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Chapter 1

The Model

The model I am going to study is a model of a tree plantation. These trees have a chance
of getting infected with a disease by insects or when they’re exposed to leaves of a sick tree.
This can be modeled by a continuous time Markov chain under suitable assumptions.
When modeling the plantation, I will consider a plantation with N trees, for N fixed. Infection
of trees by insects, which occurs randomly, has probability 0 < α < 1. The rate of infection
by spread of infected leaves is considered to be 0 < β < 1.
When a tree is found to be infected, it gets cut down and it is replaced by a nursery seedling.
The process of finding trees to be infected is considered to be a Poisson process with parameter
λ. Nursery seedlings can’t be infected by leaves at the nursery, because of protection nets.
However nursery seedlings can get infected by insects, so when a nursery seedling replaces an
infected tree, it too has a chance of being already infected. This is a very small probability
0 < p = 1− q < 1.
The evolution of the number of infected trees trough time can be modeled as a continuous
time Markov chain {X(t); t ≥ 0}. X(t) denotes the amount of infected trees at time t(t ≥ 0),
with X(0) = a ≥ 1. To be more precise, it can be viewed as a birth-death process with
birthrates α+ jβ and death rates λq.

1.1 Kolmogorov forward equations

In this section I am going to derive the Kolmogorov forward equations for the model as
described above. To do this I will first define the probabilities pj(t). These pj(t) are the
probabilities of having j infected trees at time t, given that there are a infected trees a time
0.
With the pj(t) defined, I will now be able to derive the Kolmogorov forward equations. For
that I will take a look at the relations between the probabilities pj(t+δt) and pj(t) for a small
time interval of length δt. The probability of having j infected trees at time t + δt starting
with i infected trees is given by:

N∑
i=1

P (X(t+ δt) = j,X(t) = i) =
N∑
i=1

P (X(t+ δt) = j|X(t) = i)P (X(t) = i) (1.1)

Because the probability of two events occurring in a small time interval of length δt is very
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small, I may omit quantities of order o(δt). Now the summation can be written as follows:

N∑
i=1

P (X(t+ δt) = j|X(t) = i)P (X(t) = i)

= P (X(t+ δt) = j|X(t) = j − 1)P (X(t) = j − 1) (1.2)
+ P (X(t+ δt) = j|X(t) = j)P (X(t) = j)
+ P (X(t+ δt) = j|X(t) = j + 1)P (X(t) = j + 1).

Writing this summation out and omitting the quantities of order o(δt) leads to the following
system of equations:

p0(t+ δt) = p0(t)(1− αδt) + p1(t)λqδt
...

pj(t+ δt) = pj−1(t)(α+ β[j − 1])δt (1.3)
+ pj(t)(1− λqδt− [α+ βj]δt) + pj+1(t)λqδt
...

p0(t+ δt) = pN−1(t)(α+ β[N − 1])δt+ pN (t)(1− λqδt).

From this point it’s easy to get to the Kolmogorov forward equations. The first thing I will
do, is subtracting pj(t) from every equation for j = 0, · · · , N . Next I will divide by δt and I
will take the limit for δt→ 0. This leads to the Kolmogorov forward equations:

dp0(t)
dt

= −αp0(t) + λqp1(t)

dp1(t)
dt

= αp0(t)− (λq + α+ β)p1(t) + λqp2(t)

... (1.4)
dpj(t)
dt

= (α+ (j − 1)β)pj−1(t)− (λq + α+ βj)pj(t) + λqpj+1(t)

...
dpN (t)
dt

= (α+ (N − 1)β)pN−1(t)− λqpN (t).

Now putting the left-hand side of the equations 0 leads to the equations for the finite
(N + 1)-state birth-death process with birth-parameters α+ jβ and death-parameter λq. For
α > 0 the distribution of X(t) converges to the stationary distribution for t → ∞. The
stationary probabilities are denoted by πj = P (X(∞) = j), meaning that in the long run
the probability of having j infected trees is πj . The stationary distribution π = (πj) for
j = 0, 1, · · · , N , satisfies the following system of linear equations:

0 = −απ0 + λqπ1

0 = (α+ (j − 1)β)πj−1 − (λq + α+ jβ)πj + λqπj+1 j = 1, · · · , N − 1
0 = (α+ (N − 1)β)πN−1 − λqπN . (1.5)
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The solutions to this system are easily found by expressing πj in terms of π0. π0 can be
determined from the normalizing equation

∑N
j=0 πj = 1. The solutions of equations (1.5) are:

π1 =
α

λq
π0

π2 =
α(β + α)

(λq)2
π0 (1.6)

...

πj =
α(β + α) · · · (α+ β[j − 1])

(λq)j
π0,

where

π0 =
1

1 + α
λq + α(α+β)

(λq)2
+ · · ·+ α(α+β)···(α+β[j−1])

(λq)N

. (1.7)

1.2 Laplace Transform

In this section, I will use the Laplace transform to obtain a formal solution of the equations
in (1.4). So let p̂j(s) be the Laplace transform:

p̂j(s) =
∫ ∞

0
e−stpj(t)dt Re(s) > 0, j = 0, 1, · · · , N. (1.8)

Assuming that X(0) = a and transforming the left-hand side of the first equation of (1.4)
gives ∫ ∞

0

dp0(t)
dt

e−stdt = [p0(t)e−st]t=∞t=0 + s

∫ ∞
0

p0(t)e−stdt (1.9)

= −p0(0) + sp̂0(s).

Transforming the right-hand side of the same equation gives∫ ∞
0
−αp0(t)e−st + λqp1(t)e−stdt = −αp̂0(s) + λqp̂1(s). (1.10)

If a 6= 0, then p0(0) = 0 and these two equations combine to

λqp̂1 = (s+ α)p̂0.

If a = 0, then p0(0) = 1 and the two equations combine to

λqp̂1 − 1 = (s+ α)p̂0.

Next I will transform the j′th equation. This way I will find a general system of transfor-
mation with N trees. Transforming the left-hand side, yields, similarly to (1.9)∫ ∞

0

dpj(t)
dt

e−stdt = −pj(0) + sp̂j(s).
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Transforming the right-hand side yields:∫ ∞
0

(α+ (j − 1)β)pj−1(t)e−st − (λq + α+ βj)pj(t)e−st + λqpj+1(t)e−stdt

= (α+ (j − 1)β)p̂j−1 − (λq + α+ jβ)p̂j + λqp̂j+1 (1.11)

When a 6= j these transformations combine to

(s+ α+ λq + jβ)p̂j = (α+ (j − 1)β)p̂j−1 + λqp̂j+1,

and if a = j, then pj(0) = 1, pj(t) = pa(t) and the two equations combine to

(s+ α+ λq + aβ)p̂a − 1 = (α+ (a− 1)β)p̂a−1 + λqp̂a+1.

I only need to transform the last equation (the N -th equation) to complete the system.
Transforming the left-hand side:∫ ∞

0

dpN (t)
dt

e−stdt = [pN (t)e−st]t=∞t=0 + s

∫ ∞
0

pN (t)e−stdt (1.12)

= −pN (0) + sp̂N (s)

Transforming the right-hand side∫ ∞
0

(α+ (N − 1)β)pN−1(t)e−st − λqpN (t)e−stdt

= (α+ (j − 1)β)p̂N−1(s)− λqp̂N (s) (1.13)

When a 6= N these transformations combine to

(s+ λq)p̂N = (α+ (N − 1)β)p̂N−1 + λqp̂N .

If a = N , then pN (0) = 1 and the two equations combine to

(s+ λq)p̂N − 1 = (α+ (N − 1)β)p̂N−1 + λqp̂N .

Thus, after having applied the Laplace transform to the Kolmogorov forward equations
for a plantation with N trees, I’ve obtained a general linear system of N equations. The
formal solutions of (1.4) can then be derived. Given X(0) = a, a 6= 0, N , this system is:

(s+ α)p̂0 = λqp̂1,

(s+ α+ λq + aβ)p̂a − 1 = (α+ (a− 1)β)p̂a−1 + λqp̂a+1, (1.14)
(s+ α+ λq + jβ)p̂j = (α+ (j − 1)β)p̂j−1 + λqp̂j+1,

(s+ λq)p̂N = (α+ (N − 1)β)p̂N−1 − λqp̂N .

Here j = 1, · · · , a− 1, a+ 1, · · · , N − 1.
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1.2.1 Formal solutions for a plantation with 2 trees

In this section I will consider a plantation with 2 trees. For this model I will be studying the
problem I’ve introduced earlier. The Kolmogorov forward equations (1.4) for the plantation
with 2 trees are the following

dp0(t)
dt

= −αp0(t) + λqp1(t)

dp1(t)
dt

= αp0(t)− (λq + α+ β)p1(t) + λqp2(t)

dp2(t)
dt

= (α+ β)p1(t)− λqp2(t).

First I am interested in the stationary distribution, because when I am searching for the
formal solutions of pj(t), I can use it to check correctness of the formal solutions. Putting the
left-hand side to 0, I will find the stationary distribution from (1.6) and (1.7). This yields:

π0 =
1

1 + α
λq + α(α+β)

(λq)

=
(λq)2

(λq)2 + α(α+ β) + αλq
,

as well as π1 and π2

π1 = α
λqπ0 =

αλq

(λq)2 + α(α+ β) + αλq

π2 = α(α+β)
(λq)2

π0 =
α(α+ β)

(λq)2 + α(α+ β) + αλq
.

Now I’ve found the stationary distribution, I will transform the Kolmogorov forward
equations with the Laplace transform. By applying the transform, I can make 3 choices for
the starting values of the number of infected trees. I will transform the Kolmogorov forward
equations for all three starting values, getting the following three systems (by 1.15):

Given that X(0) = 0

(s+ α)p̂0 − 1 = λqp̂1

(s+ α+ λq + β)p̂1 = αp̂0 + λqp̂2 (1.15)
(s+ λq)p̂2 = (α+ β)p̂1

given that X(0) = 1

(s+ α)p̂0 = λqp̂1

(s+ α+ λq + β)p̂1 − 1 = αp̂0 + λqp̂2 (1.16)
(s+ λq)p̂2 = (α+ β)p̂1

and given that X(0) = 2

(s+ α)p̂0 = λqp̂1

(s+ α+ λq + β)p̂1 = αp̂0 + λqp̂2 (1.17)
(s+ λq)p̂2 − 1 = (α+ β)p̂1.
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1.2.2 Inverse Laplace

Next I will calculate the formal solutions pj(t) for all three possibilities. I will compare these
and I will take a look at the problem for this simple example. But before I will do that, I
will introduce an inverse Laplace transform lemma, which I’ll be needing to undo the Laplace
transform and to obtain pj(t), j = 0, 1, 2, . . . , N . This theorem comes from [2] and is the
following.

Lemma 1 Let g be holomorphic except for a finite number of poles at a1, . . . , an, and suppose
that there exist constants M and k such that

|g(p)| ≤M |p|−k for |p| large

Then for t > 0 and σ > Re aj (j = 1, . . . , n),

1
2πi

lim
R→∞

∫ σ+iR

σ−iR
g(p)eptdp =

n∑
j=1

res{g(p)ept; aj}.

This lemma guarantees that the inverse transform equals the sum of residues at poles
a1, . . . , an as long |g(p)| ≤ M |p|−k for large p. This makes it a lot easier to find pj(t),j =
1, 2, . . . , N .

Next I will rewrite the systems (1.15), (1.16) and (1.17) and then I will apply the lemma.
The first system I will rewrite, is (1.16) with X(0) = 1. For this system it’s clear that:

p̂1 =
s+ α

λq
p̂0 (1.18)

p̂2 =
α+ β

s+ λq
p̂1 =

(α+ β)(s+ α)
λq(s+ λq)

p̂0. (1.19)

This follows from the first and the third equations of the system. Now looking at the second
equation we get:

λqp̂2 =
(s+ λq + α+ β)(s+ α)

λq
p̂0 − αp̂0 − 1.

Multiplying by λq yields

(λq)2p̂2 = (s+ λq + α+ β)(s+ α)p̂0 − λqαp̂0 − λq.

Combining this with (1.19) gives:

(α+ β)(s+ α)λq
s+ λq

p̂0 = (s+ λq + α+ β)(s+ α)p̂0 − λqαp̂0 − λq,

which yields

[(s+ λq)(s+ λq + α+ β)(s+ α)− αλq(s+ λq)− (α+ β)(s+ α)λq]p̂0

= λq(s+ λq). (1.20)
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This immediately gives the following expression for p̂0

p̂0 =
λq(s+ λq)

s(s2 + s(2α+ 2λq + β) + α(λq + α+ β) + (λq)2)

=
λq(s+ λq)

s(s+A+B)(s+A−B)
,

where A = α+ β
2 + λq and B =

√
(α+ β)λq + β2

4 .
Now I can apply the inverse Laplace lemma and obtain the formal solution for p0(t), p1(t)

and p2(t). By virtue of this lemma, I should calculate the residues at the poles. For p̂0(s)
these poles are 0,−(A+B) and −(A−B). So for p0(t)

p0(t) = lim
s→0

sp̂0(s)est + lim
s→−(A+B)

(s+A+B)p̂0(s)est + lim
s→−(A−B)

(s+A−B)p̂0(s)est

=
(λq)2

A2 −B2
+
λq(λq − (A+B))

2B(A+B)
e−(A+B)t − λq(λq − (A−B))

2B(A−B)
e−(A−B)t.

Now from (1.18) and (1.19) p̂1 and p̂2 can be transformed. Since the inverse transforma-
tions for p̂1 and p̂2 are similarly obtained as p̂0, I will merely give p1(t) and p2(t) and I will
not explicitly derive these:

p1(t) =
αλq

A2 −B2

+
(α− (A+B))(λq − (A+B))

2B(A+B)
e−(A+B)t (1.21)

− (α− (A−B))(λq − (A−B))
2B(A−B)

e−(A−B)t

p2(t) =
α(α+ β)
A2 −B2

+
(α+ β)(α− (A+B))

2B(A+B)
e−(A+B)t (1.22)

− (α+ β)(α− (A−B))
2B(A−B)

e−(A−B)t.

To check if these solutions make any sense, it is convenient to take a look at what happens,
when the limits are taken for t to infinity. Because then we should end up in the stationary
distribution. This means for the formal solutions, that the exponents will go to zero. A quick
look at p0(t),p1(t) and p2(t) confirms this.

Now left are the systems with X(0) = 0 and X(0) = 2. These are slightly more difficult
because of the −1 in the first and the third equations, respectively. In case X(0) = 2, it
doesn’t make it much more difficult, but in case X(0) = 0, I will not obtain p̂0 first, but
instead p̂2. I will first take a look at the case with X(0) = 2.
The first and the last equations from (1.17) imply

p̂1 =
α+ s

λq
p̂0

p̂2 =
α+ β

s+ λq
p̂1 +

1
s+ λq

=
(α+ s)(α+ β)

(s+ λq)λq
p̂0 +

1
(s+ λq)

.
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From this, p̂0 is easily derived (with the same steps as before):

p̂0 =
(λq)2

s(s2 + s(2α+ 2λq + β) + α(λq + α+ β) + (λq)2)

=
(λq)2

s(s+A+B)(s+A−B)
.

Using the inverse Laplace lemma again, I obtain p0(t), p1(t) and p2(t):

p0(t) =
(λq)2

A2 −B2
+

(λq)2

2B(A+B)
e−(A+B)t − (λq)2

2B(A−B)
e−(A−B)t

p1(t) =
λqα

A2 −B2
+
λq(α− (A+B))

2B(A+B)
e−(A+B)t − λq(α− (A−B)

2B(A−B)
e−(A−B)t

p2(t) =
α(α+ β)
A2 −B2

+
λq(α+ β)(α− (A+B))

2B(A+B)(λq − (A+B))
e−(A+B)t

− λq(α+ β)(α− (A−B))
2B(A−B)(λq − (A−B))

e−(A−B)t

+ [
(α+ β)(α− λq)

(λq −A−B)(A−B − λq)
+ 1]e−λqt.

This leaves only one last case, namely X(0) = 0. As said before I will not obtain p̂0 first,
but instead I will determine p̂2. I have made this choice, because the inverse Laplace theorem
is no longer applicable if I would first determine p̂0. The theorem is no longer applicable,
because there are no M and k such that |g(p)| 6≤M |p|−k. Similarly as in the above

p̂2 =
α(α+ β)

s(s+A+B)(s+A−B)
. (1.23)

and so
p̂1 =

α(s+ λq)
s(s+A+B)(s+A−B)

(1.24)

p̂0 =
λq(s+ λq)

s(s+A+B)(s+A−B)(s+ α)
+

1
s+ α

. (1.25)

Using the inverse Laplace transformation again leads to the following expression the pj(t)
that I am interested in:

p0(t) =
(λq)2

A2 −B2
+

αλq(λq − (A+B))
2B(A+B)(α− (A+B))

e−(A+B)t

− αλq(λq − (A−B))
2B(A−B)(α− (A−B))

e−(A−B)t + [
λq(λq − α)

(α−A−B)(A−B − α)
+ 1]e−αt

p1(t) =
λqα

A2 −B2
+
α(λq − (A+B))

2B(A+B)
e−(A+B)t − α(λq − (A−B)

2B(A−B)
e−(A−B)t

p2(t) =
α(α+ β)
A2 −B2

+
α(α+ β)

2B(A+B)
e−(A+B)t − α(α+ β)

2B(A−B)
e−(A−B)t.

Obviously this method requires a lot of time for calculations. In the case of N = 2 it is
still doable, but for N larger it becomes harder to find pj(t), j = 0, 1, 2, . . . , N . Next to that,
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Figure 1.1: plots for X(0) = 0, 1, 2 and T = 10

every time N is increased, the number of starting states grows and the number of equations
that needs to be solved grows even faster. Therefore this method is not the best to use for
large N .
However, based on the pj , j = 0, 1, 2, I have found in this example I made the following plots
of the expected value of the number of infected trees. I have made plots for all three starting
conditions with the following parameters: α = 0.05, β = 0.15, q = 0.9, λ = 2, T = 10 days
(These are the same parameters used by Gani and Stalls.).
Unfortunately, this example is too small to see any interesting effects I am looking for. Taking
T larger gives a plot with all three starting case converging to the stationary distribution,
which is to be expected. In the next chapter I will make plots for larger N , which will show
interesting events. Since I am interested in the case of larger N , I need to find a way to
resolve the problem of solving all these equations. Therefore I will try and use a numerical
method in the next chapter. In this example it is also possible to use the computer, but still
the transformations can’t be done by computer, but have to be done by man. Matlab is used
for plotting the expected value of infected trees against the time.
The method discussed in the next section still requires a lot of calculation, but with help of
Matlab that method is better for numerical solutions. In the end I hope that method will
give me more insight of what happens in case of larger values for N .
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Chapter 2

The eigenvalue method

The work I’ve done in the previous sections were tedious, but easy to do for a plantation
with a few trees. Of course I am more interested in the case of bigger plantations. To study
bigger plantations, I need to come up with a method that is easier applicable for determining
pj(t), j = 0, 1, 2, . . . , N . This method is the method of eigenvalues. The drawback of this
method is, that it still requires a lot of calculations. However, Matlab can do a lot of these
calculations in little time and give a better insight in what is really happening.

2.1 The method

In this section I will explain how the eigenvalue method works. The system (1.4) has the
following solution

P (t) = etQ. (2.1)

Here Q is a matrix which is easily found. This matrix consists of the birth- and deathrates
of the birth-death-process described earlier. In the example this matrix is the following

Q =

 −α α 0
λq −(λq + α+ β) α+ β
0 λq −λq

 . (2.2)

In the case of more trees the Q-matrix looks similar, only bigger. Note that every row
adds up to 0. Now finding P (t) is still not easy to do, however Q can be diagonalised:

Q = UDU−1. (2.3)

Here U is the matrix of eigenvectors corresponding to the eigenvalues σ of Q. D is a
diagonal matrix of eigenvalues σ of Q.
Writing Q in this form, makes it easier to find etQ. To see why it’s easier, let’s take a look at
the definition of etQ

etQ =
∞∑
n=0

tnQn

n!
=
∞∑
n=0

tn(UDU−1)n

n!
(2.4)

=
∞∑
n=0

tnUDnU−1

n!
= U

∞∑
n=0

tnDn

n!
U−1 = UetDU−1.
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The product U and U−1 can be taken out of the summation, because when writing out
(UDU−1)n, U and U−1 cancel out, leaving UDnU−1. This only leaves etD. Because D is the
diagonal matrix with the eigenvalues of Q, this power becomes:

etD =


eσ1t 0 . . . 0

0 eσ2t . . . 0
...

...
. . .

...
0 0 . . . eσN t

 .

Now it’s easier to find P (t). The drawback to this method is, that you have to find the
eigenvalues, eigenvectors and the inverse of the matrix U . However I want to use this method
to find solutions numerically, so this can done by the computer.

2.2 Plantation with 2 trees revisited

Although I want to use the eigenvalue method for numerical purposes, I will be testing this
method for the small plantation with two trees. I will do this to get a better understanding
of the method and to see if this numerical solution works well enough.
The first thing to do now is finding the matrix Q. This Q is the same as in (2.2), since this
served as an example for how a generator matrix Q should look like:

Q =

 −α α 0
λq −(λq + α+ β) α+ β
0 λq −λq

 .

Now it’s time to find the eigenvalues of Q. Of course, they are easily found by solving the
following equation:

det(σI −Q) = 0. (2.5)

In particular

det(σI −Q) = det

 σ + α −α 0
−λq σ + (λq + α+ β) −(α+ β)

0 −λq σ + λq

 .

Calculating this determinant leads to the following equation:

0 = λq(−(σ + α)(α+ β)) + (σ + λq)((σ + α)(σ + λq + α+ β)− αλq)

Writing out the last brackets, this gives the next equation

0 = −λq(σ + α)(α+ β) + (σ + λq)(σ + α)(σ + λq + α+ β)− αλq(σ + λq).

This equation is precisely the same as the coefficient in front of p̂0 in equation (1.21). From
the inverse Laplace transform I know the poles, which are precisely the zeroes that we are
looking for. So the eigenvalues I find are the following:

σ1 = 0
σ2 = −(A−B) (2.6)
σ3 = −(A+B).
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Here A and B are the same as before: A = α+ β
2 + λq and B =

√
(α+ β)λq + β2

4 .
Now it’s time to find the eigenvectors belonging to σ1, σ2 and σ3. These are found by solving
the following systems:

Qx = σix.

Here x ∈ R3 is a vector. Solving these systems is not hard and leads to the following
eigenvectors:  1

1
1

 ,

 1
α−(A−B)

α
λq(α−(A−B))
α(λq−(A−B))

 ,

 1
α−(A+B)

α
λq(α−(A+B))
α(λq−(A+B))

 .

These eigenvectors correspond to σ1,σ2 and σ3 respectively.
Combining these three eigenvectors together, defines our matrix U :

U =

 1 1 1
1 α−(A−B)

α
α−(A+B)

α

1 λq(α−(A−B))
α(λq−(A−B))

λq(α−(A+B))
α(λq−(A+B))

 .

The hardest part now is finding the inverse of U . In this case, finding the inverse consumes
already a lot of time, so one could imagine how much time it will take for a larger matrix.
Because of the fact that the inverse of U is hard to find, I will not do it here. So the method
isn’t good to use by hand. Since I am interested in the expected value of infected trees, I can
do the following. Given X(0) = a I will write the expectation as follows

E(X(t)) = 0 · pa0(t) + pa1(t) + 2 · pa2(t)
= c1 + c2e

σ2t + c3e
σ3t = F (t). (2.7)

Here the cj ,j = 1, 2, 3, are linear combinations of the coefficients corresponding to the pj(t).
From F (t) I can now determine the cj by calculating F (0), F ′(0) and F ′′(0). These are:

F (0) = pa1(0) + 2pa2(0) = c1 + c2 + c3 (2.8)
F ′(0) = p′a1(0) + 2p′a2(0) = qa1 + qa2 = c2σ2 + c3σ3 (2.9)
F ′′(0) = pa1(0)′′ + 2pa2(0)′′ = q2a1 + q2a2 = c2σ

2
2 + c3σ

2
3. (2.10)

Now it’s good to see that c1 is easy to determine, since this is E(X(∞)), which is: π1 + 2π2.
Now I have come to the point where it is still possible to find the expected value, without
having to find U−1.

2.3 Numerical solutions

In this section I am going to use Matlab to take a look at larger plantations. I will first find
the numerical solutions of the expected value of the number of infected trees for N = 2. After
that I will take a look at N = 30, since this is the number of trees used in the article of Gani
and Stalls, for which I am studying the problem they have encountered.
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Figure 2.1: plots for X(0) = 0, 10, 20, 30 and T = 400

2.3.1 N = 2

In case N = 2, it is easy to find the expected values by hand, as shown before, but to verify
that method I used Matlab too. However, the system with 2 trees is too small, so even in the
short run the expected value of infected trees is reached in about 5 days (See figure 1.1). So
for further study this case is no longer relevant.

2.3.2 N = 30

To study the problem Gani and Stalls encountered, I will use the numerical solutions for de
expected values of the number of infected trees N = 30 trees. First I will make plots for
several starting values with T = 400 days. I hope to see the same bump as encountered by
Gani and Stalls. Next I will make T larger so I am able to see how long it takes to get to
the stationary distribution. Having done this all I will move on to the next chapter in which
I will try to explain the problem by the quasi-stationary distribution.
I will start by plotting the expected values for starting values: X(0) = 0, 10, 20, 30. The
parameters used are α = 0.05, β = 0.15, q = 0.9, λ = 2, T = 400 days. The m-file used for
these plots is found in Appendix A.
In this figure it can be seen that in a year time the expected values of the number of infected

trees seems to be constant and thus one could think to have found the stationary distribution.
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Figure 2.2: plots for X(0) = 0, 10, 20, 30 and T = 50000

Increasing the time T to 50000 gives a plot in which it is seen that the stationary distribution
is not in the values found in the plots of T = 400.
I expect that this happens, because of the differences in the powers, which are found in the
solutions of the pj(t). I expect that the first power, with the smallest eigenvalue, will slow
the process down. In other words, the smaller eigenvalues will make the e-power converges to
0 in the limit much faster then the e-power in which the second biggest eigenvalue is found.
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Chapter 3

Quasi-stationary distribution

In this chapter I am going try explaining the bumps arising in the plots by the quasi-stationary
distribution. I will first introduce the idea of this quasi-stationary distribution and after that
I am using the eigenvalue method again to see if it explains the bumps in the plots.

3.1 The idea

The idea of the quasi-stationary distribution is basically to leave out state 0. It will still be
possible to start with zero infected trees, however it’s only possible to leave this state, but it
will never be entered again. For the Q-matrix this means that de first column will consist of
zeroes only. The Q-matrix will now be denoted by 0Q, with the zero referring to the fact that
state 0 can only be left never to come back there. For the example with 2 trees this matrix is

0Q =

 0 α 0
0 −(λq + α+ β) α+ β
0 λq −λq

 . (3.1)

Now I can use the eigenvalue method again on this matrix. The only extra thing I have
to do now is normalizing the matrix I get when I’ve determined e0Qt. This has to be done,
since the pj(t) that are found this way no longer sum up to 1. However, I am not interested
in the P -matrix, but I am interested in the number of infected trees at time t. So rather then
normalizing the P -matrix, I will normalize the number of infected trees at time t.
Assuming X(0) = a the expected value of the number of infected trees now becomes

Ea(X(t)) =

∑N
j=0 j · paj(t)∑N
k=0 pak(t)

. (3.2)

Here paj(t) and pak(t) are entries of the corresponding P -matrix.
Now I have defined this matrix and the expected value of the number of infected trees at time
t, I will use Matlab again to find numerical solutions for the expected value of the number of
infected trees. Again I will be using the eigenvalue method.
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(a) (b) (c)

Figure 3.1: Plots for QSD with X(0) = 10, 20 and 30

3.2 Numerical solutions for the QSD

For finding numerical solutions using the matrix 0Q (3.1), I am using almost the same m-file
as I have used for finding the numerical solutions for the complete system. However, slight
change I needed to make was the normalizing factor. The m-file used for plots is found in
Appendix B.
For plotting the QSD I used 30 trees again and I have chosen the same parameters as be-
fore and made plots for different starting values of infected trees. These parameters were:
α = 0.05, β = 0.15, q = 0.9, λ = 2. Now I have chosen T to be 400 and next to the plot of the
QSD, I have plotted the numerical solutions of the complete system too. That way I want to
check if the QSD describes the complete system in the short run.

Above there are three figures with respectively X(0) = 10, 20 and 30. The red plots are
the QSD-plots. From these I can now conclude that the QSD is not a good explanation for
the bumps that appear in the complete model. However, I have been trying to other ideas to
try and explain the bumps.

The first idea I have tried is making a new restriction to the process. This time I didn’t
remove the possibility of entering the state of 0 infected trees, but instead of that I removed
possibility of leaving the state 0. This means that in the long run 0 is an absorbing state.
This means that the 0Q-matrix changes into the following(again in the example of 2 trees)

0Q
′ =

 0 0 0
λq −(λq + α+ β) α+ β
0 λq −λq

 . (3.3)

The downside to this idea is that, in the long run it will stay in the state 0 and thus
it won’t give a good description of the complete system. However, if this idea gives a good
description in the short run it might need to be altered a little.
The plots I have made in Matlab for this model compare pretty well to the plots for the
original model. The m-file used for the plots is found in Appendix C. The plots for the short
run for both models come pretty much together (plots are found on the next page). Only for
lower starting values there can be seen a little difference.

16



(a) (b) (c)

Figure 3.2: Plots for idea 1 with X(0) = 10, 20 and 30

(a) (b) (c)

Figure 3.3: Plots for idea 2 with X(0) = 10, 20 and 30

Another idea I have been trying, is more based on the QSD. The possibility of entering
case 0 is left out again and I tried plotting with and without normalization, but it in this case
it doesn’t seem to matter if you normalize of not. Next to this change I made another little
change in the 0Q-matrix, making it the following

0Q
′′ =

 0 α 0
0 −(α+ β) α+ β
0 λq −λq

 . (3.4)

The second change I have made is leaving out the λq in the entry 0Q(1, 1). The plots I
get now are more accurate then with the λq. Again for this idea the stationary distribution
is not good enough to give an explanation for the original idea, however in the short run it is.
The short run plots above seem to be a good approximation of the complete model, however
with lower starting values this model is a lot less accurate then that of the first alternative
idea. The m-file used for these plots is found in Appendix D.
Something worth of noting, is the fact that this last model has just a little adjustment to
the original method, however it is strange to see that in the long run the expected value of
infected trees is at about 21 for the chosen parameters. This is a huge difference with the
original model, where the expected value of infected trees is about 2.

So concluding this chapter it seems that the quasi stationary distribution does not explain
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the bumps that appear in the long run plots of the original model. However it might be that
slight changes in the idea of the quasi stationary distribution might explain these bumps.
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Chapter 4

Conclusion

After studying the model introduced by Gani and Stalls, I have tried to explain a bump seen
in plots of the expected value of the number of infected trees by the theorem of the quasi
stationary distribution. After this study I can conclude that this bump in the plots is not
explained by the quasi-stationary distribution. Even worse the QSD doesn’t come near an
explanation. This is because the quasi-stationary distribution in the short run doesn’t look
like the behavior in the short of the original process
It is good to see however that there are a few points which might be studied more. One of
these points is the stochastic process in which Q(1, 0) = 0 and Q(1, 1) = −(α + β). The
stochastic process obtained this way does describe the original model well enough in the short
run, however in the long run it is remarkable that this process has a very different stationary
distribution. In example in the case of the parameters chosen by Gani and Stalls this is 21.
So one could ask himself why this is so dependent of the starting value of infected trees, since
the original model is only slightly different. Another remarkable thing to this process is the
fact that normalizing this process doesn’t seem to matter.
Another point worth of studying is another stochastic process. This process looks a lot like
the process above, only here Q(1, 0) is not changed and Q(0, 1) = 0, meaning that once state
0 is entered it will never be left. On the short run this describes the original model very well.
Also this process works even better without the normalizing factor. Unfortunately state 0 is
absorbing, so in the long run this process isn’t very good as well.
The problem with these options is that in the long run, the stationary distribution is not the
same as it seems in the short run. So in the end the problem remains the same as in the
beginning. Maybe further study and adjustments of the processes as before might give better
processes which give good way to find the distribution in the short run.
For real applications there are some suggestions however. One would like to control the
process in the short run. This might be done by minimizing λ under the restriction that there
is a probability of less then x percent that there are infected trees. Or minimizing λ under
the restriction that the average number of infected trees is at most a value of y infected trees.

Downside to this is method is that λ may not depend on the states, since in principle one
does not know the exact amount of infected trees at a time t. Next to that in the short run
the system depends heavily on the initial number of infected trees, so it is necessary to make
an estimate of the number of infected trees at time 0. Based on the last stochastic process
it might also be good to try and minimize λ under the restriction that the total expected
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number of infected trees at time t until absorption in 0 stays under a certain value. Again
this is dependent on the number of infected trees at time 0.
Another interesting point that I have noticed while studying the model is the following: the
more trees there are in the model, the eigenvalues seem to converge to certain values. In
case of the parameters chosen here, they even have the same distance to each other. I think
this is very unexpected and might even be good to be studied since it doesn’t depend on the
number of trees and for models like this one might use this fact to make an estimate of the
eigenvalues.
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Appendix A

function f = numeriek(lambda,q,alpha,beta,n,a,g,T);

Q=zeros(n);

Q(1,1)=-alpha;
Q(1,2)=alpha;
Q(n,n-1)=lambda*q;
Q(n,n)=-lambda*q;

for i=2:(n-1)
Q(i,i-1)=lambda*q;
Q(i,i+1)=alpha+beta*(i-1);
Q(i,i)=-(lambda*q+alpha+(i-1)*beta);
end

[U V]=eig(Q, ’nobalance’);
v=sort(diag(V));

w=[];
for i=1:(n-1)
w=[w,v(i)];
vpa(w,10);
end

x=[];
for t=0:g:T
A=expm(t*V);
B=U*A*U(-1);
C=0;
for j=1:n
C=C+(j-1)*B(a+1,j);
end
x=[x,C];
end
t=[0:g:T];
plot(t,x)
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Appendix B

function f = numeriekQSD(lambda,q,alpha,beta,n,a,g,T);

Q=zeros(n);

Q(1,2)=alpha;
Q(n,n-1)=lambda*q;
Q(n,n)=-lambda*q;
Q(2,3)=alpha+beta;
Q(2,2)=-(lambda*q+alpha+beta);

for i=3:(n-1)
Q(i,i-1)=lambda*q;
Q(i,i+1)=alpha+beta*(i-1);
Q(i,i)=-(lambda*q+alpha+(i-1)*beta);
end

[U V]=eig(Q, ’nobalance’);
v=sort(diag(V));

w=[];
for i=1:(n)
w=[w,v(i)];
vpa(w,10);
end

x=[];

for t=0:g:T
A=expm(t*V);
B=U*A*U(-1);
C=0;
D=0;

for i=1:n
D=D+B(a+1,i);
end
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for j=1:n
C=C+(((j-1)*B(a+1,j))/D);
end

x=[x,C];
end

t=[0:g:T];
plot(t,x,’r’)
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Appendix C

function f = numeriekQ(0,1)(lambda,q,alpha,beta,n,a,g,T);

Q=zeros(n);

Q(2,1)=lambda*q;
Q(n,n-1)=lambda*q;
Q(n,n)=-lambda*q;
Q(2,3)=alpha+beta;
Q(2,2)=-(lambda*q+alpha+beta);

for i=3:(n-1)
Q(i,i-1)=lambda*q;
Q(i,i+1)=alpha+beta*(i-1);
Q(i,i)=-(lambda*q+alpha+(i-1)*beta);
end

[U V]=eig(Q, ’nobalance’);
v=sort(diag(V));

w=[];
for i=1:(n)
w=[w,v(i)];
vpa(w,10);
end

x=[];
for t=0:g:T
A=expm(t*V);
B=U*A*U(-1);
C=0;
D=0;

for i=1:n
D=D+B(a+1,i);
end
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for j=1:n
C=C+(((j-1)*B(a+1,j)));
end

x=[x,C];
end

t=[0:g:T];
plot(t,x,’m’)
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Appendix D

function f = numeriekQ(1,0)(lambda,q,alpha,beta,n,a,g,T);

Q=zeros(n);

Q(1,2)=alpha;
Q(n,n-1)=lambda*q;
Q(n,n)=-lambda*q;
Q(2,3)=alpha+beta;
Q(2,2)=-(alpha+beta);

for i=3:(n-1)
Q(i,i-1)=lambda*q;
Q(i,i+1)=alpha+beta*(i-1);
Q(i,i)=-(lambda*q+alpha+(i-1)*beta);
end

[U V]=eig(Q, ’nobalance’);
v=sort(diag(V));

w=[];
for i=1:(n)
w=[w,v(i)];
vpa(w,10);
end

x=[];

for t=0:g:T
A=expm(t*V);
B=U*A*U(-1);
C=0;
D=0;

for i=1:n
D=D+B(a+1,i);
end
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for j=1:n
C=C+(((j-1)*B(a+1,j)));
end

x=[x,C];
end

t=[0:g:T];
plot(t,x,’g’)
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