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Introduction

Symmetry has always been an important concept in the history of science. For example, in the
time of the ancient Greeks, Plato suggested in his dialogue Phaedo that all forms in nature try
to be like their perfect symmetric forms. Like that a line in real nature always has a length,
breadth and height, but that a perfect line only has length as a dimension. The Pythagorean
school believed that some form of harmony or symmetry underlies all things in the universe.
For instance, they applied this harmony to their theory of music.

In the 20th century the idea of symmetry arose once more among physicists. In the year
1915, the German mathematician Emmy Noether discoverd her famous theorem which relates
continuous symmetries with conserved quantities in nature. This proved to be the solution to
the problem of the failure of local energy conservation in the theory of general relativity. Some
years later, after the advent of quantum mechanics and the discovery of a large number of dif-
ferent elementary particles, physicists needed some way to classify all these particles. Again,
the solution was to look at the symmetries of nature. In particular, the physicist Gell-Mann
reinvented the theory of some particular continuous groups to classify the particles in a scheme
which he called "The eightfold way". This classi�cation scheme also led to the hypothesis that
all the elementary particles are build up of quarks and antiquarks.

In this bachelor thesis we explore the ideas of Gell-Mann to classify the simple elementary
particles. First we will look at the basic mathematics of Lie groups. These Lie groups are basi-
cally the result of the uni�cation of the theory of abstract groups with the theory of manifolds.
First, we will de�ne what Lie groups are and then look at how we can study them by looking
at their representations. We will see that to do this, we'll need to look at the Lie algebra that
is associated to the Lie group. Finally we will prove the important Campbell-Baker-Haussdorf
formula. This formula basically gives us the result of a product of 2 exponentials of matrices.

In the next chapter we will explore the idea of symmetry in physics. First, we'll look at
how we can use symmetry to study the solutions of the Schrödinger equation. As a prime ex-
ample we'll study the symmetry group SU(2) to classify the lightweight elementary particles
in terms of isospin. To do this we will �rst give a complete classi�cation of the irreducible
representations of SU(2). Then we apply these results to construct the elementary particles
out of the two light quarks, namely the up and down quarks.

In the last chapter we will study the quark model set up by Gell-Mann. First we will in-
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troduce some general quantities used in elementary particle physics, such as the baryon- and
lepton number, strangeness and hypercharge. Then we introduce the SU(3) symmetry to use
the three types of light quarks to construct the multiplets for the mesons and baryons. Again,
this will be done by looking at the irreducible representations of SU(3). As a last application,
we will derive a mass formula, by which we predict the mass of the Ω− particle.



Chapter 1

Lie groups and Lie algebras

1.1 Lie groups

The theory of Lie groups is widely used in physics and in numerous parts of mathematics.
The general idea is to consider a di�erentiable 1 manifold which is also a group and where the
multiplication and inverse operations are di�erentiable.

De�nition 1.1.1. A Lie group G is a di�erentiable manifold with a group structure de�ned
on it, such that the maps (x, y) 7→ xy and x 7→ x−1 are di�erentiable.

De�nition 1.1.2. A Lie subgroup H ⊂ G of G is both a subgroup and a submanifold of G.

De�nition 1.1.3. A map between Lie groups G and H is a homomorphism ρ : G→ H such
that ρ is di�erentiable.

There are plenty of examples of Lie groups. One of the most simple examples is the real line
R with addition along a line as the group operation. In this thesis we'll only look at matrix Lie
groups. The most general matrix Lie group is of course the group of linear transformations of
an n-dimensional vector space with nonzero determinant, which is denoted as GL(n,K), where
K is a �eld. Mostly we take K = R or K = C. This group has many di�erent subgroups, like
the group SL(n,K) which consist of all the linear maps with determinant equal to 1. Another
example is the subgroup consisting of the upper triangular linear maps. If we view GL(n,K)
as the group of automorphisms of a n-dimensional K-vector space, we will denote it as Aut(V ).

It is also possible to create subgroups of GL(n,K) by looking at some bilinear form Q :
V ×V → V de�ned on V . These subgroups consist of the matrices A which preserve Q, in the
sense that Q(Av,Aw) = Q(v, w) for all v, w ∈ V . If K = R we can write Q(v, w) = vTMw
for some �xed matrix M . This de�nition is the most general bilinear form on R. If a matrix
A preserves Q then vTMw = Q(v, w) = Q(Av,Aw) = (Av)TM(Aw) = vTATMAw. This
means that ATMA = M . If we now takeM = I we get the subgroup O(n,R), the subgroup of
orthogonal matrices. The subgroup containing the orthogonal matrices with determinant 1 is
denoted as SO(n,R). We can also do the same construction for complex Lie groups by using

1In this thesis di�erentiable always means in�nitely di�erentiable.
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CHAPTER 1. LIE GROUPS AND LIE ALGEBRAS 6

the general symmetric hermitian form H(v, w) = v̄TMw. The subgroup of GL(n,C) which
preserves H for M = I is the subgroup of the unitary matrices U(n). The subgroup of unitary
matrices with determinant 1 is denoted as SU(n).

1.2 Representations

To study the properties of Lie groups, it may be helpful to see how they may be represented
as a group of linear mappings acting on some Hilbert space or vector space. This has the
great advantage that we can use the full machinery of linear algebra to �nd out numerous
properties of Lie groups. Representation theory of Lie groups is also of great importance in
physics, because by looking at the representations of continuous symmetry groups (which are
always Lie groups) on some Hilbert space, we can understand how these symmetries act on
the solutions of a physical system.

De�nition 1.2.1. A representation of a group G on a vector space V is a homomorphism ρ :
G→ Aut(V ). A subrepresentation of a representation is a homomorphism ρ′ : G→ Aut(W ),
W ⊂ V a subspace of V , such that ρ(G)(W ) ⊂W . A representation ρ on a vector space V is
called irreducible if it only contains W = 0 or W = V as subrepresentations.

Often, when the context is clear, we refer to V as the representation instead of the homo-
morphism ρ. There are of course many possible ways to represent a group G on a vector space
V . We therefore introduce some sense of equivalence. We call two representations ρ and ρ′

equivalent if ρ′(g) = Uρ(g)U−1 for all g ∈ G and U ∈ Aut(V ) �xed.
Given a vector space V , one can perform a number of operations on it, for example taking
the direct sum or the tensor product with some other vector space. One can also look at the
dual space of V . Tensor products are of importance in quantum mechanics, because if you
try to combine two subsystems into one larger system, the total system is given by the tensor
product of the two smaller ones. If we are given representations on the vector spaces V and
W , we can easily de�ne how the related representations on V ⊕W and V ⊗W look like:

De�nition 1.2.2. Let ρ : G → GLn(V ) and ρ′ : G → GLn(W ) be two representations on
respectively the vector spaces V and W . We then de�ne the direct sum and direct product
representations as follows:

1. ρ⊕ ρ′(g)(v + w) = ρ(g)(v) + ρ′(g)(w) ∈ V ⊕W

2. ρ⊗ ρ′(g)(v ⊗ w) = ρ(g)(v)⊗ ρ′(g)(w) ∈ V ⊗W

To de�ne the dual representation of a representation ρ, we remember that for every linear
map φ : V → V , there exists a map φT : V ∗ → V ∗, which is called the transpose map.
This map is de�ned as φT (f)(v) = f(φ(v)). With this transpose map one easily thinks the
dual representation ρ∗ is de�ned as ρ∗(g) = ρ(g)T . There is however a slight problem with
this de�nition because ρ∗ isn't a homomorphism but an anti-homomorphism: ρ∗(g1g2) =
ρ(g1g2)T = (ρ(g1)ρ(g2))T = ρ(g2)Tρ(g1)T = ρ∗(g2)ρ∗(g1). We can �x this problem easily
though, by noting that if f is a anti-homomorphism, we can de�ne a homomorphism f ′ by
setting f ′(x) = f(x−1).
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De�nition 1.2.3. Let ρ be a representation of a group G on a vector space V . The dual
representation ρ∗ is de�ned as ρ∗(g) = ρ(g−1)T .

The following lemma due to Schur is of great use in identifying the irreducible representa-
tions of a group2:

Lemma 1.2.1. (Schur) Let G be a Lie group.
A representation ρ : G → GL(V ) is irreducible ⇐⇒ the only operators on V that commute
with all ρ(g) are of the form λ · idV .

1.3 Lie algebras

1.3.1 Algebraic de�nitions

In the previous two sections we talked about Lie groups and de�ned the notion of a repre-
sentation of a Lie group. In order to study these in more detail we are going to use another
algebraic structure de�ned on a Lie group, namely the Lie algebra. In the algebraic sense,
an algebra is a K-vector space together with a compatible K-bilinear map, mostly called the
"multiplication". For a Lie algebra this map is called the Lie bracket which is denoted as [, ].
In the case of a matrix Lie algebra this Lie bracket is just the commutator of two matrices:
[A,B] = AB −BA.

De�nition 1.3.1. A Lie algebra is a vector space V together with an antisymmetric bilinear
map [, ] : V ×V → V which satis�es the Jacobi identity [X, [Y,Z]]+[Y, [Z,X]]+[Z, [X,Y ]] = 0
for all X,Y, Z ∈ V .

The most general example of a matrix Lie algebra is the Lie algebra gl(V ) which consists
of all the linear mappings V → V , where V is a K-vector space. We can also perform all the
standard constructions with Lie algebras, like looking at subalgebras, at maps between Lie
algebras and looking at representations of Lie algebras on some vector space. This gives us
the following set of de�nitions:

De�nition 1.3.2. Let g be a Lie algebra.

1. A subspace h ⊂ g is called a Lie subalgebra if [X,Y ] ∈ h for all X,Y ∈ h.

2. A linear map φ : g→ s from g to a Lie algebra s is called a Lie algebra map if φ([X,Y ]) =
[φ(X), φ(Y )] for all X,Y ∈ g.

3. A representation of g on a vector space V is a Lie algebra map ρ : g → gl(V ), where
the Lie bracket on gl(V ) is de�ned as the commutator of maps: [f, g] = f ◦ g − g ◦ f for
all f, g ∈ gl(V ). A subrepresentation ρ′ of a representation ρ on V is the restriction of
ρ to an invariant subspace of V . This means that ρ′ is a map ρ′ : g → gl(W ), W ⊂ V ,
ρ′(X)(Y ) = ρ(X)(Y ) for all X ∈ g and for all Y ∈W , and ρ(X)(W ) ⊂W for all X ∈ g.
A representation on V is called irreducible if it only contains the zero space and W = V
as subrepresentations.

2A proof of the lemma for general groups is given in lemma 1.7 on page 7 of [4]
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4. Let ρ and ρ′ be two representations of g on respectively the vector spaces V and W . We
then de�ne the direct sum, tensor product and dual representations as follows:

(a) ρ⊕ ρ′(X)(Y + Z) = ρ(X)(Y ) + ρ′(X)(Z)

(b) ρ⊗ ρ′(X)(Y ⊗ Z) = ρ(X)(Y )⊗ Z + Y ⊗ ρ′(X)(Z)

(c) ρ∗(X) = ρ(−X)T = −ρ(X)T : V ∗ → V ∗

1.3.2 General construction of the associated Lie algebra to a Lie group

In order to show that a Lie group G admits the structure of a Lie algebra, we �rst de�ne what
the tangent space at a point p ∈ G is. It's possible to de�ne this tangent space in number
of di�erent ways, for example using the notion of a derivation. A derivation is a linear map
f which satis�es the product rule f(vw) = vf(w) + f(v)w. A vector space which consists
of derivations can easily be made into a Lie algebra by de�ning the Lie bracket to be the
commutator of maps: [f, g] = f ◦ g − g ◦ f . One can now de�ne TpG by saying that TpG
consists of derivations v : Ep → R which satisfy v(fg) = v(f)g(p) + f(p)v(g). Ep is called the
set of germs at p. The germs at p are the equivalence classes of di�erentiable functions which
agree on some open neighbourhood of p. This de�nition of the tangent space is often called
the algebraic tangent space of G at p. But in the most straightforward way the tangent space
TpG is de�ned as the space of tangent vectors at the point p. More rigourously we say that
TpG is the space of equivalence classes of curves γ : (−ε, ε) → G, with γ(0) = p and ε > 0
su�ciently small, under the equivalence relation γ1 ∼ γ2 ⇐⇒ d/dt(h◦γ1)(0) = d/dt(h◦γ2)(0)
for some chart3 (U, h, U ′) around p. One can show that this de�nition is independent of the
chosen chart. TpG has the structure of a vector space and it has the same dimension as
G. By using this de�nition one can also consider the di�erential of the map φ : G → H
between the Lie groups G and H. The di�erential (dφ)p of φ at the point p is de�ned as a

map (dφ)p : TpG→ Tφ(p)H and is given by (dφ)p(dγdt (0)) = d
dt(φ◦γ)(0) for a curve γ through p.

To discover more about the structure of a Lie group G, we can use a well known device
in abstract algebra, namely to consider the action of G on some set X. If we take X to be a
vector space, this group action is just a representation of G on X. But we have a very natural
choice for this vector space X, namely one of the tangent spaces of G. Since all these tangent
spaces are isomorphic to each other4, it doesn't really matter which one we choose. To �nd
such a representation of G on X it is useful to consider the action of a Lie group on itself which
respects any Lie group map. By this we mean, that if G and H are Lie groups, ρ : G→ H is
a Lie group map and ΦK : K → Aut(K) : k 7→ φk is an action for some arbitrary Lie group K

3A chart around a point p ∈ G is a triple (U, h, U ′) with U ⊂ G open and p ∈ U , U ′ ⊂ Rn and h a
homeomorphism U → U ′.

4The isomorphism between TvG and TwG for any v ∈ G, w = gv for some g ∈ G, is constructed via the
di�erential of the map mg : G→ G : h 7→ gh at v which is a map TvG→ TgvG = TwG. This di�erential is an
isomorphism since mg is a di�eomorphism.
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on itself, we have the following commutative diagram:

G
ρ−−−→ H

φg

y yφρ(g)
G −−−→

ρ
H

A natural candidate for this is to consider the action Ψ of G on itself by conjugation, and then
to look at the di�erential at the identity e, because e is �xed (Ψg(e) = e). This gives us the
following maps:

Ψ : G → Aut(G) : g 7→ Ψg(h) = ghg−1

Ad : G → Aut(TeG) : g 7→ Ad(g) = (dΨg)e : TeG→ TeG

We will call this map Ad the adjoint representation of G. This map has the required nice
property that every homomorphism ρ : G→ H between the Lie groups G and H respects the
adjoint representation of G. This is true because every homomorphism respects conjugation.
We can summarize these results in a nice commutative diagram.

TeG
(dρ)e−−−→ TeH

Ad(g)

y yAd(ρ(g))

TeG −−−→
(dρ)e

TeH

If we now take the di�erential at e of the adjoint representation we arrive at a map ad =
(dAd)e : TeG→ End(TeG). We can shu�e things a little bit and write it as ad : TeG×TeG→
TeG. This map is a bilinear map on TeG. Using the commutative diagram above we can
construct a new commutative diagram for ad.

TeG
(dρ)e−−−→ TeH

ad(X)

y yad(dρe(X))

TeG −−−→
(dρ)e

TeH

We can use the map ad to de�ne a Lie algebra structure on TeG by setting [X,Y ] ≡ ad(X)(Y ).
Using this de�nition and the commutative diagram above we �nd that for any homomorphism
ρ : G→ H between Lie groups we have the relation

dρe([X,Y ]) = [dρe(X), dρe(Y )] (1.1)

so dρe is a map of Lie algebras. This whole construction is quite abstract, and we haven't
even proved yet that the map ad actually satis�es the properties for a Lie algebra. We will not
consider the general proof of this here, but instead only focus ourselves at matrix Lie groups
and Lie algebras, where the proof is a lot easier to carry out.
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1.4 Matrix Lie groups and Lie algebras

Like we have seen in �rst section, the most general matrix Lie group is the groupG = GL(n,K),
and all other matrix Lie groups are subgroups of this group. To study the properties, and most
importantly the representations of this group we saw that we could look at the Lie algebra
associated to G. To �nd out what this Lie algebra looks like, we would like to have a nice
formula for the Lie bracket. We can construct this quite easily by noting that in the case of
G = GL(n,K), we can extend the map Ψ : G → Aut(G) to Ψ′ : G → End(Kn). Because the
tangent space of End(Kn) at the unit matrix is just End(Kn) itself, this means that we now
have a simple expression for the adjoint representation: Ad(g)(X) = gXg−1. We can now �nd
ad by looking at the di�erential of Ad at the unit matrix e. To do this we take two vectors
X,Y ∈ TeG and consider a curve γ : I → G trough the identity element γ(0) = e and with
tangent vector γ̇(0) = X. Then by de�nition of the Lie bracket we have:

[X,Y ] = ad(X)(Y ) =
d

dt
Ad(γ(t))(Y )|t=0

= γ̇(0)Y γ−1(0) + γ(0)Y (−γ(0)−1γ̇(0)γ(0)−1)
= XY − Y X

So the Lie bracket on TeG is just the commutator of matrices. This is nice, because it coincides
with the most natural choice of a Lie bracket on a vector space of matrices.

At a �rst glance, it seems that the move from looking at Lie groups to looking at Lie al-
gebras is a bad move, because Lie algebras are purely algebraic, where instead Lie groups also
have a topological and di�erential structure. The good news is however, that this is not true,
because we can link the Lie algebra to the Lie group in a special way, namely via the exponen-
tial map. With the help of this map we can prove that we can get all the representations of a
Lie group by looking at the representations of its Lie algebra and then using the exponential
map to lift them to the Lie group.

To motivate the form and the name of the exponential map, we will �rst look at the form
of the elements of a matrix Lie group. Let us for example take the Lie group SO(2), the group
of rotations of the plane. Abstractly this group is de�ned by the real invertible matrices X
which satisfy XTX = I and det(X) = 1. But we can also give a realization of these matrices
X in terms of a parameter θ. So let's consider a passive rotation of the plane, that means a
rotation of the x and y axis about an angle θ. In this new coordinate system the coordinates
x′ and y′ are related to the old x and y by x′ = cos θx+ sin θy and y′ = − sin θx+ cos θy. This
means that we can realize every element R of SO(2) as:

R = R(θ) =
(

cos θ + sin θ
− sin θ cos θ

)
The inverse matrix R−1(θ) is just a rotation about an angle −θ, so R−1(θ) = R(−θ). We can
also realize SO(2) as the unit circle 5 S1 by letting R(θ) = e2πiθ. We can conclude from this

5This basically gives an isomorphism between U(1) and SO(2).
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that the group SO(2) is described by a single parameter θ. In general the group SO(n) can
be described by n(n− 1)/2 parameters. It is also possible to describe all the other matrix Lie
groups in terms of a set of n continuous parameters α1, . . . , αn. So we can write every element
g ∈ G as g = g(α1, . . . , αn). We therefore say that Lie groups are continuous groups, that is
groups depending on a set of continuous parameters. To �nd a realization of the elements of
such a continuous group we consider an in�nitesimal transformation in the neighbourhood of
the identity element, by using the Taylor expansion up to �rst order since we can neglect all
higher order terms:

g(δα1, . . . , δαn) = g(0) +
∂g

∂αµ
(0)δαµ = I +

∂g

∂αµ
(0)δαµ

Note that we have used the Einstein summation convention. This convention says that when a
index appears twice (once as lower index, and once as upper index) in a term, you should sum
over all its values. In this case we sum over all the values of µ. Let us now denote Lµ = ∂g

∂αµ
(0).

We call these Lµ the in�nitesimal generators of the group. They are also elements of TeG.
We can now obtain the form of the elements of G near e by applying an in�nite amount of
in�nitesimal transformations:

g(α1, . . . , αn) = lim
k→∞

g
(α1

k
, . . . ,

αn
k

)k
= lim

k→∞

(
I +

Lµαµ
k

)k
= exp(Lµαµ)

This means that all the elements of G inside an open neighbourhood of e can be written as a
matrix exponential. Because G is a Lie group, any open neighbourhood of e is a generator for
the connected component of e6. So we can write every element in the connected component of
e as the exponential of a matrix. We can now de�ne the exponential map as the map which
sends an element X of TeG to exp(X).

exp : TeG→ G : X 7→ exp(X) (1.2)

So we can use the exponential map to relate the Lie algebra to its Lie group. If we now choose
a basis {Ei}ni=1 for our Lie algebra we can characterize it by the so called structure constants
of the Lie algebra. These constants Ckij de�ne the commutation relations between the basis

elements: [Ei, Ej ] = CkijEk. They are of course antisymmetric in the lower indices because
the commutator is antisymmetric. Using these basis elements, we can now construct the so-
called one-parameter subgroups of G. A one-parameter subgroup of G is a homomorphism
φ : R → G. So e�ectively it is a parameterization of the elements in some subgroup of G.
If we now consider the lines λEi in TeG, we obtain a one-parameter subgroup of G by using
the exponential map. This one-parameter subgroup is the homomorphism φ(λ) = exp(λEi).
By the Campbell-Baker-Hausdor� formula, the product of these n one-parameter subgroups is
again an exponential exp(C), where C depends on the λi, the in�nitesimal generators Ei and
the repeated commutators of the Ei. But we can write all these commutators in terms of the
original basis elements Ei by using the structure constants Ckij . We can conclude from this
that the Lie algebra 'contains' the algebraic structure of its Lie group. Now for completeness,
we will prove the Campbell-Baker-Hausdor� formula since it is of such an importance to our
discussion above.

6For a proof, see [1], theorem 4.11, page 75
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Lemma 1.4.1. Let A and B be two matrices in a Lie algebra g. Consider the function
ρθ(B) = eθABe−θA. Then ρθ(B) can be written as ρθ(B) = exp(ad(A)θ)(B) = I + θ[A,B] +
θ2

2 [A, [A,B]] +O(θ3). So ρθ(B) ∈ g.

Proof. To prove this result we will use the 'commutator-derivative' trick. This means we will
derive a di�erential equation for ρθ(B), for which the solution has the required form.

d

dθ
ρθ(B) = AeθABe−θA − eθABAe−θA

= AeθABe−θA − eθABe−θAA
= [A, ρθ(B)] = ad(A)(ρθ(B))

The solution to this di�erential equation is (if we assume that ρ0(B) = I) just

ρθ(B) = eθad(A)(B) =
∞∑
n=0

θn

n!
(ad(A))n(B) = I + θ[A,B] +

θ2

2
[A, [A,B]] +O(θ3)

Lemma 1.4.2. Let A(t) be a matrix valued function of t. Then it holds that eA(t) d
dte
−A(t) =

−f(ad(A(t)))Ȧ(t) where f(x) = (ex − 1)/x.

Proof. We will essentially use the same trick as in the previous lemma. Let us denote B(s, t) =
esA(t) d

dte
−sA(t). Then we have that:

∂B

∂s
= A(t)esA(t) d

dt
e−sA(t) − esA(t) d

dt

(
e−sA(t)A(t)

)
= A(t)esA(t) d

dt
e−sA(t) − esA(t)e−sA(t)Ȧ(t)− esA(t) d

dt

(
e−sA(t)

)
A(t)

= [A,B]− Ȧ

The solution to this di�erential equation is B(s, t) = esad(A)(B(0, t)) − f(s, ad(A))(Ȧ) where
f(s,X) = (esX − 1)/X. Since B(0, t) = 0 and setting s = 1 we get that

eA
d

dt
e−A = −f(ad(A))Ȧ

Theorem 1.4.1. (Campbell-Baker-Hausdor�) Let g be a matrix Lie algebra, and A,B ∈ g

inside a su�ciently small open neighbourhoud of the origin. Then the matrix C = ln(eAeB) is
uniquely de�ned and C ∈ g. C is expressed only in terms of A, B and the repeated commutators
of [A,B]

Proof. Let us denote C(t) = ln(etAeB). Then we have that:

eC(t) d

dt
e−C(t) = etAeB

d

dt

(
e−Be−tA

)
= −A
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So by lemma 1.4.2 we have that A = f(ad(C(t)))Ċ(t). We now want to solve this equation for
Ċ(t) to obtain a di�erential equation for C(t). To do this, we must compute f(ad(C(t))). We
can do this by noting that by lemma 1.4.1 we have that eadC(h) = eChe−C = etAeBhe−Be−tA =
etad(A)ead(B)(h), so for ‖ad(A)‖ < ln 2

2t and ‖ad(B)‖ < ln 2
2

7 we have that

ad(C(t)) = ln
(
etad(A)ead(B)

)
Now consider the matrix valued function g(x) = ln(x)/(x− 1). This gives us that f(ln(x)) =
g(x)−1, so f(ad(C(t))) = f(ln(etad(A)ead(B))) = g(etad(A)ead(B))−1. Using this in the above
equation for A we have that

Ċ(t) = g(etad(A)ead(B))A

If we integrate this di�erential equation for t = 0 to t = 1 we obtain a integral form for C:

C = B +
∫ 1

0
g(etad(A)ead(B))Adt

To compute this integral we expand the function g into a power series. The power series for g
is given by

g(x) =
ln(x)
x− 1

=
∞∑
n=1

(−1)n

n
(x− 1)n−1

If we now compute the integral expression for C, by also using the power series expansion for
etad(A)ead(B) we �nd that

C = B + E(ad(A), ad(B))(A)

where E(ad(A), ad(B)) is a convergent power series in ad(A) and ad(B). From this we can
conclude that C is totally determined by the matrices A, B and their commutators.

1.5 Representations of U(1)

Let us now consider the construction of the irreducible representations of the Lie group U(1).
As we have seen in section 4 of this chapter, it holds that U(1) is isomorphic to SO(2) and the
elements of U(1) can be parameterized by an angle θ. So U(1) consists of the elements eiθ where
θ is bounded between 0 and 2π. It's Lie algebra is de�ned as the tangent space to the identity
element. This means that it consists of the elements d

dθe
iθ|θ=0 = i. So it is a 1 dimensional

Lie algebra isomorphic to iR and we will denote it as u(1) = {αi|α ∈ R}. It is obvious that
all the elements of this matrix Lie algebra commute with each other and that they are diagonal.

Let us now consider a representation ρ of u(1) on some vector space V . Because u(1) is
commutative and consists of diagonal matrices, we have that ρ(X) is diagonalizable and com-
mutative for all X ∈ u(1) because Jordan decomposition is preserved for all representations of
u(1). So from this we see that all the irreducible representations of u(1) are the representations
ρ on an one dimensional vector space V , and are given by ρ(iα) = piα for some real number p.

7The norm we use here is the L2 norm
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If we exponentiate this result we �nd the irreducible representations of U(1) which are given
by ρ(eiα) = epiα. But from this formula we can now deduce what the possible values of p are:

eipα = ρ(eiα) = ρ(ei(α+2π)) = eip(α+2π)

1 = e2πip

From this equation we can see that p must be an integer number. So all the irreducible
representations of U(1) are classi�ed by an integer number p.



Chapter 2

Isospin

2.1 Symmetries and multiplets

In the theory of quantum mechanics, states are described by the Schrödinger equation

Ĥ |Ψ〉 = i~
∂

∂t
|Ψ〉 (2.1)

Ĥ is the Hamiltonian operator of the system which is a measure for the total energy of a
system and |Ψ〉 is the wave function which describes the state of the system. These wave
functions live inside a complex Hilbert space with a hermitian scalar product and they are
normalized to unity. We interpret 〈Ψ(~r, t) |Ψ(~r, t)〉 as the probability of �nding the particle at
position ~r and at time t. One would of course also like the quantum versions of the important
observable quantities which appear in classical mechanics. This is done by the process which
goes under the name of canonical quantization. In the hamiltonian formulation of classical
mechanics, we can describe every state by specifying its position and its momentum and all
the important physical observables are functions of these momenta and positions. The idea of
canonical quantization is to replace these momenta pi and positions xi by the corresponding
hermitian operators x̂i = xi and p̂i = −i~ d

dxi
. These operators also satisfy the commutation

relations [x̂i, p̂j ] = ihδij . So the set of these operators form a Lie algebra called the Heisen-
berg algebra. These commutation relations are of great importance because it results in the
Heisenberg uncertainty principle, which says that one cannot know the precise position and
momentum of a state at any given time.

To study the behaviour of the solutions of the Schrödinger equation or other equations de-
scribing some part of nature, it's very useful to look at the symmetries of the physical system.
For example, in the case of classical mechanics which is described by Newton's equations, it is
assumed that space is homogenous and isotropic and that time is also homogenous. This means
that space is invariant under translations and rotations, and that time is invariant under trans-
lations. These symmetries of space and time together with the transformations ~x 7→ ~x′ = ~x−~vt
and t 7→ t′ = t, which describe the relative motion between coordinate systems, form the Galilei
group. In other physical theories this group is no longer a good symmetry group of a physical

15
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system. For example, in the theory of special relativity the Galilei group is replaced by the
Poincaré group, where the transformations between relatively moving coordinate systems are
given by the Lorentz transformations. In 1915, Emmy Noether discovered a famous theorem,
stating that every continuous symmetry of the Lagrangian which describes a physical system,
corresponds to a conserved quantity. We will explain shortly what this Lagrangian actually
is. To give some examples, this theorem implies that the rotational invariance corresponds to
conservation of angular momentum, and the translational invariance of space corresponds to
conservation of momentum. The translational invariance of time corresponds to the conserva-
tion of energy.

As we described in the �rst paragraph of this section, the Schrödinger equation is described
in terms of a wave function and a Hamiltonian. This Hamiltonian is a measure for the total
energy of the system, in the sense that the expectation value of Ĥ represents the energy. But
there also exists an equivalent description in terms of the so called action. This action S is a
functional de�ned as follows:

S[φ] =
∫ t2

t1

dtL(φ, ∂µφ, t) =
∫ t2

t1

dnxdtL(φ, ∂µφ, t) (2.2)

where we call L the Lagrangian of the physical system, L the Lagrangian density, and ∂0 = ∂t.
Most modern theories work with this Lagrangian density since it appears to be far more useful
in relativistic theories than the standard Lagrangian. In the theory of classical mechanics the
Lagrangian is speci�ed as the di�erence between the kinetic energy and the potential energy.
We can derive from this action the equations of motion, by invoking the principle of least
action, which states that the trajectory a particle takes is an extremum of the action. In more
mathematical terms this means that the variation of the action should be zero, e.g. δS = 0.
This condition leads to the Euler-Lagrange equations whose solutions describe the motion of
the particle:

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (2.3)

One can also perform the same construction in quantum mechanics, which goes under the
name of the path integral formalism, which was introduced by Richard Feynman. Let us make
one more remark to clarify the use of the name symmetry. By a symmetry of a Lagrangian,
we mean a in�nitesimal transformation which leaves the form of the lagrangian the same. So
under such an in�nitesimal transformation the equations of motion stay invariant. Consider
for example the Lagrangian density L = (∂µφ)†∂µφ with φ a complex �eld. This density is
clearly invariant under the transformations φ→ φ′ = eiθφ with 0 ≤ θ < 2π, which means that
the Lie group U(1) is a symmetry group for this particular density.

Theorem 2.1.1. (Noether) Every continuous symmetry of a lagrangian L(φ, ∂µφ, t) corre-
sponds to a conserved quantity

To see how these symmetry groups G act on the Hilbert space of states H for a particular
physical system, we consider the action of G on H by matrix multiplication. In other words, we
consider the representations of G on H. But let us �rst remark that not all representations of
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G are possible: We need to have that the probability interpretation is preserved, which means
that the representations must preserve the scalar product on H. So the representations of G
on H must be unitary! In this thesis we will only look at the symmetry group SU(n). It is
easy to see that all the representations ρ of this symmetry group are unitary since ρ(g)ρ(g)† =
ρ(g)ρ(g)−1 = ρ(gg−1) = ρ(e) = I. Another special property of this symmetry group is that
it is a semi-simple group (even a simple group!). These semi-simple groups have the property
that if W ⊂ V is an invariant subspace under a representation ρ on V , then there exists a
complementary invariant subspaceW ′ ⊂ V such that V = W⊕W ′. From this we can conclude
that every representation of a semi-simple Lie group can be decomposed as a direct sum of
irreducible representations. A common name for these irreducible representations is the name
multiplet.

Proposition 2.1.1. Let G be a symmetry group of a quantum mechanical system described by
states |ψ〉 ∈ H. Then all the states inside a multiplet of G have the same energy.

Proof. Let g ∈ G and let ĝ be the corresponding matrix representation of g in a multiplet.
Consider a state |ψ〉 inside this multiplet of G with energy E. Because G is a symmetry group
of the physical system, it must hold that the transformation

|ψ〉 → |ψ′〉 = ĝ |ψ〉

leaves the Schrödinger equation invariant, so that |ψ′〉 is also a solution of the same Schrödinger
equation. Because |ψ〉 was inside a multiplet of G, |ψ′〉 must also be inside the same multiplet.
By comparing the S.E. for |ψ′〉 and the S.E. for |ψ〉 multiplied with ĝ we get

Ĥ |ψ′〉 = i~
∂ |ψ′〉
∂t

= i~
∂

∂t
ĝ |ψ〉 = ĝĤ |ψ〉 = ĝĤĝ−1ĝ |ψ〉 = ĝĤĝ−1 |ψ′〉

so ĝĤĝ−1 = Ĥ, which means that [H, ĝ] = 0. The energy of the state |ψ′〉 is now calculated
as follows:

Ĥ |ψ′〉 = Ĥĝ |ψ〉 = ĝĤ |ψ〉 = ĝE |ψ〉 = Eĝ |ψ〉 = E |ψ′〉

So the state |ψ′〉 also has energy E.

So from this theorem we can conclude that if G is a symmetry group of a physical system, all
the elements in an irreducible representation of G commute with the Hamiltonian, and all the
states inside this multiplet have the same energy. This also means that the representations of
the in�nitesimal generators all commute with the Hamiltonian. Therefore it seems worthwhile
to look at certain operators which commute with the representations of all the in�nitesimal
generators. To study this somewhat more precisely we introduce the notion of an universal
enveloping algebra for a particular representation ρ of the Lie algebra g:

De�nition 2.1.1. The enveloping algebra for a faithful representation ρ of a Lie algebra g

consists of all the products and sums of the ρ(Lµ), where the Lµ are a basis of g.

The center of this enveloping algebra consists by de�nition of the matrices which com-
mute with the representations of the in�nitesimal generators Lµ. We also call these operators



CHAPTER 2. ISOSPIN 18

Casimir operators. The number of these operators depends on the rank of the Lie algebra.
The rank of a Lie algebra is de�ned as the maximum number of commuting basis elements. So
if a Lie algebra has full rank, all the basis elements are Casimir operators. One can also show
that for the Lie algebras su(n) the Casimir operators are homogenous polynomials in the basis
elements. For example, the Casimir operator for a faithful representation ρ of the Lie algebra
su(2) with basis {Lµ}3µ=1 is given by C1 = gµνρ(Lµ)ρ(Lν), where the metric tensor gµν for a
representation ρ is de�ned as gµν = Trρ(Lµ)ρ(Lν), and where we sum over the indices µ and ν.

Consider a faithful representation ρ of a Lie algebra g of rank l on a vector space V . Let
C be a Casimir operator for this Lie algebra. Schur's lemma implies that for an irreducible
subrepresentation of ρ on V ′ ⊂ V , C = λ · idV , since C commutes with all the elements of
ρ(g). This means that V ′ lies in an eigenspace of C. By a theorem of Chevalley, it holds that
it is possible to �nd exactly l indepedent Casimir operators, such that an irreducible subrep-
resentation of ρ corresponds to a unique common eigenspace of these Casimir operators. All
the irreducible subrepresentations of ρ can therefore be classi�ed by the eigenvalues of these l
Casimir operators.

2.2 Representations of SU(2)

The group SU(2) is a very important symmetry group in the theory of quantum mechanics.
It occurs in the theory of angular momentum, as being the 'quantum version' of the rotational
symmetry group SO(3) which occurs as the symmetry group in classical mechanics that gives
rise to conservation of angular momentum. The reason we use SU(2) in quantum mechanics
comes from the fact that SU(2) is the double cover of SO(3), which is essential in the theory of
spin, where we encounter half-valued representations. This means that all the representations
can be classi�ed by a number n which can take the values 0, 1

2 , 1, . . .. The half-valued repre-
sentations cannot occur if we just used SO(3) as the symmetry group, because this symmetry
group only gives integer valued representations (so these representations are classi�ed by an
integer n).
The reason why we explore the representations of SU(2) in this thesis is that it also occurs as
a intrinsic symmetry group in elementary particle physics, namely as isospin. This symmetry
arose originally from the fact that the proton and the neutron have approximately the same
mass. Therefore Heisenberg proposed that they should be regarded as di�erent states of the
same particle, called the nucleon. In a later stage, the isospin group was regarded as the �avor
symmetry group of the up and down quarks. Since the masses of these two quarks are not
exactly equal to each other this symmetry is only an approximate symmetry.

2.2.1 The Lie group SU(2) and its Lie algebra

As we saw in section 1.1, the group SU(2) is given by the set of 2x2 matrices over C and which
preserve the standard hermitian scalar product and have determinant equal to 1. The de�ning
relation for these matrices is that for all A ∈ SU(2) it must hold that A†A = I. The Lie
algebra of SU(2) is given by the tangent space at the identity. By di�erentiating the de�ning
identity of SU(2) at A = I, we �nd that for every X ∈ su(2) it must hold that X† = −X, so
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su(2) consists of anti-hermitian matrices. We haven't completely speci�ed su(2) yet because
we haven't used the fact that the determinant of A ∈ SU(2) should be equal to 1. Let the set
{E1, E2, E3} be an arbitrary basis for su(2). Since SU(2) is connected and compact, we can
exponentiate su(2) to obtain SU(2). This gives that every element g ∈ SU(2) can be written
as g(α) = exp(α1E1 + α2E2 + α3E3). Because g must have determinant 1, we now �nd a
condition on the trace of the generators Ei.

1 = det e(α1E1+α2E2+α3E3) = eTr(α1E1+α2E2+α3E3) =⇒ TrEi = 0

So we can conclude that su(2) consists of the 2x2 anti-hermitian matrices with trace zero.
A very useful basis for this Lie algebra is given by means of the Pauli matrices. The Pauli
matrices σi are given by:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.4)

The Pauli matrices are a basis for the hermitian trace zero matrices. In order to �nd a basis
for the space of anti-hermitian trace zero matrices we just multiply the σj by i. To �nd the
representations of this Lie algebra, which we will do in the next paragraph, it is helpful to
consider the complexi�cation of the Lie algebra su2. This complexi�cation is the Lie algebra
sl2(C). It consists of the linear combinations of the matrices in su2 with complex coe�cients.
It thus holds that the Pauli matrices are a basis of this Lie algebra. But we can now de�ne
another very useful basis, by taking two linear combinations of the �rst two Pauli matrices:
σ± = 1

2(σ1 ± iσ2). In matrix form, the new basis looks like:

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ3 =

(
1 0
0 −1

)
(2.5)

Their commutation relations are given by

[σ+, σ−] = σ3 [σ3, σ±] = ±2σ± (2.6)

2.2.2 The irreducible representations of sl2(C)

By using the basis we derived in the last section for the complexi�ed version of su2 we are able
to classify the irreducible representations of su2. A known fact in the theory of Lie algebras
which we do not prove here1, is the preservation of the Jordan decomposition under a repre-
sentation. The Jordan decomposition of a matrix g ∈ sl2(C) is the decomposition of g into
gd + gn where gd is diagonalizable, gn is nilpotent and [gd, gn] = 0. We can use this property
to study the representations of sl2(C), since σ3 is diagonalizable, so the preservation of Jordan
decomposition means that ρ(σ3) is diagonalizable in Aut(V ). Now because H = ρ(σ3) is diag-
onalizable, we can write V as V =

⊕
Vα, where the Vα are the eigenspaces of H corresponding

to the eigenvalues α of H.

1See for example appendix C.2 in [4]
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How do we go about constructing the irreducible representations of sl2(C)? To do this, we
will use the method of symmetric tensor powers. This means that we will construct the m-th
irreducible representation by taking the m-th symmetric power of the fundamental represen-
tation. The fundamental representation is the representation ρ on V = C2 with ρ(X) = X
for all X ∈ sl2(C). But before we proceed to perform this construction, I will �rst explain the
notion of a symmetric power of a vector space. Consider a n-dimensional (complex) vector
space V . Let us denote the basis vectors of V as {xi}ni=1. Then we de�ne the m-th symmetric
power of V as the vector space SymmV which has a basis

{ei1 · ei2 · . . . · eim |i1 ≤ . . . ≤ im}

with the property that every element v1 · . . . · vm of SymmV is invariant under permutation of
the vectors vi. One can also easily see that the dimension of SymmV is given by:

dim SymmV =
(
n+m− 1

m

)
(2.7)

To illustrate this, consider Sym2C2. Let {x, y} be a basis of C2. Then the basis of Sym2C2 is
given by {x2, xy, y2}. So basically Sym2C2 consists of the symmetric polynomials of degree 2
in the variables x and y. In general this also holds: We can view the m-th symmetric power
SymmV of an n-dimensional vector space V as the vector space of symmetric polynomials of
degree m in the n basis variables of V . One can also construct the m-th symmetric power of
V from the m-th tensor product V ⊗m of V by taking the quotient of V ⊗m with the subspace
generated by v1 ⊗ . . . ⊗ vn − vσ(1) ⊗ . . . ⊗ vσ(n) for all σ ∈ Sn, the group of permutations
of the set {1, . . . , n}, and {v1, . . . , vn} a basis for V . This basically means that you mod
out all the non-commuting tensor products of the basis vectors. We now give the two main
theorems of this section, which give us the classi�cation of the irreducible representations and
the decomposition of tensor products of them in irreducible representations.

Theorem 2.2.1. A representation ρ of sl2(C) on a vector space V is irreducible if and only if
V = SymnC2 for some n ≥ 0, with C2 the fundamental representation of sl2(C).

Proof. The proof of this statement is somewhat lengthy. To carry it out we will �rst consider
the action of H = ρ(σ3) on the vector space SymnC2. This will give us a decomposition
of V into a number of subspaces. To proof the irreducibility we will consider the action of
X± = ρ(σ±) on these subspaces. Let us now denote the standard basis of C2 as {x, y}.
Then the basis of V = SymnC2 is given by {xn, xn−1y, . . . , yn}. Since we consider C2 as the
fundamental representation we have that H(x) = x and H(y) = −y. This gives us that

H(xn−kyk) = (n− k)H(x)xn−k−1yk + kH(y)xn−kyk−1

= (n− k)xn−kyk − kxn−kyk

= (n− 2k)xn−kyk

So the eigenvalues of H are the numbers n, n− 2, . . . ,−n. This means that we can decompose
V as

V =
n⊕
i=0

Vn−2i = Vn ⊕ . . .⊕ V−n
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where Vj is the eigen space corresponding to the eigenvalue j. Let us now consider a eigenvector
v in one of the subspaces Vj with j 6= ±n. We can use the operators X± on v to show that V
must be irreducible. By using the commutation relations of sl2(C) we get that

HX±(v) = X±H(v) + [H,X±](v) = (j ± 2)X±(v)

so X±(v) is also an eigenvector of H with eigenvalue j ± 2, so X±(v) ∈ Vj±2. This means
basically that X± is a map Vj → Vj±2, so V has no invariant subspace, since we can get all the
vectors by repeatedly applying X± to an eigenvector v ∈ V . We can conclude that V is irre-
ducible. Now we only need to proof that if we consider an arbitrary irreducible representation
V , that V = SymnC2 for some n. So let V be an arbitrary irreducible representation of sl2(C).
Let v be an eigenvector of H with eigenvalue α. We know from above that under the appli-
cation of X± this gives us an eigenspace decomposition of V as V =

⊕
n Vα+2n. Because V is

�nite dimensional by hypothesis, we must have an upper bound nmax and a lower bound nmin

for the eigenvalues. Let v be an nonzero eigenvector in Vnmax . It thus holds that X+(v) = 0.
We now show that the vectors {v,X−(v), X2

−(v), . . . , Xm
− (v)}, where m is the smallest power

of X− which annihilates v, form a basis for V . Because V is irreducible it su�ces to show
that the subspace generated by these vectors is an invariant subspace. Because H and X−
obviously preserve this subspace, we only need to show that X+ preserves it. For k = 1, . . . ,m
we have that

X+(Xk
−(v)) = k(nmax − k + 1)Xk−1

− (v)

so X+ preserves the subspace too. This means that all the eigenspaces are one dimensional
and that the number nmax must be real and equal to m−1 since 0 = X+(Xm

− (v)) = m(nmax−
m+ 1)Xm−1

− . We can conclude that V is nmax + 1 dimensional and is uniquely determined by
the eigenvalues nmax, nmax − 2, . . . ,−nmax. But since SymnmaxC2 satis�es the same properties
as V , it must be that V = SymnmaxC2.

Theorem 2.2.2. (Clebsch-Gordan) Let a ≥ b be integers and V be the fundamental represen-
tation of sl2(C). Then it holds that SymaV ⊗ SymbV =

⊕b
i=0 Syma+b−2iV .

Proof. The idea behind this proof is to consider all the possible eigenvalues of H on SymaV ⊗
SymbV . We can �nd all these eigenvalues by considering all the possible combinations of the
eigenvalues of SymaV and SymbV , because the eigenvalues in a tensor product just add. We
then proceed to identify all the possible eigenvalues with their multiplicities as vector spaces
isomorphic to some symmetric power. In order to count all the multiplicities it is useful to
consider a formal Laurent polynomial in one variable for the vector spaces SymnV , or products
of it, where the powers are the eigenvalues of these vector spaces and the coe�cients are the
multiplicities. This gives us that the polynomial for the vector space SymaV ⊗ SymbV is just(

a∑
i=0

xa−2i

)
·

 b∑
j=0

xb−2j

 =
a∑
k=0

b∑
l=0

xa+b−2k−2l

From this formula you can easily see that the multiplicity of the eigenvalue a + b − 2z for
z ≤ (a+ b)/2 equals z+ 1. By symmetry this also determines the multiplicities of the negative
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eigenvalues: The multiplicity of eigenvalue α equals the multiplicity of the eigenvalue −α.
Now consider an eigenvector v with eigenvalue a + b. By the previous theorem, the action of
sl2(C) on v generates an invariant subspace W of SymaV ⊗ SymbV isomorphic to Syma+bV .
sl2C is semi-simple 2, which means that there exists a complementary invariant subspace W ′

such that W ⊕W ′ = V . We can now �nd an invariant subspace W ′′ of W ′ isomorphic to
Syma+b−2V because all the eigenvalues have dropped by one. By continuing this process until
the eigenvalue 1 or 0 is reached, the only invariant subspace is the zero subspace. This exactly
gives the required decomposition.

So we see that all the irreducible representations of sl2(C) (so also all the irreducible rep-
resentations of su2) are uniquely determined by some non-negative integer n and that the
tensor products of these irreducible representations decompose as a direct sum of irreducible
representations. This is what physicists like to call 'addition of angular momentum'. When
physicists speak of the representations of su2 they use a somewhat di�erent convention from
the one we used above. Their de�nition of the basis matrices of su2 di�er with a factor of
one-half. So instead of the integers n they got the numbers j, where simply 2j = n. They also
call j the angular momentum quantum number.

In order to proceed with the calculations in the next section we �rst write down the Casimir
operator for sl2C using the basis most physicists use, namely the basis {σ+, σ−, σ3/2}, where
the σ± and σ3 are de�ned by equation 2.5. Let us now consider an irreducible representation
ρ of sl2C on a vector space V = Sym2jC2. Like in the proof of theorem 2.2.1 we denote
H = 1

2ρ(σ3) and X± = ρ(σ±). By using the identity [AB,C] = A[B,C]+[A,C]B for arbitrary
linear operators A,B,C, one can easily see that the operator

C = X±X∓ +H2 ∓H (2.8)

commutes with H and the X±. In other words, C is a Casimir operator for the representation
ρ of sl2C. Let us now consider an eigenvector v in the eigenspace Vl corresponding to the
maximum eigenvalue l of H . Then we have that

Cv = (X−X+ +H2 +H)v = (0 + l2 + l)v = l(l + 1)v (2.9)

so C has the eigenvalue l(l + 1) on the whole representation since it commutes with all the
basis elements. We can now also immediately write down the eigenvalues for the operators X±
by using the fact that X± = (X∓)†. So let vm be an eigenvector in the eigenspace Vm. Then
from equation 2.8 it follows that

X∓X±vm = (l(l + 1)−m(m± 1))vm (2.10)

〈X±vm|X±vm〉 = 〈vm|X∓X±vm〉 = (l(l + 1)−m(m± 1)) 〈vm|vm〉 (2.11)

X±vm =
√
l(l + 1)−m(m± 1)vm±1 (2.12)

Note that we chose a real and positive phase here. This phase is also called the Condon-Shortley
phase.

2See [4], paragraph 9.3, page 123,128, and appendix C
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2.3 Lightweight elementary particles

As mentioned in the introductory paragraph in the preceding section, the proton and the neu-
tron have approximately the same mass. Despite the fact that they do not have the same
charge, the proton and neutron behave almost exactly the same in all other aspects. For ex-
ample, the strong force does not di�erentiate between a neutron and a proton, and the strong
force is charge independent. This gives a strong indication that there must be a symmetry
group for the proton and the neutron which is invariant under the strong interaction. This
symmetry group was called isospin since its mathematical properties are identical to those of
ordinary spin. So this isospin symmetry group is just the group SU(2) which we studied in
the previous section. In this section however, we will not consider the isospin group as the
symmetry group of the nucleon, but as a �avor symmetry group of the up and down quarks.
There also exist other �avors of quarks, but they are not described by SU(2), but by SU(3)
and higher. We will look at them in the next chapter.

As we have seen in the previous section, all the irreducible representations of SU(2) can
be obtained by taking the symmetric tensor product of the fundamental representation C2.
Using the hypothesis that the up and down quarks are the smallest constituents of the elemen-
tary particles, we can therefore say that the up and down quarks must lie in the fundamental
representation of SU(2).

u =
(

1
0

)
d =

(
0
1

)
Because we know all the possible eigenvalues of the irreducible representations, we can also
denote the states in the perhaps more familiar Dirac notation. From now on we will denote
the I-th irreducible representation as DI . We will label the states inside DI by the quantum
number I and by the eigenvalues I3 of this representation. We will also follow the convention
used by physicists to divide the eigenvalues by 2 (this means that we also divide I by two).
So a general state will be written as |I I3〉. In this notation the up quark becomes |u〉 = |12

1
2〉,

and the down quark becomes |d〉 = |12 −
1
2〉.

2.3.1 The pion triplet

By using the building blocks of the up and down quarks we can construct the lightweight
elementary particles. Let us �rst look at the case where we consider a composite system of
2 quarks. This can either be a uu, ud or dd state or linear combinations of them. This
means we have to consider the tensor product representation of two copies of the fundamental
representation, so we consider the representation D1/2⊗D1/2. By theorem 2.2.2 we know that
this tensor product decomposes as D1 ⊕D0. Let us look some closer to the states in these 2
irreducible representations. Since the eigenvalues for D1 are 1, 0 and -1, its states are given by
|1 1〉, |1 0〉 and |1− 1〉. The case of D0 is simple, because it only allows for the state |0 0〉. We
can also write these 4 states in terms of the up and down quarks. To do this we use the fact that
under the application of a tensor product the eigenvalues just add. The only possible way to get
the state |1 1〉 out of a tensor product is to tensor two states with eigenvalues 1/2. This means
that |1 1〉 = |u〉 ⊗ |u〉. By using the same argument we also �nd that |1− 1〉 = |d〉 ⊗ |d〉. We
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can now get the state |1 0〉 by either applying X+ to |1− 1〉 or X− to |1 1〉. This gives us that
|1 0〉 = X− |1 1〉 = X−(|u〉⊗|u〉) = (X− |u〉)⊗|u〉+|u〉⊗(X− |u〉) = (|d〉⊗|u〉+|u〉⊗|d〉)/

√
2. The

only other remaining possibility for an other state with eigenvalue 0 and which is orthogonal3

to the other three, is the combination (|u〉 ⊗ |d〉 − |d〉 ⊗ |u〉)/
√

2. The factors of 1/
√

2 come
from normalizing the state. These factors also appear if we look at how to decompose a tensor
product of angular momentum states in general. These decompositions of the direct product
states go under the name of the Clebsch-Gordan series and the coe�cients that appear in
this series go under the name of the Clebsch-Gordan coe�cients. We will not derive these
coe�cients since it is quite a laborious work. Instead we will just use them in the following
calculations and the reader can refer to page 188 of Gri�ths's quantum mechanics text which
lists a table of the most common Clebsch-Gordan coe�cients. Now by using these coe�cients
we �nd:

|1 1〉 = |u〉 ⊗ |u〉
|1 0〉 = (|d〉 ⊗ |u〉+ |u〉 ⊗ |d〉)/

√
2

|1− 1〉 = |d〉 ⊗ |d〉
|0 0〉 = (|u〉 ⊗ |d〉 − |d〉 ⊗ |u〉)/

√
2

But how do we interpret these states as elementary particles? We can do this be looking at
the experimental properties of the Pion triplet.

Properties of the Pions

pion mass (MeV) charge lifetime (s) spin

π+ 139.59 e (2.55± 0.03) · 10−8 0
π0 135.00 0 0.83 · 10−16 0
π− 139.59 −e (2.55± 0.03) · 10−8 0

In this table we see that the masses of the three di�erent pions are almost equal to each other.
The mass of the π+ equals that of the π− and the mass of the π0 is just 4.59 MeV smaller. One
can argue that this mass di�erence is caused by other interactions, like the electromagnetic
interaction or the weak interaction. We can therefore regard these pions as members of an
isospin triplet, since isospin is conserved under the strong interaction and because the strong
interaction is charge-independent. By using the results we found above we �nd that

|1 1〉 ←→ |π+〉
|1 0〉 ←→ |π0〉

|1− 1〉 ←→ |π−〉

We also see that we can �nd an easy relation between the charge of the pions and the eigen-
values4:

Q = eI3 (2.13)

3Here we consider orthogonality with respect to the induced inner product on the tensor product space,
which is de�ned by: 〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉, where 〈, 〉 is the standard inner product on C2.

4We will see this equation appear more generally in the next chapter as the Gell-Mann/Nishijima rule
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But the construction we used isn't entirely justi�ed. In the experiments we observe that
a quark-quark bounded state isn't possible. On the other hand we observe lots of quark-
antiquark bounded states. These quark antiquark states are called mesons. To explain why
for example the quark-quark states cannot appear in nature, the notion of color was intro-
duced. Each quark can carry one of the colors red, green or blue. The antiquarks carry the
colors antired, antigreen and antiblue. This would suggest that there are numerous di�erent
particles which are composed of the same quarks. But there is a conjecture, called the Color-
singlet conjecture which says that only the particles with neutral color can exist in nature.
This conjecture immediately explains why there do not exist any quark-quark bounded states.
These states do not have neutral color! Only a quark-antiquark state has neutral color.
In our isospin model however, the fundamental representation for the anti-particles is iso-
morphic to the standard fundamental representation, which means that in this model the
antiquarks correspond to the quarks by u ↔ −d̄ and d ↔ ū. The minus sign in front of
the antidown quark comes from the fact that we want the charge conjugation operator (The
operator which sends T3 to −T3) to commute with the rotations in SU(2). This gives us the
true composition of the three pions:

|π+〉 = − |u〉 ⊗ ¯|d〉 |π0〉 = (|u〉 ⊗ ¯|u〉 − |d〉 ⊗ ¯|d〉)/
√

2 |π−〉 = |d〉 ⊗ ¯|u〉

2.3.2 The lightweight baryons

We now go one step further and consider the elementary particles which are made up of three
quarks/antiquarks. We call these particles Baryons. Because the total combination of these 3
quarks must be color neutral, the only possible baryons are those which are made up entirely
out of quarks or entirely out of antiquarks. To classify these particles we proceed in the same
way as the previous section: we consider the threefold tensor product of the fundamental
representation D1/2. By theorem 2.2.2 this tensor product decomposes as (D1/2)⊗3 = D3/2 ⊕
D1/2 ⊕ D1/2. Let us look some closer at the D3/2 representation. The possible states in
this representation are of course |32

3
2〉, |

3
2

1
2〉, |

3
2 −

1
2〉 and |

3
2 −

3
2〉. To �nd out the composite

structure of these baryon states we will use the same procedure as in the previous section. The
only possible combination for the |32

3
2〉 state is |u〉 ⊗ |u〉 ⊗ |u〉 since this is the only state with

the maximum eigenvalue. The other states follow from applying the I− operator to this state.

|3/2 3/2〉 = |u〉 ⊗ |u〉 ⊗ |u〉
|3/2 1/2〉 = (|d〉 ⊗ |u〉 ⊗ |u〉+ |u〉 ⊗ |d〉 ⊗ |u〉+ |u〉 ⊗ |u〉 ⊗ |d〉)/

√
3

|3/2− 1/2〉 = (|d〉 ⊗ |d〉 ⊗ |u〉+ |d〉 ⊗ |u〉 ⊗ |d〉+ |u〉 ⊗ |d〉 ⊗ |d〉)/
√

3
|3/2− 3/2〉 = |d〉 ⊗ |d〉 ⊗ |d〉
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Again we would like to �nd a type of elementary particles which �t in this isospin quartet.
These particles are called the ∆ baryons and they have the following properties:

Properties of the ∆ baryons

∆ baryon mass (MeV) charge lifetime (s) spin

∆++ 1232± 2 2e 5.49 · 10−24 3/2
∆+ 1232± 2 e 5.49 · 10−24 3/2
∆0 1232± 2 0 5.49 · 10−24 3/2
∆− 1232± 2 −e 5.49 · 10−24 3/2

As you can see from this table, the lifetimes of these particles are very short. This comes
from the fact that these baryons only exist as an intermediary product in some reactions. One
can create these particles by scattering a proton o� a positive pion. In this reaction the ∆++

particle5 is formed, since it is the only ∆ baryon with charge 2e. But this particle immediately
decays into a proton and a positive pion again. If one looks at the di�erential cross-section
of these pion-nucleon processes, one sees a sharp peak at the mass of the ∆ baryons, so at
1232 MeV. We therefore also call these types of baryons baryon resonances. There exists a
nice �tting formula for the cross-section of these resonances which is called the Breit-Wigner
formula. This formula gives the energy dependence of the cross-section of a reaction between
two particles x and y, for energies E close to the resonance energy E0.

σ(E) =
λ2(2S + 1)

4π(2sx + 1)(2sy + 1)
Γ2

(E − E0)2 + Γ2/4
(2.14)

Here λ is the wavelength in the center of mass system, sx and sy are the spins of the particles x
and y, S is the total spin of the resonance and Γ is the width of the resonance which is related
to the lifetime τ by τ = ~/Γ. So using the lifetime which is given in the table above we obtain
a resonance width of about 120 MeV. So for a reaction between a proton and a positive pion
the cross-section for energies in MeV becomes

σ(E) ≈ 7200λ2

π((E − 1232)2 + 3600)

Of course, most of the time people will use this formula the other way around. They use it for
example to �nd the lifetime of a resonance by �tting this formula to the measured data to �nd
the width of the peak. Or they use it to �nd the wavelength of the particle from which they
deduce its momentum.

But let us now consider the other isospin multiplet which appeared in the tensor product
of the three lightweight quarks, namely the D1/2 representation. In this representation we
have the states |1/2 1/2〉 and |1/2− 1/2〉. We already mentioned a candidate for 2 particles

5It's perhaps interesting to mention that the discovery of this particle is one of the reasons why physicists
introduced the notion of color. They did it because without color this particle wasn't allowed to exist by the
Pauli exclusion principle since it is made up of three up quarks which each have only two spin directions.
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that �t in this isospin doublet, namely the proton and the neutron. These 2 particles are
one of the most common particles in nature and all the atoms are composed of them. For
completeness we give the properties of the proton and the neutron:

Properties of the nucleons

Nucleon mass (MeV) charge lifetime (s) spin composition

p 938.27 e stable 1/2 uud
n 939.57 0 886 1/2 udd

There also exist other types of lightweight baryons who �t inside an isospin doublet, namely the
N(M) baryons. These baryons also appear as resonances in nucleon-pion scattering processes
and appear at 1515 MeV and at 1688 MeV. Just like in the case of the nucleons, there is one
N-baryon state with positive charge of e and one neutral state. We denote the positive charged
state as N+(M) and the neutral state as N0(M). With the same analysis as before we can
conclude that the N+(M) state is build up from 2 up quarks and one down quark, and the
N0(M) state is build up from 2 down quarks and one up quark. This is also obvious from the
fact that the two isospin doublets are isomorphic to each other. The wavefunctions of these
resonances only di�er in the non-isospin part since they have di�erent energies and di�erent
angular momentum.



Chapter 3

The quark model

3.1 Hypercharge and strangeness

In the last section of the previous chapter we looked at the elementary particles which are
made up of the up and down quarks. We classi�ed these particles into two groups, the mesons
and the baryons. The mesons consist of a quark-antiquark pair, and the baryons consist of
combinations of three quarks. In a larger picture, one can view the mesons and baryons as
the two parts of the larger class of the hadrons. The hadrons are the particles which can
interact through the strong interaction. There are also particles which never experience strong
interactions. These particles are called leptons. To classify these 2 groups somewhat more
mathematically, one can de�ne the lepton number L and the baryon number B as follows:

L =


1 if the particle is a lepton
−1 if the particle is an antilepton
0 otherwise

B =


1 if the particle is a baryon
−1 if the particle is an antibaryon
0 otherwise

It is generally believed that the lepton number and the baryon number are each additively con-
served. This means for example that in a reaction between two di�erent baryons, the resulting
product must contain at least some other baryon. The same holds for the leptons. Because B
and L are conserved, we know from Noether's theorem that there must be a symmetry group
G that corresponds to them. To �nd a possible candidate for this symmetry group we can
regard B as an eigenvalue of a hermitian operator B̂. We now take iB̂ to be the basis element
of a Lie algebra g isomorphic to u(1). If we exponentiate g we obtain a Lie group isomorphic
to U(1). The irreducible representations of U(1) are classi�ed by a number p which can take
on the values 0,±1,±2, . . .. This also means that the irreducible representations of u(1) and
therefore the irreducible representations of g are classi�ed by the same number p. So from this
we can conclude that the reason that B takes on integer values comes from the fact that it has
a U(1) symmetry. The same holds for the lepton number L.

In the section on the pion triplet we mentioned a relation between the charges of the pi-
ons and the eigenvalue I3 (equation 2.13). But if we look at the tables for the lightweight
baryons in the previous chapter we see that this relation does not hold for the baryons. We see

28
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that the di�erence between the true charge and the charge predicted by equation 2.13 is always
equal to 1/2 for the normal baryons and equal to −1/2 for the antibaryons. This suggests that
we use the baryon number B to modify equation 2.13:

Q = e(I3 +
1
2
B) (3.1)

For some more numerology, one can also see that for a given isospin multiplet the baryon
number B equals the maximum charge Qmax plus the minimum charge Qmin in that multiplet
divided by the electric charge e.
In later experiments it was discovered that there were certain particles which were produced
through the strong interaction but had a lifetime of about 10−10 seconds. This is much longer
than the expected lifetime of about 10−23 seconds. In order to try to quantify this, the quantum
number strangeness was introduced. This quantum number S is assumed to be an integer and
is conserved by the electromagnetic interaction and by the strong interaction. The reason
why these particles had such a long lifetime is thus explained by the fact that strangeness is
not conserved in the reactions which produce these particles. This means that these particles
decay through the weak interaction. In a later stage, when the quark model was introduced,
Gell-Mann postulated that these particles consist of a new type of quark, the strange quark.
To make everything consistent with earlier classi�cations based on the strangeness property
the strange quark was assigned the value S = −1 and the antistrange quark the value S = 1.
This means that in general S is equal to the number of s̄-quarks minus the number of s-quarks.
People also found a generalization of equation 3.1 by including the number S:

Q = e(I3 +
1
2
B +

1
2
S) (3.2)

By looking at this equation it seems more useful to consider the quantum number Y de�ned
by Y = B + S. We will call Y the hypercharge. In terms of this hypercharge equation 3.2
becomes Q = e(I3 + Y/2). We call this the Gell-Mann/Nishijima rule.

As in the case of the baryon number B it seems logical to assume that the possible values
for Y are eigenvalues of some hermitian operator Ŷ and that the underlying symmetry group
is U(1) since Y is integer valued. This means that the operator iŶ should be a basis element
of a Lie algebra isomorphic to u(1). It should also hold that the operator Ŷ commutes with
the operator Î3 since Y and I3 are simultaneously measurable. This gives us a strong indica-
tion that the Lie algebra corresponding to the �avour symmetry group of the particles which
consist of the up, down and strange quarks must be at least a rank1 2 Lie algebra and that it
should have u(1) ⊕ su(2) as a Lie subalgebra. One of the simplest rank 2 Lie algebras is the
Lie algebra su(3). The classi�cation based on this particular Lie algebra agrees quite well with
experimental observations. In the next section we will derive the irreducible representations
of this Lie algebra which we will then use to classify the particles which consist of the u,d and
s quarks.

1For the de�nition, see the top of page 17
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3.2 The Lie algebra sl3(C) and its representations

3.2.1 The Lie algebra

The arguments in section 2.2.1 to derive the general form of the elements of the Lie algebra
su(2) also applies to the general Lie algebra su(n). This means that the elements of the Lie
algebra su(3) consist of the 3x3 anti-hermitian matrices with trace zero. As in the previous
chapter we are going to consider the complexi�ed version of su(3), which is the Lie algebra
sl3(C). One can choose a particular useful basis of matrices for this Lie algebra, which are
called the Gell-Mann matrices. Because the dimension of SU(3) is 8, there are 8 basis elements
for this Lie algebra. Let us denote these basis elements as λi. Since sl2(C) is a subalgebra of
sl3(C) we can de�ne the �rst three λi as the original Pauli matrices extended to 3x3 matrices
by just adding zeroes to the third row and column. We can now construct λ4 and λ6 by shifting
the nonzero elements of λ1 down the opposite diagonal. In the same way we �nd λ5 and λ7 by
shifting down the nonzero elements of λ2. Since sl3(C) has rank 2, λ8 must be diagonal. It is
chosen in such a way that the condition Trλiλj = 2δij holds for all the basis elements λi.

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0



λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


By looking at these eight matrices, it is almost immediately evident that they are linearly in-
dependent. Especially if you take the linearly independence of the Pauli matrices into account.
These basis elements also satisfy the commutation relations

[λi, λj ] = fkijλk (3.3)

where fkij is completely antisymmetric in i,j and k. A table of all the values for fkij is given on
page 190 in [5]. Because λ3 and λ8 are diagonal we see that they commute with each other.
This means that we can associate the hypercharge operator and the isospin operator to these
two basis elements. So let us now de�ne a somewhat more useful basis for sl3(C) like we did
in the case of sl2(C): T± = (λ1 ± iλ2)/2, V± = (λ4 ± iλ5)/2, U± = (λ6 ± iλ7)/2, T3 = λ3/2
and Y = λ8/

√
3. We can also de�ne the operators U3 and V3 as 2U3 = 3/2Y − T3 and

2V3 = 3/2Y + T3. These de�nitions give us the following important commutation relations:

[T+, T−] = 2T3, [T3, T±] = ±T± (3.4)

[U+, U−] = 2U3, [U3, U±] = ±U± (3.5)

[V+, V−] = 2V3, [V3, V±] = ±V± (3.6)
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From these commutation relations we see that the T operators generate a Lie subalgebra of
sl3(C) isomorphic to sl2(C). This also holds for the U and V operators. It also means that we
can view the operators T±, U± and V± as shifting operators. The rest of the commutators are
given on page 191 of Greiner's text.

3.2.2 The representations

To �nd the irreducible representations of sl3(C) we would like to use the same approach as
the one used in the previous chapter. There we looked for a diagonal matrix and classi�ed the
irreducible representations by the eigenvalues of this matrix. The case of sl3(C) is however
slightly more complicated because it has two diagonal matrices in its basis. We denoted these
basis elements by T3 and Y to make the link with isospin and hypercharge. These two opera-
tors commute with each other, so they form a Lie subalgebra which we will denote as h.

Let us now consider a representation ρ of sl3(C) on some vector space V . We will now �rst
look at what happens if we apply ρ to h ⊂ sl3(C). For clarity we shall from now on write X(v)
instead of ρ(X)(v) for all X ∈ sl3(C) and v ∈ V . Because Jordan decomposition is preserved
under ρ, ρ(h) also consists of diagonalizable matrices which commute with each other. Because
they all commute with each other they have a common set of eigenvectors. Let us now consider
an element H ∈ h and let v be an eigenvector for the action of h on V . We then have that
H(v) = α(H)v. Here α(H) is a complex eigenvalue which depends on H. So in fact we have
that α ∈ h∗2. We can now decompose V as

V =
⊕
α

Vα

where Vα is the eigenspace for the action of h with eigenvalue α ∈ h∗. We already mentioned
at the end of the previous subsection that we can regard the T±, U± and V± operators as
shifting operators. We based this on the fact that they generate subalgebras isomorphic to
sl2(C). Let us now compute how these operators change the eigenvalues of the members in h.
As a basis for h we take of course T3 and Y . Let v be an eigenvector for h. Then we have
that T3(v) = α(T3)v and Y (v) = α(Y )v. Since [T3, V±] = ±V±/2, [T3, U±] = ∓U±/2 and
[T3, T±] = ±T± we have that:

T3V±(v) = [T3, V±](v) + V±T3(v) = (α(T3)± 1/2)V±(v)
T3U±(v) = [T3, U±](v) + U±T3(v) = (α(T3)∓ 1/2)U±(v)
T3T±(v) = [T3, T±](v) + T±T3(v) = (α(T3)± 1)T±(v)

Also because [Y, V±] = ±V±, [Y,U±] = ±U± and [Y, T±] = 0 we have that:

Y V±(v) = [Y, V±](v) + V±Y (v) = (α(Y )± 1)V±(v)
Y U±(v) = [Y, U±](v) + U±Y (v) = (α(Y )± 1)U±(v)
Y T±(v) = [Y, T±](v) + T±Y (v) = α(Y )T±(v)

2h∗ is the dual vector space of h. The dual space V ∗ of a K-vector space V consists of all the linear maps
V → K
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Figure 3.1: Example of a weight diagram and an illustration of the actions of the 6 shifting
operators.

We can also illustrate these results in the so called weight diagrams for a given representation.
This is a graph in which we plot all the possible eigenvalues for h. In this case it is a 2 dimen-
sional graph since h is 2 dimensional. For the x-axis we take the eigenvalues of T3 and for the
y-axis the eigenvalues of Y . Let us now restrict our attention to an irreducible representation
of sl3(C) on a vector space V . We can now construct the weight diagram for this representation
by using the shifting operators T±, U± and V±. Because the set of T operators is isomorphic
to sl2(C) we know from chapter 2 that the possible eigenvalues α(T3) for T3 range from n to
−n by integer steps, where n is also an integer. This means that the weight diagram must
be symmetric with respect to the Y axis. Since the sets of U and V operators are both also
isomorphic to sl2(C) we have that U3 = 0 on the V -axis, V3 is zero on the U -axis and that the
weight diagram is symmetric with respect to the U and V axes. The U axis is de�ned by the
line α(Y ) = 2α(T3)/3 and the V axis is de�ned by the line α(Y ) = −2α(T3)/3. All these four
axes intersect each other in the origin, and the T , U and V axes form angles of 120 degrees
between them, if we rescale the Y axis by

√
3/2.

Let us now consider an eigenvector v for which the pair of eigenvalues (α(T3), α(Y )) is max-
imal3. We call this the state with maximal weight. Then we certainly have that T+(v) =
U−(v) = V+(v) = 0. It must also hold that there exists an integer a such that V a+1

− (v) = 0
because the V -algebra is isomorphic to sl2(C). Similarly there must exist an integer b such that
T b+1
− V a

−(v) = 0. Because of the symmetries of the multiplet these numbers a and b completely
specify the multiplet. From now on we shall label the irreducible representations by these two
numbers. So we write Γa,b for the irreducible representation which is speci�ed by a and b.
Like in the previous chapter we can construct these irreducible representations from tensor
products of the fundamental representation. One must be careful here however because there

3A pair (α(T3), α(Y )) is called larger than (α(T3)
′, α(Y )′) if α(T3) ≥ α(T3)

′ and α(Y ) > α(Y )′.
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Figure 3.2: The construction of a SU(3) multiplet

are two fundamental representations, since the dual representation is not isomorphic to the
normal one. One can easily see this, by noting that the weights in the dual representation are
just the negatives of the weights in the normal representation. This implies in turn that the
weight diagrams of these 2 are di�erent, and thus that the representations cannot be isomor-
phic (isomorphic representations have the same weights). There is however a automorphism
of sl3(C) which carries the two weight diagrams into each other, namely the automorphism
which sends X 7→ −XT , but this transformation does not satisfy the required relation for
the equivalence of two representations. From now on we shall write V = C3 for the normal
fundamental representation and V ∗ = (C3)∗ for the dual fundamental representation.

Lemma 3.2.1. Let ρ be a representation of sl3(C) on the vector space SymnV , where V is
the fundamental representation of sl3(C). Then the weights in the weight diagram all have
multiplicity one and the weight diagram has a triangular form

Proof. We'll employ the same technique as in chapter two, where we considered the isomor-
phism of SymnV with the vector space of symmetric polynomials in dim(V ) variables with
total degree n. Let us take as a basis of V the three unit vectors, which we denote as x, y and
z. To determine the eigenvalues of the diagonal operators in h we �rst need to determine the
actions of T3 and Y on the three basis vectors. It's easy to see that T3(x) = x/2, T3(y) = −y/2
and T3(z) = 0. Furthermore it holds that Y (x) = x/3, Y (y) = y/3 and Y (z) = −2z/3. The
general form of an element of SymnV is of the form xn−i−kykzi, where 0 ≤ k, i ≤ n and
i + k ≤ n. We can now determine the actions of T3 and Y on such a general element to
determine all the possible eigenvalues:

T3(xn−i−kykzi) = (n− i− k)T3(x)xn−i−k−1ykzi + kT3(y)xn−i−kyk−1zi + iT3(z)xn−i−kykzi−1

=
1
2

(n− i− 2k)xn−i−kykzi

Y (xn−i−kykzi) = (n− i− k)Y (x)xn−i−k−1ykzi + kY (y)xn−i−kyk−1zi + iY (z)xn−i−kykzi−1

= (n/3− i)xn−i−kykzi
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So the general form of the weights for this representation is ((n− i−2k)/2, n/3− i). From this
we can see that these weights have multiplicity one; Suppose that xn−i−kykzi and xn−i

′−k′yk
′
zi
′

are two di�erent eigenvectors but have the same eigenvalue. This means in general that i 6= i′

and/or that k 6= k′. But from the general form of the eigenvalues we see that it must hold that
i = i′ and k = k′. So the eigenvalues correspond to exactly one eigenvector from which we can
conclude that the multiplicity of the eigenvalues is one. If you plot these weights in a weight
diagram we see that the form of the diagram is triangular. One can also see this by noting
that the weight diagram of V is triangular, so the weight diagram of SymnV is also triangular,
since it is obtained by doing n times a pairwise addition of all the weight vectors.

Corollary 3.2.1. The weight diagram of SymnV ∗ has a triangular form and all the weights
have multiplicity one

Proof. We can relate the weight diagram of SymnV to the weight diagram of SymnV ∗ by the
automorphism X 7→ −XT . This map only mirrors the weight diagram, so the multiplicities
and geometric form of the diagram of SymnV ∗ equal to those of SymnV . So by Lemma 3.2.1
we've proved the corollary.

From these two results we can deduce that the symmetric powers of the two fundamental
representations must be irreducible and that all the representations which possess a triangular
weight diagram must be some symmetric power of either the normal or the dual fundamental
representation. In the notation used before we have that SymnV = Γn0 and SymnV ∗ = Γ0n.

Let us now denote the standard basis vectors of V as e1,e2 and e3 so that the corresponding
dual basis vectors of V ∗ are denoted by e∗1, e

∗
2 and e∗3. From the proof of the lemma above

we can see that e1 is a highest weight vector of V , which in turn implies that en1 is a highest
weight vector of SymnV with weight (n/2, n/3). Since the weights in the dual representation
are just the negatives of the weights in the normal representation, one easily sees that the
highest weight of V ∗ is given by (0, 1/3), which corresponds to the weight vector e∗3. This, in
turn, implies that (e∗3)n is the highest weight vector of SymnV ∗.

We can now also consider the representations on the vector space SymaV ⊗ SymbV ∗ with
say a ≥ b. Certainly, it does not a priori have to hold that this representation is irreducible.
So in general we may write that SymaV ⊗SymbV ∗ = Γi,j⊕V ′ for some i, j and subrepresenta-
tion V ′. One way to do this is to �nd a surjective map from SymaV ⊗ SymbV ∗ to some other
vector space s.t. Γi,j is in the kernel of this map. We have a natural choice for such a map,
namely the tensor contraction map;

ia,b : SymaV ⊗ SymbV ∗ → Syma−1V ⊗ Symb−1V ∗

(v1 · . . . · va)⊗ (w∗1 · . . . · w∗b ) 7→
∑
ij

〈vi, w∗j 〉 (v1 · . . . · v̂i · . . . · va)⊗ (w∗1 · . . . · ŵ∗j · . . . · w∗b )

Theorem 3.2.1. Let ρ be a representation of sl3(C) on the vector space SymaV ⊗ SymbV ∗,
where V is the fundamental representation of sl3(C). Then it holds that ia,b is surjective and
that Ker(ia,b) = Γab.
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Proof. It is evident from the description of the map ia,b that is a surjective map. Let us now
consider the highest weight vector v of SymaV ⊗SymbV ∗. From the discussion above we know
that v = ea1 ⊗ e∗3b. Let us now compute the action of ia,b on v:

ia,b(v) = ia,b(ea1 ⊗ e∗3
b) = ab 〈e1, e

∗
3〉 ea−1

1 ⊗ e∗3
b−1 = 0

So we see that the highest weight vector v lies in the kernel of ia,b. We know that every
highest weight vector generates an irreducible representation, so the irreducible representation
Γab generated by v lies in the kernel of ia,b. It now remains to show that Γab is the entire
kernel. We will do this by using a formula which gives the dimension of Γab4:

dim(Γab) = (a+ b+ 2)(a+ 1)(b+ 1)/2 (3.7)

We can also easily calculate the dimension of the kernel of ia,b if we use formula (2.7):

dim ker(ia,b) = dim(SymaV ⊗ SymbV ∗)− dim(Syma−1V ⊗ Symb−1V ∗)

=
(
a+ 2
a

)(
b+ 2
b

)
−
(
a+ 1
a− 1

)(
b+ 1
b− 1

)
= ((a+ 2)(a+ 1)(b+ 2)(b+ 1)− ab(a+ 1)(b+ 1))/4
= (a+ 1)(b+ 1)(a+ b+ 2)/2

which is the same as the dimension of Γab. Because Γab lies in the kernel of ia,b it must be that
Γab = ker(ia,b).

Corollary 3.2.2. Let ρ be a representation of sl3(C) on the vector space SymaV ⊗ SymbV ∗

where V is the fundamental representation. This representation decomposes as:

SymaV ⊗ SymbV ∗ =
b⊕
i=0

Γa−i,b−i (3.8)

Proof. Because the map ia,b is surjective like we said before, we have by theorem (3.2.1) the
following decomposition of SymaV ⊗ SymbV ∗ for a ≥ b:

SymaV ⊗ SymbV ∗ =
(

Syma−1V ⊗ Symb−1V ∗
)
⊕ Γab (3.9)

By continuing this process of contracting the tensor product we obtain the required decompo-
sition

3.3 The SU(3) classi�cation of the mesons and baryons

3.3.1 The up, down and strange quarks

Let us now return to the classi�cation of the mesons and baryons, but this time we will also
consider mesons and baryons that may consist of one ore more (anti) strange quarks. By draw-
ing parallels between the results of chapter 2, we proceed with this by assigning the elementary

4See formula 15.17 in [4]
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particles to the irreducible representations of sl3(C). We have seen in the previous section that
we can construct these irreducible representations from appropriate symmetric tensor products
of the two fundamental representations. Since we use the hypothesis that all the baryons and
mesons consist of quarks, we will assign the (anti) up, (anti) down and (anti) strange quarks
to the (dual) fundamental representation.

Let us �rst consider how to assign the up, down and strange quark to the fundamental repre-
sentation op sl3(C). From the formulas in the proof of lemma 3.2.1 we see that the possible
eigenvalues for T3 are −1/2, 0 and 1/2. The possible eigenvalues for the hypercharge Y are
respectively 1/3, −2/3 and 1/3. In chapter two we assigned the eigenvalue α(T3) = 1/2 to the
up quark and α(T3) = −1/2 to the down quark. This means that if we want to be consistent
to this convention, we should assign the eigenvalue α(T3) = 0 to the strange quark. If we put
this information in the dirac notation, we get:

|u〉 = |1/2, 1/3〉 , |d〉 = |−1/2, 1/3〉 , |s〉 = |0,−2/3〉 (3.10)

We can now easily determine the electrical charge of the three quarks by using the Gell-
Mann/Nishijima formula since we now know the isospin and hypercharge of them.

Qu = 2e/3, Qd = −e/3, Qs = −e/3 (3.11)

However, nobody has actually been able to measure these fractional charges, since nobody
has been able to observe a free quark. Physicists try to explain this by a model called quark-
con�nement. This model says for example that the strong force increases with distance, so
that if you try to pull the quarks from each other they are going to resist more and more.
This phenomenon is due to the inter gluonic interactions. In the theory of the strong force
which is called quantum chromodynamics, the gluons are the exchange bosons that couple to
the colour charge. This is analogous to the electromagnetic interaction in which the photons
are the exchange bosons. The only di�erence however, is that the gluons can interact with
themselves because they also carry a colour charge. So by increasing the distance between the
quarks, you get more and more interacting gluons which causes the potential acting on the
quark to rise.

3.3.2 Mesons

Let us now continue to use the quarks as building blocks to construct the elementary particles.
We will begin by looking at various types of mesons. Recall from the previous chapter that
mesons are elementary particles that consist of a quark-antiquark pair. From this de�nition
we see that the mesons must lie in the V ⊗V ∗ representation of SU(3). This representation is
not irreducible as we have seen in the previous section; we can decompose it into Γ1,1 ⊕ C.
Let us now look at the geometrical shape of the irreducible representation Γ1,1. Since V ⊗ V ∗
is 9 dimensional, we see that Γ1,1 must be 8 dimensional. In the previous section we've also
seen that we can construct the outer border of Γab by repeatedly applying the operator V−
to the highest weight vector v of Γab until you get zero, and then by repeatedly applying the
operator T− to this vector V a

−v, a total of b times, after which we get the entire border by using
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the symmetries of the weight diagram. So in the case of Γ1,1 this results in a hexagonal shape
for the outer border of the multiplet. One can also easily see that the state in the center of
the multiplet has multiplicity two. After a simple calculation one sees that the top two states
have hypercharge α(Y ) = 1. The three center states have α(Y ) = 0 and that the two lower
states have α(Y ) = −1.

There are however some minor di�culties with classifying the mesons into an octet and a
singlet. If you look at the baryons for example, you see that the baryons and antibaryons lie in
di�erent multiplets. In the case of mesons however, you can immediately see that the mesons
and their anti counterparts lie in the same multiplet. There is also another phenomenon that
occurs in the meson multiplets, namely SU(3) mixing; consider two SU(3) meson multiplets
with equal spin, parity and baryon number. It's now possible that for a state in the �rst
multiplet there exists a state in the other multiplet with the same values for α(Y ) and α(T3).
The physical states of the corresponding particles are now mixtures of these multiplet states.
For example, there is a state in the octet which has the same eigenvalues of the hypercharge
and isospin as the singlet state. Because of this mixing, we will only consider the meson nonet,
instead of the octet and singlet separately. This also means that we can classify the mesons
into di�erent nonets, where every nonet corresponds to a di�erent value for the spin and parity.
To label these di�erent meson nonets we introduce the notation JP for them, where J stands
for the spin, and P for the parity:

1. J = 0 and P = ±: (pseudo)scalar mesons

2. J = 1, P = −: vector mesons

3. J = 1, P = +: axial vector mesons

4. J = 2, P = ±: (pseudo)tensor mesons

Let us �rst look at the pseudoscalar mesons, because we also looked at these mesons in chapter
2. There we classi�ed these mesons in the pion triplet. These three mesons are composed of
various combinations of the up and down quarks. This means that the strangeness of the pions
is zero which in turn implies that the hypercharge is zero since mesons have baryon number
B = 0. We will call the pseudoscalar mesons with strangeness S = ±1 the kaons. The two
kaons with S = 1 are denoted by K0 and K+, where K0 has isospin α(T3) = −1/2 and K+

has isospin α(T3) = 1/2. The antikaons K− and K̄0 are placed in the corresponding diagonal
mirror positions of the kaons with S = 1. Let us now display the nonets for the (pseudo)scalar,
vector and tensor mesons together with the particle properties:
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Figure 3.3: The meson nonets [5]

particle mass (MeV) charge (e) width (MeV) Y T3 spin

The scalar mesons
a0 976 ±1,0 50 0 ±1, 0 0
κ 1250 +1, 0 450 ±1 ±1/2 0
S∗ 993 0 40 0 0 0
σ 750 0 600 0 0 0

The pseudoscalar mesons
π+ 139.59 +1 2.5 · 10−13 0 1/2 0
π0 135.00 0 7.4 · 10−6 0 0 0
π− 139.59 −1 2.5 · 10−13 0 −1/2 0

K+ 493.82 +1 5.4 · 10−14 1 1/2 0
K0 497.82 0 50% Ks / 50% Kl 1 −1/2 0
K− 493.82 −1 5.4 · 10−14 -1 −1/2 0
K̄0 497.82 0 50% Ks / 50% Kl -1 1/2 0

0
η 548.6 0 0.07 0 0 0
η′ 958 0 0.99 0 0 0

Ks = 0.74 · 10−11

Kl = 0.11 · 10−13
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particle mass (MeV) charge (e) width (MeV) Y T3 spin

The vector mesons
ρ+ 773 +1 154 0 1/2 1
ρ0 773 0 154 0 0 1
ρ− 773 −1 154 0 −1/2 1

ω 782.7 0 10 0 0 1

K∗+ 892 +1 50 1 1/2 1
K∗0 898 0 50 1 −1/2 1
K∗− 892 −1 50 −1 −1/2 1
K̄∗0 898 0 50 −1 1/2 1

1
Φ 1019 0 4.2 0 0 1

1
The tensor mesons

A2 1320 ±1, 0 110 0 ±1,0 2
K∗2 1426 ±1, 0 100± 3 ±1 ±1/2 2
f ′2 1525 0 76± 10 0 0 2
f2 1274 0 185± 20 0 0 2

1

3.3.3 Baryons

In this section we will proceed by looking at how to classify the baryons by the SU(3) classi-
�cation scheme. As we know from previous discussions, the baryons are (anti) quark triples.
This means that we can classify the baryons by looking at the tensor product V ⊗ V ⊗ V and
the antibaryons by looking at the tensor product V ∗⊗V ∗⊗V ∗. But we only need to look at the
decomposition of V ⊗V ⊗V , since this immediately gives us the decomposition of V ∗⊗V ∗⊗V ∗;
the dual representation of Γa,b is just Γb,a. There is however one slight problem: We can't use
the decomposition formula we had derived in the previous section because our tensor product
is not of the form SymaV ⊗ SymbV ∗. So to proceed, we need to �nd the decomposition by
looking at the eigenvalues of the tensor product.

Let us �rst look at the tensor product V ⊗ V . If we choose the standard basis ei in V ,
we've seen that e1 is the highest weight vector for V . So the highest weight vector for V ⊗ V
is e2

1. This weight vector generates the irreducible representation Γ2,0 = Sym2V . To �nd
the complement of this representation we can see by writing out all the 9 possibilities for the
weights of V ⊗ V , that the weights of the complement are (0, 2/3) and (±1/2,−1/3). These
are precisely the weights of the irreducible representation V ∗. So in total we �nd the following
decomposition of V ⊗ V :

V ⊗ V = Γ2,0 ⊕ V ∗ (3.12)
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We can use this result to partially �nd a decomposition of V ⊗ V ⊗ V :

V ⊗ V ⊗ V = V ⊗ (Γ2,0 ⊕ V ∗) = (V ⊗ Γ2,0)⊕ (V ⊗ V ∗) = (V ⊗ Γ2,0)⊕ Γ1,1 ⊕ C (3.13)

This isn't the �nal decomposition, because the representation V ⊗ Γ2,0 is not irreducible: It
has the highest weight vector e3

1 which generates the irreducible subrepresentation Γ3,0. This
subrepresentation is 10 dimensional, so its complement must be 8 dimensional. This means
that the complement must either be Γ1,1 or the sum of irreducible representations for which
the sum of their dimensions equals 8. The latter cannot be possible so the complement must
be Γ1,1. This gives us the �nal decomposition for V ⊗ V ⊗ V :

V ⊗ V ⊗ V = Γ3,0 ⊕ Γ1,1 ⊕ Γ1,1 ⊕ C (3.14)

So we see that we can classify the baryons into a decuplet, an octet and into a singlet. The
two octets that appear in this decomposition are isomorphic to each other.

In the previous chapter we already encountered some examples of baryons, namely the ∆-
baryons and the two nuclei, the proton and the neutron. These baryons are composed of
up and down quarks. This means that they have strangeness S = 0. Because baryons have
baryon number B = 1, we see from the de�nition of the hypercharge, that these baryons have
hypercharge Y = 1. We can easily see from this that we can assign the ∆-baryons to the
representation Γ3,0 since it has 4 weights with eigenvalue α(Y ) = 1 and we can assign the two
nuclei to the representation Γ1,1 because it has two weights with α(Y ) = 1. The four baryons
that have strangeness S = −1 are called the three Σ-baryons and the Λ0-baryon, and the two
baryons that have S = −2 are called the Ξ-baryons. The baryon that has strangeness S = −3
is called the Ω−-baryon. The Σ-, Λ0- and the Ξ-baryons are placed in the representation Γ1,1

because they have spin 1/2. Their resonance counterparts Σ∗ and Ξ∗ are placed in the repre-
sentation Γ3,0 because they have spin 3/2. The Ω− particle is placed in the Γ3,0 representation
because the Γ1,1 representation doesn't contain the weight with eigenvalue α(Y ) = −2.

The singlet representation does not contain a physically possible particle due to the Pauli-
exclusion principle. This state would have to consist of a uds quark combination, and also has
to share the same relative spin as one of the other three uds-baryons (Σ∗0,Σ0 and Λ0), which
is not possible.

Let us now give a table with the properties of these elementary particles, like we did with
the mesons in the previous section:
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particle mass (MeV) charge (e) lifetime (s) spin Y T3

The baryon decuplet
∆++ 1232 +2 6 · 10−24 3/2 1 3/2
∆+ 1232 +1 6 · 10−24 3/2 1 1/2
∆0 1232 0 6 · 10−24 3/2 1 −1/2
∆− 1232 −1 6 · 10−24 3/2 1 −3/2

Σ∗+ 1382 +1 1.78 · 10−25 3/2 0 1
Σ∗0 1382 0 1.78 · 10−25 3/2 0 0
Σ∗− 1387 −1 1.78 · 10−25 3/2 0 -1

Ξ∗0 1531.8 0 9.4 · 10−23 3/2 −1 1/2
Ξ∗− 1535.0 −1 9.4 · 10−23 3/2 −1 −1/2

Ω− 1672 −1 0.82 · 10−10 3/2 −2 0

The baryon octet
p 938.3 +2 stable 1/2 1 1/2
n 939.6 +1 886 1/2 1 −1/2

Σ+ 1189.4 +1 0.8 · 10−10 1/2 0 1
Σ0 1192.5 0 6 · 10−20 1/2 0 0
Σ− 1197.4 −1 1.5 · 10−10 1/2 0 -1
Λ0 1115.6 0 2.6 · 10−10 1/2 0 0

Ξ0 1315 0 2.9 · 10−10 1/2 −1 1/2
Ξ− 1321 −1 1.5 · 10−10 1/2 −1 −1/2

Figure 3.4: The baryon decuplet and octet [5]



CHAPTER 3. THE QUARK MODEL 42

3.3.4 Mass splitting in the SU(3) multiplets

One thing that one can immediately conclude from the experimental measurements of the
particle masses, which are given in the previous subsection, is that the masses are not constant
on each multiplet. From this we can conclude that the SU(3) symmetry can not be an exact
symmetry of the strong interaction, because if it were we would have that the energies (and
thus the masses) are constant on a multiplet (proposition 2.1.1). If we look at the masses of
the baryon decuplet, we see that the mass splitting ∆M/M is of the order of 100 MeV, as is
also the case for the baryon octet. We also see that the masses of the baryons increase by the
about the same amount when |S| increases. This suggests that the mass of the strange quark
is somewhat larger than the masses of the up and down quarks and that we have a constant
mass splitting in the multiplets.

Let us now try to �nd the form of the Hamiltonian for the simple case of the three �avor
quarks qi, where we assume that mu = md < ms. This assumption is justi�ed if we ignore
the electromagnetic mass splitting between the quarks, which implies that the Hamiltonian is
invariant under the isospin operator T3. We can now easily see that

(〈qi|Hstrong |qj〉) =

 mu 0 0
0 md 0
0 0 ms

 =
(

2mu +ms

3

)
I +

(
mu −ms√

3

)
λ8

In this case, we see that the Hamiltonian consists of a SU(3) invariant term, and a term that
is proportional to the hypercharge. Because of our previous observations on the masses in the
baryon multiplets, we can assume that a similar result holds for all the baryon representations.
So the Hamiltonian Hstrong can now be written as

Hstrong = H0 +Hms

where H0 is the SU(3) invariant term, and Hms the term responsible for the constant mass
splitting. Since the mass splitting in the multiplets is of the order of 10%, we can assume that
Hms is small with respect to H0. Perturbation theory can thus be used on Hms to calculate the
masses of the particles inside a baryon multiplet. Let us now consider a representation ρ on a
baryon multiplet. Let |ψ〉 be a particle in this multiplet, and let us, for notational simplicity,
write X instead of ρ(X) for all X ∈ sl3(C). The expectation value of M of Hstrong in the
associated perturbed state |ψ′〉 can then written as

M = 〈ψ′|Hstrong |ψ′〉 = 〈ψ|H0 |ψ〉+ 〈ψ|Hms |ψ〉 = M0 + 〈ψ|Hms |ψ〉 (3.15)

We can evaluate 〈ψ|Hms |ψ〉 with a result proved by S. Okubo5. This result states that Hms

can be written as
Hms = aλ8 + b

∑
j,k

d8jkλjλk (3.16)

5Equation A8 in Progress of Theoretical Physics, Vol. 27, No. 5, May 1962
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where a and b are constants on a multiplet,and where dijk is the totally symmetric symbol6.
Writing out the second term in the expression, we �nd that∑

j,k

d8jkλjλk =
1√
3

(λ2
1 + λ2

2 + λ2
3)− 1

2
√

3
(λ2

4 + λ2
5 + λ2

6 + λ2
7)− 1√

3
λ2

8

= − 1
2
√

3

∑
i

λ2
i +

3
2
√

3
(λ2

1 + λ2
2 + λ2

3)− 1
2
√

3
λ2

8

If we now use the identi�cations λ8 =
√

3Y and λ2
1 + λ2

2 + λ2
3 = 4T 2, we �nd that

Hms = a
√

3Y + b

(
− 1

2
√

3

∑
i

λ2
i +

3
2
√

3
4T 2 − 1

2
√

3
3Y 2

)

= a
√

3Y + 2
√

3b

(
− 1

12

∑
i

λ2
i + T 2 − 1

4
Y 2

)

We can now, without loss of generality, absorb the square roots into the constants a and b and
write:

M = M0 + 〈ψ| aY + b

(
− 1

12

∑
i

λ2
i + T 2 − 1

4
Y 2

)
|ψ〉

It can be easily seen that the operator
∑

i λ
2
i is a Casimir operator for sl3(C), which means

that is proportional to the identity on a multiplet, so this term can be absorbed into M0. We
now obtain the Gell-Mann-Okubo mass formula for the masses of the baryons7.

M = M0 + aY + b(T (T + 1)− Y 2/4) (3.17)

We can now try to use the mass formula to calculate the mass of the Ω− particle. If we apply
the formula to the decuplet we get the following four equations:

M ′∆ = M∆ −M0 = a+ 7b/2
M ′Σ∗ = MΣ∗ −M0 = 2b
M ′Ξ∗ = MΞ∗ −M0 = −a+ b/2
M ′Ω− = MΩ− −M0 = −2a− b

From this we can easily see that M ′Ω− = 2M ′Ξ∗ −M ′Σ∗ . This means in turn that:

MΩ− = 2MΞ∗ −MΣ∗ (3.18)

If we now insert the experimental values of the masses of the Ξ∗ and Σ∗ into equation
(3.18) we obtain a mass of 1683 MeV for the mass of the Ω− particle. This predicted value
deviates only by about 0.5% from the experimentally measured value. So we see from this that

6A table of all its values can be found in [7], page 483
7Note that we write Y instead of α(Y ) to simplify the notation. Here, T stands for the maximal value of

α(T3) for the isospin multiplet associated to the hypercharge α(Y )
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the Gell-Mann-Okubo mass formula is quite well satis�ed for the baryons. The mass formula
however, does not work for mesons. This can be attributed to the fact that mesons satisfy the
Klein-Gordon equation,

(∂µ∂µ +m2)φ = 0 (3.19)

because they are bosons.8. We see that this equation contains quadratic terms in the mass.
Baryons however, which are fermions, satisfy the Dirac equation

(iγµ∂µ +m)φ = 0 (3.20)

which contains linear terms in the mass. Therefore it seems plausible to substitute M2 for M
in equation (3.17) if we want to calculate the masses of the mesons. So for the mesons we
obtain the following mass formula:

M2 = M2
0 + aY + b(T (T + 1)− Y 2/4) (3.21)

It is however somewhat more di�cult to work with this mass formula due to the mixing of
meson multiplets, which means that you have to take the mixing angles into account. Altough
more di�cult to work with, it resulted in a good prediction of the mass of the η meson. This
in turn, was another victory for the SU(3) classi�cation scheme.

8Notice that we have given the Klein-Gordon equation for a free �eld. In our case there will appear interaction
terms in the equation, but this doesn't change the argument



Conclusion

In this thesis, we saw that we could classify the elementary particles by only invoking the
principles of symmetry and some simple quantum mechanics. This is in fact quite remarkable,
since the full theory of elementary particles requires extensive use of quantum �eld theory.
However, the standard model still relies a substantial amount on the principles of symmetry.
So in a certain sense we can view the work we have done in this thesis as a sort of preliminary
setup for all the gauge theories that have been constructed for the elementary particle inter-
actions.

But the quark model which we explored, still has some major disadvantages. First of all,
it has not much predictive power; it's only a classi�cation scheme. Within this framework we
derived the general properties of the particles, but as we have seen, we can not predict the
masses of the particles inside a multiplet without knowing some of the masses in that multiplet!
The quark model thus has some free parameters that we cannot predict without resorting to
other theories. The second disadvantage of the quark model is that we cannot cover the whole
hadron spectrum; the particles that are made up of non u, d and s quarks can't be sensibly �t
into multiplets, because these other quarks di�er too much in mass, especially if one looks at
the particles that are made up of the top and bottom quarks. So we see that the predictive
and the classi�cational power of the quark model is a bit limited, but that it still gives quite
good results in the regime were we can apply it, and this gives us a real good intuition that
the idea of symmetry is a very important idea in particle physics.
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