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Abstract

Planetary nebulae (PN) often have weird shapes, due to an inhomogeneous
interstellar medium. We investigated the propagation of the shock wave
that forms a PN. The form of the shock wave depends on the initial density
distribution. The equation that describes the shock propagation is a first
order non-linear partial differential equation. We found a analytic solution
for the equation after a certain assumptions for some basic functions and
made estimations for more complex density functions. We also made a model
that used toroidal coordinates and one in three dimensions. The toroidal
model resembles the Red Rectangle nebula.

We also inverted the two-dimensional equation with some assumptions
to derive the initial density function from a known shock wave. We used a
numerical model to compute the density profile for eleven known planetary
nebula. This leads to a qualitative classification into the ellipsoidal, disk
and and irregular nebula. Inserting some test shock waves into this equa-
tion shows the existence of a extraordinary clover like shape in the density
function.
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Chapter 1

Introduction

1.1 Astrophysical background

The astrophysical background which is described shortly here can be found
extensively in for example [Carroll & Ostlie, 1995].

When a star burns hydrogen into helium during its stay on the main
sequence of the Hertzsprung-Russell diagram it is in thermo- and hydro-
dynamic equilibrium. The Hertzsprung Russell diagram, figure (1.1) plots
the surface temperature (and thereby their color) against their luminosity.
The pressure generated by nuclear fusion in the interior is opposed by the
gravitational pressure. This equilibrium means that when the nuclear fu-
sion rate rises, more energy or outward pressure is generated and the star
will expand, causing a drop in the temperature and an immediate decrease
in the fusion rate, which will in turn make sure that the star gets a little
smaller. However, when the hydrogen is exhausted in a low mass star, the
star will contract until it reaches a temperature high enough to burn helium
into carbon. The stellar core will contract further and form a white dwarf
after all the helium in the central core is exhausted.

What happens to the core is a very interesting research topic, which
however we will not be discussing any further here. We are concerned with
what exactly happens to the stellar atmosphere.

During its helium burning phase the star produces a lot more energy
than during the hydrogen burning phase, mostly in form of shock waves.
These shock waves start at the core, where the helium fusion takes place.
Then they travel through the star and blow off the stellar atmosphere. After
that, the shock waves travel through the interstellar space surrounding the
star. It is the propagation of these shock waves we are interested in. The
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1 Introduction 1.2. Mathematical background

Figure 1.1: Left: The Hertzsprung Russell diagram. In this diagram all stars are

assigned a place according to their luminosity and their surface temperature. The

main sequence is the broad diagonal band from the top left to the bottom right of

the diagram. Planetary nebula are found around white dwarfs (at the bottom of the

diagram) and are formed from low massive stars on the bottom right of the main

sequence. Right: Hourglass Nebula, picture taken by the hubble space telescope.

nebula created by these waves are called planetary nebula and they make
the nicest astronomical pictures that are available. Look at figure (1.1) for
an example.

Basically one would expect these spherically symmetric shock waves to
form a spherically symmetric increasing bubble surrounding the star. How-
ever, in most cases, observations show that these shock waves create el-
lipsöıds or even hour glasses as nebula. This is most probably caused by an
inhomogeneity in the density of the pressure of the interstellar gas where
the shock waves travel through.

1.2 Mathematical background

The equation that describes the shape of the shock wave is a nonlinear first
order partial differential equation. We are going to derive that equation from
the physical situation. This equation cannot be solved generally. Only in
some cases it can be integrated by separation of variables. After that we need
a boundary condition to get rid of the integration constant. Unfortunately
we found it very hard to do it analytically for solutions other then the
exponential one already found by [Kompaneets, 1960]. We will explain why
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1 Introduction 1.3. Short overview

it is that hard to find the solution by direct computation.
However, with the theory of envelopes it is possible to construct an

envelope of partial solutions, which we will call partial waves, which give us
when added up the physical relevant solution (namely the shape of the shock
wave). Every partial wave is by itself a solution of our partial differential
equation. With this theory it is possible to give solutions to a much broader
set of functions.

1.3 Short overview

We will shortly explain the basic theory of shock waves in section 2 and
review the results obtained in earlier work on this subject by [Icke, 1988]
and [Kompaneets, 1960] in section 3. After that we will construct different
envelopes of partial waves in section 4 to determine the shape of the envelope
from a given A. This A is the ratio of the pressure of the shock wave to the
density of the material outside the shock wave. Then we will show why we
did not succeed in direct computation of the complete integral in most cases
as Kompaneets did. In section 5 we will try to determine A - or the initial
density - when the shock shape is known. First analytically and after that
we will determine it numerically for a few nebula. The backgrounds on the
theory of envelopes can be found in the first appendix.
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Chapter 2

Basic Theory of Shock Waves

In this section, we will elaborate the physics behind the equation that de-
scribes the propagation of shock waves. The differential equation itself will
be derived in the 2 and 3 dimensional case.

2.1 The equation of motion

Physically, the propagation of the shock wave is determined by the so-called
’jump conditions’. These conditions are relationships between the pressure,
energy, density and motion of the gas ahead of and behind the shock wave.
They are based upon the conservation laws.

We define ~D as the velocity vector of the propagation of the shock wave.
The surrounding gas has initial velocity ~u. The velocity of the shock wave
relative to the gas velocity is thus ~D − ~u. Now the jump conditions only
depend on the gas flow through the shock, which is the flow perpendicular
on the shock wave. The inward flow of gas into the shock wave is thus
defined by

u0 = D − un (2.1)

where un is the component of ~u perpendicular on the shock wave. We define
u1 as the flow outward, thus behind, the shock wave. The conservation laws
are:
Conservation of mass:

ρ1u1 = ρ0u0. (2.2)

Conservation of momentum:

p1 + ρ1u1
2 = p0 + ρ0u0

2. (2.3)
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2 Basic Theory of Shock Waves 2.1. The equation of motion

Conservation of energy:

ε1 +
p1

ρ1
+
u1

2

2
= ε0 +

p0

ρ0
+
u0

2

2
. (2.4)

Here ρ is the density, p is the pressure, ε is the energy per unit mass and the
index 0 indicates the properties before being hit by the shock wave and 1
indicates properties after being hit. See also figure 2.1. Now let us rearrange
(2.3) to:

u0
2 =

p1 − p0 + ρ1u1
2

ρ0
.

And make use of (2.2) and the fact that the pressure in the interstellar gas
outside of the shock wave can be neglected when compared to the pressure
of the gas in the shock wave. In the long term the pressure of the shock
wave of a planetary nebula reduces. So the aforementioned assumption only
applies to early times. That means p1 >> p0 and then u0

2 becomes to
leading order:

u0
2 =

p1 + ρ0
2

ρ1
u0

2

ρ0
=
p1

ρ0
+
ρ0

ρ1
u0

2.

u0
2 =

p1

ρ0

1− ρ0

ρ1

. (2.5)

We now introduce the specific volume Vi = 1
ρi

and rewrite the last equation:

u0
2 =

1

ρ0

p1

ρ0( 1
ρ0
− 1

ρ1
)

= V0
2 p1

V0 − V1
.

The same for u1:

u1
2 = V1

2 p1

V0 − V1
.

Now we substitute both equations in (2.4) and use the equation for the
energy of a gas ε1 = cvT = 1

γ−1p1V1. The equation for the energy of a
gas used here is the one for a perfect or ideal gas with constant specific
heat. This is not a strange assumption, since the densities in interstellar
gas (and shock waves) are very low. See for a more detailed explanation
[Zel’dovich & Raizer, 2002].

1

γ − 1
p1V1 + p1V1 +

1

2
V1

2 p1

V0 − V1
=

1

2
V0

2 p1

V0 − V1

1

γ − 1
p1V1 + p1V1 =

1

2

p1

V0 − V1
(V0

2 − V1
2)
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2 Basic Theory of Shock Waves 2.2. Shock wave geometry in 2 dimensions

1

γ − 1
p1V1 + p1V1 =

1

2
(p1)(V0 + V1)

V1(
1

γ − 1
p1 + p1 −

p1

2
) = V0(

p1

2
)

V1
γ + 1

γ − 1
p1 = V0p1

V1

V0
=

γ − 1

γ + 1
.

Substituting this in (2.5) gives:

u0
2 =

p1

ρ0

1− γ−1
γ+1

=
p1

ρ0

γ + 1

2
≡ K. (2.6)

We can use this result to complete equation (2.1):

D = un +
√
K. (2.7)

This equation describes the physical background of the shock wave.

2.2 Shock wave geometry in 2 dimensions

In 2-dimensional polar coordinates, the shock wave can be described by the
formula r = r(θ). A drawing of this curve can be seen in figure 2.1. In
general, however, a curve is defined by ~r(t) with the curve parameter t.
Because we are interested in a function of the form r(θ), we must choose
θ(t) = t. Now our goal is to define the shock velocity vector ~D in terms of
r(θ).

From figure 2.1 we know that ~D is perpendicular to the tangent vector
of r(θ). An infinitesimal small interval ∆~r on the curve ~r(t) is equal to
∆r r̂+ r∆θ θ̂, where the hat denotes a unit vector. We can make a tangent
vector ~T on the curve:

~T =
∂r

∂t
r̂ + r

∂θ

∂t
θ̂.

Because θ = t is this case, we get

~T =
∂r

∂θ
r̂ + rθ̂.

The vector perpendicular to this tangent is the shock velocity ~D, which can
be written as Drr̂ + Dθθ̂. According to standard linear algebra, the scalar
product of two perpendicular vectors must be zero: ~D · ~T = 0. This yields

∂r

∂θ
Dr + rDθ = 0.
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2 Basic Theory of Shock Waves 2.2. Shock wave geometry in 2 dimensions

λ

~D

θ

r

ε1, ρ1, p1

ε0, ρ0, p0

Shock Wave

Figure 2.1: The shock wave with its parameters r and θ. The shock velocity vector
~D is perpendicular to the tangent of the shock wave. The energy density is denoted

by ε, the pressure by p and the mass density by ρ. The index 0 indicates the gas

ahead of the shock, the index 1 the gas behind the shock wave.
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2 Basic Theory of Shock Waves 2.3. Constructing the PDE

We define λ as the angle between D and r̂ (see figure 2.1). Now by definition
tan λ = Dθ/Dr. This leads to the conclusions that

tan λ = −1

r

∂r

∂θ
. (2.8)

The radial component of the shock velocity vector is now equal to ∂r
∂t :

|D| = ∂r

∂t
cos λ. (2.9)

In the 2-dimensional polar case the velocity of the surrounding cloud per-
pendicular to the shock wave un can be decomposed in a radial and a polar
component.

un = ur cos λ+ uθ sinλ. (2.10)

Here ur and uθ are the radial and polar components of the velocity of the
external cloud.

2.3 Constructing the PDE

To construct the partial differential equation for the shock wave propagation,
we must combine the geometric properties (2.9) and (2.10) and the physical
property of the shock velocity (2.7). We obtain

D =
∂r

∂t
cosλ = ur cos λ+ uθ sinλ+

√
K.

Now we divide by cos λ and make use of 1
cos2 λ

= 1 + tan2 λ and (2.8):

∂r

∂t
= ur − uθ

1

r

∂r

∂θ
+

{
K

[
1 +

(
1

r

∂r

∂θ

)2
]} 1

2

.

When we take K = A to be predescribed and u = ur (a good assumption
when the gas cloud where the shock wave travels through is caused by gas
previously emitted by the central star) this reduces to:

∂r

∂t
= ur +

{
A

[
1 +

(
1

r

∂r

∂θ

)2
]} 1

2

. (2.11)
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2 Basic Theory of Shock Waves 2.4. Generalization for 3 dimensions

2.4 Generalization for 3 dimensions

In 3 dimensions, we are no longer working with a curve describing the shock
front. It is now a surface r(θ, φ), and so we must construct two tangents: one
along θ and one along φ. The interval can now be formulated by (∆r) r̂ +
r(∆θ) θ̂ + r sin(θ)(∆φ) φ̂. The two corresponding tangents are now:

Tθ =
∂r

∂θ
r̂ + rθ̂.

Tφ =
∂r

∂φ
r̂ + r sin θφ̂.

By definition is λ the angle between ~D and the radius vector. This means
that tan2 λ = (Dθ/Dr)

2 + (Dφ/Dr)
2. Because ~D · ~Tθ = ~D · ~Tφ = 0, we can

derive in a similar fashion
Dθ

Dr
= −1

r

∂r

∂θ
.

and
Dφ

Dr
= − 1

r sin θ

∂r

∂φ
.

Which leads to the conclusion that

tan λ =

√(
1

r

∂r

∂θ

)2

+

(
1

r sin θ

∂r

∂φ

)2

. (2.12)

One can compare this equation with the two-dimensional (2.8). When the
cloud into which the shock moves has a velocity, one has to take into account
the component of this velocity perpendicular to the shock. This component
un can be written in spherical coordinates. The angle tanχ = Dθ/Dφ is by

definition the angle between the projection of ~D onto the surface and the φ
unit vector.

un = ur cos λ+ uθ sinλ sinχ+ uφ sinλ cosχ.

Note that in two dimensions, χ is equal to 90 degrees and un becomes

ur cos λ+uθ sinλ like in (2.10). Because sinχ = Dθ/
√
D2
θ +D2

φ, we can use

the earlier equations to derive

sinχ =
Dθ/Dr

tanλ
.

and

cosχ =
Dφ/Dr

tanλ
.
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2 Basic Theory of Shock Waves 2.4. Generalization for 3 dimensions

Combining this with the equation for un, we get

un = ur cos λ− uθ cos λ
1

r

∂r

∂θ
− uφ cosλ

1

r sin θ

∂r

∂φ
. (2.13)

From the theory of gas dynamics we know the jump conditions at the shock
in equation (2.7). The speed of the shock wave front is then given by

D = un +
√

(K).

By definition of λ, we have D = ∂r
∂t cosλ. This yields

∂r

∂t
= ur − uθ

1

r

∂r

∂θ
− uφ

1

r sin θ

∂r

∂φ
+

√
K

cos λ
.

The last term can be rewritten with help from the trigonometric formula
1

cos2 λ = 1 + tan2 λ. So the general spherical formula for wind-driven point-
explosions in an inhomogeneous atmosphere is

∂r

∂t
= ur − uθ

1

r

∂r

∂θ
− uφ

1

r sin θ

∂r

∂φ
+

√√√√K
[
1 +

(
1

r

∂r

∂θ

)2

+

(
1

r sin θ

∂r

∂φ

)2
]
.

(2.14)
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Chapter 3

Known work

Here we will reproduce the achievements made by [Kompaneets, 1960] and
[Icke, 1988]. Both use the 2 dimensional equation (2.11).

∂r

∂t
= ur +

{
A

[
1 +

(
1

r

∂r

∂θ

)2
]} 1

2

.

3.1 Kompaneets (1960)

The Russian scientist Kompaneets derived back in 1960, [Kompaneets, 1960],
the first analytic solution to equation (2.11). He considered the case were
the external velocity is zero, hence u = 0 and he transformed this equation
into Euclidean coordinates (r′, z), as can be seen in figure 3.1. We transform
our (r, θ) coordinates in Kompaneets’ (r ′, z) coordinates by

r =

√
r′2 + z2

and
z = r′ tan θ.

Their derivatives become

∂r

∂t
=
∂r

∂r′
∂r′

∂t
=
r′

r

∂r′

∂t

and
∂r

∂θ
=
∂r

∂r′
∂r′

∂z

∂z

∂θ
=
r′

r
r′(1 + tan2 θ)

∂r′

∂z
=
r′

r

r2

r′
∂r′

∂z
= r

∂r′

∂z
.
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3 Known work 3.1. Kompaneets (1960)

z

r′

Shock Wave

θ

r

Figure 3.1: The Euclidean coordinates (r′, z) that Kompaneets used instead of the

polar (r, θ). These polar coordinates are defined in chapter 2 and can be seen in

figure 2.1.

Use these relations to rewrite equation (2.11).

(
r′

r

∂r′

∂t

)2

= A

[
1 +

(
∂r′

∂z

)2
]
. (3.1)

Suppose that A = γ+1
2

P1
ρ0

1
ρ∗(z)

for some function ρ∗(z). We substitute this

into equation (3.1) and bring all the constants to the left side:

(√
r′2

r2

2ρ0

(γ + 1)P1

∂r′

∂t

)2

=
1

ρ∗(z)

[
1 +

(
∂r′

∂z

)2
]
.

Kompaneets assumed that the ratio of the energy density at the front to
the mean energy density through the volume is constant. This leads to the
conclusion that the factor in front could be put into an auxiliary variable
named y by

y =

∫ t

0
dt

√
r2(γ + 1)P1

2ρ0r′2

so that the final equation becomes equal to equation (5) in [Kompaneets, 1960]:

(
∂r′

∂y

)2

= e
z
z0

[(
∂r′

∂z

)2

+ 1

]
(3.2)
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3 Known work 3.1. Kompaneets (1960)

where we have taken ρ∗(z) = e
− z
z0 - which is similar to the earths atmo-

sphere.
From now on we will write r instead of r ′ to avoid confusion. We use

separation of variables, namely r = H(y) + Z(z). This yields

(
∂H

∂y
)2 = ez/z0 [(

∂Z

∂z
)2 + 1]. (3.3)

Both sides of this equation must be constant, since the left hand side only
depends on y and the right side only depends on z. We call this constant ξ2

for later convenience. Solving (3.3) gives us

∂H

∂y
= ξ ⇒ H = ξy

ez/z0 [(
∂Z

∂z
)2 + 1] = ξ2 ⇒ Z =

∫ z

0
dz′
√
ξ2e−z′/z0 − 1.

This solution for r also depends on a function F (ξ). The solution for a
specific ξ is called a partial wave:

r = ξy + F (ξ) +

∫ z

0
dz′
√
ξ2e
− z′
z0 − 1 (3.4)

It turns out that the ’physical’ solution - the relevant solution - is obtained
by constructing an ’envelope’ around the partial waves. In figure 3.2 one
can see the geometric interpretation of the envelope and the mathematical
background is stated in appendix A. According to this theory, we must solve
∂r
∂ξ = 0.

First we look at the partial wave at z = 0. Then r = ξy + F (ξ). Our
initial condition for small t (and thus for small y) is that the shock wave is
also very small. That is, r tends to zero. Because y also tends to zero, we
must have F (ξ) = 0 for all ξ. Since F (ξ) doesn’t depend on y or z either,
it must remain zero. We start to derive the solution by differentiating with
respect to ξ:

∂r

∂ξ
= y +

∫ z

0
dz′

ξe−z
′/z0

√
ξ2e−z′/z0 − 1

= 0. (3.5)

First, we eliminate ξ from equations (3.4) and (3.5) and solve for r:

y = −
∫ z

0
dz′

ξe−z
′/z0

√
ξ2e−z′/z0 − 1

.
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3 Known work 3.1. Kompaneets (1960)

We introduce ω = ξ2e
− z′
z0 −1, so then z′ = −z0 ln(ω+1

ξ2 ) and dz′ = −z0
1

ω+1dω
and the integral becomes:

y = −
∫ ξ2e

− z
z0 −1

ξ2−1
dω(−z0

1

ω + 1
)

1√
ω

ω + 1

ξ
=

∫ ξ2e
− z
z0 −1

ξ2−1
dω
z0

ξ

1√
ω
.

This gives us an integral we can compute and solve for ξ:

y =
z0

ξ
(−2)

[√
ω
]ξ2e

− z
z0 −1

ξ2−1 = −2z0

ξ

(√
ξ2e
− z
z0 − 1−

√
ξ2 − 1

)
.

Call x = y
2z0

and solve for ξ2:

√
ξ2e
− z
z0 − 1−

√
ξ2 − 1 = −ξx

ξ2e
− z
z0 − 1 + ξ2 − 1− 2

√
(ξ2e

− z
z0 − 1)(ξ2 − 1) = ξ2x2

ξ2
(
1− x2 + e

− z
z0

)
− 2 = 2

√
(ξ2e

− z
z0 − 1)(ξ2 − 1)

ξ4
(
1− x2 + e

− z
z0

)2
+ 4− 4ξ2

(
1− x2 + e

− z
z0

)
= 4(ξ2e

− z
z0 − 1)(ξ2 − 1)

ξ4
(
1− x2 + e

− z
z0

)2
+ 4− 4ξ2 + 4ξ2x2 − 4e

− z
z0 = 4ξ4e

− z
z0 − 4ξ2e

− z
z0 − 4ξ2 + 4

ξ4
(
1− x2 + e

− z
z0

)2
+ 4ξ2x2 − 4ξ4e

− z
z0 = 0

ξ2
(
ξ2
(
1− x2 + e

− z
z0

)2
+ 4x2 − 4ξ2e

− z
z0

)
= 0.

The solution ξ2 = 0 is not a relevant solution, because it causes the partial
waves to be imaginary. So we should take a look at the other solution:

ξ2
(
1− x2 + e

− z
z0

)2
+ 4x2 − 4ξ2e

− z
z0 = 0

ξ2
((

1− x2 + e
− z
z0

)2
− 4e

− z
z0

)
= −4x2

ξ2 =
4x2

4e
− z
z0 −

(
1− x2 + e

− z
z0

)2

ξ2 =
x2

e
− z
z0 − 1

4

(
1− x2 + e

− z
z0

)2 .

After substituting this ξ2 into the partial wave (3.4) we can determine

16



3 Known work 3.1. Kompaneets (1960)

∫ z
0 dz

′
√
ξ2e
− z′
z0 − 1:

∫ z

0
dz′
√
ξ2e
− z′
z0 − 1 =

∫ z

0
dz′




x2e
− z′
z0

e
− z′
z0 − 1

4

(
1− x2 + e

− z′
z0

)2 − 1




1
2

=

∫ z

0
dz′




x2

1− 1
4e

z′
z0

(
1− x2 + e

− z′
z0

)2 − 1




1
2

=

∫ z

0
dz′




x2 − 1 + 1
4e

z′
z0

(
1− x2 + e

− z′
z0

)2

1− 1
4e

z′
z0

(
1− x2 + e

− z′
z0

)2




1
2

.

As ∂ arccos(η)
∂z′ = − 1√

1−η2

∂η
∂z′ with η = 1

2e
z′

2z0

(
1− x2 + e

− z′
z0

)
, this turns out

to be equal to

∫ z

0
dz′
√
ξ2e
− z′
z0 − 1 = 2z0

[
arccos

(
1

2
e
z′

2z0

(
1− x2 + e

− z′
z0

))]z

0
. (3.6)

The physical solution r becomes:

r = G(y) + 2z0 arccos

(
1

2
e

z
2z0

(
1− x2 + e

− z
z0

))
(3.7)

where x = y
2z0

and G(y) is a function that only depends on y. We can use
the boundary conditions to obtain G(y). Initially, the shock wave must be
spherical, so for small y r should be proportional to

√
a2 − z2. We know

that arccos(η) ≈ √1− η when η → 1. When y is small, so is x, therefore

setting 1
2x

2e
z

2z0 = δ with δ > 0 but small in (3.7) yields:

r −G(y) = 2z0 arccos(
1

2
e

z
2z0

(
1 + e

− z
z0

)
− δ)

Making a Taylor expansion of 1
2e

z
2z0

(
1 + e

− z
z0

)
gives us:

r −G(y) = 2z0 arccos

(
1 +

z2

8
+O(z4)− δ

)
.
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Figure 3.2: The construction of the envelope for the Kompaneets case. We see the

final solution as an ellipse with various partial waves surrounding it.

We can approximate this with

r −G(y) =
z0√

2

√
8δ − z2

which is a spherical function! Hence G(y) must be zero in order to make r
spherical. To conclude, we have the final function for r(z, t) which is equal
to equation (9) of [Kompaneets, 1960]:

r = 2z0 arccos

(
1

2
e

z
2z0

(
1− x2 + e

− z
z0

))
. (3.8)

3.2 Icke (1988)

[Icke, 1988] suggested that ρ = (r0/r)
2ρ∗(θ) makes sense as a physical den-

sity distribution. With this density distributionA becomesA = γ+1
2

P1
ρ∗

(
r
r0

)2
=

A∗
(
r
r0

)2
. We substitute x = log( rr0 ) into (2.11), which means r = r0e

x and
∂r
∂x = r0e

x. This yields

r0
∂x

∂t
= ure

−x +

{
A∗

[
1 +

(
∂x

∂θ

)2
]} 1

2

. (3.9)

In section 2.2 of [Icke, 1988] it is argued that the contribution of the distri-
bution to the external velocity field can be neglected due the exponential

18



3 Known work 3.2. Icke (1988)

decrease e−x. This exponential factor e−x causes the size of the cloud to
change, not the shape. We are only interested in the shape, so it is safe to
assume ur = 0. With this assumption (3.9) becomes:

∂x

∂τ
=

{
A(θ)

[
1 +

(
∂x

∂θ

)2
]} 1

2

. (3.10)

with τ = tr0

(
γ+1

2
P1
ρ∗

)− 1
2 and A(θ) a normalized dimensionless function of

the latitude θ. Using separation of variables and integrating yields:

∂x

∂τ
= E =⇒ x = Eτ + f(θ,E)

{
A(θ)

[
1 +

(
∂f(θ,E)

∂θ

)2
]} 1

2

= E =⇒ f(θ,E) = ± ∫ dθ
√

E2

A(θ) − 1 + f(E).

Evaluation at x = 0 shows that the minus sign is the physical relevant one,
so we drop the ± and use the −. Note the difference with Kompaneets’
separation of variables. He suggested r = H(t) + Z(z), Icke suggested x =
Eτ + f(θ,E) which effectively means r = r0e

Eτef(θ,E). So x is:

x = Eτ −
∫
dθ

√
E2

A(θ)
− 1 + f(E). (3.11)

The complete integral - the part that we still have to solve - T (E, θ) is
defined as

T (E, θ) =

∫
dθ

√
E2

A(θ)
− 1. (3.12)

As a boundary condition, we suppose that the shock wave starts at τ = 0
as a sphere with radius r = r0, hence x(0) = 0. As f(E) is independent of
time τ and latitude θ it must be the zero function. This gives us as function
of the radius r:

r = r0e
x = r0e

Eτe
−
∫
dθ

√
E2

A(θ)
−1
. (3.13)

This function gives a set of solutions for every E. A solution for a constant
E is called a partial wave. The physical interesting solution is the envelope
constructed by solving ∂T/∂E = 0. This is the envelope containing the
partial waves. In most cases, this cannot be done analytically and must
therefore be calculated numerically. Icke suggested the following form for
the acceleration parameter A:

A(θ) ≡ δ + (1− δ)e−
θ2

σ2 (3.14)
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Figure 3.3: Solution of the shock propagation for dimensionless times t = 0.5, 1, 2

and 3. Left: σ = 10◦ and δ = 0.5. Right: σ = 40◦ and δ = 0.5. This figure is equal

to figure 7 from [Icke, 1988].

with 0 ≤ δ ≤ 1. In figure 3.4 one can see for τ = 0 the different values for
the complete integral T . At later times, the complete integral ought to be
shifted an amount Eτ , as can be seen in the equation for x. In the right
picture of 3.4 we have this ’shifted’ complete integral for τ = 2. We see that
several partial waves construct one outer boundary, the envelope. This is
the physical solution of the equation. Figure 3.3 shows the final solution of
the propagation of the shock wave for two different cases.
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Figure 3.4: The function x for σ = 40◦ and δ = 0.5 and several E. Left: t = 0,

Right: t = 2. These figures are equal to figure 4 and 5 resp. from [Icke, 1988].
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Chapter 4

Given A, what is r?

In Chapter 2, we derived an equation that describes the propagation of the
shock wave, given an initial density profile. The density ”enters” the equa-
tion in the form of A, which is the reciprocal of the density. As [Icke, 1988]
showed, we can neglect the external velocity of the gas, u. When we take
this into account, the equation becomes

∂r

∂t
=

√√√√A
[
1 +

(
1

r

∂r

∂θ

)2
]
. (4.1)

In this chapter, we will solve this equation for various typical A = γ+1
2

P1
ρ0

.

4.1 Constant A

As always, we will start with the simplest case. We consider equation (4.1)
for constant A. We can square the equation to obtain

(
∂r

∂t

)2

= A+A

(
1

r

∂r

∂θ

)2

. (4.2)

We can apply separation of variables with r = H(t)f(θ).

(
dH

dt

)2

=
A

f2

[
1 +

(
df/dθ

f

)2
]
≡ E2

The left hand side only depends on t and the right hand side only on θ, so
they must be equal to a constant. The ordinary differential equations for H
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4 Given A, what is r? 4.1. Constant A

and f become

dH

dt
= E

df

dθ
= f

√
f2E2/A− 1.

The solution for the time-dependent part is simply H(t) = Et + ct (ct is
the integration constant). At the end of our computation, we will fit these
integration constants with our initial values. The equation for the angle-
dependent part is more difficult. We can integrate the equation in a standard
way: ∫

dθ =

∫
df

1

f
√
f2E2/A− 1

This is a standard integral. When we evaluate it, we’ll put all the integration
constants together in the constant φ.

θ − φ = − arctan

(
1√

f2E2/A− 1

)

By simple algebra, we can rewrite this to obtain f :

1

tan2(φ− θ) = f2E2/A− 1

A

sin2(φ− θ) = f2E2.

f(θ) = ±
√
A

E| sin(θ − φ)| . (4.3)

We now have a set of solutions r(t, θ, φ,E, ct) that looks like

r = ±
[
t+

ct
E

] √
A

| sin(θ − φ)| . (4.4)

Since there is no preferred direction for our physical system, we have to
eliminate φ. We can do by constructing the envelope around this family of
solutions. We can find an expression for φ by differentiating r with respect
to φ and set this equal to zero. (Note: The mathematical background for
this technique is written down in appendix A). We will only consider the
region 0 ≤ θ − φ ≤ π, since f is periodic with this period.

0 =
∂r

∂φ
= ±A1/2

[
t+

ct
E

]
cos(φ− θ)
sin2(φ− θ)

0 = cos(φ− θ)
φ = θ ± π

2
.
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4 Given A, what is r? 4.2. A proportional to r2

Inserting this solution for φ results is

r(t) = ±
[
A1/2t+

A1/2ct
E

]
. (4.5)

Now we want the solution for an expanding shock wave, hence we choose
the plus. At time t = 0, we define r = r0 so that A1/2ct/E = r0. Our final
solution is

r(t) =
√
At+ r0. (4.6)

This is something we would physically expect: Constant density leads to
constant motion of the shock wave.

4.2 A proportional to r2

Most spherically symmetric distributions of mass have a 1/r2 density func-
tion. It is therefore logical to study a solution for (4.1) with A = A2

0r
2. In

this case we can again use the separation of variables r = H(t)f(θ). The
general equation (4.1) now becomes

A−2
0 f2

(
dH

dt

)
2 = f2H2 +H2

(
df

dθ

)2

[
dH/dt

A0H

]2

= 1 +

[
df/dθ

f

]2

= E2. (4.7)

(Note that we have used the same technique as in the previous section).
Both the time and the angle equations are simple first order linear equations.
That gives us the following solution, with c the integration constant,

r(θ, t, E) = eEA0t+θ
√
E2−1+c. (4.8)

At t = 0, we want the wave to be spherically symmetric. Hence eθ
√
E2−1

cannot depend on θ, so E must be 1. As before, we define r(t = 0) = r0 so
that ec = r0. Our final solution becomes

r(θ, t) = r0e
A0t. (4.9)

4.3 Solutions for A ∝ r2A(θ)

In our last section, we solved the equation for A ∝ r2A(θ). There we
obtained a solution where r was an exponential. It turns out to be very
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4 Given A, what is r? 4.3. Solutions for A ∝ r2A(θ)

useful to make a substitution to the logarithm of r:

x = log
r

r0
. (4.10)

Suppose A = A(θ)r2. Then equation (4.1) can be rewritten in a very beau-
tiful form, using ∂r/∂θ = r∂x/∂θ and ∂r/∂t = r∂x/∂t.

(
∂x

∂t

)2

= A(θ)

[
1 +

(
∂x

∂θ

)2

≡ E2.

]
(4.11)

We immediately see that the left hand side only depends on t and the right
hand side only depends on θ. This suggests separation of variables similar
to the one in the last section:

x(t, θ, E) = Et±
∫ √

E2/A(θ)− 1dθ + g(E) (4.12)

Here is E our extra variable, and g(E) is the integration constant, that may
depend on E. [Icke, 1988] had pointed out that we have to take the minus
sign before the integral and g = 0. All these so-called partial waves

x(t, θ, E) = Et−
∫ √

E2/A(θ)− 1dθ (4.13)

are solutions to our equation (4.11). However, as is proved in appendix A,
we can also construct the envelope around this family of partial waves. The
envelope appears to be the physical solution. To obtain it, we must solve

0 =
∂x

∂E
= t+

∫
E/A(θ)dθ√
E2/A(θ)− 1

(4.14)

in order to eliminate E.
The remainder of this section will be devoted to constructing an envelope

for various density profiles A(θ). We will start with the simplest forms,
namely the linear and quadratic density. Finally we will make some remarks
on possible density profiles from observations.

4.3.1 Linear density

With ’linear density’ we mean that ρ ∝ θ
σ + 1. In other words, we define

A = 1/( θσ + 1). Insert this A into equation (4.13):

x = Et−
∫
dθ

√

E2(
θ

σ
+ 1)− 1. (4.15)
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4 Given A, what is r? 4.3. Solutions for A ∝ r2A(θ)

It appears that the integrand can be imaginary when θ
σ < E−2 − 1. This

makes physically no sense, so therefore we will only integrate over the real
part of the integrand.

In general, the indefinite integral of
√
ax+ b is equal to 2

3a(ax + b)3/2.
As pointed out in the last subparagraph, it’s value at the lower limit of
integration must be zero. Hence

x = Et− 2σ

3E2

[
E2
(
θ

σ
+ 1

)
− 1

]3/2

. (4.16)

The next step is to eliminate E, as formulated by (4.14). This yields

∂x

∂E
= t− 2(θ + σ)

[
θ

σ
+ 1− 1

E2

]1/2

+
4σ

3

[
θ

σ
+ 1− 1

E2

]3/2

= 0. (4.17)

We simplified this equation by substituting ζ = 1
E2 and φ = θ

σ + 1. Our
expression simplifies:

t

σ
= 2φ(φ − ζ)1/2 − 4

3
(φ− ζ)3/2

This is a cubic expression that can be solved directly for ζ. When solved we
obtain 3 solutions: 2 complex and 1 real. We use the real solution, which is:

ζ = φ−




3

√(
81t+ 3

√
−24φ3σ2 + 729t2

)
σ2

6σ
+

φσ

3

√(
81t+ 3

√
−24φ3σ2 + 729t2

)
σ2




2

Substituting this back into (4.16) yields and expression that can be plotted.
This plotting of the shock wave form r = r0e

x(θ,t) for some times t for the
angle θ with σ = r0 = 1 has been done in figure 4.1.
Our exact solution contains two cubic roots, so the question whether this
solution is always real comes naturally to mind. And actually it is, be-
cause according to a consequence of the intermediate value theorem, a cubic
expression with only real coëfficients has either one real and two complex
conjugate solutions, or three real solutions. This is determined by its dis-
criminant. That discriminant is:

∆ = 4α3
1α3 − α2

1α
2
2 + 4α0α

3
2 − 18α0α1α2α3 + 27α2

0α
2
3

for
α3x

3 + α2x
2 + α1x+ α0 = 0
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Figure 4.1: Shock wave for a linear density at dimensionless times t =

0, 0.2, 0.4, 0.6 and 0.8. The angle θ is dimensionless with σ = 1.

When we plot this discriminant for σ = 1 and φ = θ
σ + 1 we obtain 4.2. As

can be seen clearly, in the range θ = 0 to 0.5 the value of the discriminant is
always greater then zero. For θ > 0.5 the discriminant increases even faster
and is also bigger then zero. For ∆ > 0 there is one real solution and two
complex conjugated ones. Our solution is the real one, the other two are
each others complex conjugates.
If we evaluate the solution, it turns out that by choosing the right complex
cubic root, the two complex parts cancel. We will demonstrate that in the
case t = 0. That however does not lead to much understanding of the
meaning of our solution. Hence let’s look at the solution for ζ for t = 0 and
σ = 1 with φ = θ

σ + 1 substituted back. Remember, σ is a constant and can
therefor be chosen arbitrarily. The last equation yields in this case:

ζ = θ + 1−
[

31/3
(−24(θ + 1)3

)1/6

6
+

(θ + 1)31/3

3 (−24(θ + 1)3)1/6

]2

ζ = θ + 1−
[

32/3(−24)1/3(θ + 1)

36
+

(θ + 1)232/3

9(−24)1/3(θ + 1)
+ 2

3
(−24(θ + 1)3

)1/6
(θ + 1)

18 (−24(θ + 1)3)1/6

]

ζ = θ + 1− (θ + 1)

[
1

12
(−8)1/3 +

1

3

1

(−8)1/3
+

1

3

]

ζ = (θ + 1)

[
2

3
− 1

12
(1 + i

√
3)− 1

3

1

4
(1− i

√
3)

]

ζ =
1

2
(θ + 1)
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Figure 4.2: Value of the discriminant of the cubic polynomial for θ from 0 to 0.5.

Therefor E at t = 0 can be written as 1√
1
2

(θ+1)
.

For t > 0 we can make an asymptotic expansion, but because we have
the exact solution, we do not need to.

4.3.2 Quadratic density

Our next problem is to derive a solution for a quadratic density profile.
Similar to the linear case, we define the acceleration parameter as A(θ) =

1

( θ
2

σ2 +1)
. Equation (4.13) becomes

x = Et−
∫
dθ

√

E2(
θ2

σ2
+ 1)− 1. (4.18)

We have to solve dx
dE = 0 with E a function of solely t and θ.

Integral limits for x

Our first step is to write x explicitly in terms of E, t, θ and σ, that is without
the integral sign. In order to eliminate the integral, we must define suitable
integral limits. As mentioned earlier (see paragraph 3.1 and appendix A)
we may consider E as a constant for each individual partial wave. Only for
the final envelope, E will be a function of t and θ.
When we consider the integral part of (4.18), it turns out it is useful to make
the substitution

ϑ =
Eθ

σ
.
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We obtain then dθ = σ
Edϑ and the integral transforms as follows

− σ
E

∫
dϑ
√
ϑ2 − (1−E2).

In general this integral will run from ϑ0 to ϑ. We can distinguish two cases,
noting that E2 ≥ 0:

• E2 ≥ 1: here the integrand is always real

• E2 < 1: here the integrand is imaginary for ϑ2 < 1 − E2. This
imaginary term of x will not affect the magnitude of the shock wave
r = ex. We can therefore ignore all imaginary contributions to x
and start our integration at ϑ0 = +

√
1−E2. Note that we need the

positive root, since the part where −
√

1−E2 < ϑ < +
√

1−E2 only
contributes to the imaginary part of x.

So we can define ϑ0 to be +
√

1−E2. A quick look at a table of standard
integrals yields

∫
dy
√
y2 − a =

y

2

√
y2 − a− a

2
log (y +

√
y2 − a). (4.19)

Substituting y = ϑ and a = 1−E2 leaves us with the final integral:

x = Et− σ

2E

[
ϑ
√
ϑ2 − (1−E2)−

−(1−E2) log (ϑ+
√
ϑ2 − (1−E2))

]ϑ

ϑ0=
√

1−E2

= Et− σ

2E

[
ϑ
√
ϑ2 − (1−E2)− (1−E2) log (ϑ+

√
ϑ2 − (1−E2))+

+
1−E2

2
log 1−E2

]
(4.20)

Where we have used log
√

1−E2 = 1
2 log 1−E2. Finally, we will express x

exactly in terms of E, t, θ and σ.

x = Et− θ

2

√

E2(
θ2

σ2
+ 1)− 1 +

+
σ(1−E2)

2E
log


E
σ
θ +

√

E2(
θ2

σ2
+ 1)− 1


−

−σ(1−E2)

4E
log

(
1−E2

)
(4.21)
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Differentiating x

Constructing the envelope means solving dx
dE = 0. So we must differenti-

ate (4.21) with respect to E. Using the following derivatives, deriving this
expression becomes easier:

d

dE

(
1

E
(1−E2)

)
=

d

dE

(
E−1 −E

)
= −

(
E−2 + 1

)

d

dE

√

E2(
θ2

σ2
+ 1)− 1 =

E
(
θ2

σ2 + 1
)

√
E2( θ

2

σ2 + 1)− 1

Now the derivative becomes:

dx

dE
= t−

θ
(
θ2

σ2 + 1
)

2
√
E2( θ

2

σ2 + 1)− 1
+

+
σ(1−E2)

2E

θ
σ +

E

(
θ2

σ2 +1

)

√
E2( θ

2

σ2 +1)−1

Eθ
σ +

√
E2( θ

2

σ2 + 1)− 1
−

−σ
2

(
1

E2
+ 1

)
log


Eθ
σ

+

√

E2(
θ2

σ2
+ 1)− 1


+

+
σ

4

(
1

E2
+ 1

)
log(1−E2) +

σ

2

dx

dE
= t−

θ
(
θ2

σ2 + 1
)

2
√
E2( θ

2

σ2 + 1)− 1
+

+
σ

2

(
E2 + 1

E2

)
log

√
1−E2

(
Eθ
σ +

√
E2( θ

2

σ2 + 1)− 1

) +

+
σ

2

(
E2 + 1

E2

) Eθ
σ +

E2

(
θ2

σ2 +1

)

√
E2( θ

2

σ2 +1)−1

Eθ
σ +

√
E2( θ

2

σ2 + 1)− 1
+
σ

2
(4.22)

The fourth term in (4.22) can be rewritten as:

+
σ

2

(
1−E2

E2

) Eθ
σ

√
E2( θ

2

σ2 + 1)− 1 +E2
(
θ2

σ2 + 1
)

Eθ
σ

√
E2( θ

2

σ2 + 1)− 1 +E2
(
θ2

σ2 + 1
)
− 1

(4.23)
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This solution seems quite messy, but we can simplify this expression if we
introduce, similar to the linear case:

ζ =
1

E2
(4.24)

φ =
θ2

σ2
+ 1 (4.25)

so θ = σ
√
φ− 1. (4.26)

Hence we can rewrite (4.22) to obtain:

dx

dE
= t− σ

2
φ

√
φ− 1

φ− ζ +
σ

2
(ζ + 1) log

( √
ζ − 1√

φ− 1 +
√
φ− ζ

)
+

+
σ

2
(ζ − 1)

√
φ− 1

√
φ− ζ + φ√

φ− 1
√
φ− ζ + φ− ζ +

σ

2
. (4.27)

To simplify this matter we will combine the last two terms

σ
2

[
(ζ−1)(

√
φ−1
√
φ−ζ+φ)+

√
φ−1
√
φ−ζ+φ−ζ√

φ−1
√
φ−ζ+φ−ζ

]

= σ
2

[
ζ
√
φ−1
√
φ−ζ+φζ−ζ√

φ−1
√
φ−ζ+φ−ζ

]

= σ
2 ζ

[√
φ−1
√
φ−ζ+φ−1√

φ−1
√
φ−ζ+φ−ζ

]

= σ
2 ζ

1+

√
φ−1
φ−ζ

1+

√
φ−ζ
φ−1

. (4.28)

Finally, we can combine this result with the second term of (4.27) to obtain

σ
2



ζ

(
1+

√
φ−1
φ−ζ

)

1+

√
φ−ζ
φ−1

− φ
√

φ−1
φ−ζ




= σ
2



ζ

(
1+

√
φ−1
φ−ζ

)
−φ
√

φ−1
φ−ζ

(
1+

√
φ−ζ
φ−1

)

1+

√
φ−ζ
φ−1




= −σ
2 (φ− ζ)

1+

√
φ−1
φ−ζ

1+

√
φ−ζ
φ−1

= −σ
2

√
(φ− 1)(φ − ζ). (4.29)
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Figure 4.3: The derivative ∂x
∂E as a function of E at time t = 0. The various lines

are, starting from the lowest, made for θ
σ = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and 0.

Now rewriting (4.27) with help of the above simplifications yields

dx

dE
= t− σ

2

√
(φ− 1)(φ− ζ) +

σ

2
(ζ + 1) log

( √
ζ − 1√

φ− 1 +
√
φ− ζ

)
. (4.30)

Figure 4.3 plots dx
dE as a function of E for various values of θ at t = 0.

Properties of x′ = dx/dE, solution for t = 0

Before solving equation (4.22) explicitly, we will take a closer look upon the
properties of (4.30): limits, domain and range. It is convenient to use the
physical notation x′ ≡ dx

dE from now on. At first sight, we immediately see
asymptotic behavior at E = 1. If E = 1, ζ = 1 and the logarithmic term
in (4.30) goes to log(0) = −∞. Together with the lower boundary of ϑ0, we
obtain a domain of x′ in terms of E:

1√
θ2

σ2 + 1
≤ E < 1 (4.31)

We continue summarizing the properties of (4.30) and it’s limit points:

• x′ is real whenever 1√
θ2

σ2 +1

≤ E < 1 or equivalently 1 < ζ ≤ φ.

• In the region φ > ζ, the second and third term of (4.30) are negative,
so (x′ − t) < 0.
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4 Given A, what is r? 4.3. Solutions for A ∝ r2A(θ)

• Limit ζ = 1: The logarithmic term will be

σ log
0

2
√
φ− 1

.

So as long as φ 6= 1, and thus φ 6= ζ, this term leads to −∞. We may
therefor conclude

lim
ζ→1

(x′ − t) = −∞ given φ 6= 1

• Limit ζ = φ: Now the logarithmic term will be (given that φ 6= 1)

σ

2
(φ+ 1) log

√
φ− 1√
φ− 1

= 0

and the second term will be:

−σ
2

√
(φ− 1)(φ− ζ) = 0.

So we find:
x′(ζ = φ)− t = 0 (4.32)

• Limit ζ = φ = 1: We will approach this limit in 2 ways:

– First by taking φ = 1 and then taking ζ = 1: If we do that the
second term vanishes when φ = 1. Now the logarithmic term
becomes:

σ

4
(ζ + 1) log

ζ − 1

1− ζ =
σ

4
(ζ + 1) log(−1) =

σ

2
πi

So
lim

ζ→1,φ→1
x′ − t =

σ

2
πi

– Secondly by taking ζ = φ and then taking φ = 1: If we first set
ζ = φ we get the result from (4.32). Setting φ = 1 after that
won’t change this result.

We must conclude that this limit is undefined.

With just investigating the behavior of x′ = dx
dE we found that for t = 0 the

solution of x′ = 0 is, given the condition E < 1,

E = Ei ≡
1√

θ2

σ2 + 1
(4.33)

We have now formulated a value of E for the envelope at t = 0. Our next
step is to calculate E at later times.
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Later times t > 0, first order

We were not able to derive a exact solution due to the complexity of dx
dE .

Therefore we will try to find approximations to the solution at t > 0. In
this paragraph we will investigate a possible first order approximation. Note
that due to the time evolution, x′ gets shifted upwards linearly in t, that is
x′(t) = t+ x′(t = 0). This time-shift causes the solution E(t) to shift a bit
too.

Then we can approximate E(t) by taking the tangent line of x′ at Ei.
This tangent line is governed by

l(Ei) = t, l′(E) = constant =
dx′

dE

∣∣∣∣
E=Ei

and E(t) can be found as the solution of the linear equation

l(E) = 0.

This procedure will only work if two conditions are met:

• d2x
dE2 (Ei) exists

• dx
dE is a monotonically decreasing function between Ei and 1. Suppose
it wouldn’t be monotonically decreasing, then there would be more
than one solution.

Let’s start investigating these two conditions by calculating d2x
dE2 via (4.30).

So we use:
dx′

dE
=

dζ

dE

dx′

dζ
=
−2

E3

dx′

dζ

It turns out to be convenient to introduce new variables a and b

a =
√
φ− ζ

b =
√
φ− 1

⇒
ζ = b2 − a2 + 1

φ = b2 + 1.

Such that:
dx′

dζ
=
dx′

da

da

dζ
=
−1

2a

dx′

da
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Now x′ becomes in terms of a and b:

x′ = t− σ

2
ab+

σ

2
log

(√
b2 + a2

b+ a

)
(b2 − a2 + 2)

= t− σ

2
ab− σ

4
(a2 − (b2 + 2)) [log(b− a)− log(b+ a)]

Finally, we can determine

dx′

da
= 0− σ

2
b− σ

4
2a

[
log

(
b− a
b+ a

)]
− σ

4
(a2 − b2 − 2)

[
− 1

b− a −
1

b+ a

]

= −σ
2
a log

(
b− a
b+ a

)
− σ

2

(b2 − a2 + 2)b

b2 − a2
− σ

2

b(b2 − a2)

b2 − a2

= −σ
2
a log

(
b− a
b+ a

)
− σbb

2 − a2 + 1

b2 − a2

Now just substituting ζ back in will suffice to find d
dζ

dx
dE

dx′

dζ
=

σ

4
log

(
b− a
b+ a

)
+
σb

2a

(
b2 − a2 + 1

b2 − a2

)

=
σ

4
log

(√
φ− 1−√φ− ζ√
φ− 1 +

√
φ− ζ

)
+
σ

2

√
φ− 1

φ− ζ
ζ

ζ − 1

and to finally find x′′ ≡ d2x
dE2

x′′ =
−σ
2E3

log




θ
σ −E−1

√
E2
(
θ2

σ2 + 1
)
− 1

θ
σ +E−1

√
E2
(
θ2

σ2 + 1
)
− 1


+

+
−σ
E3

E θ
σ√

E2
(
θ2

σ2 + 1
)
− 1

1

1−E2

x′′ = − σ

2E3
log



E θ
σ −

√
E2
(
θ2

σ2 + 1
)
− 1

E θ
σ +

√
E2
(
θ2

σ2 + 1
)
− 1


−

− θ

E2(1−E2)

1√
E2
(
θ2

σ2 + 1
)
− 1

(4.34)

Now we can check the conditions stated above:
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• x′′(Ei) clearly does not exists. The first term tends to zero when E →
Ei, whereas the second term goes to minus infinity. So limE→Ei = −∞.

• The first term is positive, even worse, it goes to plus infinity when E →
1. The second term however is always negative and has asymptotes
at E = Ei and E = 1. So as long as the second term dominates, the
condition x′′ < 0 is met.

We know that x′ → −∞ as E → 1. So close to E = 1 we must find
x′′ < 0. Also x′′ < 0 close to E = Ei, because there x′′ → −∞. So if
there is no E0 such that x′′(E0) = 0, this second derivative must be
negative everywhere.

To show this, reintroduce ζ and φ as introduced in (4.24) and (4.25)
and write down x′′ = 0

2

√
φ− 1

φ− ζ
ζ

ζ − 1
= log




√
φ−1
φ−ζ + 1

√
φ−1
φ−ζ − 1


 (4.35)

To simplify this expression, we use the auxiliary variables

α =

√
φ− 1

φ− ζ (4.36)

β =
ζ

ζ − 1
(4.37)

Now equation (4.35) becomes

2αβ = log
α− 1

α+ 1

We know from (4.31), (4.24) and (4.25) that φ − ζ > 0 (since ζ = φ
is undefined for x′′) and that ζ > 1. Using these relations implies
φ− 1 > φ− ζ > 0 or α > 1 and ζ > ζ − 1 > 0 or β > 1. Using these
as lower boundaries for α and β we continue:

e2αβ =
α+ 1

α− 1

(α− 1)e2αβ = α+ 1

α(e2αβ − 1) = 2.

If we write e2αβ as its power series expansion, we get

α(1 + 2αβ +O(α2β2)− 1) = 2.
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Since α > 1 and β > 1, the left side of this expression is always bigger
than 2. We can conclude that there is no solution for α or β and
therefore for E0 in the desired range. We may therefor conclude that
x′′(E) < 0 for Ei ≤ E < 1.

We may conclude that a first order approximation is impossible.

Second order approximations

Nevertheless, from the fact that x′′(E) < 0 we may conclude that for t > 0
there is only one solution for dx

dE = 0, defined by

E = Ei +O(t2)

since any contribution linear in t is proven to be impossible.
Subsequently we may try looking for a second order solution, namely

E = Ei +
t2

A2
+O(t3) (4.38)

Now we know that in general x′ − t is a function that depends on E, θ and
σ. Say x′ − t = f(E, θ, σ). We may invert this and state:

E = f−1(x′ − t) = Ei +
(x′ − t)2

A2
+O((x′ − t)3).

Which equals (4.38) if x′ = 0 is solved. This yields:

x′ − t ≈ A
√
E −Ei.

Now we have an expression for the constant A:

A = lim
E→Ei

x′ − t√
E −Ei

(4.39)

There are two ways to calculate this A, namely via L’Hôpitals rule or via
Taylor expansion.

Using L’Hôpitals rule

L’Hôpitals rule is stated as follows:
If f(a) = g(a) = 0 and we want to compute

L = lim
x→a

f(x)

g(x)
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then the limit L equals

L = lim
x→a

f ′(x)

g′(x)

Now differentiating (4.39) yields

A = lim
E→Ei

2x′′
√
E −Ei

Using (4.34) for x′′ yields the following equation, as we already computed
that the logarithmic term tends to zero in this limit.

A = lim
E→Ei

−2
√
E −Ei

θ

E2(1−E2)

1√
E2E−2

i − 1

When we now rewrite the fraction inside the square root we get:

√
E −Ei

E2E−2
i − 1

= Ei

√
E −Ei
E2 −E2

i

→ 1

2

√
2E

1/2
i .

Finally improving the notation of

θ

1−E2
i

=
θ

E2
i (E−2

i − 1)
=

σ2

θE2
i

we obtain the following second order approximation for A

A = −
√

2
σ2

θ
E
−7/2
i (4.40)

In figure 4.4 we plotted the approximation defined by (4.40) and (4.38)
against the function x′ itself. It seems a appropriate one.

Taylor expansion

Another method for determining solutions of the form (4.38) is to make a
Taylor expansion of x′ at t = 0. Therefore we insert our assumption for E
into the exact expression for x′. Then we only consider the terms linear in
t.

It is convenient to do this expansion in terms of ζ and φ. We assume

ζ = φ− at2. (4.41)
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Figure 4.4: Second-order approximation (bold line) compared to x′ (thin line), with

parameters θ = 2, σ = 1 and t = 0.

The relation between a in (4.41) and A2 in (4.38) is given by the Taylor
expansion

E = Ei + t2/A2

E2 = E2
i + 2Eit

2/A2 + ..

1

E2
=

1

E2
i

− 2

A2E3
i

t2 + ..

ζ = φ− at2

so a = 2
A2E3

i
and 1

A2 =
E3
i

2 a.

Note that we obtain the following relations when we assume (4.41) and
take a Taylor expansion:

√
φ− ζ = a1/2t (4.42)

√
ζ − 1 =

√
φ− 1− a

2
√
φ− 1

t2 + .. (4.43)

1√
φ− 1 +

√
φ− ζ =

1√
φ− 1

− a1/2

φ− 1
t+ .. (4.44)

√
ζ − 1√

φ− 1 +
√
φ− ζ = 1−

√
a

φ− 1
t+ .. (4.45)

In order to expand the logarithmic term in (4.30) we need

log(1 + αt) = αt+ .. (4.46)
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So now we can expand all terms from x′:

−σ
2

√
(φ− 1)(φ − ζ) = −σ

2

√
φ− 1a1/2t+ .. (4.47)

σ

2
(ζ + 1) log

( √
ζ − 1√

φ− 1 +
√
φ− ζ

)
=

σ

2
(ζ + 1) log

(
1−

√
a

φ− 1
t+ ..

)

= −σ
2

(φ− at2 + 1)(

√
a

φ− 1
t+ ..)

= −σa
1/2(φ+ 1)

2
√
φ− 1

t+ .. (4.48)

(4.49)

Hence we must solve x′ = 0 for the terms linear in t:

0 = 1− σ

2

√
φ− 1a1/2 − σa1/2(φ+ 1)

2
√
φ− 1

. (4.50)

This is done in the following way.

1 =
σ

2

√
a√

φ− 1
(φ− 1 + 1 + φ)

1 = σ

√
aφ√
φ− 1

√
a =

1

σ

√
φ− 1

φ

a =
1

σ2

φ− 1

φ2

Now recall that φ = 1
E2
i

so

φ− 1

φ2
=
E4
i θ

2

σ2

and thus

1

A2
=

E3
i

2
a

=
θ2E7

i

2σ4
(4.51)

We can conclude that this method leads to exact the same solution as by
using L’Hôpital’s rule.
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Figure 4.5: Shock wave fronts for the quadratic density profile, with σ = 1 and

t = 0, 0.5, 1, 1.5, 2, 2.5 and 3. Left: the function x(θ). Right: the polar projection

of r(θ) = ex. The slight discontinuity is due to the approximation of E.

Conclusion

We wanted to solve dx
dE = 0 in order to find E(θ, σ, t). We made, in two

different ways, a second order approximation from the t = 0 solution from
(4.33) of the (4.38) form. The solution (4.40) and (4.51) equals:

E(θ, σ, t) = Ei +
θ2E7

i

2σ4
t2 +O(t3) (4.52)

We have to put this into equation (4.20). However as we argued before
E can never be more than 1. So in the calculations in figure 4.5 we used
min(E, 1) instead of only equation (4.52).

4.3.3 Physical profiles

In chapter 5, we will derive shapes of the parameter A from observations.
In figure 4.6, we have made a χ2-fit of the Hourglass nebula for two possible
functions of ρ = A−1:

ρ(θ) = (1− µ)e−( θ
σ

)
2

+ µ (4.53)

and

ρ(θ) = 1− 2

π
(1− δ) arctan ((

θ

σ
)
2

). (4.54)
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Figure 4.6: χ-square fits for the normalized density function of the Hourglass

nebula with function (4.53) at the left and function (4.54) at the right. Left: µ =

0.3513, σ = 59.16◦ and χ2 = 0.00012. Right: δ = 0.2523, σ = 54.30◦ and χ2 =

0.00018.
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Figure 4.7: Left: A plot of (4.53). Right: A plot of (4.54). Both with µ = .2 and

σ = .6
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We see in this figure that both equations are of great physical interest. They
describe very accurate the quantitative shape of the density profile function.
It would be a major achievement if we obtained analytical solutions for these
functions. Unfortunately, we did not succeed (yet).
How did [Kompaneets, 1960] his computation work? He made use of a

change of variables, but in his case, where ρ(z ′) = e
− z′
z0 , he uses ω =

E2e
− z′
z0 − 1, z′ = −z0 ln ω+1

E2 and dz′ = −z0
1

ω+1dω and only in this spe-

cial case dz′
dω = −z0

1
ω+1 cancels out against ρ(ω) = ω+1

E2 . Then all that

remains to be calculated is
∫ z
0

1√
ω

.

So when you want to calculate the complete integral by direct calculation
like Kompaneets did, this is to our present knowledge only possible when
dθ
dωρ(ω) = P (ω) with ω = E2ρ(θ)− 1 and P (ω)√

ω
an easy integrable function -

like a polynomial or Kompaneets’ function in [Kompaneets, 1960].

4.4 Toroidal Coordinates

There is a strong suggestion that there is initially a high-density torus around
the star present. A star is created when a large cloud contracts and starts
to rotate. Due to the rotation, the cloud becomes more and more disk-like.
When finally the star starts emitting radiation, the gas near the star is blown
away. What remains is a disk with the center taken out: a torus.

To cast this toroidal density into mathematics, we can use toroidal co-
ordinates. The essence of this coordinate system can be seen in figure 4.8.

4.4.1 Transformation to Euclidean coordinates

We can express the toroidal coordinates in terms of (u, v), as defined by
[Moon & Spencer,1961]. We still assume cylindrical symmetry of the plane-
tary nebula, so that we can express our system in the xy-plane. The relation
between Euclidean and Toroidal coordinates is then as follows:

x = α
sinh v

cosh v − cos u
(4.55)

y = α
sinu

cosh v − cos u
(4.56)

where α is the scale of the torus., hence the center of the torus is at x = α.
We want to invert these transformations such that we get the toroidal

coordinates in terms of Euclidean: u = f(x, y) and v = g(x, y). Therefore
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Figure 4.8: Left: Lines of a toroidal coordinate system with α = 1. The concentric

ellipses around x = α denote the lines of constant v, where the y-axis corresponds

with v = 0 and v ∈ [0,∞). The lines perpendicular to these ellipses are the lines

of constant u, where u ∈ [0, 2π). The line from x = α to x = 0 is where u = π.

Right: Plot of the solution (4.63) for α = 0.5, 1, 2.5, 5 and 10.
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we commence with calculating x2 + y2:

x2 + y2 = α2

[
sinh2 v + sin2 u

(cosh v − cos u)2

]
. (4.57)

It appears to simplify a lot when we add α2:

x2 + y2 + α2 = α2

[
sinh2 v + sin2 u

(cosh v − cos u)2
+ 1

]

= α2

[
sinh2 v + sin2 u+ (cosh v − cos u)2

(cosh v − cosu)2

]

= α2

[
sinh2 v + cosh2 v + sin2 u+ cos2 u− 2 cos u cosh v

(cosh v − cos u)2

]

= α2

[
sinh2 v + cosh2 v + 1− 2 cos u cosh v

(cosh v − cos u)2

]
.

It hasn’t simplified yet, but from the relation cosh2 x− sinh2 x = 1 we’ll ob-
tain sinh2 v+ cosh2 v+ 1 = 2 cosh2 v. The numerator simplifies considerable
if we embed this relation into our expression.

x2 + y2 + α2 = α2

[
2 cosh2 v − 2 cos u cosh v

(cosh v − cos u)2

]

= α2
[

2(cosh v − cos u) cosh v

(cosh v − cos u)2

]

= 2α2 cosh v

cosh v − cosu
. (4.58)

Dividing (4.58) by 2αx = 2α2 sinh v
cosh v−cos u cancels out the u-dependence

of the denominator.

x2 + y2 + α2

2αx
= 2α2 cosh v

cosh v − cos u

(
cosh v − cos u

2α2 sinh v

)

=
cosh v

sinh v
x2 + y2 + α2

2αx
=

1

tanh v

Thence we formulate our expression for v in terms of Euclidean coordinates.

v ≡ arctanh

(
2αx

x2 + y2 + α2

)
. (4.59)
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Inspection of equation (4.57) indicates that we, if we want to cancel out
the v-terms, should substract α2:

x2 + y2 − α2 = α2

[
sinh2 v + sin2 u

(cosh v − cos u)2
− 1

]

= α2

[
sinh2 v − cosh2 v + sin2 u− cos2 u+ 2 cos u cosh v

(cosh v − cosu)2

]
.

Analogous to our derivation for v, we can use sinh2 v − cosh2 v = −1 ergo
sin2 u− cos2 u− 1 = −2 cos2 u. So we obtain

x2 + y2 − α2 = −2α2 cos u

cosh v − cos u
.

Again, we can divide this by −2αy = −2α2 sinu
cosh v−cos u , resulting in

α2 − x2 + y2

2αy
= −2α2 cos u

cosh v − cos u

(
cosh v − cos u

−2α2 sinu

)

=
cos u

sinu

=
1

tan u
.

Consequently:

u ≡ arctan

(
2αy

α2 − x2 − y2

)
. (4.60)

4.4.2 Transformation to Polar coordinates

For polar coordinates, we use

x = r cos θ

y = r sin θ.

From this, we directly get the relationship r2 = x2 + y2. We can substitute
this into equations (4.60) and (4.59), yielding:

u = arctan
2αr sin θ

α2 − r2
(4.61)

v = arctanh
2αr cos θ

r2 + α2
. (4.62)

Note that arctanhx = 1
2 log 1+x

1−x .
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4.4.3 A possible function for A

What we now try, is to find a function A that makes physically sense. Since
A ∝ ρ, it must have a minimum at x = α and may never be infinitely large.
This is the same as saying that the density has a maximum at x = α and
is never zero. Inspection of v strongly suggests a density profile of the form
tanh v + 1 so that

A =
1

tanh v + 1
=

r2 + α2

r2 + 2αr cos θ + α2
.

First, we start with investigating the general behavior of the corresponding
r(θ, t) by using equation (2.11). We look at the equatorial plane θ = 0 and
suppose that ∂r

∂θ ≡ rθ = 0, so the PDE reduces to

∂r

∂t
=
√
A.

and A reduces to

A =
r2 + α2

(r + α)2
.

Solving the differential equation gives

∂t =
∂r√
A∫

∂t =

∫
∂r

r + α√
r2 + α2

t = α log(r +
√
r2 + α2) +

√
r2 + α2 + C. (4.63)

In figure 4.8 you can see the propagation of the shock wave for various α
along the equatorial plane. It looks close to linear, which is rather odd! We
would expect the shock wave to accelerate behind the torus, but it doesn’t.
We only see a light acceleration from x = α on.

Perhaps this absence of a significant acceleration is due to the fact that
in this coordinate system we get a cusp at θ = 0. Hence the approximation
rθ = 0 is not good. Or the density function is still to smooth.

4.4.4 Numerical approximation

In order to get a more complete idea of the toroidal density, we will try to
compute a solution. Assume that along the y-axis, which is at θ = π/2,
A ∝ r2. Our function for A will now be

A = η
r2

σ tanh v + 1
= ηr2 r2 + α2

r2 + 2ασr cos θ + α2
(4.64)
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where η, σ and α are parameters of this model.
For the calculations, we cut up the θ-interval (− π

2 ,
π
2 ) into nθ pieces, that

all have width ∆θ = π
nθ

. From the boundary condition r(θ, t = 0) on we can
calculate the shock profile at the ’next’ time, at t = t0 + ∆t. The ’standard’
way of computing this is:

r(θi, tj+1) = r(θi, tj) + ∆t
dr(θi, tj)

dt
. (4.65)

The derivative dr/dt can be computing using the nearest neighbor approxi-
mation of (4.1):

dr(θi, tj)

dt
=



A(θi, tj)


1 +

(
r(θi+1, tj)− r(θi−1, tj)

2∆θr(θi, tj)

)2






1/2

. (4.66)

In figure 4.9 we have plotted the calculations for the shock for various α and
σ. The beautiful result is, that the last image corresponds almost perfectly
with the shock wave of the famous Red Rectangle, as can be seen in appendix
D.1.

4.4.5 Red Rectangle

It is rather mystifying that the toroidal density leads to two sharp protru-
sions at about 40◦ from the y-axis in the nebula shape. One might raise the
question whether these protrusions are an inaccuracy caused by our math-
ematical approximations. At first glance, one might suspect that the ”real”
shape should be Hourglass-like and the part we are showing might be caused
by displaying the negative part of a square root for example. The expansion
along the y-axis would then be too slow, if this assumption is correct.

However, we can compare our result in figure 4.9 (most-right) with the
shock wave propagation for the spherical case, where the magnitude of A
along the y-axis is the same: A′ = ηr2. The result can be seen in figure 4.10
(left). As the magnitude is the same along the y-axis we expect the same
propagation speed along the y-axis and thus the toroidal and spherical shock
wave forms to overlap at this point. This happens, so our calculations along
the y-axis shows that we must reject this ’Hourglass-hypothesis’. We must
conclude that the protrusions are ’real’, as long as our differential equation
(4.1) holds.

We might wonder whether this behavior is general. In fact, it is. If we
consider the original shock wave to have a ”bump” along the x-axis, the
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Figure 4.9: Numerical calculations of the shock wave for a toroidal density func-

tion. The left three shock waves are calculated with η = 1 at t = 0, 0.5, 1, 1.5, 2, 3, 4

and 4.5. The intervals were ∆t = 0.1 and nθ = 64. The parameters, from left to

right, were (1) α = 1, σ = 0.9, (2) α = 5, σ = 0.9, (3) α = 1, σ = 0.5. The shock

wave at the right has parameters η = 3, σ = 2 and α = 1, and is calculated at

t = 0, 0.5, 1, 1.2, 1.4 and 1.6.
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expansion coefficient from equation (4.1),

√

1 +

(
1

r

∂r

∂θ

)2

,

becomes relatively large at the sides of this bump (where ∂r
∂θ is the largest),

as can be seen in the right side of figure 4.10. It then depends on the precise
shape of this ”bump” what the final result is: an Hourglass-like cusp in
along the x-axis, or a Red Rectangle like shape with two protrusions.

4.4.6 Final comment on Toroidal coordinates

We see that the transformation into toroidal coordinates makes the equa-
tion mathematically very difficult. It is questionable whether we can solve
the equation analytically. However, numerical models reveal very interest-
ing properties of the toroidal density profile. The Red Rectangle can be
reproduced in a toroidal model. This coordinate system should therefore be
investigated further.

4.5 K independent of r in 3 dimensions

In the two-dimensional case, one can apply separation of variables success-
fully if K is independent of r. If one takes r(θ, t) = H(t)F (θ), one gets:

(
dH

dt
)2 =

K

F 2


1 +

(
dF
dθ

F

)2

 ≡ E2.

One can use this technique also in the 3-dimensional case with (2.14). Here
we also use ur = uθ = uφ = 0 and K a prediscribed function of θ and φ.
Then the separation of the time-variable leads to

E2F 4 = K
[
F 2 + F 2

θ + F 2
φ/ sin2 θ

]
.

where E2 is the integration constant. (We have H(t) = Et + ct.) Then we
can write F = Θ(θ)Φ(φ) and we get

E2Θ2Φ2 sin2 θ

K(θ, φ)
− sin2 θ −

(
dΘ
dθ

Θ
sin θ

)2

=

( dΦ
dφ

Φ

)2

.
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4 Given A, what is r? 4.5. K independent of r in 3 dimensions

Separation of variables can now only be obtained whenK(θ, φ) = A(θ)Φ2(φ).
When we assume this relationship, the left hand side of the equation only
depends on θ. The right hand side becomes the equation

dΦ

dφ
= ξΦ.

This leads to the conclusion that Φ = cφe
ξφ. The differential equation for

Θ becomes:
E2Θ4

A(θ)
−
(

ξ2

sin2 θ
+ 1

)
Θ2 =

(
dΘ

dθ

)2

.

dΘ

dθ
= Θ

√
E2Θ2

A(θ)
−
(

ξ2

sin2 θ
+ 1

)
.

Suppose now, similar to the φ-case, that A(θ) = Θ2. Then we get the
solution for Θ, that is:

Θ = cθe

∫
dθ

√
E2−1− ξ2

sin2 θ . (4.67)

This integral in the exponential can be solved analytically. The first step
towards the solution of this integral are the substitution x = sin θ (so dθ =
± 1√

1−x2
dx, but as θ runs from 0 to π we may just use the positive part) and

B = E2−1
ξ2 , which leads to the following:

I =

∫
dθ

√

E2 − 1− ξ2

sin2 θ

= ξ

∫
dθ

√
E2 − 1

ξ2
− 1

sin2 θ

= ξ

∫
dx

x

√
Bx2 − 1

1− x2

= c1 + Im
ξ

4B

[√
−B(B + 1) arctan

(
(Bx2 − 1)−B(1− x2)

2
√
B
√

(Bx2 − 1)(1 − x2)

)

−2
√
−B2 arctan

(
(Bx2 − 1)− (1− x2)

2
√

(Bx2 − 1)(1− x2)

)

+(B3/2 −B1/2) log

(
2
√

(Bx2 − 1)(1 − x2)− (Bx2 − 1)−A(1− x2)√
−B

)]
.
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Because we only have to use the imaginary part, we can transform the
logarithmic term into an arctan term by using the rule Im(log(x − iy)) =
− arctan(y/x):

I = c1 +
ξ

2

[√
B arctan

(
(Bx2 − 1)−B(1− x2)

2
√
B
√

(Bx2 − 1)(1− x2)

)

− arctan

(
(Bx2 − 1)− (1− x2)

2
√

(Bx2 − 1)(1 − x2)

)]
.

Now we substitute x = sin θ back in the formula. Recall that 1−x2 = cos2 θ.
We get:

I = c1 +
ξ

2


√B arctan


 B(sin2 θ − cos2 θ)− 1

2
√
B cos θ

√
(B sin2 θ − 1)




− arctan


 B sin2 θ − cos2 θ − 1

2 cos θ
√

(B sin2 θ − 1)




 . (4.68)

Combining equations (4.68) and (4.67) with the relationship r(t, φ, θ) =
H(t)Θ(θ)Φ(φ) we have the partial wave as a function of ξ and E where

B = E2−1
ξ2 :

r = cφ(Et+ct)e
ξφ+c1+ ξ

2

[√
B arctan

(
B(sin2 θ−cos2 θ)−1

2
√
B cos θ

√
(B sin2 θ−1)

)
−arctan

(
B sin2 θ−cos2 θ−1

2 cos θ
√

(B sin2 θ−1)

)]
.

(4.69)
In order to construct the physical solution, one should make again an enve-
lope for these partial waves. The system of equations

{
∂r
∂E = 0
∂r
∂ξ = 0

(4.70)

should be solved for ξ and E. This might be a topic for further research.

4.6 What if r →∞?

The limiting behavior of a differential equation is interesting. The case for
r → ∞ can show more about the general shape of the shock wave at large
time-scales. One might think, for example, that the shock wave eventually
always becomes spherical. Let’s examine this hypothesis.
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The statement ’for large r the shock wave becomes spherical’ can be
stated mathematically in the form rθ → 0 as r→∞. From equation (2.11)
we get in this case rt →

√
A. We just took rθ = 0. This also implies Aθ = 0,

because rθ = d
dθ

∫ √
Adt =

∫
d
dθ

√
Adt = 0. So we have the following result:

Proposition 4.6.1 (Spherical shock waves) For large r, the shock wave
becomes spherically symmetric if and only if the acceleration parameter A is
spherically symmetric (does not depend on θ).

We must note however that for large distances and time-scales, equation
(2.11) no longer holds. The assumption that p1 >> p0 only holds in the
beginning. After a long time, the pressure behind the shock decreases and
approaches the pressure in front of the shock. However, we shall restrict our-
selves here to equation (2.11). Though it is physically not entirely correct,
it still can tell us more about the shape of the shock wave.

We can investigate the case when A = A(θ)r2/r2
0. This leads, according

to [Icke, 1988], to equation (3.12), which are partial waves described by

r = r0e
Et−

∫ θ
0

√
E2/A(θ′)−1dθ′ . (4.71)

For θ = 0 we clearly get r = r0e
t. But what if θ = π

2 ? Assume, without
loss of generality, that A(0) = 1, A(θ = π

2 ) = δ < 1 and A(θ) ≥ δ at all

times. Then the integral
∫ θ

0

√
E2/A(θ′)− 1dθ′ is always less than or equal

to π
2

√
E2/δ − 1. So r(π2 ) is always greater than or equal to:

r(
π

2
) ≥ r0e

Et−π
2

√
E2/δ−1.

Let’s investigate the extreme case where an equality holds. By using the
technique of envelopes, we get the solution E = δt√

t2δ−π2

4

. Substituting this

into r(π2 ) gives us

r(
π

2
) = r0e

√
t2δ−π2

4 . (4.72)

We clearly see that if r →∞ then r( π2 ) becomes of the form r0e
√
δt. So we

see that the axial ratio H = r(0)
r(π

2
) becomes

H(t) = et(1−
√
δ). (4.73)

So we can conclude the following.
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Proposition 4.6.2 (Large shock waves) Assume A = A(θ)r2/r2
0 and A(0) =

1 and A(θ) = δ. Then the ratio between the shock wave in the equatorial
plane and in the polar plane is at most

H(t) = et(1−
√
δ).

So the shock wave becomes more and more asymmetric as the shock
wave expands.
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Chapter 5

Given r, what was ρ?

In this section we try to reverse equation (2.11) such that we can calculate
A or ρ for a given shock wave profile. First the theory is discussed, and
then we will make numerical models for the shock wave of several planetary
nebula. Finally, we will discuss the initial density profile for some shock
wave functions.

5.1 Theory: The other way around

We make use of equation (2.11) with no external velocity, so ur = 0. Invert-
ing this equation gives

A(θ, r) =
(∂r/∂t)2

1 +
(

1
r
∂r
∂θ

)2 . (5.1)

Suppose we can use separation of variables and write r = H(t)f(θ), where
r is the radius of the shock wave at time t and angle θ. Then we have:

f
dH

dt
=

{
A

[
1 +

(
1

f

df

dθ

)2
]} 1

2

f
dH

dt
= A

1
2


1 +

(
df
dθ

f

)2



1
2

A =
f2 dH

dt

2

1 + (
df
dθ
f )2
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A = f4(
dH

dt
)
2

(f2 + (
df

dθ
)
2

)

−1

A =
r4

H2

(
dH
dt

H

)2(
r2

H2
+

(
df

dθ

)2
)−1

1

2
(γ + 1)

P

ρ
= r4

(
dH
dt

H

)2(
r2 +H2

(
df

dθ

)2
)−1

.

We see that if H(t) and dH
dt (t) have also the dimension length as r has, and

P is a constant, then ρ ∝ r−2 which is something we would expect.
Using the assumptions that Aρ ∝ 1, ∂r

∂t ∝ r and ρ ∝ ρ∗(θ)/r2 we get
from equation (5.1) a formula for ρ∗(θ):

ρ∗(θ) = C

(
1 +

(
1

r

∂r

∂θ

)2
)
. (5.2)

5.2 Test functions

We have determined ρ(θ) - or the angular density distributions - for a few
when the characteristic shock shapes r(θ). The density distribution ρ(θ)
for six shock waves can be seen in figures 5.1 to 5.2. It turns out that the
initial density function develops a clover-like shape. It is also strange that
the highest density is not where the shock wave has travelled the shortest
distance.

This is something we don’t understand physically. Note however that
the ’bumps’ can also be due to deficiencies in our assumptions for equation
(5.2).

5.3 Numerical models

We used the IDL program to analyse observations. These observations are
JPEG pictures from planetary nebula from the internet. The numerical code
consists of three different parts1:

1. Information. This part reads the data of the observed PN, and the
user can define the center of the PN here. The information on the size of
the image and the center is stored in a special .info file.

2. Analyse shock front. Now the program cancels out all the noise
and other stars from the image. Then it ’looks out’ from the center in every

1For the complete program code look in appendix C.
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Figure 5.1: The thick line is r(θ) = (1 − µ)e−
θ2

σ2 + µ and the thin line is the

normalized density function. Left: µ = 0.1 and σ = 1. Right: µ = 0.1 and σ = 0.5.
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π (1 − δ) arctan θ2

σ2 . Left:

δ = 0.1 and σ = 1. Right: δ = 0.1 and σ = 0.5.

58



5 Given r, what was ρ? 5.3. Numerical models

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 5.3: Same as in figure 5.1 but with r(θ) = 1
θ2

σ2 +1
. Left: σ = 1. Right:

σ = 2.

angle and calculates the distance to the shock wave. In the first run, the
shock wave is defined to start at the most outer place where the intensity
becomes significant. In the second run we take the median for every 10
subsequent angles to get a more smooth result. The returned array r(θ)
describes the radial distance of the shock wave for 360 degrees.

3. Calculate A. Now we have to calculate ρ(θ). Therefore we first
calculate the derivative of r(θ) using the eight-points difference method.
After that, we use the point symmetry of the PN to ’slide’ the first and
second half over each other. Most nebula are very point symmetric, so
instead of calculating the density profile for 360deg, we can calculate the
average density profile over 180deg Finally we use equation 5.2 to calculate
the density profile.

We use the observations of eleven planetary nebulae. The results for
all these nebulae can be seen in Appendix D. From these pictures, we can
clearly distinguish different types of nebulae.

Ellipsoidal. The Helix nebula, IC 3568 and NGC 6826 have a clear
ellipsoidal density profile.

Disk. The Hourglass nebula, M27, M2-9, NGC 5307, NGC 6543a, NGC
7009 and Hubble 5 all show a typical point-symmetric density profile that
consists of a disk along the equatorial axis. The disk can be wide (for
example NGC 7009) or very narrow (Hourglass). The axial ratio can be
very high (such as for M2-9) or more close to one (M 27). Finally, we
can see difference between the mirror symmetric (M2-9) and the rotation
symmetric (NGC 6543a) densities. With these three parameters, we can
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define the special characteristics of the disk type planetary nebulae. NGC
2867: Irregular. The shape of NGC 2867 is so irregular, that we can not
classify it as a certain type.

A still open problem is to fit these qualitative descriptions into quanti-
tative functions.
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Chapter 6

Conclusion and Discussion

6.1 Summary

We tried to solve the problem of an asymmetric shock wave through the
inhomogeneous interstellar medium. The propagation of the shock wave is
described by equation (2.14) in three dimensions with the simplification in
2-d polar coordinates (2.11) or 2-d Euclidean coordinates (3.1). We repro-
duced the original work by [Kompaneets, 1960] and [Icke, 1988], who gave
solutions for special cases of the acceleration parameter A. Our contribution
can be divided into two parts: 1. Plain solving the shock wave equation for
a given A; 2. Calculate the original A for a given shock wave.

In the first part, we solved the equation for several test-functions for A.
Two of them had an analytic solution, namely A = constant and A ∝ r2.
For two functions, of the form A = r2/(θi + 1) for i = 1, 2, the solution
can be approximated analytically. The two functions that were physically
the most interesting, namely the Gaussian and the Arctans, could only be
solved numerically. When switching to toroidal coordinates, we get phys-
ically beautiful results such as a model for the Red Rectangle. In three
dimensions we obtained an analytic solution when A is constant.

By inverting the two-dimensional polar equation (2.11), one gets a rela-
tionship between the shock wave and the initial density profile (5.2). We use
a numerical model to compute the density profile for twelve known plane-
tary nebula. That led to a qualitative classification into the ellipsoidal,
two-stream and irregular nebula. Inserting some test functions for r into
equation (5.2) shows the existence of a extraordinary ’bump’ in the density
function.
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6.2 Discussion

The research, at this point, leaves a few questions unanswered:

1. The construction of the general equation is quite clear. However, as
can be seen in appendix A, we can still try to solve the corresponding
characteristic system of differential equations.

2. A toroidal density function is interesting but difficult and can be in-
vestigated further.

3. We encountered a few test functions for which the equation can be
solved. We were not able to solve most of them however. The general
behavior on when the equation is solvable and when not is still unclear.

4. In using observations of planetary nebula, we computed the original
density function for 11 planetary nebulae. We therefore used the as-
sumption that ρ = ρ∗(θ)/r2. Perhaps this assumption is not correct.

5. We made a qualitative classification of the PN’s into four categories.
Does this classification still holds when we observe more PN’s?

6. The qualitative classification is not formulated quantitatively, with
density formulas for each category.

7. What is the physical background for the various density profiles?

8. When calculating the density distribution for a given shape of the
shock wave we get a strange clover like form in the density profile for
a strong hourglass shape of the shock wave. How do these clovers
form, and do they make any sense, physically? Or is the assumption
that dr/dt ∝ r incorrect?

9. We did not consider radiative effects in shock waves. For older nebula
where these effects dominate our work must be extended.

10. We did not correct for the angle at which we observe the planetary
nebula. Thereby comes the uncertainty whether the observed shock
wave is equal to the ’real’ shock wave.
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Appendix A

Theory of Envelopes

In general, a differential equation in two parameters can be described by

F (θ, t, r, p, q) = 0. (A.1)

where p = ∂r
∂θ and q = ∂r

∂t . We assume that F is continuous and has contin-
uous first derivatives with respect to all its five arguments.

A.1 The Monge Cone

In order to get a better view on the geometrical aspect of solving the differ-
ential equation, we introduce the concept of the Monge cone.

Let us consider the (θ, t, r)-space. The solution of equation (A.1) is a
two-dimensional surface is this space. This surface is called the integral
surface I.

For every point P ∈ (θ, t, r)-space equation (A.1) reduces to a relation-
ship between p and q. The relationship can be represented in a parametric
form: p = p(λ) and q = q(λ). This gives for P a family of allowed directions.
We can now look along a given direction and consider what (θ, t, r) are for
a certain distance σ. This gives

dr

dσ
=
dr

dθ

dθ

dσ
+
dr

dt

dt

dσ
= p(λ)

dθ

dσ
+ q(λ)

dt

dσ
.

and differentiating this with respect to λ leads to

0 = p′(λ)
dθ

dσ
+ q′(λ)

dt

dσ
.

It turns out to be useful to differentiate F with respect to λ. We then get

Fpp
′(λ) + Fqq

′(λ) = 0.
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A Theory of Envelopes A.2. Envelopes

Comparing these results gives a relationship between dθ, dt and dr at a
certain point P :

dθ : dt : dr = Fp : Fq : (pFp + qFq). (A.2)

This concept of a ’family of directions’ for a certain point P can be formalized
using the definition of a Monge cone.

Definition A.1.1 Consider equation (A.1) and a point P ∈ (θ, t, r)-space.
At this point we can choose p, q such that F = 0. This p, q gives us a direc-
tion since p, q are derivatives of r. This direction is called a characteristic
direction and satisfies equation (A.2). The family of characteristic direc-
tions is dependent on one parameter λ and is called the Monge cone.

We can say that at point P the characteristic directions are the ’per-
mitted’ directions. It follows that at every point P the integral surface I
touches the local Monge cone. We can reverse this statement.

Theorem A.1.1 Suppose we have a surface J in the (θ, t, r)-space and for
every P ∈ J we have that J touches the corresponding local Monge cone.
Then J is a solution of equation (A.1).

The proof is trivial since at every point the surface satisfies F = 0 by
the definition of the Monge cone. The geometric interpretation of solving
(A.1) is thus to form a integral surface that touches the Monge cone at each
point.

A.2 Envelopes

Suppose now we have a set of solutions

r = f(θ, t, E). (A.3)

where E is the free parameter in the set. We can define for such a set the
concept of an envelope.

Definition A.2.1 An envelope is a function ψ(θ, t) that is defined on
a set of functions f(θ, t, E) for which ∀(θ, t)∃E(θ,t) such that ψ(θ, t) =
f(θ, t, E(θ,t)), ψθ(θ, t) = fθ(θ, t, E(θ,t)) and ψt(θ, t) = ft(θ, t, E(θ,t)).
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A Theory of Envelopes A.3. Complete integral

If we have f to be a set of solutions of equation (A.1), we know that for
every E, θ and t the function satisfies F (θ, t, r, p, q) = 0. But since the first
derivatives of the functions are equal to the first derivatives of the envelope,
so the all points on the envelope also satisfy F = 0.

Theorem A.2.1 If every function of the family f(θ, t, E) is a solution of
the first order differential equation F (θ, t, r, p, q) = 0, then the envelope
ψ(θ, t) is also a solution.

We can derive the analytic form of the envelope. What we want is a
function E(θ, t) such that

ψ(θ, t) = f(θ, t, E(θ, t)).

When differentiating this equation with respect to θ and to t, we get

ψθ = rθ = fθ + fEEθ = fθ

ψt = rt = ft + fEEt = ft.

This is only possible when either Eθ = Et = 0 or is fE = 0. Since we
explicitly demanded that E depends on θ and t, we see that the envelope
must be constructed using fE = 0.

Theorem A.2.2 Consider a family of functions f(θ, t, E). The envelope is
obtained by solving

∂f

∂E
= 0

for a function E(θ, t).

We now know how to construct the envelope and that it is a solution
of the first order partial differential equation. The question remains how to
get the family of functions.

A.3 Complete integral

Often, the differential equation (A.1) can be directly integrated resulting in
a function that depends on two mutually independent parameters E and b:

r = r(θ, t, E, b).

Definition A.3.1 A complete integral is a two-parameter family of so-
lutions of the differential equation (A.1), where the two parameters are in-
dependent of each other.
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A Theory of Envelopes A.4. Basic Theory on First Order PDE’s

From this two-parameter set of solutions we can select an one-parameter
set by setting b = g(E). In the case when F does not explicitly depends
on r, we can write the complete integral in the form r(θ, t, E) + g(E). In
this case, the form of g(E) is defined by the initial conditions. For example,
Icke suggested that g(E) = 0. In general, the envelope as described in the
previous section, can now be obtained solving the equation

rE + g′(E) = 0.

Physically, we can say that we are interested in the shock front. That is,
we only want to know the outer boundary of this shock, no matter the dif-
ferent parameter E. We can therefore say that the envelope of the complete
integral is the physical solution of our differential equation.

A.4 Basic Theory on First Order PDE’s

We can use the concept of the Monge cone to make curves through the
(θ, t, r)-space that have at each point a characteristic direction.

Definition A.4.1 Consider equation (A.1). A focal curve is a curve
through the (θ, t, r)-space that has at each point a characteristic direction.
The curve satisfies the equations, following equation (A.2),

dθ

ds
= Fp,

dt

ds
= Fq,

dr

ds
= pFp + qFq (A.4)

for the curve parameter s.

Note the special property of the integral surface: Any curve through the
integral surface is an focal curve. However, the reverse is not true. There
are only three equations, stated in definition A.4.1, that describe a focal
curve. The integral surface is described by five parameters (θ, t, r, p, q), and
thus we need another two equations. These equations can be obtained from
differentiating F = 0 with respect to θ and t:

Fppθ + Fqqθ + Frp+ Fθ = 0

Fppt + Fqqt + Ftq + Ft = 0.

Using the equations (A.4), we get a total of five equations that describe the
form of an integral surface.
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A Theory of Envelopes A.5. System of CDE for Kompaneets equation

Definition A.4.2 The system of five ordinary differential equations that
describes the direction of the integral surface is called the characteristic
system of differential equations (CDE) belonging to the equation (A.1).
These equations are:

dθ

ds
= Fp (A.5)

dt

ds
= Fq (A.6)

dr

ds
= pFp + qFq (A.7)

dp

ds
= −(pFr + Fθ) (A.8)

dq

ds
= −(qFr + Ft). (A.9)

If we use the system from definition A.4.2, we note that this system leads
to a solution curve (θ(s), t(s), r(s), p(s), q(s)) in the five-dimensional space.
Along this curve, F is constant. The interesting solutions however are these

Definition A.4.3 Every solution (θ(s), t(s), r(s), p(s), q(s)) of the CDE which
also satisfies F = 0 will be called a characteristic strip. The projection
of this strip onto the (θ, t, r)-space is called a characteristic curve or a
partial wave.

From the derivation of the CDE we know the following theorem that
relates the original equation (A.1) to the CDE:

Theorem A.4.1 In every integral surface I there exists a one-parameter
family of characteristic curves.

The problem of solving equation (A.1) is now to construct an integral
surface out of an family of partial waves. In general, these partial waves can
be obtained using the system of characteristic differential equations.

A.5 System of CDE for Kompaneets equation

The equation that describes the shock wave front, (2.11), can be cast in the
general form of equation (A.1) by setting:

F (θ, t, r, p, q) = p2 −A(θ, r)

[
1 +

q2

r2

]
= 0. (A.10)
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A Theory of Envelopes A.5. System of CDE for Kompaneets equation

The system of characteristic differential equations now becomes:

θ′ = 2p (A.11)

t′ = −2A(θ, r)

r2
q (A.12)

r′ = 2p2 − 2A(θ, r)

r2
q2 (A.13)

p′ = (pAr(θ, r) +Aθ(θ, r))

[
1 +

q2

r2

]
− 2pA(θ, r)

q2

r3
(A.14)

q′ = Ar(θ, r)

[
q +

q3

r2

]
− 2A(θ, r)

q3

r3
. (A.15)

These equations must be solved for F = 0.
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Appendix B

Maple program used to
construct the complete
integral

> restart:

> with(ListTools):

> n := 64:

>

> "Calculates X-values of the envelope":

> Envelope := proc(t)

> local k,Elist,L,Y:

> k := 30:

> Elist := [seq(evalf(1 - (1-sqrt(delta))/k*(i-1)),i=1..(k+1))]:

> L := [seq(Tcalc(Elist[i],t),i=1..(k+1))]:

> Y := [seq(max(seq(L[i,p,2],i=1..(k+1))),p=1..(n+1))]:

> return Transpose([theta,Y])

> end proc:

>

> "Transforms the x-values into radial coordinates":

> Radial := proc(Tabel)

> return [seq([evalf(exp(Tabel[p,2])*sin(Tabel[p,1])),

evalf(exp(Tabel[p,2])*cos(Tabel[p,1]))],p=1..(n+1))]

> end proc:

>

> "Generates list of Theta-points":

> Delta := Pi/2/n:
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B Maple program used to construct the complete integral

> theta := [seq(evalf(i*Delta),i=0..n)]:

> "Define T(E) = int f(E,theta)":

> f := proc(E,theta) return -Re(sqrt(E^2/A(theta)-1)) end proc:

>

> "Calculates the complete integral T(E) for given E and t":

> Tcalc := proc(E,t)

> local i, Ttable:

> Ttable := [seq(i,i=0..n)]:

> Ttable[1] := E*t:

> for i from 2 to n+1 do

> Ttable[i] := evalf(Ttable[i-1] +

Delta*f(E,(theta[i]+theta[i-1])/2)):

> end do:

> Ttable := Transpose([theta,Ttable]):

> return Ttable

> end proc:

>

> "Function from Icke 1988":

> delta := 0.5: sigma := evalf(40 * Pi/180):

> A := proc(theta)

> return (delta + (1-delta)*exp(-theta^2 / sigma^2))

> end proc:

To plot a partial wave for constant E at time t use the command:

> PLOT(CURVES(Tcalc(E,t)), AXESLABELS(’theta’,’x’),

VIEW(0..1.57,-1.1..0));

To plot the x-values of the envelope at time t use:

> PLOT(CURVES(Envelope(t)), SCALING(CONSTRAINED));

To make a radial plot of the envelope at time t use:

> PLOT(CURVES(Radial(Envelope(t))), SCALING(CONSTRAINED));
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Appendix C

IDL-Program for numerical
modeling

C.1 Information

pro Informatie, Bestandsnaam

;This function is for the first time reading the image

;Generates a .info-file with all relevant information

;Reads image file

read_jpeg,Bestandsnaam+’.jpg’,Afbeelding,/grayscale

;Plot the image and ask for centre and length scale

set_plot,’X’

contour,Afbeelding

print,’Click on the centre of the nebula’

cursor,x0,y0

wait,.5

print,’Now choose the length scale of the nebula’

cursor,x1,y1

Lengte = sqrt((x1-x0)^2+(y1-y0)^2)

;Reads in the size of the image

s = size(Afbeelding)

sx = s[1]

sy = s[2]
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

;Stores all information in info = [x-centre,y-centre,length

; scale,x-size,y-size]

info = [long(x0),long(y0),long(Lengte),sx,sy]

;The array is saved in the .info-file

close,1

openw,1,Bestandsnaam+’.info’

printf,1,info

close,1

end

C.2 Analyse shock front and calculate A∗

;This code reads in an image and computes the shockfront, which

; is saved in a .schok-file

;-Reken: The general command. Arguments: (File, Height of the

; shock wave (0-255), Number of calculations)

;-Laden: Loads the image and the corresponding .info-file,

; stores it in arrays im and info

;-Sterrenfilter: Filters stars from the image. Argument:

; (Image-array)

;-Schok: Calculates the shock front and stores image in .ps

; file and shock contour in .schok-file. Arguments:

; (Image-array, Info-array, Height of the shock wave (0-255),

; File, Number of calculations)

;-Lijnprofiel: Makes a line profile function along a given

; angle. Arg: (Image-array,Info-array,Angle in degrees)

;-Filter: Makes the shock wave ’smooth’ by filtering out the

; extreme peaks.

;-Image: Makes a plot of the image.

;Here we calculate A*

;-Revers: Returns A* given the shock front r and dr/dtheta

;-Achtpunts: Makes a eight-point central difference

; approximation for dr/dtheta

;-Glad: Smoothens the vector by using the mean of every group

; of elements.

pro Reken,Bestandsnaam,Hoogte,n

Laden,Bestandsnaam,im,info
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

im = Sterrenfilter(im)

Schok,im,info,Hoogte,Bestandsnaam,n

end

pro Laden,Bestandsnaam,im,info

read_jpeg,Bestandsnaam+’.jpg’,im,/grayscale

info = lonarr(5)

close,1

openr,1,Bestandsnaam+’.info’

readf,1,info

close,1

end

function Sterrenfilter,Afbeelding

s = size(Afbeelding)

Kopie = Afbeelding

for i=0,(s[1]-1) do begin

for j=0,(s[2]-5) do begin

Z = $

[Afbeelding(i,j), Afbeelding(i,j+1), Afbeelding(i,j+2), $

Afbeelding(i,j+3), Afbeelding(i,j+4)]

if (Afbeelding(i,j+2) gt 2*median(Z)) and $

(Afbeelding(i,j+2) gt 50) then Kopie(i,j+2) = median(Z)

endfor

endfor

return,Kopie

end

pro Schok, Afbeelding,Info,Hoogte,Bestandsnaam,n

;Here the shock wave will be calculated and saved in an array

;The angle theta in column 0 and the radius in column 1

;The interval [0,360] will be divided into n pieces

;For each angle will a line profile be made

;The shock front is the place where the intensity is more

;than the Height of the shock wave

;An image will be plotted in a .ps-file

Theta = findgen(n)/n*360

r = fltarr(n)

for i=0,(n-1) do begin

Z = lijnprofiel(Afbeelding,Info,Theta(i))
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

;Checking the line profile until r(i)<Hoogte

r(i) = 0

repeat r(i) = (r(i) + 1) until ((hoogte gt Z(r(i))) or (r(i) gt Info(2)))

endfor

;Smoothen r

r = Superglad(r,9)

;First calculate the derivative

D = Superglad(Achtpunts(r),9)

;The acceleration parameter A

A = Revers(r,D)

;The density and normalize it

rho = 1 / A

rho = rho / Max(rho)

rho = rho * Max(r) / 2

;Save the information in .schok and .a file

close,1

openw,1,Bestandsnaam+’.schok’

printf,1,n/10,r

close,1

close,1

openw,1,Bestandsnaam+’.a’

printf,1,n/10,A

close,1

;Adds 1 point to get an continuous picture

r2 = fltarr(n/10+1)

for i=0,(n/10-1) do r2(i) = r(i)

r2(n/10) = r(0)

rho2 = fltarr(n/10+1)

for i=0,(n/10-1) do rho2(i) = rho(i)

rho2(n/10) = rho(0)

;Defines the theta-vector

Theta = findgen(n/10+1)/n*3600

Theta(n/10) = Theta(0)

;Now make the vectors that should be plotted

X = float(r2*cos(Theta/360*6.283185307) + Info[0])

Y = float(r2*sin(Theta/360*6.283185307) + Info[1])

Xrho = float(rho2*cos(Theta/360*6.283185307) + Info[0])

Yrho = float(rho2*sin(Theta/360*6.283185307) + Info[1])

;Start plotting and save it in .ps file

loadct,1
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

set_plot,’ps’

device, filename=Bestandsnaam+’.ps’,/color,/landscape

image,Afbeelding

loadct,3

oplot,X,Y,thick=3,color=100

oplot,Xrho,Yrho,thick=3,color=200

device,/close

set_plot,’X’

end

function LijnProfiel, Afbeelding, Info, Hoek

;Makes a line profile in the direction Hoek from the center

Lengte = Info(2)

Hoek = Hoek * 6.283185307 / 360

;In the vectors Xlijst and Ylijst will the intensity be

;stored along the line.

Xlijst = long(Info(0) + $

(Lengte*cos(Hoek))*findgen(Lengte)/(Lengte-1))

Ylijst = long(Info(1) + $

(Lengte*sin(Hoek))*findgen(Lengte)/(Lengte-1))

;Returns the line profile

return,long(Afbeelding[Xlijst+long(Ylijst)*Info[3]])

end

function Filter,Tabel,Factor

;This functions takes a Factor elements in the array and

; returns the median

;Thus resulting in an array Factor times smaller

Temp = fltarr(Factor)

s = size(Tabel)

sx = s[1]

Lengte = long(sx/Factor)

Result = fltarr(Lengte)

for i=0,(Lengte-1) do begin

for j=0,(Factor-1) do Temp(j)=Tabel(i*Factor+j)

Result(i) = median(Temp)

endfor

return,Result

end
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

pro image, a

;Special function to plot the image in .ps

on_error,2 ;Return to caller if an error occurs

sz = size(a) ;Size of image

contour,[[0,0],[1,1]],/nodata, xstyle=4, ystyle = 4

;Get size of window in device units

px = !x.window * !d.x_vsize

py = !y.window * !d.y_vsize

swx = px[1]-px[0] ;Size in x in device units

swy = py[1]-py[0] ;Size in Y

six = float(sz[1]) ;Image sizes

siy = float(sz[2])

aspi = six / siy ;Image aspect ratio

aspw = swx / swy ;Window aspect ratio

f = aspi / aspw ;Ratio of aspect ratios

if (!d.flags and 1) ne 0 then begin ;Scalable pixels?

if f ge 1.0 then swy = swy / f else swx = swx * f

tvscl,a,px[0],py[0],xsize = swx, ysize = swy, /device

endif else begin ;Not scalable pixels

if keyword_set(aspect) then begin

if f ge 1.0 then swy = swy / f else swx = swx * f

endif ;aspect

tv,poly_2d(bytscl(a),[[0,0],[six/swx,0]], $

[[0,siy/swy],[0,0]],keyword_set(interp),swx,swy),px[0],py[0]

endelse ;window_scale

contour,a,/noerase,/xst,/yst,pos = [px[0],py[0], $

px[0]+swx,py[0]+swy],/dev,levels=[0]

return

end

function Revers,Straal,Diff

;Uses A = r^2 / (1 + (r’/r)^2)

A = (Straal^2 / (1 + (Diff/Straal)^2))

m = Max(A)

return, A/m

end
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

function Achtpunts,Tabel

s = size(Tabel)

sx = s[1]

;Defines the interval

D = fltarr(sx)

h = float(6.283185308/sx)

;Calculating the derivative for all point

for i=4,(sx-5) do begin

D(i) = (Tabel(i-4)/280 - 4/105*Tabel(i-3) + Tabel(i-2)/5 $

- 4*Tabel(i-1)/5 - Tabel(i+4)/280 + 4/105*Tabel(i+3) - $

Tabel(i+2)/5 + 4*Tabel(i+1)/5)/h

endfor

D(0) = (Tabel(sx-4)/280 - 4/105*Tabel(sx-3) + Tabel(sx-2)/5 $

- 4*Tabel(sx-1)/5 - Tabel(4)/280 + 4/105*Tabel(3) - $

Tabel(2)/5 + 4*Tabel(1)/5)/h

D(1) = (Tabel(sx-3)/280 - 4/105*Tabel(sx-2) + Tabel(sx-1)/5 $

- 4*Tabel(0)/5 - Tabel(5)/280 + 4/105*Tabel(4) - Tabel(3)/5 $

+ 4*Tabel(2)/5)/h

D(2) = (Tabel(sx-2)/280 - 4/105*Tabel(sx-1) + Tabel(0)/5 $

- 4*Tabel(1)/5 - Tabel(6)/280 + 4/105*Tabel(5) - Tabel(4)/5 $

+ 4*Tabel(3)/5)/h

D(3) = (Tabel(sx-1)/280 - 4/105*Tabel(0) + Tabel(1)/5 $

- 4*Tabel(2)/5 - Tabel(7)/280 + 4/105*Tabel(6) - Tabel(5)/5 $

+ 4*Tabel(4)/5)/h

D(sx-1) = (Tabel(sx-5)/280 - 4/105*Tabel(sx-4) + $

Tabel(sx-3)/5 - 4*Tabel(sx-2)/5 - Tabel(3)/280 + $

4/105*Tabel(2) - Tabel(1)/5 + 4*Tabel(0)/5)/h

D(sx-2) = (Tabel(sx-6)/280 - 4/105*Tabel(sx-5) $

+ Tabel(sx-4)/5 - 4*Tabel(sx-3)/5 - Tabel(2)/280 $

+ 4/105*Tabel(1) - Tabel(0)/5 + 4*Tabel(sx-1)/5)/h

D(sx-3) = (Tabel(sx-7)/280 - 4/105*Tabel(sx-6) + $

Tabel(sx-5)/5 - 4*Tabel(sx-4)/5 - Tabel(1)/280 + $

4/105*Tabel(0) - Tabel(sx-1)/5 + 4*Tabel(sx-2)/5)/h

D(sx-4) = (Tabel(sx-8)/280 - 4/105*Tabel(sx-7) + $

Tabel(sx-6)/5 - 4*Tabel(sx-5)/5 - Tabel(0)/280 + $

4/105*Tabel(sx-1) - Tabel(sx-2)/5 + 4*Tabel(sx-3)/5)/h

return,D

end

function Superglad,Tabel,n
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C IDL-Program for numerical modelingC.2. Analyse shock front and calculate A∗

;Smoothens the vector by filtering out the peaks

s = size(Tabel)

sx=s[1]

Result=Tabel

Temp=fltarr(n)

n1 = (n-1)/2

for i=n1,(sx-1-n1) do begin

for j=0,(n-1) do Temp(j) = Tabel(i-n1+j)

m = mean(Temp)

Result(i) = m

endfor

return,Result

end
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Appendix D

Images of Planetary Nebulae

The picture is in blue-scale. The red line indicates the outer shock wave front
as calculated by the program. The yellow line corresponds to the density
profile. The description for each class of PN’s can be found in section 5.

NGC 2867 (Irregular)
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D Images of Planetary Nebulae

Helix Nebula (Ellipsoidal)

IC 3568 (Ellipsoidal)
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D Images of Planetary Nebulae

NGC 6826 (Ellipsoidal)

Hourglass Nebula (Disk)
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D Images of Planetary Nebulae

M 27 alias NGC 6853 (Disk)

M2-9 (Disk)
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D Images of Planetary Nebulae

NGC 5307 (Disk)

NGC 6543a (Disk)
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D Images of Planetary Nebulae

NGC 7009 (Disk)

Hubble 5 (Disk)
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D Images of Planetary Nebulae D.1. The Red Rectangle

D.1 The Red Rectangle

Hubble Space Telescope image of the Red Rectangle (HD 44179). The nu-
merical calculations for equation (4.64) with α = 1, σ = 2, η = 3 and t = 1.6
appear to fit quite good. The observation is by [Van Winckel & Cohen, 1999].
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