still other, more complex
uni�cation theories that have not yet been contradicted by experiments.

One thing that would certainly point in the direction of grand uni�cation
is the detection of proton decay. In the mean time, even the correctness of
the electroweak uni�cation is uncertain, since we have not yet detected the
Higgs boson, a particle that is essential for this this theory.

So for now GUT's are pending, waiting for experimental data that will
make or break them.
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