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Preface

In this Bachelor Thesis, we will explain a calculus named Schubert Calculus. Schubert Calculus
is invented by Hermann Cäsar Hannibal Schubert around the end of the nineteenth century.
This calculus allowed Schubert and his successors to solve many enumerative problems in geom-
etry, although they didn’t have rigorous proofs of the rules in this calculus. This is the reason
why Hilbert’s 15-th problem concerns with this calculus, and nowadays most of the rules in this
calculus are finally formalized (through topology and intersection theory). The main purpose of
this Bachelor Thesis is to explain the rules of this Schubert Calculus and solve some enumerative
problems.

The first chapter introduces the Grassmann Variety (mainly from [KL]), and the second chapter
gives some basic facts about the cohomology ring of this Grassmann Variety (mainly based on
[KL], [FU] and [ST]). In the third and the fifth chapter we will develop the calculus in this coho-
mology ring (mainly from [KL] and [ST]). The fourth chapter shows the power of the Schubert
Calculus by solving several enumerative problems (many of which are new).

I have decided not to include complete proofs of the formulae from the second chapter, since the
complete proofs I know are very technical (although we will give a sketch). Proofs can be found,
for example, in [GH] (although it contains some errors), [FU] (as exercises) and [HP] (but this
is hard to read). For more details and proofs of Chapter Five, I suggest to read [FU].
I have also decided not to include (part of) the theory of Schubert Polynomials and Varieties,
which is a current area of research, since a detailed introduction can be found in [FU].

Remark. In this thesis, we will work over C.
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1 The Grassmann Variety

To solve enumerative problems in geometry, we first need a good description of the d-planes in
a Pn, and for this one uses the Grassmann Variety (Grassmannian).

From linear algebra we know that a d-plane Sd in a projective space can be represented by a
basis consisting of d + 1 vectors, say by pi = (pi(0), . . . , pi(n)) ∈ An+1 for i = 0, . . . , d. We can
put these vectors in a (d + 1)× (n + 1)-matrix as follows:

M(pi) =




p0(0) p0(1) . . . p0(n)
p1(0) p1(1) . . . p1(n)

...
...

. . .
...

pd(0) pd(1) . . . pd(n)




Now it is natural to look at the
(
n+1
d+1

)
determinants of the (d + 1)× (d + 1)-submatrices of this

matrix. We claim that this gives us a map from the set of d-planes to a subset of PN where
N =

(
n+1
d+1

)−1. First we denote p(j0, . . . , jd) for the determinant of the (d+1)×(d+1)-submatrix
of our M(pi) consisting of the columns j0, . . . , jd where 0 ≤ j0 < j1 < . . . < jd ≤ n. We first
need to show that this map is well-defined. Suppose our Sd has another basis qi for i = 0, . . . , d
then linear algebra gives us an invertible linear map A which converts the first basis into the
second one. We now notice that q(i0, . . . , id) = det(A)p(i0, . . . , id), and since we are working in
a projective space, our map is well-defined. Also notice that the image of an Sd is never zero,
since the pi defining it are linearly independent (so there is a non-vanishing minor).
The image of this map is even a smooth projective variety in PN . We call this variety Gd,n, the
Grassmann Variety of d-planes in Pn. This important fact is given in the next theorem:

1.1. Theorem. Let (QR) be the quadratic relations given by

d+1∑

i=0

(−1)ip(j0, . . . , jd−1, ki)p(k0, k1, . . . , ki−1, ki+1, . . . , kd+1) = 0

where j0, . . . , jd−1 and k0, . . . , kd−1 are any sequence of integers with 0 ≤ jr, ks ≤ n. Then the
set of d-planes in Pn is in bijection with the set of points in PN satisfying (QR), Gd,n, under
the map just defined.
Moreover, there is a natural bijection from the set of points in PN satisfying both (QR) and
p(k0, . . . , kd) 6= 0 to the affine (d + 1)(n − d)-dimensional space of (d + 1) × (n + 1)-matrices
[pi(j)] satisfying the condition that the submatrix [pi(ks)] for s = 0, . . . , d is the identity matrix.
The image of a point (. . . : p(j0, . . . , jd) : . . .) is given by the (d+1)× (n+1)-matrix with entries
given by

pi(j) =
p(k0, . . . , ki−1jki+1, . . . , kd)

p(k0, . . . , kd)

Finally, Gd,n is irreducible of dimension (d + 1)(n− d) and non-singular.

Proof. The proof is rather technical and can be found for example in [KL], pages 1063–1066.
We will sketch why Gd,n is a complex manifold of dimension (d+1)(n−d). When fixing a chart,
we get all the (d + 1)(n + 1) matrices of dimension d + 1 such that some fixed columns give
an Id+1. The rest of the matrix consists of (d + 1)(n − d) spots which can be filled freely with
elements of C. As a consequence, Gd,n is even non-singular.
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1.2. Remark. Notice that G0,n = Pn.

1.3. Remark. There is also another natural way to define the Grassmann variety: instead of
looking at a basis for a d-plane, we look at the equations defining the d-plane. We can map these
equations, using determinants of the minors, to a P(n+1

n−d)−1 = P(n+1
d+1)−1. In this Bachelor Thesis,

we will only use the notion given earlier.

We now want to define a class of very important subvarieties of Gd,n, the Schubert Cycles:

1.4. Definition. A flag is a chain A0 ( A1 ( . . . ( Ad of linear subspaces of Pn. We define,
using the embedding above, the corresponding Schubert Cycle as follows:

Ω(A0, A1, . . . , Ad) := {L d−plane : dim(Ai ∩ L) ≥ i} ⊂ Gd,n

1.5. Theorem. The set Ω(A0, A1, . . . , Ad) ⊂ Gd,n is given by linear equations, hence it has the
natural structure of a subvariety of Gd,n. If dim(Ai) = ai, then Ω(A0, A1, . . . , Ad) has dimension∑d

i=0(ai − i).

Proof. The first part of the proof can be found in [KL], page 1066. For the second part, we choose
a basis such that Ai consists of the vectors of the form (c0, . . . , cai , 0, . . . , 0) where the ci ∈ C. We
now choose an affine chart of PN defined by p(a0, a1, . . . , ad) 6= 0, and we see that the points of our
subvariety can be given by a matrix where the first row looks like (c0,0, . . . , c0,a0−1, 1, 0, . . . , 0),
the second row looks like (c1,0, . . . , c1,a0−1, 0, c1,a0+1, . . . , ca1−1, 1, 0, . . . , 0) and so on. We directly
see that our dimension (the number of ci,j ’s which are to be chosen freely) is equal to a0 +(a1−
1) + . . . + (ad − d), and this gives us the formula.

2 Facts from Cohomology

In this section, we will give a short introduction to the cohomology ring of the Grassmann Va-
riety. We will first need some facts from Algebraic Topology (from [FU]):

2.1. Facts.

1. One can assign a cohomology group H∗(Y,Z) =
⊕2 dim(Y )

i=0 H i(Y,Z) to a non-singular
projective variety Y , and this group becomes a graded ring under the cup product.

2. An irreducible closed subset Z of codimension d in Y determines a class [Z] ∈ H2d(Y,Z).

3. If Y has dimension n, then H2n(Y,Z) ∼= Z. It is generated by the class corresponding to a
point, say [.].

4. If two closed subsets Z1, Z2 ⊂ Y meet transversally in t points, then [Z1] · [Z2] = t[.] ∈
H2n(Y,Z) ∼= Z.

5. If Y has a filtration ∅ ⊂ Y1 ⊂ . . . ⊂ Ys = Y by algebraic sets, and Yi \ Yi−1 is a disjoint
union of varieties Ui,j each isomorphic to an affine space Cni,j (we usually refer to this as
a cell decomposition), then the classes of the closures of these Ui,j , [Ūi,j ] give an additive
basis for H∗(Y,Z).

In our case we have:

2



2.2. Facts.

1. We can assign a cohomology group to Gd,n: H∗(Gd,n,Z) =
⊕2(n−d)(d+1)

i=0 H i(Gd,n,Z).

2. An irreducible closed subset X of Gd,n determines a class [X] ∈ H2((d+1)(n−d)−dim(X)).

2.3. Definition. The element corresponding to Ω(A0, A1, . . . , Ad) in the cohomology ring only
depends on the dimensions of the Ai, say ai (since we can transform flags into each other by
means of linear transformations). We denote the corresponding element by Ω(a0, a1, . . . , ad).

This cohomology ring becomes a very important instrument in studying intersection theory, as
can be seen from fact 2.1.4. First we want to understand the group structure of this cohomology
ring completely:

2.4. Theorem. (Basis Theorem) Every odd part of the cohomology group is 0, and H2p(Gd,n,Z)
is a free abelian group with basis the Schubert Cycles Ω(a0, . . . , ad) satisfying [(d + 1)(n − d) −∑d

i=0(ai − i)] = p. As a consequence, our graded ring becomes commutative.

Proof. First fix a standard flag V0 ⊂ V1 ⊂ . . . ⊂ Vn = Pn, using the standard basis {e0, . . . , en} of
An+1. We will construct a cell decomposition (Fact 2.1.5). We take a trivial filtration, ∅ ⊂ Gd,n.
We claim that the cells are given by sets of the form

Wi0,...,id = {L d−plane : dim(Vij ∩ L) = j} ⊂ Gd,n

where 0 ≤ i0 < . . . < id ≤ n. First notice that the sets are disjoint, and that every d-plane is in a
Wi0,...,id . These cells are complex manifolds of dimension

∑d
j=0(ij− j) (the proof is basically the

same as the proof of Theorem 1.5, where we showed how to construct one chart. The construction
of the other charts goes analogously). The closure of such a cell is

{L d−plane : dim(Vij ∩ L) ≥ j} ⊂ Gd,n

and these are just the Schubert Cycles. By Fact 2.1.5, we see that the Schubert Cycles with
[(d+1)(n−d)−∑d

i=0(ai−i)] = p form a basis for H2p(Gd,n,Z) and also that H2i+1(Gd,n,Z) = 0.
A consequence of the fact that the parts of odd degree of the cohomology group are zero, is that
the ring becomes commutative: this follows from Theorem 3.14 in [HAT].

2.5. Remark. Due to the last theorem, some H2p(Gd,n,Z) become extremely easy. For example,
H0(Gd,n,Z) has basis {Ω(n−d, n−d+1, . . . , n)}. The one element belonging to this basis is the
class of Gd,n itself: every d-plane intersects a n− d + i plane in a space of dimension at least i.
Another interesting case is H2(d+1)(n−d)(Gd,n,Z). This time, our basis is equal to {Ω(0, 1, . . . , d)}.
There is actually one plane meeting the requirements of the corresponding flag, so it is the
class of a point in Gd,n. So an element x in H2(d+1)(n−d)(Gd,n,Z) is uniquely represented by
λΩ(0, 1, . . . , d) for a λ ∈ Z, and this λ is called the degree of x. We will usually write just λ
instead of λΩ(0, 1, . . . , d), since this λ is often the solution to an enumerative problem.

2.6. Remark. We define βi, the i-th Betti Number of Gd,n, as βi = rank H i(Gd,n,Z). We want
to calculate this number for even i (since the odd ones are always zero). It follows from the
Basis Theorem, that β2i is the number of solutions in integers 0 ≤ a0 < a1 < . . . < ad ≤ n to
[(d+1)(n−d)−∑d

j=0(aj−j)] = i. We can form the Poincaré series
∑

i β2iq
i. Using combinatorics,

one can show that ∑

i

β2iq
i =

∏d
i=0(q

n+1−i − 1)∏d
i=0(qd+1−i − 1)

3



If q is a prime power, then the number we just got is equal to the number of d-planes of an
n-dimensional projective space over Fq. This looks like a coincidence, but the Weil Conjectures
show that this is not the case.

2.7. Facts. Let X,Y be subvarieties of Gd,n which intersect proper. Then we have that [X]·[Y ] =∑
n(X,Y, W )[W ], where the sum runs over the irreducible components of X∩Y , and n(X,Y,W )

is some intersection multiplictity. If X and Y don’t intersect proper, one can ‘move’ X to an-
other X ′ with [X] = [X ′] such that the intersection of X ′ and Y is proper (by Chow’s Moving
Lemma, see [HAG], page 427).
In our calculations, we will always end up in the highest nonzero degree, and we find an element
of the form λΩ(0, 1, . . . , d) = λ. This number tells us how many intersection points varieties
which have the same cohomology classes as X and Y in general have. If we end up too high (so
we get automatically zero), we have no intersection points in general, and if we end in a class
below the highest one, then there are in general an infinite amount of intersection points.

So it is very important to know how to do the multiplication in H∗(Gd,n,Z), and the next section
gives us easy formulae which determine the complete multiplicative structure.

3 Formulae

In this section we will state some formulae which enable us to do calculations in the cohomology
ring of the Grassmann Variety. The first formula is Poincaré Duality, which is very useful in
many cases:

3.1. Theorem. (Poincaré Duality) The two bases (. . . ,Ω(a0, . . . , ad), . . .) of H2p(Gd,n,Z) and
(. . . , Ω(n− ad, . . . , n− a0), . . .) of H2((d+1)(n−d)−p)(Gd,n,Z) are dual under the cup product.

Proof. We will give a geometric proof of this duality. Take two Schubert Cycles Ω(a0, . . . , ad)
and Ω(b0, . . . , bd) such that

∑d
i=0(ai − i) = (d + 1)(n − d) − ∑d

i=0(bi − i). Rewriting gives us∑d
i=0(ai + bi−2i) = (d+1)(n−d). Now note that there are d-planes lying in both Ω(a0, . . . , ad)

and Ω(b0, . . . , bd), in general, if ai + bd−i ≥ n for all i (since Ai ∩ Bd−i 6= ∅, we need that
dim(Ai)+dim(Bi) ≥ n). But we notice that

∑d
i=0(n−2i) = (d+1)n−d(d+1) = (d+1)(n−d),

so the only option in our case is ai + bd−i = n. Now we only have to prove that Ω(a0, . . . , ad)
and Ω(n − ad, . . . , n − a0) intersect in general in one d-plane. Given two corresponding flags
A0 ( A1 ( . . . ( Ad and B0 ( B1 ( . . . ( Bd, we need to find the planes satisfying the
corresponding flag conditions. But there is just one plane satisfying these conditions in general:
the plane spanned (seen as an affine space) by the points in the intersection of Ai and Bn−i

(each intersection is just an affine line), and this concludes the proof.

3.2. Remark. The above theorem just says that Ω(a0, . . . , ad) · Ω(c0, . . . , cd) is one if n− ci =
ad−i, and otherwise zero (in the case Poincaré Duality applies).

3.3. Corollary. (Bézout) Let Z(f) and Z(g) be curves in P2, then they intersect in deg(f) deg(g)
points in general.

Proof. Using the Basis Theorem, we can represent the class of a curve c by x = λΩ(1) ∈
H∗(G0,2,Z). To find this λ, we use Poincaré Duality and we see that λ = x · Ω(1). But a line
and a curve intersect in general in deg(c) points, hence x = deg(c)Ω(1). So for our original
problem, we have to calculate deg(f) deg(g)Ω(1)2 = deg(f) deg(g), where we used Poincaré
Duality again.
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We now define the Special Schubert Cycle :

3.4. Definition. Define σ(h) = Ω(h, n− d + 1, . . . , n) for h = 0, . . . , n− d.

3.5. Remark. σ(h) is an element of H2p(Gd,n,Z), where p = n − d − h. Many books have a
slightly different notation, and have a notation where one can see the p instead of the h. Fur-
thermore σ(n− d) is just Ω(n− d, . . . , n), which represents Gd,n, and σ(n− d− 1) is the single
Schubert Cycle in the class H2(Gd,n,Z).

The next theorem gives a direct formula which expresses a Schubert Cycle in terms of the Special
Schubert Cycles:

3.6. Theorem. (The Determinantal Formula, Giambelli’s Formula) The following equality
holds in the cohomology ring of the Grassmann Variety:

Ω(a0, . . . , ad) = det




σ(a0) . . . σ(a0 − d)
...

. . .
...

σ(ad) . . . σ(ad − d)


 = |σ(ai − j)|

where we define σ(h) = 0 if h 6∈ [0, n− d].

Now our problem has been reduced to finding a way to calculate the product of Special Schubert
Cycles, and for this we use the next theorem (actually, as we will see, the Determinantal Formula
is a consequence of Pieri’s Formula):

3.7. Theorem. (Pieri’s Formula) For h = 0, 1, . . . , n− d the next formula holds:

Ω(a0, . . . , ad)σ(h) =
∑

Ω(b0, . . . , bd)

where the sum is over the b0, . . . , bd such that 0 ≤ b0 ≤ a0 < b1 ≤ a1 < . . . < bd ≤ ad and∑d
i=0 bi =

∑d
i=0 ai − (n− d− h).

With these formulae, we are able to solve many enumerative problems. In the next chapter, we
will use these formulae in practice. We will first sketch a proof of Pieri’s Formula and Giambelli’s
Formula.

3.1 Sketch of the Proofs

In this section, we will sketch a proof of Pieri’s Formula and Giambelli’s Formula. We will follow
the proof of [GH].

The first step idea is not to fix a d and n directly, and this is done as follows. Instead of looking
at finite sequences of the form a0, . . . , ad, one takes infinite sequences ai (and one adopts some
conventions when things become zero in a certain Gd,n). With this notation, one can show that if
a formula holds in Gd,n+1 or Gd+1,n+1, it will also hold in Gd,n. Now define d(a, b; c) for sequences
a, b and c if Ω(a)Ω(b) =

∑
d(a, b; c)Ω(c) holds in all Gd,n.

To calculate this d(a, b; c), we will use Poincaré Duality, and it comes down to calculating
products of the form Ω(a)Ω(b)Ω(c′) (which end up in the highest class) in some Gd,n. Then
[GH] give a proof of a first reduction formula, which relates this product to another product
in Gd−1,n−1 (and gives a condition when a coefficient is zero). The reduction mainly focuses on
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certain conditions of the coefficients such that a d-plane lying in the intersection of the three
Schubert Cycles always contains a certain line: hence we can ‘forget’ about this line and look at
the (d−1)-planes in a Pn−1. A consequence of this first reduction formula, is a second reduction
formula. This formula uses an idea of duality: a d-plane in a Pn is given by n− d equations, and
so one can look at the (n − d − 1)-planes in a Pn, and one can even translate flag conditions.
The proof just translates the intersection conditions to some dual conditions, then one applies
the first reduction formula, and translates it back again (in this reduction, one goes from Gd,n

to a Gd,n−1).
With this the second reduction formula, one can now prove Pieri’s Formula.
The next step is to prove an awkward looking formula (which formally follows from Pieri’s
Formula using only the box principle). A proof of Giambelli’s Formula can then be given by a
simple application of induction (the awkward formula is just some alternating sum coming from
a determinant).

4 Using the Formulae

In this section we will solve some enumerative problems, using the rules we have found in the
previous chapter.

4.1 Lines in P3

We will start with a very easy example to show how Schubert Calculus works:

Problem A. How many lines lie on three given 3-planes of a P4 in general?
Solution. The lines lying in a P3 are represented as Ω(2, 3). And now we just calculate as follows
(using the Determinantal Formula):

Ω(2, 3)2 = Ω(2, 3)
∣∣∣∣

σ(2) σ(1)
σ(3) σ(2)

∣∣∣∣
= Ω(2, 3)σ(2)2 + Ω(2, 3)σ(1)σ(3)
= σ(2)Ω(1, 3) + Ω(0, 3)
= Ω(1, 2) + Ω(0, 3) + Ω(0, 3)
= Ω(1, 2) + 2Ω(0, 3)

Now we use Poincaré Duality, and we find:

Ω(2, 3)(Ω(1, 2) + 2Ω(0, 3)) = 1 + 0 = 1

So the answer to this problem is 1. But this is just what we would have expected! The three
3-planes will intersect in a line.

The solution to the following problem is less clear:

Problem B. How many lines, in general, intersect 4 given lines in P3?
Solution. In this case, we want to look at G1,3. The class of lines intersecting a given line is just
given by Ω(1, 3) = σ(1). So for this problem, we need to calculate σ(1)4. But this is no problem

6



using the above formulae (we only use Pieri’s Formula, notice that n−d−h = 3−1−h = 2−h):

σ(1)2 = σ(1)Ω(1, 3) = Ω(0, 3) + Ω(1, 2)
σ(1)3 = σ(1)(Ω(0, 3) + Ω(1, 2)) = Ω(0, 2) + Ω(0, 2) = 2Ω(0, 2)
σ(1)4 = σ(1)2Ω(0, 2) = 2Ω(0, 1) = 2

So the answer is 2. Using Poincaré Duality, there is also another way to calculate this:

σ(1)4 = (σ(1)2)2 = (Ω(0, 3) + Ω(1, 2))2 = Ω(0, 3)2 + 2Ω(0, 3)Ω(1, 2) + Ω(1, 2)2 = 1 + 0 + 1 = 2

4.2 Planes in P4

Problem C. How many lines, in general, intersect 6 given planes in P4?
Solution. This time, we look at G1,4. A line intersecting a plane is given by Ω(2, 4) = σ(2).
Now notice that n− d− h = 4− 1− h = 3− h, so our σ(2) lowers the sum of the ai by 1 every
time we multiply by it. For this problem, we just need to calculate σ(2)6:

σ(2)2 = σ(2)Ω(2, 4) = Ω(1, 4) + Ω(2, 3)
σ(2)3 = σ(2)(Ω(1, 4) + Ω(2, 3)) = Ω(0, 4) + Ω(1, 3) + Ω(1, 3)

= Ω(0, 4) + 2Ω(1, 3)

Now we can use Poincaré Duality again, and we find:

σ(2)6 = (Ω(0, 4) + 2Ω(1, 3))2

= Ω(0, 4)2 + 4Ω(0, 4)Ω(1, 3) + 4Ω(1, 3)2

= 1 + 0 + 4 = 5

So the answer to this problem is 5.

We can also solve a problem where we switch the roles of the line and the plane:

Problem D. Given 6 lines in P4, how many planes intersect all the lines in general?
Solution. We now take d = 2, n = 4, and for this problem we have to calculate Ω(1, 3, 4)6 =
σ(1)6. We get the following calculation (notice that n− d− 1 = 1):

σ(1)Ω(1, 3, 4) = Ω(0, 3, 4) + Ω(1, 2, 4)
σ(1)(Ω(0, 3, 4) + Ω(1, 2, 4)) = Ω(0, 2, 4) + Ω(0, 2, 4) + Ω(1, 2, 3) = 2Ω(0, 2, 4) + Ω(1, 2, 3)

Now using Poincaré Duality, we see that the answer to the problem is 22 + 12 = 5.

4.3 Another Line Problem

Problem E. How many lines meet 2n− 2 given (n− 2)-planes in Pn in general?
Solution. For this problem, we put d = 1. A line meeting a (n−2)-plane is given by Ω(n−2, n) =
σ(n− 2), so we have to calculate σ(n− 2)2n−2. Notice that n−d− (n− 2) = n− 1− (n− 2) = 1,
so multiplying by σ(n− 2) lowers the sums of the coefficients in a Schubert Cycle by 1. We will
calculate Ω(n−2, n)2n−2. This can be visualised by drawing a diagram Z×Z. Then σ(n−2)2n−2

is the number of paths from (n−2, n) to (0, 1), where a path is a finite sequence (ci, di) ∈ Z×Z,
where (by Pieri’s Formula) (ci, di)− (ci+1, di+1) is equal to (0, 1) or (1, 0). Such a path shouldn’t
intersect the diagonal (since Schubert Cycle’s of the form Ω(a, a) are not allowed). In the next
section, we will solve a more general problem, and in this case one finds Cn−1, where Cn−1 is
the n− 1-th Catalan number. So the answer for n = 4 is 5 (see Section 4.2). Now n = 5 gives us
14, and the following numbers are 42, 132, 429.
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4.4 The Degree of a Subvariety of Gd,n

First of all, the degree of a projective variety is the “general” number of intersection points of
the variety with a linear variety of complementary dimension. In the case of Gd,n, the Special
Schubert Cycle σ(n−d−1) represents such a linear variety of codimension one, so in terms of the
cohomology group, we should just calculate σ(n−d−1)(d+1)(n−d). But we might also be interested
in the degree of an Ω(a0, . . . , ad). For this we have to calculate Ω(a0, . . . , ad)·σ(n−d−1)

∑d
i=0(ai−i).

We denote the degree of Ω(a0, . . . , ad) by d(a0, . . . , ad). We first state a more combinatorial way
to calculate this number:

4.1. Lemma. The degree of Ω(a0, . . . , ad) is the number of paths from (0, 1, . . . , d) to (a0, . . . , ad)
where a path is a sequence `0 = (c0,0, . . . , c0,d), . . . , `s = (cs,0, . . . , cs,d) where s =

∑d
i=0(ai − i)

and the following two properties hold:
(a) The points on the path do represent a Schubert Cycle (so we have the condition that for a
point (c0, . . . , cd) it should hold that 0 ≤ c0 < c1 . . . < cd ≤ n).
(b) `s − `s−1 is of the form (0, . . . , 0, 1, 0, . . . , 0).

Proof. The proof is clear from the definition given above: It only uses the facts that multiplying
by σ(n− d− 1) just lowers the sum of the ai by 1, and Pieri’s Formula.

Notice that this makes sense if we take Ω(0, 1, . . . , d) for example: then there is only the constant
path, hence the degree is 1.

There is a simple recursive formula for the degree:

4.2. Lemma. The degree of Ω(a0, . . . , ad) satisfies:

d(a0, . . . , ad) =
d∑

i=0

d(a0, . . . , ai−1, ai − 1, ai+1, . . . , ad)

where d(c0, . . . , cd) = 0 if Ω(c0, . . . , cd) is not a Schubert Cycle.

Proof. The proof follows directly from the statements above.

The degree is finally given in the next theorem:

4.3. Theorem. Let 0 ≤ a0 ≤ a1 . . . ad ≤ n, and let s =
∑d

i=0(ai − i). Then the following
formula holds for the degree:

d(a0, . . . , ad) =
s!

a0! . . . ad!

∏

i>j

(ai − aj)

Proof. The proof of this formula can be found in [HP], pages 364–366.

4.5 Lines and Quadrics

Problem F. Let n = 3n′ + 1, n′ ≥ 1. How many lines in Pn, in general, will lie on 2n′ quadric
hypersurfaces?

The answer to this problem is not very easy, and will be calculated in several steps. In [KL] a
proof is given for the case n′ = 1, and the answer in that case turns out to be 16. First we need
the next theorem:
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4.4. Theorem. The lines on a generic non-singular hypersurface of degree s in Pn with s ≤
2n− 3 form an algebraic set of codimension s + 1 in G1,n.

Proof. The basic idea is the following: It is hard to determine which lines lie on a hypersurface
of a certain degree, but it is easy to give all the hypersurfaces containing a given line. We will
solve the second problem, and with some theory of algebraic geometry, we will be able to solve
the first one as well.
We first notice that

(
n+s

s

)
coefficients determine a hypersurface of degree s in Pn. Now look at the

subvariety X ⊂ P(n+s
s )−1 ×G1,n which consists of pairs where the second coordinate represents

a line which is contained in the hypersurface which is represented by the first coordinate. This
variety comes with two natural projections, b0 onto P(n+s

s )−1 and b1 onto G1,n (here we need
s ≤ 2n− 3, see [LA], Theorem 0.1). It now follows from Proposition 9.5 of Chapter III of [HAG]
that

dim(G1,n) + dim(generic fiber of a line under b1) = dim(X)

=
(

n + s

s

)
− 1 + dim(generic fiber of a s−hypersurface under b0)

We denote dim(generic fiber of a s−hypersurface under b0) by dimY . Now we have to calculate
dim(generic fiber of a line under b1). We fix a line L, which is given by n − 1 linear equations
L0, . . . , Ln−2 in Pn. All the degree-s hypersurfaces with the property that L lies on it, are given
by equations of the form

n−2∑

i=0

SiLi

with Si of degree s− 1. We have to calculate the dimension of the space of s-hypersurfaces we
obtain in this way. After a change of coordinates, we may consider

∑n−2
i=0 Sixi, and we need to

calculate how many monomials of degree s can be formed by choosing the Si. This can be done
very efficiently: it is just the total number of monomials in n + 1 variables, minus the ones in
two variables (the xn−1 and xn). So this number is just

(
n+s

s

) − (
1+s

s

)
=

(
n+s

s

) − (s + 1). Since
we work in projective space, we get that the dimension is equal to

(
n+s

s

)− (s + 1)− 1.
We finally obtain

dim(G1,n)− dim(Y ) =
(

n + s

s

)
− 1− (

(
n + s

s

)
− (s + 1)− 1)

= s + 1

4.5. Remark. Now consider the case n = 3, s = 3 in the above theorem (we can use it, since
s = 2n− 3). We see that the codimension is 4. But the dimension of G1,3 is (1 + 1)(3− 1) = 4,
and we only have a finite number of lines on a typical non-singular cubic in P3. Actually, one
can show that this number is always equal to 27 ([HAG], Chapter V, Theorem 4.9).

4.6. Remark. Actually, we can prove a stronger statement (here we also need [LA]). In
the theorem above, if we consider d-planes, we get that the codimension will be

(
d+s

s

)
, if(

d+s
s

) ≤ (d + 1)(n− d). If we put d = 1, we get the condition 1 + s ≤ 2(n− 1), or s ≤ 2n− 3.

9



4.7. Remark. We now want to use apply Fact 2.2.2, but we don’t have the irreducibility. In
Remark 4.5 for example, we get an algebraic set which is not irreducible, it is the union of 27
points. Theorem 0.1 from [LA] gives us an easy condition for connectedness and smoothness,
and this implies irreducibility. One gets irreducibility if strict inequalities hold in Remark 4.6
(or Theorem 4.4), unless s = 2, n ≤ 2d or n = 2d + 1.

We will continue with the case s = 2:

4.8. Theorem. Let n ≥ 3. The subvariety X of G1,n which represents the lines in a (non-
singular) quadric is represented by 4Ω(n− 3, n− 1) in H6(G1,n,Z).

Proof. From the theorem above, we know that X has codimension 3 (here we need n ≥ 3), so
using the basis theorem, we have to solve a0 +a1−1 = (d+1)(n−d)−3 = 2(n−1)−3 = 2n−5.
So a0+a1 = 2n−4. The only valid solutions are (a0, a1) = (n−3, n−1) and (a0, a1) = (n−4, n).
So we see that the class of X is of the form [X] = λΩ(n− 3, n− 1) + µΩ(n− 4, n). We will use
Poincaré Duality to calculate µ and λ. We get that µ = [X] · Ω(0, 4) and λ = [X] · Ω(1, 3).
Now we look at [X] ·Ω(0, 4) geometrically: it consists of all lines in our quadric through a general
given point. But if we choose the point outside our quadric, we clearly get no intersection points.
Since a point outside a quadric is general enough, we get µ = 0.
We now need to calculate [X] · Ω(1, 3). This Ω(1, 3) represents the lines in a P3 intersecting a
given line. Now we look at our quadric in this P3. This quadric and the line intersect in general
in two points. Now in a non-singular quadric in P3 there are two lines through every point of
the quadric ([HAG], Exercise I.2.15), and hence the total number of lines is equal to 2 · 2 = 4 in
general. This shows that [X] = 4Ω(n− 3, n− 1) (see Theorem 4.12 for a more general case).

So to solve the problem, we have to calculate (4Ω(n−3, n−1))2n′ . Note that the solution to our
problem will be a finite number, since Ω(n − 3, n − 1) ∈ H2·3(Gd,n,Z), so Ω(n − 3, n − 1)2n′ ∈
H2·3·(2n′)(Gd,n,Z) = H2·(2n−2)(Gd,n,Z) = H2(d+1)(n−d)(Gd,n,Z), which is the top level. The next
lemma gives us a way to calculate the powers of Ω(n− 3, n− 1):

4.9. Lemma. Let 0 ≤ a0 < a1 ≤ n, then the following equality holds:

Ω(n− 3, n− 1) · Ω(a0, a1) = Ω(a0 − 1, a1 − 2) + Ω(a0 − 2, a1 − 1)

where one should read zero for a Ω(b0, b1) if it does not represent a Schubert Cycle (so when
0 ≤ b0 < b1 ≤ n is not fulfilled).

Proof. In Chapter 5, we will give a proof using the Littlewood Richardson rule. A proof can also
be given with Pieri’s Formula and Giambelli’s Formula, but we will leave it to the reader.

This lemma already gives us a clue what the solution might look like. One would guess that the
solution would be of the form (2 · 4)2n′ = 64n′ , but we will be able to give the exact formula.
The idea is now that multiplication by Ω(n− 3, n− 1) works as some sort of lowering operator.
With the above formula, it is easy to calculate for example the cases n′ = 1, 2, but we are looking
for a more general formula. The next theorem gives the solution to our problem:
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4.10. Theorem. Let n = 3n′+1, n′ ≥ 1. Then the number of lines lying on 2n′ general quadrics
in Pn is equal to 24n′Cn′ where Cn′ is equal to the n′-th Catalan number, that is Cn′ = 1

n′+1

(
2n′
n′

)
.

Proof. We want to calculate Ω(n − 3, n − 1)2n′ . Using the previous lemma, we can state this
question as follows.
How many paths are there from Ω(0, 1) to Ω(n− 3, n− 1), where a path is a sequence of pairs
of numbers (a1, b1), . . . , (a2n′−1, b2n′−1) such that the following two statements hold:
(1) For all i (ai − ai−1, bi − bi−1) should either be (1, 2) or (2, 1).
(2) For all i we have ai < bi.
We will calculate this number. First notice that every step of the path, there is always a com-
ponent of the form (1, 1), so we can restate the problem as follows:
How many paths are there from Ω(0, 1) to Ω(n− 3− 2n′ + 1, n− 1− 2n′ + 1) = Ω(n′− 1, n′ + 1)
where a path is a sequence of pairs of numbers (a1, b1), . . . , (a2n′−1, b2n′−1) such that the follow-
ing two statements hold:
(1) For all i (ai − ai−1, bi − bi−1) should either be (0, 1) or (1, 0).
(2) For all i we have ai ≤ bi (we are now allowed to stay on the diagonal).
Now some clever combinatorics should do the trick. But actually, this is not needed. We already
calculated this number, by Lemma 4.1. We just calculate d(n′ − 1, n′ + 1), which by Theorem
4.3, is equal to

(2n′ − 1)!
(n′ − 1)!(n′ + 1)!

2 =
2n′

n′!(n′ + 1)!
=

1
n′ + 1

(
2n′

n′

)
= Cn′

.
Putting everything together, we get (4Ω(n− 3, n− 1))2n′ = 24n′Cn′ .

Using our formula, we obtain the following results:

n′ = 1: 24 · 1
n′ = 2: 28 · 2
n′ = 3: 212 · 5
n′ = 4: 216 · 14
n′ = 5: 220 · 42
n′ = 6: 224 · 132

We have plotted this value as a function of n′, say f(n′) against log(64n′), and we get the
following picture:
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The fact that d(n′) ≤ 64n′ (for large n′) follows from the observation that Cn′ ≤ 22n′

n′+1 ≤ 22n′ .

4.6 d-Planes and Quadrics

In this section, we will look at the d-planes on a quadric in Pn. First we have the following
theorem:

4.11. Theorem. A non-singular quadric X in Pn contains no linear subspaces of dimension
strictly greater than (n− 1)/2.

Proof. Assume that the equation of the non-singular quadric X is given by
∑

i,j qijXiXj with
qij = qji. Then for a point p = (a0 : . . . : an) the tangent space at p is just the hyperplane in Pn

satisfying
∑

i,j qijajXi = 0. Since X is non-singular (which means that the rank of the matrix
(qij) is n + 1), the map sending a point to its tangent space is an injection from X to Pn∗ .
Now take a d-plane D in X. Then the tangent planes coming from a point in D form a d-
dimensional linear subspace of Pn∗ . Also, the tangent space at any point in D contains D itself.
The set of hyperplanes in Pn containing D is an (n− d− 1)-dimensional linear subspace of Pn∗ ,
and so we obtain d ≤ n− d− 1, or d ≤ n−1

2 .

We now want to determine the cohomology class [F ] of the d-planes on a quadric X. Using
Remark 4.6, we see that we have to look at the Schubert Cycles Ω(a0, . . . , an) with

∑
i(ai− i) =

(d+2)(d+1)
2 . Using Poincaré Duality, we have to calculate [F ] · Ω(b0, . . . , bd) with

∑
i(bi − i) =

(d+2)(d+1)
2 . Now comes the most important observation: suppose that L is a d-plane in F and in

Ω(b0, . . . , bd). Then L ∩Bi is a linear subspace of a Pbi of dimension at least i. Now F ∩Bi is a
smooth quadric in this Pbi , hence by Theorem 4.11, bi−1

2 ≥ dim(L ∩Bi) ≥ i.
This gives:

(d + 1)(d + 2)
2

=
d∑

i=0

(bi − i)

≥
d∑

i=0

(i + 1)

=
(d + 1)(d + 2)

2

Surprisingly, this just gives us bi = 2i + 1. So [X] = λΩ(n− (2d + 1), n− (2d− 1), . . . , n− 1) =
λΩ(n− 2d− 1, n− 2d+1, . . . , n− 1). If we put d = 1, we get λΩ(n− 3, n− 1), which is basically
Theorem 4.8.
We will now calculate this λ, and do this using Poincaré Duality again, directly from the defi-
nition. We have (for a flag Vi) that Ω(1, 3, . . . , 2d + 1) = {L d−plane : dim(L ∩ Vi) ≥ i}. Then
take an L which is in both Ω(1, 3, . . . , 2d + 1) and X. This L must meet V1 in one of the points
of V1 ∩X, say in p1 or p2, and assume it is p1. Then we look at Tp1(X), which is a (n− 1)-plane
(since X is non-singular), and we take an (n − 2)-plane in Tp1(X) not meeting p1, which gives
rise to a quadric X1 in a Pn−2. Then we need that V3 intersects X in a line, but it already meets
the (n− 2)-plane in a line, and this gives two intersection points with X1, say p11, p12. For any
d-plane L ⊂ X through p1 we have L = span(p1, L ∩ Pn−2), so any L should contain p11 or p12.
Assume that this time we take p11.
Now take a d-plane D in X which contains p1 and p11. Then this d-plane is contained in
Tp1(X) ∩ Tp11(X), which is just a Pn−2. Then take a Pn−4 in this projective space, which is
disjoint from the span of p1 and p11. This Pn−4 intersects X in a non-singular quadric, X2.
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The third condition says that D meets V5 in a 2-plane, and hence it contains one of the two
intersection points of V5 with X2, say in p21 or p22, and assume it is p21.
The process should be clear by now, and every step we have 2 choices for the points. Since we
have d + 1 steps, in total we find 2d+1 d-planes. So we have:

4.12. Theorem. Let X be a non-singular quadric in Pn (with (d+2)(d+1)
2 < (d + 1)(n − d)).

Then in the cohomology ring of Gd,n we have:

[X] = 2d+1Ω(n− 2d− 1, n− 2d + 1, . . . , n− 1)

.

We now want to state a meaningful problem, and we propose the following one:

Problem G. Let n = 2d + 2. How many d-planes lie on two quadrics in Pn in general?
First of all, we obtain a finite number. This follows since

2
(d + 1)(d + 2)

2
= 2

(d + 1)(n− d)
2

= (d + 1)(n− d)

The solution in this case is easy, since we only have to square. The solution is [X]2 = (2d+1Ω(n−
2d − 1, n − 2d + 1, . . . , n − 1))2 = 22d+2 = 2n. Note that if we put d = 1, we get n = 4 and we
obtain the answer 16 which was mentioned before.

We can also look at the following problem:

Problem H. Let n = 2n′ + 2 ≥ 6. How many 2-planes lie on n′ quadrics in Pn in general?
Again, this is a meaningful question, since n′ (d+1)(d+2)

2 = 6n′ = 3(2n′) = (d+1)(n−d), so we end
up in the highest class. To solve this problem, we just need to calculate (23Ω(n−5, n−3, n−1))n′ .
To calculate this, we want to have some easy formula for Ω(n− 5, n− 3, n− 1)Ω(a0, a1, a2), but
this already is a problem in general. For n′ = 2, this is not that hard. By Poincaré Duality, we
just obtain 26 = 64 (see also the previous problem).

4.7 Lines and Cubics

The last sections were devoted to quadrics, and in this section, we will do the cubic case (although
this case is a lot harder). First we have the following theorem:

4.13. Theorem. The subvariety of lines on a non-singular cubic in Pn is represented by 27Ω(n−
3, n− 2) + 18Ω(n− 4, n− 1) ∈ H2·4(G1,n,Z) for n ≥ 4.

Proof. Let X be a cubic in Pn. From Theorem 4.4 we obtain that the lines form an algebraic
set of codimension 4, when n ≥ 3, say F . So we have to look at the Schubert Cycles satisfying
a0 + a1 − 1 = 2(n − 1) − 4 = 2n − 6. So our subvariety is represented by a class of the form
λΩ(n−5, n)+µΩ(n−4, n−1)+νΩ(n−3, n−2). We will calculate these constants with Poincaré
Duality.
Obviously λ = 0: We need to calculate [X] · Ω(0, 5). If n ≥ 5, and we take a point outside our
cubic, we see that the intersection is empty.
For the second coefficient, we need tot calculate [X] · Ω(1, 4), which turns out to be 18. A line
in a P4 intersects the cubic in 3 points. Through each of these points go six lines which lie on
the cubic ([MU], Theorem 1.19), so in total we find 6× 3 = 18 lines.
Finally we calculate [X]Ω(2, 3): This is just the number of lines of a cubic in P3, which is 27
([HAG], Chapter V, Theorem 4.9).
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We can now state our problem:

Problem I. Let n = 2n′+1 with n′ ≥ 2. How many lines lie on n′ non-singular generic cubics?
The answer to the problem is a finite number, since if x ∈ H2·4(G1,n,Z), then we see that
xn′ ∈ H2·4n′(G1,n,Z) = H2·2(n−1)(G1,n,Z) = H2(d+1)(n−d)(G1,n,Z).
We need to calculate a lot for this, but the following lemma is useful:

4.14. Lemma. Let 0 ≤ a < b ≤ n. Then the following formulae hold:

Ω(n− 3, n− 2)Ω(a, b) = Ω(a− 2, b− 2)
Ω(n− 4, n− 1)Ω(a, b) = Ω(a− 3, b− 1) + Ω(a− 1, b− 3) + (1− δa+1,b)Ω(a− 2, b− 2)

where a Ω(a0, a1) is defined zero if it does not represent a Schubert Cycle.

Proof. One can prove this lemma directly with Pieri’s Formula and Giambelli’s Formula, but
this would give a long and tedious proof. One can give an easy proof using the Littlewood-
Richardson rule (basically the same as Example 5.11), and we leave this as an example to the
reader.

The lemma above gives an easy way to calculate solutions for small values of n′, but I don’t see
an easy generalization for general n′. We find the following table (the first one follows directly
from Poincaré Duality):

n′ = 2: 272 + 182 = 1053
n′ = 3: 51759
n′ = 4: 2893401
n′ = 5: 174489795

These numbers become big very quickly. Roughly, one would expect the number n′ to be about
(2(27 + 18))n′ = 90n′ . We have plotted the real function log(f(n′)) below:
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As seen in this picture, we get an exponential behavior, and the picture suggests a behavior of
the form (e4.5)n′ ≈ 90n′ .
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5 Symmetric Polynomials

In this chapter, we will construct a ring isomorphism from a quotient of the ring of symmetric
polynomials in (d + 1)(n − d) variables to the cohomology ring of the Grassmann Variety of
d-planes in Pn.
Let R be the ring of symmetric polynomials in (d + 1)(n− d) variables.

5.1 Introduction to Partitions

Take a number m ∈ Z≥0. Then λ is a partition of m if λ is an (infinite) nonincreasing sequence
of nonnegative integers with sum m. We denote this as |λ| = m.
We can draw the Young Diagram corresponding to a partition λ, Y (λ), which can best be
explained in an example. Take λ = (3, 1, 0, 0, . . .) (which we often denote as (3, 1)), which is a
partition of 4. The Young Diagram we get consist of a 2 rows, the first consists of 3 blocks, the
second of just one:

The dual Young Diagram is the diagram reflected in the diagonal (from top to bottom, left to
right), so in this case we get:

For two partitions λ, µ we write λ ≤ µ if λi ≤ µi for all i. In a diagram, this corresponds to
the diagram of λ fitting inside in the diagram of µ. In this case we can remove the diagram of
λ from µ, and obtain Y (µ/λ) (see Example 5.5 for an example). We will come back to these
notions later.

5.2 Schur Polynomials

We will now define a Z-basis for R:

5.1. Definition. Let λ be a partition of m. We define the corresponding Schur Polynomial sλ

as follows:
sλ =

∑
π

M(π)

This sum is taken over all ways π of filling the squares of Y (λ) with positive integers (up to
(d + 1)(n − d)) such that the integers along any row are non-increasing and along any column
are strictly decreasing. Then let M(π) = xa1

1 xa2
2 . . . where ai entries of π are equal to i.

These polynomials defined above are indeed symmetric:
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5.2. Theorem. Let λ be a partition of m, then sλ is a homogeneous symmetric polynomial of
degree m.

Proof. A proof can be found in [FU].

5.3. Example. We will calculate s(2,1,1) when we have 4 variables x1, x2, x3 and x4. In this
case, we have to fill the following Young Diagram:

First we will calculate the coefficient of x1x2x3x4, which amounts to filling the square with a 1,
a 2, a 3, and a 4 subject to the rules in the definition. The solutions are:

4 3

2

1

4 2

3

1

4 1

3

2

Hence the coefficient is 3.
For x2

1x2x3, we get

3 1

2

1

So the coefficient is 1. For x3
1x2, x2

1x
2
2 and x4

1 there are no correct fillings. Using the fact that
our polynomial is symmetric, we see that s(2,1,1) = 3

∑
4 x1x2x3x4 +

∑
4 x2

1x2x3 = 3x1x2x3x4 +∑
4 x2

1x2x3.

The idea now is that the Schur Polynomials behave exactly as the Schubert Cycles (modulo
some ideal). We will prove Pieri’s Formula for the Schur Polynomials and this will give us an
isomorphism. We have the very important rule:

5.4. Theorem. (Littlewood-Richardson rule) Suppose that ν = (ν1, ν2, . . .), µ = (µ1, µ2, . . .) are
partitions. The coefficient of sλ in sνsµ is equal to zero unless µ ≤ λ and |λ| = |ν|+ |µ|. In that
case, then the coefficient is equal to the number of ways of inserting ν1 1’s, ν2 2′s,etc. into the
square of Y (λ/µ), subject to the following conditions:
(1) The numbers are non-decreasing in each row and strictly increasing in each column.
(2) If a1, a2, . . . is the order of the numbers in the diagram, reading from right to left, top to
bottom, than for any i, j the number of i’s among a1, a2, . . . , aj is not less then the numbers of
(i + 1)’s among a1, a2, . . . , aj.
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Proof. A proof of this theorem can be found in [FU], and is far from trivial.

5.5. Example. We will correct an example from [ST]. Let us calculate the coefficient of s(5,4,2,2)

in s(4,2,1)s(3,2,1), using the above theorem. We then have to fill the following diagram, with 4
ones, 2 two’s and 1 three, according to the rules given above:

We can do this in three ways:

1 1

1 2

1

2 3

1 1

2 2

1

1 3

1 1

1 2

2

1 3

Hence the coefficient we were looking for is equal to 3.

5.3 Symmetric Polynomials and Schubert Calculus

In this section, we will connect Symmetric Polynomials with Schubert Calculus. First we need
to define an ideal of R:

5.6. Definition. Let λ be the partition with d + 1 parts equal to n− d, so our Young Diagram
is just a (d + 1) × (n − d) rectangle. We define Id,n as the Z-module generated by the sµ such
that µ 6≤ λ. This latter condition just means that either µ1 > n − d or µ has more than d + 1
parts. We claim that this is an ideal. Suppose sµ ∈ Id,n, and suppose sρ appears in sµsν for
some partition ν. By the Littlewood-Richardson rule, this only happens if µ ≤ ρ, and now it
also follows that ρ 6≤ λ, so we indeed have an ideal. Now define R′ = R/Id,n.

5.7. Remark. R′ is a free Z-module, generated by the [sµ], for which we write sµ from now on,
such that µ ≤ λ. Also, for multiplication, use the Littlewood-Richardson rule and just ignore all
sµ ∈ Id,n.

We can also prove Pieri’s Formula:

5.8. Theorem. (Pieri’s Formula) Let µ = (n − a0 − d, n − a1 − d + 1, . . . , n − ad). Then
sµs(n−d−h) =

∑
sλ, where the sum runs over the λ such that µ ≤ λ and Y (λ/µ) has exactly

n− d− h squares and there are no columns with more than one square.

Proof. We will use the Littlewood-Richardson rule, and this directly gives us that the coefficient
is zero unless µ ≤ λ and |λ| = |µ|+(d+1)(n−d)−∑d

i=0(ai− i). Since |λ| is a specified number,
and we cannot fulfil the non-increasing condition when there is a column with more than one
square in Y (λ/µ) (since we only have one number to fill in). If these conditions hold, then there
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is obviously a unique and correct way of filling such a square (we have no choice), and we get a
coefficient 1. This proves our formula.

As a consequence, we directly have the Determinantal Formula (the proof is basically the same
as the proof of Pieri’s Formula in the cohomology ring of the Grassmann Variety, since this
followed formally from Pieri’s Formula):

5.9. Theorem. (Determinantal Formula) s(n−a0−d,n−a1−d+1,...,n−ad) = |s(n−d−ai+j)| (a deter-
minant) where 1 ≤ i, j ≤ d.

Finally we can make the connection with the cohomology ring of the Grassmann Variety:

5.10. Theorem. The map

ϕ : R′ → H∗(Gd,n,Z)
s(n−a0−d,n−a1−d+1,...,n−ad) 7→ Ω(a0, a1, . . . , ad)

is an isomorphism of rings.

Proof. First note that R′ and H∗(Gd,n,Z) are both graded rings, where every graded part is a free
abelian group. Also, the rank of the degree m-th part of R′ is equal to the rank of H2m(Gd,n,Z).
Now we notice that Pieri’s Formula completely determines the multiplicative structure of both
rings, so we will just check this formula. Let µ = (n− a0 − d, n− a1 − d + 1, . . . , n− ad):

ϕ(sµsn−d−h) = ϕ(
∑

sλ)

We want to translate the conditions for a term appearing in our sum in terms of λ = (n− b0 −
d, n− b1 − d + 1, . . . , n− bd). So we have the λ such that µ ≤ λ and λ1 ≤ n− d and Y (λ/µ) has
exactly n− d− h squares and there are no columns with more than one square. Now µ ≤ λ just
gives us that bi ≤ ai. The n − d − h just gives us a condition on the “dimension”, in this case∑

bi =
∑

ai − (n− d− h). We look at the last condition. In a Young Diagram, this means that
λi+1 ≤ µi. Translating this gives (n− bi+1 − d + i + 1) ≤ (n− ai − d + i), or just ai + 1 ≤ bi+1,
so ai < bi+1. On the other hand, if ai < bi+1, then the condition is satisfied, and so we see that
Pieri’s Formula also holds.
This shows that we have the same rules and hence an isomorphism.

5.11. Example. (Proof of Lemma 4.9) As an example, we will prove Lemma 4.9 using the
Littlewood-Richardson rule. We want to calculate Ω(n−3, n−1)Ω(a0, a1). In R′ we have to calcu-
late s(n−(n−3)−1,n−(n−1))s(n−a0−1,n−a1) = s(2,1)s(n−a0−1,n−a1). Using the Littlewood-Richardson
rule, we see that we have to add three squares to Y (n− a0 − 1, n− a1). We can only add these
squares in the first or second row (since d + 1 = 2), and we have a few options to add them. We
can add 3 to the first or last row. We then have to fill the following diagram:

According to the first rules, we should fill it as (right to left, top to bottom) 2, 1, 1, which fails
to satisfy the second rule.
Then we can add 2 to the first one, and 1 to the second one. We then have to fill one of the
following diagrams:
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(Notice that in the first case, the second row can be even more to the left, but columns without
any squares in them can be ignored). Both can be filled in a unique way: 1, 1, 2, and so we get
a coefficient 1 in all cases.
The last case is a bit harder, we add one square to the first line one, and two to second one. We
then obtain one of the following diagrams:

The second an the third have one filling, which is 1, 2, 1, and the first does not even represent
a partition, so we can say that we get a coefficient one in this case (the isomorphism will just
map it to Ω(a, a) which we define to be zero). Note also that we didn’t consider cases where our
new diagram has rows whose length is bigger than n− 1, but if we translate those back, we get
Schubert Cycles with negative entries, which are defined to be zero anyway.
So we can just say s(2,1)s(n−a0−1,n−a1) = s(n−a0+1,n−a1+1)+s(n−a0,n−a1+2). Translating this back,
we get Ω(n− 3, n− 1)Ω(a0, a1) = Ω(a0 − 2, a1 − 1) + Ω(a0 − 1, a1 − 2).

6 Summary

In this Bachelor Thesis, we have tried to explain the rules of the Schubert Calculus. We have split
this up into a chapter on the Grassmann Variety, one on the structure of the cohomology ring of
this Grassmann Variety, and two chapters on the formulae in this cohomology ring. The fourth
chapter shows how to use the formulae in practice to solve some enumerative problems in geome-
try. The first few examples are standard (or trivial), but the sections on Quadrics and Cubics are
new. The most remarkable formula we have derived is Theorem 4.10, which we state again below:

4.10 Theorem Let n = 3n′ + 1, n′ ≥ 1. Then the number of lines lying on 2n′ non-singular
quadrics in Pn is equal to 24n′Cn′ where Cn′ is equal to the n′-th Catalan number, that is
Cn′ = 1

n′+1

(
2n′
n′

)
.

The examples in Chapter 4 also show a general method for solving certain enumerative problems
in geometry. When a problem is stated, concerning the d-planes on some variety X ⊂ Pn, one
first needs to translate this problem to some calculation in the cohomology ring of Gd,n. This is
almost always done (unless it is trivial) with Poincaré Duality (Theorem 3.1), and this part is in
general very hard. Then one “only” has to do some multiplications in this cohomology ring, and
this can always be done with Pieri’s Formula (Theorem 3.7) and Giambelli’s Formula (Theorem
3.6). To give general rules, one can work with the same formulae, but the Littlewood-Richardson
rule (Theorem 5.4) and Theorem 5.10 may help, since they can give coefficients directly. Even
with the Littlewood-Richardson rule, it is still very hard to give exact formulae, and it becomes
even harder when d becomes larger.
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Réprésentation du Groupe Symétrique, Strasbourg, Springer Lecture Notes in Mathe-
matics 93 (1997) 217–251

20


