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1 Ergodic theory

This thesis is about number-theoretic applications of ergodic theory. In this chapter, we will study the
parts of ergodic theory which will be necessary for us when we will consider its applications. This chapter
is intended for anyone who has some knowledge of measure theory.

1.1 Measure-preserving transformations

A important class of transformations on probability spaces are the measurable transformations:

Definition 1.1. Let (X,U , µ) and (Y,V, λ) be two arbitrary probability spaces. A transformation
T : (X,U , µ)→ (Y,V, λ) is called measurable if A ∈ V ⇒ T−1A ∈ U .

The definition of a measure-preserving transformation should not be too surprising:

Definition 1.2. Let (X,U , µ) and (Y,V, λ) be two arbitrary probability spaces. A transformation
T : (X,U , µ) → (Y,V, λ) is called measure-preserving if T is measurable and λ(A) = µ

(
T−1A

)
for all

A ∈ V.

Measure-preserving transformations may be defined in a rather simple way, but measure-preserving trans-
formations on the same probabilty spaces already have a very strong property:

Theorem 1.3 (Poincaré’s Recurrence Theorem). Let T : (X,U , µ) → (X,U , µ) be a measure-
preserving transformation. Let A ∈ U with µ(A) > 0, then almost all points of A return infinitely often
to A under positive iteration of T .

Proof. Note that the above statement can be formulated as follows: there exists a B ⊂ A with
µ(B) = µ(A) > 0 such that for all x ∈ A there exists a sequence of natural numbers n1 < n2 < n3 < · · ·
with Tni(x) ∈ B for all i.

We will first prove the existence of such a set B and a sequence. Let A ∈ U with µ(A) > 0 and
define for N ≥ 0 the set AN = ∪∞n=NT

−nA. Then ∩∞n=0An is exactly the set of points of X that appear
infinitely often in A under positive iteration of T . The set B = A∩ (∩∞n=0An) is exactly the set of points
in A that return infinitely often in A. For each point x ∈ B we can find a sequence of natural numbers
(ni)

∞
i=1 such that Tni(x) ∈ A for all i (this follows from the way we defined B). However, because

Tnj−ni (Tni(x)) ∈ A for all i, j, we find that Tni(x) ∈ B for all i.

Finally, we need to show that µ(A) = µ(B). We know that µ(An) = µ(An+1) for all n, because T
is measure-preserving. It follows that µ(A0) = µ(An) for all n. Since we also know that A0 ⊃ A1 ⊃ · · · ,
it follows that µ (∩∞n=0An) = µ(A0). Note that A ⊂ A0, from which it now follows that
µ(B) = µ (A ∩ (∩∞n=0An)) = µ(A ∩A0) = µ(A).

Note that, although it doesn’t appear that way in the proof, it is important that µ is finite, as the next
example demonstrates:

Example 1.4. Consider the set of integers and the measure µ which gives each number a measure of
1 and consider the measure-preserving transformation given by T (x) = x + 1. If we let A = {0}, then
µ(A) = 1 > 0 and each of the sets An (as defined in the proof of Theorem 1.3) has infinite measure. It
is obvious that the theorem is incorrect in this case. The proof is also incorrect: since ∩∞n=0An = ∅, we
find 0 = µ (∩∞n=0An) 6= µ(A0) =∞.
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1.2 Ergodicity

Let T be a measure-preserving transformation on the probability space (X,U , µ). If there is a measurable
set A with the property T−1A = A, then it is also true that T−1 (X\A) = X\A. Therefore, we may
consider the restriction of T to A (notation: T |A). If either µ(A) = 0 or µ(A) = 1, then the transformation
is not simplified in a significant way (neglecting null sets is a common practice in measure theory). Because
of this, it may be a good idea to study those measure-preserving transformations that can’t be simplified
in this way. Such transformations are called ergodic:

Definition 1.5. Let T be a measure-preserving transformation on the probability space (X,U , µ). Then
T is called ergodic if the only measurable sets with T−1A = A satisfy either µ(A) = 0 or µ(A) = 1.

Ergodic theory had its origins in statistical mechanics. Suppose that a dynamical system describes a path
γ(t) in the phase-space and that f(γ(t)) is the value of a certain quantity. With experiments we can only
determine the so-called time mean 1

n

∑n−1
k=0 f(γ(tk)), while we can only attempt to calculate the space

mean
∫
X
f dµ. The following theorem, Birkhoff’s Ergodic Theorem, is the most important theorem in

ergodic theory and relates the two previously mentioned means:

Theorem 1.6 (Birkhoff’s Ergodic Theorem). Let T be an ergodic transformation on the probability
space (X,U , µ). Then, for all f ∈ L1(X,U , µ) we have:

lim
n→∞

1
n

n−1∑
k=0

f
(
T k(x)

)
=

∫
X

f dµ

almost everywhere.

For the proof of this theorem we refer to [5, Theorem 1.14]. Note that ergodic transformations are
absolutely not artificial as the following theorem implies:

Theorem 1.7. Let X be a compact metrisable space and let T be a continuous transformation on X.
Then there exists a measure µ so that T is ergodic with respect to this measure.

The proof of this theorem can be found in [5, Theorem 6.10].

A problem that arises naturally is the one of identifying ergodic transformations. The next theorem
is one of many that we can use to prove ergodicity. Before we get to this theorem, we will first prove a
helpful lemma.

Lemma 1.8. Let (X,U , µ) be a probability space and T an ergodic transformation on this space. Then
all sets A ∈ U with µ

(
T−1A4A

)
= 0 satisfy either µ(A) = 0 or µ(A) = 1.

Proof. Let A ∈ U and µ
(
T−1A4A

)
= 0. For all n ≥ 0 we have µ (T−nA4A) = 0, because

T−nA 4 A ⊂ ∪n−1
i=0 T

−i (T−1A4A
)
. Let A∞ = ∩∞n=0 ∪∞i=n T−iA. The sets ∪∞i=nT−iA decrease for

increasing n and each of them has measure equal to A (because µ
(
∪∞i=nT−iA4A

)
≤ µ (T−nA4A) = 0),

so it follows that µ (A∞ 4A) = 0, and thus µ(A∞) = µ(A). Since we have
T−1A∞ = ∩∞n=0 ∪∞i=n T−(i+1)A = ∩∞n=0 ∪∞i=n+1 T

−iA = A∞ and because T is ergodic, it now follows that
µ(A∞) = 0 of µ(A∞) = 1. Since µ(A∞) = µ(A), it now follows that either µ(A) = 0 of µ(A) = 1.
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Theorem 1.9. Let (X,U , µ) be a probability space and T a measure-preserving transformation on this
space. Let p ≥ 1 be an integer. The following statements are equivalent:

1. T is ergodic.

2. If f ∈ Lp(µ) and (f ◦ T )(x) = f(x) for almost all x ∈ X, then f is constant almost everywhere.

Proof. The proof is split up in two parts.
1 ⇒ 2: Let T be ergodic and suppose that f is measurable with f ◦ T = f almost everywhere. We
may assume that f is real-valued. Define for k ∈ Z and n > 0 the set X(k, n) = f−1

([
k
2n ,

k+1
2n

))
. We

have T−1X(k, n)4X(k, n) ⊂ {x : (f ◦ T )(x) 6= f(x)} and thus µ
(
T−1X(k, n)4X(k, n)

)
= 0. It now

follows (Lemma 1.8) that µ(X(k, n)) = 0 or µ(X(k, n)) = 1. For each fixed n, ∪k∈ZX(k, n) = X is
a disjoint union and thus there is exactly one kn with µ(X(kn, n)) = 1. Let Y = ∩∞n=1X(kn, n), then
µ(Y ) = 1 and f is constant in Y . Therefore, f is constant almost everywhere. Since every member of
Lp(µ) is measurable, the result follows.

2 ⇒ 1: Suppose T−1A = A with A ∈ U . The characteristic function χA is measurable, so χA ∈ Lp(µ)
for all p ≥ 1. We also have (χA ◦ T )(x) = χA(x) for all x ∈ X so χA is constant almost everywhere.
This means that either χA = 0 almost everywhere or χA = 1 almost everywhere. It now follows that
µ(A) =

∫
X
χA dµ is either 0 or 1. Therefore, T is ergodic.

1.3 Unique ergodicity

Let X be a set and T an ergodic transformation on this set. While this implies that there is an ergodic
measure µ, it is not necessarily the only ergodic measure with respect to T .

Example 1.10. Consider the unit circle S1, viewed as the interval [0, 1) with its endpoints joined
together. Consider T : S1 → S1 given by T (x) = 2x (mod 1). This transformation is better known as the
doubling map. One can show that it is ergodic using Theorem 1.9 (see [5, p.30, example (4)] for details).
An ergodic measure is the Haar-Lebesgue measure, which measures the lengths of arcs. However, another
ergodic measure is the Dirac measure δ0, which assigns a set A measure 1 only if 0 ∈ A (or else the set
has measure zero).

The following definition should hardly be surprising.

Definition 1.11. Let X be a set and T : X → X a transformation. We call T uniquely ergodic if there
is exactly one ergodic measure.

The following theorem reveals an important property of unique ergodicity:

Theorem 1.12. Let T be a continuous transformation on a compact metrisable space X. The following
four statements are equivalent:

1. T is uniquely ergodic.

2. There is a probability measure µ such that for all continuous functions f and all x ∈ X:

lim
n→∞

1
n

n−1∑
k=0

f
(
T k(x)

)
=

∫
X

f dµ.
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3. For every continuous function f , 1
n

∑n−1
k=0 f

(
T k(x)

)
converges uniformly to a constant.

4. For every continuous function f , 1
n

∑n−1
k=0 f

(
T k(x)

)
converges pointwise to a constant.

The proof of this theorem can be found in [5, Theorem 6.19]. Note the subtle yet important difference
when compared to the ergodic case: the average converges for all x ∈ X instead of almost all x ∈ X.
However, we did assume that X is compact and metrisable, but this is the case in many practical
situations, and so this assumption will not be a huge problem.

1.4 Mixing and weak-mixing

The following theorem is a corollary of Birkhoff’s Ergodic Theorem:

Theorem 1.13. Let (X,U , µ) be a probability space and let T : X → X be measure-preserving. Then
T is ergodic if and only if for all A,B ∈ U we have:

lim
n→∞

1
n

n−1∑
k=0

µ
(
T−kA ∩B

)
= µ(A)µ(B).

Proof. Suppose T is ergodic. If we let f = χA and multiply both sides in the equality of Theorem 1.6
with χB (where χ is the characteristic function), then we find:

lim
n→∞

1
n

n−1∑
k=0

χA
(
T k(x)

)
χB = µ(A)χB .

The left-hand side cannot exceed 1, so we can use the Dominated Convergence Theorem and find:∫
lim
n→∞

1
n

n−1∑
k=0

χA
(
T k(x)

)
χB dµ =

∫
µ(A)χB dµ;

lim
n→∞

1
n

n−1∑
k=0

(∫
χA
(
T k(x)

)
χB dµ

)
= µ(A)

∫
χB dµ;

lim
n→∞

1
n

n−1∑
k=0

µ
(
T−kA ∩B

)
= µ(A)µ(B).

Conversely, suppose that the convergence holds. Let A ∈ U with T−1A = A, then we find:

lim
n→∞

1
n

n−1∑
k=0

µ (A) = (µ(A))2
.

It now follows that µ(A) = (µ(A))2, so that µ(A) = 0 or µ(A) = 1. Therefore, T must be ergodic.

By changing the method of convergence in Theorem 1.13 we get the definitions of respectively weak-mixing
and mixing. In order to define weak-mixing, we need the following definition:
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Definition 1.14. A subset M ⊂ Z≥0 is called a subset of density zero if:

lim
n→∞

(
cardinality(J ∩ {0, 1, . . . , n− 1})

n

)
= 0.

Now we can define weak-mixing and mixing:

Definition 1.15. If T is a measure-preserving transformation on the probability space (X,U , µ), then
T is called weak-mixing if for all A,B ∈ U there exists a subset J(A,B) ⊂ Z≥0 of density zero such that:

lim
J(A,B)63n→∞

µ
(
T−nA ∩B

)
= µ(A)µ(B).

Definition 1.16. If T is a measure-preserving transformation on the probability space (X,U , µ), then
T is called mixing if for all A,B ∈ U :

lim
n→∞

µ
(
T−nA ∩B

)
= µ(A)µ(B).

The difference between ergodicity and (weak-)mixing becomes clear when we look at the previous defi-
nitions and theorem from a practical point of view. Suppose we have a large bath filled with water and
that we also have an amount of painting powder in your favourite colour. Now suppose that we add the
painting powder to the water in a subset B. If we mix the water in the bath, then the way the colour
will spread depends on the way we mix the water. Suppose that we mix the water in an ergodic way
(i.e., the flow of the water can be described by an ergodic transformation), then we see from Theorem
1.13 by substituting B = X that eventually the colour will be evenly spread. However, the theorem says
that this is convergence in mean: the colour will not behave as smoothly as you probably would like to.
Now suppose that the water gets stirred in a mixing way. It follows from the definition that the colour
spreads nicely and that the intensity converges asymptotically. The weak-mixing case is much like the
mixing case, except that the colour density may ”misbehave” once in a while.

The following theorem relates the notions of ergodicity and (weak-)mixing:

Theorem 1.17. Let T be a measure-preserving transformation on the probability space (X,U , µ):

(a) If T is mixing, then T is weak-mixing.

(b) If T is weak-mixing, then T is ergodic.

Proof. We will prove the statements one by one:

(a) This follows trivially: take J(A,B) = ∅.

(b) Consider the sequence (an)∞n=0 given by an = µ (T−nA ∩B) − µ(A)µ(B). We know that |an| ≤ 1
holds for all n. Let αJ(A,B)(n) denote the cardinality of J(A,B)∩{0, 1, . . . , n− 1}. Let ε > 0, then
there is an Nε such that for all n ≥ Nε and n /∈ J(A,B) we have |an| < ε and for all n ≥ Nε we
have

(
αJ(A,B)(n)/n

)
< ε. We find:

lim
n→∞

1
n

n−1∑
k=0

|an| = lim
n→∞

 1
n

∑
n∈J(A,B)∩{0,...,n−1}

|an|+
1
n

∑
n/∈J(A,B)∩{0,...,n−1}

|an|


<

1
n
αJ(A,B)(n) + ε < 2ε.

Now let ε → 0 to find that the average of the sequence (an)∞n=0 converges to zero. This implies
limn→∞

1
n

∑n−1
k=0 µ

(
T−kA ∩B

)
= µ(A)µ(B). By Theorem 1.13, T must be ergodic.
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The statements in Theorem 1.17 are all one-way implications. One can show that there exists a weak-
mixing transformation which is not mixing [5, p. 40]. However, we will not discuss it here since it is
beyond the scope of this thesis. It is much easier to show that there is an ergodic transformation which
is not weak-mixing.

Example 1.18. Consider the unit circle S1, viewed as the interval [0, 1) with its endpoints joined
together. Consider the transformation T : S1 → S1 given by T (x) = x + α (mod 1) with α irrational.
One can prove that this transformation is ergodic. In fact, we will do so in Chapter 2 (Corollary 2.3), but
let’s assume for now that T is ergodic. Intuitively, it is clear that this transformation is not weak-mixing,
because any arc on the unit circle will remain an arc whenever we apply T (T rotates points over an
angle α). Therefore, the arc will never spread over the whole unit circle and thus T cannot be weak-
mixing.

Sometimes, it may be useful to consider the product of transformations:

Definition 1.19. Suppose that S is a measure-preserving transformation on (X,U , µ) and T is a measure-
preserving transformation on (Y,V, λ). The direct product of S and T is the measure-preserving trans-
formation on the probability space (X × Y,U × V, µ× λ) given by (S × T )(x, y) = (S(x), T (y)).

A natural question that rises is: will S × T inherit the property of ergodicity or (weak-)mixing if S or T
has it (and vice versa)? The following theorem answers this question:

Theorem 1.20. Let S and T be measure-preserving transformations:

(a) If one of S and T is weak-mixing and the other is ergodic, then S × T is ergodic.

(b) If S × T is ergodic for each ergodic T , then S is weak-mixing.

(c) S × T is weak-mixing if and only if both S and T are weak-mixing.

(d) S × T is mixing if and only if both S and T are mixing.

The proof of statements (a), (b) and (c) can be found in [1, Theorem 4.10.6] and the proof of (c) in
[2, Theorems 10.1.2 and 10.1.3].

7



2 First digits of powers

In this chapter we will encounter the first number-theoretic problem in which we will apply ergodic theory
to solve it. After a short introduction to the problem we will look at the ergodic aspect of the problem.

2.1 Introduction

Take your favourite positive integer k and consider its powers kn with n ∈ N. With little effort, one
can determine the last digits of each power. For example, if k ends in a 5 (i.e. k ≡ 5 mod 10), then all
its powers will also end in a 5. We see that the problem of the last digits of powers can be solved in a
straightforward way.

Instead, we will look at the following problem. Let k be any positive integer. Can we determine the first
digits of the positive integer powers of k? If so, can we determine the relative frequency with which these
digits will appear as first digits of kn?

Example 2.1. We will illustrate a more generalized question as follows. We let k = 7 so that we will
consider the powers of 7. How will the first digits be distributed among the numbers 1, . . . , 9? How
will this distribution be affected when we multiply all powers with a constant c = 2? And how will this
distribution be affected when we write all powers with respect to base b = 5 (i.e. the quinary system)?
If we consider the first 50 powers of 7, then the distribution will be the following:

Table 1: The first digit problem for the first 50 powers of 7

1 2 3 4 5 6 7 8 9
Powers of 7 15 8 7 5 4 3 3 2 3
Powers of 7 multiplied by 2 15 7 8 4 4 4 3 2 3
Powers of 7 in the quinary system 22 13 9 6 − − − − −

At first sight, it seems that in all cases the lower numbers will appear more often than the higher numbers.
However, we only considered the first 50 powers, so we have no reason to expect that this will hold for
all powers of 7. Also, note how multiplying all powers by 2 has very little effect in the distribution. Is
this true for any combination of powers of k and any constant c?

Another question we will try to answer is the question on the simultaneous distribution. Consider the
powers of two different positive integers, say k1 and k2. What would the simultaneous distribution of
the first digits look like? If the simultaneous distribution turns out to be the product of the respective
distributions, then this implies a statistical independence between the first digits of those powers.

We now formulate the question that we will try to answer in this chapter:

Let k1, . . . , kn, p1, . . . , pn, c1, . . . , cn and b1, . . . , bn be positive integers with bi ≥ 2 for all i.
What is the relative frequency with which for all i the numbers pi will be the (string of) first
digits of ci · kmi (m ∈ N) when both are written with respect to base bi?
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2.2 Translations on Tn

For now, let’s forget about the problem we posed in Section 2.1 and focus on a different problem. Its
relevance will become clear in Section 2.3.

Consider the n-dimensional torus Tn. It is the n-fold product of unit circles S1. We can regard these
either additively (the interval [0, 1) with its endpoints joined together, with addition of numbers modulo
1 as operation) or multiplicatively (the unit circle in C with multiplication as operation). Note that Tn is
a topological group. Both representations are isomorphic because of the map φ : x→ e2πix, and therefore
we can use both representations in a way we like.

Consider the translation Tγ on Tn. It is given by Tγ : (x1, . . . , xn) → (x1 + γ1, . . . , xn + γn), where
γ ∈ Rn and γi denotes the ith coordinate of γ. For which vectors γ is the transformation Tγ ergodic and
what is the corresponding ergodic measure? The following theorem gives us the answer.

Theorem 2.2. The translation Tγ on Tn is uniquely ergodic if and only if γ1, . . . , γn are linearly inde-
pendent over Q.

Proof. Throughout this proof we will consider Tn multiplicatively. The group homomorphisms
c : Tn → S1 can be written as cm1,...,mn(x1, . . . , xn) = e2πi(m1x1+...+mnxn) with mi ∈ Z. These maps will
be called characters. The characters are eigenfunctions of the translation Tγ , because we have:
cm1,...,mn

(Tγ(x1, . . . , xn)) = e2πi(m1(x1+γ1)+...+mn(xn+γn)) = e2πi(m1γ1+...+mnγn)cm1,...,mn
(x1, . . . , xn).

Suppose that the eigenvalue of Tγ is an integer, then this implies that Tγ is periodic. Let A be a
sufficiently small set. Because of the periodicity of Tγ , the orbit of A under this transformation is a set
which does not all of Tn. Moreover, if A has measure 0 < ε � 1 (positive yet much smaller than 1),
then the orbit of A under Tγ will be a set whose measure is also neither 0 or 1. By definition, Tγ cannot
be ergodic. Therefore, we want e2πi(m1γ1+...+mnγn) not to be an integer. which is equivalent with saying
that γ1, . . . , γn are linearly independent over Q.

From now on, we assume that the coordinates of γ are linearly independent over Q. We will first
consider the case m1 = · · · = mn = 0. We then find:∣∣∣∣∣1p

p−1∑
k=0

cm1,...,mn

(
T kγ (x1, . . . , xn)

)∣∣∣∣∣ =

∣∣∣∣∣1p
p−1∑
k=0

e2πik(m1γ1+...+mnγn)

∣∣∣∣∣ · |cm1,...,mn
(x1, . . . , xn)|

=

∣∣∣∣∣1p
p−1∑
k=0

1

∣∣∣∣∣ = 1,

from which it follows that

1
p

p−1∑
k=0

cm1,...,mn

(
T kγ (x1, . . . , xn)

)
→ 1 =

∫
Tn

c0,...,0 dµ

uniformly on Tn.
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We now consider all other cases and find:∣∣∣∣∣1p
p−1∑
k=0

cm1,...,mn

(
T kγ (x1, . . . , xn)

)∣∣∣∣∣ =

∣∣∣∣∣1p
p−1∑
k=0

e2πik(m1γ1+...+mnγn)

∣∣∣∣∣ · |cm1,...,mn
(x1, . . . , xn)|

=

∣∣∣∣∣ 1− e2πip(m1γ1+...+mnγn)

p
(
1− e2πi(m1γ1+...+mnγn)

) ∣∣∣∣∣
≤

∣∣∣∣∣ 2
p
(
1− e2πi(m1γ1+...+mnγn)

) ∣∣∣∣∣ .
Letting p→∞ yields us the following result:

1
p

p−1∑
k=0

cm1,...,mn

(
T kγ (x1, . . . , xn)

)
→ 0 =

∫
Tn

cm1,...,mn
dµ

uniformly on Tn. Since characters are trigonometric functions, we have for any trigonometric polynomial
φ (finite linear combination of characters) the following:

1
n

n−1∑
k=0

φ
(
T kγ (x1, . . . , xn)

)
→

∫
Tn

φ dµ.

We now use a famous approximation theorem of Weierstrass, which says that continuous functions are
the uniform limit of trigonometric polynomials. Therefore, for all continuous functions f we have:

1
n

n−1∑
k=0

f
(
T kγ (x1, . . . , xn)

)
→

∫
Tn

f dµ

uniformly on Tn. By Theorem 1.12, Tγ is uniquely ergodic.

If we let n = 1 in Theorem 2.2, we get the following statements about rotations on the unit circle:

Corollary 2.3. The rotation on the unit circle given by T (x) = x + α (mod 1) is ergodic only if α is
irrational. Moreover, if T is ergodic, then it is uniquely ergodic.

The ergodic measure for this transformation is the Haar measure. On Tn, this is equivalent with the
n-fold product of the one-dimensional Lebesgue measure. We will be interested in the way the orbit
spreads on Tn. Since the characteristic is not a trigonometric function nor continuous, this does not
follow directly from Theorem 2.2. However, we can still derive this by another approximation method.

Theorem 2.4. Let ∆ ⊂ Tn be measurable. Then we have limn→∞
1
n

∑n−1
k=0 χ∆

(
T kγ (x)

)
= µ(∆), where

∆ is the Lebesgue measure.

Proof. Choose two continuous functions f1 ≤ χ∆ ≤ f2 with
∫

(f2−f1) dµ < ε. DenoteB1 = 1
n

∑n−1
k=0 f1(T kγ (x)),

B2 = 1
n

∑n−1
k=0 f2(T kγ (x)) and B = 1

n

∑n−1
k=0 χ∆(T kγ (x)), then we have:∫

χ∆ dµ− ε ≤
∫
f1 dµ = lim

n→∞
B1 ≤ lim inf

n→∞
B ≤ lim sup

n→∞
B ≤ lim

n→∞
B2 =

∫
f2 dµ ≤

∫
χ∆ dµ+ ε.

Letting ε→ 0 turns all inequalities into equalities, which gives us:

lim inf
n→∞

B = lim sup
n→∞

B =
∫
χ∆ dµ = µ(∆).
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2.3 Distribution

Let’s return to the first digits problem posed in Section 2.1. We saw that the 8 didn’t appear that much
as the first digit of a power of 7. Therefore, one may think that there is a large string of digits starting
with an 8 which will never appear as the string of first digits of a power of 7. For example, is there a
power of 7 that starts with 87727964797? The following theorem assures us that the answer is yes.

Theorem 2.5. Let k1, . . . , kn, p1, . . . , pn, c1, . . . , cn and b1, . . . , bn be positive integers with bi ≥ 2 for all
i. If, for m ∈ N, the numbers

{
logbi

(ci · kmi )
}

(i = 1, . . . , n) are linearly independent over Q, the relative
frequency with which for all i the numbers pi will be the (string of) first digits of ci · kmi , when both are
written with respect to base bi, is

∏n
i=1 logbi

(
pi+1
pi

)
.

Proof. Note that we can rephrase the statement by saying that there are positive integers l1, . . . , ln
such that ci · kmi = blii pi + qi and 0 ≤ qi < blii for all i. This is equivalent with saying that for all i,
blii pi ≤ ci · kmi < blii (pi + 1) holds. Taking the logarithm with base bi yields us the following inequality:

li + logbi

(
pi
ci

)
≤ m logbi

ki < li + logbi

(
pi + 1
ci

)
.

Now write gi =
⌊
logbi

(
pi

ci

)⌋
+ 1. It now follows that:

0 ≤ logbi

(
pi
ci

)
− (gi − 1) ≤ m logbi

(ki)− li − (gi − 1) < logbi

(
pi + 1
ci

)
− (gi − 1) ≤ 1,

and therefore:

logbi

(
pi

ci · bgi−1
i

)
≤
{
m logbi

ki
}
≤ logbi

(
pi + 1
ci · bgi−1

i

)
,

where {·} denotes the fractional part.

Theorem 2.4 now tells us that the relative frequency with which ci · kmi starts with pi for all i is equal

to the Lebesgue measure of the set ∆ =
∏n
i=1

[
logbi

(
pi

ci·b
gi−1
i

)
, logbi

(
pi+1

ci·b
gi−1
i

)]
. Thus, the relative

frequency is:

µ(∆) = µ

(
n∏
i=1

[
logbi

(
pi

ci · bgi−1
i

)
, logbi

(
pi + 1
ci · bgi−1

i

)])

=
n∏
i=1

[
logbi

(
pi + 1
ci · bgi−1

i

)
− logbi

(
pi

ci · bgi−1
i

)]

=
n∏
i=1

logbi

(
pi + 1
pi

)
.

The theorem is now proved.

Example 2.6. As stated before, there is a power of 7 that begins with 87727964797. For example, 71001

starts with this string of digits. The relative frequency in this case is log
(

87727964798
87727964797

)
≈ 4.95 · 10−12,

which means that it will require a lot of work to determine another power of 7 which also starts with
87727964797.

11



Theorem 2.5 holds a lot of surprising results. For example, larger numbers appear less often as (string
of) first digits than smaller numbers. Also, multiplying the powers by some other number has no effect
on the distribution whatsoever. The most surprising result, however, is that the distribution is the same
for each number whose powers we consider. Note that Theorem 2.5 also tells us that the first digits of
powers are statistically independent: the simultaneous distribution is the product of the distributions.

12



3 Coefficients of continued fractions

This chapter is about the second of the three problems we will discuss. The problem requires a longer
introduction, but the way to solve it follows rather straightforwardly.

3.1 Introduction

Numbers can be represented in many ways. In this chapter we consider the continued fractions:

Definition 3.1. A continued fraction is a fraction of the form

a0 +
1

a1 + 1
a2+···

,

where a0 is an integer and the other numbers ai are positive integers.

Instead of writing a number using these fractions, it is more common to specify the eventually positive
sequence of coefficients (an)∞n=0 = 〈a0; a1, a2, . . .〉. We will pose the following theorem without any proof.
It lists some properties of continued fractions:

Theorem 3.2. Let x ∈ R be arbitrary:

(a) The number x has a continued fraction representation.

(b) Every continued fraction converges.

(c) The continued fraction representation of x is finite if and only if x is rational.

(d) The continued fraction representation of x is unique if and only if x is irrational.

For the proof, see [4, Chapter 10].

Given a number x ∈ R, one may be interested in finding a continued fraction representation. Fortu-
nately, one can determine the coefficients easily. The coefficient a0 is the integer part of x, so a0 = bxc.
The other coefficients together are the fractional part of a and can be determined as follows. To determine
a1, we look at {x}, where {·} denotes the fractional part, and consider its reciprocal if {x} is not equal
to zero (if we have {x} = 0, then we have determined a continued fraction representation for x). We will
call this number x1, so x1 = 1

{x} . Then we have a1 = bx1c. To determine the other coefficients, we use
the same process as described above to determine a1. However, if we want to determine the coefficient
ai (i ≥ 2), we look at xi−1 instead of x. Note that the sequence of continued fractions always converges
[4, Chapter 10].

Example 3.3. Let’s look at some numbers written in continued fraction representation:

• 7 1
3 = 〈7; 3〉, but also 7 1

3 = 〈7; 2, 1〉. We see that the representation of rationals is not unique in this
way, as Theorem 3.3(d) implies.

• −4 2
5 = 〈−5; 1, 1, 2〉 (and also −4 2

5 = 〈−5; 1, 1, 1, 1〉).

•
√

2 = 〈1; 2, 2, 2, 2, 2, 2, . . .〉, where ak = 2 for all k 6= 0.

13



• e = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .〉, where a3k+1 = a3k+3 = 1 and a3k+2 = 2(k + 1) for all k ≥ 0.

• π = 〈3; 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .〉, where there is no regular behaviour apparent in the
coefficients.

Now that we have seen many examples of continued fractions, we are ready to pose the problem:

Let a1, . . . , an be arbitrary real numbers and b1, . . . , bn be arbitrary positive integers. What
is the relative frequency with which, for all i, bi appears as the kth coefficient (k 6= 0) in the
continued fraction representation of ai?

Having another look at Example 3.4, we can already deduce that, whatever the answer may be, it will
be fundamentally different from the answer of the first digits problem. We can deduce this as follows.
Suppose that we were able to find a distribution formula with the same conditions as in Section 2.3.
Such a formula would definitely hold in the one-dimensional case (i.e. the case where we only look
at one number). Now look at the number

√
2. The integer 2 appears infinitely often in its continued

fraction, thus we expect 2 to have a high relative frequency. However, 2 does not appear at all in the
continued fraction of 0, so its relative frequency should also be zero. We have reached a contradiction
here. Therefore, we may expect two different answers.

3.2 The Gauss transformation

Once again, let’s forget about the continued fractions for a while. In this section, we will look at the
Gauss transformation.

Definition 3.4. The Gauss transformation is the transformation G : (0, 1]→ [0, 1] given by G(x) =
{

1
x

}
,

where {·} denotes the fractional part.

One can prove that the Gauss transformation is ergodic, but we can do much better. The ergodic measure
is the so-called Gauss measure.

Definition 3.5. The Gauss measure is the measure γ on [0, 1] given by

γ(A) =
1

ln 2

∫
A

1
1 + x

dx

with A ⊂ [0, 1]. The latter integral is a Lebesgue integral.

The Gauss transformation is one of the many transformations in the class of piecewise monotonic trans-
formations.

Definition 3.6. A transformation T on the interval (0, 1) is called piecewise monotonic if the interval
(0, 1) can be split up into a countable number of subintervals ∆1,∆2, . . . such that T is strictly monotonic
on each subinterval. The transformation T need not be defined on the endpoints of a subinterval.

One can easily verify that the Gauss transformation G is piecewise monotonic. To see this, take the
subintervals ∆i =

(
1

1+i ,
1
i

)
. Since G(x) = 0 whenever x is 0, 1 or 1

p with p an arbitrary positive integer,
we see that G(x) = 0 holds for the endpoints of any subinterval. Furthermore, G(x) is continuous on the
interior of each of the subintervals and the derivative of G is strictly negative, thus G is decreasing on
each of the subintervals. Therefore, G is piecewise monotonic.

14



The following theorem shows that piecewise monotonic transformation are mixing if they satisfy cer-
tain conditions:

Theorem 3.7. Let T be a piecewise monotonic transformation on (0, 1) and denote the subintervals on
which T is monotonic by ∆i. Suppose that the following conditions hold:

1. For all i: T (∆i) = (0, 1) and T is twice continuously differentiable on ∆i.

2. There exists an s ∈ N such that:

inf
∆i

inf
x∈∆i

∣∣∣∣dT sdx

∣∣∣∣ = C1 > 1.

3. We have:

sup
∆i

sup
x1,x2∈∆i

∣∣∣d2Tdx2 (x1)
∣∣∣(

dT
dx (x2)

)2 = C2 < ∞.

Then there is a invariant normalized Borel measure µ. Moreover:

(a) The measure µ is equivalent to the Lebesgue measure λ, and there exists a constant K > 0 such
that 1

K ≤
dµ
dλ < K.

(b) The transformation T is mixing with respect to µ.

The proof can be found in [2, Theorem 10.8.4]. We are not really interested in the theorem itself. However,
a corollary of this theorem is very important to us.

Corollary 3.8. The Gauss transformation G is mixing.

Proof. We will show that G satisfies the conditions of Theorem 3.8.

1. As noted earlier, G is discontinuous whenever x = 1
p with p ∈ N or if x = 0. Therefore, G

is continuous on each interval ∆i. We also saw earlier that G is piecewise monotonic. Since
G
(

1
i+1

)
= 0 ≡ 1 and G

(
1
i

)
= 0, and since G is also strictly decreasing on each ∆i, this implies

that T (∆i) = (0, 1). Also, G is twice continuously differentiable on all ∆i, because the function
f(x) = 1

x is twice continuously differentiable there.

2. Consider the transformation G2. We know that
∣∣dG
dx

∣∣ = 1
x2 ≥ 1 for x ∈ (0, 1). Since we have∣∣dG

dx

∣∣ ≥ 9
4 for 0 < x ≤ 2

3 and 0 < G(x) < 1
2 for 2

3 < x < 1, we find:∣∣∣∣dG2

dx
(x)
∣∣∣∣ =

∣∣∣∣dGdx (x)
∣∣∣∣ · ∣∣∣∣dGdx (G(x))

∣∣∣∣ ≥ 9
4

for all x ∈ (0, 1). Therefore, G satisfies this condition.

3. Since |G′′(x)| = 2
x3 and |G′(x)| = 1

x2 on all ∆i, we have:

|G′′(x1)|
|G′(x2)|2

≤

∣∣∣G′′ ( 1
i+1

)∣∣∣∣∣G′ ( 1
i

)∣∣2 =
2(i+ 1)3

i4
≤ 16.

The last inequality is true because supi∈N
2(i+1)3

i4 = 16. Therefore, G satisfies this condition.
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Since the transformation G satisfies all conditions, Theorem 3.8(b) tells us now that G is mixing.

Note that Theorem 3.8 does not tell us what the measure µ is. However, it can be shown that the Gauss
transformation G is mixing with respect to the Gauss measure γ defined earlier, see [2, p. 174].

3.3 Distribution

Now it’s time to solve the problem posed in Section 3.1. Since we are only looking at the coefficients ai
with i ∈ N, we can set a0 = 0. Note that this means that we only have to consider numbers in [0, 1]
(remember that 1 = 〈0; 1〉). The Gauss transformation is a helpful tool for determining the coefficents of
a continued fraction. We will only consider the irrational numbers. This is because the rational numbers
have finite continued fraction representation and thus there is no real need to determine the distribution:
one can easily obtain the coefficients by Theorem 3.3. Note that ignoring the rationals is allowed, since
the set of rationals in [0, 1] is a null set with respect to the Gauss measure (this follows from Theorem
3.8(a)).

Theorem 3.9. Let x ∈ [0, 1] be irrational and consider its coefficients in continued fraction representa-
tion. Then an = k if and only if 1

k+1 ≤ G
n−1(x) ≤ 1

k , where G is the Gauss transformation.

Proof. Let x ∈ [0, 1] be irrational with continued fraction representation x = 〈a1, a2, a3, . . .〉. The effect
of G formulated in terms of this representation is 〈a1, a2, a3, . . .〉 → 〈a2, a3, . . .〉, i.e. a shift. It follows
directly that, after applying G exactly n − 1 times, an is the leading coefficient. From this is follows
directly that, if 1

k+1 < Gn−1(x) < 1
k , then an = k.

Conversely, consider Gn−1(x) = 〈k, an+1, . . .〉, where we assume that an = k. Because of the way G
works, we know that 0 < 〈an+1, an+2, . . .〉 < 1 (it cannot be equal to either bound, because that would
imply that an+2 does not exist). Therefore, we can write Gn−1(x) = 1

k+α with α ∈ (0, 1). But this means
that 1

k+1 < Gn−1(x) < 1
k .

With the theorem proved, it is easy to give an answer to the problem in Section 3.1.

Theorem 3.10. Let b1, . . . , bn be arbitrary positive integers. For almost all real numbers a1, . . . , an,
the relative frequency with which bi appears as the kth coefficient (k 6= 0) in the continued fraction
representation of ai for all i is:

n∏
i=1

ln
(

1 + 1
bi

)
− ln

(
1 + 1

bi+1

)
ln 2

.

Proof. Suppose that n = 1. In this case, the relative frequency with which b appears as a coefficient in
the continued fraction representation of a is the Gauss measure of the interval

[
1
b+1 ,

1
b

]
by Corollary 3.9

and Theorem 3.10. We find:

γ

([
1

b+ 1
,

1
b

])
=

1
ln 2

∫ 1
b

1
b+1

1
1 + x

dx

=
ln
(
1 + 1

b

)
− ln

(
1 + 1

b+1

)
ln 2

.

By Theorem 1.20(d), the distribution in the case n > 1 is exactly n times the distribution in the one-
dimensional case.
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Note the subtle difference between the statements of Theorem 2.5 and Theorem 3.12. As opposed to
the first theorem, this one holds almost everywhere. This means that there can be a non-empty null set
for which the statement is not true. For example,

√
2 and e do not have coefficient 3 in their continued

fraction representation, while Theorem 3.12 says that the relative frequency in both cases is approximately
0.0931 for almost all real numbers. Hence exceptions can occur, i.e., Theorem 3.12 is optimal, but ergodic
theory provides no further information on the structure of the irrational numbers in the expectional set
if it is non-empty.
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4 Fractional parts of polynomials

This chapter is about the final number-theoretic problem. While it is easy to explain the problem, solving
it is definitely not as straightforward as we have seen in the previous two chapters.

4.1 Introduction

Consider your favourite polynomial with real coefficients in one variable. We will call the polynomial P
and the variable n. As the chapter’s name implies, we will consider the fractional parts of polynomials.
More specifically, we will consider the sequence (ak)∞k=1 given by ak = {P (k)}, where {·} once again
denotes the fractional part.

To illustrate the problem before formally posing it, we consider three different polynomials, namely
P1(n) = πn2, P2(n) = n2

√
3 and P3(n) = 1

3n
2. For each of these three polynomials, we will look at the

first digit after the decimal point for n = 1, . . . , 50. The table belows lists the distribution we find:

Table 2: The first digits of the first 50 fractional parts of the polynomials P1, P2 and P3

0 1 2 3 4 5 6 7 8 9
P1(n) = πn2 6 6 5 2 6 6 3 5 4 7
P2(n) = n2

√
3 2 4 8 4 5 7 6 6 6 2

P3(n) = 1
3n

2 16 0 0 34 0 0 0 0 0 0

The distribution of P1(n) and P2(n) seem random. The distribution of P3(n), however, is significantly
different from the other two. You may already have an idea on why this case is different from the other
two cases and it is very likely that your idea is correct (see Section 4.2).

As promised, we will now formally state the problem. We are interested in the way the fractional
parts of polynomials are distributed. Since the first digit after the decimal point can be a 0 (as opposed
to, for example, the problem of Section 2), we need to state the problem carefully.

Let c be a string of digits, where each digit is one of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and let P (n) be a
real-valued polynomial in one variable. What is the relative frequency with which c appears
as the first digits of the sequence an = {P (n)} (n ∈ N)?

4.2 Polynomials with rational coefficients

Looking back at Table 2 (Section 4.1), one may believe that the difference between the distribution of
P3(n) and the other two distributions is because 1

3 is rational and that
√

3 and π are not. While this is
indeed the case (as we will see later), we wish to generalize this observation to non-monomial polynomials.

As such, one can think of many possibilities. For example one may think that the leading coefficient
should be rational, or that at least one coefficient should be rational, or even that all coefficients should
be rational. To put these ideas all to the test, we repeat the experiment seen in Section 4.1 with the
following polynomials: P1(n) = 1

6n
2 + 1

6n, P2(n) = n2
√

6 + 1
6n and P3(n) = 1

6n
2 + n

√
6.
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Table 3: The first digits of the first 50 fractional parts of the polynomials P1, P2 and P3

0 1 2 3 4 5 6 7 8 9
P1(n) = 1

6n
2 + 1

6n 33 0 0 17 0 0 0 0 0 0
P2(n) = n2

√
6 + 1

6n 4 10 4 2 4 5 7 7 4 3
P3(n) = 1

6n
2 + n

√
6 4 6 5 5 6 6 5 5 5 3

The result of Table 3 is obvious: periodic behaviour appears whenever the polynomial has rational coef-
ficients. While two examples of this phenomenon is not a proof, we can actually prove that this holds in
the general case.

Theorem 4.1. Let P (n) be a real-valued polynomial in one variable. If P (n) has rational coefficients,
then the sequence an = {P (n)} (n ∈ N) is periodic.

Proof. Consider first the case in which P (n) is one term. Write P (n) = a
bn

m with a, b ∈ Z coprime.
Suppose that there is a k ∈ N such that P (n+ k) ≡ P (n) (mod 1) for all n ∈ N, which means that
a
b (n+k)m ≡ a

bn
m (mod 1). It then follows that (n+k)m−nm

b ≡ 0 (mod 1). Now note that, by the binomial
formula, that (n+ k)m − nm =

∑m−1
t=0

(
m
t

)
ntkm−t is divisible by k. Since, in order to guarantee periodic

behaviour, we want (n + k)m − nm to be divisible by b, we choose k = b. We see that such a number
k ∈ N always exists.

Generalizing this to arbitrary polynomials with rational coefficients in one variable is easy. Let P (n)
be such a polynomial. Write P (n) =

∑m
j=0

aj

bj
nj with aj , bj ∈ Z for all j and gcd(aj , bj) = 1 for all j. If

we look at one term of this polynomial (i.e., choose a specific j), we obtain a different polynomial of which
we already know that the sequence of fractional parts is periodic and that this period is at most bj . Since
we can do this for all j, the behaviour of P (n) is still periodic, but with period at most lcm(b0, . . . , bm).
This period is finite and thus the sequence of fractional parts of any polynomial with rational coefficients
in one variable is periodic.

Not only Theorem 4.1 is useful for our problem, but its proof is very useful as well. For example, we can
give an estimate on the period of the sequence {P (n)}∞n=1 whenever P (n) has rational coefficients. We
can also see directly that the proof fails if even one of the coefficients is irrational: we cannot write this
coefficient as a fraction.

Example 4.2. Let’s look back at the polynomials we used for the experiments listed in Table 2 and
Table 3. The sequence corresponding to the polynomial 1

3n
2 has period 3, as was deduced correctly in

the proof of Theorem 4.1. In fact, the proof of Theorem 4.1 tells us that the sequence {P (n)}∞n=1, where
P (n) = a

bn
m with a, b ∈ Z coprime, has exactly period b.

Something remarkable, however, is going on when considering the polynomial 1
6n

2 + 1
6n. The sequences

of 1
6n

2 and 1
6n are both periodic with period 6. However, the sequence corresponding to the polynomial

P (n) = 1
6n

2 + 1
6n is periodic with period 3.
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4.3 Other polynomials

Now that we solved the case where all coefficients are rational, we will consider the other case where at
least one of the coefficients is irrational.

The problem here is that there is no dynamical system apparent (in contrast to Chapter 3), nor can
we easily transform the problem into one where there is an obvious dynamical system (in contrast to
Section 2). However, there is a transformation that will be of great value when trying to find the distri-
bution of the sequence of fractional parts of the polynomial P (n), where this polynomial has at least one
irrational coefficient.

For now, we will assume that the leading coefficient is irrational and also that it is the only irrational
coefficient. Write P (n) = αnm+am−1n

m−1 + · · ·+a0. The relevant transformation is the transformation
T : Tm → Tm given by:

T [(x1, x2, . . . , xm)] = (x1 + β, x2 + x1, . . . , xm + xm−1) (mod 1).

The following theorem relates Tn to the polynomial P (n):

Theorem 4.3. Let T be the transformation as defined above and let P (n) be a polynomial of degree m
with irrational leading coefficient. Then, for a unique choice of β, x1, . . . , xm, the last coordinate of Tn

is equal to {P (n)} (with n ∈ N) for n ≥ m. Moreover, the corresponding β is irrational.

Proof. We will first find a closed form for the last coordinate of Tn. We claim that the closed form for
the j-th coordinate after n iterates is

∑m
i=0

(
n
i

)
xj−i (with 1 ≤ j ≤ m), where we define x0 = β, xk = 0

for k < 0 and
(
n
i

)
= 0 whenever i > n. We will prove by induction (with respect to j and n) that this

closed form is correct.

The closed form for j = 1 is obvious for all n, so suppose that the closed form is correct for j = k
and all n, we then need to prove that it is also correct for j = k + 1 and all n.

Suppose first that n = 1. The closed form is then equal to xj + xj−1, which is indeed correct. Next,
suppose that the closed form is correct for n = l, then we need to prove that it is correct for n = l + 1.
By the induction hypothesis for j, the closed form for the (k + 1)-th coordinate after l + 1 iterates is:

m∑
i=0

(
l

i

)
xk+1−i +

m∑
i=0

(
l

i

)
xk−i =

m∑
i=0

[(
l

i

)
+
(

l

i− 1

)]
xk+1−i

=
m∑
i=0

(
l + 1
i

)
xk+1−i.

We have now proven that the closed form is correct.

Finally, we need to prove that
∑m
i=0

(
n
i

)
xm−i is equal to P (n) for a suitable choice of the parame-

ters β = x0, x1, . . . , xm. Note that the equality
∑m
i=0

(
n
i

)
xm−i = P (n) gives a system of linear equations

corresponding to the powers of n (if n ≥ m). We can easily solve the system, since the method of
backwards substitution appears naturally: the coefficient of ni is determined by only the parameters
β = x0, . . . , xm−i. The existence of the solution, and thus the theorem, has now been proved. Note also
that the leading coefficient is only determined by β, so that β must be irrational.

20



Example 4.4. As an illustration of Theorem 4.3 (and especially its proof), let’s determine the initial
conditions of the transformation such that the closed form for the last coordinate is P (n) = n2

√
6+ 1

6n (as
seen in Section 4.2). Since the degree of P (n) is 2, our transformation is T [(x1, x2)] = (x1 + β, x2 + x1)
(mod 1).
To find the values of x1 and x2, we need to solve

∑2
i=0

(
n
i

)
x2−i = n2

√
6 + 1

6n. Expanding this equation
gives us: x2 + nx1 + n(n−1)

2 β = n2
√

6 + 1
6n. Note that this equation is equivalent with the system

1
2β =

√
6

− 1
2β + x1 = 1

6

x2 = 0

which can easily be solved. The solution is β = 2
√

6, x1 = 1
6 +
√

6 and x2 = 0. The transformation has
now been determined.

4.4 Distribution

In the previous section we have been looking at the transformation T : Tm → Tm given by:

T [(x1, x2, . . . , xm)] = (x1 + β, x2 + x1, . . . , xm + xm−1) (mod 1),

where β is irrational. In this section we will use this transformation and ergodic theory to find the
distribution of the first digits of the sequence {P (n)}∞n=1, where the polynomial P (n) has at least one
irrational coefficient.

First of all, we will prove that the transformation T is uniquely ergodic. The complete proof is be-
yond the scope of this thesis, but we will mention all theorems involved in the proof.

Theorem 4.5. The transformation T : Tm → Tm given by
T [(x1, x2, . . . , xm)] = (x1 + β, x2 + x1, . . . , xm + xm−1) (mod 1) with β irrational is ergodic.

Proof. Suppose that f = f ◦ T for f ∈ L2 (Tm). Write x = (x1, . . . , xm) ∈ Tm and n = (n1, . . . , nm),
both as row vector. The Fourier series of f and f ◦ T are:

f(x) =
∑
n∈Zm

cne
2πin·x and f (T (x)) =

∑
n∈Zm

cne
2πin·T (x).

Note also that we can write:

n · T (x) = (n1, . . . , nm) · (x1 + β, . . . , xm + xm−1)
= n1β + (n1 + n2)x1 + · · ·+ (nm−1 + nm)xm−1 + nmxm

= n1β + (nA) · x,

where A is the (m×m)-matrix with ai;i = ai;i−1 = 1 and aij = 0 in all other cases (1 ≤ i, j ≤ m) and nA
is the matrix product of the (1×m)-matrix n with the matrix A. Using this formula and the substitution
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ñ = nA, we can rewrite the Fourier series of f ◦ T as follows:

f (T (x)) =
∑
n∈Zm

cne
2πin·T (x)

=
∑
n∈Zm

cne
2πi(n1β+(nA)·x)

=
∑
n∈Zm

cne
2πin1β · e2πi(nA)·x

=
∑
ñ∈Zm

cñA−1 · e2πi(ñA−1)1
β · e2πiñ·x,

where
(
ñA−1

)
1

denotes the first coordinate of the vector ñA−1 = n.

Since f = f ◦ T , we find when comparing Fourier coefficients: cn = cnA−1 · e2πi(nA−1)1
β , which is

equivalent with cnA = cn · e2πin1β . Therefore, we have |cnA| = |cn| for all n ∈ Zm. Since
∑
|cn|2 < ∞,

we have cn 6= 0 only if nAr = n for some integer r ≥ 1. However, this implies n = (n1, 0, . . . , 0). In this
case, we have cn = cne

2πin1β , and because β is irrational, we have cn = 0 unless n = 0. Therefore, we
have f = c0 almost everywhere. By Theorem 1.9, T is ergodic.

Proving the unique ergodicity of T involves the notion of group extensions (in this case the groups are
topological groups). Let (X,U , µ) be a probability space and T a µ-invariant transformation. Let G be a
compact group and φ : X → G a continuous transformation. The group extension of the system (X,T )
(i.e. the transformation T on the set X) is (X ×G,T ) and is defined by T (x, g) = (T (x), φ(x)g), where
x ∈ X and g ∈ G. If we let ν be the Haar measure on G, then µ × ν will be a T -invariant measure on
X ×G. One can prove the following theorem regarding group extensions.

Theorem 4.6. Let the system (X,T ) be uniquely ergodic and let the group extension (X ×G,UX×G, µ× ν, T )
be ergodic. Then the system (X ×G,T ) is uniquely ergodic.

The proof of this theorem can be found in [3, Proposition 3.10].

Using these two theorems, one can prove:

Theorem 4.7. The transformation T : Tm → Tm given by
T [(x1, x2, . . . , xm)] = (x1 + β, x2 + x1, . . . , xm + xm−1) (mod 1) with β irrational is uniquely ergodic.

Proof. We will prove the theorem using induction with respect to m.

Let m = 1, so that we get the transformation T : S1 → S1 given by T (x) = x + β, where β is ir-
rational. We know that it is uniquely ergodic (Corollary 2.3).

Suppose that the theorem is true for m = k. We can extend the system to a transformation T on the
torus Tk+1. By applying a group extension we ”add” a dimension (i.e. T is no longer a transformation
on Tk, but a transformation on Tk+1). The compact group is G = S1 and the continuous transformation
involved is φ : Tk → S1 given by φ [(x1, . . . , xk)] = xk. We know that this group extension is ergodic
(Theorem 4.5). By Theorem 4.6, T is uniquely ergodic for m = k + 1.

Note that the ergodic measure follows directly from the group extensions. It is the m-fold product of
the Haar-measure, which is the Haar-Lebesgue measure on Tm. Using the natural projection on the last
coordinate, we have the following:
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Corollary 4.8. Let P (n) be a real-valued polynomial with irrational leading coefficient. Then, for n ∈ N,
{P (n)} is uniformly distributed on [0, 1].

Proof. The unique ergodicity of T implies the unique ergodicity of the transformation T : S1 → S1

satisfying T (xm) = T [(x1, . . . , xm)]. We already know that the ergodic measure is the Lebesgue measure.
The distribution now follows straightforwardly: a fractional part starts with c if and only if, for certain
n ∈ N, we have T n(x) ∈

[
c, c+ 10−(blog10 cc+1)

)
(note that c + 10−(blog10 cc+1) is the smallest number

which is greater than c and has the same amount of digits as c). The Lebesgue measure of this interval
is exactly 10−(blog10 cc+1). It now follows that {P (n)} is uniformly distributed on [0, 1].

Note how the preceding discussion only holds for polynomials with leading coefficient irrational. Of
course, we also want to find the distribution in the case that the polynomial P (n) has leading coefficient
rational, but still has at least one irrational coefficient. Fortunately, the distribution in this case remains
the same as before:

Corollary 4.9. Let P (n) be a real-valued polynomial with at least one irrational coefficient. Then, for
n ∈ N, {P (n)} is uniformly distributed on [0, 1].

For the proof, see [2, Theorem 7.2.1] (in particular step 3 of the proof).
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5 Summary

The aim of this thesis was to solve some number-theoretic problems using ergodic theory. The first prob-
lem was to determine in what way the first digits of powers of natural numbers are distributed. We were
also interested in the way this distribution would be affected if we looked at the simultaneous distribution.
The second problem dealt with continued fractions. Given an arbitrary number, what can we say about
the distribution of the coefficients in the continued fraction representation (i.e., how often can we expect
to see a positive integer appear as coefficient?). In this case, we were also interested in the way this
distribution would be affected when we would look at the simultaneous distribution. The final problem
was about the fractional parts of polynomials. Once again, we were interested in the distribution of the
fractional parts. But, before we could tackle these problems, we had to brush up on ergodic theory.

In the first chapter we gave a short introduction to ergodic theory. The chapter is by no means a
thorough introduction to ergodic theory, but it discussed those parts that would be useful in later chap-
ters. Important notions we discussed in this chapter are ergodicity, unique ergodicity and (weak-)mixing.
We also discussed interpretations and properties of these concepts.
The second chapter was about the problem of the first digits of powers. After a short introduction to
the problem we saw that this problem could be formulated in terms of translations on the n-dimensional
torus Tn. Theorem 2.5 is the main result of this chapter.
The problem of continued fractions was studied in the third chapter. We needed the Gauss transforma-
tion to solve this problem. During the discussion of this transformation, we shortly touched upon the
subject of piecewise monotonic transformations. The main result of this chapter is Theorem 3.12.
In the fourth chapter we took on the final problem. If anything, this chapter has shown that not all
number-theoretic problems can be solved in a straightforward manner. We considered a certain affine
transformation on the n-dimensional torus Tn and shortly mentioned group extensions. Corollary 4.9 is
the main result of this chapter.
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