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Preface

In this bachelor thesis we are going to investigate what kind of models exist
to simulate fish schools. It is based on a search through literature in order to
find these models. We are especially interested in the continuum models, which
consider the whole school as a unit instead of simulating each fish individually.
We are going to elaborate these models mathematically.
The choice for this subject arose from our interest in biology, so combining it
with mathematics was a logical choice. Because it is a search through literature,
we did not know in advance what kind of models we were going to find. The
model(s) that we did find in the end, turned out to be too hard to analyse with
elementary methods. Therefore this thesis gives a few starting points for future
research, e.g. in a master project.
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1 Biological and experimental background

The schooling behaviour of fish has always been very interesting to scientists.
How they do it and why, and can we model this behaviour mathematically in
order to get a better understanding about this schooling behaviour. There has
been a lot of research on this subject. Different kind of studies of schooling
fish have showed that it is more advantageous for fish to swim in a group than
to live isolated. Fish were born with the ability to school. It protects them
against predators, it gives them greater access to food resources and it saves
energy. It is very dangerous to live isolated. A good example of saving energy
by moving together, exhibited by a different type of organism, is that performed
by a group of lobsters (Panulirus argus); one single lobster moves 25 cm/s, while
when moving in groups, they go at a speed of 35 cm/s. It has been showed that
fish live up to six time longer if they swim in schools compared to being on there
own [1]. Over the years through natural selection, the fish who succeeded the
most, survived. That is how the current schooling behaviour arose.

1.1 Major biological questions

The experiments performed by biologists are based on a couple of questions
about the schooling behaviour of fish. They have a good idea why fish congre-
gate, but have relatively little knowledge about how they congregate. In order
to understand this better, they looked at the rules that seem to determine the
individual behaviour in a school. They wondered what determined the move-
ment of the fish and how the different kind of shapes of the school arose. They
discovered that fish seem to use three kinds of zones around them. When other
fish enter one of these zones, the fish will respond differently for each zone. The
zone closest to the fish seems to be a zone where the fish will turn away if others
enter this zone, some kind of territory. If there are no fish inside this zone, the
fish takes notice of fish outside this zone. It seems to divide this in two different
zones; one where it aligns with its neighbours, and one where it seems attracted
by other fish. The area outside these zones is not in the field of perception of
the fish.
Another import biological question is what the foci of attraction and repulsion
from point of view of an individual group member are. There are different kind
of foci imaginable, like predators and food. Is the strength of these forces strong
enough to maintain the congregation, and can these forces explain the observed
structure? To how many of their neighbours do fish pay attention? These are
all questions biologists try to answer by experiments.

1.2 Collecting data

In order to make simulations about fish schools, we need to know how fish
behave in a school. Experiments have been performed by biologist to collect
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data. There are different ways to collect these data. Most studies use captured
fish, so they can mark them. They put them in a tank, free of any distracting
objects. First the fish have some time to get used to their new environment.
After that they start filming the movement of marked fish, during a certain
period, often from different angles in order to obtain information about the
three dimensional position and velocity of each fish in the school. One of the
difficulties is to determine how long you should monitor the fish and with how
many frames per second. If there are too many frames per second, it turned
out that there is too much autocorrelation. If there are not enough frames per
second, there is a big loss of information. Parrish and Turchin analysed the
individual trajectories of schooling fish and found out that the best option for
their experiment was to look at every third frame, when there were 15 frames
per second [5].

1.3 First conclusions from experiment

Biologists have done experiments with fish to investigate their schooling be-
haviour in fish tanks. First they looked at the individual behaviour of a fish in
the school. It turned out that fish mostly use vision to determine their position
with respect to their neighbours. They also use sensors on the side of their
bodies to notice the water movement, the so called lateral line [3] (see Figure
1). This way the fish can determine how fast their neighbours are moving and
in which direction. Without these two properties fish could not be schooling.
If vision is decreasing, the fish will swim further apart from each other. Fish
with more sensors in the lateral line swim closer to each other. The vision is
used mostly to determine the distance and angle to their neighbours, while the
sensors in the lateral line are used to watch their speed. To maintain the shape
of the school, fish constantly have to watch their neighbours. They pay atten-
tion to their nearest neighbours, as well as to the school as a whole unit. The
distance they keep to each other differs by the type of fish. This can explain
why there are differences in the defense against predators and their movement
through the water. It is difficult for the fish in the school to determine how to
move without colliding with their neighbours and stay away from the predators.

In fish schools there is no leader, the fish change position in the school all the
time. Once the school changes direction, the fish on the side suddenly become
the leaders. Theoretical analysis of the experimental data which were mainly
gained through simulations, has revealed that it is most likely that fish form a
self-organization mechanism. In this mechanism they apply a few rules about
how to use the information they get from there neighbours, in order to adjust
their movement behaviour. This simple mechanism results in the high-level
school structure of the group.
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Figure 1: The lateral line of a fish

1.4 Objectives for mathematical modeling and simulation

After the (biological) experiments have been done, the theoreticians can start
with their models and simulations. Biologists need these kind of models and
simulations in order to get more information about the fish school. Before math-
ematics can be done, we need to know the question that need to be answered
by the mathematical model. There are different questions possible which might
need a different model. Sometimes we want to have more knowledge about how
individuals behave in a group, whereas other times there can be more interest in
the behaviour of all fish together, when considering migration of various schools
over hundreds of sea miles. In that case there can be looked at the whole school
as a unit on a large space scale.
The goal of Parrish and Turchin in [5] is to give a quantitative description of the
rules of individual movement, based on the balance of attractive and repulsive
forces. With the use of mathematics they wanted to investigate if the position
of fish in a school were structured or completely random. They want to explore
the data set for potential attraction and repulsion foci.
Individual-based (Lagrangian) multi-”particle” models are then much more ap-
propriate than continuum (Eulerian) models, which seem to be more suited to
answering the former. We will discuss this more in the next chapter.
One of our objectives is to understand the large scale, long-term behaviour of
these schools, as may be encountered in the annual so called ’sardine run’ near
South Africa in spring time. There, trillions of sardines migrate away from
their usual living ground without - apparently - any goal, except to be eaten by
various predators in large numbers.

6



2 Models for animal grouping

It is often very difficult to collect data of movements of fish in schools in multi
dimensions. This makes it more difficult than for example one-dimensional
subjects like birth and death. The fact that it is difficult does not make it less
interesting and it is a subject of which we would like to know more.

There are three different kind of models to simulate fish schools. The first one
is the empirical studies with phenomenological models. The second one consists
of theoretical analysis which are usually based on diffusion models, and the last
one is the mechanistic approach, which is based on individuals and focus on a
specific organism, using computer simulations.

Each of these three models have their advantages and limits. The first one is
useful in quantifying dispersal in the field but it does not give us good insight
in mechanisms of population redistribution [2]. The diffusion models are often
too general as a result of the assumptions made about movement of organisms.
The mechanistic models originate from very careful field observations, but they
often focus too much on one specific kind of animal, which makes it difficult to
draw general conclusions out of it. We will describe some outstanding models of
this kind in Chapter 3 that have been able to shed light in universal principles
regarding fish schooling, bird flocking and others.

The reason why not one of the models has replaced the others, is that most
models are hard to compare. Each type is suited to answer different kind of
questions, described in Chapter 1.4, so they are complementary. Most of them
are too specific to compare the results of the simulations. The different assump-
tions made at the start of the simulation and the use of different parameters
gives a different outcome. Besides that, the creators of the models often don’t
tell exactly how their models work, which makes it difficult to understand what
it is actually doing.

Biologists have tried to find a solution for this problem. In [10] March and Jones
came up with two possible solutions. They proposed that everyone who wanted
to do such research, had to do this with an agreed structure. A consequence of
an agreement like this, is that it should be flexible enough for different kind of
organisms. A second solution is to try to close the gap between the too general
diffusion models and the too specific simulations. In this thesis we pursuit this
point. We are looking for continuum descriptions for fish schooling that bridges
the gap between diffusion models and the detailed mechanistic models. Such
models exist for example for chemotaxic movement (”chemotaxis”) of cellular
organisms, like bacteria and amoebae: kinetic chemotaxis models [12], [13]. A
disadvantage of the second solution is that it does not give a good explanation
for the behaviour of organisms. Therefore it is not really possible to use only
one of the three models for movement simulation. Nevertheless, the need for a
unifying framework that places them in proper (mathematical and biological)
relationship is still wanted. The main point is, that the different types of models
apply best to different space and time scales and that we should understand each
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model’s limitations regarding predictions derived from it in relation to other
models.

2.1 Lagrangian versus Eulerian type models

The last two techniques of modeling are the most important ones because we
get the best results out of it; the empirical approach does not give us sharp
answers about mechanisms of population distribution. The second one is called
the Eulerian approach, in which the congregation can be formulated as nonlinear
diffusion problems and is centered on a point in space. The position and velocity
of each fish is replaced by a distribution for the expected direction of fish in a
specified region with velocity in a specified range. In this model we don’t look
at the individuals, but all the fish together in the school. The diffusion equation
is a continuum approximation of the discrete random walk process. This model
gives a lot of general insights into spatial population dynamics, but usually
makes oversimplifying assumptions about movements of real organisms [2]. The
last approach is called the Lagrangian model, which is centered on the individual
behaviour of a fish. The individual movement is characterized by the position,
velocity and acceleration of a fish. These models can be tightly linked to field
observations.
If we compare the two different models, we can see a couple of advantages and
disadvantages. In the Eulerian approach, all the fish are identical, which makes
it easier to add a certain chance variable. In the Lagrangian approach there is
the option to make a difference between individuals, which is an advantage, but
adding a chance variable is not easy. Besides that, this mathematical model is
relatively easy, but has a lot of equations, where the Eulerian model has one
equation, but a rather difficult one. Because in this model we look at all the
fish as if they are the same, we lose track of the individual fish.
In general, movement decisions of an individual group member can be viewed
as a balance of forces, liked described in [11]. These forces are necessary to
simulate multiple individuals, like in the Lagrangian model. The forces that
have been taken in this balance are the attraction to and repulsion from their
neighbours and the center of the school, and the tendency to align with their
neighbours.

2.2 Physical diffusion

When we talk about the diffusion models we don’t mean the physical diffusion,
which is the diffusion of dissolved molecules or particles like heat conduction. In
that case the fish would move away from each other instead of sticking together
in a school. That is why a physical diffusion model is not a good model to
simulate fish schools. Therefore we have to look at another kind of diffusion
model, which transforms the diffusion model into a good model for fish schooling,
the so called ecological diffusion model. First we will describe how a physical
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diffusion equation is obtained.

The physical diffusion model is build in two steps:
1) one states the conservation equation that relates the change in spatial con-
centration of particles to their flux
2) one needs the empirical law connecting particle fluxes to their concentration
gradients [2].

We can look at a one-dimensional example of the movement of particles in a
thin tube and we assume that particles don’t interact. We can investigate the
change of concentration of particles at a small section of one end of the tube
over time, between x and x+ λ.

This gives us the following equation [2]

rate of change
of particle net (entry minus net (entry minus
number in = departure) at the + departure) at the
(x, x+ λ) x end x+ λ end
per unit time

(2.2)

If we take u(x, t) the concentration of particles at a place x at a time t and
we multiply this with the length of the interval λ, we get the total number of
particles in (x, x+λ). The quantities on the right are the fluxes J(x, t); the rate
at which the particles cross x in the positive direction [3]. Now we can write
equation (2.2) in terms of the fluxes

∂

∂t
[u(x, t)λ] = J(x, t)− J(x+ λ, t)

∂u

∂t
(x, t) = −J(x+ λ, t)− J(x, t)

λ
(1)

and by taking λ→ 0, we get

∂u

∂t
(x, t) = −∂J(x, t)

∂x
(2)

Our following step is to apply Fick’s law; the concentration within the diffu-
sion volume does not change with respect to time, and if we take D to be the
diffusivity, this gives us

J(x, t) = −D(x, t)
∂u

∂x
(x, t) (3)

If we substitute (3) into (2), we obtain the following diffusion equation
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∂u

∂t
(x, t) =

∂

∂x

(
D(x, t)

∂u

∂x

)
(x, t) (4)

If D(x, t) = D is independent of time, (4) simplifies to

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) (5)

One thing we have to take into account is that when the concentration is high,
the interaction between particles become important and a consequence is that
Fick’s law is no longer accurate.

2.3 Ecological diffusion

Now we look at an easy example of a random walk in one dimension to obtain
a simple ecological diffusion model. Imagine a small animal, e.g. a beetle,
can move to the positions left and right and stay at his place with a certain
probability, see Figure 2. It can move to the right with a probability R(x, t),
to the left with a probability L(x, t) and stay at his place with a probability
N(x, t) being stated at position x. We make the assumption that the beetle can
only make one step every time.

Figure 2: Movement of a small animal

We now want to formulate a recurrent equation for the probability that the
beetle is at a certain place x on a time t, which we will indicate with p(x, t).
Because the beetle can only move one step, the probability that it is in x at time
t, depends on the probability that it did not move, or was in the surrounding
places x− λ and x+ λ one moment earlier, t− τ . In equation form, this gives
us:

p(x, t) = N(x, t− τ)p(x, t− τ) +R(x− λ, t− τ)p(x− λ, t− τ)
+L(x+ λ, t− τ)p(x+ λ, t− τ) (6)

Our next step is to make a differential equation expressed in terms of the deriva-
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tives of p(x, t) out of this recurrent one. Therefore we take the Taylor expansion:

p(x, t− τ) = p(x, t)− τ ∂p
∂t

(x, t) +O(τ2)

p(x− λ, t− τ) = p(x, t)− λ∂p
∂x

(x, t)− τ ∂p
∂t

(x, t)

+
1
2

(
λ2 ∂

2p

∂x2
(x, t) + 2λτ

∂2p

∂t∂x
(x, t) + τ2 ∂

2p

∂t2
(x, t)

)
+O(λ3)

p(x+ λ, t− τ) = p(x, t) + λ
∂p

∂x
(x, t)− τ ∂p

∂t
(x, t)

+
1
2

(
λ2 ∂

2p

∂x2
(x, t)− 2λτ

∂2p

∂t∂x
(x, t) + τ2 ∂

2p

∂t2
(x, t)

)
+O(λ3)

The Taylor expansion of R, L and N are similar.

Now we notice that N + R + L = 1. If we substitute these expansions into (6)
and we neglect the terms of order τ2 and λ3, we get the following equation:

τ
∂p

∂t
(x, t) = −λp ∂

∂x
(R− L)(x, t) +

1
2
λ2p

∂2

∂x2
(R+ L)(x, t)

+
1
2
λ2 ∂

2p

∂x2
(R+ L)(x, t)− λ∂p

∂x
(R− L)(x, t)

+λ2 ∂p

∂x

∂

∂x
(R+ L)(x, t)

+λτ
∂p

∂x

∂

∂t
(R− L)(x, t) + λτp

∂2

∂t∂x
(R− L)(x, t)

+λτ
∂2p

∂t∂x
(R− L)(x, t) + λτ

∂p

∂t

∂

∂x
(R− L)(x, t)

= − ∂

∂x
[(R− L)λp] +

∂2

∂x2

[
λ2(R+ L)p

2

]
+λτ

∂p

∂x

∂

∂t
(R− L)(x, t) + λτp

∂2

∂t∂x
(R− L)(x, t)

+λτ
∂2p

∂t∂x
(R− L)(x, t) + λτ

∂p

∂t

∂

∂x
(R− L)(x, t)

(7)

In the limit λ, τ → 0, R − L → 0 where we assume lim
λ,τ→0

λ2(R+L)
2τ =: µ and

lim
λ,τ,R−L→0

λ(R−L)
τ =: β to exist, we notice that the last four terms are of order τ2

and will therefore disappear. This gives us formally the following approximation:

∂p

∂t
(x, t) = − ∂

∂x
(βp)(x, t) +

∂2

∂x2
(µp)(x, t) (8)
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Our final step now is to look at the total number of moving beetles, N . If we
multiply this with the probability of finding an individual at a certain place x, at
a time t and we substitute u(x, t) ≡ Np(x, t), we get a diffusion-approximation
model for the movement of a population of organisms:

∂u

∂t
(x, t) = − ∂

∂x
(βu)(x, t) +

∂2

∂x2
(µu)(x, t) (9)

This equation is known as the Fokker-Planck equation and represents what is
often called ecological diffusion.

3 Mechanistic models for fish schooling

As we described in Chapter 1, a fish uses his vision and his lateral line to
determine the location and speed of his neighbours. The area around the fish
can be divided in several spherical zones (see Figure 3). This corresponds with
our presumption from Chapter 1.1, but now we give a more abstract description.

Figure 3: Areas around a fish

The zone closest to the fish is the zone of repulsion. When neighbours enter
this zone, the fish will instantly move away from them. The sphere with radius
r1 around that is the zone of orientation or the alignment zone. In this area the
fish will try to align with his neighbours. The area with the biggest distance to
the fish is the zone of attraction which has radius r2. When there are no fish in
the first two zones, the fish will go looking for others. We notice that there is a
zone behind the fish that is not in the field of perception; the fish cannot detect
neighbours in this region. The size of this region can differ by type. Also the
region outside the zone of attraction is not in the field of perception, it is just
too far away from the fish to notice others.
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From simulation of mechanistic models for fish schooling, one has concluded
that the size of the alignment zone has a big influence on the shape of the
school [6]. In simulations appear three shapes which are also known for natural
fish schools, see Figure 4.

Figure 4: Different kind of shapes of a school [7]

The first one arises when there is almost no tendency to align (A). In this case
the fish swim randomly. When this tendency gets stronger by enlarging the
radius of the alignment zone, they suddenly start to follow each other, which
results in a torus (or doughnut) shaped school (B). The final shape is when the
alignment zone is large and the fish start to swim parallel to each other as in a
migration (C). The transition between the different shapes is very sharp. Fish
are able to adjust the size of their alignment zone. The tendency to align is
important in allowing the group to transfer information [7].

It has been proven that individuals with a smaller repulsion zone tend to be
closer to the center and front of the school than the fish with a larger repulsion
zone. Fish that are hungry take a front position more often than those that
are already satiated [7]. In multi-species schools, fish swim closer to their kind,
and keep a bigger distance to other kinds. This might explain why the different
species and fish of the same size tend to stay together, which is described as a
sorting behaviour.

Now we look at the mechanistic models for fish schooling according to Couzin
et. al. [8]. Here we simulate multiple individuals, lets say N . We want to
investigate how the individuals change their direction when neighbours enter
the different zones. Therefore we look at the desired direction the fish wants
to go, the vector di(t+ ∆t), where d stands for displacement. This direction is

13



mainly influenced by the fish in the zone of repulsion. For each individual i we
define the sets:
Nr(i) := {j— individual j 6= i is in zone of repulsion }
No(i) := {j— individual j 6= i is in zone of orientation}
Na(i) := {j— individual j 6= i is in zone of attraction}.
This gives us, with cj the position vector of the center of mass,

di(t+ ∆t) = −
∑

j∈Nr(i)

cj(t)− ci(t)
|cj(t)− ci(t)|

(10)

Avoiding neighbours is the highest priority.
If there are no neighbours in the zone of repulsing, the desired direction is
constructed in a different way. To that end we use a unit direction vector
derived from vi. If there are only neighbours in the orientation zone, this gives
us

di(t+ ∆t) =
∑

j∈No(i)

vj(t)
|vj(t)|

(11)

Similar, if there are only na neighbours in the zone of attraction, we get

di(t+ ∆t) =
∑

j∈Na(i)

cj(t)− ci(t)
|cj(t)− ci(t)|

(12)

Whenever there are neighbours in the repulsion area, this desired direction
vector is dominant. When this area is empty, the desired direction will be
determined by the last two vectors

di(t+ ∆t) =
1
a

∑
j∈No(i)

vj(t)
|vj(t)|

+
(

1− 1
a

) ∑
j∈Na(i)

cj(t)− ci(t)
|cj(t)− ci(t)|

(13)

where a depends on which zone is more dominant and differs by type of fish.
This type of model is based on the work of Tamás Vicsek and collaborators e.g.
see [14]. In [7] they use a = 2.
The position and the velocity of each fish are updated according to:

cj(t+ ∆t) = cj(t) +
dj(t+ ∆t)
|dj(t+ ∆t)|

· v0∆t (14)

vj(t+ ∆t) = v0
dj(t+ ∆t)
|dj(t+ ∆t)|
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where v0 is a fixed speed.

As we have seen in Section 2.1, the simulation of individuals is based on the
balance of forces. In [11] (p.254) they came up with a continuous time model
which is comparable to the latter. Here we define Np(i) := {j— individual j 6= i
is in zone of perception}= Nr(i) ∪No(i) ∪Na(i).
They give the following equation of motion for the ith individual in a group:

mai +mkvi = b
vi
|vi|

+
1

N − 1
ΣQ(Rij)

cj − ci
|cj − ci|

+
1
M

∑
cj∈Np(i)

h(vj − vi) +Ai(t)

(15)

where ai is the acceleration, vi the velocity and cj the center of mass of the
ith individual, thus ai = dvi

dt , vi = dci

dt . Rij stands for the distance between
fish i and j and Ai(t) models a random force. They describe that it was too
difficult to solve equation (15) analytically, so they used computer simulations
to examine the time variation of grouping pattern [11]. The result was the same
as above, showed in Figure 4.

As we have already described, there is no leader in a school of fish. So how
does the school determine where to go, how do they make a collective decision?
That is a question I.D. Couzin et. al. [8] tried to answer by a simulation
model. They used a simple model to show how information can be transferred
within the school without signaling and when group members do not know
which individuals, if any, have information. In their experiment, they gave a
few individuals more information on where to go than others. They wondered if
uninformed individuals recognize the informed ones and if that is even necessary.
The way the school moves is described as above by the vector di(t + ∆t). The
vectors of all the individuals together result in a new direction for the school.
They showed that the larger the school, the smaller the proportion of fish with
information could be in order to guide the whole school to the right place, that
is for example away from a predator, or to a new food resource.

The model described in [7] reveals that two different collective states can occur
for identical individual behaviour. This demonstrates the importance of the
previous history of the group structure. It appears that when the tendency to
align gets stronger, the shape of the fish school goes through the three different
kind of shapes. First they swim randomly, then they start following each other
and the school becomes doughnut-shaped and finally it becomes a well organised
school. The transitions between the different shapes are very sharp. But if we
look at the shape of the school when we are going the other way, we see a
difference. We start with a very high tendency to align, so the school has
the shape showed in Figure 4(C). If we start to lower the tendency to align,
the school skips the doughnut-shape and goes directly to the shape showed in
Figure 4(A) where the fish swim randomly in the school. So the shape of the
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school depends on the previous shape. When the previous history is important
to the group structure is called a hysteresis phenomenon.

4 Continuum models

We have discussed some mechanistic models. Now we move on to continuum,
Eulerian models. Recall that our objective was to find continuum descriptions
of fish schooling, that can be applied in settings where there is a very large
(∼ 109 or more) number of individuals, moving on large scales in time and
space. Moreover, we would also like to bridge the gap between mechanistic and
diffusion models, as mentioned in Chapter 2. A partial result in this direction
that we were able to find is Grünbaum’s model, which we shall discuss in the
next section.

4.1 Grünbaum’s model

An equation given in [5], is expressed in terms of a probability density function
p(θ, t), which, loosely speaking, is the frequency of fish with the tendency to
align in the school with orientation in the range [θ, θ + dθ] at time t:

∂

∂t
ρ(θ, t) =

∂2

∂θ2
(D(θ)ρ(θ, t))

−β ∂

∂θ

ρ(θ, t)

 θ+π∫
θ

ρ(θ′, t)dθ′ −
θ∫

θ−π

ρ(θ′, t)dθ′

 (16)

We can rewrite this by taking

G(ρ)(θ) =

θ+π∫
θ

ρ(θ′, t)dθ′ −
θ∫

θ−π

ρ(θ′, t)dθ′ (17)

so (16) becomes

∂

∂t
ρ(θ, t) =

∂2

∂θ2
(D(θ)ρ(θ, t))− β ∂

∂θ
[ρ(θ, t)G(ρ)(θ)] (18)

In this equation, the left-hand side describes probability of the movement of the
fish. On the right-hand side, we recognize the diffusion part from the ecological
diffusion models, equation (9), together with some kind of disturbance, like in
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equation (9). Equation (16) can be read in the following way; the fish we are
investigating has a vision range from θ − π to θ + π. The first integral can be
interpreted as the number of fish in the school with orientation to the left of θ,
and the second integral as the number of fish with orientation to the right of
θ. It represents the choice of direction of the fish; if there are more fish on the
right-hand side, it will turn to them, and if there are more fish on his left-hand
side, the fish will turn this way. β indicates the rate of turning towards his
neighbours.

4.2 The extended Grünbaum model

In [9] we found a similar model, only this one is extended by that the authors
call ”an environment-induced preference” modeled by F (θ):

∂

∂t
ρ(θ, t) =

∂2

∂θ2
(D(θ)ρ(θ, t))

−β ∂

∂θ

ρ(θ, t)

 θ+π∫
θ

F (θ′)ρ(θ′, t)dθ′ −
θ∫

θ−π

F (θ′)ρ(θ′, t)dθ′


(19)

We suppose F is a continuous function and is periodic on [0, 2π]. Note that if
F (θ) 6= 0 for all θ, then F has fixed sign. We assume that F > 0 in that case
and incorporate the sign into β.

As before we make the same simplication G as before, but now it depends on F
as well, so

GF (ρ)(θ) =

θ+π∫
θ

F (θ′)ρ(θ′, t)dθ′ −
θ∫

θ−π

F (θ′)ρ(θ′, t)dθ′ (20)

and (19) becomes

∂

∂t
ρ(θ, t) =

∂2

∂θ2
(D(θ)ρ(θ, t))− β ∂

∂θ
[ρ(θ, t)GF (ρ)(θ)] (21)

We can look at some properties of GF .
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5 First steps towards analysis of the extended
Grünbaum model

Whenever we are working on this kind of models, we should never lose track of
the biological interpretation. We can take a look at equation (21) and integrate
both sides from 0 to 2π. This gives

2π∫
0

∂

∂t
ρ(θ, t) =

2π∫
0

∂2

∂θ2
(D(θ)ρ(θ, t))− β

2π∫
0

∂

∂θ
[ρ(θ, t)GF (ρ)(θ)]

=
[
∂

∂θ
(D(θ)ρ(θ, t))

]2π
0

− β [ρ(θ, t)GF (ρ)(θ)]2π0

= 0

because D, ρ and GF are all 2π-periodic.

By interchanging ∂
∂t and the integral we get ∂

∂t

[
2π∫
0

ρ(θ, t)dθ
]

= 0, which gives

2π∫
0

ρ(θ, t)dθ = constant. This means that for ρ ≥ 0, we find that the total amount

of fish stays constant over time, which is preferable.

5.1 Existence, uniqueness an positivity of solutions

In this section we are going to look for the existence and the uniqueness of
the solutions of the (extended) Grünbaum model. The case where D(θ) 6= 0 is
described in [9], where they use semigroup methods and functional analysis in
order to prove existence, uniqueness and positivity of solutions (for finite time).
They analyse the stability of the trivial equilibrium in case D(θ) is constant, but
this is beyond the scope of this bachelor project. We tried to find out what can
already be concluded with elementary methods, in scope with the requirements
of this project. The case D ≡ 0 has not been treated in [9]; our results on
equilibria in Section 5.3.1 suggest that uniqueness may fail in that case. We did
not find results on existence of solutions for that case so far.
For interpretation of ρ it is necessary that ρ ≥ 0. We did not consider proving
this here. This has been done in [9], Theorem 2.3, p.421-424 for general θ-
dependent D and F , both strictly positive.

5.2 Properties of GF

Let Ckper([0, 2π]) be the vector space Ck functions on [0, 2π] with f (n)(0) =
f (n)(2π) for all 0 ≤ n ≤ k. A function f ∈ Ckper([0, 2π]) can be identified with
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a 2π-periodic Ck-functions on R.

Proposition 1. The following statements hold:

(i) For F ∈ Cper([0, 2π]), GF : ρ 7→ GF (ρ) is a linear map from Cper([0, 2π])
into C1

per([0, 2π]).

(ii) For all ρ ∈ Cper([0, 2π]) and θ ∈ [0, 2π],

∂

∂θ
(GF (ρ)(θ)) = 2 [F (θ + π)ρ(θ + π)− F (θ)ρ(θ)] . (22)

(iii) For all ρ ∈ Cper([0, 2π]) and θ ∈ [0, 2π],

GF (ρ)(θ + π) = −GF (ρ)(θ). (23)

Proof

(i) Each of the two integral terms in the definition of GF (ρ) is the integral
over the product of two continuous functions if F ∈ Cper([0, 2π]). This
gives a function which is C1

per([0, 2π]). Thus GF maps Cper([0, 2π])into
C1
per([0, 2π]). It is clear that GF is linear.

(ii) If we take the derivative of GF (ρ), we first integrate and then differentiate
with respect to θ. This means that the result is equal to the integral,
evaluated at the endpoints of the domain of integration. This yields (22).

(iii) We can rewrite GF (ρ)(θ + π) in order to prove (23).

GF (ρ)(θ + π) =

θ+2π∫
θ+π

Fρdθ′ −
θ+π∫
θ

Fρdθ′

=

θ∫
θ−π

Fρdθ′ −
θ+π∫
θ

Fρdθ′

= −

 θ+π∫
θ

Fρdθ′ −
θ∫

θ−π

Fρdθ′


= −GF (ρ)(θ)
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5.3 Equilibria for the extended Grünbaum model

It is easily verified that the homogeneous distributions ρ ≡ c, yield equilibria
for the the Grünbaum model when D is constant. In order to find nontrivial
equilibria of the extended Grünbaum model, we take ∂

∂tρ(θ, t) = 0. Then (21)
becomes

0 =
∂2

∂θ2
(Dρ)− β ∂

∂θ
[ρGF (ρ)]

By integrating this, we get

c =
∂

∂θ
(Dρ)− βρGF (ρ) (24)

We can divide the determination of the equilibrium into three cases:

1. D ≡ 0

2. D > 0

3. D ≥ 0, but D 6≡ 0

We shall concentrate on what equilibria may exist in case 1 and 2.

5.3.1 Case D ≡ 0

Lemma 1. Let D ≡ 0. ρ is an equilibrium in C2
per([0, 2π]) iff ρGF (ρ) ≡ 0.

Proof
If we suppose that GF (ρ) 6≡ 0, this implies that there exists θ∗ such that
|GF (ρ)(θ∗)| 6= 0. By using Proposition 1(ii) from Chapter 5.2, this implies
that there exists θ0 with θ∗ < θ0 < θ∗ + π such that GF (ρ)(θ0) = 0.
So if ρGF (ρ) ≡ c, this implies that ρGF (ρ) ≡ 0.

In order to find an equilibrium, we first use Fourier series. We can determine
the kernel of GF in the Grünbaum case, F ≡ 1. We write G instead of G1 as in
Section 4.1.

Proposition 2. Ker(G) = {ρ ∈ Cper([0, 2π])|ρ is π-periodic }

Proof For ρ ∈ Cper([0, 2π]) we have the Fourier Series ρ(θ) =
∞∑

k=−∞
rke

ikθ. If

we substitute this in G(ρ), we get
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G(ρ)(θ) =

θ+π∫
θ

∞∑
k=−∞

rke
ikθ′dθ′ −

θ∫
θ−π

∞∑
k=−∞

rke
ikθ′dθ′ (25)

By interchanging the sum and integral, we get

G(ρ)(θ) =
∞∑

k=−∞

rk

θ+π∫
θ

eikθ
′
dθ′ −

∞∑
k=−∞

rk

θ∫
θ−π

eikθ
′
dθ′ (26)

=
∑
k odd

−4rk
ik

eikθ

Thus ρ ∈ Ker(G) if and only if each rk = 0 for k odd. Now we can conclude
that ρ is π-periodic.

If we look at the extended Grünbaum model with F 6= 1, we can do a simi-

lar thing, so for F (θ) =
∞∑

k=−∞
ske

ikθ we get

GF (ρ)(θ =

θ+π∫
θ

∞∑
k=−∞

rke
ikθ′

∞∑
l=−∞

sle
ilθ′dθ′ −

θ∫
θ−π

∞∑
k=−∞

rke
ikθ′

∞∑
l=−∞

sle
ilθ′dθ′

=
∞∑

k=−∞

tk

θ+π∫
θ

eikθ
′
dθ′ −

∞∑
k=−∞

tk

θ∫
θ−π

eikθ
′
dθ′

=
∑
k odd

−4tk
ik

eikθ

where tk =
∑
k

( ∑
i,j|i+j=k

risj

)
eikθ

′
. So once again we conclude that ρ ∈

Ker(GF ) if and only if each tk = 0 for k odd. This is all we can say about
this case right now, so we leave the rest of this for future studies.

We can also investigate the equilibria from a different direction, by first looking
for the solutions of the equation ρGF (ρ) = 0, so for each θ ∈ [0, 2π], either
ρ(θ) = 0, or GF (ρ)(θ) = 0.

Proposition 3. The following statements hold:

(i) ρ ∈ Ker(GF ) ⇐⇒ F (θ + π)ρ(θ + π) = F (θ)ρ(θ) for all θ ∈ [0, 2π].
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(ii) The set
{
θ 7→ F (θ + π)ρ̂(θ) | ρ̂(θ) ∈ C1

per([0, 2π]), π-periodic
}

is a subspace
of Ker(GF ).

Proof

(i) ”⇐= ”: This follows directly from equation (20).
” =⇒ ”: If ρ ∈ Ker(GF ), this is equivalent to GF (ρ) ≡ 0, which implies
that ∂

∂θGF ≡ 0, and by using equation (22) we find that F (θ)ρ(θ) =
F (θ + π)ρ(θ + π) for all θ ∈ [0, 2π].

(ii) If we take ρ(θ) = F (θ + π)ρ̂(θ) we get
F (θ)F (θ+π)ρ̂(θ) = F (θ+π)F (θ)ρ̂(θ+π). Now if we take ρ̂ ∈ C1

per([0, 2π])
and π-periodic and ρ(θ) = F (θ + π)ρ̂(θ), we conclude from part (i) that
GF (ρ) ≡ 0.

Let us now consider the case that F is continuous and nowhere equal to 0. Then
we can define the map ξ : C([0, π]) −→ Fun([0, 2π]) by

ξρ̂(θ) :=

{
ρ̂(θ) for 0 ≤ θ ≤ π
F (θ−π)ρ̂(θ−π)

F (θ) for π ≤ θ ≤ 2π
(27)

It holds that ξ is linear;
lim
θ↑π

ξρ̂(θ) = ρ̂(π) and lim
θ↓π

ξρ̂(θ) = F (π)ρ̂(π)
F (0)

Thus ξρ̂ is in C([0, 2π]) whenever

F (π)ρ̂(π) = F (0)ρ̂(0) (28)

This implies that ξρ̂ is 2π-periodic.

Proposition 4. Ker(GF ) = {ρ ∈ Cper([0, 2π])|ρ = ξρ̂, ρ̂ ∈ Cper([0, π]) and
satisfies equation (28}).

Proof
From Proposition 3(i) we have for ρ ∈ Ker(GF ) that F (θ+π)ρ(θ+π) = F (θ)ρ(θ)
for all θ ∈ [0, 2π]. Thus ρ = ξρ̂ where ρ̂ is the restriction of ρ to [0, π]. Now, let
ρ̂ ∈ C([0, π]) satisfy equation (28), then ρ = ξρ̂ satisfies

ρ(2π) =
F (π)ρ̂(π)
F (0)

= ρ̂(0) = ρ(0) (29)

Thus ρ ∈ Cper([0, 2π]). By construction, ρ satisfies the condition of Proposition
3 (i).

We can conclude from Proposition 2 and its generalisation Proposition 3, that
the case D ≡ 0 will be degenerate in comparison to D > 0. Both ways of
determining equilibria lead to infinitely many solutions.
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5.3.2 Case D > 0

Like we have seen in the previous chapter, assuming that fish do not make
random movements, leads to a infinitely many equilibria. So apparently, taking
D ≡ 0 does not simplify the dynamics, nor simplifies the mathematics. We have
found that there exists at least one equilibrium for the case D > 0.

Proposition 5. Let F > 0, D > 0 be π-periodic continuous functions. Then
ρ(θ) = c

D(θ) is an equilibrium for the extended Grünbaum model.

Proof
We can proof this by substituting ρ(θ) = c

D(θ) in the extended Grünbaum model.

Clearly ∂2

∂θ2 (Dρ) = 0. Proposition 3(i) yields that also GF ≡ 0, thus

∂

∂t
ρ =

∂2

∂θ2
(Dρ)− β ∂

∂θ
(ρGF ) = 0 (30)

As we have said before, the case where D > 0 is studied in [9] although the
question of stability of equilibria is only considered for constant D and F . We
leave the search for more equilibria in this case for future studies.

6 Discussion and open problems

The (extended) Grünbaum models are not able to resolve the delicate spatial
structure of the total fish school (Figure 4). If we look at the different shapes
the school can adopt, we see that these models cannot determine the difference
between the doughnut shaped school, Figure 4(B), and the school in which fish
swim in totally random directions, Figure 4(A). When fish swim randomly, like
we described in Chapter 3, there are the same amount of fish orientated one
direction as the other. This means that

∫ θ+π
θ

ρ(θ′, t)dθ′−
∫ θ
θ−π ρ(θ′, t)dθ′ = 0. If

we compare this to the case where the school has the shape of a doughnut, we
see that there are also equally as many fish orientated one way as the other, so
our model gives the same result. So this kind of models is not able to distinguish
spatial differences between fish schools. This is one reasons why we referred to
it as a partial result.
The question whether the (extended) Grünbaum model with D ≡ 0 is well-
posed remains open: whether solutions to the initial value problem exist (local
in time) are unique and depend continuously (in some sense) on the initial value.
The results on equilibria suggest it is not.
Another point of discussion is mentioned in [9]. There they comment on the
biological interpretation of the solutions of the extended Grünbaum model. The
angular orientation of a fish is placed in a arbitrary horizontal plane, but this
has nothing to do with the actual location of the fish in the water volume.
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Preparatory studies have found a symmetry axis which have been used as the
origin for the angular orientation. However, this axis is by no means connected
to a specific horizontal direction in the sea. Besides that there is also no re-
lationship between a given orientation and the actual location of the fish with
this orientation. The determination of a suitable model is announced in [9] as
a subject for future research.
What will happen in the case D 6≡ 0 and F or D is not π-periodic? Or when
D 6≡ 0 but D(θ) = 0 for some θ? And similar for GF with F (θ) = 0 for some
θ. These are all questions which are still unanswered. It may be necessary to
consider the underlying stochastic models to verify that these cases make sense
altogether.

Another point of discussion has to do with equation (13). In this equation we
introduced the parameter a that models the balance between the tendency to
align and the attraction to neighbours. One can wonder how the simulations
based on this equation as in [7] depend on the choice of a. This problem is
not addressed in [7], but seems to be interesting to investigate to us in further
detail.

We would like to make a final comment on the extended Grünbaum model. We
can try to find equilibria in another way than described in Section 5. If we
rewrite equation (24) we get

−βρGF (ρ) = c− ∂

∂θ
(Dρ)

If we substitute this into the equilibrium equation multiplied by ρ

0 = ρ
∂2

∂θ2
(Dρ)− βρ ∂

∂θ
[ρGF (ρ)]

= ρ
∂2

∂θ2
(Dρ)− βρGF (ρ)

∂ρ

∂θ

+2βρ2 [F (θ)ρ(θ)− F (θ + π)ρ(θ + π)] (31)

we get the following functional differential equation

0 = ρ
∂2

∂θ2
(Dρ) +

(
c− ∂

∂θ
(Dρ)

)
∂ρ

∂θ

+2βρ2 [F (θ)ρ(θ)− F (θ + π)ρ(θ + π)] (32)

It may be interesting to see whether this may be approached with techniques
for delay equations.
As found in [9] for D and F constant, there turns out to be a critical value
β0 for β such that there is an additional (stable) equilibrium for β > β0 apart
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from the (then unstable) trivial equilibrium. This may be recovered from (32)
as well.
We did not survey the literature for (large scale) fish migration models. This
field of research may be looked at in the future in search for continuum models
for fish schooling. It remains to be seen to what extent these models incorporate
the underlying behaviour of individual fish or are mainly phenomenological.
So, summarizing, there is plenty of opportunity for mathematical research con-
cerning Eulerian models for fish schooling. These may turn out to be very useful
in fish migration studies.
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