
A statistical method for the evaluation of compiler switches
Ommen, M. van

Citation
Ommen, M. van. (2005). A statistical method for the evaluation of compiler switches.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596896

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596896

A Statistical Method for the Evaluation of

Compiler Switches

Thijs van Ommen

Bachelor thesis
Mathematical Institute, Leiden University

Supervisors: Prof. S. van de Geer, Dr. E.W. van Zwet

December 15, 2005

1 Introduction

When a computer program is compiled, the settings of many compiler switches
affect the efficiency of the resulting program. The optimal set of switches will
depend not only on the architecture of the computer on which the program is
to be run, but will also differ from one program to another. It is very difficult to
determine analytically how a given set of switches will interact, even if the pre-
cise implementation of the compiler itself is known. A statistical method to find
a good set of switches is therefore desirable. In their article ‘Feedback-Directed
Selection and Characterization of Compiler Optimizations’[2], Kingsum Chow
and Youfeng Wu propose such a method.

We will first look at the method used by Chow and Wu. From sections 6
onwards, we will discuss a number of variations on this method.

2 Model Description

If the compiler switches functioned independently, finding the set of switches for
which the expected performance is best among all those sets would be straight-
forward, as the effects of the switches could all be measured individually. How-
ever, the performance can’t be solely determined from the sum of these main
effects, because in practice many dependencies occur between the switches. In
addition to their main effects, two switches may contribute a positive or negative
combined effect to the compiled program’s performance. Such a combined effect
is called a second order interaction effect. Similar higher-order interactions may
exist for larger subsets of switches.

A complete analysis of all main effects and interaction effects would require
testing all possible combinations. An experimental design which includes all
these combinations is called a full factorial design. Given n binary switches,
this design would require 2n test runs, each consisting of compiling and run-
ning the program under study. This number soon becomes impractically large.
Fortunately, much information can be gained from testing only a fraction of all
existing combinations.

3 Fractional Factorial Design

There are various ways to select a subset of the full factorial design. The method
used in [2] starts by completing a full factorial design for a reduced number of
switches. The setting of a switch is denoted by +1 or −1, which signifies that
the switch is on or off, respectively. For every combination, the value of each
remaining switch is then determined by multiplying the values of several other
switches. For example (see table), a full factorial design is generated for the
switches X1, X2 and X3, and the value of X4 in each run is chosen equal to
X1X2X3.

1

run X1 X2 X3 X4

1 −1 −1 −1 −1
2 −1 −1 +1 +1
3 −1 +1 −1 +1
4 −1 +1 +1 −1
5 +1 −1 −1 +1
6 +1 −1 +1 −1
7 +1 +1 −1 −1
8 +1 +1 +1 +1

In this instance, the one formula X4 = X1X2X3 was used, which caused the
number of runs required to be cut in half. More such identities would further
reduce the number of experiment runs.

4 Analysis Using a Linear Model

By performing the above experiment, a value Zi is found for the running time of
run i. To analyze this data, a linear model is used. In such a model, the results
are expressed as linear combinations of the vector Yi•. Each Yik corresponds
to either the general mean, or the effect of one of the compiler switches or an
interaction between those switches:

Yi0 = 1, Yi1 = Xi1, Yi2 = Xi2, Yi3 = Xi1Xi2, . . . , Yi15 = Xi1Xi2Xi3Xi4. (1)

The order in which these are numbered can be freely chosen. We will only use
that Yi0 = 1 for all i. Because each Yik is a product of the factors 1 and −1
from Xi1 . . . Xin, it will again be 1 or −1, depending on which switches were set
in test run i. If N runs are performed, then each i ∈ {1, 2, . . . , N} gives rise to
a linear equation

Zi = C0 + C1Yi1 + C2Yi2 + . . . + C15Yi15. (2)

The values of main and interaction effects can be determined by solving the
system of linear equations in the unknowns C0, C1, . . . , C15 using the method of
least squares. Here, C0 is the general mean, and each Cj with j > 0 is a main
or interaction effect. More generally, for an experiment involving n compiler
switches, the unknowns to be estimated are C0, C1, . . . , Cp where p = 2n − 1.

However, we cannot do this for all higher-order interactions. Due to what is
called aliasing in the experiment, the value of X1X2X3 is always equal to that
of X4. This means that for each run where the effect of X1X2X3 occurs in the
model with a positive contribution, the effect of X4 has a positive contribution,
and the same is the case for their negative contributions. It is thus impossible
to distinguish between the effects of X1X2X3 and X4; the model will only allow
us to estimate their combined effect. This can be seen from the system of linear
equations by looking at the columns corresponding to X1X2X3 and X4. These
columns are identical, meaning that the coefficient matrix in singular.

Because the values of the Xi are either 1 or −1, the identity X4 = X1X2X3

can be rewritten in many ways, for example X1 = X2X3X4 and X1X2 = X3X4.

2

These equivalent identities imply more aliases between switch combinations:
each main effect is confounded with a third order interaction effect, and each
second order interaction effect is confounded with another second order interac-
tion effect. This represents a sacrifice in information gained from the experiment,
which is the necessary consequence of performing fewer test runs.

It is assumed that the main effects of the switches will generally be larger
than the effects of the interactions. Under this assumption, the contribution of
X1X2X3 + X4 which was found by the model will be largely ascribed to X4,
whereas X1X2X3 is assumed to be near zero. The identity X1X2 = X3X4 cannot
be handled in such a way, as without further assumptions, there is no way of
knowing which of X1X2 and X3X4 is the main contributor. If the estimate of
X1X2 +X3X4 is small, it is assumed that neither X1X2 nor X3X4 is significant.
However, if the estimate appears to be significant, then it is desirable to know
the effects of X1X2 and X3X4 independently. More experimental information
would be needed to make any statements about this.

5 Subsequent Test Runs

In the article by Chow and Wu, further test runs are carried out in order to
resolve the aliases described above. Such runs are designed by turning off any
switches that showed clear negative effects and turning on those that contributed
positively. This leaves open some switches that did not show a clear effect either
way; new runs are generated for each combination of such switches. However,
the details of this process are unclear from the article, which demonstrates the
procedure only by means of a simple example.

6 Modification of the Model

Each of the data points which are used as input for the model is found by
compiling the target program using the given setting of compiler switches. The
compiled program is executed and its execution time is measured. The mea-
surements will vary from one execution to another for a single program, due to
interference from other processes running on the computer. To represent this
measurement error, an error term ei must be added to each equation in the
model.

The model used by [2] assumes that the effects of different switch combina-
tions can be expressed additively. It seems more natural to assume that the main
effects and interaction effects are of a multiplicative nature: applying a certain
optimization or combination of optimizations will not result in the program’s ex-
ecution time being increased or decreased by a certain constant dependent only
on the compiler switch settings, but will rather result in a proportional adjust-
ment in execution time. The same is reasonable to assume for the measurement
errors. This does not affect the expressive power of the model, but it does change
which situations are represented by smaller values for the parameters, which is

3

main 2nd 3rd 4th 5th 6th 7th 8th

−0
.5

0.
0

0.
5

Figure 1: Simulated values for main and interaction effects

relevant as we will see now.
It was mentioned that we expect the values of higher-order interaction effects

to be near zero. To incorporate this belief, before any measurements are made,
we assume that each jth-order interaction’s effect follows a normal distribution
with mean 0 and variance τ2

j . In some cases, we already have some information
about the effects before the first test is run. As an example, assume that several
switches are already known to improve the compiled program’s performance.
The values of the associated main effects are then assumed to follow a normal
distribution with mean µ1 < 0 (because the program’s running time is expected
to decrease) and variance τ2

1 . Figure 1 shows an example of a set of values
that were randomly drawn using a distribution as described above. To make
further analysis of the model easier, we further transform the measurements Z
to account for such adjustments in the mean, so that in the transformed model,
all effects including the main effects are again distributed about 0. We do not
make any assumptions about the general mean C0.

The model now has the form

Zi = log(measurementi) = C0Yi0 + C1Yi1 + C2Yi2 + . . . + CpYip + ei. (3)

To allow this model to be analyzed, the following assumptions are made regard-
ing the error term: the error terms for all measurements are assumed to obey

4

the same normal distribution with mean 0. Further, the error terms for different
measurements are assumed to be independent.

7 Regularization

Due to the presence of measurement errors, solving the linear system described
earlier will not give desirable results. The solution of the system will overfit,
as a small error in a single measurement causes large changes in the estimated
values Ci. Many statistical approaches exist which may help to counteract this
phenomenon.

In [2], results with high uncertainties are discarded in order to avoid focusing
on measurement errors. The disadvantage of this method is that throwing away
some variables is a discrete process. The result will often be subject to high
variance. Other methods exist that do not have this disadvantage, known as
regularization methods. An example is ridge regression. The method of least
squares is modified to find a vector C which gives a good fit while keeping the
values of C small. This is done by including penalty terms for each Ci other
than C0 in addition to the sum of squared differences, and minimizing this
result. These terms are of the form λiC

2
i . The larger we choose λi, the harder

the method will try to keep the associated value Ci small.
Another advantage of ridge regression is that it allows us to work with un-

certainties regarding the impact of higher-order interactions on performance.
Due to confounding in a fractional factorial design, assumptions must be made
about the actual source of the summed contribution of a set of aliased switch
combinations. Ridge regression solves this problem in an elegant way, as we may
choose a different λi for each Ci. Because we expect to explain most of our data
by the main effects of the compiler switches and assume that higher-order inter-
actions will have progressively smaller effects on performance, a value is chosen
for λi depending on the number of factors X in Yi. This leads to the expression

p∑
i=1

(Zi −
p∑

j=0

CjYij)2 +
p∑

j=1

λjC
2
j (4)

where Yij equals Xik1Xik2 . . . Xikl
, the product of values of the switches in run

i.
Using matrix algebra, the ridge regression criterion can be written as

(Z − Y C)T (Z − Y C) + CT PC (5)

where Z is the N -vector of observations, Y is an N × (p + 1) matrix consisting
of ±1, C is the (p + 1)-vector of the mean and values for the switches and
interactions, and P is the diagonal matrix with Pii = λi for i > 0 and P00 = 0,
where the rows and columns are numbered from 0. The outcome of minimizing
this criterion can be computed as

Ĉridge = (Y T Y + P)−1Y T Z (6)

5

([3]).
To find values for the penalty coefficients λi, we adopt a Bayesian point of

view. Let

f(Z|C) = (2πσ2)−n/2 exp
[
−1
2σ2

(Z − Y C)T (Z − Y C)
]

(7)

be the probability density function of the sampling distribution denoting that
the error terms are normally distributed with mean 0 and variance σ2 > 0,
and let g(C) be the prior distribution, representing our assumptions about the
values of the main and interaction effects before measurements are collected.
If the prior follows a multivariate normal distribution with mean 0, variances
given by the vector τ , and covariances 0, then its density is given by

g(C) = (2π)−n/2(τT τ)−1/2 exp
[
−1

2
CT diag(τ)−2C

]
(8)

and the posterior distribution of C adjusted by observations Z is given by

h(C|Z) =
f(Z|C)g(C)∫
f(Z|U)g(U)dU

= cf(Z|C)g(C). (9)

Taking the logarithm of this expression, we find

− log(h(C|Z)) = c +
1

2σ2

N∑
i=1

(Zi −
p∑

j=0

YijCj)2 +
1
2

p∑
j=0

C2
j

τ2
j

(10)

∝ c′ +
N∑

i=1

(Zi −
p∑

j=0

YijCj)2 +
p∑

j=0

σ2

τ2
j

C2
j (11)

which is equal up to the constant c′ to (4), the expression minimized by ridge
regression with λj = σ2/τ2

j . This means that the ridge regression estimate for C
maximizes the likelihood according to the posterior distribution. The posterior
is normally distributed, so its mode is also its expectation. ([3], page 60; [4],
page 589)

Because we choose large values of τj for those j corresponding to the mean,
main effects and the lower-order interactions, the prior distributions for the
main effects and lower-order interaction effects follow a flat curve. This is called
a noninformative prior, and its result is that the posterior will depend to a
greater extent on the observations. The opposite is true for the higher-order
interaction effects, which were given prior distributions with low variance. In
these cases, the observed data has much less effect on the posterior distribution.

8 Computing the Estimates

Expression (6) for the mean of the posterior distribution involves taking the
inverse of a (p+1)× (p+1) matrix. Because p+1 will typically be much larger

6

than N , the expression

TY T (Y TY T + σ2IN)−1Z (12)

where T = diag(τ)2 ([1], page 36) will be more useful. We see that the inverse
of Y TY T + σ2IN exists because this matrix can be written as

p∑
k=0

τ2
kY•kY T

•k + σ2IN , (13)

where σ2IN is a positive definite matrix, and τ2
kY•kY T

•k is positive semidefinite
for each k. Thus we see that the matrix to be inverted is positive definite, which
implies that its determinant is positive.

If the τi are finite, positive values, then T is invertible, and we see from

(Y T Y + σ2T−1)TY T = (Y T Y TY T + σ2Y T) (14)
= Y T (Y TY T + σ2IN) (15)

TY T = (Y T Y + σ2T−1)−1Y T (Y TY T + σ2IN)(16)
TY T (Y TY T + σ2IN)−1Z = (Y T Y + σ2T−1)−1Y T Z (17)

that the two expressions for Ĉ in (6) and (12) are equal. A problem occurs
because P00 = σ2/τ2

0 = 0 (we do not want to penalize the general mean under
ridge regression), which we solve by taking

Ĉ = lim
τ0→∞

TY T (Y TY T + σ2IN)−1Z. (18)

and this will converge to Ĉridge with P00 = 0.
Because P = σ2T−1 does not exist if τi = 0 for some i, the ridge regression

formula could not deal with such a choice of τ . T−1 does not appear in the
new expression for Ĉ, so that option is now open. Choosing τi = 0 expresses a
prior distribution where effect i is 0 with probability 1. It is easy to see that
the rows and columns of T and the columns of Y which correspond to i can be
omitted from the matrices to reduce the computational load. For example, if we
decide to set τi = 0 for all interactions i of order k or greater for some constant
k, the size of the matrices in the calculation will be polynomial in n, rather
than exponential. This has the disadvantage that the benefit of regularization
does not apply to the higher-order interactions anymore, but that will be an
acceptable tradeoff in many cases.

It is now possible to compute the expected performance value of each given
switch setting under the posterior distribution. We are interested in knowing
which switch setting maximizes this value. For a small number of switches, this
can be done by computing

Ẑi = Ĉ0 ± Ĉ1 ± Ĉ2 ± . . .± Ĉp (19)

for each i ∈ {1, 2, . . . , 2n}. For large numbers of switches, more advanced meth-
ods must be used. Finding the optimal values for X1, X2, . . . , Xn can be ex-
pressed as a linear optimization problem. To see this, we note that the relation

7

Y = X1X2 where all variables are ±1 can be expressed by the set of linear
inequalities

Y ≥ X1 + X2 − 1 (20)
Y ≥ −X1 −X2 − 1 (21)
Y ≤ X1 −X2 + 1 (22)
Y ≤ −X1 + X2 + 1. (23)

Computationally efficient methods are available from operations research to
solve problems of this type. If the number of switches is very large but we are
only interested in estimating effects up to a certain order, solving the problem
this way is significantly more efficient than using the brute force method.

9 A Heuristic for Choosing Test Runs

Also from [1] comes the expression

T − TY T (Y TY T + σ2IN)−1Y T (24)

for the covariance matrix of the posterior distribution. This tells us which of the
estimates of the effects are reliable, and which we should gather more test data
on. We would like to use this information to determine which switch setting we
should use next if we wish to perform another test run.

The estimate of the general mean C0 gives no information about the opti-
mality of switch settings, so we ignore it here. For each switch setting, there is a
region in the space of the other elements of C where that switch setting is opti-
mal. These regions are separated by hyperplanes. When C1 = C2 = ... = Cp = 0,
all these regions meet. We aim to arrive at a posterior distribution which is con-
centrated in a single region. The posterior distribution theoretically allows us to
calculate the probability mass in each region, but that would be a cumbersome
calculation.

By projecting the distribution onto the line through 0 and Ĉ and looking at
the variance of the resulting univariate normal distribution, we find a heuristic
indication of how well the probability mass falls within a single region. An
expression for this variance is

ĈT ΣY Ĉ (25)

([1], page 33), where Ĉ is the existing estimate of C and ΣY is the covariance
matrix that results from a given design matrix Y (it does not depend on the
measurements Z). Instead of minimizing (25), we can substitute the expression
for the covariance matrix (24) and maximize

ĈT TY T (Y TY T + σ2IN)−1Y TĈ. (26)

For each switch setting we could use in the next test run, we modify Y to have
that switch setting in row N + 1 and compute (26).

8

3 4 5 6 7 8 9 10 11 12

−1
.0

−0
.5

0.
0

0.
5

1.
0

Figure 2: Results of performing 50 experiments on a very small design consisting
of 4 switches, where the test runs were chosen randomly, but without repeating
a single switch setting for more than one test run. The x axis gives the number
of test runs, and the y axis gives an indication of the true quality of the switch
setting which was expected to be optimal at that point. The true optimal setting
is at 1, and the general mean is at 0.

Using this criterion to choose test runs for us can replace using another form
of experimental design. Dynamically designing an experiment based on the data
gathered so far has obvious advantages over using a traditional, static experi-
mental design. Subsequent test runs will be focused on finding more information
regarding the effects which are most relevant to the choice of an optimal setting,
or those effect where the estimate is least precise. An alias will be resolved if the
posterior distribution reflects that resolving it will contribute to the quality of
the estimate, and remain unresolved in favor of more important measurements
otherwise.

Unfortunately, this computation must be performed for each possible switch
setting, which becomes infeasible for even modest values of n. For larger n,
more efficient ways to calculate or approximate the criterion must be found, or
a different heuristic must be designed.

9

3 4 5 6 7 8 9 10 11 12

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Again 50 experiments were performed, but here the heuristic described
in this section was used to select the test runs.

10 Comparison to Other Methods

10.1 Factory Settings

Compiler writers usually supply standard settings for the optimization switches.
These settings were chosen with knowledge of the inner workings of the compiler,
but without information regarding the specific platform and program to be
compiled. Because the effectiveness of the switches depends on the latter for
a large part, the factory-supplied settings usually are not optimal; sometimes
even far from it. They can easily be outperformed by the settings found by a
method such as described here.

10.2 Evolutionary Algorithms

Evolutionary algorithms have been used to solve the problem of finding good
settings of compiler switches. The main difference between those algorithms and
the method described here is that evolutionary algorithms are designed to focus
on local information, trying to find a good solution by taking small steps in
the setting space. The method described here emphasizes global information,

10

because the model assumes that higher-order interactions do not contribute
significantly to the performance of the program. Information regarding the main
effects and lower-order interaction effects is applicable globally.

11 Conclusion

So far, only binary switches which can be either on or off have been discussed.
Many compilers also offer switches that can assume more than two values. Adap-
tation of the model for such switches is a topic for further research.

Execution of the compiled programs was used to measure performance of
a set of compiler switches. Alternatively, simulation could be used. This would
yield exact results for the number of clock cycles required to execute a pro-
gram. If the same program were to be simulated twice, identical measurements
would be found. The disadvantage of the approach is that simulation is usually
many times slower than execution. The changes to the model implied by these
differences form another interesting point for further research.

Despite the regularization, ridge regression is still somewhat sensitive to out-
liers in the data. Methods for detecting data points that are likely to be outliers
and methods for dealing with such potential outliers might give a significant
improvement in some cases.

The application of ridge regression described here assumes that the variance
of the error terms and suitable prior distributions for the main and interac-
tion effects are known. Some tests could be allocated to verify the validity of
this information for a given combination of compiler, architecture, and target
program.

Different computational methods from linear algebra and operations research
may be applied to perform the calculations required in a more efficient manner.

References

[1] P. J. Brockwell, R. A. Paris, Time Series: Theory and Methods, Springer,
1991.

[2] K. Chow and Y. Wu, Feedback-directed selection and characterization of
compiler optimizations. In Proc. 2nd Workshop on Feedback Directed Opti-
mization, 1999.

[3] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learn-
ing, Springer, 2001.

[4] J. A. Rice, Mathematical Statistics and Data Analysis, Second Edition,
Duxbury Press, 1995.

11

A Appendix

Reproduced below are the programs that were used to simulate the model.

A.1 init.R

Creates data structures to be used by simulation.R when creating

a simulation, and sets up some functions.

This file only needs to be sourced when the number of switches

(dims) in the model changes.

dims <- 4

parameters for creating a simulation

- standard deviation of the error term

sigma <- 5

- standard deviation of the general mean, main effects, and

higher-order interactions

sdbyorder <- function(order) {

if (order == 0)

ret <- 100

else

ret <- 100 / order^2

ret

}

- expected values of general mean, main effects and interactions

meanbyorder <- function(order) {

if (order == 0)

ret <- 1000

else

ret <- 0

ret

}

Construct vectors using the above functions

xlist <- list()

sds <- vector("integer", 2^dims)

for (i in 1:dims) {

2^(dims-i) times -1, then that many +1, for 2^dims total

xlist[[i]] <- gl(2, 2^(dims-i), 2^dims, labels = c(-1, 1))

sum all levels for each factor to use in sd for rnorm

(as.vector returns 1 and 2, ignoring the labels)

sds <- sds + as.vector(xlist[[i]], "integer")

}

sds <- sds - dims

sds is now a vector with an element for each of the 2^n (mean,

main/interaction effects). It is 0 for the mean, 1 for main

effects, and n for nth order interaction effects.

Next, let means and sds be vectors of the means and standard

12

deviations of each (mean, main/interaction effect). Using

these vectors, some random "actual" values can be drawn for

use in a simulation.

means <- sapply(sds, meanbyorder)

sds <- sapply(sds, sdbyorder)

construct taumat, the matrix with entries tau_i^2 on the main

diagonal

taumat <- array(0, c(2^dims, 2^dims))

diag(taumat) <- sds^2

taumat[1,1] <- 1e10 # We want the limit of this going to infinity.

R can’t (easily) do this for us, so we settle for picking a

large number. This will lead to computational inaccuracies,

especially in the posterior variance of the general mean.

find the vector of coefficients

getY <- function(test) {

Y <- vector("integer", 2^dims)

for (i in 1:(2^dims)) {

For each X that appears as a factor in Y[i],

multiply Y[i] by that X

Y[i] <- 1

for (k in 1:dims) {

if (xlist[[k]][i] == 1

&& xlist[[k]][test + 1] == -1)

Y[i] <- -Y[i]

}

}

Y

}

Cause data from previous experiments to be cleared on next call

of iteration.

beginexperiment <- function() {

count <<- 0

}

Perform a given test run (getting the result from dotestrun) and

update all data structures accordingly.

iteration <- function(test) {

count <<- count + 1

Yvector <- getY(test)

if (count == 1)

Z <<- dotestrun(Yvector)

else

Z <<- c(Z, dotestrun(Yvector))

if (count == 1)

Y <<- array(Yvector, c(1, 2^dims))

else

Y <<- rbind(Y, Yvector)

13

first compute diag(tau) t(Y) Sigma22^-1

intermediate <- taumat %*% t(Y) %*% solve(Y %*% taumat

%*% t(Y) + sigma^2 * diag(count))

compute posterior mean and covariance

estfx <<- intermediate %*% Z

estcov <<- taumat - intermediate %*% Y %*% taumat

estfx

}

A.2 simulation.R

Sets truefx, which is used when simulating measurements, and

creates functions required for simulation.

Draw random values for general mean, main effects and

interactions.

truefx <- rnorm(2 ^ dims, means, sds)

Simulate a test run. The argument specifies which switches are

on for this run, using binary encoding.

For practical application, the logarithm of a measurement should

be returned instead.

dotestrun <- function(Yvector) {

rnorm(1, t(Yvector) %*% truefx, sigma)

}

A.3 method.R

A collection of functions which use the posterior mean and

covariance to design an experiment.

Gives an indication of the value of choosing a particular

switch setting for the next experiment run. The returned

value equals the constant t(estfx) %*% taumat %*% estfx

minus the variance of the posterior distribution projected

on the line through 0 and estfx.

estimprovement <- function(test) {

if (count == 0)

return(0)

add a row, then remove the first column

Yvector <- getY(test)

newY <- rbind(Y, Yvector)[,-1]

(t(estfx[-1]) %*% taumat[-1,-1] %*% t(newY) %*% solve(newY

%*% taumat[-1,-1] %*% t(newY)

+ sigma^2 * diag(count + 1))

%*% newY %*% taumat[-1,-1] %*% estfx[-1])

}

14

Use a heuristic to determine which switch setting might be

a good choice for a next test run.

choosesubsequent <- function() {

estimpr <- sapply(0:(2^dims-1), estimprovement)

which.max(estimpr) - 1

}

Returns the switch setting with the best (here: highest)

expected performance.

bestsetting <- function() {

best <- 0

bestval <- t(getY(0)) %*% estfx

for (i in 1:(2^dims - 1)) {

val <- t(getY(i)) %*% estfx

if (val > bestval) {

bestval <- val

best <- i

}

}

best

}

Do a complete experiment consisting of totalruns test runs.

The return value is the switch setting with the highest

expected performance.

performmethod <- function(totalruns) {

beginexperiment()

for (i in 1:totalruns) {

setting <- choosesubsequent()

print("Test run using switch setting:")

print(setting)

iteration(setting)

}

bestsetting()

}

15

