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Abstract

We consider the family of skew tent maps Tα,β : [0, 1]→ [0, 1] defined by

Tα,β(x) =

{
αx+ α+β−αβ

β for x ∈ [0, 1− 1
β ],

β − βx for x ∈ [1− 1
β , 1]

with α, β > 1 and α+ β ≥ αβ. By A. Lasota and J.A. Yorke [LY73] we know that each skew
tent map has a unique acim. We fix the parameter β and show that the measure-theoretic
entropy of the skew tent maps, with respect to the unique acim, depends continuously on
α on a part of the parameter domain. The stability of the acim under small perturbations
plays an important role in showing this result. We also investigate the relation between the
measure theoretic entropy and the topological entropy for skew tent maps.
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Chapter 1

Introduction

1.1 Background

In ergodic theory we study dynamical systems and related problems. The systems we study
can be used to model physical phenomena whose states change over time. We want to describe
the long term behavior of such systems. There are theorems such as the Poincaré Recurrence
Theorem that give information about the long term behavior of trajectories. The Poincaré
Recurrence Theorem states that in a dynamical system the initial state in finite time almost
surely returns to the initial state or a state very close to the initial state. The time elapsed
before recurrence to the initial state may depend on the exact initial state. This makes it
in general hard to predict the long term behavior of trajectories. It is therefore natural to
describe the long term behavior by statistical means. This is done by proving the existence of
invariant measures and determining their ergodic properties. In some cases it is easy to find
invariant measures, but those measures might be trivial and they do not give relevant infor-
mation. We look for invariant measures that are absolutely continuous with respect to the
Lebesgue measure. These measures are nice to work with from a theoretical point of view,
because some properties that are verified for the absolutely continuous invariant measure
(acim) also automatically hold for the Lebesgue measure. On the other side these measures
are also important from a physical point of view, because computer simulations of orbits of
the dynamical system reveal only invariant measures which are absolutely continuous with
respect to Lebesgue measure.

In the field of one-dimensional dynamical systems a lot of research has been done on the
existence of acims. In showing the existence of acims the Perron-Frobenius operator plays an
important role, because the existence of an acim is equivalent to the existence of a fixed point
of the Perron-Frobenius operator. For piecewise monotonic maps we get a nice and practical
representation for the Perron-Frobenius operator. This representation can be used to show
that the Perron-Frobenius operator has fixed points. For non-singular piecewise expanding
C2 maps this was done by A. Lasota and J.A. Yorke [LY73]. They derived an inequality,
now known as the Lasota-Yorke inequality, that implies the existence of a fixed point for the
Perron-Frobenius operator. Their method has been used by many others to show existence of
acims for various classes of non-singular piecewise expanding maps. Once we have established
the existence of an acim, the next goal is to classify the number of acims and determine their
ergodic properties.
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One important property of a dynamical system is the stability of the invariant measures.
Suppose we have a dynamical system with a unique acim. We would like to know if the
acim of a perturbed dynamical system is in some sense close to the acim of the unperturbed
dynamical system. If this is the case, then we call the map acim-stable. In practice this is
motivated by the fact that we often observe a perturbation of a dynamical system, due to for
example measurement errors, and would like to know if the unperturbed and the perturbed
system show the same behavior.

G. Keller [Kel82] showed that piecewise expanding transformations that satisfy a uniform
Lasota-Yorke inequality have a stable acim. Many dynamical systems do not satisfy a uni-
form Lasota-Yorke bound. For those maps we need other conditions to show that the acim
is stable or unstable. A mechanism that can cause instability is a periodic critical point in
the unperturbed system, for which there exist small neighborhoods (around the orbit of the
periodical critical point) that are invariant under the perturbed system. G. Keller [Kel82]
used this mechanism to construct a family of W-shaped maps with an unstable acim. G.
Keller conjectured that this is the only mechanism that can cause instability of the acim.
This conjecture turned out to be not true as shown by P. Eslami and M. Misiurewicz in
[EM12]. Other papers that deal with instability of acims for W -shaped maps are for example
[LGB+13], [Li13] and [LG13].

In this thesis we look at a family of transformations called skew tent maps. Each skew
tent map is a piecewise linear map that depends on two parameters. By A. Lasota and J.A.
Yorke [LY73] each skew tent map has an acim and by T.Y. Li and J.A. Yorke [LY78] the acim
is unique. We fix one parameter of the skew tent map. By M. Misiurewicz [Mis89] we know
that the topological entropy of the skew tent map depends continuously on the non-fixed
parameters. We prove that there is a region were the skew tent maps are acim-stable. As a
consequence the measure-theoretic entropy of the skew tent map, with respect to the unique
acim, depends continuously on the non-fixed parameter on the same region where the skew
tent maps are acim-stable. In addition, we investigate the conditions under which the unique
acim of the skew tent map is also a measure of maximal entropy.

1.2 Thesis overview

In the next chapter we introduce some basic concepts and results from ergodic theory and
dynamical systems. In Chapter 3 we introduce the Perron-Frobenius operator and piecewise
expanding maps. We derive some basic properties for the Perron-Frobenius operator and
explain how the Perron-Frobenius operator can be used to show the existence of acims for
piecewise expanding maps. We also explain what acim-stability is and give some results that
can be used to show acim-stability for piecewise expanding maps. In Chapter 4 we look at
skew tent maps. We start by showing that the skew tent map has a unique acim and look
at properties such as exactness. After that we take one parameter fixed and show that the
skew tent map is acim-stable for various values of the non-fixed parameter. As a consequence
there exists a region where the measure-theoretic entropy of the skew tent maps depends
continuously on the non-fixed parameter. In Chapter 5 we look at the relation between the
acim and measures of maximal entropy for skew tent maps.
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Chapter 2

Preliminaries

In this section we present the measure-theoretic background on dynamical systems and some
general background that is needed throughout this thesis. We assume that the reader is
familiar with some basic ideas from measure theory such as σ-algebras and measures. For a
more extensive background on dynamical systems and some examples we refer the reader to
[BG97] and [LM94].

2.1 Measure preserving transformations

In the study of dynamical systems from a measure-theoretic perspective we are interested in
measures for which the probabilities of observable events do not change in time. This idea is
formalized in the notion of a measure preserving transformation.

Definition 2.1.1. Let (X,F , µ) be a probability space. We call a measurable transformation
T : X → X measure preserving with respect to µ or say µ is T -invariant if µ(T−1A) = µ(A)
for every A ∈ F . The quadruple (X,F , µ, T ) is called a dynamical system.

Often one would like to have that a dynamical system cannot be split up into smaller
dynamical systems. This irreducibility property is called ergodicity.

Definition 2.1.2. Let (X,F , µ, T ) be a dynamical system. The transformation T is called
ergodic with respect to the measure µ if for every A ∈ F , such that T−1A = A we have
µ(A) = 0 or µ(X\A) = 0.

The famous Pointwise Ergodic Theorem also known as Birkhoff’s Ergodic Theorem tells
us that for ergodic transformations the time average equals the space average almost surely.
This means that even if we are not able to describe what orbits of transformation do we still
have information about what most orbits do on the average.

Theorem 2.1.3 (Pointwise Ergodic Theorem). Let (X,F , µ) be a probability space and
T : X → X a measure preserving transformation. Then, for any f ∈ L1(X,F , µ),

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) = f∗(x)

exists µ-a.e., is T -invariant and
∫
X fdµ =

∫
X f
∗dµ. Moreover, if T is ergodic, then f∗ is a

constant µ-a.e. and f∗ =
∫
X fdµ.
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Proof. See [Wal82, Theorem 1.14].

From the Pointwise Ergodic Theorem we get another characterization of being ergodic.

Corollary 2.1.4. Let (X,F , µ) be a probability space and T : X → X a measure preserving
transformation. Then, T is ergodic if and only if for all each A,B ∈ F

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Proof. See [Wal82, Corollarly 1.14.2].

From this characterization we see that being ergodic is a weak form of asymptotic inde-
pendence. An ergodic system is asymptotically independent on average. A dynamical can
have stronger notions of being independent, one example is mixing.

Definition 2.1.5. Let (X,F , µ, T ) be a dynamical system. Then,

(i) T is called weakly mixing if for each A,B ∈ F

lim
n→∞

1

n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0.

(ii) T is called strongly mixing if for each A,B ∈ F

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

Weakly mixing is also a form of being asymptotically independent on average, while
strongly mixing means being asymptotically independent. It can be shown that strongly
mixing implies weakly mixing and weakly mixing implies ergodicity. The implications in the
other direction are not true in general. There is a notion, introduced by Rokhlin, that is even
stronger than mixing called exactness.

Definition 2.1.6. Let (X,F , µ, T ) be a dynamical system. The transformation T is called
exact if F∞(T ) = ∩∞n=0T

−n(F) consists of only sets of µ-measure 0 or 1.

Rokhlin studied properties of exact transformations and showed the following characteri-
zation of exactness.

Theorem 2.1.7. Let (X,F , µ, T ) be a dynamical system. The transformation T is exact if
and only if for each A ∈ F with positive µ-measure and measurable images TA, T 2A, . . . the
following relationship holds:

lim
n→∞

µ(TnA) = 1.

Proof. See [Rok61].
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2.2 Invariant measures

Let (X,F) be a measurable space, T : X → X a measurable transformation and M(X) denote
the collection of all measures on (X,F). We are interested in the space of all T -invariant
measures, i.e.

M(X,T ) = {µ ∈M(X) : µ ◦ T−1 = µ}.

In general it is not clear if there always exists a T -invariant measure. There are cases for
which it is easy to prove the existence of invariant measures. One of those cases is when a
transformation has periodic orbits. Let x ∈ X be a point in a periodic orbit of T with order
n. Then, the measure defined by

µ =
1

n

n−1∑
i=0

δT ix

is a T -invariant measure. This follows from observing that for every A ∈ F we have

µ(A) =
1

n

n−1∑
i=0

δT ix(A) =
1

n

n−1∑
i=0

δT i+1x(A) =
1

n

n−1∑
i=0

δT ix(T−1A) = µ(T−1A).

For continuous transformations on a compact metric space we can also prove the existence
of invariant measures. This is due to the following theorem.

Theorem 2.2.1. Let X be a compact metric space and T : X → X be a continuous trans-
formation. If {µn}∞n=1 is a sequence in M(X) and we form the new sequence {µ̃n}∞n=1 by
µ̃n = 1

n

∑n−1
i=0 µn ◦ T−i, then any limit point µ̃ of {µ̃n} is a member of M(X,T ). Such limit

points exist by the compactness of M(X).

Proof. See [Wal82, Theorem 6.9].

If we have an interval map, then the invariant measure we constructed for a periodic orbit
is supported on a small set. We are interested in interval maps that have an invariant measure
that is supported on a large part of the system. A measure that does this is the Lebesgue
measure, but it is not necessary an invariant measure. We look for invariant measures that
behave like the Lebesgue measure. This is formalized in the notation of absolutely continuous
measures.

Definition 2.2.2. Let µ and ν be two measures on the same measurable space (X,F). We
say that µ is absolutely continuous with respect to ν if for any A ∈ F , such that ν(A) = 0, it
follows that µ(A) = 0. The absolute continuity of µ with respect to ν is denoted by µ� ν.

We assume absolute continuity with respect to the Lebesgue measure when not explicitly
mentioned and abbreviate absolutely continuous invariant measure by acim. It is difficult to
find acims under general assumptions or they might not even exist. In Chapter 3 we introduce
the piecewise expanding maps and show the existence acims for some maps in this class.
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2.3 Entropy

The concept of entropy was introduced in information theory by C.E. Shannon [Sha48]. It
measures the amount of information contained in a source. In general, the more certain
or deterministic a source is, the less information it will contain. The concept of entropy is
now used in different fields of mathematics. We look at the entropy in a measure preserving
dynamical system and in a topological dynamical system.

2.3.1 Measure-theoretic entropy

The measure-theoretic entropy expresses the amount of randomness in the system generated
by a transformation. For a detailed explanation on measure-theoretic entropy we refer the
reader to [Wal82]. We start out by introducing some notation that is used to define measure-
theoretic entropy.

Definition 2.3.1. Let (X,F , µ) be a measure space and I a finite or countable index set.
We call α = {αi : i ∈ I} a partition of X if α is the disjoint union of X up to sets of measure
zero.

Let (X,F , µ) be a measure space and let α = {α1, . . . , αn}, β = {β1, . . . , βm} be finite
partitions on X. We define a refinement by

α ∨ β := {αi ∩ βj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

This refinement is called the join of α and β and is also a partition of X. We can also define
the join of a finite partition α and a transformation T by

n−1∨
i=0

T−iα := α ∨ T−1α ∨ . . . ∨ T−(n−1)α.

This set consists of elements that are of the form

Ai0 ∩ T−1Ai1 ∩ . . . ∩ T−(n−1)Ain−1 .

For j, k ≥ 0 we let

σ
( k∨
i=j

T−iα
)

and σ
( −k∨
i=−j

T−iα
)

denote the smallest σ-algebras containing the partitions
∨k
i=j T

−iα and
∨−k
i=−j T

−iα respec-
tively. Furthermore, if the transformation T is invertible we let

σ
( ∞∨
i=−∞

T−iα
)

denote the smallest σ-algebra containing all the elements of all the partitions
∨k
i=j T

−iα and∨−k
i=−j T

−iα for all j, k ∈ N. If T is invertible, then we call a partition α a generator with

respect to T if σ
(∨∞

i=−∞ T
−iα
)

= F . If T is non-invertible, then we call a partition α a
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generator with respect to T if σ
(∨∞

i=0 T
−iα
)

= F .

We now define the measure-theoretic entropy. This is done in a few steps. The first step
is to define the entropy of a finite partition α which is defined as

Hµ(α) := −
n∑
i=1

µ(αi) log(µ(αi)).

Next we define the entropy of T with respect to the partition α which is defined as

hµ(α, T ) := lim
n→∞

1

n
Hµ(

n−1∨
i=0

T−iα).

Finally we define the measure-theoretic entropy of a transformation.

Definition 2.3.2. Let (X,F , µ, T ) be a dynamical system. The measure-theoretic entropy
of T is given by

hµ(T ) = sup
α
hµ(α, T ),

where the supremum is taken over all partitions with finite entropy.

Calculating the measure-theoretic entropy from the definition is difficult, because we need
to take the supremum over all partitions with finite entropy. We get a more practical way of
calculating the entropy by using a partition that is a generator.

Theorem 2.3.3 (Kolmogorov-Sinai Theorem). If the partition α is a generator with respect
to the map T and Hµ(α) <∞, then hµ(T ) = hµ(α, T ).

The next theorem gives another way to calculate the measure-theoretic entropy. It gives
an expression for the measure-theoretic entropy in terms of the Jacobian and the invariant
measure. This result also holds for higher dimensional maps. We formulate the result for the
one-dimensional case, where the Jacobian is simply the derivative of the map.

Theorem 2.3.4 (Rokhlin’s formula). Let (X,F , µ) be a probability space and T : X → X a
measure preserving map that is locally invertible. If the partition α is a generator with finite
entropy and every αi ∈ α is an invertibility domain of T , then hµ(T ) =

∫
logX |T ′|dµ.

Proof. See [VO16, Theorem 9.7.3].

We now give an example where we use the Kolomogorov-Sinai Theorem to calculate the
measure-theoretic entropy.

9



0 1
2

1

1

Figure 2.1: The doubling map.

Example 2.3.5. Let (I,B(I), λ) be a probability space and T : [0, 1) → [0, 1) the doubling
map, which is defined by

T (x) = 2x mod 1 =

{
2x if x ∈ [0, 12),

2x− 1 if x ∈ [12 , 1].

The graph is shown in Figure 2.1. For any interval [a, b) we have

T−1[a, b) =
[a

2
,
b

2

)
∪
[a+ 1

2
,
b+ 1

2

)
,

and

λ(T−1[a, b)) = b− a = λ([a, b)).

Using Theorem A.0.1 it can be shown that λ is T -invariant. For the partition α =
{

[0, 12), [12 , 1)
}

we have

n−1∨
i=0

T−iα =

{[
i

2n
,
i+ 1

2n

)
: i = 0, . . . , 2n − 1

}
. (2.1)

The intervals in (2.1) are called dyadic intervals and they generate the Borel σ-algebra. The
entropy with respect to the partition α and transformation T is given by

Hλ

(
n−1∨
i=0

T−iα

)
= −

2n−1∑
i=0

λ

([
i

2n
,
i+ 1

2n

))
log λ

([
i

2n
,
i+ 1

2n

))

= −
2n−1∑
i=0

(
1

2n

)
log

(
1

2n

)

= −2n

(
1

2n

)
log

(
1

2n

)
= n log 2.
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By the Kolmogorov-Sinai Theorem the entropy of T is given by

hλ(T ) = hλ(α, T ) = lim
n→∞

1

n
Hλ

(
n−1∨
i=0

T−iα

)
= lim

n→∞

1

n
· n log 2 = log 2.

2.3.2 Topological entropy

The topological entropy is a measure for the complexity of the system. The first definition
of topological entropy was given by Adler, Konheim and McAndrew [AKM65] and makes use
of open covers for the space X. Their definition requires X to be a compact metric space
and the transformation T : X → X to be continuous. Later Bowen [Bow71] and Dinaburg
[Din70] independently introduced a different definition using ε-separated points. It can also
be defined using the dual definition of ε-spanning points. Their definition requires (X, d) to be
a metric space and T : X → X to be uniformly continuous. In the setting of compact metric
spaces and continuous maps, these two definitions agree. The definition by Adler, Konheim
and McAndrew can be found in [AKM65]. We follow [Wal82] for the definition introduced by
Bowen and Dinaburg. We define the topological entropy using ε-spanning points. The defi-
nition using ε-separated points is analogous and results in the same value for the topological
entropy.

Let (X, d) be a metric space and T : X → X a uniformly continuous map. We denote the
open ball with centre x and radius r by B(x, r) and the closed ball by B̄(x, r). We define a
new metric dn on X by

dn(x, y) = max
0≤i≤n−1

d(T ix, T iy).

The open ball with centre x and radius r in the new metric dn is
⋂n−1
i=0 T

−iB(T ix, r).

Definition 2.3.6. Let n be a natural number, ε > 0 and K a compact subset of X. A subset
A of X is said to (n, ε)-span K with respect to T if for every x ∈ K there is a y ∈ A such
that dn(x, y) ≤ ε, i.e.

K ⊂
⋃
y∈A

n−1⋂
i=0

T−iB̄(T iy, ε).

Let rn(ε,K, T ) denote the smallest cardinality of any (n, ε)-spanning set for K with respect
to T . By compactness of K the open cover {

⋂n−1
i=0 T

−iB(T ix, r) : x ∈ X} of K has finite
subcover and therefore rn(ε,K, T ) <∞. Next define

h(T,K) = lim
ε→0

lim sup
n→∞

log rn(ε,K, T )

n
.

Definition 2.3.7. Let (X, d) be a metric space and T : X → X a uniformly continuous map.
Then the topological entropy of T is

h(T ) = sup
K
h(T,K),

where the supremum is taken over the collection of all compact subsets of X.
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We now give a result that can be used to calculate the topological entropy of piecewise
monotone continuous maps. These maps are defined in Section. 3.2

Definition 2.3.8. Let T : X → X be a piecewise monotone continuous map. The lap number
of T , which we denote by c1(T ), is the minimal number of intervals on which T is monotone.
In other words, c1(T ) − 1 is the number of turnings points of T . With cn(T ) we denote the
minimal number of intervals on which Tn is monotone.

Theorem 2.3.9 (Misiurewicz and Szlenk, [MS80]). Let T : X → X be a piecewise
monotone continuous map, then

h(T ) = lim
n→∞

1

n
log cn

and 1
n log cn ≥ h(T ) for any n.

Corollary 2.3.10. If T : X → X is a piecewise linear continuous map with slope equal to
±s, then the topological entropy of T is equal to max{0, log s}.

Proof. See Corollary 7.2 in [dMvS93].

Example 2.3.11. Consider the tent map T : [0, 1]→ [0, 1], which is defined by

T (x) =

{
2x if x ∈ [0, 1/2),

2− 2x if x ∈ [1/2, 1].

The graph is shown in Figure 2.2. It follows from Corollary 2.3.10 that the topological entropy
of T is given by h(T ) = log 2.

0 1
2

1

1

Figure 2.2: The tent map.

2.3.3 Variational principle

The measure-theoretic entropy and topological entropy are related through the Variational
Principle for the entropy.

Theorem 2.3.12. Let T : X → X be a continuous map on a compact metric space X. Then
h(T ) = sup{hµ(T ) : µ ∈M(X,T )}.

Proof. See [Wal82, Theorem 8.6].
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2.4 Isomorphism of dynamical systems

When you have a dynamical system you can study the measure structure and the dynamics
of the transformation. It is possible that the measure structure and the dynamics of another
dynamical system are the same. Two dynamical systems that are essentially the same are
called isomorphic.

Definition 2.4.1. Two dynamical systems (X,F , µ, T ) and (Y, C, ν, S) are isomorphic if there
exists a map ψ : (X,F , µ, T )→ (Y, C, ν, S) that has the following properties.

(i) ψ is one-to-one and onto almost everywhere. By this we mean that if we remove
a suitable µ-null set NX from X and a suitable ν-null set NY from Y , such that
T (X\NX) ⊂ X\NX and S(Y \NY ) ⊂ Y \NY , then the map ψ : X\NX → Y \NY is
a bijection.

(ii) ψ is bi-measurable, i.e., ψ−1(C) ∈ F for all C ∈ C.

(iii) ψ preserves the measure: ν = µ ◦ ψ−1, i.e., v(C) = µ(ψ−1(C)) for all C ∈ C.

(iv) ψ preserves the dynamics of T and S, i.e., ψ ◦ T = S ◦ ψ.

The map ψ is called an isomorphism.

Theorem 2.4.2. Let (X,F , µ, T ) and (Y, C, ν, S) be two isomorphic dynamical systems, then
hµ(T ) = hν(S).

Proof. See [Wal82, Theorem 4.11].

The converse of Theorem 2.4.2 is in general not true. If two measure preserving transfor-
mations have the same entropy, then they are not necessarily isomorphic.
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Chapter 3

Theoretical background

In the first part of this chapter we introduce the Perron-Frobenius operator. It describes the
time evolution of densities under a transformation and is therefore an essential tool in the
study of absolutely continuous invariant measures. In the second part we introduce piece-
wise expanding transformations. We study the existence of absolutely continuous invariant
measures for piecewise expanding transformations, their ergodic properties and their stability.

3.1 The Perron-Frobenius operator

The motivation for the definition of the Perron-Frobenius operator is as follows. Let (X,F , µ)
be a probability space and Y : X → X a random variable with probability density function
f . Then, for every A ∈ F we have

Prob({Y ∈ A}) =

∫
A
fdµ.

Let T : X → X be a transformation. Then T ◦ Y is also a random variable. We wonder if
T (Y ) also has a probability density function. We have the following

Prob({T ◦ Y ∈ A}) = Prob({Y ∈ T−1(A)}) =

∫
T−1A

fdµ.

This means that if there exists a probability density function f∗ such that∫
T−1A

fdµ =

∫
A
f∗dµ, (3.1)

then T ◦ Y has a probability density function. In general it is not clear if such a probability
density function exists. However, if T is non-singular we can say more about the existence of
a probability density function such that equation (3.1) holds.

Definition 3.1.1. A measurable transformation T : X → X on a measure space (X,F , µ) is
called non-singular if for all A ∈ F we have that µ(T−1(A)) = 0 if and only if µ(A) = 0.

If T is non-singular, then the existence of a probability density function such that equation
(3.1) holds is a consequence of the Radon-Nikodym Theorem. The operator that maps the
probability density function f to the probability density function f∗ such that equation (3.1)
holds is called the Perron-Frobenius operator.
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Theorem 3.1.2. Let (X,F) be a measurable space and let µ be a σ-finite measure on (X,F).
Let Y be a random variable on X with probability density function f . If the transformation
T : X → X is non-singular, then there exists a unique probability density function PT f such
that ∫

T−1A
fdµ =

∫
A
PT fdµ. (3.2)

The unique operator PT : L1(X,F , µ)→ L1(X,F , µ) such that (3.2) holds is called the Perron-
Frobenius operator corresponding to T .

Proof. Assume that the transformation T is non-singular. For any A ∈ F we write

ν(A) =

∫
T−1A

f dµ.

It can be shown that ν is a σ-finite measure. By non-singularity of T it follows that ν � µ.
Then, the Radon-Nikodym Theorem 1 gives the existence of a unique PT f ∈ L1(X,F , µ) such
that ∫

A
PT fdµ =

∫
T−1A

fdµ.

We now state the most basic properties for the Perron-Frobenius. See e.g. [BG97] and [LM94]
for more details.

Proposition 3.1.3 (Linearity). The Perron-Frobenius operator is a linear operator.

Proof. Let f, g ∈ L1(X,F , µ) and take constants α, β ∈ R. For every A ∈ F we have∫
A
PT (αf + βg)dµ =

∫
T−1A

(αf + βg)dµ

= α

∫
T−1A

fdµ+ β

∫
T−1A

gdµ

= α

∫
A
PT fdµ+ β

∫
A
PT gdµ

=

∫
A

(αPT f + βPT g)dµ.

Since this holds for every measurable set A we have

PT (αf + βg) = αPT f + βPT g µ-a.e.

1see Appendix A for the Radon-Nikodym Theorem
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Proposition 3.1.4 (Positivity). For every f ∈ L1(X,F , µ) with f ≥ 0 we have PT f ≥ 0.

Proof. For every A ∈ B we have∫
A
PT fdµ =

∫
T−1A

fdµ ≥ 0.

Since this holds for every measurable set A we have PT f ≥ 0.

Proposition 3.1.5 (Preservation of Integrals). For the Perron-Frobenius operator we have
the preservation of integrals, i.e. ∫

X
PT fdµ =

∫
X
fdµ.

Proof. Using the definition of the Perron-Frobenius operator and the non-singularity of T
gives ∫

X
PT fdµ =

∫
T−1X

fdµ =

∫
X
fdµ.

Proposition 3.1.6 (Contraction Property). The Perron-Frobenius operator is a contraction,
i.e. ||PT f ||1 ≤ ||f ||1 for any f ∈ L1(X,F , µ).

Proof. Let f ∈ L1(X,F , µ). Define f+ = max{f, 0} and f− = −min{0, f}. We have
f+, f− ∈ L1(X,F , µ) and f+, f− ≥ 0. Note that we can write f = f+−f− and |f | = f++f−.
By Proposition 3.1.3 we have

PT f = PT (f+ − f−) = PT f
+ − PT f−.

By the triangle inequality and the linearity of PT f we get

|PT f | = |PT f+ − PT f−| ≤ |PT f+|+ |PT f−| = PT f
+ + PT f

− = PT (f+ + f−) = PT |f |.

Combining this with Proposition 3.1.5 gives

||PT f ||1 =

∫
X
|PT f |dµ ≤

∫
X
PT |f |dµ =

∫
X
|f |dµ = ||f ||1.

Proposition 3.1.7 (Composition Property). For the Perron-Frobenius operator we have
PT◦Sf = PT ◦ PSf . In particular, PTnf = PnT f .

Proof. Let f ∈ L1(X,F , µ) and define the measure ν by

ν(A) =

∫
(T◦S)−1A

fdµ.

From the non-singularity of T and S it follows that ν � µ. By the Radon-Nikodym Theorem
there exists a function PT◦Sf such that

ν(A) =

∫
(T◦S)−1A

fdµ =

∫
A
PT◦Sfdµ.
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We have ∫
A
PT (PSf)dµ =

∫
T−1A

PSfdµ =

∫
S−1(T−1A)

fdµ

and ∫
A
PT◦Sfdµ =

∫
(T◦S)−1A

fdµ =

∫
S−1(T−1A)

fdµ,

from which it follows that PT◦Sf = PTPSf µ a.e. By induction, it follows that PTnf = PnT f
µ-a.e.

The following proposition gives an important relation between the fixed points of the
Perron-Frobenius operator and the densities of measures that are T -invariant and absolutely
continuous with respect to λ.

Proposition 3.1.8. Let f ∈ L1(X,F , µ), with f ≥ 0 and ||f ||1. Then PT f = f if and only
if µ = fλ is T -invariant.

Proof. Assume that µ is T -invariant, so for every A ∈ B we have

µ(T−1A) =

∫
T−1A

fdλ =

∫
A
fdλ = µ(A).

By the definition of the Perron-Frobenius operator we have∫
A
PT fdλ =

∫
T−1A

fdλ = µ(T−1A)

Hence, PT f = f a.e. Now assume that PT f = f a.e., so∫
A
PT fdλ =

∫
A
fdλ = µ(A).

Again using the definition of the Perron-Frobenius operator we have∫
A
PT fdλ =

∫
T−1A

fdλ = µ(T−1A).

Hence, µ is T -invariant.

The previous result allows us to show the existence of absolutely continuous invariant
measures if one considers the action of the Perron-Frobenius operator on the right space of
functions. We consider the action of the Perron-Frobenius operator on the space of functions
of bounded variation.

Definition 3.1.9. Let f be a real (or complex) valued function on [a, b] and x0, x1, . . . , xn a
finite sequence of points such that a = x0 < x1 < . . . < xn = b. The total variation of f on
[a, b] is defined as

Var
[a,b]

f := sup
P∈P

n∑
i=1

|f(xi)− f(xi−1)|,

where P denotes the collection of all sequences of points P = {x1, . . . , xn} with a = x0 <
x1 < . . . < xn = b for all n. The space of functions with bounded variation is defined by

BV([a, b]) := {f ∈ L1([a, b], λ) : Var
[a,b]

f <∞}.
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In Appendix B we derive some results for functions of bounded variation. By using the
Kakutani-Yosida Theorem we can show that Perron-Frobenius operator has fixed points on
the space of bounded variation.

Theorem 3.1.10 (Kakutani-Yosida Theorem). Let X be a Banach space and let P : X → X
be a bounded linear operator. Assume that there exists c > 0 such that ||Pn|| ≤ c for each
n ∈ N. Furthermore, if for any f ∈ A ⊂ X, the sequence {fn}, where

fn =
1

n

n∑
i=1

P if,

contains a subsequence {fnj} which converges weakly in X, then for any f ∈ Ā,

fn → f∗ ∈ X

(norm convergence) and P (f∗) = f∗.

Proof. See [DS64].

We work towards showing that the Perron-Frobenius operator on the space of function
of bounded variation satisfies all conditions of the Kakutani-Yosida Theorem. We start by
finding a norm on the space of functions of bounded variation. A logical choice would be to
try the L1-norm, but the space of functions of bounded variation equipped with the L1-norm
is not closed. By adding the variation to the L1-norm we get a norm on the space of function
of bounded variation.

Proposition 3.1.11. Let f ∈ BV(I), then the function || · ||BV : BV(I)→ [0,∞) defined by

||f ||BV = ||f ||1 + Var
I
f

is a norm and turns (BV(I), || · ||BV) into a Banach space.

Proof. See [HK82, Lemma 5(ii)].

It follows from the linearity, contraction and composition properties that the Perron-
Frobenius is a bounded linear operator on the space of functions of bounded variation and
that there exists c > 0 such that ||PnT || ≤ c for each n ∈ N. The next step is to show that the
sequence {fn}, where

fn =
1

n

n∑
i=1

P if,

contains a subsequence {fnj} which converges weakly in the space of functions of bounded
variation. This is done by showing that for any f ∈ BV (I) we have

lim sup
n→∞

sup
x∈I

PnT f(x) <∞ and lim sup
n→∞

Var
I
PnT f <∞.

By Helly’s Selection Theorem 2 the sequence {PnT f} is relatively compact in the space of
functions of bounded variation and by Mazur’s Theorem 3 the sequence {fn} is also relatively
compact in the space of functions of bounded variation. Since the set of functions with
bounded variation is dense in L1 we have for any f ∈ L1 that the sequence {fn} is also
relatively compact in L1.

2See Appendix A for Helly’s Selection Theorem
3See Appendix A for Mazur’s Theorem
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3.2 Piecewise expanding maps

In the next chapter we introduce the family of skew tent maps. They are part of the class
of piecewise expanding maps. The piecewise expanding maps fall in the larger category of
piecewise monotonic maps. In this section we give a few important results on piecewise
expanding maps that we use in the next chapter. We start out by introducing some notation.

Definition 3.2.1. A partition of the interval [a, b] is a finite sequence x0, x1, . . . , xn of real
numbers such that a = x0 < x1 < . . . < xn = b. We write Ii = (xi−1, xi) and refer to Ii as an
open subinterval. We use P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n} to denote the collection of open
subintervals for the partition x0, x1, . . . , xn.

We will only look at piecewise expanding maps on the interval I = [0, 1]. For convenience
we define everything for the interval I instead of a general interval.

Definition 3.2.2. The map T : I → I is called piecewise monotonic if there exists P = {Ii =
(xi−1, xi) : 1 ≤ i ≤ n} and a number k ≥ 1 such that T satisfies the following conditions for
all 1 ≤ i ≤ n,

(1) Ti := T|Ii is a Ck function, which can be extended to a Ck function on [xi−1, xi];

(2) |T ′(x)| > 0 for all x ∈ Ii.

The map T is called expanding if |T ′(x)| > 1 for all x ∈ I, where T ′(x) is defined.

0 1
2

1

1

1
2

Figure 3.1: A piecewise monotonic map

In Figure 3.1 we have a piecewise monotonic map that consists of two monotonic pieces.
The maps that we consider later on fall into the following subclass of piecewise expanding
maps.
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Definition 3.2.3. The map T : I → I is called piecewise expanding C1,1 if there exists
P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n} such that T satisfies the following conditions for all
1 ≤ i ≤ n,

1. Ti := T|Ii is monotonic, C1, and can be extended to the closed interval [xi−1, xi] as a
C1 function;

2. T
′
i is Lipschitz, i.e., there exists a constant Mi such that |T ′i (x) − T ′i (y)| ≤ Mi|x − y|,

for all x, y ∈ Ii;

3. |T ′i (x)| ≥ si > 1 for all x ∈ Ii.

Let T (I) be the class of piecewise expanding C1,1 maps on I. If a family of maps {Tε}
satisfies the conditions with uniform constants si and Mi (i.e. independent of ε), then we
shall write {Tε} ⊂ T (I) uniformly.

The following proposition gives information about the number of ergodic acims for piece-
wise expanding maps can have. The proof for this proposition and other properties of acims
can be found in [BG97, Chapter 8].

Proposition 3.2.4. Let T : I → I be a piecewise continuous map defined on a partition P =
{I1, . . . , In}. Then, the number of distinct ergodic absolutely continuous invariant measures
for T is at most n− 1.

The following propositions give conditions under which a piecewise expanding map is
exact. These results can be found in [HK82, Theorem 3(ii)] and [Kel78, Corollary 2], respec-
tively.

Proposition 3.2.5. Let T : I → I be a piecewise monotonic transformation. If (T, µ) is
weakly mixing, then (T, µ) is exact.

Proposition 3.2.6. Let T : I → I a piecewise expanding C1,1 map defined on a partition
P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n}. For n even the map T is exact if

inf
x∈I
|T ′(x)| >

√
n

2

(n
2

+ 1
)
.

3.2.1 The Perron-Frobenius operator

Let T : I → I be a piecewise monotonic map and let P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n} denote
the partition of I into monotonic intervals. For piecewise monotonic transformations we get a
nice representation for the Perron-Frobenius operator. Since T is monotonic on each interval
Ii we can define an inverse function for each T (Ii). Let ζi : T (Ii)→ Ii be the function

ζi = T−1|T (Ii).

For every measurable set E ⊂ I we can write E =
⋃n
i=1 T (Ii) ∩ E. This gives the following

representation

T−1(E) =

n⋃
i=1

ζi(T (Ii) ∩ E).
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Combining this with the definition for the Perron-Frobenius operator gives∫
E
PT fdµ =

∫
T−1E

f dµ =
n∑
i=1

∫
ζi(T (Ii)∩E)

fdµ.

By using a change of variables we obtain∫
E
PT fdµ =

n∑
i=1

∫
T (Ii)∩E

f(ζi(x))|ζ ′i(x)| dµ(x)

=
n∑
i=1

∫
E
f(ζi(x))|ζ ′i(x)|χT ([xi−1,xi])(x) dµ(x),

where χT ([xi−1,xi]) is the indicator function for the interval T ([xi−1, xi]). Rewriting the ex-
pression above gives ∫

E
PT fdµ =

∫
E

n∑
i=1

f(T−1i (x))

|T ′i (T
−1
i (x))|

χT ([xi−1,xi])(x) dµ.

Since E is arbitrary, we conclude that for any f ∈ L1 we have

PT f(x) =
n∑
i=1

f(T−1i (x))

|T ′i (T
−1
i (x))|

χT ([xi−1,xi])(x) µ-a.e. (3.3)

Example 3.2.7. Consider the map T : I → I defined by

T (x) =

{
x+ 1

2 if x ∈ [0, 12 ],

2− 2x if x ∈ [12 , 1].

The graph is shown in Figure 3.1. The map T is a piecewise monotonic map, because T1
and T2 are linear functions. Let I1 = [0, 12 ] and I2 = [12 , 1], then T (I1) = I2 and T (I2) = I.

Moreover, |T ′1(x)| = 1 and |T ′2(x)| = 2. The inverse functions are given by T−11 (x) = x− 1
2 and

T−12 (x) = 1 − 1
2x. Substituting these expressions in (3.3) gives the following representation

for the Perron-Frobenius operator

PT f(x) = f(x− 1
2)χ[ 1

2
,1] + 1

2f(1− 1
2x).

3.3 Piecewise expanding C2 transformations

The following result by A. Lasota and J.A. Yorke [LY73] gives the existence of absolutely
continuous invariant measures for non-singular piecewise C2 maps.

Theorem 3.3.1. Let T : I → I be a non-singular piecewise C2 function such that
infx∈[0,1] |T

′
(x)| > 1. Then for any f ∈ BV (I) the sequence

fn =
1

n

n−1∑
k=0

P kT f

is convergent in L1-norm to a function f∗ ∈ L1(I,B, λ). The limit function has the following
properties:
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(1) f ≥ 0⇒ f∗ ≥ 0.

(2)
∫ 1
0 f
∗dλ =

∫ 1
0 fdλ.

(3) PT f
∗ = f∗ and consequently the measure dµ∗ = f∗dλ is invariant under T .

(4) The function f∗ is of bounded variation; moreover, there exists a constant c independent
of the choice of initial f such that the variation of the limiting f∗ satisfies the inequality

Var
I
f∗ ≤ c||f ||.

In the proof of Theorem 3.3.1 there is an inequality that plays an important, that inequal-
ity became known as the Lasota-Yorke inequality. Before we state it we need some notation.
Write s = inf |T ′ | and choose a number N such that sN > 2. It is easy to see that the function
φ = TN is a piecewise C2 function. Denote by b0, . . . , bq the partition corresponding to the
intervals of monotonicity of φ. Writing φi for the corresponding C2 functions we have

|φ′i(x)| ≥ sN , x ∈ [bi−1, bi], i = 1, . . . , q. (3.4)

Let ψi = φ−1i , σi(x) = |ψ′i(x)| and Ji = φi([bi−1, bi]), then it follows from (3.4) that

|σi(x)| ≤ s−N , x ∈ Ji, i = 1, . . . , q. (3.5)

Computing the Frobenius-Perron operator for φ we obtain

Pφf(x) =

q∑
i=1

f(ψi(x))σi(x)χi(x),

where χi is the characteristic function of the interval Ji. An upper bound on the variation of
Pφf is given by the Lasota-Yorke inequality.

Proposition 3.3.2 (Lasota-Yorke Inequality). Let T : I → I be a non-singular piecewise
expanding C2 function. Then for every f ∈ BV (I) there exists N ∈ N such that

Var
I
PTN f ≤ 2s−N Var

I
f + (K + 2h−1)

∫
I

|f |dλ,

where K =
maxi |σ

′
i |

mini σi
and h = mini(bi−1 − bi).

Proof. See Appendix C.

3.4 Piecewise expanding C1,1 transformations

In this section we state some results from a recent article by P. Eslami and P. Góra [EG13], in
which they prove the Lasota-Yorke inequality for piecewise expanding C1,1 transformations
with a smaller constant than the previously known 2s−N from Proposition 3.3.2.

Let T ∈ T (I) and define

s := min
1≤i≤n

si and M := max
1≤i≤n

Mi.
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These are the values of the branch with the smallest expansion rate and the branch with the
largest Lipschitz constant. Let P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n} be a partition of I such that
T is piecewise expanding C1,1. Also let

δ±i = δ{T (x±i )/∈{0,1}} =

{
0 if T (x±i ) ∈ {0, 1},
1 if T (x±i ) /∈ {0, 1},

where T (x±i ) means limx→x±i
T (x). For example, δ+i = 1 means that the left endpoint of the

(i+ 1)-st branch of T is hanging (it does not touch 0 or 1). Furthermore, let

ηi :=


max

{
δ+0
s1
,
δ+1
s2

}
if i = 1,

max
{
δ−q−1

sq−1
,
δ−q
sq

}
if i = n,

max
{
δ−i−1

si−1
,
δ+i
si+1

}
if i = 2, . . . , n− 1.

The following result is a Lasota-Yorke type inequality with a smaller constant than the
classical Lasota-Yorke inequality for the class of piecewise expanding C1,1 transformations.

Proposition 3.4.1. Suppose T ∈ T (I). Then, for every f ∈ BV (I),

Var
I
PT f ≤ max

1≤i≤n

{
1

si
+ ηi

}
Var
I
f +

[
M

s2
+

2 max1≤i≤n ηi
min1≤i≤n λ(Ii)

]∫
I

|f |dλ. (3.6)

Proof. See [EG13, Proposition 3.1].

If the Lasota-Yorke inequality in Proposition 3.4.1 holds with coefficient of VarI f less
than 1, then we have the existence of acims for piecewise expanding C1,1 maps.

Theorem 3.4.2. If a map T ∈ T (I) satisfies inequality (3.6) with the coefficient

max
1≤i≤n

{
1

si
+ ηi

}
≤ γ < 1, (3.7)

for some γ > 0, then for any f ∈ BV (I) and n ∈ N,

||PnT f ||BV ≤ γn||f ||BV +

(
1 +

K + 2h−1

1− γ

)
||f ||1,

where K := M/s2 and h := min1≤i≤n λ(Ii). Furthermore, T admits an acim with a density
of bounded variation.

Proof. See [EG13, Theorem 4.1].

The following proposition gives a condition such that the Lasota-Yorke inequality in
Proposition 3.4.1 holds with coefficient of VarI f less than 1.

Proposition 3.4.3. Suppose T ∈ T (I) satisfies the following condition:

1

si
+

1

si+1
≤ γ < 1, for i = 1, . . . , q − 1.

Then (3.7) holds for T or for an extension (T̂ , Î) of (T, I) that contains (T, I) as an attractor.

Proof. See [EG13, Theorem 3.2].
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3.5 The stability of absolutely continuous invariant measures

In this section we explain what it means for a map to be acim-stable and give conditions that
ensure acim-stability. In general the setting is as follows. Let T0 be a piecewise expanding
map with unique acim µ0 and {Tε}ε>0 a family of perturbations with acims µε. We wonder
if the acims µε converge to µ0 when the maps Tε converge to T0. We formalize this idea and
explain what kind of convergence we use for the maps and the measures.

Definition 3.5.1. Given a family of maps {Tε : X → X}ε≥0 with corresponding invariant
densities {fε}ε≥0, we say that T0 is acim-stable if limε→0 Tε = T0 implies limε→0 fε = f0. The
limits are taken with respect to properly chosen metrics on the spaces of maps and densities,
respectively.

We need a notion for the distance between two maps. The Skorokhod metric will be used
as a measure of closeness for maps.

Definition 3.5.2. The Skorokhod distance dS(Tε, T0) between two maps is the infimum of all
positive δ such that there exists a subset Aδ ⊆ I with m(Aδ) > 1 − δ and a diffeomorphism
σ : I → I such that

Tε|Aδ
= T0 ◦ σ|Aδ , |σ(x)− x| < δ, and

∣∣∣∣∣ 1

σ′(x)
− 1

∣∣∣∣∣ < δ,

for all x ∈ Aδ.

We now consider two situations where the Skorokhod distance goes to zero as ε approaches
zero. In those situations convergence on the space of continuous and differentiable functions
is required.

Definition 3.5.3. Let X be a compact metric space and k ≥ 1. Ck(X) denotes the space of
all k-times continuously differentiable real functions f : X → R with the norm

||f ||Ck = max
0≤i≤k

sup
x∈X
|f (i)(x)|,

where f (i)(x) is the i-th derivative of f(x) and f (0)(x) = f(x).

The two situations were the Skorokhod distance goes to zero are mentioned in [EG13] as
Example 5.1 and Example 5.2. We formulate them here as two propositions.

Proposition 3.5.4. Assume that T0 ∈ T (I) satisfies condition (3.7). Assume that {Tε}ε>0 is
defined on the same partition P = {I1, I2, . . . , Iq} as T0, and Tε → T0 as ε→ 0 in C1(int(Ii))
for all i = 1, 2, . . . , q. Then, dS(Tε, T0)→ 0 as ε→ 0, {Tε} ⊂ T (I) uniformly for all ε ≥ 0.

Proposition 3.5.5. Assume that T0 ∈ T (I) satisfies condition (3.7). Assume that Tε is

piecewise expanding on the partition Pε = {I(ε)1 , I
(ε)
2 , . . . , I

(ε)
q }, I(ε)i = (x

(ε)
i−1, x

(ε)
i ), such that

x
(ε)
i → x0i as ε → 0 (in particular Tε has the same number of monotonic branches as T0).

Additionally, assume that there exists ε1 > 0 such that for every 0 < ε0 < ε1, Tε → T0 in C1

on the set ⋃
i=1,...,q

[
max

{
x
(0)
i−1, x

(ε0)
i−1

}
,min

{
x
(0)
i , x

(ε0)
i

}]
.

and that {Tε} ⊂ T (I) uniformly for all ε ≥ 0. Then, dS(Tε, T0)→ 0 as ε→ 0.
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In [Kel82] and [KL99] it is shown that we have acim-stability if the family of perturbations
{Tε}ε>0 satisfies a Lasota-Yorke inequality with uniform constants. The usual conditions that
ensure this are inf |T ′ε | > 2 for all ε > 0 and that the minimal lengths of the intervals
in the partition are uniformly bounded away from zero. If 1 < |T ′0| < 2, then the usual
method is to work with an iterate of T0 for which the derivative is larger than 2. This
method can not be used if the map has a turning fixed or periodic point touching a branch
with slope 2 or smaller. The existence of such a point causes the appearance of arbitrary
short partition intervals for the iterates of the perturbed maps. The stronger Lasota-Yorke
inequality bypasses this problem. If T satisfies the conditions of Theorem 3.4.2 and the
Skorokhod distance dS(T0, Tε)→ 0 as ε→ 0, then the following theorem shows that the map
T0 is acim-stable.

Theorem 3.5.6. Consider the one-parameter family of maps {Tε}ε≥0 where {Tε}ε≥0 ⊂ T (I)
uniformly. Suppose there exists 0 < γ < 1 such that

max
1≤i≤q

{
1

si
+ ηi

}
≤ γ < 1, (3.8)

Let fε be a Tε-invariant density. If dS(Tε, T0) → 0 as ε → 0, then the following statements
hold:

(1) The family {fε}ε>0 is relatively compact in L1, and any of its limits functions is a T0-
invariant density.

(2) If T0 is ergodic, then Tε is ergodic for small ε and fε → f0 in L1 as ε → 0 (i.e. T0 is
acim-stable).

(3) If T0 is weakly mixing, then the eigenvalue gaps of {PTε}ε, for ε small enough, are uni-
formly bounded, i.e. 0 < φ < 1 − |λε2|. As a consequence, there exists a constant C > 0
such that for all ε small enough and all densities f ∈ BV ,

||PnTεf − fε||L1 ≤ C(1− φ)n||f ||BV .

We have listed the theorem here as mentioned in [EG13, Theorem 4.5], but in fact in the
next chapter we will only use statement (2).
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Chapter 4

Skew tent maps

The skew tent map is a two-parameter, piecewise linear map. In this section we show that
expanding skew tent maps have a unique acim and are exact on a part of the parameters
region. We fix one parameter and show that under certain conditions the skew tent map
is acim-stable. This result is then used to show that if we fix one parameter and change
the other parameter continuously, then there is a part of the parameters region where the
measure-theoretic entropy changes continuously.

4.1 Skew tent maps and their properties

A general skew tent map can be defined by taking two straight lines in the plane, one with
positive slope α and one with negative slope −β. The two lines will eventually intersect at
some point (x0, y0). For x ≤ x0 we take the line with positive slope and for x ≥ x0 we take
the line with negative slope. We can translate the map such that the intersection point is at
(x0, y0) = (0, 1). This gives a function Fα,β : R→ R defined by

Fα,β(x) =

{
1 + αx for x ≤ 0,

1− βx for x ≥ 0.

We want the skew map to be an expanding interval map. If we assume that α, β > 1 and
α + β ≥ αβ, then the map Fα,β : [1 − β, 1] → [1 − β, 1] is an expanding interval map. It is
convenient to study interval maps on the unit interval, which can be done by translating and
scaling the map Fα,β. This gives a map Tα,β : [0, 1]→ [0, 1] defined by

Tα,β(x) =

{
αx+ α+β−αβ

β for x ∈
[
0, β−1β

]
,

β − βx for x ∈
(β−1

β , 1
]
,

with α, β > 1 and α + β ≥ αβ. In Figure 4.4 we see some examples of skew tent maps. We
now turn to proving the existence of a unique acim and exactness.
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Figure 4.1: Skew tent maps on the unit interval.

Proposition 4.1.1. The map Tα,β has a unique acim. Furthermore, Tα,β is ergodic.

Proof. Let b1 = 0, b2 = (β − 1)/β and b3 = 1. The set P = {Ii = (bi−1, bi) : i = 1, 2} is a
partition of I. Let Ti be the restriction of Tα,β to the interval Ii. The derivative of Tα,β is
given by

T
′
α,β(x) =

{
α for x ∈ [0, β−1β ],

−β for x ∈ (1− β−1
β , 1].

The skew tent map has the following properties:

1. Ti is linear, so it is monotonic, C2, and it is clear that it can be extended to the closed
interval [bi−1, bi] as a C2 function;

2. |T ′i (x)| ≥ min{α, β} > 1 for any i and for all x ∈ Ii.

3. Ti is linear, so |T ′i (x)− T ′i (y)| = 0 for all x, y ∈ Ii.

This shows that Tα,β is a piecewise linear expanding C1,1/C2 map. It is known that linear
maps scale the Lebesgue measure, therefore Tα,β is also non-singular. It follows from Theorem
3.3.1 that Tα,β has an acim. Moreover, combining this with Theorem 3.2.4 yields that Tα,β
has a unique acim. It follows from the uniqueness of the acim that Tα,β is ergodic, see [Daj14,
Theorem 6.1.6].

Recall from Definition 2.1.7 that a map T is exact if and only if for each measurable
set A with positive measure such that also all the images TnA are measurable we have
limn→∞ µ(TnA) = 1. In general it can be difficult to show exactness. However, for the skew
tent map there are cases where the map has some nice structure which makes it easier to
show that a map is exact or not exact.

Proposition 4.1.2. If α, β >
√

2, then the dynamical system (Tα,β, µα,β) is exact.

Proof. The map Tα,β satisfies the conditions of Proposition 3.2.6. Hence, (Tα,β, µα,β) is exact.

Proposition 4.1.3. If αβ − α = 1, then the dynamical system (Tα,β, µα,β) is exact.

Proof. Let αβ − α = 1. We show that the conditions of Theorem 2.1.7 hold. Let ε > 0 be
arbitrary and take an interval around the turning point, say J = [β−1β − ε,

β−1
β + ε]. We note
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that for αβ − α = 1 we have Tα,β(0) = β−1
β , so that under the map Tα,β we have

Tα,βJ ⊇ [1− αε, 1]

T 2
α,βJ ⊇ [0, αβε]

T 3
α,βJ ⊇

[
β−1
β , β−1β + α2βε

]
.

Let n ≥ 0, then in general we have the following

T 3n+1
α,β J ⊇ [1− αn+1β2nε, 1]

T 3n+2
α,β J ⊇ [0, αn+1β2n+1ε]

T 3n+3
α,β J ⊇

[
β−1
β , β−1β + αn+2β2n+1ε

]
.

For each ε we can find m ≥ 0 such that m = min{n ≥ 0 : αn+1β2n+1ε ≥ β−1
β }, because

α, β > 1. It follows that T 3m+3
α,β J ⊇

[
β−1
β , 1

]
and µ(T 3m+4

α,β J) = µ(I) = 1.

Proposition 4.1.4. If α+ β ≥ αβ2, then the dynamical system (Tα,β, µα,β) is not exact.

Proof. Let α+ β ≥ αβ2. This condition implies that

Tα,β(0) =
α+ β − αβ

β
≥ β

β + 1
,

where β
β+1 is the fixed point of the map Tα,β. It also implies that

T 2
α,β(0) = β − (α+ β − αβ) = αβ − α > β − 1

β
.

To see that this condition holds we note that condition above is equivalent to

αβ2 − (α+ 1)β + 1 > 0,

which holds for

β >
α+ 1−

√
(α+ 1)2 − 4α

2α
= 1 and β <

α+ 1 +
√

(α+ 1)2 − 4α

2α
=

1

α
.

We have that β > 1 is the only valid condition and it always holds. Furthermore,

T 3
α,β(0) = β − β(αβ − α) = β − αβ2 + αβ > Tα,β(0).

We now have

Tα,β([0, T 2
α,β(0)]) = [Tα,β(0), 1] and Tα,β([Tα,β(0), 1]) = [0, T 2

α,β(0)]

This implies that

lim
n→∞

µ(Tnα,β([0, T 2
α,β(0)])) 6= 1.

Hence Tα,β is not exact.
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4.2 The iterates of the skew tent map

In the following section we use a method that looks at the third iterate of the skew tent map.
Therefore we now derive expressions for the second and third iterate. We can distinguish two
cases. In the first case Tα,β(0) ≥ β−1

β ⇐⇒ α(β − 1) ≤ 1 and in the second case Tα,β(0) <
β−1
β ⇐⇒ α(β−1) > 1. In these cases the number of branches for the second and third iterate

are different. In the Figure 4.2 we see the graph of Tα,β for the different cases.
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Figure 4.2: Graphs for the cases: α(β − 1) < 1, α(β − 1) = 1 and α(β − 1) > 1.

The map Tα,β is piecewise linear, this means T 2
α,β and T 3

α,β are also piecewise linear maps.

The number of branches in Tnα,β is equal to the number of branches in Tn−1α,β plus the number

of times the line y = β−1
β intersect the graph of Tn−1α,β . For α(β − 1) ≤ 1 the line y = β−1

β
intersects the graphs as follows:

• The graph of Tα,β once in the interval [β−1β , 1]. The second iterate is given by:

T 2
α,β(x) =


−αβx+ αβ − α for x ∈ [0, β−1β ],

β2x− β2 + β for x ∈ [β−1β , β
2−β+1
β2 ],

−αβx+ α(β2−β+1)+β
β for x ∈ [β

2−β+1
β2 , 1],

• The graph of T 2
α,β once in each of the intervals [0, β−1β ] and [β−1β , β

2−β+1
β2 ]. The third

iterate is given by:

T 3
α,β(x) =



αβ2x− αβ2 + αβ + β for x ∈ [0, (αβ−1)(β−1)
αβ2 ],

−α2βx+ α(αβ−1)(β−1)+β
β for x ∈ [ (αβ−1)(β−1)

αβ2 , β−1β ],

αβ2x− α(β−1)(β2+1)−β
β for x ∈ [β−1β , (β−1)(β

2+1)
β3 ],

−β3x+ β3 − β2 + β for x ∈ [ (β−1)(β
2+1)

β3 , β
2−β+1
β2 ],

αβ2x− αβ2 + αβ − α for x ∈ [β
2−β+1
β2 , 1].
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In Figure 4.3 the second and third iterate are drawn for the case α(β − 1) < 1.
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Figure 4.3: The graphs of T 2
α,β and T 3

α,β for α = 1.9 and β = 1.5.

For α(β − 1) > 1 the line y = β−1
β intersects the graphs as follows:

• The graph of Tα,β once in each of the intervals [0, β−1β ] and [β−1β , 1]. The second iterate
is given by:

T 2
α,β(x) =


α2x+ (α+1)(α+β−αβ)

β for x ∈ [0, αβ−α−1αβ ],

−αβx+ αβ − α for x ∈ [αβ−α−1αβ , β−1β ],

β2x− β2 + β for x ∈ [β−1β , β
2−β+1
β2 ],

−αβx+ α(β2−β+1)+β
β for x ∈ [β

2−β+1
β2 , 1].

• The graph of T 2
α,β once in each of the intervals [αβ−α−1αβ , β−1β ], [β−1β , β

2−β+1
β2 ] and [β

2−β+1
β2 , 1].

The third iterate is given by:

T 3
α,β(x) =



−α2βx+ α2β − α2 − α for x ∈ [0, αβ−α−1αβ ],

αβ2x− αβ2 + αβ + β for x ∈ [αβ−α−1αβ , (αβ−1)(β−1)
αβ2 ],

−α2βx+ α(αβ−1)(β−1)+β
β for x ∈ [ (αβ−1)(β−1)

αβ2 , β−1β ],

αβ2x− α(β−1)(β2+1)−β
β for x ∈ [β−1β , (β−1)(β

2+1)
β3 ],

−β3x+ β3 − β2 + β for x ∈ [ (β−1)(β
2+1)

β3 , β
2−β+1
β2 ],

αβ2x− αβ2 + αβ − α for x ∈ [β
2−β+1
β2 , αβ

2−αβ+α+1
αβ2 ],

−α2βx+ α(αβ2−αβ+α+1)+β
β for x ∈ [αβ

2−αβ+α+1
αβ2 , 1].

In Figure 4.4 the second and third iterate are drawn for the case α(β − 1) > 1.
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Figure 4.4: The graphs of T 2
α,β and T 3

α,β for α = 2.1 and β = 1.5.

4.3 The acim-stability for skew tent maps

In this section we examine the stability of the skew tent maps for fixed β. To indicate that β
is fixed we write Tα instead of Tα,β. We show that Tα is acim-stable for α > 2. Furthermore,
by imposing conditions on the slopes and the unique acims around Tα we are able to show
that Tα is acim-stable for some 1 < α < 2. The proofs in this section are based on the results
discussed in Section 3.5.

Theorem 4.3.1. The map Tα is acim-stable for all α > 2.

Proof. For each α > 2 we can find a family of maps {Tα±ε}ε<ε1 around Tα with the property
that α− ε1 > 2. The map Tα±ε has slopes

α± ε > 2 and β > 1.

The condition α− ε1 > 2 guarantees that {Tα±ε} ⊂ T (I) uniformly with uniform constants

s1 = α− ε1 > 2, β = s2 > 1 and M1 = M2 = 0.

For the endpoints of the branches we have δ+0 = 1, δ±1 = δ−2 = 0. It follows that

η1 = max
{δ+0
s1
,
δ+1
s2

}
= max

{ 1

s1
,

0

s2

}
=

1

s1
,

η2 = max
{δ−1
s1
,
δ−2
s2

}
= max

{ 0

s1
,

0

s2

}
= 0.

Since s1 > 2 and s2 > 1 there exists 0 < γ < 1 such that

max
1≤i≤2

{ 1

si
+ ηi

}
= max

{ 1

s1
+

1

s1
,

1

s2
+ 0
}

= max
{ 2

s1
,

1

s2

}
≤ γ < 1
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holds uniformly for the family of maps {Tα±ε}. The family of maps {Tα±ε} are all defined
on the same partition P = {I1, I2}. This means we can use Proposition 3.5.4 to show that
dS(Tα±ε, Tα)→ 0 as ε→ 0. The distance between Tα±ε and Tα in C1(Int(I1)) is

||Tα±ε − Tα||C1(Int(I1)) = max
0≤k≤1

sup
x∈Int(I1)

|T (k)
α±ε(x)− T (k)

α (x)|

= max

{
sup

x∈Int(I1)
|Tα±ε(x)− Tα(x)|, sup

x∈Int(I1)
|T ′α±ε(x)− T ′α(x)|

}
= max

{
sup

x∈Int(I1)
|ε
(
x− β−1

β

)
|, sup
x∈Int(I1)

|ε|
}

= ε

and the distance between Tα±ε and Tα in C1(Int(I2)) is zero, because Tα±ε = Tα on I2. It
is clear that Tα±ε → Tα as ε → 0 in C1(Int(Ii)) for all i = 1, 2. It is known that each map
Tα±ε is ergodic. We have shown that the family of maps {Tα±ε} satisfies the conditions of
Theorem 3.5.6 and therefore Tα is acim-stable.

For 1 < α < 2 we can not apply the results of Theorem 3.5.6 to a family of maps {Tα±ε}
around Tα, because {Tα±ε} has uniform constant s1 < 2 and therefore

max
1≤i≤2

{ 1

si
+ ηi

}
= max

{ 2

s1
,

1

s2

}
> 1.

However, if we can show that the conditions of Theorem 3.5.6 hold uniformly for a family of
maps {Tnα±ε} with n ≥ 2 and where Tnα±ε has the same unique absolutely continuous measure
as Tα±ε, then it follows that Tα±ε is acim-stable. In order to use Theorem 3.5.6 we need that
maps around Tnα have the same number of monotonic branches. A condition that ensures
that Tnα±ε has the same unique absolutely continuous invariant measure as Tα±ε is exactness.

We show that for 1 < α < 2 and α(β − 1) 6= 1 there exists a family of maps {T 3
α±ε} that

satisfies the conditions of Theorem 3.5.6 under the assumptions that each Tα±ε is exact and
(α± ε)2β, (α± ε)β2 > 2. The condition α(β − 1) 6= 1 ensures that maps around Tα have the
same number of monotonic branches. For the proof we make a distinction between the cases
where T 3

α has five branches and seven branches.

Theorem 4.3.2. Let 1 < α < 2 and β > 1 be given such that α(β − 1) < 1. Let ε1 > 0 be
such that (α+ ε1)(β− 1) < 1, (α− ε1)2β > 2 and (α− ε1)β2 > 2. If {Tα±ε} is exact, then Tα
is acim-stable.

Proof. Note that α(β − 1) < 1, so that T 3
α has five branches. For each 0 < ε < ε1 the map

T 3
α±ε has slopes

(α± ε)β2 ≥ (α− ε1)β2 := s1 = s3 = s5, (α± ε)2β ≥ (α− ε1)2β =: s2 and β3 := s4.

The conditions on ε1 now guarantee that {T 3
α±ε} ⊂ T (I) uniformly with uniform constants

s1, s2, s3, s5 > 2, s4 = β3 and M1 = M2 = M3 = M4 = M5 = 0.
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For the endpoints of the branches we have δ+0 = δ±2 = δ−5 = 1 and δ±1 = δ±3 = δ±4 = 0. It
follows that

η1 = max
{δ+0
s1
,
δ+1
s2

}
= max

{ 1

s1
,

0

s2

}
=

1

s1
,

η2 = max
{δ−1
s1
,
δ+2
s3

}
= max

{ 0

s1
,

1

s3

}
=

1

s3
,

η3 = max
{δ−2
s2
,
δ+3
s4

}
= max

{ 1

s2
,

0

s4

}
=

1

s2
,

η4 = max
{δ−3
s3
,
δ+4
s5

}
= max

{ 0

s3
,

0

s5

}
= 0,

η5 = max
{δ−4
s4
,
δ−5
s5

}
= max

{ 0

s4
,

1

s5

}
=

1

s5
.

Since s1, s2, s3, s5 > 2 and s4 > 1 there exists 0 < γ < 1 such that

max
1≤i≤5

{ 1

si
+ ηi

}
= max

{ 2

s1
,

1

s2
+

1

s3
,

1

s4
,

2

s5

}
≤ γ < 1

holds uniformly for the family of maps {T 3
α±ε}. Let

b
(α±ε)
0 = 0, b

(α±ε)
3 =

(β − 1)(β2 + 1)

β3
,

b
(α±ε)
1 =

((α± ε)β − 1)(β − 1)

(α± ε)β2
, b

(α±ε)
4 =

β2 − β + 1

β2
,

b
(α±ε)
2 =

β − 1

β
, b

(α±ε)
5 = 1.

The map T 3
α±ε is defined on the partition

PT 3
α±ε

= {I(α±ε)i = (b
(α±ε)
i−1 , b

(α±ε)
i ) : 1 ≤ i ≤ 5}.

We use Proposition 3.5.5 to show that dS(T 3
α±ε, T

3
α) → 0 as ε → 0, because each T 3

α±ε is
defined on a different partition. Let

J
(α±ε)
i :=

[
max

{
b
(α)
i−1, b

(α±ε)
i−1

}
,min

{
b
(α)
i , b

(α±ε)
i

}]
.

The J
(α±ε)
i are given by

J
(α−ε)
1 =

[
b
(α)
0 , b

(α−ε)
1

]
, J

(α±ε)
3 =

[
b
(α)
2 , b

(α)
3

]
,

J
(α+ε)
1 =

[
b
(α)
0 , b

(α)
1

]
, J

(α±ε)
4 =

[
b
(α)
3 , b

(α)
4

]
,

J
(α−ε)
2 =

[
b
(α)
1 , b

(α)
2

]
, J

(α±ε)
5 =

[
b
(α)
4 , b

(α)
5

]
,

J
(α+ε)
2 =

[
b
(α+ε)
1 , b

(α)
2

]
.

The distance between T 3
α±ε and T 3

α in C1(J (α±ε)
i ) is given by

||T 3
α±ε − T 3

α||C1(J(α±ε)
i )

= max
0≤k≤1

sup
x∈J(α±ε)

i

|(T 3
α±ε)

(k)(x)− (T 3
α)(k)(x)|.
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From the expressions for T 3
α±ε in Section 4.2 we can see that for each ε < ε1 and each i the

term

max
0≤k≤1

sup
x∈J(α±ε)

i

|(T 3
α±ε)

(k)(x)− (T 3
α)(k)(x)|

is of the form c0ε
2x+ c1εx+ c2ε

2 + c3ε with c0, c1, c2, c3 ∈ R. Thus T 3
α±ε → T 3

α as ε→ 0 in C1
on the set

5⋃
i=1

J
(α±ε)
i .

This combined with the fact that {T 3
α±ε} ⊂ T (I) uniformly shows that dS(T 3

α±ε, T
3
α) → 0 as

ε → 0. It is known that each map T 3
α±ε is ergodic, because Tα±ε is ergodic. We have shown

that the family of maps {T 3
α±ε} satisfies the conditions of Theorem 3.5.6 and therefore T 3

α is
acim-stable. Since each Tα±ε is exact we get acim-stability for Tα.

Theorem 4.3.3. Let 1 < α < 2 and β > 1 be given such that α(β − 1) > 1. Let ε1 > 0 be
such that (α− ε1)(β− 1) > 1, (α− ε1)2β > 2 and (α− ε1)β2 > 2. If {Tα±ε} is exact, then Tα
is acim-stable.

Proof. Note that α(β − 1) > 1, so that T 3
α has seven branches. For each 0 < ε < ε1 the map

T 3
α±ε has slopes

(α±ε)β2 ≥ (α−ε1)β2 := s1 = s3 = s7, (α±ε)β2 ≥ (α−ε1)β2 := s2 = s4 = s6 and β3 := s5.

The conditions on ε1 now guaranty that {T 3
α±ε} ⊂ T (I) uniformly with uniform constants

s1, s2, s3, s4, s6, s7 > 2, s5 = β3 and M1 = M2 = M3 = M4 = M5 = M6 = M7 = 0.

For the endpoints of the branches we have δ+0 = δ±3 = δ−7 = 1 and δ±1 = δ±2 = δ±4 = δ±5 =
δ±6 = 0. It follows that

η1 = max
{δ+0
s1
,
δ+1
s2

}
= max

{ 1

s1
,

0

s2

}
=

1

s1
,

η2 = max
{δ−1
s1
,
δ+2
s3

}
= max

{ 0

s1
,

0

s3

}
= 0,

η3 = max
{δ−2
s2
,
δ+3
s4

}
= max

{ 0

s2
,

1

s4

}
=

1

s4
,

η4 = max
{δ−3
s3
,
δ+4
s5

}
= max

{ 1

s3
,

0

s5

}
=

1

s3
,

η5 = max
{δ−4
s4
,
δ+5
s6

}
= max

{ 0

s4
,

0

s6

}
= 0,

η6 = max
{δ−5
s5
,
δ+6
s7

}
= max

{ 0

s5
,

0

s7

}
= 0,

η7 = max
{δ−6
s6
,
δ−7
s7

}
= max

{ 0

s6
,

1

s7

}
=

1

s7
.
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Since s1, s2, s3, s4, s6, s7 > 2 and s5 > 1 there exists 0 < γ < 1 such that

max
1≤i≤7

{ 1

si
+ ηi

}
= max

{ 2

s1
,

1

s2
,

1

s3
+

1

s4
,

1

s5
,

1

s6
,

2

s7

}
holds uniformly for the family of maps {T 3

α±ε}. Let

b
(α±ε)
0 = 0, b

(α±ε)
4 =

(β − 1)(β2 + 1)

β3
,

b
(α±ε)
1 =

(α± ε)β − (α± ε)− 1

(α± ε)β
, b

(α±ε)
5 =

β2 − β + 1

β2
,

b
(α±ε)
2 =

((α± ε)β − 1)(β − 1)

(α± ε)β2
, b

(α±ε)
6 =

(α± ε)β2 − (α± ε)β + (α± ε) + 1

(α± ε)β2
,

b
(α±ε)
3 =

β − 1

β
, b

(α±ε)
7 = 1.

The map T 3
α±ε is defined on the partition

PT 3
α±ε

= {I(α±ε)i = (b
(α±ε)
i−1 , b

(α±ε)
i ) : 1 ≤ i ≤ 7}.

We use Proposition 3.5.5 to show that dS(T 3
α±ε, T

3
α) → 0 as ε → 0, because each T 3

α±ε is
defined on a different partition. Let

J
(α±ε)
i :=

[
max

{
b
(α)
i−1, b

(α±ε)
i−1

}
,min

{
b
(α)
i , b

(α±ε)
i

}]
.

The J
(α±ε)
i are given by

J
(α−ε)
1 =

[
b
(α)
0 , b

(α)
1

]
, J

(α±ε)
4 =

[
b
(α)
3 , b

(α)
4

]
,

J
(α+ε)
1 =

[
b
(α)
0 , b

(α+ε)
1

]
, J

(α±ε)
5 =

[
b
(α)
4 , b

(α)
5

]
,

J
(α−ε)
2 =

[
b
(α−ε)
1 , b

(α)
2

]
, J

(α−ε)
6 =

[
b
(α)
5 , b

(α)
6

]
,

J
(α+ε)
2 =

[
b
(α)
1 , b

(α+ε)
2

]
J
(α+ε)
6 =

[
b
(α)
5 , b

(α+ε)
6

]
,

J
(α−ε)
3 =

[
b
(α−ε)
2 , b

(α)
3

]
, J

(α−ε)
7 =

[
b
(α−ε)
6 , b

(α)
7

]
,

J
(α+ε)
3 =

[
b
(α)
2 , b

(α)
3

]
, J

(α+ε)
7 =

[
b
(α)
6 , b

(α)
7

]
.

The distance between T 3
α±ε and T 3

α in C1(J (α±ε)
i ) is given by

||T 3
α±ε − T 3

α||C1(J(α±ε)
i )

= max
0≤k≤1

sup
x∈J(α±ε)

i

|(T 3
α±ε)

(k)(x)− T 3
α)(k)(x)|.

From the expressions for T 3
α±ε in Section 4.2 we can see that for each ε < ε1 and each i the

term

max
0≤k≤1

sup
x∈J(α±ε)

i

|(T 3
α±ε)

(k)(x)− (T 3
α)(k)(x)|
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is of the form c0ε
2x+ c1εx+ c2ε

2 + c3ε with c0, c1, c2, c3 ∈ R. Thus T 3
α±ε → T 3

α as ε→ 0 in C1
on the set

7⋃
i=1

J
(α±ε)
i .

This combined with the fact that {T 3
α±ε} ⊂ T (I) uniformly shows that dS(T 3

α±ε, T
3
α) → 0 as

ε → 0. It is known that each map T 3
α±ε is ergodic, because Tα±ε is ergodic. We have shown

that the family of maps {T 3
α±ε} satisfies the conditions of Theorem 3.5.6 and therefore T 3

α is
acim-stable. Since each Tα±ε is exact we get acim-stability for Tα.

For α(β − 1) = 1 the number of monotonic branches for maps around T 3
α are different. If

we approach T 3
α by a family of maps {T 3

α−ε}, then the number of monotonic branches of T 3
α

and {T 3
α−ε} are the same. It follows from Theorem 4.3.2 that Tα is acim-stable from the left.

The problem lies in the fact that if we approach T 3
α by the family of maps {T 3

α+ε}, then the
number of monotonic branches of T 3

α and {T 3
α+ε} are different. We are therefore not able to

apply Theorem 3.5.6. To solve this problem we define an extension (T̂α+ε, Î) of (T 3
α+ε, I) that

has (T 3
α+ε, I) as an attractor and where all extended maps T̂α+ε have the same number of

branches. We prove that the extended map T̂α is acim-stable by showing that the extended
family of maps {T̂α+ε} satisfies the conditions of Theorem 3.5.6. As a consequence we obtain
acim-stability for Tα.

Theorem 4.3.4. Let 1 < α < 2 and β > 1 be given such that α(β − 1) = 1. Let ε1 > 0 be
such that (α+ ε1)

2β > 2 and (α+ ε1)β
2 > 2. If {Tα±ε} is exact then Tα is acim-stable.

Proof. It follows from Theorem 4.3.2 that Tα is acim-stable from the left. For the family of
maps {T 3

α+ε} we define an extended family of maps. The construction of the extended maps

is as follows. Let g
(α+ε)
1 and g

(α+ε)
7 be linear functions which coincide with the first and last

branches of T 3
α+ε, which means

g
(α+ε)
1 (x) = −(α+ ε)2βx+ c

(α+ε)
1 and g

(α+ε)
7 (x) = −(α+ ε)2βx+ c

(α+ε)
7 ,

where

c
(α+ε)
1 = (α+ ε)2(β − 1)− (α+ ε) and c

(α+ε)
7 =

(α+ ε)2(β2 − β + 1) + (α+ ε) + β

β
.

For each α+ ε we find points a
(α+ε)
0 and a

(α+ε)
8 such that

g
(α+ε)
1 (a

(α+ε)
0 ) = a

(α+ε)
8 and g

(α+ε)
7 (a

(α+ε)
8 ) = a

(α+ε)
0 .

This means we need to solve the system of linear equations

−(α+ ε)2βa
(α+ε)
0 + c

(α+ε)
1 = a

(α+ε)
8 ,

−(α+ ε)2βa
(α+ε)
8 + c

(α+ε)
7 = a

(α+ε)
0 .

The solution to this system is given by

a
(α+ε)
0 =

c
(α+ε)
7 − (α+ ε)2βc

(α+ε)
1

1− (α+ ε)4β2
and a

(α+ε)
8 =

c
(α+ε)
1 − (α+ ε)2βc

(α+ε)
7

1− (α+ ε)4β2
.
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We extend maps T 3
α+ε to [aα+ε0 , aα+ε8 ] using the functions gα+ε1 and gα+ε7 . Let us call the new

maps T̂α+ε. The new maps are shown in Figure 4.5. For each 0 < ε < ε1 the extended map
T̂α+ε has slopes

(α+ ε1)
2β := s1 = s3 = s7, (α+ ε1)β

2 := s2 = s4 = s6 and β3 := s5.

Figure 4.5: The extended graphs of T 3
α,β and T 3

α+ε,β for α = 2.0, β = 1.5 and ε = 0.1.

The conditions on ε1 now guaranty that {T̂α+ε} ⊂ T (I) uniformly with uniform constants

s1, s2, s3, s4, s6, s7 > 2, s5 = β3 and M1 = M2 = M3 = M4 = M5 = M6 = M7 = 0.

For the endpoints of the branches of {T̂α+ε} we have δ+0 = δ±3 = δ−7 = 1 and δ±1 = δ±2 = δ±4 =
δ±5 = δ±6 = 0. It follows that

η1 = max
{δ+0
s1
,
δ+1
s2

}
= max

{ 1

s1
,

0

s2

}
=

1

s1
,

η2 = max
{δ−1
s1
,
δ+2
s3

}
= max

{ 0

s1
,

0

s3

}
= 0,

η3 = max
{δ−2
s2
,
δ+3
s4

}
= max

{ 0

s2
,

1

s4

}
=

1

s4
,

η4 = max
{δ−3
s3
,
δ+4
s5

}
= max

{ 1

s3
,

0

s5

}
=

1

s3
,

η5 = max
{δ−4
s4
,
δ+5
s6

}
= max

{ 0

s4
,

0

s6

}
= 0,

η6 = max
{δ−5
s5
,
δ+6
s7

}
= max

{ 0

s5
,

0

s7

}
= 0,

η7 = max
{δ−6
s6
,
δ−7
s7

}
= max

{ 0

s6
,

1

s7

}
=

1

s7
.

Since s1, s2, s3, s4, s6, s7 > 2 and s5 > 1 there exists 0 < γ < 1 such that

max
1≤i≤7

{ 1

si
+ ηi

}
= max

{ 2

s1
,

1

s2
,

1

s3
+

1

s4
,

1

s5
,

1

s6
,

2

s7

}
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holds for the extended family {T̂α+ε}. Let

b
(α+ε)
0 = a

(α+ε)
0 , b

(α+ε)
4 =

(β − 1)(β2 + 1)

β3
,

b
(α+ε)
1 =

(α+ ε)β − (α+ ε)− 1

(α+ ε)β
, b

(α+ε)
5 =

β2 − β + 1

β2
,

b
(α+ε)
2 =

((α+ ε)β − 1)(β − 1)

(α+ ε)β2
, b

(α+ε)
6 =

(α+ ε)β2 − (α+ ε)β + (α+ ε) + 1

(α+ ε)β2
,

b
(α+ε)
3 =

β − 1

β
, b

(α+ε)
7 = a

(α+ε)
8 .

The map T̂α+ε is defined on the partition

PT̂α+ε = {I(α+ε)i = (b
(α+ε)
i−1 , b

(α+ε)
i ) : 1 ≤ i ≤ 7}.

We use Proposition 3.5.5 to show that dS(T̂α+ε, T̂α) → 0 as ε → 0, because each T̂α+ε is
defined on a different partition. Let

J
(α+ε)
i :=

[
max

{
b
(α)
i−1, b

(α+ε)
i−1

}
,min

{
b
(α)
i , b

(α+ε)
i

}]
.

The J
(α+ε)
i are given by

J
(α+ε)
1 =

[
b
(α)
0 , b

(α+ε)
1

]
, J

(α+ε)
5 =

[
b
(α)
4 , b

(α)
5

]
,

J
(α+ε)
2 =

[
b
(α)
1 , b

(α+ε)
2

]
, J

(α+ε)
6 =

[
b
(α)
5 , b

(α+ε)
6

]
,

J
(α+ε)
3 =

[
b
(α)
2 , b

(α)
3

]
, J

(α+ε)
7 =

[
b
(α)
6 , b

(α)
7

]
.

J
(α+ε)
4 =

[
b
(α)
3 , b

(α)
4

]
,

The distance between T 3
α+ε and T 3

α in C1(J (α+ε)
i ) is given by

||T 3
α+ε − T 3

α||C1(J(α+ε)
i )

= max
0≤k≤1

sup
x∈J(α+ε)

i

|(T 3
α+ε)

(k)(x)− (T 3
α)(k)(x)|.

From the expressions for T 3
α+ε in Section 4.2 and the expressions for the functions g

(α+ε)
1 and

g
(α+ε)
7 we can see that for each ε < ε1 and each i the term

max
0≤k≤1

sup
x∈J(α+ε)

i

|(T 3
α+ε)

(k)(x)− (T 3
α)(k)(x)|

is of the form c0ε
2x + c1εx + c2ε

2 + c3ε with c0, c1, c2, c3 ∈ R. We have T̂α+ε → T̂α as ε → 0
in C1 on the set

7⋃
i=1

J
(α+ε)
i .

This combined with the fact that {T̂α+ε} ⊂ T (I) uniformly shows that dS(T̂α+ε, T̂α) → 0
as ε → 0. We already know that each map in {T̂α+ε} is ergodic, because Tα+ε is ergodic.
The family of maps {T̂α+ε} satisfies the conditions of Theorem 3.5.6 and therefore T̂α is
acim-stable. Since for all maps T̂α+ε the interval [0, 1] is the attractor supporting the unique
absolutely continuous invariant measures we obtain acim-stability for T 3

α. By exactness of
Tα+ε we get acim-stability for Tα.
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Remark 4.3.5. We had four different cases where we showed acim-stability under certain
conditions. Notice that in each case where we show acim-stability the proof gives the existence
of a uniform constant 0 < γ < 1 such that

max
1≤i≤q

{ 1

si
+ ηi

}
≤ γ < 1

holds for all maps {Tα±ε}ε<ε1. This also means that the maps {Tα±ε}ε<ε1 satisfy a Lasota-
Yorke type inequality with uniform constant.

We have made some assumptions to show acim-stability for different values of α. We now
indicate the parameter region where our results apply. In Figure 4.6 we have the area where
Tα,β is a piecewise expanding map interval map, i.e. α, β > 1 and α+β > αβ and have drawn
the different assumption areas with different colors.

We showed that Tα is acim-stable for α > 2. To show acim-stability for α ≤ 2 we assumed
that α2β > 2 and αβ2 > 2. The other assumption we made was that Tα is exact. We know
that Tα,β is exact if α >

√
2 and β >

√
2. In that case we also have α2β > 2 and αβ2 > 2. In

Figure 4.6 the area where the assumptions α2β > 2 and αβ2 > 2 fail is drawn in purple and
the area where we have acim-stability is drawn in green. We know that Tα,β is not exact for
α+β ≥ αβ2. In Figure 4.6 the area where α ≤ 2, α+β ≥ αβ2, α2β > 2 and αβ2 > 2 is drawn
in blue. The green area is where we have acim-stability and in the purple area our results to
show acim-stability do not work. In the blue and light-blue area we get acim-stability if T 3

α

has the same acim as Tα. In the light-blue area we do not know if Tα,β is exact and in the
blue area Tα is not exact. If we can show that Tα,β is exact in the light-blue area, then as a
consequence we also get acim-stability.

1
√

2 2 2.5

2.5

2

√
2

1

Figure 4.6: The different assumption areas
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4.4 Measure-theoretic entropy for skew tent maps

The skew tent map is a piecewise linear interval map. It satisfies the assumptions for Rokhlin’s
formula and we get the following expression for the measure-theoretic entropy:

hµα,β (Tα,β) =

∫
[0,1]

log |T ′α,β| dµα,β =

∫ 1

0
log |T ′α,β|fα,β(x) dx,

where fα,β is the invariant density of µα,β. This expression can not be used to calculate the
measure-theoretic entropy, because we have no expression for the invariant density. However,
we can use this expression to show that for fixed β the measure-theoretic entropy depends
continuously on α on the region where Tα is acim-stable. We make use of the following lemma
to show this.

Lemma 4.4.1. Let {fn} be a sequence of functions in L1([0, 1]) such that

1. ||fn||∞ ≤ K ∀n,

2. fn
L1

−−→ f for some f ∈ L1([0, 1]).

Then for any ψ ∈ L1([0, 1]), ∫
ψ(fn − f)→ 0.

Proof. See [AOT06, Lemma 5.1].

Theorem 4.4.2. Take β > 1 fixed and let J = {α > 1 : α + β ≥ αβ}. Assume that Tα
satisfies the conditions of on of the Theorems 4.3.1, 4.3.2, 4.3.3 or 4.3.4 on a closed interval
K ⊆ J . Then the map α 7→ hµα(Tα) is continuous on K.

Proof. Assume that Tα is acim-stable for all α on a closed interval K ⊆ J . Let {αk} be a
sequence in K converging to α. We show that |hµα(Tα) − hµαk (Tαk)| −→ 0 as αk → α. We
have the following:

|hµα(Tα)− hµαn (Tαk)| =

∣∣∣∣∣
∫ 1

0
log |T ′α(x)|fα(x)dx−

∫ 1

0
log |T ′αn(x)|fαk(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0
log |T ′α(x)|(fα(x)− fαk(x))dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

0
(log |T ′α(x)| − log |T ′αk(x)|)fαk(x)dx

∣∣∣∣∣.
Since Tα is acim-stable the first term goes to zero as αk → α. For the second term we note
that Tαk → Tα as αk → α. If fαk is uniformly bounded, then it follows that the second term
also goes to zero as αk → α. For k ≥ 1 we define the Cesàro means

fk,n =
1

n

n−1∑
j=0

P jTαk
1.
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Recall that there is a subsequence of (fk,n)n converging to fαk λ-a.e. By Theorem 3.4.2 there
exist 0 < γk < 1 and h > 0, which is independent of k because each map has the same
intervals of monotonicity, such that

Var
I

(P jTαk
1) + ||P jTαk1||L1 = ||P jTαk ||BV

≤ γjk||1||BV +
(

1 +
0 + 2h−1

1− γk

)
||1||L1

= 1 + γjk +
2h−1

1− γk
.

Since γk < 1 it follows that

Var
I

(P jTαk
1) ≤ 1 + γjk +

2h−1

1− γk
+ ||P jTαk1||L1 ≤ 3 +

2h−1

1− γk
.

We now have

Var
I

(fk,n) ≤ 1

n

n−1∑
j=0

Var
I

(P jTαk
1) ≤ 3 +

2h−1

1− γk
. (4.1)

Fix some α. By Remark 4.3.5 we can find in each case ε1 > 0 such that for all αk ∈
[α − ε1, α + ε1] (4.1) holds with uniform constant γ. Also the supremum of fk,n is bounded
with the same uniform constants, so

sup |fk,n| ≤ Var
I

(fk,n) +

∫
[0,1]

fk,ndλ

≤ Var
I

(fk,n) +
1

n

n−1∑
j=0

∫
[0,1]

P jTαk
(1)dλ

≤ 4 +
2h−1

1− γ
.

Since both bounds are independent of αk and j, we have

Var
I

(fαk) ≤ 4 +
2h−1

1− γ
and sup(fαk) ≤ 4 +

2h−1

1− γ
.

This shows that fαk is uniformly bounded and it follows that map α 7→ hµα(Tα) is continuous
on K.
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Chapter 5

The absolutely continuous measure
and maximal measures

In this section we look at the relation between two different types of measures for the skew
tent maps: the unique acim and the measures of maximal entropy. In general it is hard to find
a measure of maximal entropy. However, if the skew tent map is Markov and the transition
matrix with possible jumps it induces is irreducible, then we can find a unique measure of
maximal entropy. This measure is called the Parry measure [Par64]. We investigate when the
unique acim is also the Parry measure.

5.1 Markov maps

To simplify the analysis we often look for maps such that the space can be partitioned into a
finite number of elements. This makes it possible to study a topologically equivalent system
using symbolic dynamics. Such a partition is associated to Markov maps.

Definition 5.1.1. Let P = {Ii = (xi−1, xi) : 1 ≤ i ≤ n} be a partition of I. A map T : I → I
is called a Markov map if T|Ii

is a homeomorphism onto some interval (xj(i), xk(i)). The

partition P = {I1, . . . , In} is then called a Markov partition. If T is linear on each Ii, then
we say that T is a piecewise linear Markov map. Let C denote the family of such maps.

If T ∈ C , then it induces an n × n matrix A, where for 1 ≤ i, j ≤ n the entries Aij are
defined by

Aij =

{
1 if Ij ⊆ T (Ii),

0 otherwise.

We will refer to this matrix as the Markov matrix.

Example 5.1.2. Consider the skew tent map T : I → I defined by

T (x) =

{
1

β−1x+ β−1
β for x ∈ [0, β−1β ],

β − βx for x ∈ [β−1β , 1]

Let I1 = [0, β−1β ] and I2 = [β−1β , 1]. The interval I1 is mapped to I2 and the interval I2 is
mapped to I. Figure 3.1 shows the example with β = 2. Since T is a piecewise linear map
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it is clear that the maps T|I1 and T|I2 are homeomorphisms. This shows that the partition
P = {I1, I2} is a Markov partition. The Markov matrix for this partition is given by

A =

(
0 1
1 1

)
.

5.1.1 Subshifts of finite type

Let A be an n× n matrix with entries in {0, 1}. Define

Σ+
A := {(x0, x1, . . .) : xj ∈ {1, . . . , n}, Axj ,xj+1 = 1, j ∈ N}.

This space is called a one-sided subshift of finite type. It consists of all one-sided infinite
sequences of symbols such that the symbol xj can be followed by the symbol xj+1 only if
Axj ,xj+1 = 1. We consider the left shift operator L : Σ+

A → Σ+
A, which is defined by

L(x0, x1, . . .) = (x1, x2, . . .).

The subsets of Σ+
A for which the first m values are fixed are called cylinder sets of order m

and are denoted by

[y1, . . . , ym] = {x ∈ Σ+
A : x1 = y1, . . . , xm = ym}.

On Σ+
A we consider the σ-algebra generated by the cylinder sets.

Each Markov map induces a Markov matrix A with entries in {0, 1}. This means that each
Markov map can be associated with a subshift of finite type Σ+

A. On the subshift of finite type
we can look for invariant measures, thus leading to a measure-preserving dynamical system.

5.1.2 Markov measures

On the subshifts of finite type we are going to define a large class of L-invariant measures.
A measure in this class is called a Markov measure. We assign values to the entries of the
Markov matrix that represent probabilities. This gives a stochastic matrix.

Definition 5.1.3. An n× n matrix P is called stochastic if:

1. Pi,j ≥ 0 i, j = 1, . . . , n;

2.
∑n

j=1 Pi,j = 1, i = 1, . . . , n.

To define a Markov measure on the subshifts of finite type we use the Perron-Frobenius
Theorem.

Theorem 5.1.4 (Perron-Frobenius Theorem). Let A be a non-negative irreducible n × n
matrix (i.e. Ai,j ≥ 0 for each 1 ≤ i, j ≤ k and there exists k such that Aki,j > 0 for all
1 ≤ i, j ≤ n). Then:

1. there exists a positive eigenvalue λ > 0 such that all other eigenvalues λi ∈ C satisfy
|λi| < λ,

2. the eigenvalue λ is simple (i.e. the corresponding eigenspace is one-dimensional),
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3. there is a unique right-eigenvector v = (v1, . . . , vn)T such that vj > 0,
∑n

j=1 vj = 1 and
Av = λv,

4. there is a unique left-eigenvector u = (u1, . . . , un) such that uj > 0,
∑n

j=1 uj = 1 and
uA = λu,

5. eigenvectors corresponding to eigenvalues other than λ are not positive, i.e. at least one
coordinate is positive and at least one coordinate is negative.

We are now going to define a class of L-invariant measures on subshifts of finite type. Let
A be the n × n irreducible matrix with entries in {0, 1}. This matrix induces a one-sided
subshift of finite type Σ+

A. Let P be a stochastic matrix compatible with A. This means that
Pi,j > 0 if and only if Ai,j = 1. Since A is irreducible it follows that P is also irreducible. Note
that there might be many stochastic matrices that are compatible with A. By the Perron-
Frobenius Theorem there exists a unique maximal eigenvalue λ for the matrix P . Since P is
stochastic we have that λ = 1 and it has corresponding right-eigenvector v = (1, 1, . . . , 1)T .
Let p = (p1, . . . , pn) be the corresponding normalized left-eigenvector. We define a probability
measure µP on the cylinder sets of Σ+

A by setting

µP [yl, yl+1, . . . , yk] = pylP (yl, yl+1) . . . P (yk−1, yk).

By the Kolmogorov Extension Theorem this defines a measure on the whole Borel σ-algebra.

We now show that µP is L-invariant. It is sufficient to show that µP is L-invariant on the
cylinder sets, see Theorem A.0.1. For the cylinder sets we have the following:

µP (L−1[y0, . . . , yk]) = µP

( n⋃
j=1

[j, y0, y1, . . . , yk]
)

=
n∑
j=1

µP [j, y0, y1, . . . , yk]

=

n∑
j=1

pjP (j, y0)P (y0, y1) . . . P (yn−1, yn)

=
[ n∑
j=1

pjP (j, y0)
]
P (y0, y1) . . . P (yn−1, yn)

= py0P (y0, y1) . . . P (yn−1, yn)

= µP [y0, y1, . . . , yn],

where we used that p is the left-eigenvector of P , i.e. pP = p. This shows that µP is
L-invariant.

5.2 Parry measure

Given an irreducible matrix A there are a lot of compatible stochastic matrices P each defin-
ing a different Markov measure µP . The one we are going to look at is called the Parry
measure and it is the only invariant measure that maximizes the measure-theoretic entropy.
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Let A be an irreducible n × n matrix with entries in {0, 1}. By the Perron-Frobenius
Theorem there exists a unique maximal eigenvalue λ with corresponding left and right eigen-
vectors u = (u1, . . . , un) and v = (v1, . . . , vn)T , respectively. Let c =

∑n
i=1 uivi. The Parry

measure is defined by

Pi,j =
Aijvj
λvi

, pi =
uivi
c
.

Proposition 5.2.1. The matrix P is a stochastic matrix and p is a normalized left-eigenvector
for P .

Proof. We have Aij ∈ {0, 1} and vi, vj , λ > 0 and therefore Pi,j ≥ 0. Since v is the right-
eigenvector in the Perron-Frobenius Theorem we have

n∑
j=1

Aijvj = λvi,

from which it immediately follows that

n∑
j=1

Pi,j =

n∑
j=1

Aijvj
λvi

= 1,

for each i. It is clear that p is normalized and since u is a left eigenvector for A it follows that

(p1, . . . , pn)P =
( n∑
i=1

piPi,1, . . . ,
n∑
i=1

piPi,n

)
=
( n∑
i=1

uivi
c
· Ai1v1
λvi

, . . . ,
n∑
i=1

uivi
c
· Ai,nvn
λvi

)
=
( v1
λc

n∑
i=1

uiAi1, . . . ,
vn
λc

n∑
i=1

uiAin

)
=
(v1u1

c
, . . .

vnun
c

)
= (p1, . . . , pn).

This shows that p it is a left-eigenvector for P .

Theorem 5.2.2. If A is irreducible, then the Parry measure is the unique measure of maximal
entropy for L : Σ+

A → Σ+
A.

Proof. See [She13, Theorem 23]

5.3 The unique acim and the maximal measure

We can use the Parry measure on the subshift of finite type to construct a measure of maximal
entropy for a skew Markov tent map with constant slope. The following result by W. Byers
and A. Boyarsky [BB85] can be applied to the skew Markov tent maps with constant slopes.
It shows that for the skew Markov tent maps with constant slope (and irreducible Markov
matrix) the unique acim is the maximal measure.
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Theorem 5.3.1. Let T ∈ C be expanding and of constant slope (i.e. the absolute value of the
slope is constant). Suppose that the 0-1 matrix A which it induces is irreducible. Then there
exists a unique Borel probability measure µ, invariant under T , which maximizes entropy and
is equivalent to Lebesgue measure.

Proof. See [BB85, Theorem 2].

We know that skew Markov tent maps with constant slope α = β and irreducible Markov
matrix have a unique acim that is maximal. We want to know if there are skew Markov tent
maps with slopes α 6= β and irreducible Markov matrix where the unique acim is a measure
of maximal entropy. W. Byers and B. Boyarsky [BB85] give a condition for the unique acim
to be maximal.

Let T be a skew Markov tent map with partition P = {I1, . . . , In} and irreducible Markov
matrix A. Assume there are integers p and q, 1 ≤ p ≤ q ≤ n, such that every row of A either
consists of a block of 1’s, aij = 1 if and only if j = p, . . . , q, or else the row contains a unique
nonzero element; aij = 1. Let J = [xp−1, xq], then we have the following relation for the
unique acim and the measure of maximal entropy.

Theorem 5.3.2. The unique acim for T is maximal if and only if T has constant slope λ on
all the intervals Ii ⊂ J , where λ is the largest eigenvalue of A in absolute value.

Proof. See [BB85, Theorem 3].

In the example below we calculate the measure-theoretic entropy for a Markov map to see
when it is a measure of maximal entropy.

Example 5.3.3. Let T be the skew tent map from Example 5.1.2. Since the invariant density
f is constant on each interval in the Markov partition, see for example [BB85, Lemma 2], it
can be written as

f(x) =

{
c1 for x ∈ [0, β−1β ],

c2 for x ∈ [β−1β , 1],

where f1, f2 > 0. The measure µ is T -invariant and therefore

µ
(

[0, β−1β ]
)

= µ
(
T−1[0, β−1β ]

)
.

Writing these expressions out gives∫[
0,β−1

β

] fdµ = µ
(

[0, β−1β ]
)

= µ
(
T−1β [0, β−1β ]

)
= µ

(
[β

2−β+1
β2 , 1]

)
=

∫[
β2−β+1

β
,1
] fdµ.

Calculating the integrals gives (β − 1

β

)
c1 =

(β − 1

β2

)
c2,

which can be simplified to

βc1 = c2.
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Since µ is a probability measure we have∫ 1

0
fdµ =

(β − 1

β

)
c1 +

( 1

β

)
c2 = 1.

By combining these equations we find

c1 =
β

2β − 1
and c2 =

β2

2β − 1
.

The measure-theoretic entropy of the acim given by Rokhlin’s formula is

hµ(T ) =

∫ 1

0
log |T ′ | dµ.

Calculating the integral gives

hµ(T ) =
1

2β − 1

[
β log(β)− (β − 1) log(β − 1)

]
.

The eigenvalues of the Markov matrix can be found by solving the equation

det(A− λI) = −λ(1− λ)− 1 = λ2 − λ− 1 = 0.

The solutions for this equation are

λ1 =
1 +
√

5

2
and λ2 =

1−
√

5

2
.

The topological entropy is given by htop(T ) = log λ1, see [Wal82, Theorem 7.13]. By Misi-
urewicz [Mis89] we know that the topological entropy of the skew tent maps is continuous.
In the example above the measure-theoretic entropy is equal to the topological entropy for
β = λ1. It then follows that 1

β−1 = λ1. This is the case were the absolute value of the slope is
constant. This shows that the topological entropy and the measure-theoretic entropy of the
acim are in general not equal.

Remark 5.3.4. The results in this section only apply to skew Markov tent maps with irre-
ducible Markov matrix. We do not know anything about the skew tent maps that fall outside
this category. There might be results that can be applied to skew tent maps that are not
Markov. We are not aware of this at the moment of finishing this thesis.
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Appendix A

Theorems

This appendix contains some theorems that are used in the main text.

Theorem A.0.1. Let (Xi,Bi, µi) be a probability space, i = 1, 2, and T : X1 → X2 a trans-
formation. Suppose S2 is a generating semi-algebra of B2. Then T is measurable and measure
preserving if and only if for each A ∈ S2, we have T−1A ∈ B1 and µ1(T

−1A) = µ2(A).

Proof. See [Daj14, Theorem 1.2.2].

Theorem A.0.2 (Radon-Nikodym Theorem). Let (X,F) be a measurable space and let µ and
ν be two σ-finite measures on (X,F). If ν � µ, then there exists a unique f ∈ L1(X,F , µ)
such that

ν(A) =

∫
A
fdµ for all A ∈ F .

Proof. See [DS64].

Theorem A.0.3 (Mazur’s Theorem). Let X be a Banach space with A ⊂ X, where the
closure of A is compact. Then the closed convex hull of A is compact.

Proof. See [DS64].

Theorem A.0.4 (Helly’s First Theorem). Let an infinite family of functions F = {fn}
be defined on an interval [a, b]. If all functions of the family and the total variation of all
functions of the family are bounded by a singular number, i.e.

|fn(x)| ≤ K, Var
[a,b]

fn ≤ K, ∀fn ∈ F,

then there exists a sequence {fnk} ∈ F that converges at every point of [a, b] to some function
f∗ of bounded variation, and Var[a,b] f

∗ ≤ K.

Proof. See [Nat16].
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Appendix B

Functions of bounded variation

Functions of bounded variation have the following basic properties. These properties and
many more can also be found in [Nat16].

Proposition B.0.1. If f is of bounded variation on [a, b], then f is bounded on [a, b]. In fact

|f(x)| ≤ f(a) + Var
[a,b]

f

for all x ∈ [a, b].

Proof. For every x ∈ [a, b] we have

|f(x)| = |f(a) + f(x)− f(a)|
≤ |f(a)|+ |f(x)− f(a)|
≤ |f(a)|+ Var

[a,b]
f

Proposition B.0.2. Let f : [a, b] → R be of bounded variation and assume c ∈ (a, b). Then
f is of bounded variation on [a, c] and on [c, b] and we have

Var
[a,b]

f = Var
[a,c]

f + Var
[c,b]

f.

Proof. Take partition P1 = {x0, . . . , xn} for the interval [a, c] and partition P2 = {y0, . . . , ym}
for the interval [c, b]. Together these two partitions form a partition for the whole interval
[a, b]. For the partitions we have the sums

Vf (P1) =
n∑
k=1

|f(xk)− f(xk−1)|, Vf (P2) =
m∑
k=1

|f(yk)− f(yk−1)|.

Let V be the sum corresponding to this method of partition, then by the definition of total
variation we have V = Vf (P1) + Vf (P2) ≤ Var[a,b] f . This holds for any partition, therefore

Var
[a,c]

f + Var
[c,b]

f ≤ Var
[a,b]

f.

49



For the inequality the other way we take partition P = {z0, . . . , zp, . . . , zq}, where c = zp. Let
P1 = {z0, . . . , zp} and P2 = {zp, . . . , zq}. We can express the sum for the partition P as

Vf (P ) =

p∑
k=1

|f(zk)− f(zk−1)|+
q∑

k=p+1

|f(zk)− f(zk−1)|

= Vf (P1) + Vf (P2)

By the definition of total variation we have

Vf (P ) = Vf (P1) + Vf (P2) ≤ Var
[a,c]

f + Var
[c,b]

f.

The inequality still holds if we take a refinement, therefore

Var
[a,b]

f ≤ Var
[a,c]

f + Var
[c,b]

f.

Proposition B.0.3. Let f : [a, b]→ R be monotone on [a, b]. Then

Var
[a,b]

f = |f(b)− f(a)|.

Proof. We give a proof in case the function f is increasing. The proof for f decreasing is
analogous. Take an arbitrary partition P = {x0, . . . , xn} for [a, b]. Since f is increasing we
have |f(xk)− f(xk−1)| = f(xk)− f(xk−1) and hence

Vf (P ) =
n∑
k=1

|f(xk)− f(xk−1)| =
n∑
k=1

f(xk)− f(xk−1) = f(b)− f(a).

Since Vf (P ) does not depend on the partition we conclude that

Var
[a,b]

f = f(b)− f(a).

Proposition B.0.4. Let f : [a, b] → R have a continuous derivative f ′ on [a, b]. Then f is
of bounded variation and

Var
[a,b]

f =

∫ b

a
|f ′(x)|dλ(x).

Proof. Since f has a continuous derivative f ′ it attains a minimum m1 and maximum m2.
Let M = max{|m1|, |m2|}. Let P = {x0, . . . , xn} be an arbitrary partition of [a, b]. By the
Mean Value Theorem there exists for each interval [xk−1, xk] a ck ∈ [xk−1, xk] such that

f(xk)− f(xk−1) = f ′(ck)(xk − xk−1).

Combining this with the fact that f ′ is bounded from above by M gives

|f(xk)− f(xk−1)| = |f ′(ck)|(xk − xk−1) ≤M(xk − xk−1)
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and hence

Vf (P ) =
n∑
k=1

|f(xk)− f(xk−1)| ≤M
n∑
k=1

(xk − xk−1) = M(b− a).

Since the partition is arbitrary it follows that f has bounded variation. For the second part
we note that for an arbitrary partition P = {x0, . . . , xn} we have

Vf (P ) =
n∑
k=1

|f(xk)− f(xk−1)|

=
n∑
k=1

∣∣∣∣∣
∫ xk

xk−1

f ′(x)dx

∣∣∣∣∣
≤

n∑
k=1

∫ xk

xk−1

|f ′(x)|dx

=

∫ b

a
|f ′(x)|dx.

Since the partition is arbitrary it follows that

Var
[a,b]

f ≤
∫ b

a
|f ′(x)|dx.

For the inequality the other way we note that the function |f ′| is continuous on the closed
interval [a, b] interval and therefore Riemann-integrable on [a, b]. Let d(P ) denote the maximal
length of an interval in the partition P . Let ε > 0 be arbitrary. By the Riemann integrability
there exists a δ > 0 such that for any partition P = {x0, . . . , xn} of [a, b] with d(P ) < δ and
any choice ck ∈ [xk−1, xk] we have∫ b

a
|f ′(x)|dx− ε <

n∑
k=1

f ′(ck)(xk − xk−1) <
∫ b

a
|f ′(x)|dx+ ε.

Let P1 = {y0, . . . , ym} be a partition of [a, b] with d(P ′) < δ. By the Mean Value Theorem

Vf (P1) =
n∑
k=1

|f(xk)− f(xk−1)| =
n∑
k=1

f ′(ξk)(xk − xk−1).

for some ξk ∈ [xk − xk−1]. The right side is equal to the Riemann sum for the partition P1

and since d(P1) < δ we have ∫ b

a
|f ′(x)|dx− ε < Vf (P1) ≤ Var

[a,b]
f.

Since ε is arbitrary it follows that ∫ b

a
|f ′(x)|dx ≤ Var

[a,b]
f.
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Proposition B.0.5. Let f, g : [a, b] → R be of bounded variation, then so are the sum and
product and we have the following properties:

1. Var[a,b](f + g) ≤ Var[a,b] f + Var[a,b] g.

2. Var[a,b](f · g) ≤ A ·Var[a,b] f +B ·Var[a,b] g,

where A = sup{g(x) : x ∈ [a, b]} and B = sup{f(x) : x ∈ [a, b]}.

Proof. 1. Let P = {x0, . . . , xn} be a partition of [a, b], then

Vf+g(P ) =

n∑
k=1

|(f + g)(xk)− (f + g)(xk−1)|

=

n∑
k=1

|f(xk)− f(xk−1) + g(xk)− g(xk−1)|

≤
n∑
k=1

(
|f(xk)− f(xk−1)|+ |g(xk)− g(xk−1)|

)
=

n∑
k=1

|f(xk)− f(xk−1)|+
n∑
k=1

|g(xk)− g(xk−1)|

= Vf (P ) + Vg(P ).

Since this holds for any partition P it follows that

Var
[a,b]

(f + g) ≤ Var
[a,b]

f + Var
[a,b]

g.

2. Let P = {x0, . . . , xn} be a partition of [a, b], then

Vf ·g(P ) =

n∑
k=1

|(f · g)(xk)− (f · g)(xk−1)|

=

n∑
k=1

|f(xk)g(xk)− f(xk−1)g(xk−1)|

=

n∑
k=1

|f(xk)g(xk)− f(xk−1)g(xk) + f(xk−1)g(xk)− f(xk−1)g(xk−1)|

=

n∑
k=1

(
|f(xk)g(xk)− f(xk−1)g(xk)|+ |f(xk−1)g(xk)− f(xk−1)g(xk−1)|

)
≤

n∑
k=1

|g(xk)| · |f(xk)− f(xk−1)|+
n∑
k=1

|f(xk−1)| · |g(xk)− g(xk−1)|

≤ B
n∑
k=1

|g(xk)− g(xk−1)|+A

n∑
k=1

|f(xk)− f(xk−1)|

= A · Vf (P ) +B · Vg(P ).

52



Since this holds for any partition P it follows that

Var
[a,b]

(f · g) ≤ A ·Var
[a,b]

f +B ·Var
[a,b]

g.
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Appendix C

Lasota-Yorke inequality

Proposition C.0.1 (Lasota-Yorke inequality). Let T : I → I be a non-singular piecewise
expanding C2 function. Then for every f ∈ BV (I) there exists N ∈ N such that

Var
I
PTN f ≤ 2s−N Var

I
f + (K + 2h−1)

∫
I

|f |dλ,

where K = max |σ′ |
mini σi

and h = mini(bi−1 − bi).

Proof. Write s = inf |T ′ | and choose a number N such that sN > 2. It is easy to see that the
function φ = TN is a piecewise C2 function. Denote by b0, . . . , bq the partition corresponding
to the intervals of monotonicity of φ. Writing φi for the corresponding C2 functions we have

|φ′i(x)| ≥ sN , x ∈ [bi−1, bi], i = 1, . . . , q. (C.1)

Let ψi = φ−1i , σi(x) = |ψ′i(x)| and Ji = φi([bi−1, bi]), then it follows from (C.1) that

|σi(x)| ≤ s−N , x ∈ Ji, i = 1, . . . , q. (C.2)

Computing the Perron-Frobenius operator for φ we obtain

Pφf(x) =

q∑
i=1

f(ψi(x))σi(x)χi(x),

where χi is the characteristic function of the interval Ji. The goal now is to find an upper
bound on the variation of Pφf . Let 0 = y0 < y1 < . . . < yr = 1 be an arbitrary partition of
I. By the Perron-Frobenius operator we have

r∑
j=1

|Pφf(yj)− Pφf(yj−1)| =
r∑
j=1

∣∣∣ q∑
i=1

f(ψi(xj))σi(xj)χφ(Ii)(xj)

−
q∑
i=1

f(ψi(xj−1))σi(xj−1)χφ(Ii)(xj−1)
∣∣∣

≤
r∑
j=1

q∑
i=1

∣∣∣f(ψi(xj))σi(xj)χφ(Ii)(xj)

− f(ψi(xj−1))σi(xj−1)χφ(Ii)(xj−1)
∣∣∣. (C.3)
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We divide the sum in (C.3) into three parts:

(1) A part for which we have χφ(Ii)(xj) = χφ(Ii)(xj−1) = 1.

(2) A part for which we have χφ(Ii)(xj) = 1 and χφ(Ii)(xj−1) = 0.

(3) A part for which we have χφ(Ii)(xj) = 0 and χφ(Ii)(xj−1) = 1.

For the first part we have the inequality

r∑
j=1

q∑
i=1

∣∣∣f(ψi(xj))σi(xj)− f(ψi(xj−1))σi(xj−1)
∣∣∣ ≤ q∑

i=1

Var
Ji

f ◦ ψi · σi. (C.4)

The second and third part occur if two points are on opposite sides of an endpoint of χφ(Ii).
For each Ii , the second part happens for at most one pair xj , xj−1 and the third part happens
for at most one other pair x

′
j , x

′
j−1. Hence for the second and third part we have

r∑
j=1

q∑
i=1

∣∣∣f(ψi(xj))σi(xj)−
q∑
i=1

f(ψi(xj−1))σi(xj−1)
∣∣∣ ≤ q∑

i=1

(
|f(ψi(xj))σi(xj)|

+ |f(ψi(x
′
j−1))σi(x

′
j−1)|

)
. (C.5)

Combining (C.4) and (C.5) we obtain

Var
I
Pφf ≤

q∑
i=1

Var
Ji
f ◦ ψi · σi +

q∑
i=1

(
|f(ψi(xj))σi(xj)|+ |f(ψi(xj−1))σi(xj−1)|

)
.

For the right hand side in (C.4) we get by Proposition B.0.4, the product rule and the triangle
inequality

Var
Ji

f ◦ ψi · σi =

∫
Ji

∣∣∣[f(ψi(x))σi(x)]′
∣∣∣dx

=

∫
Ji

|(f ◦ ψi)′(x)σi(x) + (f ◦ ψi)(x)σ
′
i(x)|dx

≤
∫
Ji

|(f ◦ ψi)′(x)σi(x)|dx+

∫
Ji

|(f ◦ ψi)(x)σ
′
i(x)|dx.

Let K = maxσ
′
i/minσi, then using the chain rule and (C.2) we obtain

Var
Ji

f ◦ ψi · σi ≤ s−N
∫
Ji

|(f ′ ◦ ψi)(x)ψ
′
i(x)|dx+K

∫
Ji

|(f ◦ ψi)(x)σi(x)|dx.

Rewriting the equation we obtain

Var
Ji

f ◦ ψi · σi ≤ s−N
∫

φi([bi−1,bi])

|(f ′(φ−1i (x))(φ−1i )
′
(x)|dx

+K

∫
φi([bi−1,bi])

|(f(φ−1i (x))|(φ−1i )
′
(x)|dx.
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Using integration by substitution we obtain

Var
Ji

f ◦ ψi · σi ≤ s−N
∫ bi

bi−1

|f ′(x)|dx+K

∫ bi

bi−1

|f(x)|dx.

Using Proposition B.0.4 and taking the summation we finally obtain

q∑
i=1

Var
Ji

f ◦ ψi · σi ≤ s−N Var
I
f +K

∫
I
|f(x)|dx. (C.6)

For the right hand side in (C.5) we obtain

q∑
i=1

(
|f(ψi(xj))σi(xj)|+ |f(ψi(xj−1))σi(xj−1)|

)
≤ s−N

q∑
i=1

(|f(bi−1)|+ |f(bi)|).

Let ci = argmin {|f(x)| : x ∈ [bi−1, bi]}, then

|f(bi−1)|+ |f(bi)| = |f(bi−1)− f(ci) + f(ci)|+ |f(bi)− f(ci) + f(ci)|
≤ |f(bi−1)− f(ci)|+ |f(bi)− f(ci)|+ 2|f(ci)|
≤ Var

[bi−1,bi]
f + 2|f(ci)|.

For |f(ci)| we have the inequality

|f(ci)| ≤
1

bi − bi−1

∫ bi

bi−1

|f(x)|dx.

Let h = mini(bi − bi−1), then we obtain

s−N
q∑
i=1

(|f(bi−1)|+ |f(bi)|)s−N ≤
q∑
i=1

(
Var

[bi−1,bi]
f + 2|f(ci)|

)
≤ s−N

q∑
i=1

(
Var

[bi−1,bi]
f + 2h−1

∫ bi

bi−1

|f(x)|dx
)

≤ s−N Var
I
f + 2h−1s−N

∫
I
|f(x)|dx. (C.7)

Combining (C.4), (C.5), (C.6) and (C.7) we obtain

Var
I
Pφf ≤ s−N Var

I
f +K

∫
I
|f(x)|dx+ s−N Var

I
f + 2h−1s−N

∫
I
|f(x)|dx

≤ 2s−N Var
I
f + (K + 2h−1)||f ||.
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[LG13] Z. Li and P. Góra. Instability of the isolated spectrum for W-shaped maps. Ergodic
Theory Dynam. Systems, 33(4):1052–1059, 2013.
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