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Preface

This treatise is on simple random walk, and on the way it gives rise to
Brownian motion. It was written as my bachelor project, and it was written
in such a way that it should serve as a good introduction into the subject
for students that have as much knowledge as I when I began working on it.
That is: a basic probability course, and a little bit of measure theory. To
that end, the following track is followed:

In section 1, the simple random walk is defined.
In section 2, the first major limit property is studied: whether the walk

be recurrent or not. Some calculus and the discrete Fourier transform are
required to prove the result.

In section 3, a second limit property is studied: its range, or, the number
of visited sites. In the full proof of the results, the notion of strong and weak
convergence presents itself, and also the notion of tail events.

To understand these problems more precisely, and as a necessary prepa-
ration for Brownian motion, some measure theoretic foundations are treated
in section 4. Emphasis is put, not on the formal derivation of the results,
but on the right notion of them in our context.

In section 5, Brownian motion is studied. First, in what manner simple
random walk gives rise to it, and secondly its formal definition. Special care
is devoted to explain the exact steps that are needed for its construction,
for that is something which I found rather difficult to understand from the
texts I read on it.

Timo Leenman
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1 Definition of the random walk

Random walk describes the motion on a lattice, say Zd, of a walker that
jumps at discrete time steps t = 1, 2, 3, ... to a new, randomly chosen, site.
Such a random walk can be defined in various ways, resulting in various
properties. With each time a random variable is associated (the step), and
the distribution of these random variables fixes the behaviour of the walk.
One could for example define a walk that never visits a site twice, or one
that never turns 180 degrees at once. But the random walk we are to look at
here is simple random walk. Its successive steps are chosen independently,
they can be of length 1 only and are chosen uniformly out of the 2d possible
directions on Zd. Formally, define steps Xi as random variables on Zd as
follows:

Definition. The discrete random variablesX1, X2, ... on Zd are called steps
of the random walk and have the following probability distribution:
∀i ∈ N : P (Xi = e) = 1

2d if e ∈ Zd and ‖e‖ = 1, and P (Xi = e) = 0
otherwise.

Definition. S0 = 0 ∈ Zd and Sn = X1 + ... +Xn for n ∈ N is called the
position of the random walk at time n.

So the random walker begins his walk on the starting site S0 = 0, and
by taking i.i.d. steps Xi arrives at position Sn at time n. Because of the
independence of the steps it is obvious that {Sn}n∈N0 is a Markov process
on the state space Zd, since the future positions only depend on the current
position. Now that we have a Markov chain, we can talk about transition
probabilities. Our notation shall be thus: call p(l) = P (X1 = l) = P (S1 = l)
the one-step transition probability, which is 1

2d for l a “neighbour”, and 0
otherwise. Call Pn(l) = P (Sn = l) the n-step transition probability, which
equals the probability that the walk is at site l at time n (starting in 0).

2 Recurrence of the random walk

In studying the long term behaviour of the random walk, one of the first
questions one might be interested in is whether the random walker returns
to its starting site. To this end, define F to be the probability that the
random walker eventually returns to the starting site S0. If F = 1, then
the site S0 is called recurrent, if F < 1, then it is called transient. In the
recurrent case, it is obvious that the random walker returns not only once
but infinitely many times to S0, whereas in the transient case, the random
walker may never return with positive probability 1 − F . In which latter
case the number of returns to S0 is geometrically distributed with parameter
1− F , and therefore the expected number of returns to a transient starting
site is 1

1−F − 1 = F
1−F .
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The state space of a general Markov chain can be partitioned into recur-
rent and transient classes of states. In the simple walk, however, it is clear
that all states communicate (i.e. the walker has positive probability to reach
any given site starting from any other given site), and hence that it consists
of only one class. Therefore it makes sense to call the whole random walk
recurrent or transient, whenever S0 is so.

The certainty of returning to every visited site on the one hand, and the
likelihood of not returning to them on the other hand, give recurrent and
transient random walks completely different behaviour. A valuable result,
due to Polýa, tells which simple random walks are recurrent:

Polýa’s Theorem. Simple random walks of dimension d = 1, 2 are recur-
rent, and of d ≥ 3 are transient.

The proof of this theorem is the object of this section. To that end, we
first need a general criterion to see whether S0 be recurrent or not.

Theorem. The state S0 = 0 is transient if and only if
∑∞

n=1 Pn(0) <∞.

Proof. For t ∈ N, define It = 1 if St = 0, and It = 0 otherwise. Note that
N =

∑∞
t=1 It is the number of times that S0 is revisited. For the expectation

of that number the following holds:

E[N ] = E

[ ∞∑
t=1

It

]
=

∞∑
t=1

E[It] =
∞∑

t=1

P (St = 0) =
∞∑

t=1

Pt(0).

Computing the expectation again, we have

E[N ] =
∞∑

k=1

kP (N = k) =
∞∑

k=1

[kP (N ≥ k)− kP (N ≥ k + 1)]

=
∞∑

k=1

P (N ≥ k) =
∞∑

k=1

F k,

where the last equation follows from the fact that every return occurs inde-
pendently with probability F . Putting the results together we get

∞∑
t=1

Pt(0) = E[N ] =
∞∑

k=1

F k,

which diverges if F = 1, and converges if F < 1. �

In other words, the random walk is recurrent precisely when
∑∞

t=1 Pt(0)
is infinity. It is this equivalence that we will use to prove Polýa’s theorem.
First, we compute Pn(0). After that we compute the sum over n to see
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whether it diverges. There is a way to proceed that covers all dimensions at
once, namely, by giving an integral expression for Pn(0), and analyzing this
expression for n → ∞. We will need this procedure for dimensions d ≥ 3,
but to illustrate that the situation for d = 1, 2 is significantly easier, we will
first carry out a simple computation for d = 1, 2.

• d = 1, 2

d = 1: Imagine the one-dimensional lattice Z lying horizontally. Any path
that the random walker follows can be uniquely represented by an infinite
sequence (llrlrrrl...) (l standing for left, r for right). Conversely, any such
sequence represents a path. Next, note that any path from 0 to itself has an
even length, containing as many steps to the left as to the right. Therefore

P2n+1(0) = 0;P2n(0) =
(

2n
n

)(
1
2

)n(1
2

)n

=
(2n)!

n!(2n− n)!
1

22n
.

Now substitute Stirling’s approximation of the factorial n! ∼ nne−n
√

2πn
as n→∞ to get

P2n(0) ∼ 22nn2ne−2n
√

4πn
n2ne−2n2πn

1
22n

=
1√
πn

as n→∞.

So the infinite sum becomes
∞∑

n=1

Pn(0) =
∞∑

n=1

P2n(0) =
∞∑

n=1

1√
πn

[1 + o(1)]

=
1√
π

[1 + o(1)]
∞∑

n=1

1√
n
>

1√
π

∞∑
n=1

1
n

=∞,

and we see that the one-dimensional random walk is recurrent.
d = 2: For one two-dimensional walk, define two one-dimensional walks

in the following way:
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Let Sn be the two-dimensional position. Define for every n the positions of
two one-dimensional walks S1

n and S2
n by the orthogonal projection of Sn on

the respective axes 1 and 2. The steps of a random walk are the differences
between two successive positions, and the two-dimensional step Xi can take
the values north, east, south, west. The following table gives the relation
between Xi, X1

i and X2
i :

N E S W
X1 1 1 −1 −1
X2 1 −1 −1 1

From this table it is obvious that the distribution of X1 given X2 is the
same as the marginal distribution of X1, and P (X1 = 1) = P (X1 = −1) =
P (X2 = 1) = P (X2 = −1) = 1

2 . So in this way any two one-dimensional
random walks correspond precisely to one two-dimensional random walk,
and the other way round. Therefore, in d = 2 we can write:

P2n(0) = P (S2n = 0) = P (S1
2n = 0)P (S2

2n = 0) ∼ (
1√
πn

)2 =
1
πn

and, because still P2n+1(0) = 0, the sum over n becomes

∞∑
n=1

Pn(0) =
∞∑

n=1

P2n(0) =
1
π

[1 + o(1)]
∞∑

n=1

1
n

=∞.

So the two-dimensional random walk is recurrent as well.

• d ≥ 3

The general method to prove recurrence or transience needs some more
computation. The whole method is based on the well-known theorem for
Markov chains due to Chapman and Kolmogorov, which in our notation
takes the form:

Theorem. In the above notation, the following holds for all l ∈ Zd:

Pn+1(l) =
∑
l′∈Zd

p(l − l′)Pn(l′). (1)

In words this states that the probability of travelling to l in n+ 1 steps can
be found by summing over the positions the walker can occupy at time n.
It is clear that the statement uses the translation invariance of the walk.
The theorem can be seen as describing the evolution of the walk: a recur-
rence relation that expresses higher-step transition probabilities in terms of
lower-step transition probabilities. The one-step transition probabilities are
prescribed by the definition of the random walk. As many ordinary differen-
tial equations can be solved by applying the Fourier transform F to them,
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in a like manner we will solve our recurrence relation using the discrete
Fourier transform F , the properties of which are very much the same as of
the continuous one. It takes the form

F(Pn(l)) = P̂n(k) =
∑
l∈Zd

eil·kPn(l), k ∈ [−π, π)d.

For ease we define the structure function λ(k) as the Fourier tranform of the
one-step transition probabilities: λ(k) = p̂(k) =

∑
l e

il·kp(l). We can now
transform equation (1), and we get

P̂n+1(k) =
∑

l

eil·k
∑
l′

p(l − l′)Pn(l′).

Note that eil·k = ei(l−l′)·keil
′·k is a constant (not depending on l′) that can

be placed behind the summation sign. Therefore

P̂n+1(k) =
∑

l

∑
l′

p(l − l′)ei(l−l′)·keil
′·kPn(l′).

Now call m = l − l′, and the above equals∑
m+l

p(m)eim·k
∑
l′

eil
′·kPn(l′) = λ(k)P̂n(k) = P̂n+1(k).

The recurrence relation has now become easy to solve: we only need the
initial condition. This is P0(l) = δ0l (at t = 0 the walker must be in the
origin), and in Fourier transform this condition is P̂0(k) =

∑
l e

il·kδ0l = 1
(only for l = 0 does the delta-function not vanish). Substituting this initial
condition, we see that the solution of (1) becomes P̂n(k) = λ(k)n. The
inverse Fourier transform has the form of the d-dimensional integral

Pn(l) = F−1(P̂n(k)) =
1

(2π)d

∫
...

∫
k∈[−π,π)d

−eil·kP̂n(k)dk.

So the formal solution (for any dimension) of the transition probabilities Pn

is
Pn(l) =

1
(2π)d

∫
...

∫
k∈[−π,π)d

−eil·kλ(k)ndk.

Until now the calculation was purely formal. If we want to test the walk
for transience, we must sum the transition probabilities Pn(0)over n. For
that, we need to know λ(k) and then evaluate the multiple integral. Because
we are only interested in whether the sum

∑∞
n=1 Pn(0) converge or not, it

suffices for our purpose to approximate λ(k), and then to determine the
limiting behaviour of Pn(0) for n→∞: if it approaches 0 fast enough, then
the sum will converge, and hence the random walk will be transient.
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So, what is λ(k) for our simple random walk? The answer follows from
a short computation. Write the vector k = (k1, k2, ..., kd)T , and fill in the
fomula for the structure function:

λ(k) = p̂(k) =
∑

l

eil·kp(l) =
∑

l:‖l‖=1

eil·k
1
2d
.

Here we use that the one-step transition probability p(l) equals 1
2d if l is a

unit vector, and equals 0 otherwise. Denote these 2d unit vectors by ej and
−ej , for j = 1, ..., d. Then

λ(k) =
1
2d

d∑
j=1

[
eiej ·k + ei(−ej ·k)

]
=

1
2d

d∑
j=1

[
eikj + e−ikj

]

=
1
2d

d∑
j=1

[cos(kj) + cos(−kj)] + i
1
2d

d∑
j=1

[sin(kj) + sin(−kj)]

=
1
d

d∑
j=1

cos(kj).

For the sake of approximating this with a function that is more easily inte-
grated over, recall the following two Taylor expansions for x→ 0:

cos(x) = 1− x2

2!
+ h.o. and ex = 1 + x− x2

2!
+ h.o.,

where h.o. means higher order terms. Substitute this into the formula for
λ(k) to obtain

λ(k) =
1
d

d∑
j=1

(1−
k2

j

2!
+ h.o.)

= 1− 1
2d
‖k‖2 + h.o. ∼ e−

1
2d
‖k‖2 for k → 0.

The integral we are to calculate has now become

Pn(0) ∼ 1
(2π)d

∫
...

∫
k∈[−π,π)d

−eil·ke
−n
2d
‖k‖2dk for k → 0

but this approximation only holds for small k. Yet this is all we need,
because we are interested in the limiting behaviour as n→∞, in which case
the second factor in the integrand clearly becomes very small, unless k is
taken to be so small as to compensate for the large n. Thus it can be seen
that the dominating contribution to the integral is contained in the region
where ‖k‖ = O

(
1√
n

)
. In the limit n→∞ this means that ‖k‖ approaches
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0, and the value of the integral is not affected when we integrate over the
whole of Rd in stead of only [−π, π)d. Hence

Pn(0) ∼ 1
(2π)d

∫
...

∫
Rd

e
−n
2d
‖k‖2dk for n→∞.

Now observe that the integrand only depends on the length of k. This
suggests a transformation to spherical coordinates, because then the inte-
grand only depends on the radius r = ‖k‖. The above integral equals

1
(2π)d

∫ ∞

0

d

dr
Bd

r e
−n
2d

r2
dr,

where Bd
r is the volume of the ball of radius r in d dimensions. For computing

Bd
r , define the stepfunction θ = 1[0,∞). Then, for all d ≥ 1,

Bd
r =

∫
Rd

θ(r2 − ‖x‖2)dx.

Now substitute y = x
r , and hence ‖x‖2 = r2‖y‖2, and dx = rddy. This yields

Bd
r =

∫
Rd

θ(r2 − r2‖y‖2)rddy = rd

∫
Rd

θ(1− ‖y‖2)dy = ωdr
d,

where ωd represents the volume of the unit sphere in d dimensions. Because
d
drB

d
r = drd−1ωd, our asymptotic integral expression for Pn(0) becomes

1
(2π)d

∫ ∞

0
dωdr

d−1e
−n
2d

r2
dr.

To evaluate further, substitute x = n
2dr

2. Then dx
dr = n

d r, so rdr = d
ndx, and

rd−2 =

(√
2d
n
x

)d−2

=
(

2d
n

) 1
2
d−1

x
1
2
d−1,

and the boundaries 0 and∞ remain the same. Now the integral has become,
for n→∞,

Pn(0) ∼ 1
(2π)d

∫ ∞

0
dωd

(
2d
n

) 1
2
d−1

x
1
2
d−1e−x d

n
dx

=
1

(2π)d
ωd(2d)

1
2
d−1Γ

(
1
2
d

)
1

n
1
2
d

=
C(d)

n
1
2
d
,

where Γ(a) =
∫∞
0 e−xxa−1dx for a > 0, and C(d) is a constant that depends

on the dimension. At last we can sum over the transition probabilities. Note
that

∞∑
n=1

C(d)

n
1
2
d

= C(d)
∞∑

n=1

1

n
1
2
d
<∞ if d ≥ 3.

Because for n large enough Pn(0) ≤ 2C(d)

n
1
2 d

, we conclude that for d ≥ 3

it must hold that
∑∞

n=1 Pn(0) < ∞, and therefore simple random walk in
dimension d ≥ 3 is transient.
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3 Range of the random walk

Intuitively, it is clear that a transient random walker is much more likely
to visit new sites of the lattice than a recurrent one. To make this precise,
define the range Rn of a random walk at time n as the number of distinct
points visited within time n:

Definition. ∀n ≥ 0 : Rn = card({0 = S0, S1, ..., Sn}).

Defining F to be the probability that the walker will eventually return to
its starting site S0, the behaviour of the range is stated in the following
theorem:

Theorem. ∀ε > 0 : limn→∞ P (|Rn
n − (1− F )| > ε) = 0.

Proof. Define φ0 = 1 and, for k ∈ N φk = 1 if Si 6= Sk for all i = 1, .., k− 1
and φk = 0 otherwise. In other words, φk = 1 if and only if the random
walker visits a new site on its k’th step. It is obvious that Rn =

∑n
k=0 φk,

and because of linearity of expectations also E[Rn] =
∑n

k=0E[φk] holds.
For any k ∈ N we can write:

E[φk] = P (φk = 1) = P (Sk 6= Sk−1, Sk 6= Sk−2, ..., Sk 6= S0 = 0)
= P (Sk − Sk−1 6= 0, Sk − Sk−2 6= 0, ..., Sk 6= 0)
= P (Xk 6= 0, Xk +Xk−1 6= 0, ..., Xk + ...+X1 6= 0)
= P (X1 6= 0, X1 +X2 6= 0, ..., X1 + ...+Xk 6= 0)
= P (Sj 6= 0 for j = 1, ..., k)

= 1−
k∑

j=1

Fj(0, 0),

where in the fourth line we reverse the indices, and in the sixth line Fj(0, 0)
is the probability that the random walker, starting in 0, returns to 0 for the
first time on its j’th step. Taking the limit k →∞, we get

lim
k→∞

E[φk] = 1− F

and this equals 0 if and only if the random walk is recurrent. Consequently,

lim
n→∞

1
n

n∑
k=0

E[φk] = lim
n→∞

1
n
E[Rn] = 1− F.

To proceed, we consider the recurrent and the transient case separately.
For ε ≥ 0, write

P

(
Rn

n
> ε

)
=

∑
k:k>nε

P (Rn = k) ≤
∑

k:k>nε

k

nε
P (Rn = k)

≤ 1
nε

∞∑
k=0

kP (Rn = k) =
1
nε
E[Rn].
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For the recurrent case it therefore follows that limn→∞ P (Rn
n > ε) = 0 for

all ε > 0, and we are done.
The transient case is more complicated. First, notice that for any conti-

nous random variable X on R≥0 the following holds: E[X] =
∫∞
0 xP (X =

x)dx =
∫ ε
0 xP (X = x)dx +

∫∞
ε xP (X = x)dx ≥ ε

∫∞
ε f(x)dx = εP (X > ε)

where f(x) is the prbability density function, and this inequality also holds
for discrete random variables on R≥0. Secondly, use this inequality for the
random variable |Rn − n(1 − F )|2. Starting from the probability we are
interested in, we get

P

(∣∣∣∣Rn

n
− (1− F )

∣∣∣∣ > ε

)
= P

(
|Rn − n(1− F )|2 > n2ε2

)
≤ 1

n2ε2
E[|Rn − n(1− F )|2]

=
1

n2ε2
E[R2

n − 2n(1− F )Rn + n2(1− F )2]

=
1

n2ε2
E[R2

n − 2RnE[Rn] + 2(E[Rn])2 − 2n(1− F )E[Rn] + n2(1− F )2]

=
1

n2ε2
E[R2

n − 2RnE[Rn] + (E[Rn])2]

+
1

n2ε2
(n2(1− F )2 − 2n(1− F )E[Rn] + (E[Rn])2)

=
1

n2ε2
E[(Rn − E[Rn])2] +

1
ε2

(
1− F − E

[
Rn

n

])2

.

Write E[(Rn − E[Rn])2] = var(Rn). To prove that the above probability
converges to zero as n→∞, it suffices to prove that limn→∞

1
n2 var(Rn) = 0,

because it was already shown that limn→∞E[Rn
n ] = 1−F , so that the second

term of the expression vanishes in the limit.
Continue by computing var(Rn) as follows (using the linearity of expec-

tations):

var(Rn) = E[(Rn)2 − (E[Rn])2] = E

 n∑
j=0

φj

n∑
k=0

φk

− E
 n∑

j=0

φj

2

= E

 n∑
j=0

n∑
k=0

φjφk

− E
 n∑

j=0

φj

E [ n∑
k=0

φk

]

=
n∑

j=0

n∑
k=0

(E[φjφk]− E[φj ]E[φk])

= 2
∑

0≤j≤k≤n

(E[φjφk]− E[φj ]E[φk]) +
n∑

j=0

E[φj − E[φj ]].
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This last equality follows from the fact that summing over the elements of
a symmetric (square) matrix, one may as well take twice the sum over the
elements under the diagonal, and add the diagonal elements (notice that
φ2

j = φj). Because E[φj − E[φj ]] ≤ E[φj ], var(Rn) can be estimated by

var(Rn) ≤ 2
∑

0≤j≤k≤n

(E[φjφk]− E[φj ]E[φk]) +
n∑

j=0

E[φj ].

But we can estimate it by a yet simpler expression: Notice that for 0 ≤ j < k,

E[φjφk] = P (φjφk = 1) = P (Sj 6= Sα for 0 ≤ α < j, Sk 6= Sβ for 0 ≤ β < k)
≤ P (Sj 6= Sα for 0 ≤ α < j, Sk 6= Sβ for j < β < k)
= P (Xj 6= 0, Xj +Xj−1 6= 0, ..., Xj + ...+X1 6= 0;

Xk 6= 0, Xk +Xk−1 6= 0, ..., Xk + ...+Xj+1 6= 0)
= P (X1 6= 0, ..., X1 + ...+Xj 6= 0)

P (X1 6= 0, ..., X1 + ...+Xk−j 6= 0).

The factorization and mixing of indices is allowed because the Xi are i.i.d.
Now recall that E[φk] = P (X1 6= 0, ..., X1 + ...+Xk 6= 0), so the inequality
says that E[φjφk] ≤ E[φj ]E[φk−j ] for 0 ≤ j < k. Substitution into the
former estimate of var(Rn) yields

var(Rn) ≤ 2
n∑

j=0

E[φj ]
n∑

k=j+1

(E[φk−j − E[φk]) + E[Rn]

Since Ek[φk] = 1 −
∑k

j=1 Fj(0, 0), we have {E[φk]}nk=0 is a monotone non-
increasing sequence. But for any such sequence a1 ≥ a2 ≥ ... ≥ an the
sum

n∑
k=j+1

(ak−j − ak) = (a1 + a2 + ...+ an−j)− (aj+1 + aj+2 + ...+ an)

is maximized by taking j = bn2 c (that is, round off n
2 downward). Indeed, by

taking j smaller, the left term increases less than the right one and, by taking
j larger, the left term decreases more than the right one. Its maximum value
is (a1 + ...+ an−bn

2
c)− [(a1 + ...+ an)− a1 + ...+ abn

2
c]. Taking ak = E[φk],

and recalling that
∑n

k=0E[φk] = E[Rn], it therefore holds that

var(Rn) ≤ 2
n∑

j=0

E[φj ]E[Rn−bn
2
c +Rbn

2
c +Rn] + E[Rn].

Because we already showed that limn→∞
1
nE[

∑n
j=0 φj ] = limn→∞E[Rn

n ] =
1− F , we get

lim
n→∞

1
n2
var(Rn) ≤ 2(1− F ) lim

n→∞
E

[
E[Rn−bn

2
c +Rbn

2
c +Rn

n

]
+ 0

12



= 2(1− F )
(

1− F
2

+
1− F

2
− (1− F )

)
= 0,

which was still left to be proved. �

The above theorem states that the random variable Rn
n converges to 1−F

in probability, but in fact a stronger statement also holds: Rn
n converges

to 1 − F almost surely. The proof thereof requires the ergodic theorem,
which we cannot prove here. The difference between these two types of
convergence of random variables is defined in section 4, but intuitively it
means the following.

Consider the collection of all possible paths (of infinite length) a random
walker might take. For each of those paths with every time n a value Rn

n
is associated. Strong convergence means that, if one of those paths is se-
lected, then it is with probability one a path for which the sequence

(
Rn
n

)
n∈N

converges to 1− F .
If some arbitrary deviation ε ≥ 0 is given, then the probability (when

selecting a path) pn = P (| Rn
n − (1 − F ) |> ε) depends on n. Convergence

in probability means that that the sequence (pn)n∈N converges to 0.

Theorem. P (limn→∞
Rn
n = 1− F ) = 1.

Proof. We will define two sequences (Dn)n∈N and (Rn,M )n∈N such that
Dn ≤ Rn ≤ Rn,M , and use these to determine the value of the limit.

First, define Rn,M like Rn, but at every M ’th step forget which sites
were already visited (but do not reset the counter to 0). Formally, define
the ranges of subsequent M -step walks

Zk(M) = card{SkM , SkM+1, ..., Sk(M+1)−1},

and now add these up to get

Rn,M =
b n

M
c∑

k=0

Zk(M),

which is the sequence described above. It is obvious that Rn,M ≤ Rn. Note
that it is not clear yet that limn→∞

Rn
n exists at all, so that we will estimate

downwards by taking the limit inferior and upwards by taking the limit
superior (because these exist for every sequence). Thus it must hold that

lim sup
n→∞

Rn

n
≤ lim sup

n→∞

∑b n
M
c

k=0 Zk(M)
n

.

13



Now, the Zk(M) are i.i.d., and so the strong law of large numbers can be
applied to obtain

lim sup
n→∞

⌊ n
M

⌋ 1
n

1
b n

M c

b n
M
c∑

k=0

Zk(M)

≤ 1
M
E[Z0(M)] =

1
M
E[RM ] a.s.

Now take the limit M → ∞. We already saw that 1
ME[RM ] converges to

1− F , and therefore we get

lim sup
n→∞

Rn

n
≤ 1− F a.s.

Secondly, define Dn as the number of distinct sites visited in time n that
the walker never visits again. Formally, let

Dn =
n∑

k=0

ψk with ψk = 1 if Xk+1 + ...+Xk+i 6= 0 for all i ∈ N

and ψk = 0 otherwise.

So ψk = 1 only if after the k’th step the walker never returns to the site
where it is at time k, i.e. if the walker visits the current site for the last
time. The number of times that the walker visits a site for the last time is
evidently smaller than the number of sites visited, so Dn ≤ Rn.

Y0, Y1, ... is said to be a stationary sequence of random variables if, for
every k, the sequence Yk, Yk+1, ... has the same distribution, that is, for
every n, the (n + 1)-tuples (Y0, Y1, ..., Yn) and (Yk, Yk+1, ..., Yk+n) have the
same joint probability distribution. In particular, the Yi’s are identically
distributed, but they may be dependent. Because of symmetry and the
Markov property of the simple random walk, it is clear that (ψk)k∈N is a
stationary sequence. Therefore, by the ergodic theorem the limit

lim
n→∞

1
n

n∑
k=0

ψk = lim
n→∞

Dn

n

exists with probability 1 (but it may still be a random variable). But
limn→∞

Dn
n assuming a certain value is a so-called tail event. Intuitively,

tail events are those events for a sequence of random variables that would
still have occurred if some finite number of those random variables would
have had a different realisation. Tail events are treated more thoroughly in
section 4. Indeed, all events of the form limn→∞

Dn
n < C, limn→∞

Dn
n ≥ C

etc., are tail events, and must therefore, according to Kolmogorov’s 0-1 law,

14



occur with probability 0 or 1. Consequently, the limit must needs be equal
to a constant. This constant can only be the natural candidate, namely,

lim
n→∞

1
n

n∑
k=0

ψk = E[ψ0] = P (X1 + ...+Xi 6= 0 for all i ≥ 1) = 1− F a.s.

Consequently,

lim inf
n→∞

Rn

n
≥ lim inf

n→∞

Dn

n
= lim

n→∞

Dn

n
= 1− F a.s.

Finally, note that the first statement (lim supn→∞
Rn
n ≤ 1− F a.s.) and

the second statement (lim infn→∞
Rn
n ≥ 1 − F a.s.) together imply the

statement of the theorem (limn→∞
Rn
n = 1− F a.s.). �

4 Probability measures and stochastic convergence

The purpose of this section is to define more precisely what is meant by
random variables and their convergence. This is done in measure-theoretic
terms, because that is the only way to make precise our construction of so-
called Brownian motion in section 5. While this treatise is on simple random
walk, and not on measure-theoretic probability, we will put more emphasis
on the intuitive interpretation of the definitions than on the proof of their
properties, which can be found in [1].

We use a probability space to model experiments involving randomness.
A probability space (Ω,Σ,P) is defined as follows:

Sample space. Ω is a set, called the sample space, whereof the points ω ∈ Ω
are called sample points.

Events. Σ is a σ-algebra of subsets of Ω, that is, a collection of subsets
with the property that, firstly, Ω ∈ Σ; secondly, whenever F ∈ Σ then
FC = Ω \ F ∈ Σ; thirdly, whenever Fn ∈ Σ(n ∈ N), then

⋃
n Fn ∈ Σ.

Notice that these imply that Σ contains the empty set, and is closed
under countable intersections. All F ∈ Σ are called measurable subsets,
or (when talking about probability spaces) events.

Probability. P is called a probability measure on (Ω,Σ), that is, a function
P : Σ→ [0, 1] that assigns to every event a number between 0 and 1.
P must satisfy: firstly, P(∅) = 0 and P(Ω) = 1; secondly, whenever
(Fn)n∈N is a sequence of disjoint events with union F =

⋃
n Fn, then

P(F ) =
∑

n∈N Fn (σ-additivity).
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Randomness is contained in this model in the following way: When
performing an experiment, some ω ∈ Ω is chosen in such a way that for
every F ∈ Σ, P(F ) represents the probability that the chosen sample point
ω belongs to F (in which case the event F is said to occur).

Some statement S about the outcomes is said to be true almost surely
(a.s.), or with probability 1, if

F = {ω : S(ω) is true} ∈ Σ and P(F ) = 1.

If R is a collection of subsets of S, then σ(R), the σ-algebra generated
by R, is defined to be the smallest σ-algebra contained in Σ.

The Borel σ-algebra B is the smallest σ-algebra that contains all open
sets in R. A function h : Ω→ R is called Σ-measurable if h−1 : B → Σ, that
is, if h(A) ∈ Σ for all A ∈ B. (Compare continuous maps in topology: a
map is called continuous if the inverse image F−1(G) is open for all open G.
A map is called measurable if the inverse image of every measurable subset
is measurable.)

Given (Ω,Σ), a random variable is a Σ-measurable function. So, for a
random variable X:

X : Ω→ R and X−1 : B → Σ

Given a collection (Yγ)γ∈C of maps Yγ : Ω→ R, its generated σ-algebra

Y = σ(Yγ : γ ∈ C)

is defined to be the smallest σ-algebra Y on Ω such that each map Yγ is Y-
measurable (that is, such that each map is a random variable). The following
holds:

Y = σ(Yγ : γ ∈ C) = σ({ω ∈ Ω : Yγ(ω) ∈ B} : γ ∈ C,B ∈ B).

If X is a random variable for some (Ω,Σ), then obviously σ(X) ⊂ Σ.
Suppose (Ω,Σ,P) is a model for some experiment, and that the experi-

ment has been performed, that is, some ω ∈ Ω has been selected. Suppose
further that (Yγ)γ∈C is a collection of random variables associated with the
experiment. Now consider the values Yγ(ω), that is, the observed values
(realisations) of the random variables. Then the intuitive significance of the
σ-algebra σ(Yγ : γ ∈ C) is that it consists precisely of those events F for
which it is possible to decide whether or not F has occurred (i.e. whether
or not ω ∈ F ) on the basis of the values Yγ(ω) only. Moreover, this must be
possible for every ω ∈ Ω.

Given a sequence of random variables (Xn)n∈N and the generated σ-
algebras Tn = σ(Xn+1, Xn+2, ...), define the tail σ-algebra T of the sequence
(Xn)n∈N as follows:

T = ∩n∈NTn.
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So T consists of those events which can be said to occur (or not to occur)
on the basis of the realisations of the random variables, beyond any finite
index. For such events the following theorem states, that they will either
occur with certainty, or not at all.

Kolmogorov’s 0-1 law. Let (Xn)n∈N be a sequence of independent ran-
dom variables, and T the tail σ-algebra thereof. Then F ∈ T ⇒
P(F ) = 0 or P(F ) = 1.

SupposeX is a random variable carried by the probability space (Ω,Σ,P).
We have

Ω→X R
[0, 1]←P Σ←X−1 B
[0, 1]←P σ(X)←X−1 B.

Define the law LX of X by LX = P ◦X−1, so LX : B → [0, 1]. The law can
be shown to be a probability measure on (R,B).

The distribution function of a random variable X is a function FX : R→
[0, 1] defined by:

FX(c) = Lx(−∞, c) = P(X ≤ c) = P({ω : X(ω) ≤ c}).

Because we have defined a random variable as a function from Ω to R, we
now have several notions of a converging sequence of random variables. The
usual modes of convergence for functions are all well-defined for any sequence
(Xn)n∈N of random variables, and we may for example consider uniform
convergence or pointwise convergence to some random variable X. The
latter one is weaker, and we mean by it: ∀ω ∈ Ω : limn→∞(Xn(ω)) = X(ω)
or, shortly, Xn(ω) → X(ω). But in practice, for random variables we are
only interested in yet weaker modes of convergence, which we define below.

A sequence (Xn)n∈N of random variables is said to converge to X:

almost surely (or, with probability 1), if P({ω ∈ Ω : Xn(ω)→ X(ω)}) = 1.
Note that not for all ω ∈ Ω needs (Xn(ω))n∈N converge to X(ω), but
the set of ω’s for which it does converge, has probability one. Which
is the same as saying that if for some random ω ∈ Ω, the sequence
of real numbers (Xn(ω))n∈N is considered, it is certain to converge to
X(ω).

in probability, if ∀ε > 0 : P({ω ∈ Ω : |Xn(ω) − X(ω)| > ε}) → 0. Note
that (Xn(ω))n∈N may not converge to X(ω) for all ω ∈ Ω, but for any
ε > 0 the probability that Xn deviates from X more than ε for a fixed
n tends to 0 as n→∞.
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in distribution, if FXn(c)→ FX(c) for all continuity points c of FX . Which
expresses nothing but the pointwise convergence of the distribution
functions, and tells nothing about the random variables themselves.

Convergence almost surely is also called strong convergence and is de-
noted →as, convergence in probability is also called weak convergence and
is denoted →P , convergence in distribution is also called convergence in law
and is denoted  . Note that for convergence in law, the sequence of ran-
dom variables needs not be defined on the same probability space as its
limit. In particular, the Xn’s may be defined on a discrete space, while X
may be defined on a continuous space. For example, if P(Xn = i

n) = 1
n for

i = 1, 2, ...n, then Xn  X, with X uniformly distributed on [0, 1].
It can be shown that strong convergence implies weak convergence, and

weak convergence implies convergence in law, but none of the three are
equivalent in general.

5 Brownian motion

Imagine the following: instead of executing a random walk on the standard
lattice with site distance 1 at time steps of size 1, we make the lattice
ever narrower and reduce our time steps appropriately. Eventually we will
get some random process in continuous space and time. Loosely speaking,
making the lattice narrower and reducing the time steps should happen in
some harmonized manner: when the distance travelled per step tends to 0,
the number of steps per time unit should tend to infinity in the right way
to have the proportion of the visited area be constant. We proceed to show
how the above idea can be made precise.

For t ≥ 0, consider the sequence
(

1√
n
Sdtne

)
n∈N

. This is a sequence

of positions, rescaled such that it converges to a random variable as n →
∞, by the central limit theorem. To apply this theorem, we must know
expectation and variance of the steps Xi. Obviously E[Xi] = 0, and so
var(Xi) = E[X2

i ]− E[Xi]2 = E[X2
i ] = 1

2d

∑2d
i=1 12 = 1.

With E[Xi] = µ and var(Xi) = σ2 the central limit theorem states

1
n

∑n
i=1Xi − µ

σ√
n

 N(0, 1),

and therefore, for µ = 0 and σ = 1,

√
n

1
n

n∑
i=1

Xi =
1√
n

n∑
i=1

Xi =
1√
n
Sn  N(0, 1).
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Now fix t ≥ 0 and observe that

1√
dtne

Sdtne =
1√
dtne
n

1√
n
Sdtne

∼ 1√
t

1√
n
Sdtne  N(0, 1).

Multiplying by
√
t we can now see that 1√

n
Sdtne must for t ≥ 0 converge in

distribution to the normal distribution N(0, t) of expectation 0 and variance
t. Because of the independence of the steps Xi, it is also clear that for any
t ≥ 0 and s ≥ 0 with t − s ≥ 0, it must hold that

(
1√
n
Sdtne − 1√

n
Sdsne

)
 

N(0, t− s).
Recall that convergence in distribution does not mean convergence of the

sequence of actual values when an experiment is performed (in fact, the limit
limn→∞

1√
n
Sdtne does not exist with probability 1). Therefore it is impossi-

ble to treat the desired continuous process as an actual limit of some rescaled
random walk, but the convergence in distribution strongly suggests a defini-
tion of the limiting process by using the acquired normal distributions, that
is, a process with independent increments that are normally distributed.

But first, let us define precisely what we mean by a continuous process,
and state some of its properties. A stochastic process X is a parametrized
collection of random variables

(Xt)t∈T

defined on a probability space (Ω,Σ, P ) and assuming values in Rd. For our
process, T = [0,∞), and hence it is called continuous.

The finite-dimensional distributions of a continuous process X are the
measures µt1,...,tk defined on (Rd)k by

µt1,...,tk(B1, ..., Bk) = P (Xt1 ∈ B1, ..., Xtk ∈ Bk),

where Bi are Borel sets, and ti ∈ T , for i = 1, ..., k. In other words, the finite-
dimensional distributions are the joint laws of the finite collections of random
variables out of the continuous process. Properties like continuity of the
paths of the process are therefore not determined by the finite-dimensional
distributions, and hence it is clear that a process X is not equivalent to its
finite dimensional distributions.

Conversely, given a set {µt1,...,tk : k ∈ N, ti ∈ Tfori = 1, ..., k} of proba-
bility measures on (Rd)k, under what conditions can a stochastic process be
constructed, that has µt1,...,tk as its finite-dimensional distributions? Suffi-
cient conditions are given in the following theorem.

Kolmogorov’s extension theorem. For t1, ..., tk ∈ T, let µt1,...,tk be
probability measures on (Rd)k such that
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1) µtσ(1),...,tσ(k)
(B1 × ...×Bk) = µt1,...,tk(Bσ−1(1) × ...×Bσ−1(k)) for all

permutations σ on {1, 2, ..., k} and all ti ∈ T, i = 1, ..., k;

2) µt1,...,tk(B1, ..., Bk) = µt1,...,tk,tk+1,...,tk+m
(B1 × ...× Bk × (Rd)m) for

all ti ∈ T, i = 1, ..., k;

Then there exists a probability space (Ω,Σ, P ), and a continuous pro-
cess (Xt)t∈T on Ω, such that for all Ei ⊂ Rd, i = 1, ..., k: µt1,...,tk(E1×
...× Ek) = P (Xt1 ∈ E1, ..., Xtk ∈ Ek).

This gives us the existence of some process, whereof only the finite dimen-
sional distributions are known. It tells us nothing about the shape of Ω
(which, of course, is not unique), yet the theorem is of crucial importance,
since it allows us to consider joint laws of infinite collections of random
variables drawn out of the process, and therefore questions on continuity of
paths, etc.

Our consideration of the rescaling of the random walk yielded very natu-
ral candidates for a collection of measures on (Rd)k, namely, those to which(

1√
n
Sdtne − 1√

n
Sdsne

)
n∈N

converge in probability. The procedure for the

formal definition of the desired process comprises therefore, firstly, the def-
inition of such a collection of probability measures on (Rd)k and secondly,
the application of the extension theorem. This is carried out below.

Define p(t, y) : R≥0 × Rd → R as the joint probability density function
of d independent normal random variables with variance t ≥ 0:

p(t, y) =
1

(2πt)−
d
2

· e−
‖y‖2
2t for y ∈ Rd, t ≥ 0.

In order to define the required probability measures on (Rd)k, first define
for k ∈ N and 0 ≤ t1 ≤ ... ≤ tk the measure Pt1,...,tk by

Pt1,...,tk(E1 × ...× Ek)

=
∫

E1×...×Ek

p(t1, x1)p(t2−t1, x2−x1)× ...×p(tk−tk−1, xk−xk−1)dx1...dxk,

where as a convention p(0, y)dy = δ0 to avoid inconsistencies. Secondly,
extend this definition to all finite sequences t1, ..., tk by using the first con-
dition in Kolmogorov’s extension theorem. Then also the second condition
is satisfied, because p is a probability density (that integrates to 1). So
there exists a probability space (Ω,Σ, P ) and a continuous process (Bt)t≥0

on Ω such that the finite-dimensional distributions of Bt are given by the
prescribed ones.

This process (Bt)t≥0 is called Brownian motion. The fact that it has
independent and normally distributed increments can be easily seen from our
definition. The third essential property of Brownian motion is its continuity.
To show this, we use another theorem of Kolmogorov.
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Kolmogorov’s continuity theorem. Let X = (Xt)t≥0 be a continuous-
time process. If for all T > 0 there exist α, β,D > 0 such that

E [|Xt −Xs|α] ≤ D|t− s|1+β for 0 ≤ s, t ≤ T,

then the paths of X are continuous with probability 1, that is, P (t→
Xt is continuous) = 1.

We will use this result to show continuity of Brownian motion in dimen-
sion d = 1. Because (Bt −Bs) ∼ N(0, t− s), partial integration gives

E [|Bt −Bs|α] =
∫ ∞

−∞
xα 1
√
t− s

√
2π
e
− x2

2(t−s)dx

=
1

√
t− s

√
2π
· α− 1
2 1

2(t−s)

∫ ∞

−∞
xα−2e

− x2

2(t−s)dx

=
1

√
t− s

√
2π
· α− 1
2 1

2(t−s)

α− 3
2 1

2(t−s)

∫ ∞

−∞
xα−4e

− x2

2(t−s)dx.

Take α = 4 to get

E[|Bt = Bs|4] =
1

√
t− s

√
2π
· 3(t− s)(t− s)

√
π(
1

2(t−s)

)
=

3(t− s)2
√
t− s

√
2π
·
√

2(t− s)π = 3(t− s)2.

Hence for α = 4, D = 3, β = 1, Brownian motion satisfies the continuity
condition E [|Bt −Bs|α] ≤ D|t− s|1+β.

Although the Brownian motion as we defined it above is not unique, we
do know that for any ω ∈ Ω the function t → Bt(ω) is continuous almost
surely. Thus, every ω ∈ Ω gives rise to a continuous function from [0,∞)
to Rd. In this way, we can think of Brownian motion as a randomly chosen
element in the set of continuous functions from [0,∞) to Rd according to
the probability measure P . Or, in our context: a random continuous path
starting at the origin.
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