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0.1 Introduction

This thesis divides naturally into two chapters. In the first chapter, the concept
of division algebra is defined as a (not necessarily associative) algebra in which
left- and right-multiplication with a non-zero element is bijective. It is noted
that the zero algebra, the Real numbers and the Complex numbers form divi-
sion algebras of respective dimension 0, 1 and 2 over R. In the rest of the chap-
ter, it is proven that furthermore, the Hamilton numbers (otherwise known as
the Quaternions) form a 4-dimensional division algebra over R, and that the
Cayley numbers (otherwise known as the Octonions) form an 8-dimensional
division algebra over R. The first chapter is based on [Baez 2001] and it as-
sumes basic familiarity with linear algebra.

It is known that the five algebras mentioned above are in fact the only five
finite-dimensional division algebras over R. A proof of this is far beyond the
scope of this thesis, but in the second chapter at least it is shown that there exist
no division algebras over R of odd dimension greater than 1. To achieve this
we prove that the existence of division algebras of dimension n over R implies
the parallelisability of the n − 1-sphere, a definition of which is provided at the
beginning of that chapter. To prove that for even n the n-sphere is not paral-
lelisable we make use in section 2.3 of the Brouwer degree. Before the Brouwer
degree can even be defined however we have to establish reduced singular ho-
mology in section 2.2, which actually takes up the largest part of chapter 2. The
general idea and proofs of many of the lemmata and propositions of Chapter
2 have been adapted from [Hatcher 2002]. The second chapter assumes ba-
sic familiarity with topology, category theory and homological algebra. For a
good introduction to both category theory and homological algebra, see [Doray
2007].
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Chapter 1

Division algebras over R of
dimension 0,1,2,4 and 8

In what follows we will prove that there exist n-dimensional division algebras
over R for n = 0, 1, 2, 4, 8, namely, respectively the zero algebra and the struc-
tures known as the real numbers (R), the complex numbers (C), the Hamilton
numbers (or Quaternions) H and the Cayley numbers (or Octonions) O. We
will start by introducing some terminology.

1.1 Algebras

Definition 1.1. An algebra (A, ·) over a field K, is a vector space A over K equipped
with a bilinear map ·:

− · − : A × A −→ A,

and with a constant e ∈ A such that for all a ∈ A, e · a = a · e = a.

Remark. The map · and the element e shall respectively be called multiplication
and the multiplicative unity henceforth, and for any a, b ∈ A we shall write ab
instead of a · b.

Remark. Let A be an algebra over K and suppose that e is the multiplicative
unity in A. Then, due to the bilinearity of multiplication, for any a ∈ A, λ ∈ K
we have (λe)a = λ(ea) = λa. Hence we can identify λ and λe and in particular,
we can identify 1 ∈ K and e. Moreover, for any b ∈ A, we will say that b ∈ K if
there exists a µ ∈ K such that b = µe.

Definition 1.2. A subalgebra B of A is a linear subspace of A that contains 1 and
which is closed under multiplication. For a1, a2, . . . , an ∈ A, denote by 〈a1, a2, . . . , an〉
the subalgebra of A generated by a1, a2, . . . , an, that is, the minimal subalgebra of A
that contains a1, a2, . . . , an.

1.2 Some possible properties of algebras

What distinguishes algebras from vector spaces is their multiplication, and it
makes sense therefore to differentiate between algebras on the basis of the dif-
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ferent properties satisfied by their respective multiplications. To begin with, we
have the properties of commutativity, associativity, alternativity and power-
associativity, the latter of which we won’t need here, but nevertheless include
for completeness sake:

Definition 1.3. Let A be an algebra. The commutator is the bilinear map

[−,−] : A × A −→ A

given, for a, b ∈ A by
[a, b] = ab − ba.

Definition 1.4. An algebra A is said to be commutative if for all a, b ∈ A, [a, b] =
0.

Definition 1.5. Let A be an algebra. The associator is the trilinear map

[−,−,−] : A × A × A −→ A

given, for a, b, c ∈ A by
[a, b, c] = (ab)c − a(bc).

Definition 1.6. An algebra A is said to be associative if for all a, b, c ∈ A, [a, b, c] =
0.

Definition 1.7. An algebra A is said to be alternative if for all a, b ∈ A,

[a, b, b] = [b, a, b] = [b, b, a] = 0.

Definition 1.8. An algebra A is said to be power-associative if for all a ∈ A,

[a, a, a] = 0.

Remark. It is clear that for an algebra A to be associative under the definition
above is equivalent to the equality for all a, b, c ∈ A of (ab)c to a(bc). Likewise,
alternativity is equivalent to the equalities

(aa)b = a(ab),

(ab)a = a(ba),

(ba)a = b(aa).

And power-associativity is equivalent to the equality of (aa)a to a(aa). In the
context of associative, alternative or power-associative algebras we can and
will therefore unambigously leave out all or some of the brackets.

An essential connection between associativity and alternativity is provided
by Artin’s lemma:

Lemma 1.1 (Artin’s Lemma). An algebra A is alternative if and only if every sub-
algebra generated by two of its elements is associative.

Proof. Let A be an algebra. If for all a, b ∈ A, the subalgebra 〈a, b〉 is associative,
then we specifically have [a, a, b] = [a, b, a] = [b, a, a] = 0, thus A is alternative.
Proving the converse is a much more tedious task. It can be done using induc-
tion and a couple of identies involving the associator, but it will not be done
here. A complete proof can be found on pages 27—30 of [Schafer 1966].
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We are of course especially interested in the property of being a division
algebra. The term division algebra has been used to denote several related struc-
tures. Our definition is the following:

Definition 1.9. An algebra A is said to be a division algebra if for any a ∈ A, with
a 6= 0, the left multiplication la and right multiplication ra

la, ra : A −→ A

given by, respectively,

z 7−→ az,

z 7−→ za

are bijective.

Two other properties for which the term division algebra has been used are:

Definition 1.10. An algebra A is said to have no zero divisors if for any a, b ∈ A
the following holds:

(ab = 0) =⇒ (a = 0 ∨ b = 0).

Definition 1.11. An algebra A is said to have two-sided multiplicative inverses if
for every a ∈ A, a 6= 0, there exists an a−1 ∈ A such that aa−1 = a−1a = 1.

These definitions are related, though in general not equivalent. Specifically,
we have:

Lemma 1.2. Let A be an algebra. Then

A is a division algebra =⇒ A does not have zero divisors.

Proof. Let a ∈ A, a 6= 0. Suppose A is a division algebra, then la is bijective and
its kernel only contains 0. So, for any b ∈ A, if la(b) = ab = 0, we must have
b = 0.

If A is finite-dimensional, the converse is also true:

Lemma 1.3. Let A be a finite-dimensional algebra. Then

A is a division algebra ⇐= A does not have zero divisors.

Proof. Let a ∈ A, a 6= 0. Suppose A does not have zero divisors, then the ker-
nels of la and ra only contain 0 and these maps are therefore injective. But being
injective maps, their image must be of dimension no less than that of their do-
main, A, and therefore, A being finite-dimensional, can only be A itself.

Remark. To see that this implication does not necessarily hold for infinite-di-
mensional algebras, consider the algebra R[X] over R, which does not have
zero divisors but where right or left multiplication by X is not bijective.

Other implications also only hold in special circumstances:

Lemma 1.4. Suppose A is a commutative division algebra. Then A has two-sided
multiplicative inverses.
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Proof. For every a ∈ A, with a 6= 0, the maps la and ra are bijections, and thus
a has a right inverse l−1

a (1) and a left inverse r−1
a (1). But since A is commuta-

tive, both inverses are two-sided inverses, thus A has two-sided multiplicative
inverses.

Proposition 1.5. Suppose A is an associative algebra with two-sided multiplicative
inverses. Then A has no zero divisors.

Proof. Let a, b ∈ A, a, b 6= 0, and suppose ab = 0. Since a is associative, we have

0 = 0b−1 = (ab)b−1 = a(bb−1) = a 6= 0,

contradiction. It follows that if ab = 0, then a or b equals 0, in other words, A
has no zero divisors.

Remark. Combining Lemma 1.3 and Proposition 1.5 gives us that finite-dimen-
sional associative algebras with multiplicative inverses are division algebras.

The algebras R and C are indeed finite-dimensional and associative and
have multiplicative inverses, and we will see that this is also true for H. We
will have to do a bit more work for O however, which does have multiplicative
inverses but is not associative, only alternative. We will show that the same
argument used for associative algebras can still be used for algebras like O.
But first we must define H and O, show that they are respectively associative
and alternative and prove that they have multiplicative inverses.

1.3 The division algebra H

Remark. Let A be an n-dimensional algebra over a field K and (v0, v1, . . . , vn−1)
a basis of A. Due to the bilinearity of its multiplication, we must have, for any
a = ∑

0≤i≤n−1

aivi ∈ A, and for any b = ∑
0≤j≤n−1

bjvj ∈ A, where ai, bi ∈ K, that

ab = ∑
0≤i≤n−1

aivi ∑
0≤j≤n−1

bjvj = ∑
0≤i,j≤n−1

(aibj)(vivj). (∗)

In other words, the multiplication of A is completely determined by the n2

products of elements from a chosen basis of A. Conversely, if we have an n-
dimensional vector space V over a field K and a multiplication · defined on
a basis (v0, v1, . . . , vn−1) of V, then we can extend · to the whole of V using
as a definition (∗). The multiplication · extended this way is a linear map: let
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a, b, c ∈ V, λ, µ ∈ K, we have

(λa)(µ(b + c)) =

(

λ ∑
0≤i≤n

aivi

)(

µ

(

∑
0≤j≤n

bjvj + ∑
0≤j≤n

cjvj

))

= ∑
0≤i≤n

λaivi ∑
0≤j≤n

µ(aj + bj)vj

= ∑
0≤i,j≤n

λµ(ai(bj + cj))(vivj)

= λµ ∑
0≤i,j≤n

(aibj + aicj)(vivj)

= λµ

(

∑
0≤i,j≤n

(aibj)(vivj) + ∑
0≤i,j≤n

(aicj)(vivj)

)

= λµ(ab + ac)

Analogously, we find (λ(a + b))(µc) = λµ(ac + bc). Thus if addionately we
have a multiplicative identity, then V equipped with · forms an algebra.

Definition 1.12. Let the Hamilton numbers H be the algebra (R
4, ·) defined by:

e0 = 1

e2
1 = e2

2 = e2
3 = −1

e1e2 = −e2e1 = e3

e2e3 = −e3e2 = e1

e3e1 = −e1e3 = e2.

Remark. The Hamilton numbers are otherwise known as the Quaternions.

Lemma 1.6. The Hamilton numbers are associative.

Proof. for any a, b, c ∈ H, we have

(ab)c =

(

∑
0≤i≤3

aiei ∑
0≤j≤3

bjej

)

∑
0≤k≤3

ckek

= ∑
0≤i,j≤3

(aibj)(eiej) ∑
0≤k≤3

ckek

= ∑
0≤i,j,k≤3

(aibjck)((eiej)ek).

The associativity of H thus depends on whether (eiej)ek = ei(ejek). As this is
indeed the case, we have

(ab)c = ∑
0≤i,j,k≤3

aibjck(eiej)ek

= ∑
0≤i,j,k≤3

aibjckei(ejek)

= a(bc).
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Definition 1.13. Define the conjugation on H to be the linear map

−∗ : H −→ H

given by, for any a ∈ H,

a = a0 + ∑
1≤i≤3

aiei 7−→ a0 − ∑
1≤i≤3

aiei = a∗.

Remark. For any a ∈ H, a∗ is called the conjugate of a.

Lemma 1.7. The conjugation on H satisfies the following properties, for every a, b ∈
H:

1. (a∗)∗ = a.

2. (ab)∗ = b∗a∗.

3. a + a∗ ∈ R.

4. If a 6= 0, then aa∗ = a∗a ∈ R \ {0}

Proof. 1. This is clear from the definition of −∗.

2. It can easily be checked that this holds for any two elements ei and ej of
the standard basis of H. Due to the linearity of conjugation, it is mat-
ter of straightforward calculation that this is then also true for any two
elements of H.

3. From the definition of −∗ it directly follows that a + a∗ = 2a0 ∈ R.

4. Straightforward calculation gives aa∗ = a∗a = ∑
0≤i≤3

aiai ∈ R>0.

Lemma 1.8. The Hamilton numbers have two-sided multiplicative inverses.

Proof. For every a ∈ H \ {0}, we have aa∗ ∈ R \ {0}, and we can take

a−1 =
1

aa∗
a∗,

as

aa−1 =
1

aa∗
aa∗ = 1

and

a−1a =
1

aa∗
a∗a =

1

aa∗
aa∗ = 1.

Corollary 1.9. The Hamilton numbers form a 4-dimensional division algebra over R.

Proof. The Hamilton numbers are associative according to Lemma 1.6, they
have multiplicative inverses according to Lemma 1.8 and they are finite-di-
mensional, thus they form a division algebra.

We would like to directly define O as an 8-dimensional algebra over R by
simply defining its multiplication on a basis, but this would make proving the
alternativity of O very tedious. We shall therefore take a detour and define O

using an instance of what is known as the Cayley-Dickson construction.
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1.4 The division algebra O

Definition 1.14. The Cayley numbers O are the algebra (H × H, ·), where the bi-
linear multiplication · is given as follows, for a, b, c, d ∈ H:

(a, b)(c, d) = (ac − bd∗, a∗d + cb),

and where (1, 0) is the multiplicative unity.

Remark. The Cayley numbers are otherwise known as the Octonions.

Lemma 1.10. The Cayley numbers are alternative.

Proof. This is a matter of straightforward and perhaps uninteresting calcula-
tion, but we won’t skip over it as the alternativity of O forms a central argu-
ment for its constituting a division algebra.
Let a, b, c, d ∈ H. Since the multiplication on H is bilinear and associative and
because of the properties satisfied by conjugation on H, we have

((a, b)(a, b)) (c, d) = (aa − bb∗, a∗b + ab) (c, d)

= ((aa − bb∗)c − d(a∗b + ab)∗, (aa − bb∗)∗d + c(a∗b + ab))

= (aac − bb∗c − (a∗ + a)db∗, a∗a∗d − b∗bd + (a∗ + a)cb)

= (aac − adb∗ − a∗db∗ + cbb∗, a∗a∗d + a∗cb + acb − db∗b)

and

(a, b)((a, b)(c, d)) = (a, b)(ac − db∗, a∗d + cb)

= (a(ac − db∗)− (a∗d + cb)b∗, a∗(a∗d + cb) + (ac − db∗)b)

= (aac − adb∗ − a∗db∗ + cbb∗, a∗a∗d + a∗cb + acb − db∗b).

Furthermore it can be shown by similar computations that ((a, b)(c, d))(c, d) =
(a, b)((c, d), (c, d)) and ((a, b)(c, d))(a, b) = (a, b)((c, d)(a, b)) also hold, and
thus O is alternative.

Definition 1.15. Define the conjugation −∗ on O

−∗ : O −→ O

as follows, for any a, b ∈ H,

(a, b) 7−→ (a∗,−b).

Lemma 1.11. The conjugation on O satisfies the same properties which were proven
for conjugation on H in Lemma 1.7. For every a, b ∈ O:

1. (a∗)∗ = a.

2. (ab)∗ = b∗a∗.

3. a + a∗ ∈ R.

4. If a 6= 0, then aa∗ = a∗a ∈ R \ {0}
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Proof. This is a matter of straightforward calculation.

Corollary 1.12. The Cayley numbers have two-sided multiplicative inverses.

Proof. Since conjugation on O satisfies the same properties as conjugation on
H, this is true for analagous reasons.

Definition 1.16. Define the maps Re and Im:

Re, Im : O −→ O

by, for any a ∈ O, respectively

a 7−→
a + a∗

2

a 7−→
a − a∗

2
.

Remark. Since for any a ∈ O, we have a + a∗ ∈ R, we also have Re(a) ∈ R.

Lemma 1.13. For any a ∈ O, we have a, a∗ ∈ 〈Im(a)〉.

Proof. Since Re(a) ∈ K,

a =
a − a∗

2
+

a + a∗

2
= Im(a) + Re(a) ∈ 〈Im(a)〉 .

Likewise,

a∗ =
a − a∗

2
−

a + a∗

2
= Im(a)− Re(a) ∈ 〈Im(a)〉 .

Theorem 1.14. The Cayley Numbers form an 8-dimensional division algebra over R.

Proof. Let a, b ∈ O, with a, b 6= 0, and suppose ab = 0. The Cayley numbers
have multiplicative inverses and a ∈ 〈Im(a)〉 and b, b∗ ∈ 〈Im(b)〉, hence also
b−1 ∈ 〈Im(b)〉, and thus a, b, b−1 ∈ 〈Im(a), Im(b)〉. But 〈Im(a), Im(b)〉 is a sub-
algebra of O generated by two elements, and, since O is alternative, according
to Artin’s Lemma (Lemma 1.1) therefore associative. We find

0 = 0b−1 = (ab)b−1 = a(bb−1) = a 6= 0,

contradiction. It follows that if ab = 0, then a or b equals 0, and O has no zero
divisors. Then according to Lemma 1.3 the Cayley numbers form a division
algebra.
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Chapter 2

The non-existence of division
algebras over R of odd
dimension greater than 1

We have established that there exist division algebras of dimension 0, 1, 2, 4
and 8 over R. In fact the five algebras we found are the only finite-dimensional
division algebras over R. Proving that there exist no division algebras over
R outside these dimensions is however very hard, and in general outside the
scope of this thesis. In this chapter we will restrict ourselves to a proof for odd
dimension greater than 1. For the proof we make use of topology, namely the
concept of parallelisability of the n-sphere.

2.1 Parallelisability of the n-sphere

Definition 2.1. Let n ≥ −1 and let ‖−‖ be the euclidean norm on Rn. The n-sphere
is the topological subspace Sn = {a ∈ Rn+1| ‖a‖ = 1} ⊂ Rn+1.

The cases n = −1 and n = 0 are specifically included in this definition; we
have S−1 = ∅ and S0 = {−1, 1}.

Definition 2.2. For any n, k ≥ −1, Sn is said to be k-dimensionally combable, or
combable in k dimensions, if there exist k + 1 continous maps

φ0, φ1, . . . , φk : Sn −→ Sn,

with φ0 = IdSn and such that for every a ∈ Sn, the images φ0(a), φ1(a), . . . , φk(a) are
linearly independent in Rn+1. If Sn is 1-dimensionally combable, it is said to be just
combable. The n-sphere is said to be parallelisable if it is n-dimensionally combable.

Remark. It is clear that for k > n ≥ 0, the n-sphere is never k-dimensionally
combable, and that for n ≥ 1, parallelisability implies combability. The −1-
sphere is combable in any number of dimensions, for every i we can just take
φi to be the only map there is on S−1 and the conditions will automatically be
met as S−1 does not contain any points.
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The concept of parallelisability is relevant to the existence of division alge-
bras by way of the following implication:

Proposition 2.1. Suppose that for n ≥ 0, there exists an n-dimensional division al-
gebra A over R. Then the (n − 1)-sphere is parallelisable.

Proof. Identify A with Rn. Let v0, v1, . . . , vn−1 ∈ Rn be n linearly independent
vectors, with v0 the multiplicative identity. Let

p : R
n \ {0} −→ Sn−1

be the projection of elements onto the (n − 1)-sphere via division by their eu-
clidean norm. Now for 0 ≤ i ≤ n − 1 set φi = p ◦ lvi

, where lvi
is left multipli-

cation by vi. Because A has no zero divisors, this composition is well defined.
Moreover, since for any i both lvi

and p are continuous, so is φi, for every i.
Note that φ0(a) = a. Also note that for every i we have lvi

(a) = ra(vi), where
ra is right multiplication by a. But since A is a division algebra, ra is a bijection,
and ra(v0), ra(vi), . . . , ra(vn−1) are again linearly independent. (If this were not
true, then since any element of A can be written as a linear combination of ele-
ments from this basis, the dimension of the image of ra would be less than the
dimension of A, and ra could not be bijective.) Clearly p also preserves linear
independence, and hence it follows that φ0(a), φ1(a), . . . , φn−1(a) are linearly
independent.

Corollary 2.2. The −1-sphere, the 0-sphere, the 1-sphere, the 3-sphere and the 7-
sphere are parallelisable.

Proof. Given Proposition 2.1, this now directly follows from the existence of
division algebras over R of dimension 0, 1, 2, 4 and 8 found in Section 1.

Thanks to Proposition 2.1, if we find that the n-sphere is not parallelisable,
we also find that there exist no division algebras of dimension n + 1 over R.
In the rest of this section, this will be shown for even n greater than 0. For this
we employ the Brouwer degree. There are several different ways in which the
Brouwer degree could be defined and its properties be proven; we make use of
reduced singular homology. It may not be the fastest route, but the machinery
developed along the way is useful for many other applications as well. The
rest of the chapter is mostly an adaptation of [Hatcher 2002].

2.2 Reduced singular homology

Reduced singular homology is based on continous maps from standard n-simplices
to a topological space X. Reduced singular homology differs from ordinary sin-
gular homology because unlike the latter the former also looks at dimension
-1, which in turn affects results for dimension 0. In our case, this works out
rather elegantly and it is why with the definition of Sn, we included the case
n = −1. In time we will drop the qualifications reduced and singular and write
just homology where reduced singular homology is to be understood.
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2.2.1 Definition of the reduced singular homology functors

Definition 2.3. Let n ≥ −1, let X be a real vector space and let v0, v1, . . . , vn ∈ X.
The n-simplex spanned by v0, v1, . . . , vn is the set

〈v0, v1, . . . , vn〉 =

{

∑
0≤i≤n

tivi ∈ X|t0, t1, . . . , tn ∈ R≥0, ∑
0≤i≤n

ti = 1

}

.

Definition 2.4. Let n ≥ −1 and let (e0, e1, . . . , en) be the standard basis of Rn+1.
The standard n-simplex ∆n is the n-simplex 〈e0, e1, ..., en〉.

Remark. So ∆−1 = ∅ and ∆0 = {1}, and in general, the standard n-simplex is
the set

{

(w0, w1, . . . , wn) ∈ R
n+1| ∑

0≤i≤n

wi = 1, w0, w1, . . . , wn ≥ 0

}

.

Definition 2.5. Let n ≥ k ≥ −1 and let 〈v0, v1, . . . , vn〉 be an n-simplex. A k-face
of 〈v0, v1, . . . , vn〉 is a k-simplex spanned by k + 1 elements of {v0, v1, . . . , vn}.

Definition 2.6. Let X be a topological space. For any n ≥ −1, a singular n-simplex
σ in X is a continuous map:

σ : ∆n −→ X.

Definition 2.7. For every n ∈ Z, let

HomTop(∆n,−) : Top −→ Set

be the functor that for X, Y ∈ Top, and f ∈ Mor(X, Y), sends X to the set of all sin-
gular n-simplices in X (for n < −1, this is the empty set) and where HomTop(∆n, f )
is given by:

σ 7−→ f ◦ σ.

Definition 2.8. Let
F : Set −→ Ab

be the functor that assigns to a set X ∈ Set the free abelian group generated by X. For
every n ∈ Z, define the functor Cn as the composition F ◦ HomTop(∆n,−).

Remark. Because for every X ∈ Top and every n ∈ Z, the free group Cn(X) is
generated by the singular n-simplices in X, any abelian group homomorphism
from Cn(X) is determined by the images of the singular n-simplices. For this
reason it will often be suficient to prove a lemma for singular n-simplices, after
which the result extends naturally to all elements of Cn(X).

Definition 2.9. Let s = 〈v0, v1, . . . , vn〉 be an n-simplex, then for any k ∈ N, k ≤
n + 1 and for any Q = {w1, w2, . . . , wk} ⊆ {v1, v2, . . . , vk} = P, define s 
〈w1, w2, . . . , wk〉 to be the n − k-face spanned by P \ Q.

Definition 2.10. Let X ∈ Top, and for any n ≥ −1, let s = 〈v0, v1, . . . , vn〉 ⊆ X be
an n-simplex. Denote by

→֒s: ∆n −→ X

the unique linear map that for every 0 ≤ i ≤ n sends ei to vi.
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Definition 2.11. For every n ∈ Z,

∂n : Cn −→ Cn−1

is the map that has for every X ∈ Top component

∂X
n : Cn(X) −→ Cn−1(X)

given, for σ ∈ HomTop(∆n, X), by

σ 7−→ ∑
0≤i≤n

(−1)i(σ◦ →֒∆nei
)

and extended linearly.

Lemma 2.3. For every n ∈ Z, the map ∂n is a natural transformation.

Proof. Let X, Y ∈ Top, f ∈ Cont(X, Y). For all singular n-simplices σ ∈ Cn(X),
we have

∂n (Y) (Cn ( f ) (σ)) = ∂n (Y) ( f ◦ σ)

= ∑
0≤i≤n

(−1)i
(

( f ◦ σ) ◦ →֒∆n〈ei〉

)

,

and

Cn−1 ( f )
(

∂X
n (σ)

)

= Cn−1 ( f )

(

∑
0≤i≤n

(−1)i
(

σ◦ →֒∆n〈ei〉

)

)

= ∑
0≤i≤n

(−1)i
(

f ◦
(

σ◦ →֒∆n〈ei〉

))

.

Because the composition of maps is associative, these two expressions are iden-
tical.

Remark. When there can be no confusion, in the future a component ∂X
n of ∂n,

for certain X ∈ Top, shall simply be referred to as ∂n. Similarly, in a measure
that will hopefully improve legibility, the brackets around its argument shall be
dropped, as will happen with certain other maps defined on the chain groups
which we encounter later.

Lemma 2.4. For every X ∈ Top, and every n ∈ Z, we have ∂n ◦ ∂n+1 = 0.

Proof. For every singular n-simplex σ ∈ Cn+1(X), we have

∂n∂n+1σ = ∂n ∑
0≤i≤n+1

(−1)i
(

σ◦ →֒∆n+1〈ei〉

)

= ∑
0≤i≤n+1

(

(−1)i
∑

0≤j≤n

(−1)j
((

σ◦ →֒∆n+1〈ei〉

)

◦ →֒
∆n〈e j〉

)

)

= ∑
0≤j<i≤n+1

(−1)i+j
(

σ◦ →֒
∆n+1〈e j,ei〉

)

+ ∑
0≤i<j≤n+1

(−1)i+j−1
(

σ◦ →֒
∆n+1〈e j,ei〉

)

= 0.
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Definition 2.12. Let
C• : Top −→ Ch•(Ab)

be the functor that sends a topological space X to the chain complex composed for
n ∈ Z of the chain groups Cn(X) and the boundary maps ∂X

n , and a continuous
map f ∈ Mor(X, Y) to the chain map that consists for each n ∈ Z of the group
homomorphisms Cn( f ).

Remark. That C•( f ) is in fact a chain map follows from the fact that the ∂ns are
natural transformations, as was proven in Lemma 2.3.

Definition 2.13. Let
Hn : Ch•(Ab) −→ Ab

be the nth homology functor. Define

Hσ
n : Top −→ Ab

to be the composition Hn ◦ C•.

Remark. In the future, we will just write Hn instead of Hσ
n and since no other

form of homology is adressed in this thesis, call it the nth homology functor,
trusting that this will not lead to any confusion. Likewise, we will call Hn(X)
the nth homology group of X.

For very simple topological spaces, the homology groups can be calculated
directly.

2.2.2 The homology groups of ∅ and of {x}

Proposition 2.5. The homology group H−1(S−1) is isomorphic to Z, and for every
m 6= −1, the homology group Hm(S−1) is trivial.

Proof. We have ∆−1 = ∅, so HomTop(∆−1, S−1) consists of only one element

and C−1(S−1) is isomorphic to Z. Since S−1 also equals ∅, and for n ≥ 0,
∆n 6= ∅, there are no singular n-simplices in S−1 and hence for every m 6= −1,
HomTop(∆m, S−1) = ∅, and Cm(S−1) contains only the identity. It immediately

follows that hence also Ker(∂S−1

m ) and thus also Hm(S−1) are trivial. Further-

more, for every n ∈ Z, and specifically for n = 0, the image Im(∂S−1

n ) is trivial,

and Ker(∂S−1

−1 ) equals C−1(S−1), so H−1(S−1) is also isomorphic to Z.

Proposition 2.6. Let {x} ∈ Top be a singleton, that is a topological space consisting
of one point only. For every n ∈ Z, the homology group Hn({x}) is trivial.

Proof. For every n ≥ −1, the set Hom(∆n, {x}) contains only one singular n-

simplex, so Cn({x}) is isomorphic to Z. Furthermore, for even n, both Ker(∂
{x}
n )

and Im(∂
{x}
n+1) are trivial, and for odd n, we have Ker(∂

{x}
n ) = Im(∂

{x}
n+1) =

Cn({x}).
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Calculating the homology groups of other topological spaces is not such a
straightforward matter. In order to reach our goals, the nth homology group of
the n-sphere and the Brouwer degree, we first have to develop some tools. The
homology functors send maps between spaces to maps between the homology
groups of these spaces. We start by proving that if two maps are homotopic,
they are in fact sent to the same map by a homology functor, a consequence of
which is that homotopy equivalent topological spaces have isomorphic homol-
ogy groups.

2.2.3 How the homology functors factor through homotopy

Definition 2.14. For n, i ∈ N, with 0 ≤ i ≤ n define pi∆
n to be the n + 1-simplex

〈(e0, 0), . . . , (ei, 0), (ei, 1), . . . , (en, 1)〉 ⊆ ∆n × I.

Definition 2.15. Let X, Y ∈ Top, let f , g ∈ Mor(X, Y) be homotopic, and let

F : X × I −→ Y

be a homotopy between f and g. For every n ∈ Z, define the nth prism operator

Pn : Cn(X) −→ Cn+1(Y)

in the following way on a regular n-simplex σ:

σ 7−→ ∑
0≤i≤n

(−1)iF ◦ (σ × I)◦ →֒pi∆
n

and extend it linearly to all elements of Cn(X).

Informally we can say that using a homotopy between two maps f and g,
the prism operator sends a singular n-simplex σ to a combination of singular
n + 1-simplices which together form a ‘prism’ where the images of σ under f
and g form the opposite bases. Corresponding to this view, we have a lemma
that says that the boundary of this prism over σ is made up of its opposite
bases, and its side, which is the prism over the boundary of σ.

Definition 2.16. Let A• and B• be chain complices with boundary maps

dn : An −→ An−1

and
dn : Bn −→ Bn−1

for every n ∈ Z and let f and g be chain maps between A• and B•. A collection of
maps s = (sn), with n ∈ Z and

sn : Xn −→ Yn+1

is said to be a chain homotopy between f• and g• if for every n,

dn+1 ◦ sn + sn−1 ◦ dn = gn − fn.

Lemma 2.7. Let X, Y ∈ Top and let f , g ∈ Mor(X, Y) be homotopic. Then P is a
chain homotopy between C•( f ) and C•(g).
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Proof. A formal proof of this lemma, which is basically just a tedious rearrang-
ing of the many maps involved, can be found on pages 111—113 of [Hatcher
2002], starting towards the bottom of the page.

Proposition 2.8. Let X, Y ∈ Top. If f , g ∈ Cont(X, Y) are homotopic, then for all
n ∈ Z, Hn( f ) = Hn(g).

Proof. Let α ∈ ker(∂X
n ), then Pn−1∂X

n α = 0, and so because of Lemma 2.7,

(Cn(g)− Cn( f ))(α) = ∂Y
n+1Pnα,

thus
(Cn(g)− Cn( f ))(α) ∈ Im(∂Y

n+1).

And hence for every [a] ∈ Hn(X),

(Hn(g))([α])− (Hn( f ))([α]) = (Hn(g)− Hn( f ))([α]) = 0,

so we have Hn(g) = Hn( f ).

Corollary 2.9. Let X, Y ∈ Top, and let f ∈ Cont(X, Y) be a homotopy equivalence.
Then for every n ∈ Z, the induced homomorphism Hn( f ) is an isomorphism between
Hn(X) and Hn(Y).

Proof. Because f is a homotopy equivalence, there exists a g ∈ Cont(Y, X) such
that g ◦ f ≃ IdX and f ◦ g ≃ IdY, and

Hn(g) ◦ Hn( f ) = Hn(g ◦ f ) = Hn(IdX) = IdHn(X),

Hn( f ) ◦ Hn(g) = Hn( f ◦ g) = Hn(IdY) = IdHn(Y),

so Hn( f ) is an isomorphism between Hn(X) and Hn(Y).

Corollary 2.10. Let A ∈ Top be contractible. Then all homology groups of A are
trivial.

Proof. If A is contractible, then A is homotopy equivalent to a singleton, and
thus according to Proposition 2.8, its homology groups are isomorphic to those
of a singleton. But according to Proposition 2.6, all homology groups of a sin-
gleton are trivial.

With the help of the preceding, we construct another tool, the Meyer-Vietoris
sequence, which we can then use to calculate the homology groups of the n-
sphere.

2.2.4 The Meyer-Vietoris sequence

The Meyer-Vietoris sequence is a long exact sequence that enables us to calcu-
late the homology groups of a topological space X from the homology groups
of two of its subspaces A and B, provided that X is the union of the interiors
of A and B. It features the direct sums of the homology groups of A and B and
the homology groups of their intersection and their union, the latter of which
is X. The Meyer-Vietoris sequence is derived from a short exact sequence of
chain complices that will be described next.
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Definition 2.17. Let X ∈ Top, let U ⊆ P(X) and let n ∈ Z. Denote by CU
• the

subcomplex of C•(X) made up of, for each n ∈ Z, the chain subgroups CU
n of Cn(X)

generated by the singular n-simplices whose image is contained in one of the sets of U ,

and the boundary maps dUn = d
C(X)
n |CU

n
.

Definition 2.18. Let X ∈ Top, let A, B ⊆ X and let n ∈ Z. The direct sum
of C•(A) and C•(B) is the complex (C(A) ⊕ C(B))• ∈ Ch•(Ab), made up of, for

each n ∈ Z, the direct sums Cn(A) ⊕ Cn(B) and the boundary maps dC(A)⊕C(B) =

(dC(A), dC(B)).

The short exact sequence involves the following two chain maps:

Definition 2.19. Let X ∈ Top and let A, B ⊆ X such that int(A) ∪ int(B) = X.
Define

φ : C•(A ∩ B) −→ (C(A) ⊕ C(B))•

by letting for each n ∈ Z the abelian group homomorphism φn be given by:

x 7−→ (x,−x).

Definition 2.20. Let X ∈ Top and let A, B ⊆ X such that int(A) ∪ int(B) = X.
Define

ψ : (C(A)⊕ C(B))• −→ C
{A,B}
•

by letting for each n ∈ Z the abelian group homomorphism ψn be given by:

(x, y) 7−→ x + y.

Lemma 2.11. Let X ∈ Top, let A, B ⊆ X such that int(A) ∪ int(B) = X and let
n ∈ Z. The short sequence

0 −→ C•(A ∩ B)
φ

−→ (C(A) ⊕ C(B))•
ψ

−→ C
{A,B}
• −→ 0

is exact.

Proof. It follows straight from their definitions that for each n ∈ Z, φn is injec-
tive, ψn is surjective and that Im(φn) = Ker(ψn).

The Meyer-Vietoris sequence involves the homology groups of this short
exact sequence. If we apply the homology functors to φ and ψ, we get induced
homomorphisms between respectively the homology groups of C•(A ∩ B) and

(C(A)⊕ C(B))• and the homology groups of (C(A) ⊕ C(B))• and C
{A,B}
• . We

still need homomorphisms between the homology groups of C
{A,B}
• and C•(A∩

B). These exist, and are called connecting morphisms.

Remark. Let A•, B•, C• ∈ Ch•(Ab), and φ ∈ Mor(A•, B•), ψ ∈ Mor(B•, C•)
such that

0 −→ A•
φ

−→ B•
ψ

−→ C• −→ 0

is a short exact sequence. This gives the following commutative diagram:
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0

��

0

��

0

��
. . .

dA
n+2

// An+1

dA
n+1

//

φn+1

��

An
dA

n
//

φn

��

An−1

dA
n−1

//

φn−1

��

. . .

. . .
dB

n+2
// Bn+1

dB
n+1

//

ψn+1

��

Bn
dB

n
//

ψn

��

Bn−1

dB
n−1

//

ψn−1

��

. . .

. . .
dC

n+2
// Cn+1

dC
n+1

//

��

Cn
dC

n
//

��

Cn−1

dC
n−1

//

��

. . .

0 0 0

Since for every n ∈ Z, ψn is surjective and φn is injective, for every c ∈ Cn

there exists a b ∈ Bn such that ψ(b) = c and for every b ∈ Bn, if there exists an
a ∈ An such that φ(a) = b, it is unique.

Lemma 2.12. Using the same short exact sequence as in the previous remark, for each
n ∈ N, and for each [c] ∈ Hn(C•), there exists a unique [a] ∈ Hn−1(A•) such that
for any inverse b under ψn of any representative c of [c],

dB
n(b) = φn−1(a).

Proof. This can be proven through diagram chasing, showing that wherever
there are multiple options, the choice made does not affect the eventual out-
come. For a detailed account of this, see the lower half of page 116 in [Hatcher
2002].

Definition 2.21. For every n ∈ Z, let [c] ∈ Hn(C•) and [a] ∈ Hn−1(A•) as found
in Lemma 2.12. Define the connecting morphism

ωn : Hn(C•) −→ Hn−1(A•)

by
[c] 7−→ [a].

Before we can define the Meyer-Vietoris sequence, we need to make one ad-

justment. We want to replace the homology groups H
{A,B}
n with the homology

groups Hn(X).

Definition 2.22. Let X ∈ Top and let A, B ⊆ X such that int(A) ∪ int(B) = X.
The inclusion

ι : C
{A,B}
• −→ C•(X)

is the chain map composed of the inclusions

ιn : C
{A,B}
n −→ Cn(X).
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Lemma 2.13. For every n ∈ Z, the induced homomorphism Hn(ι) is an isomor-
phism.

Proof. This lemma may seem innocent enough, but a proof would spread over
many pages. What is needed is a chain map

ρ : Cn(X) −→ C
{A,B}
n

such that both ρ ◦ ι and ι ◦ ρ are homotopic to the identity. In that case, ι
is a homotopy equivalence, and hence due to Corollary 2.9, Hn(ι) is an iso-
morphism. For constructing ρ the idea is that through repeated application of
barycentric subdivision, an n-simplex can be subdivided into arbitrarily smaller
n-simplices. The challenge is then to translate barycentric subdivision to sin-
gular n-simplices. For a comprehensive proof, see proposition 2.21 of [Hatcher
2002], pages 119—124.

We can now define the Meyer-Vietoris sequence.

Definition 2.23. Let X ∈ Top, let A, B ⊆ X such that int(A)∪ int(B) = X and let
n ∈ Z. The Meyer-Vietoris sequence is the following sequence:

. . .

ωn+1◦Hn+1(ι)−1
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

ssgg
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

Hn(A ∩ B)
Hn(φ)

// Hn(A) ⊕ Hn(B)
Hn(ι◦ψ)

// Hn(X)

ωn◦Hn(ι)−1
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

sshh
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

Hn−1(A ∩ B)
Hn−1(φ)

// Hn−1(A) ⊕ Hn−1(B)
Hn−1(ι◦ψ)

// Hn−1(X)

ωn−1◦Hn−1(ι)−1
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

ssgg
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

. . .

The reason why we are interested in the Meyer-Vietoris sequence is because
it is exact. This follows from the following lemma.

Lemma 2.14. Let A•, B•, C• ∈ Ch•(Ab), and suppose there exist chain morphisms
φ ∈ Mor(A•, B•) and ψ ∈ Mor(B•, C•) such that

0 −→ A•
φ

−→ B•
ψ

−→ C• −→ 0

is a short exact sequence. Then the following long sequence is exact:
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. . .

ωn+1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

ttii
i
i
i
i
i
i
i
i
i
i
i
i
i
i

Hn(A•)
Hn(φ)

// Hn(B•)
Hn(ψ)

// Hn(C•)

ωn
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

ttjj
j
j
j
j
j
j
j
j
j
j
j
j
j
j

Hn−1(A•)
Hn−1(φ)

// Hn−1(B•)
Hn−1(ψ)

// Hn−1(C•)

ωn−1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

ttii
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

. . .

Proof. In order to prove this, one has to check that the images of the boundary
operators are included in the kernels of the respective subsequent boundary
operator and vice-versa. This is done in Theorem 2.16 of [Hatcher 2002] on
page 117.

Corollary 2.15. The Meyer-Vietoris sequence is exact.

Proof. This follows from Lemma 2.11, Lemma 2.13 and Lemma 2.14.

Now we are ready to calculate the homology groups of the n-sphere.

2.2.5 The homology groups of the n-sphere

Proposition 2.16. For every n ≥ −1, Hn(Sn) is isomorphic to Z, and for every
m 6= n, Hm(Sn) is trivial.

Proof. Let A = {(v0, v1, . . . , vn) ∈ Sn|v0 < 1} and B = {(v0, v1, . . . , vn) ∈
Sn|v0 > −1}. Then A and B are both open, and thus their own interiors, and
A ∪ B = Sn. Furthermore, A and B deformation retract to a point, and thus
for every k ∈ Z, we have Hn(A) and Hn(B) are both trivial. The intersection
A ∩ B deformation retracts to the set {(v0, v1, . . . , vn) ∈ Sn|v0 = 0}, which
is homeomorphic to Sn−1. Applying the Meyer-Vietoris sequence then yields
that for all k ∈ Z,

0
Hk(ι◦ψ)
−→ Hk(Sn)

ωk◦Hk(ι)−1

−→ Hk−1(Sn−1)
Hk−1(φ)
−→ 0

is exact, which means that Hk(Sn) and Hk−1(Sn−1) are isomorphic. Having
found in Proposition 2.5 that H−1(S−1) is isomorphic to Z, and that for all
m 6= −1, Hm(S−1) is trivial, straightforward induction on n then finishes the
proof.

Because the homoloy group Hn(Sn) is isomorphic to Z as an abelian group,
the ring HomAb(Hn(Sn), Hn(Sn)) is canonically isomorphic to the ring Z.
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Lemma 2.17. For n ∈ N, let σn
+, σn

− ∈ HomTop(∆n, Sn) be singular n-simplices
covering opposite halves of the n-sphere, such that Im(σn

+)∩ Im(σn
−) is homeomorphic

to Sn−1 and ∂Sn

n σn
+ = ∂Sn

n σn
−. Then [σn

+ − σn
−] is a generator of Hn(Sn).

Proof. This can be proven using induction and the Meyer-Vietoris sequence,
or alternatively as in the second half of Example 2.23 on page 125 of [Hatcher
2002].

Now we are ready to define the Brouwer degree.

2.3 The Brouwer degree and the non-combability of

the even-dimensional sphere

Definition 2.24. For any n ≥ −1, let χn be the canonical isomorphism between
HomAb(Hn(Sn), Hn(Sn)) and Z that sends IdHn(Sn) to 1. The Brouwer degree

degn : Mor(Sn, Sn) −→ Z

is the composition χn ◦ Hn.

The Brouwer degree satisfies many properties, four of which we need.

Proposition 2.18. Let n ≥ −1. Let f , g ∈ Mor(Sn, Sn). The Brouwer degree satis-
fies the following properties:

1. degn(g ◦ f ) = degn( f )degn(g).

2. degn(IdSn) = 1.

3. If f ∼ g, then degn( f ) = degn(g).

4. Let 0 ≤ i ≤ n, then re f li is the map that sends a point (v0, v1, . . . , vi, . . . , vn)
to (v0, v1, . . . ,−vi, . . . , vn). We have that degn(re f li) = −1.

Proof. 1. This is a direct consequence of the fact that Hn is a functor and that
χn is a ring isomorphism.

2. Hn is a functor, so sends IdSn to IdHn(Sn), and φ was defined to send
IdHn(Sn) to 1.

3. Due to Proposition 2.8, Hn( f ) = Hn(g), and thus also degn( f ) = degn(g).

4. As re f li ◦ re f li = IdSn , the value degn(re f li) must be either 1 or -1. Choose
a σn

+ ∈ HomTop(Deltan, Sn) that maps onto the part of Sn that consists

of points with non-negative ith coordinate and that satisfies the require-
ments of Lemma 2.17, and let σn

− ∈ HomTop(Deltan, Sn) be the mirror
image of σn

+ under re f li. Since Hn(re f li) sends [σ+ − σ−] to [σ− − σ+] =
−[σ+ − σ−] 6= [σ+ − σ−], we must have degn(re f li) = −1.

Corollary 2.19. Let n ≥ −1 and let −IdSn be the antipodal map. We have that
degn(−IdSn) = (−1)n+1.
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Proof. The antipodal map is the composition of n + 1 reflections, hence this
follows from properties 1 and 4 of Proposition 2.18.

Lemma 2.20. Let n ≥ −1. Then for any continuous map

φ : Sn −→ Sn

such that for every x ∈ Sn, φ(x) 6= −x, we have φ ∼ Id.

Remark. Recall that in the proof of Proposition 2.1 we defined

p : Rn+1 \ {0} −→ Sn

to be the projection onto the n-sphere given by

x 7−→ x/‖x‖.

Proof. We can use the homotopy

F : Sn × I −→ Sn

given by
(x, t) 7−→ p(tx + (1 − t)φ(x)).

Lemma 2.21. Let n ≥ −1. Then for any continuous map

φ : Sn −→ Sn

such that for every x ∈ Sn, φ(x) 6= x, we have φ ∼ −Id.

Proof. We can use the homotopy

F : Sn × I −→ Sn

given by
(x, t) 7−→ p(−tx + (1 − t)φ(x)).

Proposition 2.22. Let n ∈ N be even. Then the n-sphere is not combable.

Proof. Suppose that the n-sphere is combable. Then there exists a map

φ : Sn −→ Sn

such that for every a ∈ Sn, the vectors a and φ(a) are linearly independent,
which is equivalent to φ(a) 6= a and φ(a) 6= −a. According to Lemma 2.20
and Lemma 2.21 we then have that Id ∼ φ ∼ −Id, and according to Proposi-
tion 2.18 this means that 1 = deg(Id) = deg(−Id) = (−1)n+1, which for n even
is not true.

Theorem 2.23. There exist no division algebras over R of odd dimension greater than
1.

Proof. From Proposition 2.22 it follows that for n even, the n-sphere is not com-
bable, and for n > 0, thus also not parallelisable. Proposition 2.1 then gives us
that it cannot be the case that there exist n + 1-dimensional division algebras
over R.
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