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Abstract

In this thesis we consider possible chaotic behavior of the stationary solutions of a coupled system
of two partial differential equations. One of these PDE’s is closely related to the complex Ginzburg-
Landau equation; the other is a diffusion equation. First, some background and applications of this
system are given. After rescaling and some simplifications, we uncouple the system and look at the
solution structure of the separate parts. The part which is related to the Ginzburg-Landau equation
contains, for a certain choice of coefficients, a homoclinic orbit. Then, we consider the coupled system
and analyze what will happen to the homoclinic orbit. In order to do so, we recall the Melnikov
theory, which is used to calculate the break up of the homoclinic orbit. If the Melnikov function
equals zero and its derivative is nonzero, there will be a transverse homoclinic orbit. The existence
of a transverse homoclinic orbit will give rise to chaotic behavior of the dynamical system and the
theoretical background of this is described in detail. Finally, by applying the Melnikov theory to our
system, we establish the possibility of a transverse homoclinic orbit and hence the possibility of chaos.
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Chapter 1

Introduction

1.1 The system

In this thesis we will study stationary solutions of the following system of partial differential equations:
∂A
∂t = α1

∂2A
∂x2 + α2A+ α3|A|2A+ µAB

∂B
∂t = β1

∂2B
∂x2 +G(B, ∂B∂x , |A|

2)
. (1.1)

Both A and B are complex amplitudes of the (real-valued) space variable x and the (positive, real
valued) time variable t. The coefficients αi and βj will, in general, be complex-valued. G is a function
of B, ∂B∂x and |A|2.
Clearly, this is a coupled system, since the A-equation contains the µAB-term and the B-equation
contains the G-function, which also depends on A.
Setting µ = 0 makes the A-equation independent of B and the remaining part is known as the complex
Ginzburg-Landau (GL) equation. The GL equation is a generic amplitude equation that plays a role
in various physical systems [1]. The B-equation can be thought of as a diffusion equation.
The coupled system (1.1) that is the subject of our study appears in several physical models of which
we will give some examples in the following section.

1.2 Applications

A first example of a physical model where system (1.1) appears, is binary fluid convection.
Consider the following experimental setup. We take two, ideally infinitely long, plates with a liquid
between them. We heat the bottom plate, while keeping the top plate at a constant temperature. We
will now get a so-called convection flow. The basic principle is rather simple, the fluid at the bottom
has a higher temperature, causing a lower density. The fluid at the top will keep a higher density
and therefore, the top layer will start to sink, while the bottom layer will rise. When the colder fluid
reaches the bottom, it will on its turn be heated up and start to rise. As a result we get a circular
motion within the fluid. This motion is known as convection. See Figure 1.1 for an illustration. In
a liquid consisting of just one substance, for example water, this convection forms stationary rolls.
However, when the fluid is a binary fluid mixture, the rolls start to move. And not only that; all
kinds of (local) patterns arise, see Figure 1.2. In order to study the rich behavior of this binary fluid
convection, a model can be derived in which system (1.1) appears, see [9].

Another example comes from the geophysical morphodynamics, which studies the behavior of coast-
lines and sandbanks. In Figure 1.3 we see a map of the Wadden Isles. The isles seem to follow a
certain pattern. Going from west to east, they start out rather big and decrease in size along the
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Figure 1.1: Convection flow

Figure 1.2: Binary Mixture Convection

coastline. They even disappear in the upward curve to the north. Then, going northward, they start
to increase again. The formation of these isles and their developments are a result of the ebb tidal
waves. In modeling this process, system (1.1) again plays a role, see [7].

Figure 1.3: Wadden Isles

System (1.1) also arises in the study of nematic liquid crystals.
Liquid crystals are substances that exhibit a phase of matter that has properties between those of a
conventional liquid, and those of a solid crystal. One of the most common liquid crystal phases is the
nematic, where the molecules have no positional order, but they have long-range orientational order.
Nematics have fluidity similar to that of ordinary (isotropic) liquids but they can be easily aligned by
an external magnetic or electric field. An aligned nematic has optical properties which make them
very useful in liquid crystal displays (LCD). An illustration of a liquid crystal in the nematic phase is



given in Figure 1.4. In studying these nematic liquid crystals, again, system (1.1) appears, see [5].

Figure 1.4: Nematic Liquid Chrystal

There are several other physical systems in which system (1.1) plays a role. The vast area of applica-
tions certainly justifies a thorough study of system (1.1) and a lot of work has already been done in
[3, 4, 6]. In this thesis we will focus on possible chaotic behavior of system (1.1) and its underlying
theory.



Chapter 2

Assumptions

In order to study system (1.1), we will make some assumptions which will simplify the analysis and
give a better insight in the underlying mathematical complications. At a later stage, this study can
be extended to include cases that we do not consider at the moment. For now, we will assume that:

• Both A(x, t) and B(x, t) are real valued functions

• All coefficients αi and βj are real valued and nonzero

• The space variable x is one dimensional

• For the function G we take: G(B, ∂B∂x , |A|
2) := β2B

Note that by defining the G-function this way, the B-equation becomes independent of the A-equation.
However, system (1.1) is still coupled by the µ-term in the A-equation.
We will study stationary solutions of (1.1). Stationary solutions are solutions which remain constant
over time, hence, all time-derivatives are equal to zero. Implementing this, leads to the following
system: 

α1
∂2A
∂x2 + α2A+ α3A

3 + µAB = 0

β1
∂2B
∂x2 + β2B = 0

. (2.1)

Note that all functions and coefficients in this system are real-valued.
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Chapter 3

Rescaling

We will now rescale system (2.1). The basic principle of rescaling is to rewrite the system in other
variables, without changing the behavior of the system. By choosing the scaling parameters in a smart
way, we can reduce the number of coefficients.
We introduce scaling parameters p, q, r ∈ R, such that: pÃ = A, qB̃ = B and x̃ = rx. Ã and B̃ are
the scaled amplitude functions and x̃ is the scaled space variable. Rewriting (2.1) then yields:

r2pα1
∂2Ã
∂x̃2 + pα2Ã+ p3α3Ã

3 + pqµÃB̃ = 0

r2qβ1
∂2B̃
∂x̃2 + qβ2B̃ = 0

. (3.1)

For sake of an easier notation, we omit the tilde-signs and write the derivatives as a subscript. Rewrit-
ing the system gives: 

Axx + α2
α1r2

A+ α3p2

α1r2
A3 + µq

α1r2
AB = 0

Bxx + β2

β1r2
B = 0

. (3.2)

In order to keep the scaling parameter r real valued, we choose r2 = α2
α1

if α2
α1

> 0 (case 1), and we
take r2 = −α2

α1
if α2

α1
< 0 (case 2). This gives:

Axx ±A± α3p2

α2
A3 ± µq

α2
AB = 0

Bxx + β2

β1
|α1
α2
|B = 0

. (3.3)

In order to keep the parameter p real valued, we choose p2 = α2
α3

if α3
α2

> 0 (case a), and we take
p2 = −α2

α3
if α3

α2
< 0 (case b). Doing so, we get:

Axx ±A±A3 ± µq
α2
AB = 0

Bxx + β2

β1
|α1
α2
|B = 0

. (3.4)

Finally, we choose q = α1r
2 and introduce the coefficient c = β2

β1
|α1
α2
| to obtain:

Axx ±A±A3 + µAB = 0

Bxx + cB = 0
. (3.5)

The plus or minus signs depend on which case we consider.
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Chapter 4

Analysis of the uncoupled system

After having made some assumptions and after rescaling, we have rewritten system (1.1) into (3.5).
We will now thoroughly analyze this system. To do so, we first uncouple the system completely by
setting µ = 0 and look at the independent behavior of A and B. Then, we will set µ 6= 0 and look at
the effect on the A-equation. In fact, the behavior of A under coupling to B is the basic subject of
this thesis and we will discuss the underlying theory in the chapters to come. For now, we will first
set µ = 0 and look at the uncoupled system.

4.1 The B-equation

First, we consider the B-equation in system (3.5). This is a well known second order, homogeneous,
ordinary differential equation. Its general solution is:
B(x) = K1 sinx

√
c+K2 cosx

√
c, for c > 0,

B(x) = K3e
x
√
−c +K4e

−x
√
−c, for c < 0 and

B(x) = K5x+K6, for c = 0.
The Ki’s depend on initial conditions.

4.2 The A-equation

After setting µ = 0 in system (3.5), the remaining part of the A-equation is a second order, homoge-
neous, ordinary differential equation: Axx ± A ± A3 = 0. We consider the four cases as described in
chapter 3. First we rewrite this second order ODE into a system of first order ODE’s. Define z = Ax
to obtain: 

Ax = z

zx = ∓A∓A3
. (4.1)

We determine the equilibrium points of (4.1) and classify them by calculating the Jacobian. The
Jacobian in a point (A, z) is given by:

J(A, z) =
(

0 1
∓1∓ 3A2 0

)
. (4.2)

As said before, the plus or minus signs depend on which case we are considering.
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Case 1a

Case 1a: (Ax = z; zx = −A−A3).
There’s one equilibrium point at (0, 0) and the Jacobian is:

J(0, 0) =
(

0 1
−1 0

)
, hence (0, 0) is a center.

The phase portrait, including a typical trajectory, is given in Figure 4.1.

Figure 4.1: Case 1a

Case 1b

Case 1b: (Ax = z; zx = −A+A3).
There are three equilibrium points in this case, namely: (0, 0), (1, 0) and (−1, 0). The corresponding
Jacobians are:

J(0, 0) =
(

0 1
−1 0

)
⇒ Center, J(±1, 0) =

(
0 1
2 0

)
⇒ Saddle Points.

The phase portrait, including some possible trajectories, is given in Figure 4.2.

Figure 4.2: Case 1b

Case 2a

Case 2a: (Ax = z; zx = A+A3).
There’s one equilibrium point at (0, 0) and the Jacobian is:



J(0, 0) =
(

0 1
1 0

)
, hence (0, 0) is a saddle point.

The phase portrait, including some possible trajectories, is given in Figure 4.3.

Figure 4.3: Case 2a

Case 2b

Case 2b: (Ax = z; zx = A−A3).
There are three equilibrium points in this case, namely: (0, 0), (1, 0) and (−1, 0). The corresponding
Jacobians are:

J(0, 0) =
(

0 1
1 0

)
⇒ Saddle Point, J(±1, 0) =

(
0 1
−2 0

)
⇒ Centers.

The phase portrait and some trajectories are given in Figure 4.4.

Figure 4.4: Case 2b

We will now consider case 2b in some more detail.
In the phase portrait (Figure 4.4) three possible trajectories (depending on initial values) are given.
The trajectory which connects the point (0, 0) to itself describes the basic properties of the phase-
plane. The saddle point (0, 0) is connected to itself by a so-called homoclinic orbit. This homoclinic
orbit lies in the intersection of the stable and the unstable manifold of the equilibrium point (0, 0).
The corresponding solution of the A-equation is a pulse solution, which can be determined explicitly:
A(x) =

√
2sech(x). See Figure 4.5 for a sketch of this pulse solution.

As x → −∞, A(x) → 0 and z(x) = d
dxA(x) → 0, which corresponds to the unstable manifold of



Figure 4.5: Pulse Solution

(0, 0) in the phase-plane. Likewise, A(x) and z(x) = d
dxA(x) go to zero as x→∞, which corresponds

to the stable manifold of (0, 0).

4.3 Analysis of the coupled system

The question rises, what will happen to the case 2b when we take µ 6= 0 in system (3.5). We expect
that the homoclinic orbit will break open, i.e. the stable and unstable manifold of the point (0, 0)
will not longer coincide. Indeed, this will happen, but under certain conditions, the manifolds may
still have an intersection in a point. As we will see, this results in possible chaotic behavior of this
dynamical system. The underlying theory will be developed in the next chapters. In what follows,
we assume that the coefficient c from system (3.5) is greater than zero, which means (as explained in
section 4.1) that the solution of the B-equation is given by:

B(x) = K1 sinx
√
c+K2 cosx

√
c. (4.3)

And as a result, the A-equation for case 2b is then given by:

Axx −A+A3 + µA(K1 sinx
√
c+K2 cosx

√
c) = 0. (4.4)

Or, rewritten into a system of first order ODE’s, as done in section 4.2:
Ax = z

zx = A−A3 − µA(K1 sinx
√
c+K2 cosx

√
c)

. (4.5)



Chapter 5

Melnikov theory

In order to determine what will happen to the phase-plane in Figure 4.4 when we set µ 6= 0, we use
Melnikov’s method for homoclinic orbits. First, we will recall the general theory and later we will
show that this theory can be applied to our system.

5.1 Necessary assumptions

Melnikov’s theory is applicable to systems which can be written in the following way:
ẋ = ∂H

∂y (x, y) + εg1(x, y, t, ε)

ẏ = −∂H
∂x (x, y) + εg2(x, y, t, ε)

, (5.1)

where (x, y) ∈ R2. The dots indicate a derivative with respect to t. The function H(x, y) is a
Hamiltonian function. The parameter ε is small and setting ε = 0 corresponds to the unperturbed
system. We can write (5.1) in vector form as:

q̇ = JDH(q) + εg(q, t, ε), (5.2)

where q = (x, y), DH = (∂H∂x ,
∂H
∂y ), g = (g1, g2), and

J =
(

0 1
−1 0

)
.

Furthermore, we make the following assumptions:

• System (5.1) is sufficiently differentiable on the region of interest

• The perturbation function g = (g1, g2) is periodic in t with period T = 2π
ω

• The unperturbed system possesses a hyperbolic fixed point, p0, connected to itself by a homo-
clinic orbit q0(t) = (x0(t), y0(t))

• The region of the phase plane which is enclosed by the homoclinic orbit possesses a continuous
family of periodic orbits

Before proceeding, we rewrite (5.1) as an autonomous three dimensional system:
ẋ = ∂H

∂y (x, y) + εg1(x, y, φ, ε)

ẏ = −∂H
∂x (x, y) + εg2(x, y, φ, ε)

φ̇ = ω

, (5.3)
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Figure 5.1: Homoclinic Manifold[11]

where (x, y, φ) ∈ R2 × S1.
First, we take a look at the unperturbed system (ε = 0), see Figure 5.1. When viewed in the three
dimensional phase space R2 × S1, the hyperbolic fixed point p0 becomes a periodic orbit γ(t) =
(p0, φ(t)), where φ(t) = ωt + φ0. We denote the two-dimensional stable and unstable manifolds of
γ(t) by W s(γ(t)) and W u(γ(t)). These two manifolds coincide along a two dimensional homoclinic
manifold, which we call Γγ .
When we set ε 6= 0, W s(γ(t)) and W u(γ(t)) will most probably not longer coincide and we get a three
dimensional phase space which looks like Figure 5.2.

Our goal is to analytically quantify Figure 5.2, by developing a measurement of the deviation of

Figure 5.2: Perturbed Homoclinic Manifold[11]

W s(γ(t)) and W u(γ(t)) from Γγ . This deviation will probably depend on the place on Γγ where we
measure it, so we will first describe a parametrization of Γγ .

5.2 Parametrization of the homoclinic manifold of the unperturbed
system

Consider a point p ∈ Γγ . This point lies in the three dimensional space (x, y, φ) ∈ R2 × S1.
The homoclinic orbit of the unperturbed two dimensional system is given by q0(t) = (x0(t), y0(t)). For
t → −∞ ⇒ q0(t) → p0 (the unstable manifold) and for t → ∞ ⇒ q0(t) → p0 (the stable manifold).
For t = 0 we have the initial value q0(0) = (x0(0), y0(0)). Every point q on this homoclinic orbit can
be given by an unique t0: q = q0(−t0), where t0 can be interpreted as the time of flight from the point
q0(−t0) to the point q0(0).



Every point p ∈ Γγ with coordinates (xp, yp, φp) can then be represented as (q0(−t0), φ0), with t0 ∈ R
and φ0 ∈ (0, 2π].
In every point p ∈ Γγ we can define a normal vector:

πp = (
∂H

∂x
(x0(−t0), y0(−t0)),

∂H

∂y
(x0(−t0), y0(−t0)), 0). (5.4)

We may also write this as: πp = (DH(q0(−t0)), 0), see Figure 5.3.

Figure 5.3: Normal Vector in the point p[11]

5.3 Phase space geometry of the perturbed system

We will now look at the result of setting ε 6= 0. Firstly, we note that, for ε sufficiently small, the
periodic orbit γ(t) (from the unperturbed system) persists as a periodic orbit in the perturbed system:
γε(t) = γ(t)+O(ε). This periodic orbit γε(t) has the same stability type as γ(t) and the local manifolds
W s
loc(γε(t)) and W u

loc(γε(t)) are ε-close to W s
loc(γ(t)) and W u

loc(γ(t)) respectively[11].
If Φt(·) denotes the flow generated by system (5.3), then we define the global stable and unstable
manifolds of γε(t) as:

W s(γε(t)) =
⋃
t≤0

Φ(W s
loc(γε(t))) ; W u(γε(t)) =

⋃
t≥0

Φ(W u
loc(γε(t))). (5.5)

When we look at the perturbed system, the normal vector πp in point p ∈ Γγ (as defined in (5.4))
will intersect the global stable and unstable manifolds of γε(t) in the points psε and puε respectively,
see Figure 5.4.
The distance between W s(γε(t)) and W u(γε(t)) at the point p is then defined to be:

d(p, ε) = |puε − psε|. (5.6)

An equivalent way of defining the distance between the manifolds is:

d(p, ε) =
(puε − psε) · πp
||πp||

. (5.7)

Since puε and psε are chosen to lie on πp, the magnitude of (5.6) and (5.7) is exactly equal. Also,
because πp is parallel to the xy-plane, puε and psε will have the same φ-coordinate as p; puε = (quε , φ0)
and psε = (qsε, φ0). Using this and the fact that πp can be written as (DH(q0(−t0)), 0), we can now
rewrite expression (5.7) as:

d(p, ε) =
(puε − psε) · πp
||πp||

=
((quε , φ0)− (qsε, φ0)) · (DH(q0(−t0)), 0)

||(DH(q0(−t0)), 0)||
=
DH(q0(−t0)) · (quε − qsε)
||DH(q0(−t0))||

. (5.8)



Figure 5.4: Normal Vector in Perturbed Manifold[11]

Notice that in fact we should now write d(t0, φ0, ε) instead of d(p, ε), since p has disappeared on the
right hand side of the equation. However, since every p ∈ Γγ can be uniquely represented by the
parameters t0 and φ0, we leave it as it is.

5.4 Derivation of the Melnikov function

A Taylor expansion of (5.8) about ε = 0 gives:

d(p, ε) = d(t0, φ0, ε) = d(t0, φ0, 0) + ε
∂d

∂ε
(t0, φ0, 0) +O(ε2). (5.9)

Since the stable and unstable manifolds coincide for ε = 0, we have d(t0, φ0, 0) = 0. The remaining
part is:

d(t0, φ0, ε) = ε
∂d

∂ε
(t0, φ0, 0) +O(ε2) = ε

M(t0, φ0)
||DH(q0(−t0))||

+O(ε2), (5.10)

where M(t0, φ0) is the so-called Melnikov function, defined to be:

M(t0, φ0) = DH(q0(−t0)) · (∂q
u
ε

∂ε
|ε=0 −

∂qsε
∂ε
|ε=0). (5.11)

We will now show that it is possible to find an expression for (5.11) without having any information
on what the perturbed manifolds look like. This smart method is due to and called after the Russian
mathematician Melnikov.
Firstly, we define the time dependent Melnikov function:

M(t; t0, φ0) = DH(q0(t− t0)) · (∂q
u
ε (t)
∂ε
|ε=0 −

∂qsε(t)
∂ε
|ε=0), (5.12)

where q0(t−t0) is the unperturbed homoclinic orbit and quε (t) and qsε(t) are the orbits in the perturbed
unstable and stable manifolds W u(γε(t)) and W s(γε(t)) respectively. For t = 0 we have the expression
as defined in (5.11).
We will now derive a differential equation that M(t; t0, φ0) must satisfy. For the sake of an easier
notation we define:

qu,s1 (t) =
∂qu,sε (t)
∂ε

|ε=0 (5.13)

and
∆u,s(t) = DH(q0(t− t0)) · qu,s1 (t), (5.14)



so that (5.12) becomes:
M(t; t0, φ0) = ∆u(t)−∆s(t). (5.15)

Differentiating (5.14), with respect to t, gives:

d

dt
(∆u,s(t)) = (

d

dt
(DH(q0(t− t0)))) · qu,s1 (t) +DH(q0(t− t0)) · d

dt
qu,s1 (t). (5.16)

Now we have to realize that qu,sε (t), appearing in (5.13) are the orbits in the perturbed manifolds
and should therefore satisfy the differential equation (5.2). This is because qu,sε (t) are solutions of the
perturbed system. Hence:

d

dt
(qu,sε (t)) = JDH(qu,sε (t)) + εg(qu,sε (t), φ(t), ε). (5.17)

Differentiating (5.17) with respect to ε yields the so called first variational equation:

d

dt
qu,s1 (t) = JD2H(q0(t− t0))qu,s1 (t) + g(q0(t− t0), φ(t), 0). (5.18)

For a more detailed version of the derivation of this first variational equation, we refer to Wiggins[11].
Substituting (5.18) into (5.16) gives, after some cumbersome calculation, the following expression:

d

dt
(∆u,s(t)) = DH(q0(t− t0)) · g(q0(t− t0), φ(t), 0). (5.19)

Integrating ∆u(t) and ∆s(t) from −τ to 0 and 0 to τ (τ > 0) gives:

∆u(0)−∆u(−τ) =
∫ 0

−τ
(DH(q0(t− t0)) · g(q0(t− t0), φ(t), 0))dt (5.20)

and
∆s(τ)−∆s(0) =

∫ τ

0
(DH(q0(t− t0)) · g(q0(t− t0), φ(t), 0))dt. (5.21)

Using this, the Melnikov function now becomes:

M(t0, φ0) = M(0; t0, φ0) = ∆u(0)−∆s(0) =
∫ τ

−τ
(DH(q0(t−t0))·g(q0(t−t0), ωt+φ0, 0))dt+∆s(τ)−∆u(−τ).

(5.22)
When considering the limit of (5.22) for τ →∞, we get the following results:

• limτ→∞∆s(τ) = limτ→∞∆u(−τ) = 0

• The improper integral
∫∞
−∞(DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0))dt converges absolutely

For a proof of these two results, we refer to Wiggins[11]. Implementing these results into (5.22), yields:

M(t0, φ0) =
∫ ∞
−∞

(DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0))dt. (5.23)

Or equivalently, after making the transformation t 7→ t+ t0:

M(t0, φ0) =
∫ ∞
−∞

(DH(q0(t)) · g(q0(t), ωt+ ωt0 + φ0, 0))dt. (5.24)

We have hence obtained a computable expression for the Melnikov function M(t0, φ0). Since, by
assumption, the function g(q, ·, 0) is periodic, the Melnikov function will be periodic in t0 and in φ0.
Considering expression (5.24), it is clear that varying t0 or φ0 have the same effect. This will be
further explained in section 6.1.



Chapter 6

Transverse homoclinic orbit

Now that we have derived a computable expression of the Melnikov function (5.24), we pay attention to
a particular situation, namely the case in which the Melnikov function equals zero. We recall that the
distance between the stable and unstable manifold in the perturbed system (5.3) is given by expression
(5.10). Since DH(q0(−t0)) is nonzero for t0 finite, M(t0, φ0) = 0 implies that d(t0, φ0, ε) = 0. In
other words, if the Melnikov function equals zero, the stable and unstable manifold will intersect.
If the derivative of M(t0, φ0) with respect to t0 (or equivalently with respect to φ0) is nonzero, this
intersection will be transversal [11].

6.1 Poincaré map

The Poincaré map is a basic tool in studying the stability and bifurcations of periodic orbits. The
idea of the Poincaré map is as follows: If Γ is a periodic orbit of the system ẋ = f(x) through the
point x0 and Σ is a hyperplane transverse to Γ at x0, then for any point x ∈ Σ sufficiently near x0,
the solution of ẋ = f(x) through x at t = 0, Φt, will cross Σ again at a point P (x) near x0, see Figure
6.1. The mapping x→ P (x) is called the Poincaré map.

Figure 6.1: The Poincaré map[8]

When observing the phase space of the perturbed vector field in Figure 5.2, we can define a cross-
section:

Σφ0 = {(q, φ) ∈ R2 × S1|φ = φ0}. (6.1)

Since φ̇ = ω ≥ 0, the vector field is transverse to Σφ0 . The Poincaré map of Σφ0 to itself, defined by
the flow of the vector field, is then given by:

Pε : Σφ0 → Σφ0 ; qε(0) 7→ qε(2π/ω). (6.2)
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The periodic orbit γε intersects Σφ0 in a point pε,φ0 . This point is a hyperbolic fixed point for the
defined Poincaré map. It has a one-dimensional stable and unstable manifold given by:

W s,u(pε,φ0) = W s,u(γε) ∩ Σφ0 . (6.3)

As we have already mentioned, the manifolds will intersect transversally when the Melnikov function
equals zero and its derivative is nonzero. The Poincaré map gives a geometrical interpretation of
this. Fixing φ0 and varying t0 corresponds to fixing the cross-section Σφ0 and measuring the distance
between the manifolds for different values of t0. If for some value of t0 the Melnikov function equals
zero and its derivative with respect to t0 is nonzero, the manifolds will intersect transversally. Likewise,
fixing t0 and varying φ0 corresponds to fixing πp at a specific point (q0(−t0), φ0) on Γγ and measuring
the distance between the manifolds for different values of φ0, i.e. on different cross-sections Σφ0 . If
the Melnikov function equals zero for some value φ0 and its derivative with respect to φ0 is nonzero,
we have a transversal intersection of the manifolds.

6.2 Homoclinic tangle

Suppose that for some value φ0, or equivalently t0, the Melnikov function equals zero and its derivative
is nonzero. The cross-section Σφ0 , then looks like illustrated in Figure 6.2. The hyperbolic fixed point

Figure 6.2: Transversal intersection of the manifolds[11]

of the Poincaré map, pε,φ0 , is called 0 here and the point where the manifolds intersect is called x0.
The fixed point 0 is, by definition, invariant under Pε. For iterates of x0 under Pε, we have to realize
that x0 is both in the stable and unstable manifold: x0 ∈ W s(0) ∩W u(0). Since W s(0) and W u(0)
are invariant under Pε, the iterates {...P−2

ε (x0), P−1
ε (x0), P 1

ε (x0), P 2
ε (x0)...} also lie in W s(0)∩W u(0).

This leads to a so-called homoclinic tangle, wherein W s(0) and W u(0) accumulate on themselves, see
Figure 6.3
The dynamics in this homoclinic tangle exhibit chaotical behavior. This will be explained in the

following chapters.



Figure 6.3: The homoclinic tangle[8]



Chapter 7

Smale Horseshoe

To understand the dynamics in the homoclinic tangle as illustrated in Figure 6.3, we first have to study
the so called Smale Horseshoe Map (SHM). This map has some very interesting properties which will
turn out to be closely related to the dynamics in the homoclinic tangle.

7.1 Definition of the Smale Horseshoe Map

We begin with the unit square S = [0, 1] × [0, 1] in the plane and define a mapping f : S → R2 as
follows: the square is contracted in in the x-direction by a factor λ, expanded in the y-direction by a
factor µ and then folded around, laying it back on the square as shown in Figure 7.1.

We only take into account the part of f(S) that again is contained in S. Consider two horizontal

Figure 7.1: The Smale Horseshoe[11]

rectangles H0 and H1 ∈ S defined as:

H0 = {(x, y) ∈ R2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1
µ
}, H1 = {(x, y) ∈ R2|0 ≤ x ≤ 1, 1− 1

µ
≤ y ≤ 1}, (7.1)

with µ > 2.
Then f maps these to two vertical rectangles V0 and V1 ∈ S:

f(H0) = V0 = {(x, y) ∈ R2|0 ≤ x ≤ λ, 0 ≤ y ≤ 1}, f(H1) = V1 = {(x, y) ∈ R2|1−λ ≤ x ≤ 1, 0 ≤ y ≤ 1},
(7.2)

with 0 < λ < 1
2 .

The horizontal strip in S between H0 and H1 is the folding section and its image under f falls outside
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S. In matrix notation the map f on H0 and H1 is given by:

H0 :
(
x
y

)
7→
(
λ 0
0 µ

)(
x
y

)
, H1 :

(
x
y

)
7→
(
−λ 0
0 −µ

)(
x
y

)
+
(

1
µ

)
, (7.3)

with 0 < λ < 1
2 , µ > 2.

The inverse map f−1 works as illustrated in Figure 7.2.

Figure 7.2: The Inverse Smale Horseshoe[11]

Under f−1 vertical rectangles in S are mapped to horizontal rectangles in S. Again, the folding section
falls outside S.
When f is applied to a vertical rectangle V ∈ S, then f(V )∩S consists of two vertical rectangles, one
in V0 and one in V1, both with width being equal to the factor λ times the width of V . Likewise, when
f−1 is applied to a horizontal rectangle H ∈ S, f−1(H) ∩ S consists of two horizontal rectangles, one
in H0 and one in H1, both with width equal to µ times the width of H, see Figure 7.3.

Figure 7.3: The Smale Horseshoe Map on horizontal and vertical rectangles[11]

7.2 Invariant set

When we apply f and/or f−1 many times, most points will eventually leave S. We are interested in
the points (if any), which stay in S for all iterations of f . These points form the invariant set of the



SHM. The invariant set Λ is defined as: Λ =
⋂∞
n=−∞ f

n(S).
This invariant set can be constructed in a inductively way for both the positive and negative iterates
of f . First we look at the positive iterates and determine what happens to fk when k →∞. Then we
will do the same for k → −∞.
We start with the positive iterates. By definition of f , S ∩ f(S) consists of two vertical rectangles
V0 and V1, both with width λ. As explained in section 7.1, S ∩ f(S) ∩ f2(S) will then exist of four
vertical rectangles, two in V0 and two in V1, each with widths λ2. See Figure 7.4.
In order to keep track of what happens to all the rectangles under iterations of f , we introduce the

Figure 7.4: Positive iterates[11]

following notation: Vij , with i, j ∈ {0, 1} means: the rectangle is situated in Vi (left rectangle for i = 0
and right for i = 1) and its pre-image was situated in Vj (f−1(Vij) ∈ Vj). In Figure 7.4 for example,
V01 is situated in V0 and f−1(V01) lies in V1.
We can now continue this induction process of fk(S) for k = 3, 4... See Figure 7.4 for an illustration
of S ∩ f(S) ∩ f2(S) ∩ f3(S).
We get 23 = 8 rectangles, each of width λ3. Two rectangles are situated in V00, two in V01 etc. Again
we can number all the rectangles by an unique label: Vpq, with p ∈ {0, 1}; q ∈ {0, 1}2, meaning: the
rectangle is now situated in Vp and its pre-image is in Vq (which in turn can be written as Vq = Vij).
In Figure 7.4, for example, the rectangle V101 is situated in V1 (the righthand side of S) and f−1(V101)
lies in rectangle V01.
When we continue the process for increasing k, we have, at the k-th stage, 2k vertical rectangles, all
with an unique label from the collection {0, 1}k and all with width λk. When k →∞, we end up with
an infinite number of vertical rectangles, which are in fact vertical lines, as limk→∞ λ

k = 0 (remember
that 0 < λ < 1

2). All these lines have a unique label which consists of an infinite series of 0’s and 1’s.
Now we turn to the negative iterates of f . In fact the procedure is analogue to the that of the positive
iterates. By definition of f , the set S ∩ f−1(S) consists of two horizontal rectangles H0 and H1, each
with height 1

µ . The set S ∩ f−1(S) ∩ f−2(S) will then consist of four horizontal rectangles, each with
height 1

µ2 , see Figure 7.5.
Again in an analogous way to the positive iterates, we can introduce a label system which keeps track

of all the negative iterations.
We end up with with an infinite number of horizontal lines, each with an unique label of 0’s and 1’s.
Finally, we obtain the invariant set of the SHM by taking the intersection of the positive and negative



Figure 7.5: Negative iterates[11]

iterates:

Λ =
∞⋂

n=−∞
fn(S) = [

0⋂
n=−∞

fn(S)] ∩ [
∞⋂
n=0

fn(S)]. (7.4)

This set consists of the intersections between the horizontal and vertical lines obtained from the
negative and positive iterates respectively. Furthermore each point p ∈ Λ can be labeled uniquely by
a bi-infinite sequence of 0’s and 1’s, which is obtained by concatenating the labels of the associated
horizontal and vertical line. Let s−1..s−k.. be an infinite sequence of 0’s and 1’s ; then Vs−1..s−k..

corresponds to an unique vertical line. Likewise, a sequence s0..sk.. gives rise to an unique horizontal
line defined by Hs0..sk... A point p ∈ Λ is an unique intersection point of a vertical and a horizontal
line. We define the labeling map φ:

φ(p)→ ..s−k..s−1s0..sk... (7.5)

Because of the way we have defined the labeling system, we have:

Vs−1..s−k.. = {p ∈ S|f−i+1(p) ∈ Vs−i , i = 1, 2, ..}; Hs0..sk.. = {p ∈ S|f i(p) ∈ Hsi , i = 0, 1, ..}. (7.6)

And since f(Hsi) = Vsi , we get:

p = Vs−1..s−k.. ∩Hs0..sk.. = {p ∈ S|f i(p) ∈ Hsi , i = 0,±1,±2, ..}. (7.7)

Hence, the way we have defined our labeling system (reflecting the dynamics of the rectangles under
the different iterations) not only gives us a unique label for every p ∈ Λ, it also gives us informa-
tion about the behavior of p under iteration of f . To be more precise, the skth element in the
bi-infinite sequence which represents p, indicates that fk(p) ∈ Hsk

. As a result of this, we can easily
obtain the representation for fk(p) from the representation of p. Let p be represented (labeled) by
. . . s−k . . . s−1.s0 . . . sk . . ., where the decimal point between s−1 and s0 indicates the separation be-
tween the infinite sequence associated to the positive (future) and negative (past) iterations of f . We
can now easily get the representation of fk(p) by shifting the decimal point k places to the right if k
is positive, or k places to the left if k is negative. We formally do this by defining the so-called shift
map. This shift map σ works on a bi-infinite sequence and takes the decimal point one place to the
right. So, if we have a point p ∈ Λ, the label is given by φ(p) (according to equation (7.5)) and the
label of any iterate of p, fk(p), is given by σk(φ(p)). For all p ∈ Λ and all k ∈ Z we have:

σk ◦ φ(p) = φ ◦ fk(p). (7.8)

This relationship between the iterations of p under f and the iteration of its label φ(p) under the shift
map, makes it necessary to spend some attention to symbolic dynamics. In this symbolic dynamics,
which we will discuss in the next chapter, the shift map plays an important role. We will explain more
about the relation to the SHM in chapter 9.



Chapter 8

Symbolic dynamics

Let Σ be the collection of all bi-infinite sequences with entries 0 or 1. An element s from Σ has the
form: s = {· · · s−n · · · s−1.s0 · · · sn · · ·}, si ∈ {0, 1}∀i.
We can define a metric d(·, ·) on Σ. Let s, s̄ ∈ Σ, then

d(s, s̄) =
∞∑

i=−∞

δi

2|i|
, (8.1)

with δi = 0 if si = s̄i and δi = 1 if si 6= s̄i. See [2] for the proof that this is indeed a metric.
Next, we define a bijective map from Σ to itself, called the shift map, as follows:

s = {· · · s−n · · · s−1.s0s1 · · · sn · · ·} ∈ Σ 7→ σ(s) = {· · · s−n · · · s−1s0.s1 · · · sn · · ·} ∈ Σ. (8.2)

This shift map σ acting on the space of bi-infinite sequences of 0’s and 1’s (i.e. Σ) has some very
interesting properties, which we will now examine.

8.1 Periodic orbits of the shift map

First we remark that σ has two fixed points, namely the sequence which consists of only zero’s and
the sequence which consists of only ones. Shifting the decimal point will yield the same sequence.
Next we consider the points s ∈ Σ which periodically repeat after some fixed length. We will denote
these kind of points as follows: {· · · 101010.11010 · · ·} is written as: {10.10}; {· · · 101101.101101 · · ·} is
written as {101.101} etc. These kind of points are periodic under iteration of σ. For example, consider
the point given by the sequence {10.10}. We have: σ{10.10} = {01.01} and σ2{10.10} = σ{01.01} =
{10.10}. Hence, the point {10.10} has an orbit of period two for σ. From this example, it is easy
to see that all points in Σ which periodically repeat after length k, have an orbit of period k under
iteration of σ. Since there is a finite number of possible blocks, consisting of 0’s and 1’s, of length
k for every fixed k, we see that there exists a countable infinity of periodic orbits. Since k ∈ N, all
periods are possible.

8.2 Nonperiodic orbits

As we have just shown, the elements of Σ which periodically repeat after some fixed length, correspond
to periodic orbits under iteration of the shift map σ. Likewise, the elements of Σ which consist of
a nonrepeating sequence, correspond to nonperiodic orbits of σ. Suppose s ∈ Σ is a nonrepeating
sequence, then there’s no k ∈ N such that σk(s) = s, because s is nonrepeating. Hence the orbit of
this s under σ is nonperiodic.
There is an uncountable infinite number of nonperiodic orbits. To see this, we will show that there
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is an analogue between the cardinality of nonperiodic orbits of σ and the cardinality of the irrational
numbers in the closed interval [0, 1] (which in turn has the same cardinality as R), namely an un-
countable infinity.
First, we notice that we can simply associate the bi-infinite sequence s to a simple infinite sequence of
zero’s and one’s, say s′ as follows: s = {· · · s−n · · · s−1.s0s1 · · · sn · · ·} → s′ = {s0s1s−1s2s−2 · · ·}. We
also know that we can express every number in the interval [0, 1] as a binary expansion (by rewrit-
ing the decimal notation in base 2). The binary expansions which don’t have a repeating sequence
correspond to the irrational numbers in the interval, because a repeating sequence would mean that
we have a rational number. Hence, the bi-infinite sequences in Σ, which are nonrepeating, have a
one-to-one correspondence to the irrational numbers in the interval [0, 1] and therefore, have the same
cardinality.

8.3 Dense orbit

Finally, we will show that there exists a s ∈ Σ whose orbit is dense in Σ. An element s ∈ Σ has a dense
orbit in Σ if for any given s′ ∈ Σ and ε > 0, there exists some integer n such that d(σn(s), s′) < ε,
where d(·, ·) is the metric as defined in expression (8.1). We will prove the existence of such an s by
constructing it explicitly.
There are 2k different sequences of 0’s and 1’s of length k. We can define an ordering of finite
sequences as follows: consider two finite sequences, consisting of 0’s and 1’s, x = {x1 · · ·xk} and
y = {y1 · · · yl}, having length k and l respectively. We will then say that x < y if k < l. If k = l,
then x < y if xi < yi, where i is the first integer such that xi 6= yi. For example, using this ordering,
we have: {101} < {0000}, {110} < {111}. There are 21 = 2 sequences of length 1 and we can put
them in the right order: {0}, {1}. There are 22 = 4 sequences of length 2 and the right order is:
{00}, {01}, {10}, {11}. Define a finite sequence of length p as sqp, where 1 ≤ q ≤ 2p denotes its place
in the ordering of sequences with length p. Now we will construct a bi-infinite sequence s as follows:
s = {· · · s24s22s12.s11s21s23 · · ·}. This bi-infinite sequence thus contains all possible sequences of any fixed
length and we also know where a particular sequence is placed.
Our claim is that this particular s is the bi-infinite sequence we were looking for, i.e. the orbit of this
s under σ is dense in Σ. To see this, we must take a closer look at the metric. From the definition of
this metric, it can be seen that the distance between two sequences is small when these two sequences
have a central block (around the decimal point in the middle) which is identical. Suppose that two
sequences u and v in Σ have a central block of length 2l which is completely identical. Hence, for
−l ≤ i ≤ l we have that: ui = vi. The distance between u and v is given by:

d(u, v) =
∞∑

i=−∞

δi

2|i|
=
−l−1∑
i=−∞

δi

2|i|
+

l∑
i=−l

δi

2|i|
+

∞∑
i=l+1

δi

2|i|
=
−l−1∑
i=−∞

δi

2|i|
+ 0 +

∞∑
i=l+1

δi

2|i|
. (8.3)

When the central identical block gets larger, the distance between the two sequences becomes smaller,
since the factor 2|i| in the remaining part of the summation gets huge. In fact, the distance between
u and v will approach zero as the length of the central identical block approaches infinity, since
limi→∞

i
2i = 0.

Now we return to our constructed s and proof the claim. Let s′ be any bi-infinite sequence in Σ and
let ε > 0 be given. We have to show that there is an n such that d(σn(s), s′) < ε. Well, we have
just seen that if we have a bi-infinite sequence, say s′′, which has a big enough central block identical
to that of s′, the distance d(s′, s′′) will approach zero. It depends on ε how large the identical block
has to be, but we are guaranteed that d(s′, s′′) < ε if the central identical block of s′′ is long enough.
Suppose that this central identical block has length L. The point now is that this central identical
block of s′ and s′′, consisting of a sequence of 0’s and 1’s of length L, occurs somewhere in s. This
is a direct result of the way we have constructed s. All possible sequences of any fixed length are
contained in s. Moreover, by the systematic way we have constructed s, we also know where a certain
sequence is situated. If we now apply the shift map the appropriate number of times, say n, we can
move the sequence we need to the center: σn(s) will have the same central block as s′ and hence
d(σn(s), s′) < ε, which proves the claim.



Chapter 9

Dynamics in the homoclinic tangle

We will now show how the dynamics in the homoclinic tangle from Figure 6.3, the Smale Horseshoe
Map (SHM) and the symbolic dynamics are related to eachother.
First, we focus on the relation between the dynamics of the shift map σ on the collection of bi-infinite
sequences Σ and the dynamics of the SHM f on its invariant set Λ. Remember that, in section 7.2,
we have introduced the labeling map φ (7.5). It can be shown that φ is invertible and continuous [11].
Therefore, the relation (7.8) can be written as:

φ−1 ◦ σk ◦ φ(p) = fk(p). (9.1)

In other words, the map φ : Λ→ Σ is a homeomorphism, which means that the entire orbit structure
of f on Λ is identical to that of σ on Σ. So, the SHM f has an invariant set Λ, such that:

• Λ contains a countable set of periodic orbits of arbitrarily long periods.

• Λ contains an uncountable set of nonperiodic orbits.

• Λ contains a dense orbit.

The link between the SHM and the homoclinic tangle is illustrated in Figure 9.1. The basic idea is

Figure 9.1: Smale Horseshoe in the homoclinic tangle[8]

that, if we take a high enough iterate of the Poincaré map Pε, a square D close to the fixed point
0 is mapped into itself in exactly the same manner as in the SHM. For a rigorous proof we refer to
Wiggins [11].

26



Chapter 10

Possible chaotic behavior of the
coupled system

In the Chapters 6, 7, 8 and 9 we have shown that by using Melnikov’s theory, we can determine
whether a dynamical system contains a transverse homoclinic orbit, leading to a Smale Horseshoe
Map in the homoclinic tangle.
We now return to system (4.5) and will examine the possibility of chaotic behavior. First, we show
that we are allowed to use the Melnikov theory here, by checking all the necessary assumptions from
section 5.1.
We can rewrite system (4.5) into the same form as system (5.1) by introducing the Hamiltonian
function H(A, z):

H(A, z) =
1
2
z2 − 1

2
A2 +

1
4
A4. (10.1)

System (4.5) can now be written as:
Ax = ∂H

∂z (A, z) + µg1(A, z, x, µ)

zx = −∂H
∂A (A, z) + µg2(A, z, x, µ)

, (10.2)

where g1(A, z, x, µ) = 0 and g2(A, z, x, µ) = −A(K1 sinx
√
c + K2 cosx

√
c). Although the variables

are different, system (10.2) is clearly of the same form as system (5.1). System (10.2) is sufficiently
differentiable on the region of interest. The phase plane, as drawn in Figure 4.4, shows that the
unperturbed system possesses a hyperbolic fixed point, connected to itself by a homoclinic orbit and
that the region of the phase plane which is enclosed by the homoclinic orbit possesses a continuous
family of periodic orbits. As remarked in section 4.2, the solution of the homoclinic orbit can be
determined explicitly and is given by:

q0(x) = (A0(x), z0(x)) = (
√

2sech(x),−
√

2sech(x) tanh(x)). (10.3)

The last necessary assumption is that the perturbation function g = (g1, g2) is periodic in x. The null
function g1 is trivially periodic. The function g2 appears to be periodic when looking at the sine and
cosine terms, but there is a slight complication because of the multiplication by A (containing the
sech(x) term). Strictly speaking, this makes the function g2 non periodic. However, since µ � 1, we
can nevertheless use the Melnikov theory here [10].
Since all necessary assumptions from section 5.1 are satisfied, we are allowed to use the Melnikov theory
for system (10.2). The Melnikov function as defined in expression (5.24) can now be calculated:

M(x0, φ0) =
∫ ∞
−∞

(DH(q0(x)) · g(q0(x), x
√
c+ x0

√
c+ φ0, 0))dx

=
∫ ∞
−∞

(
∂H

∂A
(q0(x)),

∂H

∂z
(q0(x))) · (g1(q0(x), x

√
c+ x0

√
c+ φ0, 0), g2(q0(x), x

√
c+ x0

√
c+ φ0, 0))dx
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=
∫ ∞
−∞

2sech2(x) tanh(x)(K1 sin (x
√
c+ x0

√
c+ φ0) +K2 cos (x

√
c+ x0

√
c+ φ0))dx. (10.4)

As we have seen in section 6.1, variation of φ0 or x0 are equivalent. Therefore, we will only consider
the dependency with respect to x0:

M(x0) =
∫ ∞
−∞

(2sech2(x) tanh(x))(K1 sin (x
√
c+ x0

√
c) +K2 cos (x

√
c+ x0

√
c))dx. (10.5)

The derivative of the Melnikov function (10.5) with respect to x0 is:

d

dx0
M(x0) =

∫ ∞
−∞

(2sech2(x) tanh(x))(K1

√
c cos (x

√
c+ x0

√
c)−K2

√
c sin (x

√
c+ x0

√
c))dx. (10.6)

In order to check the existence of a transverse homoclinic orbit of system (10.2), we want to know if
there exists a x0 ∈ [0, 2π√

c
), such that M(x0) = 0 and d

dx0
M(x0) 6= 0.

First, we note that sech2(x) tanh(x) is odd in x. Furthermore, we have:

K1 sin (x
√
c+ x0

√
c) +K2 cos (x

√
c+ x0

√
c)

= sinx
√
c(K1 cosx0

√
c−K2 sinx0

√
c) + cosx

√
c(K1 sinx0

√
c+K2 cosx0

√
c). (10.7)

The sin (x
√
c) part is odd in x and the cos (x

√
c) part is even in x. Since the odd part of the integrant

of (10.5) will integrate to zero, we get:

M(x0) =
∫ ∞
−∞

(2sech2(x) tanh(x))(sinx
√
c)(K1 cosx0

√
c−K2 sinx0

√
c)dx

= 2(K1 cosx0

√
c−K2 sinx0

√
c)
∫ ∞
−∞

sech2(x) tanh(x) sin (x
√
c)dx. (10.8)

Using the method of residues, we find:∫ ∞
−∞

sech2(x) tanh(x) sin (x
√
c)dx =

−πc sinh(π2
√
c)

1− cosh(π
√
c)

. (10.9)

Since this is strictly positive for c > 0, we see that all possible zeroes of the Melnikov function are
found if:

(K1 cosx0

√
c−K2 sinx0

√
c) = 0,

or, on the interval [0, 2π√
c
) :

x0 = ξ =
1√
c

arctan
K1

K2
. (10.10)

Now we turn to the derivative of the Melnikov function (10.6). Substituting x0 = ξ from (10.10), we
get:

d

dx0
M(x0)|x0=ξ = −2

√
c
K2

1 +K2
2

K2

√
K2

1+K2
2

K2
2

∫ ∞
−∞

sech2(x) tanh(x) sin (x
√
c)dx. (10.11)

We have already mentioned that the integral (10.9) has no zero points for c > 0. The term containing
K1 and K2 is also nonzero for all K1,K2 6= 0 (i.e. for all nontrivial solutions of the B-equation (4.3)).
Finally, since the term −2

√
c is also nonzero for all c > 0, we can conclude that the derivative of the

Melnikov function (10.11) is not equal to zero for x0 = ξ.
We have thus found a value for x0 (10.10) for which we will have a transverse homoclinic orbit, leading
to chaos.



Chapter 11

Conclusion and suggestions

We have analyzed the possibility of chaotic behavior of system (1.1). In doing so, we made several
assumptions which simplified this system. We only considered stationary solutions, so that the deriva-
tives with respect to t equal zero. All parameters have been assumed to be real valued and for the
function G we took: G(B, ∂B∂x , |A|

2) := β2B. Rescaling then yields system (3.5), where c = β2

β1
|α1
α2
| and

the plus or minus signs depend on the choice of αi and βj .
After uncoupling system (3.5) by setting µ = 0, we showed that the phase plane of the A-equation
contains a homoclinic orbit for α2

α1
,α3
α2
< 0 (i.e. case 2b from section 4.2). When the system is recoupled

by setting µ 6= 0, the homoclinic orbit will break open and we recalled the Melnikov theory to measure
the distance between the manifolds. If the Melnikov function equals zero and its derivative is nonzero,
the system will exhibit chaotic behavior. Since the Melnikov theory is only applicable to periodic
perturbations, we took c > 0, or equivalently β2

β1
> 0, so that the B-equation is periodic. We found

a value for which the Melnikov function equals zero, while its derivative is nonzero and therefore can
conclude that, for α2

α1
,α3
α2
< 0 and β2

β1
> 0, system (3.5) exhibits chaotic behavior.

As mentioned before, we have made several assumptions in order to simplify the original system (1.1).
Making all these assumptions less strict, would be the next step in the analysis. We could start with
taking a slightly more complicated B-equation. If the solution of the modified B-equation is periodic,
we can again use the Melnikov theory. It will become increasingly difficult though to find an analytic
expression for the Melnikov function. Numerical calculations might be necessary in that case. If we
make the G-function also dependent on A, it won’t be possible anymore to consider the B-equation
separately from the A-equation and things will get much more complicated.
We have only considered stationary solutions of system (1.1). As we have seen, these stationary
solutions may exhibit chaotic behavior and it would be interesting to analyze the behavior of the non-
stationary solutions. Unfortunately however, there are no (or not yet) suitable techniques available to
do this.
A final suggestion for further analysis is to look at the complex case. What will happen if both the
coefficients and the amplitudes will be complex instead of real valued?
Several of these suggestions have already been considered in [3, 4, 6] and we refer to these articles for
a further analysis of system (1.1).
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