
Conditional independence
Nooitgedagt, H.

Citation
Nooitgedagt, H. (2008). Conditional independence.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596836
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596836


H. Nooitgedagt

Conditional Independence

Bachelorscriptie, 18 augustus 2008

Scriptiebegeleider: prof.dr. R. Gill

Mathematisch Instituut,
Universiteit Leiden



Preface

In this thesis I’ll discuss Conditional Independencies of Joint Probability
Distributions (here after called CI’s respectively JPD’s) over a finite set of
discrete random variables. Remember that for any such JPD we can write
down a list of all CI’s, between two subsets of variables given a third. Such
a list is called a CI-trace. An arbitrary list of CI’s is called a CI-pattern,
without a priori knowing if there will exist a corresponding JPD with this
CI-pattern.

For simplicity and without loss of generality we take all JPD’s over n + 1
variables and label them by the integers 0, 1, . . . , n. A CI-trace now becomes
a set of triples consisting of subsets of [n], the random variables (with [n] I
denote the set {0, 1, . . . , n}). For example (A, B, C) with A, B and C ⊂ [n]
is such a triple, it can also be denoted as A⊥B|C, which means that the
random variables of A are independent of the random variables of B given
any outcome on the random variables of C.

It was believed that CI-traces could be characterised by some finite set of
rules, called Conditional Independence rules, CI-rule.

Such a CI-rule would state that if a CI-trace contains a certain pattern
of triplets it should also contain a certain other triple. Furthermore such
a pattern of a CI-rule should itself be finite; it should consist of k CI’s,
called the antecedents that would validate another k + 1’th CI, called the
consequent. The order of a CI-rule is the number k of its antecedents.

This idea would imply that the set of all CI-traces is equal to the set of
all CI-patterns closed under the CI-rules. In 1992 Milan Studený wrote an
article on this subject called Conditional Independence Relations have no
finite complete characterisation. He proved that such a characterisation is
not possible. Now the main goal of my thesis was to understand this article
and to work out a readable version of the theorem and the proof.

The proof is based on two major parts. First of all the existence of a
particular JPD and its CI-pattern on n + 1 variables and secondly on a
proposition about CI-patterns based on entropies. The remainder of my
thesis will contain sections on these two major parts, Studený’s theorem and
a small summary of the changes I made.
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1 Introduction

In this thesis I will be discussing joint probability distributions, JPD’s, over
n + 1 discrete random variables, X0, X1, . . . Xn, taking a finite value each.
W.l.o.g. we can label these random variables with the set [n] = {0, 1 . . . , n}.
Let Xi denote the random variable with index i and suppose it takes values in
Ei, which is a finite non-empty set. For A ⊂ [n], XA will denote the random
vector (Xj : j ∈ A). If A = ∅ then it will be the degenerate random variable
taking a fixed value, denoted by x∅. X will be the short notation for X[n].
The random vector X takes values in E = E[n] = ×i∈[n]Ei. A generic value of
XA is denoted by xA. The JPD of X is denoted by P . The class of all JPD’s
over n + 1 random variables will be denoted by P([n])

With T ([n]) I shall denote the triplet set, of [n], which is the set of all
ternary-tuples u = (A, B, C) such that A, B and C are disjoint subsets of
[n]. We define the context of a triple u as [u] = A ∪ B ∪ C. A triple
u = (A, B, C) is called a trivial triple if and only if A and/or B is empty.
The set of non-trivial triples is denoted by T∗([n]).

Now we can give the following definitions,

Definition 1.1 1 Let P be a JPD over n+1 random variables X0, X1, . . . , Xn

and A, B, C ⊂ [n]. The set XA is said to be conditional independent of XB

given XC, shortly written as XA⊥XB|XC, if and only if,

P (XA = xA|XB = xB, XC = xC) = P (XA = xA|XC = xC),

whenever P (XB = xB, XC = xC) > 0. Note that this can also be written as

P (XA = xA, XB = xB, XC = xC)P (XC = xC) =
P (XB = xB, XC = xC)P (XA = xA, XC = xC).

For all xA ∈ EA, xB ∈ EB and xC ∈ EC.

In the remainder of the thesis I will abuse notation and use the following
notation,

p(xA, xB, xC) = P (XA = xA, XB = xB, XC = xC),
p(xA|xB, xC) = P (XA = xA|XB = xB, XC = xC),
p(xA|xC) = P (XA = xA|XC = xC),
etc...

1See Causality, by Pearl, page 11. To fit this thesis small changes in notation have
been made.
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Definition 1.2 Given a JPD, P , over n+1 random variables, X0, X1, . . . , Xn,
labelled by [n]. I define its corresponding CI-trace, IP ⊂ T ([n]) as

(A, B, C) ∈ IP ⇐⇒ XA⊥XB|XC ,

with respect to the JPD. XA⊥XB|XC can shortly be written as A⊥B|C.

As mentioned in the preface, it was long believed that taking an arbitrary
set I ∈ T ([n]) and closing it under some finite set of CI-rules, would give a
CI-traceof some JPD.

A CI-rule contains a certain pattern of k triples of T ([n]) and has exactly
one triple as consequent. The random variables represented by the sets in
the consequent can only contain random variables that were also represented
by the sets in the antecedents. The triples contained in the antecedents
are always non-trivial, furthermore none of the CI-rules is a deducible from
previous CI-rules. The order of a CI-rule, R, is equal to the number of its
k antecedents, denoted by ord(R) = k. For example some CI-rules are listed
below

Symmetry A⊥B|C ⇒ B⊥A|C,
Contraction A⊥B|C & A⊥D|(B, C) ⇒ A⊥(B, D)|C,
Decomposition (A, D)⊥B|C ⇒ D⊥B|C,
Weak Union A⊥(B, D)|C ⇒ A⊥B|(C, D),

with respectively order 1,1,2 and 1.

An important operator in the remainder of this thesis will be the operator
successor. Successor is defined on [n] \ {0} as follows

suc(j) =

{
j + 1 if j ∈ [n] \ {0, n},
1 if j = n,

}
i.e., the cyclic permutation on [n] \ {0}.
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2 Proposition

2.1 Entropies

The theory of entropies was created to measure the mean amount of infor-
mation gained from some random variable X after obtaining its actual value,
i.e. we average over the possible values of X. We measure this at the hand of
the random variable probabilities rather than on its actual outcome. (Note
that in this thesis we will only discuss discrete cases.) The Shannon entropy
of a discrete random variable X will be defined as:

H(X) := −
∑

x

p(x) log p(x)

with log := log2 and by convention 0 log 0 := 0. For this thesis in particular
we shall need the notion of the joint entropy. The joint entropy over two
random variables X and Y is defined as:

H(X, Y ) := −
∑
x,y

p(x, y) log p(x, y),

and can be extended to any number of random variables in the obvious way.
The joint entropy measures the total uncertainty of the pair X, Y . Now
suppose we know the value of Y and hence know H(Y ) bits of information
of the pair (X, Y ). The remaining uncertainty is due to X , given what we
know about Y . The entropy of X conditional on knowing Y is therefore
defined as:

H(X | Y ) := H(X, Y )−H(Y )

= −
∑
x,y

p(x, y) log p(x, y) +
∑

y

p(y) log p(y)

= −
∑
x,y

p(x, y) log p(x, y) +
∑
x,y

p(x, y) log p(y)

= −
∑
x,y

p(x, y) log
p(x, y)

p(y)

Finally the mutual entropy of X and Y which measures the information
that X and Y have in common is defined as:

H(X : Y ) := H(X) + H(Y )−H(X, Y )
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= −
∑

x

p(x) log p(x)−
∑

y

p(y) log p(y)

+
∑
x,y

p(x, y) log p(x, y)

= −
∑
x,y

p(x, y) log p(x)−
∑
x,y

p(x, y) log p(y)

+
∑
x,y

p(x, y) log p(x, y)

= −
∑
x,y

p(x, y) log
p(y)p(y)

p(x, y)
,

where we subtract the joint information of the pair (X, Y ) and now the
difference is the information on X and Y that has been counted twice and is
therefore called the mutual information on X and Y .

The following theorem states a few features of the Shannon Entropy, only
the sixth statement will be proven because it will be used in the proof of
lemma 2.2 on page 5.

Theorem 2.1 (Properties of the Shannon Entropy) Let X, Y, Z be ran-
dom variables then we have,

1. H(X, Y ) = H(Y, X), H(X : Y ) = H(Y : X).

2. H(Y | X) ≥ 0 and thus H(X : Y ) ≤ H(Y ), with equality iff Y is a
function of X, Y = f(X).

3. H(X) ≤ H(X, Y ), with equality iff Y is a function of X.

4. Sub-additivity: H(X, Y ) ≤ H(X) + H(Y ) with equality iff X and Y
are independent random variables.

5. H(X | Y ) ≤ H(X) and thus H(X : Y ) ≥ 0, with equality iff X and Y
are independent random variables.

6. Strong sub-additivity: H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z),
with equality iff Z is conditional independent of X given Y .

7. Conditioning reduces entropy: H(X | Y, Z) ≤ H(X | Y ) .

Proof of 6
To prove this statement we use the fact that − log x ≥ (1 − x)/ ln 2, with

4



equality if and only if x + 1 and ln := log2. We get

H(X, Y ) + H(Y, Z)−H(X, Y, Z)−H(Y )

= −
∑
x,y

p(x, y) log p(x, y)−
∑
y,z

p(y, z) log p(y, z)

+
∑
x,y,z

p(x, y, z) log p(x, y, z) +
∑

y

p(y) log p(y)

= −
∑
x,y,z

p(x, y, z) log p(x, y)−
∑
x,y,z

p(x, y, z) log p(y, z)

+
∑
x,y,z

p(x, y, z) log p(x, y, z) +
∑
x,y,z

p(x, y, z) log p(y)

= −
∑
x,y,z

p(x, y, z) log
p(x, y)p(y, z)

p(x, y, z)p(y)

≥ 1

ln 2

∑
x,y,z

p(x, y, z)
(

1− p(x, y)p(y, z)

p(x, y, z)p(y)

)
=

1

ln 2

∑
x,y,z

(
p(x, y, z)− p(x, y)p(y, z)

p(y)

)
=

1

ln 2

∑
x,y,z

p(y)(p(x, z|y)− p(x|y)p(z|y))

≥ 0

We see that this is true because the summation will always be bigger then
0, unless if p(x, z|y) = p(x|y)p(z|y) for all x, y, z ∈ X, Y, Z which is exactly
the case if and only if X is conditional independent of Z given Y . Thus as
required we get H(X, Y, Z) + H(Y ) ≤ H(X, Y ) + H(Y, Z), with equality if
and only if X is conditional independent of Z given Y .

�

2.2 Lemma’s

Lemma 2.2 Let P be a JPD over n random variables and IP its CI-trace.
Then the following holds,

(A, B, C) ∈ IP ⇔ H(XA|XB, XC) = H(XA|XC).

Proof
Re-write H(XA|XB, XC) = H(XA|XC) as H(XA, XB, XC) − H(XB, XC) =
H(XA, XC)−H(XC) and then as H(XA, XB, XC) +H(XC) = H(XA, XC) +
H(XB, XC) and use 6 of thm 2.1 on page 4.

5



�

2.3 The proposition

Proposition 2.3 Let I be a CI-trace over n > 3 random variables and 2 ≤
k ≤ n. Consider the operator successor on [k]. Then the following two
statements are equivalent;

i) ∀j ∈ [k] : (0, j, suc(j)) ∈ I,
ii) ∀j ∈ [k] : (0, suc(j), j) ∈ I.

Proof We will use the following two statements for the proof,
1) H(XA, XB, XC) + H(XC) ≤ H(XB, XC) + H(XA, XC)
2) 1) holds with equality iff (A, B, C) ∈ I

The first expression we have already seen in section 2.1 and the proof of the
second statement is given in lemma 2.2.
i)⇒ ii) : Now using 2) on 1) given that the first statement i) is true we get
the following for all j ∈ [k]:

H(X0, Xj, Xsuc(j)) + H(Xsuc(j))−H(Xj, Xsuc(j))−H(X0, Xsuc(j)) = 0

Next we shall take the summation and see that by a using simple summation
rules and small adjustment of the integers we will get the same summation
that suggest another kind of dependencies.

0 =
k∑

j=1

H(X0, Xj, Xsuc(j)) + H(Xsuc(j))−H(Xj, Xsuc(j))−H(X0, Xsuc(j))

=
k∑

j=1

H(X0, Xj, Xsuc(j)) +
k∑

j=1

H(Xsuc(j))

−
k∑

j=1

H(Xj, Xsuc(j))−
k∑

j=1

H(X0, Xsuc(j))

=
k∑

j=1

H(X0, Xj, Xsuc(j)) +
k∑

j=1

H(Xj)

−
k∑

j=1

H(Xj, Xsuc(j))−
k∑

j=1

H(X0, Xj)

=
k∑

j=1

H(X0, Xsuc(j), Xj) + H(Xj)−H(Xj, Xsuc(j))−H(X0, Xj)

6



By 1) we know that for all j ∈ {1, . . . , k},

H(X0, Xsuc(j), Xj) + H(Xj)−H(Xj, Xsuc(j))−H(X0, Xj) ≤ 0,

thus by the equations above they should all be equal to 0. But that means
by 2) that for all j ∈ {1, . . . , k} (0, suc(j), j) ∈ I and thus that the second
statement, ii), is also true.
ii)⇐ i) : The proof is completely analogue to the one above. Only the
integers j and suc(j) should be interchanged.

�
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3 Constructing the JPD

3.1 Requirements

Lemma 3.1 Let I, J be two CI-traces both over n + 1 random variables.
Then I ∩ J is also a CI-trace.

Proof.
Suppose that P ∈ P([n]) is a JPD on the random variables X0, X1, . . . , Xn

and Q ∈ P([n]) is a JPD on the random variables Y0, Y1, . . . , Yn with resp.
CI-traces IP and IQ. Define the JPD R ∈ P([n]) on the random variables
Z0, Z1, . . . , Zn, with Zi = (Xi, Yi), i.e. zi = (xi, yi), for all i ∈ [n] as follows:

R(Z = z) = P (X = x)Q(Y = y), withx ∈ EX , y ∈ EY , and z ∈ EZ
We only need to show that R has IR = (IP ∩ IQ) as CI-trace. Suppose
(A, B, C) ∈ IR then ZA⊥ZB|ZC = (XA, YA)⊥(XA, YB)|(XC , YC). By decom-
position we have XA⊥XB|(XC , YC). Now we find

p(xA, xB, xC , yC)p(xC , yC) = p(xA, xB, xC)p(xC)q(yC)2

Furthermore

p(xA, xB, xC , yC)p(xC , yC) = p(xA, xC , yC)p(xB, xC , yC)
= p(xA, xC)p(xB, xC)p(yC)2

Hence
p(xA, xB, xC)p(xC) = p(xA, xC)p(xB, xC),

so (A, B, C) ∈ IP . Completely analogue we can find that (A, B, C) ∈ IQ

and as a result we have that IR ⊂ IP ∩ IQ.
On the other hand if (A, B, C) ∈ IP ∩ IQ we have

p(xA, xB, xC)p(xC)p(yA, yB, yC)p(yC)
= p(xA, yA, xB, yB, xC , yC)p(xC , yC),
= p(zA, zB, zC)p(zC).

Furthermore,

p(xA, xB, xC)p(xC)p(yA, yB, yC)p(yC)
= p(xA, xC)p(xB, xC)p(yA, yC)p(yB, yC),
= p(xA, yA, xC , yC)p(xB, yB, xC , yC),
= p(zA, zC)p(zB, zC).

Hence
p(zA, zB, zC)p(zC) = p(zA, zC)p(zB, zC),

so (A, B, C) ∈ IR. As needed to be proven IR = IP ∩ IQ is indeed a CI-trace.
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3.1.1 Parity Construction

Let n ≥ 3 and D ⊂ [n] such that |D| ≥ 2. Then the following CI-trace ID

exists,

ID = {(A, B, C) ; A ∩D = ∅ or B ∩D = ∅ or D 6⊂ A ∪B ∪ C}

3.1.2 Four State Construction

Let n ≥ 3. Then there always exists a CI-trace K such that
- (0, i, j) ∈ K whenever i, j ∈ [n] \ {0} : i 6= j,
- (i, j, 0) 6∈ K whenever i, j ∈ [n] \ {0} : i 6= j,
- (A, B, ∅) 6∈ K whenever A, B 6= ∅.

3.1.3 Increase-Hold Construction

Let n ≥ 3. Then there exists a CI-trace J such that
- (0, j, suc(j)) ∈ J whenever j ∈ [n] \ {0, n},
- (0, suc(j), j) 6∈ J whenever j ∈ [n] \ {0, n}.

3.2 The CI-trace

Lemma 3.2 Let n ≥ 3 and s ∈ [n] \ {0}, then

I = [T ([n]) \ T∗([n])] ∪

 ⋃
j∈[n]\{0,s}

{(0, j, suc(j)), (j, 0, suc(j))}


is a CI-trace.

Proof
W.l.o.g. we can assume s = n Thus we denote

I = [T ([n]) \ T∗([n])] ∪

(
n−1⋃
j=1

{(0, j, suc(j)), (j, 0, suc(j))}

)
.

To show that I is a CI-trace we put D = D1 ∪ D2 where
D1 = {D ⊂ N ; |D| = 4}
D2 = {D ⊂ N ; |D| = 3 ∧D 6= {0, j, suc(j)} for every j = 1, . . . , n− 1}.

Consider the dependency models ID for D ∈ D, K and J constructed above
in resp. 3.1.1, 3.1.2 and 3.1.3. By Lemma 3.1 we have L = K∩J∩

(
∩D∈DID

)
is a CI-trace. It is easy to see that I ⊂ L.

9



To prove that L ⊂ I we need to show that for any u = (A, B, C) 6∈ I we
have u 6∈ L. That means that the following two cases should be ruled out for
any u ∈ L \ I; C = ∅ and |[u]| ≥ 3:

C = ∅ :
Then u 6∈ K by the third condition of the construction of K and thus
u 6∈ L. In particular this shows that any non-trivial (A, B, C) ∈ T ([n])\
I with |[u]| = 2 is not an element of L.

|A ∪B ∪ C| = 3 :
We consider two cases; either [u] ∈ D2 or [u] 6∈ D2. In the first case we
know ∃D ∈ D2 such that D ⊂ [u] but that implies that u 6∈ ∩D∈D2I

D

so u 6∈ L.
Secondly suppose [u] 6∈ D2 and C 6= ∅ then [u] = {0, j, suc(j)} for some
j ∈ {1, . . . , n− 1}. We can have the following two cases;

• u ∈ {(j, suc(j), 0), (suc(j), j, 0)}. But that means that u 6∈ K
because of the second condition of the construction of K and thus
u 6∈ L.

• u ∈ {(0, suc(j), j), (suc(j), 0, j)}. But that means that u 6∈ J
because of the second condition of the construction of J and thus
u 6∈ L.

|A ∪B ∪ C| ≥ 4 :
Then ∃D ⊂ N such that D ∈ D1 and D ⊂ [u]. This implies u 6∈
∩D∈D1I

D. But then we also have that u 6∈ L.

So if u ∈ T ([n]) \ I then u 6∈ L. Thus I = K ∩ J ∩
(
∩D∈DID

)
.

�

3.3 Proofs of the Constructions

Proof of the Parity Construction
If we can construct a JPD such that ID is its CI-trace the construction is
proven correct. To do so take n + 1 random variables, such that Xi takes
values in

Ei =

{
{0, 1} if i ∈ D,
{0} if i 6∈ D.

}
Furthermore we take a JPD PD ∈ P([n]) as follows

10



p(x) =

{
21−|D| if

∑
i∈D xi is even,

0 if
∑

i∈D xi is odd.

}
First we will show that ID ⊂ IP . Let u = (A, B, C) ∈ ID then we have

three possibilities, if:

A ∩D = ∅ :
We know that A contains only indices i for which we have Ei = {0}.
This means that all random variables indexed by A are deterministic
and hence we know p(xA, xB, xC) = p(xB, xC) and p(xA, xC) = p(xC)
(i.e. p(xA, xB, xC)p(xC) = p(xA, xC)p(xB, xC)). So u ∈ IP .

B ∩D = ∅ :
Analogue to the proof above.

D 6⊂ A ∪B ∪ C :
This implies ∃j ∈ D such that j 6∈ [u]. Now take the marginal distribu-
tion on [n] \ {j} other random variables. It’s immediate that this is a
uniform distribution on the outcomes of the [n]\{j} remaining random
variables. Hence all random variables of [n] \ {j} are independent. so
certainly A⊥B|C, hence u ∈ ID

To show that IP ⊂ ID we only need to prove that IP does not contain
anything else. Suppose that u = (A, B, C) ∈ IP but u 6∈ ID than we know
that neither A and B are empty and they both contain at least one random
variable that is also in D and that D ⊂ [u]. But then A can never be
conditional independent of B given C because the

∑
i∈D xi = even.

Thus IP = ID and indeed ID ∈ CIR(N).

�

Proof of the Four-State Construction
Take n + 1 random variables such that Xi takes values in Ei = {0, 1} for
i ∈ [n] and let P ∈ P([n]) be defined as follows

P (X0 = 0, X[n]\{0} = 0̄) = a1,
P (X0 = 1, X[n]\{0} = 0̄) = a2,
P (X0 = 0, X[n]\{0} = 1̄) = a3,
P (X0 = 1, X[n]\{0} = 1̄) = a4,

such that aj > 0 for j ∈ {1, 2, 3, 4},
∑

j aj = 1 and a1a4 6= a2a3.

11



Take (0, i, j) ∈ T ([n]) such that i 6= j then there are eight possibilities
outcomes I will list only two. The others are similar:

a1(a1 + a2) = P ((X0, Xi, Xj) = (0, 0, 0))P (Xj = 0)
= P ((X0, Xj) = (0, 0))P ((Xi, Xj) = (0, 0)) = a1(a1 + a2)

0× (a1 + a2) = P ((X0, Xi, Xj) = (1, 1, 0))P (Xj = 0)
= P ((X0, Xj) = (1, 0))P ((Xi, Xj) = (1, 0)) = a1 × 0

So (0, i, j) ∈ IP .

Take (i, j, 0) ∈ T ([n]) such that i 6= j. We have

P ((Xi, Xj, X0) = (1, 0, 0)) = 0,
P ((X0, Xj) = (0, 0)) = a1,
P ((X0, Xi) = (0, 1)) = a3.

Hence (i, j, 0) 6∈ IP .

Take (A, B, ∅) ∈ T ([n]) \T∗([n]). If A and B ⊂ [n] \ {0} its immediate that
there are not independent. So suppose w.l.o.g. that 0 ∈ A. Then we have

P (XA = 0̄) = a1,
P (XB = 1̄) = a3 + a4,
P (XA = 0̄, XB = 1̄) = 0,

Hence p(xA)p(xB) 6= p(xA, xB) which implies (A, B, ∅) 6∈ IP .
So P is a JPD that has a CI-trace that has the properties of K.

�

Proof of the Increase-hold construction
Take n + 1 random variables, such that Xi takes values in

Ei =

{
{1, . . . , i} for i ∈ [n] \ {0},
{1, . . . , n} for i = 0.

}
Furthermore we take a JPD P ∈ P([n]) as follows p(ak) = 1

n
, with ak =

(ak
0, a

k
1, . . . , a

k
n) ∈ E , such that

ak
i =

{
min{i, k} for i ∈ [n] \ {0}
k for i = 0.

}

12



Take (0, j, suc(j)) ∈ T ([n]) such that j ∈ {1, . . . , n − 1} and k ∈ [n] \ {0}.
We distinguish two cases; either k ≥ j + 1 or k < j + 1. In the first case
xj = j or xj = k and we get

1
n

1
n

= P ((X0, Xj, Xsuc(j)) = (k, j, k))P (Xsuc(j) = k)
= P ((X0, Xsuc(j)) = (k, k))P ((Xj, Xsuc(j)) = (j, k)) = 1

n
1
n

1
n

1
n

= P ((X0, Xj, Xsuc(j)) = (k, k, k))P (Xsuc(j) = k)
= P ((X0, Xsuc(j)) = (k, k))P ((Xj, Xsuc(j)) = (k, k)) = 1

n
1
n

In the second case k ≥ j + 1:

1
n

n−j
n

= P ((X0, Xj, Xsuc(j)) = (k, j, j + 1))P (Xsuc(j) = j + 1)
= P ((X0, Xsuc(j)) = (k, j + 1))P ((Xj, Xsuc(j)) = (j, j + 1))
= 1

n
n−j
n

and thus indeed we have (0, j, suc(j)) ∈ IP

Take (0, suc(j), j) ∈ T ([n]) such that j ∈ {1, . . . , n − 1} and k = j + 1.
Then

1
n

n−j+1
n

= P ((X0, Xsuc(j), Xj) = (k, j + 1, j))P (Xj = j)
6= P ((X0, Xj) = (k, j))P ((Xsuc(j), Xj) = (j + 1, j)) = 1

n
n−j
n

So (0, suc(j), j) 6∈ IP . So there exists a CI-trace J with these properties.

�
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4 Studený’s Theorem

Theorem 4.1 (Studený ’92) No finite set of CI-rules, sayR0,R1, . . . ,Rp,
can characterise all CI-traces, i.e. the following does not hold

(I ⊂ T ([n]) is a CI − trace ⇐⇒ I closed under R0,R1, . . . ,Rp)

In words: an arbitrary set of independencies can not be extended to a CI-trace
by closing it under a finite set of CI-rules.

Proof
Suppose that we can characterise all CI-traces with a finite set of CI-rules,
R0,R1, . . . ,Rp. Take n ∈ N>m, with m = maxi∈[p](ord(Ri)). We define the
following CI-pattern

I = [T ([n]) \ T∗([n])] ∪

 ⋃
j∈[n]\{0}

{(0, j, suc(j)), (j, 0, suc(j))}

 .

Let K = {u1, . . . , uord(Ri) ∈ I} for i ∈ [p]. If Ri can be applied on K call its
consequent uc. The set K contains triplets involving at most m of the n > m
pairs j, suc(j). So for some s, both the triplets (0, s, suc(s)) and (0, suc(s), s)
are not in K. Now Lemma 3.2 on page 9 gives us the following CI-trace

J = [T ([n]) \ T∗([n])] ∪

 ⋃
j∈[n]\{0,s}

{(0, j, suc(j)), (j, 0, suc(j))}

 .

Now we have K ⊂ J ⊂ I. So if CI-rule Ri can be applied on K, with con-
sequent, say uc, it means that uc ∈ J and hence uc ∈ I. But that means
that I is closed under R0,R1 . . . ,Rp and thus I should be a CI-trace. Which
is in contradiction with Proposition 2.3 on page 6. And the statement is true:

No finite set of CI-rules can characterise all CI-traces

�
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5 Conclusion

There exists no set of finite CI-rules such that we can characterise all CI-
traces without a priori knowing its corresponding JPD. Milan Studený proved
this already in 1992 and so did I. Of course that would not have been possible
without his work. However I do believe that I have written an easier readable
version then he had done.

The proof was based on a contradiction containing the following steps

1. Suppose there exist such a characterisation.

2. Construct a set I of triplets over at least n + 1 random variables,
such that n is larger then the largest order of the antecedents, say m.
Consisting of all trivial triplets and all triplets of the form (0, j, suc(j))
and of course their mirror images.

3. For each subset K of I of size |K| ≤ m, there exist a s such that
(0, s, suc(s)) and its mirror image are not contained in K.

4. Construct a CI-trace with Lemma 3.2 that contains that subset and
hence its consequent. This CI-trace is a subset of I hence the I contains
the consequent. So I should be a CI-trace.

5. Proposition 2.3 tells us that I should also contain the triplets of the
form (0, suc(j), j) and its mirror images. Nevertheless those are not
included, hence I should not be a CI-trace.

6. This contradiction tells us that the assumption is false and hence we
find that there does not exists a finite characterisation of all CI-traces.

This thesis does not contain more then the theorem itself and all elements
needed to proof the statement. Studený did the same in 7 pages, though he
did almost need a whole other article to explain Proposition 2.3, didn’t give
the proofs to the three constructions needed for Lemma 3.2 and I dare say
couldn’t explain the concept about the CI-rules very clearly.

My first contribution is made at point 5. The requirements to prove Propo-
sition 2.3 are made simple and clear in only three pages. I took the idea
behind another article of Studený’s, Multiinformation and the problem of
characterisation of conditional independence relations, which is the theory
behind Shannon Entropies. With that idea the statements in the Proposi-
tion were made immediately clear.
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My second and last contribution is the whole thesis as one piece, at least I
hope that anybody that reads my thesis will understand what Studený did
in his article more easily.
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