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List of Names of Categories

Let C be a category, A an abelian category, X a topological space and R a commutative
ring. We fix the following notation for some categories that will occur frequently through-
out this thesis.

∆ The simplicial indexing category
Ab Abelian groups
Ab(X) Abelian sheaves on X
C(A) (Cochain) Complexes in A
C≥0(A) (Cochain) Complexes in A that are zero in negative degree
C(X, R) (Cochain) Complexes of sheaves of R-modules on X
cSimp(C) Cosimplicial objects in C
cShR(X) Cosheaves of R-modules on X
D(A) Derived category of A
D+(A) Bounded below derived category of A
D(X, R) Derived category of ShR(X)
D+(X, R) Bounded below derived category of ShR(X)
FTop Finite topological spaces
HC(X) Hypercoverings on X with refinement maps as arrows
ModR R-modules
ModfgR Finitely generated R-modules
O(X) Open subsets of X with inclusions as arrows
Pos Partially ordered sets
PShR(X) Presheaves of R-modules on X
Simp(C) Simplicial objects in C
ShR(X) Sheaves of R-modules on X
Top Topological Spaces
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1.5 Absolute Hyper-Čech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 16
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Introduction K.S. Baak

Introduction

In geometry one is often interested in calculating the cohomology groups Hn(X,F ) of a
pair (X,F ) where X is a topological space and F a sheaf (of abelian groups, R-modules,
k-algebras, etc.) on X. The usual cohomology theory of such pairs is called sheaf cohomol-
ogy or Grothendieck style (sheaf) cohomology. Sheaf cohomology is defined by taking injective
resolutions of sheaves and although one can prove that every sheaf indeed has an injective
resolution, finding these resolutions is often hard. Therefore, the definition of sheaf coho-
mology does not provide a practical way to actually calculate the cohomology groups.
Another cohomology theory, Čech cohomology, exists and the corresponding Čech coho-
mology groups Ȟn(X,F ) are much easier to compute. Luckily, in special cases, the sheaf
cohomology and Čech cohomology groups agree. For example, Roger Godement proved
that if X is a paracompact Hausdorff space, then sheaf cohomology and Čech cohomology
are the same for abelian sheaves. Also in the case of separated k-schemes (for k a field)
and quasi-coherent OX-modules, the Čech cohomology with respect to an open cover
of spectra of finitely generated k-algebras agrees with sheaf cohomology. Nevertheless,
Čech cohomology is not always powerful enough to calculate sheaf cohomology. Even for
fairly simple spaces it does not always work. We consider an example due to Alexander
Grothendieck which can be found in his famous Tohoku paper (see example 3.8.3 of [11]).

We define a finite model for the unit disk as follows. Let D be the finite set {W, N, E, S, C}
and define the partial order ≤ on D in the way illustrated in figure 1. That is, we have
x ≤ y if and only if x = y or there is an arrow y → x in figure 1. We endow D with the
topology defined by the upper sets of ≤. The open sets of D are

D, ∅, {W, N, S, C}, {E, N, S, C}, {N, C}, {S, C}, {N, S, C} and {C}.

W E

N

S

C

Figure 1: A finite model of the unit disk.

We define the set Ux for x ∈ D to be the smallest open subset of D containing x and
for the ease of notation also write U = UC. Let j : U ↪→ D be the inclusion. We extend the
sheaf ZU given by U 7→ Z by zero to get the sheaf j!ZU on D. We will now calculate the
sheaf cohomology and Čech cohomology of (D, j!ZU). In particular, we will see that sheaf
cohomology and Čech cohomology do not agree in degree 2.

We start by calculating the sheaf cohomology. To this end, we first present the following
lemma.

Lemma 0.1. Let X = {x, y} with the discrete topology and A an abelian group. We have
H0(X, AX) = A⊕ A and Hn(X, AX) = 0 for n > 0.

Proof. Recall that for any topological space Y, any open subset V ⊆ Y and any abelian
group G, the set of sections Γ(V, GY) is (isomorphic to) the set of continuous functions
V → G, where G is given the discrete topology. As X has two connected components,
we see that H0(X, AX) ∼= Γ(X, AX) ∼= A⊕ A. Let U = {x} and V = {y}. Then we get a

1



Introduction K.S. Baak

Mayer-Vietoris sequence

0 AX(A) AX(U)⊕ AX(V) AX(U ∩V)

H1(X, AX) H1(U, AX |U)⊕ H1(V, AX |V) H1(U ∩V, AX |U∩V) · · · .

As U ∩V = ∅ we conclude that we have isomorphisms

Hn(X, AX) ∼= Hn(U, AU)⊕ Hn(U, AV) ∼= 0⊕ 0 ∼= 0

for all n ≥ 1.

Theorem 0.2. We have

Hn(D, j!ZU) =

{
Z n = 2
0 otherwise.

Proof. First note that H0(D, j!ZU) ∼= j!ZU(D) = 0. Now define Y = D \ U and let
i : Y ↪→ D be the inclusion. We get a short exact sequence of sheaves on D

0 −→ j!ZU −→ ZD −→ i∗ZY −→ 0. (0.1)

As constant sheaves on irreducible spaces are flasque, the long exact sequence of coho-
mology groups associated to (0.1) gives isomorphisms Hn(D, i∗ZY) ∼= Hn+1(D, j!ZU) for
n ≥ 2. Also, we have an exact sequence

0 −→ j!ZU(D) −→ ZD(D) −→ i∗ZY(D) −→ H1(D, j!ZU) −→ 0.

A short inspection yields H1(D, j1ZU) = 0. We now consider n ≥ 2. Since Y is closed,
we have an isomorphism Hn(Y, ZY) ∼= Hn(D, i∗ZY) for all n ≥ 0. Now define the subsets
Y1 = {W, N, S} ⊆ Y and Y2 = {E, N, S} ⊆ Y. We have a Mayer-Vietoris sequence for sheaf
cohomology,

0 ZY(Y) ZY(Y1)⊕ZY(Y2) ZY(Y12)

H1(Y, ZY) H1(Y1, ZY|Y1)⊕ H1(Y2, ZY|Y2) H1(Y12, ZY|Y12) . . . ,

where Y12 = Y1 ∩ Y2. Recall that for any topological space Z, any open subset V ⊆ Z and
any abelian group A, the set of sections Γ(V, AZ) is (isomorphic to) the set of continuous
functions V → A, where A is given the discrete topology. Since Yi is irreducible (and thus
connected) we find that ZY(Yi) ∼= Z. Moreover, irreducibility of Yi gives that ZY|Yi = ZYi
is flasque and thus Hn(Yi, ZY|Yi ) = 0 for all n > 0. Furthermore, by lemma 0.1 we have
ZY(Y1 ∩Y2) = Z⊕Z and Hn(Y12, ZY|Y12) = 0 for n > 0. Combining all this, we find that

Hn(D, j!ZU) ∼= Hn−1(D, i∗ZY) ∼= Hn−1(Y, ZY) ∼= 0

for all n > 2 and an exact sequence

0→ ZY(Y)→ Z⊕Z
α→ Z⊕Z→ H1(Y, ZY)→ 0.

The map α : Z⊕Z → Z⊕Z is given by (n, m) 7→ (n, n)− (m, m) = (n−m, n−m). We
conclude

H2(D, j!ZU) ∼= H1(D, i∗ZY) ∼= H1(Y, ZY) ∼= coker α = (Z⊕Z)/Z ∼= Z.

2
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We will now calculate the Čech cohomology of (D, j!ZU). Consider the cover U =
{UW , UE}. It is easily seen that U is a refinement of every possible open cover of D.
Therefore we have an isomorphism Ȟn(D, j!ZU) ∼= Ȟn(U , j!ZU) for every n ≥ 0. As the
cover U only has two elements, all information is contained in the map

δ : j!ZU(U1)× j!ZU(U2) −→ j!ZU(U1 ∩U2),

which is just the map 0→ 0. We conclude Ȟ2(D, j!ZU) ∼= Ȟ2(U , j!ZU) = 0.

A solution to this problem does exist. When doing Čech cohomology one can work
with hypercoverings instead of ordinary open covers. The idea is that instead of taking care
of all (n + 1)-fold intersections of a chosen open cover in degree n of the Čech complex,
one can actually take open covers of these intersections. For example,in the case of the fi-
nite model of the unit disk, the cover {UW , UE} computes the Čech cohomology. In degree
1 the (restricted) Čech complex looks like F (UW ∩UE) and in higher degrees it is zero.
When working with hypercoverings one can cover UW ∩UE by some other opens, for ex-
ample {UN , US} and moreover, one should actually do this to obtain a finest hypercover.
As a consequence the complex is no longer zero in degree 2, as for example UN ∩US ∩UW
is considered there. In the first section of this thesis, we will define hypercoverings and
the corresponding hyper(cover)-Čech cohomology. Although hyper-Čech cohomology always
coincides with sheaf cohomology, as proved by Verdier, we will see that the hyper-Čech
complex grows very big very fast and is therefore painful to work with when actually
calculating cohomology groups.

Although hypercoverings do not provide the solution that might have been hoped
for, we will see that sheaf cohomology groups can be calculated using the Godement
resolution. The second part of this thesis focuses exclusively on finite topological spaces
and we will introduce the Godement resolution in section 2.2. The Godement resolu-
tion features in a Grothendieck Duality Theorem for finite spaces. This Duality Theorem
and the dualizing complexes it produces, will be the topics of section 2 and 3 respectively.
The first duality theorem for sheaf cohomology is the Serre Duality Theorem. This clas-
sical result states that for a projective scheme X of dimension n over a field k, there
exists a coherent sheaf ωX on X such that for any coherent sheaf F on X it holds that
Hn(X,F )∨ ∼= HomOX (F , ωX). Grothendieck generalized Serre Duality to a statement
about proper morphisms of schemes. This Coherent Duality, sometimes called Grothendieck
Duality or Serre-Grothendeick-Verdier Duality, states in the language of derived categories
that for a proper morphism f : X → Y of schemes the functor R f∗ has a right adjoint.
The Duality Theorem for finite spaces that will be studied in this thesis states that for any
morphism f : X → Y of finite spaces, the functor R f∗ has a right adjoint. The theorem was
first proved by González, where it had the following form.

Theorem 0.3 (González, [15]). Let f : X → S be a continuous map of finite topological
spaces. Let I• be an injective resolution of the sheaf ZS on S. There exists a complex of
abelian sheaves D•f on X such that for any complex H• of abelian sheaves on X we have an
isomorphism of complexes

Hom•( f∗C•(H•), I•) ∼= Hom•(H•,D•f )

that is functorial in H•.

Here C•(H•) is the singly graded complex associated to the double complex G•(H•)
and Gp is the p-th Godement functor Ab(X) → Ab(X). We will actually prove a slightly
more general version, where the role of ZS is replaced byM for any sheaf of R-modules
M on S (where R is a commutative ring). Instead of D•f we write f !M•. In section 2.5 we
will show that the theorem can actually be extended to locally finite topological spaces.

3
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If f is the map to the singleton, the complex f !M• is called the dualizing compex of X
for M. In section 3.1 we will prove that in the context of a commutative triangle of finite
spaces

X Y

S.

f

g f g

the complex (g f )!M• is quasi-isomorphic to g! f !M• for any sheaf M on X. In section
3.2 we will give an explicit description of the dualizing complexes of finite spaces. Finally,
we use the explicit description of the dualizing complex found in section 3.2 to make a
connection between sheaf cohomology and cosheaf homology for finite spaces.

4
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1 Hypercoverings

In this section we introduce hypercoverings and hypercover-Čech cohomology. The Verdier
Hypercovering Theorem, which we will not prove in this thesis, but which can be found in
section 24.10 of [18], states that hypercover-Čech cohomology always coincides with sheaf
cohomology. Despite this wanted property, hyper-Čech cohomology is actually not very
practical to work with. Even in the case of the finite model of the unit disk D discussed
in the introduction, the hyper-Čech complex grows quite big, which makes it hard to
calculate the cohomology groups. The main reference for this section is chapter 24 of the
Stacks Project [18].

1.1 Simplicial Objects

Starting with an open cover U0 of a topological space X, a hypercovering of X covers every
n-fold intersection of opens in Un−1 and stores all opens used in a collection Un. Of course,
a sequence of collections of opens (Un)n≥0 does not contain enough information of itself.
Given an open U ∈ Un for some n ≥ 0 we would like to know which (n− 1)-fold inter-
section of opens in Un−1 it partly covers. We need some form of bookkeeping that allows
us to store all necessary information. It turns out that the notion of a simplicial set can be
used to index a hypercovering. Therefore, before we define the actual hypercoverings, it
is important to have a good understanding of (co)simplicial objects in a category.

A simplicial object in a category is a collection of objects (Ai)i≥0 together with face maps
Ai → Ai−1 and degeneracy maps Ai → Ai+1 satisfying some properties. We will give a
more precise definition.

Definition 1.1. We define the simplicial indexing category ∆, whose objects are the sets
[n] = {0, ..., n} (n ≥ 0) and arrows are order preserving maps.

We will now define two classes of important arrows in ∆ explicitly.

Definition 1.2. Let n ≥ 1 and i ∈ [n]. We define the arrow δn
i : [n− 1] → [n] as the order

preserving map skipping i. Let n ≥ 0 and i ∈ [n]. We define the arrow σn
i : [n + 1] → [n]

as the order preserving map hitting i twice.

For the ease of notation, the superscripts in these maps are often omitted. The following
result confirms the importance of these maps.

Proposition 1.3. Any arrow in ∆ is a composition of maps of the form δn
i and σn

j . More
precisely, any arrow α : [n]→ [m] in ∆ can be uniquely written as

α = δik · · · δi1 σj1 · · · σj`

with 0 ≤ i1 < · · · < ik ≤ m and 0 ≤ j1 < · · · < j` < n.

Proof. Let 0 ≤ i1 < · · · < ik ≤ m be the elements that are not in the image of α. Then
α = δik · · · δi1 β where β : [n] → [m′] is surjective and order preserving. Now consider all
elements in [m′] with more then one element in its preimage. As β is order preserving,
this is the same as considering all elements 0 ≤ j1 < · · · < j` < n in [n] that satisfy
β(j) = β(j + 1). We have β = σj1 · · · σj` and conclude that indeed

α = δik · · · δi1 σj1 · · · σj` .

This factorization is clearly unique.

Definition 1.4. A simplicial object in a category C is a functor ∆op → C.

5
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Example 1.5. (i) Let X be an object of a category C. We have the constant simplicial
object [n] 7→ X for all n ≥ 0 and every morphism in ∆ is mapped to the identity idX .

(ii) One uses a simplicial set when defining singular homology of a topological space.
For any n ≥ 0 we define the topological n-simplex

∆n =
{

x ∈ Rn+1
≥0 : ∑ xi = 1

}
⊆ Rn+1.

For any morphism α : [n] → [m] in ∆, we define α∗ : ∆n → ∆m by x 7→ (∑α(i)=j xi)j.
Let X be any topological space. For any n ≥ 0 we define the set S(X)n of continuous
functions ∆n → X. For any order-preserving map α : [m] → [n] we define the map
S(X)n → S(X)m by σ 7→ σ ◦ α∗. The set S(X)n is called the singular n-simplex and
S(X) is an example of a simplicial set.

(iii) Let f : X → Y be a morphism in a category C and suppose that for any n ≥ 0
the n-fold fibred product of X along f exists. We define Kn to be the (n + 1)-fold
fibred product and for any order preserving map α : [m] → [n]. We define K(α) =
πα(0) ×Y · · · ×Y πα(n), where the πi are the projections. This makes K a simplicial
object in C.

(iv) Contravariant representable functors ∆ → Set are simplicial sets. We will spell this
out. Let N be a natural number. We define the simplicial set ∆[N] as follows. For any
n ≥ 0 we set ∆[N]n = Hom∆([n], [N]) and for any order preserving map α : [n] →
[m] we get an induced map α∗ : ∆[N]m → ∆[N]n given by f 7→ f ◦ α.

(v) As a generalization of the previous example, let P be a partially ordered set, then the
functor HomPos(−, P) : ∆op → Set is a simplicial set. Here Pos denotes the category
with partially ordered sets as objects and order preserving maps as arrows. For
α : [n] → [m] order preserving we get α∗ : HomPos([m], P) → HomPos([n], P) given
by f 7→ f ◦ α. This simplicial set is called the nerve of P.

For any simplicial object A in C, we will write dn
i = A(δn

i ) and sn
i = A(σn

i ). These maps are
called face maps and degeneracy maps. If it improves readability we will sometimes abuse
notation and drop the superscripts of the face and degeneracy maps. If the objects of C are
sets (with possibly some extra structure) we call the elements of An n-simplices. Elements
in the image of a degeneracy map are called degenerate elements and elements in the image
of a face map are called faces. By proposition 1.3 any A(α) for α an arrow in ∆ can be
written as a composition of face and degeneracy maps. We actually have the following
equivalent definition of a simplicial object.

Proposition 1.6. The notion of a simplicial object A in a category C is equivalent to a
sequence of objects (An)n≥0 of C together with maps dn

i : An → An−1 and sn
i : An → An+1

for all i ∈ [n] satisfying the equations

(i) di ◦ dj = dj−1 ◦ di if i < j,

(ii) si ◦ sj = sj+1 ◦ si if i ≤ j,

(iii)

di ◦ sj =


sj−1 ◦ di i < j
id i = j, i = j + 1
sj ◦ di−1 i > j + 1,

whenever they make sense.

Proof. Omitted.

6
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The definition of the dual notion of a simplicial object is as expected.

Definition 1.7. A cosimplicial object in a category C is a functor ∆→ C.

Example 1.8. (i) The identity functor ∆→ ∆ is a cosimplicial object in ∆.

(ii) The functor sending [n] to the topological n-simplex defined in example 1.5.ii is an
example of a cosimplicial topological space. This is called the geometric realization of
∆.

For a cosimplicial object A in C we write δn
i = A(δn

i ) and σn
i = A(σn

i ). The context
will usually prevent the apparent confusion. Unsurprisingly, these maps are called the
coface maps and codegeneracy maps respectively. In the light of proposition 1.6, we have the
following alternative way of thinking about cosimplicial objects.

Proposition 1.9. The notion of a cosimplicial object A in a category C is equivalent to a
sequence of objects (An)n≥0 of C together with maps δn

i : An−1 → An and σn
i : An+1 → An

for all i ∈ [n] satisfying the equations

(i) δj ◦ δi = δi ◦ δj−1 if i < j,

(ii) σj ◦ σi = σi ◦ σj+1 if i ≤ j,

(iii)

σj ◦ δi =


δi ◦ σj−1 i < j
id i = j, i = j + 1
δi−1 ◦ σj i > j + 1,

whenever they make sense.

Proof. Omitted.

We have a natural notion of morphisms of (co)simplicial objects; they are just natural
transformations. For any category C we get the category Simp(C) of simplicial objects in
C and the category cSimp(C) of cosimplicial objects in C.

We conclude this section by introducing some notions that are useful later on. First of all,
the category of (co)simplicial objects in C allows products whenever C does.

Definition 1.10. Let C be a category with all binary products. Let A and B be (co)simplicial
objects in C. We define the product A× B of A and B to be the (co)simplicial object in C
with (A× B)n = An × Bn and as (co)face and (co)degeneracy maps the products of the
(co)face and (co)degeneracy maps of A and B.

Of course one should verify that the definition above indeed defines a (co)simplicial object.
With the identities of proposition 1.6 and proposition 1.9 this is quite simple. Another
important notion is the concept of truncated (co)simplicial objects. For any n ≥ 0 we let
∆≤n denote the full subcategory of ∆ with objects [0], . . . , [n].

Definition 1.11. Let n ≥ 0. An n-truncated simplicial object in a category C is a functor
∆op
≤n → C. An n-truncated cosimplicial object in C is a functor ∆≤n → C.

Finally, we show how to build a cochain complex out of a cosimplicial object. Let A be an
abelian category. Given a cosimplicial object A in A, one can associate a cochain complex
with A, usually called the Moore complex. For any n ≥ 0 we define the differential maps
∂n : An → An+1 as follows

∂n =
n+1

∑
i=0

(−1)iδn+1
i .

7
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Proposition 1.12. For all n ≥ 0 we have ∂n+1∂n = 0.

Proof. Using property (i) from proposition 1.9, we find

∂n+1∂n =
n+2

∑
k=0

n+1

∑
`=0

(−1)k+`δkδ`

=
n+2

∑
k=1

k−1

∑
`=0

(−1)k+`δkδ` +
n+1

∑
k=0

n+1

∑
`=k

(−1)k+`δkδ`

=
n+2

∑
k=1

k−1

∑
`=0

(−1)k+`δ`δk−1 +
n+1

∑
k=0

n+1

∑
`=k

(−1)k+`δkδ`

=
n+1

∑
`=0

n+2

∑
k=`+1

(−1)k+`δ`δk−1 +
n+1

∑
k=0

∑
`=k

(−1)k+`δkδn+1
`

= −
n+1

∑
`=0

n+1

∑
k=`

(−1)k+`δ`δk +
n+1

∑
k=0

n+1

∑
`=k

(−1)k+`δkδ`

= 0.

We conclude that the sequence (An)n≥0 together with the differential maps ∂n is indeed a
cochain complex. The Moore complex of A is denoted by s(A). Note that a map f : A→ B
of cosimplicial objects in A is also naturally a map of cochain complexes s(A) → s(B),
and we see that s is actually a functor

s : cSimp(A) −→ C≥0(A).

We will usually just write f instead of s( f ).

1.2 Hypercoverings of Topological Spaces

The definition of a hypercovering is a bit technical in nature so we will start by giving
a more intuitive explanation. In order to give a hypercovering on a topological space
X, one start with an open cover U0 of X. In ordinary Čech theory one now defines the
(unrestricted) Čech complex Č•(X,F ) of an abelian sheaf F on X by

Čn(U0,F ) = ∏
U0,...,Un∈U0

F (U0 ∩ . . . ∩Un)

and the usual differential. The idea behind hypercoverings is to allow an open cover
V(U0,...,Un) of the intersection U0 ∩ . . . ∩Un for any tuple (U0, . . . , Un) ∈ Un+1

0 . Moreover,
instead of just intersections of opens in U0, we consider all intersections of opens occurring
in some open cover in the hypercovering so far. We end up with a sequence {Un}n≥0 of
collections of open subsets of X. For any U ∈ Un we would like to know which intersection
of opens in Un−1 it covers. This bookkeeping role is played by the notion of a simplicial
set, which was introduced in the previous section. We will now give the formal definition
of a hypercovering.

Definition 1.13. A hypercovering on a topological space X is a simplicial set I together with
a sequences of families U = (Un = {Ui}i∈In)n≥0 of open subsets of X such that

(H1) For all n ≥ 1 and all a ∈ [n] we have Ui ⊆ Udn
a (i),

(H2) For all n ≥ 0 and all a ∈ [n] we have Ui = Usn
a (i),

8
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(H3) The collection U0 is an open cover of X, that is, X =
⋃

i∈I0
Ui,

(H4) For all i, j ∈ I0 we have

Ui ∩Uj =
⋃

k∈I1
d1

0(k)=i
d1

1(k)=j

Uk,

(H5) For all n ≥ 1 and all i0, ..., in+1 ∈ In such that dn
b−1(ia) = dn

a (ib) for all 0 ≤ a < b ≤
n + 1 we have

Ui0 ∩ . . . ∩Uin+1 =
⋃

k∈In+1
∀a∈[n+1] dn+1

a (k)=ia

Uk.

Note that we allow opens Ui to be the empty and that for different i, j ∈ In, we can have
an equality Ui = Uj.

Set Theoretic Remark 1.14. For a given topological space X, let HC(X) denote the class
of all hypercoverings on X. When defining absolute hyper-Čech cohomology groups later
on, we take the colimit of a diagram HC(X) → Ab, similarly as is done for ordinary
Čech cohomology. For this to make sense, we would like HC(X) to be small, that is, a set.
In the case of ordinary Čech cohomology this problem can be solved by only allowing
certain indexing sets and showing that any open cover is equivalent to an open cover with
an allowed indexing set (for details, see for example page 238 of [7]). In the context of
hypercoverings, we can make HC(X) a set by requiring that all open covers occurring in
(H3) till (H5) are open covers in this more restricted sense.

We will now give an example of a hypercovering on a topological space. Note that this
example assures that every topological space has hypercoverings.

Example 1.15. Let X be a topological space and suppose that U = {Ua}a∈A is an open
cover of X. Endow the index set A with a partial order and let I denote the simplicial
set HomPos(−, A), see example 1.5.vi. For any n ≥ 0 and any f ∈ In we define U f =⋂

i∈[n] U f (i). Let U denote the collection (Un = {U f } f∈In)n≥0. We claim that (I,U ) is a
hypercovering of X. In order to prove this, we simply need to check the conditions (H1)-
(H5).

1. Let n ≥ 1 and a ∈ [n]. We have

Udn
a ( f ) = U f ◦δn

a =
⋂

i∈[n−1]

U f (δn
a (i)) =

⋂
i∈[n]
i 6=a

U f (i)

and surely U f =
⋂

i∈[n] U f (i) is contained in this set.

2. Let n ≥ 0 and a ∈ [n], we have

Usn
a ( f ) = U f ◦σn

a =
⋂

i∈[n+1]

U f (σn
a (i)) =

⋂
i∈[n]

U f (i) = U f .

3. Note that for any f ∈ I0 we have U f = U f (0) and therefore U0 = U , which is an open
cover of X by assumption.

4. Let f , g ∈ I0. We have⋃
h∈I1

d1
0(h)= f

d1
1(h)=g

Uh =
⋃

h∈I1
h◦δn

0= f
h◦δn

1=g

Uh =
⋃

h∈I1
h(1)= f (0)
h(0)=g(0)

Uh = U f (0) ∩Ug(0) = U f ∩Ug.

9
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5. Let n ≥ 1 and ( f0, ..., fn+1) ∈ In+2
n such that dn

b−1( fa) = dn
a ( fb) for all 0 ≤ a < b ≤

n + 1. Let G be the set of all g ∈ In+1 such that dn+1
a (g) = fa for all a ∈ [n + 1]. For

any a ∈ [n + 1] distinct from 0 and any g ∈ G we have

g(a) = g(δn+1
a−1 (a− 1)) = dn+1

a−1 (g)(a− 1) = fa−1(a− 1).

Also g(0) = g(δn+1
1 (0)) = dn+1

1 (g)(0) = f1(0). We conclude that there exists only
one unique g in G and moreover, Ug = U f1(0) ∩U f0(0) ∩U f1(1) ∩ . . . ∩U fn(n). Let V
be the set { fx(x) : x ∈ [n]} ∪ { f1(0)}. Let a ∈ [n + 1]. If a > 1, then we have

fa(0) = fa(δ
n
1 (0)) = dn

1 ( fa)(0) = dn
a−1( f1)(0) = f1(δ

n
a−1(0)) = f1(0),

so we conclude that for all a ∈ [n + 1] we have fa(0) ∈ V. Now suppose 0 < x < a.
We have

fa(x) = fa(δ
n
x−1(x− 1)) = dn

x−1( fa)(x− 1) = dn
a−1( fx−1)(x− 1)

= fx−1(δ
n
a−1(x− 1)) = fx−1(x− 1).

Finally suppose 0 ≤ a < x ≤ n, we have

fa(x) = fa(δ
n
x−1(x− 1)) = dn

x−1( fa)(x− 1) = dn
a ( fx)(x− 1) = fx(δ

n
a (x− 1)) = fx(x).

We conclude that for all a ∈ [n + 1] and all x ∈ [n] we have fa(x) ∈ V. Therefore,

n+1⋂
a=0

U fa =
n+1⋂
a=0

⋂
x∈[n]

U fa(x) =
⋂

v∈V
Uv = Ug =

⋃
h∈G

Uh.

We now consider maps of hypercoverings.

Definition 1.16. Let X be a topological space and K = (I,U ) and L = (J,V) hypercover-
ings of X. A refinement map f : K → L is a map of simplicial sets f : I → J such that for all
n ≥ 0 and all i ∈ In, we have Ui ⊆ Vf (i). If such a refinement map exists, we say that K is
a refinement of L.

From now on HC(X) denotes the category of hypercoverings on X with refinement maps
as arrows. Note that HC(X) is small by remark 1.14. Just as with ordinary Čech theory,
the concept of finest (hyper)covers will be useful, for the (hyper-)Čech cohomology groups
of a finest (hyper)cover are equal to the absolute (hyper-)Čech cohomology groups. The
following proposition makes it easier to recognize finest hypercoverings.

Lemma 1.17. Let I be a simplicial set. Let n ≥ 0 and i ∈ In. There exists a unique non-
degenerate element x ∈ Im for some m and unique 0 ≤ a1 ≤ . . . ≤ ak ≤ m such that

i = sa1 . . . sak x.

Proof. See proposition 4.8 of [6]. By using property ii of proposition 1.6 repeatedly, we can
make sure that 0 ≤ a1 ≤ . . . ≤ ak ≤ m.

Proposition 1.18. Let X be a topological space and let K = (I,U ) be a hypercovering of X
such that all open covers occurring in (H3), (H4) an (H5) are finest open covers. Then, K is
a refinement of every hypercovering on X.

10
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Proof. Let L = (J,V) be any other hypercovering on X. We will construct a refinement
map f : K → L inductively. We first introduce some notation for the sake of readability.
Let n ≥ 0 and i ∈ In+2

n , we set

An+1
i = {j ∈ In+1 : da(j) = ia for all a ∈ [n + 1]}.

Similarly, for the simplicial set J we define the sets Bn
j . As U0 is a finest open cover of X,

there exists a map f0 : I0 → J0 such that Ui ⊆ Vf i for all i ∈ I0. From this map f0 we will
inductively construct a map of simplicial sets f : I → J such that Ui ⊆ Vfni for all n ≥ 0
and all i ∈ In. We start by constructing f1. Let i ∈ I1, we distinguish two cases.

1. Suppose we have i = s0k for some k ∈ I0. We set f1i = s0 f0k. Note that we have

Ui = Us0k = Uk ⊆ Vf0k = Vs0 f0k = Vf1i,

so f1 has the desired property on the degenerate elements.

2. Suppose that i is not of this form. Let i = (d0i, d1i). Note that we have⋃
k∈A1

i

Uk = Ud0i ∩Ud1i ⊆ Vf0d0i ∩Vf0d1i =
⋃

k∈B1
f i

Vk.

For any k ∈ B1
f i we set Wk = Vk ∩Ud01 ∩Ud1i. Now {Wk}k∈B1

f i
is an open cover of

Ud0i ∩Ud1i and by our assumption, we get a map g : A1
i → B1

f i such that Uk ⊆ Wg(k)

for all k ∈ A1
i . Note that i ∈ A1

i and we set f1i = gi. We have

Ui ⊆Wg(i) ⊆ Vg(i) = Vf1i,

so f1 has the desired property on all non-degenerate elements.

The map f must be a map of simplicial sets and therefore f1 must commute with all
face and degeneracy maps. Note that commutativity with the degeneracy maps is by
definition. We prove that f1 commutes with the face map. We again distinguish between
the degenerate and non-degenerate case.

1. Let i = s0k for some k ∈ I0. We find

da f1i = da f1s0k = das0 f0k = f0k = f0dai for all a ∈ [1],

so f1 commutes with all da for all degenerate elements.

2. Suppose that i is non-degenerate. We have da f1i = f0dai, as f1i ∈ B1
f i, so f1 commutes

with da for all a ∈ [1].

Suppose that f is constructed up to fn−1. We construct fn.

1. Let i ∈ In be degenerate and write i = sa1 . . . sak x in the unique form of lemma
1.17. We define fni = sa1 fn−1y, where y = sa2 . . . sak x. It is easily checked that fn
satisfies the desired property. Now suppose i ∈ In−1 and let c ∈ [n] and write
sci = sb1 . . . sbk+1

x in the unique form of lemma 1.17. We have

sc fn−1i = sc fnsa1 . . . sak x = scsa1 . . . sak fmx = sb1 . . . sbk+1
fmx

= fnsb1 . . . sbk+1
x = fnscsa1 . . . sak x = fnsci.

We conclude that fn commutes with the degeneracy maps. We show that fn−1 com-
mutes with the face maps. Let b ∈ [n].

11
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(a) Suppose b < a. Then

db fni = dbsa fn−1k = sa−1db fn−1k = sa−1 fn−2dbk
= fn−1sa−1dbk = fn−1dbsak = fn−1dbi.

(b) Suppose b ∈ {a, a + 1}. Then,

db fni = dbsa fn−1k = fn−1k = fn−1dbsak = fn−1dbi.

(c) Suppose b > a + 1. Then,

db fni = dbsa fn−1k = sadb−1 fn−1k = sa fn−2db−1k = fn−1sadb−1k = fn−1dbi.

2. Suppose that i ∈ In is non-degenerate. Let i = (d0i, . . . , dni) ∈ In+1
n−1 . By the hyper-

covering property (H5) we have⋃
k∈An

i

Uk = Ud0i ∩ . . . ∩Udni ⊆ Vfn−1d0i ∩ . . . ∩Vfn−1dni =
⋃

k∈Bn
f i

Vk.

Let W = Ud0i ∩ . . .∩Udni. The collection {Vk ∩W}k∈Bn
f i

is an open cover of W and by
assumption there exists a map g : An

i → Bn
f i such that Uk ⊆ Vgk for all k ∈ An

i . We
define fni = gi. The fact that fni ∈ Bn

f i assures that fn commutes with the face maps.

1.3 Constructing Hypercoverings

The example of a hypercovering given in the previous section is somewhat “primitive" in
the sense that all open covers of property (H4) and (H5) are trivial covers. In this section we
will give another way to construct hypercoverings. We do this inductively and therefore
need the notion of a truncated hypercovering. Recall the definition of trancated simplicial
objects 1.11.

Definition 1.19. Let X be a topological space. An n-truncated hypercovering on X is an n-
truncated simplicial set I together with a collection of families U = (Uk = {Ui}i∈Ik )0≤k≤n
of open subsets of X such that the hypercovering properties (H1) till (H5) are satisfied
whenever they make sense.

Let K = (I,U ) be an n-truncated hypercovering on a topological space X, we will show
how to extend K to an (n + 1)-truncated hypercovering of X without altering the sets
Ik and the collections Uk for k ≤ n. By induction this provides a method of defining
hypercoverings of X from truncated hypercoverings. First we define

I∗n+1 = {(i0, ..., in+1) ∈ In+2
n : db−1(ia) = da(ib) for all 0 ≤ a < b ≤ n + 1}.

Note that this definition does not really make sense when n = 0, so in this case we just
define I∗1 = I2

0 . For any a ∈ [n + 1] we define dn+1
a : I∗n+1 → In by dn+1

a (i) = ia. Moreover,
for any a ∈ [n] we define sn

a : In → I∗n+1 by

i 7−→ (sa−1d0i, sa−1d1i, ..., sa−1da−1i, i, i, sada+1i, sada+2i, ..., sadni).

One easily checks that sn
a (i) is indeed an element of I∗n+1. Also the sequence of sets

((Ik)0≤k≤n, I∗n+1) is an (n + 1)-truncated simplicial set with the face and degeneracy maps
just defined. Now let i ∈ I∗n+1 be a degenerate element, then we define J(i) = {i} and

12
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Ui = Ui where i ∈ In is such that sai = i for certain a ∈ [n]. Suppose that i ∈ I∗n+1 is not
degenerate and choose an open cover

Ui0 ∩ . . . ∩Uin+1 =
⋃

j∈J(i)

Uj.

We now set

In+1 = ä
i∈I∗n+1

J(i).

Note that we can replace the codomain of the maps sn
a : In → I∗n+1 by In+1. We also

define dn
a : In+1 → In as the map j 7−→ dn+1

a (π(j)) where π is the canonical map In+1 →
I∗n+1. The sequence (Ik)0≤k≤n+1 together with these face and degeneracy maps is now an
(n + 1)-truncated simplicial set. Moreover, by construction we see that the hypercovering
properties are satisfied whenever the make sense and we conclude that we have extended
K to an (n + 1)-truncated hypercovering of X.

1.4 Hyper-Čech Cohomology

Let X be a topological space, K = (I,U ) a hypercovering of X and F an abelian sheaf on
X. In this subsection, we will define the hyper-Čech cohomology groups Ĥn(K,F ) of F
with respect to K and eventually the absolute hyper-Čech cohomology groups Ĥn(X,F ).
We start by defining abelian groups

F (K)n = ∏
i∈In

F (Ui)

for all n ≥ 0. Moreover, for any n ≥ 1 and any a ∈ [n] we define the maps

δn
a : F (K)n−1 −→ F (K)n

(αi)i∈In−1 7−→ (αdn
a (j)|Uj)j∈In .

For n ≥ 0 and a ∈ [n] we define

σn
a : F (K)n+1 −→ F (K)n

(αi)i∈In+1 7−→ (αsn
a (j))j∈In .

Note that these maps are well-defined since αdn
a (j) ∈ F (Udn

a (j)) and Uj ⊆ Udn
a (j) by (H1).

Also αsn
a (j) ∈ F (Usn

a (j)) and Usn
a (j) = Uj by (H2). One can show that the collection of

groups (F (K)n)n≥0 together with these maps satisfy the conditions of proposition 1.9 and
therefore forms a cosimplicial abelian group, which we will denote by F (K). Recalling the
notion of a Moore complex of a cosimplicial abelian group, we can now define hyper-Čech
cohomology.

Definition 1.20. Let X be a topological space, K a hypercovering of X and F an abelian
sheaf on X, we define the hyper-Čech cohomology groups of F with respect to K as the
cohomology groups of the Moore complex F (K), that is,

Ĥn(K,F ) = hn(s(F (K))).

As customary after defining a sheaf cohomology theory, we prove the following proposi-
tion.

13
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Proposition 1.21. Let X be a topological space, K = (I,U ) a hypercovering on X and F an
abelian sheaf on X. We have

Ĥ0(K,F ) ∼= F (X).

Proof. Note that we have

Ĥ0(K,F ) = ker ∂0 = ker

(
∏
i∈I0

F (Ui)
δ1

0−δ1
1−→ ∏

j∈I1

F (Uj)

)
.

Let i, j ∈ I0 and define Cij = {k ∈ I1 : d1
0(k) = i, d1

1(k) = j}. Note that by (H3) we have
Ui ∩Uj =

⋃
k∈Cij

Uk. Suppose s = (si)i∈I0 ∈ ker ∂0. Then we have sd1
0(k)
|Uk − sd1

1(k)
|Uk = 0

for all k ∈ I1. In particular we have si|Uk − sj|Uk = 0 for all k ∈ Cij. It follows that
si|Ui∩Uj − sj|Ui∩Uj = 0. This holds for all i, j ∈ I0 and we conclude s ∈ ker ϕ, where ϕ is
the map

∏
i∈i0

F (Ui) −→ ∏
i,j∈I0

F (Ui ∩Uj)

(si) 7−→ si|Ui∩Uj − sj|Ui∩Uj .

So we have ker ∂0 ⊆ ker ϕ and the other inclusion is obvious. By the sheaf property we
have F (X) ∼= ker ϕ and hence

Ĥ0(K,F ) = ker ∂0 = ker ϕ ∼= F (X).

The following propositions show that the ordinary Čech cohomology groups occur as
hyper-Čech cohomology groups.

Proposition 1.22. Let X be a topological space and U an open cover of X. Let K be the
hypercovering of X constructed from U as in example 1.15 by choosing a total order on the
index set of U . For any abelian sheaf F on X and any n ≥ 0 we have an isomorphism

Ĥn(K,F ) ∼= Ȟn(U ,F ).

Proof. The complex s(F (K)) is clearly equal to the semi-ordered Čech complex of U . Recall
that the semi-ordered Čech complex of U is given by

Čn
semi−ord(U ,F ) = ∏

i0≤...≤in

F (Ui0 ∩ . . . ∩Uin)

with the obvious differential. A proof that the semi-ordered Čech complex is homotopy
equivalent to the ordered Čech complex can be found in the proof of lemma 20.24.6 of
[18].

Recall Leray’s Theorem for ordinary Čech cohomology. If U is an open cover of a topological
space X such that Hn(U,F|U) = 0 for all U ∈ U and all n > 0, then Ȟn(U ,F ) ∼= Hn(X,F )
for all n ≥ 0. We prove a similar statement for hyper-Čech cohomology.

Lemma 1.23. Let X be a topological space, K a hypercovering on X and I an injective abelian
sheaf on X. Then

Ĥn(K, I) = 0

14
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for all n > 0.

Proof. See 24.5.2 of [18].

Theorem 1.24. Let X be a topological space and F an abelian sheaf on X. Let K = (I,U ) be
a hypercovering of X such that for any n ≥ 0 and any i ∈ In we have Hk(Ui,F|Ui ) = 0 for
all k > 0. Then, for all k ≥ 0 we have a natural isomorphism

Ĥk(K,F ) ∼= Hk(X,F )

Proof. The case k = 0 is proven in Proposition 1.21. Now we consider an exact sequence
of sheaves

0 −→ F −→ G −→ H −→ 0 (1.1)

with G injective. Note that existence of such a sequence is ensured as every sheaf embeds
into an injective sheaf. Let n ≥ 0 and i ∈ In. Since H1(Ui,F|Ui ) = 0, the long exact
sequence of cohomology implies that we have a short exact sequence of abelian groups

0 −→ F (Ui) −→ G(Ui) −→ H(Ui) −→ 0.

Taking products we get a short exact sequence of complexes

0 −→ s(F (K)) −→ s(G(K)) −→ s(H(K)) −→ 0.

We now get a long exact sequence of hyper-Čech cohomology groups. Lemma 1.23 states
that the hyper-Čech cohomology groups of G vanishes for k > 0 and this results in natural
isomorphisms Ĥk(K,F ) ∼= Ĥk−1(K,H) for k ≥ 2 and an exact sequence

0→ F (X)→ G(X)→ H(X)→ Ĥ1(K,F )→ 0. (1.2)

Similarly, as G is injective the cohomology groups Hk(X,G) vanish for k > 0 and we get
natural isomorphisms Hk(X,F ) ∼= Hk−1(X,H) for k ≥ 1 and an exact sequence

0→ F (X)→ G(X)→ H(X)→ H1(X,F )→ 0. (1.3)

The sequences (1.2) and (1.3) imply that there is a natural isomorphism Ĥ1(K,F ) ∼=
H1(X,F ). We now move on by induction. Note that the long exact sequence of coho-
mology associated to 1.1 together with the assumption of the theorem and the fact that G
is injective imply that Hk(Ui,H|Ui ) = 0 for all k > 0 and all i ∈ In. That is, the sheaf H
also satisfies the assumption of the theorem. Suppose that we have natural isomorphisms
Ĥ`(K,F ) ∼= H`(X,F ) for all 1 ≤ ` < k. Then,

Ĥk(K,F ) ∼= Ĥk−1(K,H) = Hk−1(X,H) ∼= Hk(X,F ).

The following result is an example illustrating the usefulness of Čech cohomology.

Theorem 1.25. Let k be a field and X a separated k-scheme. Let U be an open cover of
X consisting of spectra of finitely generated k-algebras and F a quasi-coherent OX-module.
Then, for all n ≥ 0, we have an isomorphism

Ȟn(U ,F ) ∼= Hn(X,F )
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Proof. This is a somewhat more general version of Theorem III.4.5 in [12]. In this book, it
is exercise III.4.11.

As a corollary of Theorem 1.24, we find a similar result for hyper Čech cohomology and
see that the assumption that X is separated can be dropped. Recall the following theorem,
which will be used as an ingredient.

Theorem 1.26. Let X be a Noetherian affine scheme and F a quasi-coherent OX-module.
For all k > 0 we have Hk(X,F ) = 0.

Proof. See Theorem 3.7 of [12].

Corollary 1.27. Let k be a field and X a k-scheme. Let K = (I,U ) be a hypercovering of X such
that for all n ≥ 0 and all i ∈ In the open set Ui is isomorphic to the spectrum of a finitely generated
k-algebra. Let F be a quasi-coherent OX-module. Then for any n ≥ 0 we have an isomorphism

Ĥn(K,F ) ∼= Hn(X,F ).

Proof. Let n ≥ 0 and i ∈ In. By assumption Ui is isomorphic to Spec(Ai), with Ai a finitely
generated k-algebra. So Ai is a Noetherian ring, making Ui an affine Noetherian scheme.
As F is quasi-coherent, so is the restriction sheaf F|Ui and by theorem 1.26 we find that
Hn(Ui,F|Ui ) = 0 for all n > 0. The result is now an immediate consequence of lemma
1.24.

1.5 Absolute Hyper-Čech Cohomology

Just as in the case of Čech cohomology we can define absolute cohomology groups by
taking an appropiate colimit. Given a refinement map f : K = (I,U ) → (J,V) = L we get
an induced map f̃ : F (L)→ F (K) given by

f̃ n : ∏
j∈Jn

F (Vj) −→ ∏
i∈In

F (Ui)

f̃ ns(i) = s( f (i))|Ui .

The fact that f̃ is a map of cosimplicial abelian groups follows from the fact that f : I → J
is a map of simplicial sets. The map f̃ in turn induces a map on the Moore complexes
s(F (L)) → s(F (K)) and this induces a map on the hyper-Čech cohomology groups. We
conclude for all n ≥ 0 and all abelian sheaves F on X we have a diagram

Ĥn(−,F ) : HC(X)op F (−)−→ cSimp(Ab) s−→ C≥0(Ab) hn
−→ Ab. (1.4)

This diagram actually turns out to be directed. Given two hypercoverings K and L on X
we can find a common refinement; the product of the two hypercoverings.

Definition 1.28. Let K = (I,U ) and L = (J,V) be two hypercoverings on a topological
space X. For any (i, j) ∈ (I× J)n = In× Jn we define U(i,j) = Ui ∩Vj. We define (U ×V)n =

{U(i,j) : (i, j) ∈ In × Jn} and U × V = ((U × V)n)n≥1. The product of the hypercoverings K
and L is the hypercovering K× L = (I × J, U × V).

Of course, one should check that K × L is indeed a well-defined hypercovering. This is
straightforward by checking the properties (H1)-(H5). The proof that the diagram 1.4 is
directed is completed by a homotopical argument, see lemma 24.9.2 of [18]. We can now
take the colimit of 1.4 and define absolute hyper-Čech cohomology groups.
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Definition 1.29. Let X be a topological space and F an abelian sheaf on X. We define the
absolute hyper-Čech cohomology groups

Ĥn(X,F ) = colimHC(X) Ĥn(K,F ),

where K runs through all hypercoverings of X.

It turns out that the absolute hyper-Čech cohomology groups are the “right" ones. This
result is the Verdier Hypercovering Theorem.

Theorem 1.30 (Verdier Hypercovering Theorem). Let X be a topological space, F an
abelian sheaf on X and n ≥ 0. Then,

Ĥn(X,F ) ∼= Hn(X,F ).

Proof. See Theorem 24.10.1 of [18].

Corollary 1.31. Let X be a topological space that allows a finest hypercovering K. Then,

Ĥn(K,F ) ∼= Hn(X,F )

for all n ≥ 0.

From this corollary we derive the following example of an explicit computation of sheaf
cohomology using hypercoverings.

Proposition 1.32. Let X be a topological space such that there exists a point x ∈ X with
the property that the only open set of X containing x is X itself. Then, Hn(X,F ) = 0 for all
abelian sheaves F on X and all n ≥ 1.

Proof. Let K denote the hypercovering (In,U ), where In = {∗} for all n ≥ 0 and all face
and degeneracy maps are the identity, and where Un = {X} for all n ≥ 0. By the assump-
tion of the proposition the open cover {X} is the finest open cover of X. By proposition
1.18 it is easily seen that K is a finest hypercovering of X. The complex s(F (X)) is the
complex

0 −→ F (X)
0−→ F (X)

id−→ F (X)
0−→ F (X)

id−→ · · · .

We conclude

Hn(X,F ) ∼= Ĥn(K,F ) = hn(s(F (K))) = 0

for all n ≥ 1.

1.6 On Computing Hyper-Čech Cohomology

Although the Verdier Hypercovering Theorem states that hypercoverings are the correct
tool for calculating sheaf cohomology, actual calculations become rather cumbersome. This
is mainly due to the fact that simplicial sets grow quite big when the degree increases. We
will illustrate this by calculating the absolute hyper-Čech cohomology of (D, j!ZU), the
example from the introduction, up to degree 2. Recall that D consists of the five points
W, E, N, S, C and that the open sets are given by

D, ∅, {W, N, S, C}, {E, N, S, C}, {N, C}, {S, C}, {N, S, C} and {C}.

In order to gain some intuition for this space, one could look at figure 1. For any x ∈ D
we denote the smallest open subset of x by Ux. Moreover, we write U = UC and j for
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the inclusion U → D. Denote the open cover {UW , UE} of D by U0. We now construct
a hypercovering K from U0 in the way explained in section 1.3. In order to do this, it is
enough to choose an open cover for every open subset of X. For every x ∈ X we choose
the open cover of Ux just to be the trivial open cover {Ux}. For UW ∩UE we choose the
open cover {UN , US}. All our chosen open covers are finest covers and by lemma 1.18, we
conclude that K is a refinement of every possible hypercovering of X. We conclude

Hn(D, j!ZU) ∼= Ĥn(D, j!ZU) ∼= Ĥn(K, j!ZU)

for every n ≥ 0. Note that we have

j!ZU(K)n ∼= Zm(n),

where m(n) = #{i ∈ In : Ui = U}. In order to determine the first few values m(n) we take
a closer look at the simplicial set I. Following the construction process outlined in section
1.3, we find

I0 = {W, E}
I1 = {(W, W), (E, E), (W, E)N , (W, E)S, (E, W)N , (E, W)S}
I2 = {[(WW), (WW), (WW)], [(EE, EE, EE)]}

∪
{
[(AA), (AB)x, (AB)y] : x, y ∈ {N, S}, {A, B} = {W, E}

}
∪
{
[(AB)x, (AA), (BA)y] : x, y ∈ {N, S}, {A, B} = {W, E}

}
∪
{
[(AB)x, (AB)y, (BB)] : x, y ∈ {N, S}, {A, B} = {W, E}

}
where U(W,E)x = U(E,W)x = Ux for x ∈ {N, S}. This gives

m(0) = 0 m(1) = 0 m(2) = 12.

It follows that Ĥ0(D, j!ZU) ∼= Ĥ1(D, j!ZU) ∼= 0 and Ĥ2(D, j!ZU) ∼= ker ∂2 with ∂2 the
second differential of the Moore complex s(j!ZU(K)). Let n ∈ Z12. We have n ∈ ker ∂2 if
and only if ∑3

a=0(−1)indai = 0 for all i ∈ I3. By considering different elements of I3 we
obtain conditions on n for being an element of ker ∂2. Suppose that {A, B} = {W, E} and
{x, y} = {N, S}, we find the conditions

i = [(AA)(AA)(AA)][(AA)(AB)x(AB)y][(AA)(AB)x(AB)x][(AA)(AB)y(AB)x]

⇒ n[(AA)(AB)x(AB)y ] = n[(AA)(AB)y(AB)x ]

i = [(AA)(AB)x(AB)x][(AA)(AB)x(AB)y][(AB)x(AB)x)(BB)][(AB)x(AB)y(BB)]

⇒ n[(AA)(AB)x(AB)y ] = n[(AB)x(AB)y(BB)]

i = [(AB)x(AA)(BA)y][(AB)x(AB)y(BB)][(AA)(ABy)(ABx)][(BA)y(BB)(AB)x]

⇒ n[(AB)x(AA)(BA)y ] = n[(BA)y(BB)(AB)x ]

i = [(AB)x(AA)(BA)y][(AB)x(AB)x(BB)][(AA)(AB)x(AB)y][(BA)y(BB)(AB)y]

⇒ n[(AB)x(AA)(BA)y ] = −− n[(AA)(AB)x(AB)y ].

Combining all these conditions we find that n must be a constant tuple in Z12. We con-
clude

H2(D, j!ZU) ∼= Ĥ2(K, j!ZU) ∼= ker ∂2 ∼= Z.

Theorem 0.2 assures that we have successfully found the sheaf cohomology groups of
(D, j!ZU) up to degree 2 using hypercoverings. However, from the exposition above it
becomes clear that even for fairly small spaces as D the calculation is quite painful.
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2 Duality for (Locally) Finite Spaces

From now on we concentrate exclusively on finite topological spaces. In the introduc-
tion we saw that Čech cohomology is not always powerful enough to calculate sheaf
cohomology, even for finite spaces. In the previous section we saw that this problem can
theoretically be solved with the introduction of hypercoverings and the corresponding
hyper-Čech cohomology theory. Although calculating Čech cohomology is often doable,
section 1.6 showed that calculating hyper-Čech cohomology is another task all together.
Fortunately, there does actually exists a complex that can be used to calculate the sheaf
cohomology groups of finite spaces: the Godement resolution. This resolution will be in-
troduced in section 2.2.

After our study of the Godement resolution, we will study a Grothendieck Duality Theo-
rem for finite topological spaces, in which the Godement resolution features. This Duality
Theorem is due to González and first proved in [15]. We will actually prove a slightly
more general form of the theorem, stated for sheaves of R-modules (for R a commutative
ring) instead of sheaves of abelian groups. An even more general form, for finite ringed
spaces, can be found in [17]. In the last subsection we will show that the stated Duality
Theorem can be extended to work for locally finite topological spaces.

2.1 Finite Topological Spaces

We start by briefly looking at finite topological spaces in general. It turns out the finite
topological (T0) spaces are equivalent to finite posets. We will make this equivalence ex-
plicit.

Definition 2.1. Let X be a topological space. The specialization order ≤X on X is the order
defined by x ≤X y if and only if x is contained in the closure of {y}. If x ≤X y, then x is
called a specialization of y and y is called a generization of x.

Example 2.2. Let R be a commutative ring and X = Spec R its spectrum. For any two
prime ideals p and q we have q ⊆ p if and only if p ≤X q.

Note that an equivalent definition says that a point x is a specialization of a point y if
any open subset containing x also contains y. The subscript X in ≤X will almost always
be omitted. The specialization order of a topological space is a preorder and it is easily
seen that it is actually a partial order if and only if the topological space satisfies the
T0 separation axiom. Recall that a topological space is T0 if any two distinct points are
topological distinguishable, i.e. there exists an open that contains exactly one of the two
points. For the remainder of this thesis we will assume that all our spaces are T0.

Assumption 2.3. Any topological space is from now on assumed to be T0. With the cate-
gory Top of topological spaces we actually mean the category of T0 topological spaces.

If one is interested in a space that does not satisfy the T0 separation axiom, one can move
to the Kolmogorov quotient of X. The relation ∼ on X defined by x ∼ y if and only if x
and y are topologically indistinguishable is an equivalence relation and the quotient space
KQ(X) is easily checked to be a T0 space. Moreover, moving to the Kolmogorov quotient
has no impact on the study of sheaves on X; the notion of a sheaf on X is equivalent to
the notion of a sheaf on KQ(X).

Proposition 2.4. Let X be a topological space and q : X → KQ(X) the quotient map. Let R
be a commutative ring. The functors q∗ : ShR(X)→ ShR(KQ(X)) and q−1 : ShR(KQ(X))→
ShR(X) form an equivalence of categories.
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Proof. Let U ⊆ X be open and x ∈ q−1(qU). Then q(x) ∈ qU so there exists an y ∈ U such
that q(x) = q(y). But then x and y are topological indistinguishable points of X. From
y ∈ U it follows that x ∈ U. We conclude q−1(qU) ⊆ U and thus q−1(qU) = U. It follows
that the quotient map q is open.

Recall that we write O(Y) for the category of open subsets of a topological space Y with
inclusions. We now have an isomorphism of categories

O(X) −→ O(KQ(X))

U 7−→ q(U)

V ⊆ U 7−→ q(V) ⊆ q(U)

O(KQ(X)) −→ O(X)

V 7−→ q−1(V)

W ⊆ V 7−→ q−1(W) ⊆ q−1(V).

This isomorphism induces the wanted equivalence.

Although we require all our spaces to be T0, the specialization order becomes trivial if we
assume that the next separation axiom holds. Indeed, suppose that X is a T1 space. Recall
that a space is T1 if any two distinct points x and y can be separated, that is, there exists an
open neighbourhood of x that does not contain y and vice versa. Let x, y ∈ X such that
x ≤ y. Any open subset containing x also contains y, so by the T1 axiom we have x = y.

We can define the (Krull) dimension of a topological space by means of the specialization
order.

Definition 2.5. Let X be a topological space. The dimension of a point x ∈ X is the element
of Z≥0 ∪ {∞} defined by

dimX(x) = sup{n ∈ Z≥0 : ∃x0, . . . , xn ∈ X such that x0 < . . . < xn = x}.

The dimension of the space X is the element of Z≥0 ∪ {−∞, ∞} defined by

dim X = sup{dimX(x) : x ∈ X}.

Instead of dimX(x) we simply write dim(x) if X is understood.

Remark 2.6. (i) Let X be a finite topological space. For all x ∈ X we have dim(x) ≤ |X|
and thus dim X ≤ |X|.

(ii) For a topological space X we have dim X = −∞ if and only if X = ∅.

A continuous map of topological spaces preserves the specialization order and therefore
we have a functor

S : Top −→ Pos.

We can also go in the other direction.

Definition 2.7. Let P be a poset. The Alexandrov topology on P is the collection of all upward
closed sets of P.

An order preserving map of posets is continuous with respect to the Alexandrov topolo-
gies and we have a functor

A : Pos −→ Top.
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The two functors that we found do in general not give an equivalence of categories. For
a given topological space, its topology does not necessarily coincide with its Alexandrov
topology. However, when restricted to finite topological spaces and finite posets, the func-
tors are inverses, making the categories of finite spaces and finite posets not only equiv-
alent but isomorphic. This observation allows us to use both the language of topological
spaces and posets interchangeably when working with finite spaces.

Finite topological spaces have the nice property that arbitrary intersections of open subsets
are open.

Definition 2.8. A topological space is called Alexandrov-discrete if all intersections of open
subsets are open.

Example 2.9. (i) Finite spaces are Alexandrov-discrete

(ii) Discrete spaces are Alexandrov-discrete

(iii) For P any poset, the induced space A(P) is Alexandrov-discrete.

Note that for any point x in an Alexandrov-discrete space X, there exists a minimal open
neighbourhood Ux of x. Moreover, we have x ≤ y if and only if Uy ⊆ Ux.

Notation 2.10. If X is an Alexandrov-discrete space and x ∈ X, then we will write Ux for
the smallest open subset of X containing x.

The fact that points in finite spaces have minimal open neighbourhoods, makes the study
of sheaves on finite spaces simple. It turns out that sheaves on finite spaces are completely
determined by the stalks. Let R be a commutative ring. For any sheaf of R-modules F on
an Alexandrov-discerete space X we have Fx ∼= F (Ux). Furthermore, if x ≤ y then we
have a map

Fx ∼= F (Ux) −→ F (Uy) ∼= Fy.

So a sheaf F on X induces a functor ϕF : S(X)→ ModR, where the poset S(X) is viewed
as a category in the usual way. A morphism of sheaves F → G induces a natural transfor-
mation ϕF → ϕG and we conclude that we have a functor

ϕ : ShR(X) −→ Func(S(X), ModR).

Starting with a functor F : S(X)→ ModR we define the R-module

(ψF)(U) = limx∈U F(x)

for any open subset U ⊆ X. For any inclusion V ⊆ U of opens in X the universal property
of the limit gives a morphism (ψF)(U)→ (ψF)(V), making ψF a presheaf on X. We claim
that ψF is actually a sheaf. As taking limit is left exact, it is enough to prove that the
sheaf property holds for open covers {Ui}i∈I of Ux for x ∈ X. For these open covers it is
easily seen that the sheaf property holds as there must be at least one i ∈ I with Ui = Ux.
A natural transformation F → G of functors S(X) → ModR induces a map of sheaves
ψF → ψG and we conclude that we have a functor

ψ : Func(S(X), ModR) −→ ShR(X).

Theorem 2.11. Let X be an Alexandrov-discrete topological space and S(X) the associated
poset. Let R be a commutative ring. The functors ϕ and ψ defined above form an equivalence
of categories between Func(S(X), ModR) and ShR(X).

Proof. Follows by construction.
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2.2 The Godement Resolution

In this section we will introduce the Godement resolution of a sheaf on a topological space.
This resolution can be used to calculate sheaf cohomology groups of finite spaces. Fur-
thermore, it will later occur in the Duality Theorem for finite topological spaces.

Definition 2.12. Let X be a topological space, R a commutative ring and F a sheaf of
R-modules on X. The Godement sheaf of F is the sheaf of R-modules G0(F ) on X defined
by

(G0F )(U) = ∏
x∈U
Fx,

for open U ⊆ X and with as restriction maps the projections

(G0F )(U) = ∏
x∈U
Fx −→ ∏

x∈V
Fx = (G0F )(V),

for V ⊆ U.

Of course one should check that G0(F ) is indeed a sheaf. A map op sheaves F → G
induces maps on the stalks and therefore we get a map G0(F ) → G0(G). Hence, G0 is
actually a functor ShR(X) → ShR(X). Note that there exists a canonical injective map
of sheaves F → G0(F ) sending a section to the product of all its germs. Call this latter
map d0

F . We will almost always omit the subscript F from notation. Now we get a map
G0(F ) → coker d0 → G0(coker d0), which we call d1. Going on inductively and defining
GpF = G0(coker dp−1) for p ≥ 1, we get a commutative diagram

0 F G0(F ) G1F G2F . . .

coker d0 coker d1

d0 d1 d2

We see that F [0] → G•F is actually a resolution and this resolution will be called the
Godement resolution of F . As the Godement sheaf of any sheaf is easily seen to be flasque,
the resolution F [0] → G•F is flasque and can thus be used for calculating the sheaf co-
homology groups of (X,F ). This is made even simpler in the case of Alexandrov-discrete
spaces with the following Theorem. The complex described in this Theorem is widely
known and used (for example in [4], [16] and [17]) but proofs that it equals the Godement
resolution are not often given.

Notation 2.13. For any chain x0 < . . . < xp in a space X and any 0 ≤ i ≤ p we write
x0 < . . . < x̂i < . . . < xp for the chain x0 < . . . < xi−1 < xi+1 < . . . < xp.

Theorem 2.14. Let X be an Alexandrov-discrete space, R a commutative ring and F a sheaf
of R-modules on X. Let p ≥ 0. For x ∈ X we have

(GpF )x ∼= ∏
x≤x0<...<xp

Fxp (2.1)

and

(coker dp)x ∼= ∏
x<x0<...<xp

Fxp .

For x < y the maps (GpF )x → (GpF )y and (coker dp)x → (coker dp)y are under these
isomorphisms given by

sy(y ≤ x0 < . . . xp) = s(x ≤ x0 < . . . < xp)
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and

sy(y < x0 < . . . xp) = s(x < x0 < . . . < xp)

−
p−1

∑
i=0

(−1)is(x < y < x0 < . . . < x̂i < . . . < xp) (2.2)

− (−1)ps(x < y < x0 < . . . < xp−1)xp

respectively. The map

qp
x : (GpF )x −→ (coker dp)x

is given by

qp
xs(x < y0 < . . . < yp) = s(x ≤ y0 < . . . < yp)

−
p−1

∑
i=0

(−1)is(x ≤ x < y0 < . . . < ŷi < . . . < yp) (2.3)

− (−1)ps(x ≤ x < y0 < . . . < yp−1)yp .

and the differential

dp+1
x : (GpF )x −→ Gp+1(F )x

is given by

dp+1
x s(x ≤ x0 < . . . < xp+1) =

p

∑
i=0

(−1)is(x ≤ x0 < . . . < x̂i < . . . < xp+1)

+ (−1)p+1s(x ≤ x0 < . . . < xp)xp+1 .

Proof. We prove by induction on p. The formula (2.1) holds for p = 0 by definition of the
Godement sheaf. It is also easily seen that the map between the stalks is as wanted. For
any x ∈ X, the map d0

x : Fx → (G0F )x is given by

(d0
xs)(x ≤ y) = sy

and therefore the map

q0
x : ∏

x≤y
Fy −→ ∏

x<y
Fy

s 7−→ (s(x ≤ y)− s(x ≤ x)y)x<y

(2.4)

has im d0
x as kernel and induces an isomorphism (coker d0)x → ∏x<y Fy. Let x < y,

s ∈ ∏x<y Fy, and t ∈ ∏x≤y Fy such that q0
xt = s. Then we have

sy(y < z) = q0
x(ty)(y < z) = ty(y ≤ z)− ty(y ≤ y)z

= t(x ≤ z)− t(x ≤ y)z = s(x < z)− s(x < y)z.

So the maps between the stalks of coker d0 are as wanted. Now suppose that all our
wanted formulas hold for 0 ≤ d < p. We find

(GpF )x = G0(coker dp−1)x = ∏
x≤y

(coker dp−1)y

∼= ∏
x≤y

∏
y<y0<...<yp−1

Fyp−1 = ∏
x≤y0<y1<...<yp

Fyp .
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For the ease of notation we write ε
p−1
x = d0

coker dp−1,x
. It follows that the differential dp is

given by

dp
xs(x ≤ y0 < . . . < yp) = ε

p−1
x qp−1

x s(x ≤ y0 < . . . < yp) = (qp−1
x s)y0(y0 < . . . < yp).

Using the formulas (2.2) and (2.3) it is now a straightforward but long writing exercise to
show that dp is as claimed. The map (2.4) with the role of F played by coker dp−1 shows
that we have

(coker dp)x ∼= ∏
x<y

(coker dp−1)y = ∏
x<y

∏
y<z0<...<zp−1

Fzp−1 = ∏
x<y0<...<yp

Fyp

and that the map

qp
x : (GpF )x = ∏

x≤y
(coker dp−1)x −→ (coker dp)x

is given by

qp
xs(x < y0 < . . . < yp) = s(x ≤ y0)(y0 < . . . < yp)− s(x ≤ x)y0(y0 < . . . < yp)

= s(x ≤ y0 < . . . < yp)− s(x ≤ x < y1 < . . . < yp)

−
p−1

∑
i=1

(−1)is(x ≤ x < y0 < . . . < ŷi < . . . < yp)

− (−1)ps(x ≤ x < y0 < . . . < yp−1)yp

as wanted.

Corollary 2.15. Let X be an Alexandrov-discrete space, R a commutative ring and F a sheaf of
R-modules on X. For any open U ⊆ X and any p ≥ 0 we have

Γ(U, GpF ) = limx∈U(GpF )x = limx∈U

 ∏
x≤x0<...<xp

Fxp

 ∼= ∏
U3x0<...<xp

Fxp .

Corollary 2.16. Let X be an Alexandrov-discrete topological space of finite dimension n. Let R
be a commutative ring. Then we have GpF = 0 for all sheaves of R-modules F on X and all
p > n. Hence, dn

F is surjective and we have GnF ∼= coker dn−1
F . Moreover, as G•F is a flasque

resolution of F , it follows that Hp(X,F ) = 0 for all p > n. This proves the well known Theorem
of Grothendieck ([11, 3.6.5]) that the cohomological dimension equals at most the Krull dimension
in the case of Alexandrov-discrete spaces.

We turn to the finite model of the unit disk one last time. We will give an explicit calcu-
lation of the cohomology groups of (D, j!ZU) using the Godement resolution. Thereafter,
we also consider the more general setting of finite models of unit disks in other dimen-
sions. We define the finite model of the 0-disk to be the singleton D0 = {C}. Let n > 0,
we define the finite model of the n-disk to be the topological space

Dn = Dn−1 ∪ {xn
0 , xn

1}

with xn
i ≤ y for all y ∈ Dn−1 and i = 0, 1. From this definition it is clear that we have

|Dn| = 2n + 1 and that dim Dn = n for all n ≥ 0. For any n ≥ 0 the subset {C} ⊆ Dn is
open and we let Fn be the sheaf Z{C} extended by zero to the whole of Dn. We will prove
that Hp(Dn,Fn) ∼= Z for p = n and 0 otherwise.

We first give an explicit calculation for the case D = D2, which was also considered int he
introduction.
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

Figure 2: Finite model of the n-disk. A path y → · · · → x means that x is a specialization
of y, that is, x ≤ y.

Example 2.17. As dim D = 2, corollary 2.16 implies that Hn(D, j!ZU) = 0 for all n > 2.
Note that (j!ZU)x = Z if x = C and (j!ZU)x = 0 otherwise. The complex Γ(D, G•(j!ZU))
looks like

· · · −→ 0 −→ Z
α−→ Z4 β−→ Z4 −→ 0 −→ · · · ,

where the first zero lives in degree −1. The Z in degree 0 is generated by C. The Z4

in degree 1 is generated by {W < C, E < C, N < C, S < C} and the Z4 in degree 2 is
generated by {W < N < C, W < S < C, E < N < C, E < S < C}. The maps α and β with
respect to these bases are

α =


−1
−1
−1
−1

 β =


−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1

 .

We know that H0(D, j!ZU) = j!ZU(D) = 0. Let n ∈ ker β. Let x ∈ {W, E} and y ∈ {N, S}.
We have

βn(x < y < C) = n(x < C)− n(y < C)

and thus n(x < C) = n(y < C). It follows that ker β = im α ∼= Z. Hence,

H1(D, j!ZU) ∼= ker β/ im α = 0.

From ker α = 0 it follows that Γ(D, G•(j!ZU)) is quasi isomorphic to

· · · −→ 0 −→ Z3 γ−→ Z4 −→ 0 −→ · · · ,

where the first zero lives in degree 0. From H1(D, j!ZU) = 0 it now follows that ker γ = 0
and thus that

H2(D, j|!ZU) ∼= coker γ ∼= Z.

The more general statement follows from the following theorem.

Theorem 2.18. Let X be a finite topological space, R a commutative ring and F a sheaf of R-
modules on X. We define X+ = X ∪ {x0, x1} with x0, x1 ≤ y for all y ∈ X. Let j : X → X+

denote the inclusion and j!F the extension of F by zero to X+. We have

H0(X+, j!F ) = 0
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and for all n > 0 there is an isomorphism

Hn(X+, j!F ) ∼= Hn−1(X,F ).

Proof. Let p ≥ 0. We define the surjective map

ϕp :

 ∏
(x0≤y0<...<yp)∈X+

(j!F )yp

⊕
 ∏

(x1≤y0<...<yp)∈X+

(j!F )yp

 −→ ∏
(z0<...<zp)∈X

Fzp

given by

(ϕp(s, t)) (z0 < . . . < zp) = s(x0 ≤ z0 < . . . < zp)− t(x1 ≤ y0 < . . . < yp).

Moreover, we define

ιp : ∏
(y0<...<yp)∈X+

(j!F )yp −→

 ∏
(x0≤y0<...<yp)∈X+

(j!F )yp

⊕
 ∏

(x1≤y0<...<yp)∈X+

(j!F )yp


to be the canonical injective map. It is now easily seen that these maps fit in an exact
sequence

0 −→ Γ(X+, Gp(j!F ))
ιp
−→ (Gp(j!F ))x0 ⊕ (Gp(j!F ))x1

ϕp

−→ Γ(X, GpF ) −→ 0.

The collections (ιp)p≥0 and (ϕp)p≥0 define maps of complexes and we conclude that we
have an exact sequence

0 −→ Γ(X+, G•(j!F ))
ι−→ (G•(j!F ))x0 ⊕ (G•(j!F ))x1

ϕ−→ Γ(X, G•F ) −→ 0. (2.5)

As G•(j!F ) is a resolution of j!F , the sequence

0 −→ (j!F )x −→ (G0(j!F ))x −→ (G1(j!F ))x −→ (G2(j!F ))x −→ . . .

is exact for all x ∈ X+. Hence, hn((G•(j!F ))x) = 0 for all n ≥ 1 and all x ∈ X. Moreover,
as (j!F )x = 0 for x ∈ {x0, x1}, we also have h0((G•(j!F ))x) = 0 for these x. Taking
cohomology of (2.5) now yields a long exact sequence

0 H0(X+, j!F ) 0 H0(X,F ) H1(X+, j!F ) 0 H1(X,F ) · · · .

The wanted statement follows directly from this sequence.

Corollary 2.19. Let n ≥ 0. We have

Hp(Dn,Fn) ∼=
{

Z p = n
0 otherwise.

Remark 2.20. The proof of Theorem 2.18 is actually just Mayer-Vietoris with the opens
U = Ux0 and V = Ux1 .

As a brief intermezzo, we now exhibit a connection between the Euler characteristic of a fi-
nite space and the möbius function of a poset. This connection is already well understood,
see for example [1, 3.2] and [2]. Using the Godement resolution we give a cohomological
perspective and prove a Theorem that implies the results of [1, 3.2] and [2]. We start by
making some definitions. Let R be a principal ideal domain. A sheaf F of R-modules on
a finite space X is called locally finitely generated if Fx is finitely generated for all points
x ∈ X.
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Definition 2.21. Let X be a finite topological space, R a PID and F a locally finitely
generated sheaf of R-modules on X. The Euler characteristic of X with respect to F is

χ(X,F ) = ∑
i≥0

(−1)i rk(Hi(X,F )).

We can also view the Euler characteristic as an element of the Grothendieck group.

Definition 2.22. Let X be a finite topological space, R a commutative ring and F a locally
finitely generated sheaf of R-modules on X. The Euler characteristic of X with respect to F
is the element

χ(X,F ) = ∑
i≥0

(−1)i[Hi(X,F )]

in the Grothendieck group K0(ModfgR).

Usually the same notation is used for the two defined Euler characteristics. Note that if R
is a PID we have a group homomorphism rk : K0(Abfg)→ Z sending a class [M] to rk M.
This morhism links the two Euler characteristics; we have χ(X,F ) = rk(χ(X,F )).

Definition 2.23. Let P be a poset. We define the möbius function µ : P× P→ R of P recur-
sively by

µ(x, z) =


0 x 6≤ z
1 x = z

−∑x≤y<z µ(x, y) x < z.

The following Theorem about the möbius function is important for the connection with
the Euler characteristic.

Theorem 2.24 (Hall’s Theorem). Let P be a finite poset and let x, y ∈ P. For any i ∈ Z≥0
let ci be the number of chains

x = p0 < . . . < pi = y

in P. Then,

µP(x, y) = ∑
i≥0

(−1)ici.

Proof. See lemma 5.2 in [9] or Theorem 3.2 in [2].

We now prove the connection between the Euler characteristic and the möbius function as
an identity in the Grothendieck group K0(ModfgR).

Theorem 2.25. Let X be a finite topological space, R a commutative ring and F a locally
finitely generated sheaf of R-modules on X. Let X̂ be the poset X ä{0} with 0 < x for all
x ∈ X. We have an equality

χ(X,F ) = − ∑
x∈X

µX̂(0, x)[Fx].

in the Grothendieck group K0(ModfgR).

Proof. For all p ≥ 0 we have an exact sequence

0 −→ ker dp+1 −→ Γ(X, GpF ) −→ im dp+1 −→ 0
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and for all p ≥ 1 we have an exact sequence

0 −→ im dp −→ ker dp+1 −→ Hp(X,F ) −→ 0.

Hence, the following identities holds in the Grothendieck group K0(ModfgR)

[Γ(X, GpF )] = [ker dp+1] + [im dp+1] for all p ≥ 0,

[Hp(X,F )] = [ker dp+1]− [im dp] for all p ≥ 1.

We find

χ(X,F ) = ∑
i≥0

(−1)i[Hi(X,F )]

= [H0(X,F )] + ∑
i≥1

(−1)i[Hi(X,F )]

= [ker d1] + ∑
i≥1

(−1)i
(
[ker di+1]− [im di]

)
= [ker d1] + ∑

i≥1
(−1)i

(
[Γ(X, GiF )]− [im di+1]− [im di]

)
= [ker d1] + ∑

i≥1
(−1)i[Γ(X, GiF )] + [im d1]

= [Γ(X, GiF )]− [im d1] + ∑
i≥1

(−1)i[Γ(X, GiF )] + [im d1]

= ∑
i≥0

(−1)i[Γ(X, GiF )].

For any i ≥ 0 and any x ∈ X we define ci(x) to be the number of chains 0 = x0 < . . . <
xi = x in X̂ and di(x) to be the number of chains x0 < . . . < xi = x in X. Note that we
have c0(x) = 0 and ci(x) = di−1(x) for all i ≥ 1. Let i ≥ 0, we have

[Γ(X, GiF )] =
[ ⊕

x0<...<xi

Fxi

]
= ∑

x0<...<xi

[Fxi ] = ∑
x∈X

di(x)[Fx] = ∑
x∈X

ci+1(x)[Fx].

Hence,

χ(X,F ) = ∑
i≥0

(−1)i[Γ(X, GiF )]

= ∑
i≥0

∑
x∈X

(−1)ici+1(x)[Fx]

= ∑
x∈X
−
(

∑
i≥1

(−1)ici(x)

)
[Fx]

As c0 = 0, it follows that

χ(X,F ) = − ∑
x∈X

(
∑
i≥0

(−1)ici(x)

)
[Fx].

Using Hall’s Theorem, we conclude

χ(X,F ) = − ∑
x∈X

µX̂(0, x)[Fx].
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Part (i) of the following corollary is Theorem 3.2 in [1] and part (ii) is proposition 3.4 of
[2].

Corollary 2.26. Let X be a finite topological space and let X̂ denote the poset X ä{0, 1} with
0 < x < 1 for all x ∈ X. Let R be a PID.

(i) Let x ∈ X and SkyR(x) the skyscraper sheaf taking the value R at x. We have

χ(X, SkyR(x)) = −µX̂(0, x).

(ii) We have

χ(X, RX) = µX̂(0, 1) + 1.

Proof. (i) Obvious.

(ii) For any i ≥ 0 and any x ∈ X̂ let ci(x) be the number of chains 0 = x0 < . . . < xi = x
in X̂. Note that we have ∑x∈X ci(x) = ci+1(1) for all i ≥ 1, c1(1) = 1 and c0(x) = 0
for all x ∈ X̂ distinct from 0. We have

χ(X, RX) = − ∑
x∈X

µX̂(0, x) = − ∑
x∈X

∑
i≥1

(−1)ici(x) = −∑
i≥1

(−1)ici+1(1)

= ∑
i≥2

(−1)ici(1) = µX̂(0, 1) + c1(1) = µX̂(0, 1) + 1.

We now conclude this section by stating some facts about the Godement resolution, that
will be used later in our study of the Duality Theorem for finite spaces. By an induction
argument one can actually show that the Godement resolution is functorial. So for any
topological space X and any commutative ring R, we get functors

Gp : ShR(X) −→ ShR(X)

for all p ≥ 0. The functor Gp is called the p-th Godement functor.

Proposition 2.27 ([5, 2.2.1]). The p-th Godement functor is exact for all p ≥ 0.

Proof. Let X be a topological space and R a commutative ring. We prove by induction on
p that the functors Gp and

ShR(X) −→ ShR(X)

F 7−→ coker dp
F

are exact. As products of exact sequences are exact, it is easily seen that G0 is indeed an
exact functor. Suppose that 0→ F → G → H → 0 is a short exact sequence of sheaves of
R-modules on X. Let x ∈ X, we have a commutative diagram

0 0 0

0 Fx Gx Hx 0

0 (G0F )x (G0G)x (G0H)x 0

0 (coker d0
F )x (coker d0

G)x (coker d0
H)x 0

0 0 0,
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where the columns and the first two rows are exact. By the Nine Lemma it follows that
the bottom row is exact as well. We conclude that F 7→ coker d0

F is indeed exact. Now
it follows that G1 which sends F to G0(coker d0

F ) is exact as the composition of exact
functors. Using the Nine Lemma again, we prove that F 7→ coker d1

F is exact and by
induction, we conclude that Gp is indeed exact for all p ≥ 0.

2.3 Representable Functors ShR(X)→ ModR

An important ingredient in the proof of the Duality Theorem will be the fact that con-
travariant functors ShR(X) → ModR sending colimits to limits are representable. That is,
the following theorem holds.

Theorem 2.28. Let X be a topological space and R a commutative ring. A contravariant
functor F : ShR(X) → ModR is representable if and only if it sends colimits in ShR(X) to
limits in ModR.

The “only if" direction is obvious. This section will be devoted to proving the other direc-
tion. The proof mostly follows [8, III.8.19]. Fortunately, the proof will be constructive and
provide a way to find the representing object. We will start by introducing the sheaf that
will play this role. Recall that for a topological space X, the category of open subsets of X
with inclusions is denoted by O(X).

Definition 2.29. Let X be a topological space and R a commutative ring. For any open
U ⊆ X we define the presheaf Rpre

U by

Rpre
U (V) =

⊕
HomO(X)(V,U)

R

with the obvious restriction maps. We define the sheaf RU as the sheafification of Rpre
U .

The sheaves we just defined satisfy the following useful property.

Proposition 2.30. Let X be a topological space, R a commutative ring, U ⊆ X an open
subset and F a sheaf of R-modules on X. We have

HomShR(X)(RU ,F ) ∼= F (U).

Proof. Let R[O(X)] be the category that has the same objects as O(X) and has hom groups

HomR[O(X)](V, W) =
⊕

HomO(X)(V,W)

R.

Viewing Rpre
U and F as presheaves on R[O(X)], the presheaf Rpre

U is representable and the
Yoneda Lemma gives

HomC(Rpre
U ,F ) ∼= F (U),

where C = SetR[O(X)]op
. We conclude

HomShR(X)(RU ,F ) = HomPShR(X)(Rpre
U ,F ) ∼= HomC(Rpre

U ,F ) ∼= F (U).
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Note that in the case of a finite topological space X the sheaf RU satisfies

(RU)x = (Rpre
U )x = Rpre

U (Ux) =

{
R x ∈ U
0 otherwise.

For open subsets V ⊆ U ⊆ X we have a canonical map of presheaves ϕ
pre
V,U : Rpre

V → Rpre
U

and this induces a map of sheaves ϕV,U : RV → RU . Moreover, this is easily seen to be
functorial and we conclude that we have a functor

R(−) : O(X) −→ ShR(X)

U 7−→ RU

V ⊆ U 7−→ ϕV,U .

Now let F : ShR(X) → ModR be a contravariant functor that sends colimits in ShR(X) to
limits in ModR. We define the functor GF to be the composition

O(X)
R(−)−→ ShR(X)

F−→ ModR.

We claim that GF is actually a sheaf of R-modules on X. Let (Ui)i∈I be a collection open
subsets of X and let U =

⋃
i∈I Ui. Consider the sequence of sheaves⊕

i,j∈I
RUi∩Uj

α−→
⊕
k∈I

RUk

β−→ RU −→ 0

where α =
⊕

i,j∈I

(
ϕUi∩Uj ,Ui − ϕUi∩Uj ,Uj

)
and β =

⊕
k∈I ϕUk ,U . This sequence is exact on

the level of stalks, so it is an exact sequence of sheaves. As F transforms colimits into limits,
it is a left exact contravariant functor and we get an exact sequence of abelian groups

0 −→ F(RU)
F(β)−→∏

k∈I
F(RUk )

F(α)−→ ∏
i,j∈I

F(RUi∩Uj).

This sequence coincides with the sequence

0 −→ GF(U) −→∏
k∈I
GF(Uk) −→ ∏

i,j∈I
GF(Ui ∩Uj),

proving that GF satisfies the sheaf property.

Before we prove that a contravariant functor F : ShR(X)→ ModR sending colimit to limits
is representable by GF, we need the following lemma.

Lemma 2.31. Let X be a topological space and R a commutative ring. For any sheaf of R-
modules F on X there exists a small category I and a diagram G : I → ShR(X) taking values
of the form RU (U ⊆ X open) such that F is the colimit of G.

Proof. Let I(F ) be the category whose objects are pairs (U, a) with U ⊆ X open and
a ∈ F (U) and arrows (V, b) → (U, a) are inclusions V ⊆ U such that a|V = b. This
category is sometimes denoted by

∫
O(X) F and called the Grothendieck construction of F .

Let G : I(F ) → ShR(X) be the functor sending (U, a) to the sheaf RU and (V, b) →
(U, a) to the natural map ϕV,U : RV → RU . Let constF : I(F ) → ShR(X) be the constant
functor taking the value F . For any open U ⊆ X we have HomShR(X)(RU ,F ) ∼= F (U) and
therefore an element a ∈ F (U) determines a morphism of sheaves ã : RU → F . We get a
natural transformation

a : G −→ constF
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with components a(U,a) = ã. We now get a morphism of sheaves

colim(U,a)∈I(F ) RU −→ colimI(F ) F = F ,

which is easily seen to be an isomorphism.

Theorem 2.32 ([8, III.8.19]). Let X be a topological space and R a commutative ring. let
F : ShR(X) → ModR be a contravariant functor sending colimits in ShR(X) to limits in
ModR. Then, F is representable by the sheaf GF.

Proof. We start by a similar argument as in the proof of lemma 2.31. Let I be the category
whose objects are pairs (U, a) with U ⊆ X open and a ∈ F(RU) and arrows f : (V, b) →
(U, a) are morphisms of sheaves f : RV → RU such that F( f )(b) = a. Let H : I → ShR(X)

be the functor sending (U, a) to RU and sending f : (V, b) → (U, a) to f . Let constGF be
the constant functor I → ShR(X) with value GF. For any open U ⊆ X we have

HomShR(X)(RU ,GF) ∼= GF(U) = F(RU),

so elements a ∈ F(RU) determine morphisms ã : RU → GF of sheaves. We get a natural
transformation a : H → constGF with components a(U,a) = ã. This gives a morphism of
sheaves

ϕa : colim(U,a)∈I RU −→ colimI GF = GF,

which is easily seen to be an isomorphism of sheaves. Using the fact that F transforms
colimits into limits, applying F gives an isomorphism of R-modules

F(GF)
∼−→ F(colim(U,a)∈I RU) = lim(U,a)∈I F(RU).

The collection of elements {a : (U, a) ∈ I} determines a unique element e in the limit
lim(U,a)∈I F(RU) ∼= F(GF). We now define

ψF : HomShR(X)(F ,GF) −→ F(F )
f 7−→ F( f )(e).

If ψF is an isomorphism functorial in F , then F is indeed representable by GF and we
are done. In the case that F equals RU for some U ⊆ X, then ψF is an isomorphism by
construction. As any sheaf of R-modules is the colimit of sheaves of the form RU by the
previous lemma, and as F transform colimits into limits, ψF is isomorphism for all F .

2.4 The Duality Theorem

In this section we will state and prove the Duality Theorem for finite topological spaces
as in [15]. An important part of the study of sheaf theory is the study of the so called six
functors. We recall that five of these six functors are the following. Let X, Y be topological
spaces, f : X → Y continuous, R a commutative ring and F a sheaf of R-modules on X.

(i) The internal hom functor

Hom(−,−) : ShR(X)op × ShR(X) −→ ShR(X).

(ii) The tensor product

−⊗− : ShR(X)× ShR(X) −→ ShR(X).
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(iii) The direct image functor

f∗ : ShR(X) −→ ShR(Y).

(iv) The inverse image functor

f−1 : ShR(Y) −→ ShR(X).

(v) The direct image with proper support functor

f! : ShR(X) −→ ShR(Y).

We recall the definition of this last functor. Recall that a continuous map between topo-
logical spaces is called proper if the inverse image of a compact set is compact.

Definition 2.33. Let X be a topological space, R a commutative ring, F a sheaf of R-
modules on X, U ⊆ X an open subset and s ∈ Γ(U,F ) a section. The support of s is the
set

supp(s) = {x ∈ U : sx 6= 0}.

Definition 2.34. Let f : X → Y be a continuous map of topological spaces, R a commuta-
tive ring and F a sheaf of R-modules on X. The direct image with proper support of F is the
sheaf f!F on Y defined by

Γ(V, f!F ) = {s ∈ Γ( f−1(V),F ) : f |supp(s) : supp(s)→ Y is proper}.

We omit the verifications that f!F is indeed a sheaf and that f! is functorial. We have
adjunctions

−⊗F a Hom(F ,−)

and

f−1 a f∗,

and might wonder if the functor f! is also part of an adjunction. Unfortunately, this is in
general not the case. However, if we move to the derived categories then the derived func-
tor R f! : D(X, R) → D(Y, R) has a right adjoint under suitable conditions on (X, Y, f , R),
see for example [14]. We consider the case where f is a map of finite topological space.
Any map f between finite spaces is proper and therefore we have f! = f∗. Proving a
Grothendieck Duality Theorem for finite spaces therefore comes down to finding a right
adjoint to R f∗. We start by recalling some notions of homological algebra.

Definition 2.35. Let A be an abelian category. A bicomplex or double complex is a collection
of objects (Ai,j)i,j∈Z together with a collection of maps (di,j

hor : Ai,j → Ai+1,j)i,j∈Z and a

collection of maps (di,j
vert : Ai,j → Ai,j+1)i,j∈Z such that A•,j is a complex for every j ∈ Z,

Ai,• is a complex for every i ∈ Z and all squares

Ai,j Ai+1,j

Ai,j+1 Ai+1,j+1

di,j
hor

di,j
vert di+1,j

vert

di,j+1
hor

(2.6)

commute.
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It should be noted that the definition of a bicomplex differs between authors; a lot of
authors require the square (2.6) to be anti-commutative. For any i ∈ Z the collection
di,•

hor is a morphism of complexes Ai,• → Ai+1,• and we have di+1,•
hor ◦ di,•

hor = 0. Hence, a
bicomplex in A is the same as a complex in C(A). To a bicomplex one can associate a
singly graded complex.

Definition 2.36. Let A be an abelian category and A•,• a bicomplex in A. The singly graded
complex associated to A•,• or the (product) total complex of A•,• is the complex Tot(A•,•)•

defined by

Tot(A•,•)n = ∏
i+j=n

Ai,j

and differential

dn = ∏
i+j=n

(
di,j

hor + (−1)idi,j
vert

)
. (2.7)

Note that the definition of the total complex above could also be made using the direct
sum instead of the direct product. The resulting total complex is called the direct sum to-
tal complex. We will see that for our purposes, it makes no difference whether we work
with the product or the direct sum. The sign in (2.7) is used in the proof that the dif-
ferential satisfies dd = 0. If a bicomplex is defined by requiring the square (2.6) to be
anti-commutative, then the sign is not needed.

Proposition 2.37. LetA be an abelian category and A•,• a bicomplex inA. The total complex
Tot(A•,•)• defined in 2.36 is well-defined, that is, dd = 0.

Proof. Let n ∈ Z. We have

dn+1dn = ∏
i+j=n+1

di−1,j
hor di−2,j

hor + (−1)i−1di−1,j
hor di−1,j−1

vert

+ (−1)idi,j−1
vert di−1,j−1

hor + (−1)2idi,j−1
vert di,j−2

vert .

The argument is concluded by the fact that the rows and columns are complexes and by
commutativity of (2.6).

We introduce a certain total complex that will play an important role in the Duality The-
orem.

Definition 2.38. Let X be a topological space, R a commutative ring and H• a complex
of sheaves of R-modules on X. We define the complex C•(H•) to be the singly graded
complex associated to the double complex

...
...

...
...

. . . 0 G0H−1 G1H−1 G2H−1 . . .

. . . 0 G0H0 G1H0 G2H0 . . .

. . . 0 G0H1 G1H1 G2H1 . . .

...
...

...
...
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Definition 2.39. Let A be an abelian category. A bicomplex A•,• is called biregular if for
all n ∈ Z we have Ai,j = 0 for all but finitely many (i, j) ∈ Z2 with i + j = n.

We see that for biregular complexes the direct sum total complex and direct product total
complex coincide. Note that if X is a finite topological space, then GiF is only non-zero
for 0 ≤ i ≤ dim X. Hence, C•(H•) is biregular and we have

Cn(H•) =
dim X⊕
p=0

GpHn−p,

for all n ∈ Z.

We have the following result on biregular complexes.

Proposition 2.40. Let A be an abelian category and A•,•, B•,• biregular double complexes
in A. If f : A•,• → B•,• is a morphism of double complexes such that f •,j : A•,j → B•,j is a
quasi-isomorphism for all j ∈ Z, then

Tot( f ) : Tot(A•,•)• −→ Tot(B•,•)•

is a quasi-isomorphism.

Proof. See for example corollary 2.7.27 of [19].

Corollary 2.41. Let X be a finite topological space, R a commutative ring and H• a complex of
sheaves of R-modules on X. We have a canonical quasi-isomorphism

H• −→ C•(H•).
Remark 2.42. In the language of derived categories: for any complex H• of sheaves of
R-modules on a topological space X and any map f : X → Y the object R f∗H• in D(Y, R)
is defined to be f∗C•(H•).
Another important notion of homological algebra, is that of the hom complex.

Definition 2.43. Let A be an abelian category and A• and B• complexes in A. The hom
complex of A• and B• is the complex Hom•(A•, B•) in A defined by

Homn(A•, B•) = ∏
i+j=n

HomA(A−i, Bj)

with differential

(dn f )(i, j) = dB ◦ fi,j−1 − (−1)n fi−1,j ◦ dA.

Note that the hom complex of A• and B• is just the total complex of the bicomplex

...
...

...

· · · HomA(A−j+1, Bi−1) HomA(A−j+1, Bi) HomA(A−j+1, Bi+1) · · ·

· · · HomA(A−j, Bi−1) HomA(A−j, Bi) HomA(A−j, Bi+1) · · ·

· · · HomA(A−j−1, Bi−1) HomA(A−j−1, Bi) HomA(A−j−1, Bi+1) · · ·

...
...

...
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with horizontal differential

di,j
hor : HomA(A−j, Bi) −→ HomA(A−j, Bi+1)

f 7−→ di
B ◦ f

and vertical differential

di,j
vert : HomA(A−j, Bi) −→ HomA(A−j−1, Bi)

f 7−→ (−1)j f ◦ d−j−1
A .

We have the following important result on the preservation of quasi-isomorphisms by
Hom•(−,−).

Theorem 2.44. Let A be an abelian category, P• a bounded above complex of projectives, I•

a bounded below complex of injectives and A• → B• a quasi-isomorphism. The induced maps

Hom•(P•, A•) −→ Hom•(P•, B•) (2.8)

and

Hom•(B•, I•) −→ Hom•(A•, I•) (2.9)

are quasi-isomorphisms.

Proof Sketch. Let f : A• → B• be a quasi-isomorphism. The mapping cone C( f ) (see for
example page 45 of [19]) is acyclic. It follows that Hom•(P•, C( f )) and Hom•(C( f ), I•)
are acyclic. These complexes are the mapping cones of the induced maps (2.8) and (2.9)
respectively (see [10, 5.3]).

We now turn to the proof of the Duality Theorem.

Lemma 2.45. Let X be a topological space that admits a basis of compact opens and has
the property that finite intersections of compact opens are compact. Let R be a commutative
ring. Taking filtered colimits of sheaves of R-modules on X commutes with taking sections of
compact opens.

Proof. See lemma 20.20.1 of [18].

Corollary 2.46. Let f : X → Y be a continuous map of finite topological spaces. Then the functor
f∗ : ShR(X)→ ShR(Y) preserves filtered colimits.

Proof. Let I → ShR(X), i 7→ Fi be a filtered diagram and F = colimI Fi. As X and
Y are finite spaces, all opens are compact and therefore X and Y certainly satisfy the
assumptions of lemma 2.45. Let U ⊆ Y open, using lemma 2.45 we have

Γ(U, f∗F ) = Γ( f−1(U), colimI Fi) ∼= colimI Γ( f−1(U),Fi)

= colimI Γ(U, f∗Fi) ∼= Γ(U, colimI f∗Fi).

These isomorphisms are natural with respect to the restrictions and we conclude

f∗F = colimI f∗Fi.
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Lemma 2.47. Let f : X → S be a continuous map of finite topological spaces. Let R be a
commutative ring and p ≥ 0. The functor ShR(X) → ShR(S) given by F 7→ f∗(GpF ) is
exact and preserves all colimits.

Proof. We will call the relevant functor Ap. As GpF is flasque for any abelian sheaf F on
X, it is f∗-acyclic . The functor Gp is itself exact (proposition 2.27) and it follows that Ap

is an exact functor. Hence, it is enough to prove that Ap preserves all filtered colimits.
As filtered colimits commute with finite direct products, the functor Gp is easily seen to
preserve filtered colimits using Theorem 2.14. Finally, f is a morphism of finite spaces and
it follows that f∗ preserves filtered colimits by the previous corollary.

Theorem 2.48 ([4]). Let f : X → S be a continuous map of finite topological spaces. Let R
be a commutative ring and letM• be a complex of sheaves of R-modules on S. There exists a
complex f∇(M•)• of sheaves of R-modules on X such there is an isomorphism of complexes
of R-modules

Hom•( f∗C•(H•),M•) ∼= Hom•(H•, f∇(M•)•),

that is functorial in H•. Moreover, ifM• is a complex of injective sheaves, so is f∇(M•)•.

Proof. Let p, q ∈ Z. We define the functor

Fp,q : ShR(X) −→ ModR

F 7−→ HomShR(S)( f∗(GpF ), Mq).

By lemma 2.47 the functor F 7→ f∗(GpF ) preserves colimits. The representable functor
HomSh(S)(−,Mq) transforms colimits in ShR(S) into limits in ModR. We conclude that
Fp,q is a contravariant functor transforming colimits in ShR(X) into limits in ModR. By
Theorem 2.32 we conclude that Fp,q is representable by the sheaf D−p,q = GFp,q . Moreover,
if Mq is injective, then Fp,q is exact ( f∗Gp is exact and taking the Hom into an injective
object is exact) and it follows that D−p,q is actually an injective sheaf. The differential
dq : Mq → Mq+1 induces a differential Dp,q → Dp,q+1, so that for fixed p we have a
complex Dp,•. Moreover, the natural transformation f∗Gp → f∗Gp+1 induces a morphism
of sheaves Dp,q → Dp+1,q and for fixed q we have a complex D•,q. We define the complex
D•f to be the singly graded complex associated to D•,•. That is, for any n ∈ Z we have

Dn
f = ∏

p+q=n
Dp,q.

Let H• be a complex of abelian sheaves on X. and let n ∈ Z. Using the definition of the
hom complex and the complex C•(H•) we have

Homn( f∗C•(H•), M•) = ∏
i∈Z

Hom( f∗Ci(H•),Mn+i)

= ∏
i∈Z

Hom

⊕
p∈Z

f∗(GpHi−p),Mn+i

 . (2.10)

We can get the direct sum out of the hom and use the representability of Fp,n+i to obtain

Homn( f∗C•(H•), M•) = ∏
i∈Z

∏
p∈Z

Hom( f∗(GpHi−p),Mn+i) (2.11)

= ∏
i∈Z

∏
p∈Z

Fp,n+i(Hi−p) = ∏
i∈Z

∏
p∈Z

Hom(Hi−p,D−p,n+i).
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Substituting q = i− p we conclude

Homn( f∗C•(H•), M•) = ∏
q∈Z

∏
p∈Z

Hom(Hq,D−p,n+p+q)

= ∏
q∈Z

Hom

(
Hq, ∏

p∈Z

D−p,n+p+q

)
= ∏

q∈Z

Hom(Hq,Dn+q
f )

= Homn(H•,D•f ).

Definition 2.49. Let X, S be finite topological space, f : X → S continuous and g : X → {∗}
the map to the singleton. Let R be a commutative ring, M an R-module andM• a bounded
below complex of sheaves of R-modules on S.

(i) If I• is a bounded below complex of injective sheaves on S that is quasi-isomorphic
to M•, then we define the dualizing complex of X for M• (with respect to f ) as
the complex f !(M•)• = f∇(I•)•. This dualizing complex is unique up to quasi-
isomorphism and, abusing notation somewhat, we simply write f !M•. Abusing no-
tation even more, if M• = M[0] for some sheaf of R-modules M on S we write
f !M• for f !(M[0])•.

(ii) The complex g! M•{∗} is called the dualizing complex of (X, M) and denoted by D•M,X .

(iii) In a context where R is understood, the complex g!R•{∗} is called the dualizing complex
of X and denoted by D•X .

Remark 2.50. Suppose that in the context of the Duality Theorem I• is an injective reso-
lution of some sheaf M on S. Then I• is zero in degree < 0. Moreover, GpF is zero for
all p > dim X and all F . We conclude that f !M• is zero in all degrees < −dim X.

Recall that a commutative ring is called hereditary if all its ideals are projective as module.
For example, all Dedekind domains are hereditary, so in particular all principal ideal
domains and all fields.

Corollary 2.51 ([15]). Let X be a finite topological space, R a commutative hereditary ring and F
a sheaf of R-modules on X. Let M be an R-module. For any n ≥ 0 we have an isomorphism

h−n(HomShR(X)(F ,D•M,X))
∼= Ext1

R(Hn+1(X,F ), M)⊕HomR(Hn(X,F ), M).

Proof. Let P• be a bounded below complex of projective R-modules that is quasi-isomorphic
to Γ(X, G•F ). By the Universal Coefficient Theorem (see for example theorem 12.43 of [7])
we have a split exact sequence

0→ Ext1
R(h

n+1(P•), M)→ hn(Hom(P•, M))→ HomR(hn(P•), M)→ 0.

for all n ≥ 0. Let I• be an injective resolution of M. Using Theorem 2.44 we have

hn(Hom(P•, M)) = h−n(Hom•(P•, M[0])) = h−n(Hom•(Γ(X, G•F ), I•)).

From the Duality Theorem it now follows that

hn(Hom(P•, M)) = h−n(Hom•(Γ(X, G•F ), I•)) = h−n(Hom•(F [0],D•M,X)).
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We finish this section with the derived point of view. Let f : X → Y be a map of finite
spaces, R a commutative ring and H•,F • a bounded below complex of sheaves on X. The
object RHom(H•,F •) in D+(ModR) is by defintion Hom•(H•, I•) where I• is a bounded
below complex of injectives quasi-isomorphic to F •. As already mentioned in remark 2.42

we have an isomorphism R f∗H• ∼= f∗C•(H•) in D+(X, R). The Duality Theorem now
states that

RHom(R f∗(H•), F •) ∼= RHom(H•, f !F •).

That is, the functor f ! : D+(S, R) → D+(X, R) is the right adjoint to R f∗ : D+(X, R) →
D+(S, R). By introducing homotopically injective (also called K-injective) sheaves and defin-
ing f !F • to be f∇(I•)• for a complex of homotopically injective sheaves that is quasi-
isomorphic to F •, we can actually make everything work and get an adjunction between
the non-bounded derived categories.

2.5 Extending the Duality Theorem to Locally Finite Spaces

In this subsection we will show that the Duality Theorem for finite spaces given in the
previous subsection can actually be extended to locally finite topological spaces. To this
end we start with a short general study of locally finite spaces.

Definition 2.52. A topological space X is called locally finite if any point x ∈ X has a finite
open neighbourhood.

Example 2.53. (i) Any finite space is locally finite.

(ii) Any discrete space is locally finite.

(iii) Consider Z≤0 with the usual partial order ≤. The set Z≤0 together with the Alexan-
drov topology induced by ≤ is locally finite.

Note that locally finite spaces are not necessarily finite dimensional. Indeed, the space
Z≤0 in the example above has infinite dimension.

The two functors S : Top → Pos and A : Pos → Top of section 2.1 are inverses when
restricted to locally finite spaces and posets with the property that {y : y > x} is finite for
all elements x. It follows that locally finite spaces are Alexandrov-discrete and in particular
theorem 2.11 implies that sheaves on locally finite spaces are completely determined by
the stalks and the maps between the stalks. The following observation will be important
later on.

Remark 2.54. A subset of a locally finite space is compact if and only if it is finite.

Any map f : X → S between finite spaces is proper. Therefore, proving a Grothendieck
Duality Theorem for finite spaces comes down to finding a right adjoint of R f∗. However,
not all maps between locally finite spaces are proper. Indeed, if S is the singleton and X
is infinite, then remark 2.54 assures that f is not proper and consequently the equality
f! = f∗ does not hold. As flasque sheaves are f!-acyclic, the Godement resolution is still
a “good” resolution to work with. We can replace the role that f∗C•(H•) plays in the
Duality Theorem for finite spaces by f!C•(H•).

Remark 2.55. In the language of derived categories: for any complex of sheaves of R-
modules on a topological space X and any continuous map f : X → Y, the object R f!H•
in D(Y, R) is by definition f!C•(H•).

While studying the proof of the Duality Theorem of the previous subsection, one sees that
the finiteness condition on the topological space is only really used twice.
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(i) In the proof of the duality theorem, it is used that for any complex H• on a finite
space X and any n ∈ Z we have

Cn(H•) =
⊕
p∈Z

GpHn−p. (2.12)

Recall that by definition we have

Cn(H•) = ∏
p∈Z

GpHn−p.

The fact that (2.12) holds is used when moving from (2.10) to (2.11).

(ii) An important ingredient for the proof of the Duality Theorem is lemma 2.47, which
relies heavily on the finiteness condition.

We first prove that (2.12) also holds when X is locally finite. To this end we introduce the
codimension of a point in a topological space.

Definition 2.56. Let X be a topological space. The codimension of a point x ∈ X is the
element of Z≥0 ∪ {∞} defined by

codimX(x) = sup{n ∈ Z≥0 : ∃x0, . . . , xn ∈ X such that x = x0 < . . . < xn}.

Let X be locally finite and x ∈ X. Let R be a commutative ring and H• a complex of
sheaves of R-modules on X. As X is locally finite, codimX(x) is finite and for any sheaf of
R-modules F on X and any p > codimX(x) we have

(GpF )x = ∏
x≤y0<...<yp

Fyp = 0.

For n ∈ Z, we now find

Cn(H•)x =

(
∞

∏
p=0

GpHn−p

)
x

?
=

∞

∏
p=0

(GpHn−p)x =
codimX(x)

∏
p=0

Gp(Hn−p)x

=
codimX(x)⊕

p=0
(GpHn−p)x =

∞⊕
p=0

(GpHn−p)x =

 ∞⊕
p=0

GpHn−p


x

.

These equalities respect restrictions to generizations and we conclude that (2.12) also holds
for locally finite spaces. Note that ? is not valid in general, as taking products of sheaves
and taking stalks do not generally commute. However, for a family {Fi}i∈I of sheaves on
an Alexandrov-discrete spaces we have(

∏
i∈I
Fi

)
x

=

(
∏
i∈I
Fi

)
(Ux) = ∏

i∈I
Fi(Ux) = ∏

i∈I
(Fi)x.

We now turn to lemma 2.47, which needs to be proved for locally finite spaces. Recall that
instead of working with the direct image f∗, we are working with the proper direct image
f!. So we want to prove the following fact.

For any map f : X → S of locally finite spaces and any p ≥ 0, the functor
ShR(X)→ ShR(S) given by F 7→ f!GpF is exact and preserves colimits.

As Gp is an exact functor and GpF is f!-acyclic for all sheaves F , exactness of this functor
requires no new work. Exact functors preserve finite colimits and it remains to prove that
F 7→ f!GpF preserves filtered colimits. We first prove that Gp preserves filtered colimits.
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Proposition 2.57. Let X be a locally finite topological space. For any p ≥ 0 the functor Gp

commutes with filtered colimits.

Proof. Let I → Sh(X) be a diagram with I a filtered category. Let F = colimi∈I Fi be its
colimit. Let x ∈ X. We have

colimi∈I (GpFi)x = colimi∈I Γ(Ux, GpFi) = colimi∈I ∏
x≤x0<...<xp

(Fi)xp .

As X is locally finite the product in the equation above is finite and since filtered colimits
commute with finite limits we get

colimi∈I (GpFi)x = ∏
x≤x0<...<xp

colimi∈I (Fi)xp .

Taking stalks commutes with all colimits and thus

(colimi∈I GpFi)x = colimi∈I (GpFi)x = ∏
x≤x0<...<xp

Fxp = (GpF )x.

These isomorphisms respect the maps between the stalks and as sheaves on locally finite
spaces are completely determined by the stalks and the maps between these stalks, we
conclude

colimi∈I GpFi = GpF .

We will now prove that f! preserves filtered colimits. To this end we first introduce the
module of sections with compact support.

Definition 2.58. Let X be a topological space, R a commutative ring and F a sheaf of
R-modules on X. For any open U ⊆ X we define the sub-R-module

Γc(U,F ) = {s ∈ Γ(U,F ) : supp(s) is compact}

of Γ(U,F ). This is called the module of sections with compact support.

To see that Γc(U,F ) is indeed a submodule, note that for any s, t ∈ Γ(U,F ) and any r ∈ R,
we have supp(s + t) ⊆ supp(s) ∪ supp(t) and supp(rs) ⊆ supp(s) and closed subsets of
compact sets are compact. Note that if f : X → {∗} is the map to the singleton, then

Γ({∗}, f!F ) = Γc(X,F ).

Taking sections does in general not interact well with filtered colimits (for a situation in
which is does act well, see lemma 2.45), we will need the following result on the interaction
between taking sections with compact support and filtered colimits.

Theorem 2.59. Let X be a locally compact topological space, R a commutative ring, I →
ShR(X), i 7→ Fi a filtered diagram and F its colimit. For any open subset U ⊆ X the
canonical map

colimI Γc(U,Fi) −→ Γc(U,F )

is an isomorphism.

Proof. See proposition 3.10 of [14] or Theorem III.5.1 of [13].

We will also need the following proposition.
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Proposition 2.60. Let f : X → S be a continuous map of topological spaces with X locally
finite. Let R be a commutative ring and F a sheaf of R-modules on X. For any compact open
V ⊆ S we have

Γ(V, f!F ) = Γc( f−1(V),F ).

Proof. Let s ∈ Γ(V, f!F ) ⊆ Γ( f−1(V),F ). Then, the map f |supp(s) : supp(s)→ S is proper.
We have supp(s) ⊆ f−1(V) and thus supp(s) = ( f |supp(s))

−1(V). As V is compact, we
conclude that supp(s) is compact. Hence, s ∈ Γc( f−1( f ),F ).

For the other inclusion, let s ∈ Γc( f−1(V),F ). Then supp(s) is compact. Moreover, as
X is locally finite and compact sets in locally finite spaces are precisely the finite sets,
all subsets of supp(s) are compact as well. Therefore, the map f |supp(s) : supp(s) → S is
proper. We conclude s ∈ Γ(V, f!F ).

We are now able to prove the wanted result.

Proposition 2.61. Let f : X → S be a continuous map of locally finite spaces. Let R be a
commutative ring. The functor f! : ShR(X)→ ShR(S) preserves filtered colimits.

Proof. Let I → ShR(X), i 7→ Fi be a filtered diagram and F its colimit. Let x ∈ S. As Ux
is finite and thus compact, we can use proposition 2.60 to find

( f!F )x = Γ(Ux, f!F ) = Γc( f−1(Ux),F ).

Now Theorem 2.59 and proposition 2.60 gives

( f!F )x ∼= colimI Γc( f−1(Ux),Fi) = colimI Γ(Ux, f!Fi).

As Ux is compact and any subset of Ux is also compact we have Γ(Ux,H) = Γc(Ux,H) for
all sheaves of R-modules H on S. Hence,

( f!F )x = colimI Γ(Ux, f!Fi) = colimI Γc(Ux, f!Fi)
∼= Γc(Ux, colimI f!Fi) = Γ(Ux, colimI f!Fi)

= (colimI f!Fi)x .

The isomorphisms respect the maps between the stalks and we conclude

f!F ∼= colimI f!Fi.

We conclude that the functor F 7→ f!GpF is indeed exact and colimit preserving, as
wanted. We can now conclude that we have a Grothendieck Duality Theorem for locally
finite spaces.

Theorem 2.62. Let f : X → S be a continuous map of locally finite topological spaces. Let R
be a commutative ring and let M• be a complex of sheaves of R-modules on S. There exists
a complex f∇(M•)• of sheaves of R-modules on X such that there is an isomorphism of
complexes of R-modules

Hom•( f!C•(H•),M•) ∼= Hom•(H•, f∇(M•)•),

functorial in H•. IfM• is a complex of injective sheaves, so is f∇(M•)•.
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Proof. In this section we have proved that the functor F → f!GpF from ShR(X) to ShR(S)
preserves colimits for all p ≥ 0. Consequently, the functor

ShR(X)op −→ ModR

F 7−→ HomShR(S)( f!(GpF ),Mq)

transforms colimits into limits and is therefore representable by a sheaf D−p,q. The natural
transformation f!G p → f!Gp+1 and the differential ofM• make D•,• a bicomplex and we
can show that its total complex is as wanted in precisely the same way as in the proof of
Theorem 2.48. In particular, moving from (2.10) to (2.11) is still valid as we have shown
that (2.12) is valid for locally finite spaces.

For any bounded below complex M• of sheaves on X, we define f !M• to be f∇(I•)•
where I• is a injective resolution ofM• (this is only well defined up to quasi-isomorphism).
We get an adjunction R f! a f ! between the derived categories D+(X, R) and D+(S, R).
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3 Dualizing Complexes

In this section we turn our attention to the dualizing complexes. In the first subsection we
give a proof of the fact that g!( f !M•)• is quasi-isomorphic to (g f )!M• for any commuta-
tive triangle

X Y

S

f

g f g

of finite spaces and any bounded below complex M• of sheaves of R-modules on S. In
the second subsection we consider dualizing complexes with respect to maps f : X → {∗}
of finite spaces X to the singleton. We will give a complete description of f ! M•{∗} for any
R-module M. The last subsection will use this description and corollary 2.51 to obtain a
connection between sheaf cohomology and cosheaf homology for finite topological spaces.

3.1 A proof that (g f )!M• is quasi-isomorphic to f !g!M•

Before we prove the desired result, we prove a lemma in which we need the following fact
from homological algebra.

Proposition 3.1. Let A and B be abelian categories and T : A → B a left exact functor. Let
X• and Y• be complexes in A of T-acyclic objects. If f : X• → Y• is a quasi-isomorphism in
C(A), then T( f ) : T(X•)→ T(Y•) is a quasi-isomorphism in C(B).

Proof. See for example Theorem 7.5 in [13].

Lemma 3.2. Let R be a commutative ring. Suppose that we have a commutative triangle of
finite spaces

X Y

S.

f

h g

Let H• be a complex of sheaves of R-modules on X. The canonical map of complexes

h∗C•(H•) −→ g∗C•( f∗C•(H•))

is a quasi-isomorphism functorial in H•.

Proof. We have a canonical quasi-isomorphism

f∗C•(H•) −→ C•( f∗C•(H•))

in C(Y, R) that is functorial in H• (see corollary 2.41). For any finite space Z, any complex
F • of sheaves of R-modules on Z and any p ∈ Z the sheaf Cp(F •) is the direct sum of
flasque sheaves and thus flasque and ϕ∗-acyclic for any continuous ϕ : Z → Z′ with Z′

finite. Hence, C•( f∗C•(H•)) is a complex of g∗-acyclic sheaves. Also, C•(H•) is a complex
of h∗-acyclic sheaves and it follows that f∗C•(H•) is a complex of g∗-acyclic sheaves. The
lemma now follows from proposition 3.1 and the fact that g∗ f∗ = (g f )∗.
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Theorem 3.3. Let R be a commutative ring. Suppose that we have a commutative triangle of
finite spaces

X Y

S.

f

h g

Let M• be a bounded below complex of sheaves of R-modules on S. Then the complexes of
sheaves of R-modules h!M• and f !g!M• on X are quasi-isomorphic.

Proof. Let I• be an injective resolution ofM•. From the proof of the Duality Theorem we
know that g!M• is quasi-isomorphic to the total complex of the bicomplex D•,•, where
D−p,q is the sheaf representing the functor

Fp,q
g : ShR(Y) −→ ModR

F 7−→ HomShR(S)(g∗Gp(F ), Iq).

We assume that g!M• actually is this complex. Let H• be a bounded below complex of
sheaves of R-modules on X. Let n ∈ Z. We have

Homn(H•, f !g!M•) ∼= Homn( f∗C•(H•), g!M•)

= ∏
p

HomShR(Y)

(
f∗Cp(H•), ∏

i
D−i,p+n+i

)
∼= ∏

p,i
HomShR(Y)( f∗Cp(H•), D−i,p+n+i)

= ∏
p,i

Fi,p+n+i
g ( f∗Cp(H•))

= ∏
p,i

HomShR(S)(g∗Gi( f∗Cp(H•)), I p+n+i)

Substituting j = p + i we get

Homn(H•, f !g!M•) ∼= ∏
i,j

HomShR(S)(g∗Gi( f∗C j−i(H•)), In+j)

∼= ∏
j

HomShR(S)

(⊕
i

g∗Gi( f∗C j−i(H•)), In+j

)
= ∏

j
HomShR(S)(g∗C j( f∗C•(H•)), In+j)

= Homn(g∗C•( f∗C•(H•)), I•).

Hence,

Hom•(H•, f !g!M•) ∼= Hom•(g∗C•( f∗C•(H•)), I•).

Lemma 3.2 and Theorem 3.1 give that we have a quasi isomorphism

Hom•(g∗C•( f∗C(H•)), I•) −→ Hom•(h∗C•(H•), I•).

It follows that we have isomorphisms in D+(ModR)

RHom•(H•, f !g!M•) ∼= RHom•(g∗C•( f∗C•(H•)),M•) ∼= RHom•(h∗C•(H•),M•)

This isomorphism is functorial inH• and it follows that f !g!M• dualizes the complexM•

and therefore is quasi-isomorphic to h!M•.
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From this theorem it follows that we have a functor

FTopop −→ Cat

X 7−→ D+(X, R)

( f : X → S) 7−→ ( f ! : D+(S, R)→ D+(X, R)),

where Cat is the category of all categories.

3.2 Dualizing Complexes of Spaces

Recall that the dualizing complex of a finite topological space X for an R-module M is the
complex f ! M•{∗} where f : X → {∗} is the map to the singleton. In this subsection we will
give a complete description of the dualizing complex for a module.

Theorem 3.4. Let X be a finite topological space and f : X → {∗} the map to the singleton.
For any x ∈ X let ix denote the inclusion {x} → X. Let R be a commutative ring and M an
R-module. The complex of sheaves D•M,X defined by

D−p
M,X =

⊕
x0<...<xp

ixp ,∗M

with differential dp
x : Dp

M,X,x → D
p+1
M,X,x given by

(d−p
x s)(x0 < . . . < xp−1) =

p−1

∑
i=0

(−1)i ∑
xi−1<z<xi

s(x0 < . . . < xi−1 < z < xi < . . . < xp−1)

is a dualizing complex of X for M.

Proof. Let I• be an injective resolution of M. For any p, q ∈ Z define the functor

Fp,q : ShR(X) −→ ModR

F 7−→ HomR(Γ(X, Gp(F )), Iq).

Let E−p,q be the sheaf of R-modules representing Fp,q. The proof of the Duality Theorem
states that the singly graded complex E• associated to the bicomplex E•,• dualizes M.
We also define the bicomplex D•,• where for any q ∈ Z the complex D•,q equals D•Iq ,X
and the vertical differentials are induced by the differentials of I•. We will show that the
bicomplexes E•,• and D•,• are isomorphic. Let x ∈ X and p, q ∈ Z we have

E−p,q
x = GFp,q(Ux) = Fp,q(RUx ) = HomR(Γ(X, Gp(RUx )), Iq).

Applying Theorem 2.14 we get

E−p,q
x ∼= HomR

 ⊕
x0<...<xp

(RUx )xp , Iq

 ∼= ⊕
x0<...<xp

HomR((RUx )xp , Iq).

The stalk (RUx )xp equals R if xp ∈ Ux, that is, if x ≤ xp, and zero otherwise. Hence,

E−p,q
x ∼=

⊕
x0<...<xp

x≤xp

HomR(R, Iq) ∼=
⊕

x0<...<xp
x≤xp

Iq =

 ⊕
x0<...<xp

ixp ,∗ Iq


x

= D−p,q
x .
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Moreover, it is easily seen that the maps between the stalks for points x ≤ y agree and
we actually have an isomorphism of sheaves Dp,q ∼= E p,q for all p, q ∈ Z. The differentials
agree and we conclude that the bicomplexes E•,• and D•,• are isomorphic. It follows that

E−p,• ∼=
⊕

x0<...<xp

ixp ,∗ I•.

As I• is quasi-isomorphic to M[0] it follows that E• is quasi-isomorphic to D•M,X , complet-
ing the proof that D•M,X is a dualizing complex of X for M.

3.3 Connection to Cosheaf Homology

In this subsection we will use Theorem 3.4 and corollary 2.51 to get a link between the
sheaf cohomology groups of (X,F ), where X is a topological space and F an abelian
sheaf on X, and the homology groups of (X,F ∗), where F ∗ is the dual cosheaf associated
to F . We start by introducing cosheaves and the associated homology theory.

Before we turn to the definition of a cosheaf, recall that O(X) denotes the category of open
subsets of a topological space X.

Definition 3.5. Let X be a topological space. Let R be a commutative ring. A precosheaf of
R-modules on X is a functor O(X)→ ModR.

If V ⊆ U is an inclusion of opens of a space X and F is a precosheaf on X, then the maps
F(V)→ F(U) are called extensions. If x ∈ F(V), then its extension to U is denoted by x|U .

Definition 3.6. Let X be a topological space and R a commutative ring. A precosheaf F of
R-modules on X is called a cosheaf if for any open cover {Ui}i∈I of an open set U ⊆ X, the
sequence

⊕
i,j∈I

F(Ui ∩Uj)
α−→
⊕
i∈I

F(Ui)
β−→ F(U) −→ 0

is exact. Here α is the map given by (αs)(i) = ∑j∈I s(i, j)|Ui − ∑j∈I s(j, i)|Ui and β is the
map given by βs = ∑i∈I s(i)|U .

In the case R = Z we simply talk about abelian cosheaves. If F is a cosheaf on a topological
space X and U ⊆ X is open, then elements of F(U) are called cosections and we sometimes
use the alternative notation Γ(U,F) for F(U). For the sake of simplicity, we immediately go
to the context of finite topological spaces. Just as sheaves on finite spaces are determined
by the stalks and the maps between the stalks, cosheaves of finite spaces are determined
by the costalks and the maps between the costalks.

Definition 3.7. Let X be a topological space, R a commutative ring and F a cosheaf of
R-modules on X. Let x ∈ X. The costalk of F at x is the limit

Fx = limU3x F(U).

Theorem 3.8. Let X be an Alexandrov-discrete space and S(X) the associated poset. Let R
be a commutative ring. The category cShR(X) of cosheaves of R-modules on X is equivalent
to the category Func(S(X)op, ModR) of contravariant functors S(X)→ ModR.
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Proof. Dual to Theorem 2.11. Given a cosheaf F on X we define the contravariant functor
S(X)op → ModR by x 7→ Fx. Conversely, given a functor F : S(X)op → ModR, we define
the precosheaf F on X by

F(U) = colimx∈U F(x).

Using the fact that X is Alexandrov-discrete, one shows that F is a cosheaf.

Notation 3.9. Let X be a finite topological space, R a commutative ring and F a cosheaf of
R-modules on X. If x ≤ y, then we write sx for the image of s ∈ Fy in Fx.

We see that the global cosection functor Γ(X,−) : cShR(X)→ ModR is just the functor

colim: Func(S(X)op, ModR)→ ModR,

which is right exact. This gives rise to the definition of cosheaf homology. Note that
cShR(X) is abelian and has enough projectives, because Func(S(X)op, ModR) has these
properties.

Definition 3.10. Let X be a finite topological space, R a commutative ring and F a cosheaf
of R-modules on X. For any i ≥ 0 we define the i-th homology group

Hi(X,F) = LiΓ(X,F).

A common way of calculating sheaf cohomology is using flasque resolutions. Dually,
cosheaf homology can be calculated using flasque coresolutions.

Definition 3.11. Let X be a topological space and R a commutative ring. A cosheaf F of
R-modules on X is called flasque or flabby if the extension maps F(V)→ F(U) are injective
for all opens V ⊆ U ⊆ X.

As an example, we introduce the Godement cosheaves.

Definition 3.12 ([4]). Let X be a finite topological space, R a commutative ring and F a
cosheaf of R-modules on X. Let p ≥ 0. The p-th Godement cosheaf of F is the cosheaf on X
defined by the costalks

(GpF)x =
⊕

x0<...<xp≤x
Fxp .

and the maps

rxy : (GpF)y −→ (GpF)x

given by

rxys(x0 < . . . < xp ≤ x) = s(x0 < . . . < xp ≤ y)

for x ≤ y

Note that if x ≤ y, then the map rxy is injective, so Gp(F) is indeed a flasque cosheaf. Also,
for all x ∈ X we have a canonical surjective map

(εx : G0F)x −→ Fx

(sy)y≤x 7−→ sx.

These maps give a surjective map of cosheaves ε : G0F→ F.
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Proposition 3.13. Let X be a finite topological space, R a commutative ring and F a cosheaf
of R-modules on X. Then F is Γ(X,−)-acyclic.

Proof. See lemma 1.5.5 of [4].

Corollary 3.14. Let X be a finite topological space, R a commutative ring, F a cosheaf of R-modules
on X and F• a flasque coresolution of F. For any n ≥ 0 we have

Hn(X,F) = hn(Γ(X,F•)).

The Godement resolution of a sheaf introduced in section 2.2 is often also called the
canonical flasque resolution. Similarly, we now introduce a canonical flasque coresolution for
cosheaves. Let p ≥ 1 we define

(GpF)x
dp,x−→ (Gp−1F)x

by

(dp,xs)(x0 < . . . < xp−1) =
p−1

∑
i=0

(−1)i ∑
xi<z<xi+1

s(x0 < . . . < xi < z < xi+1 < . . . < xp−1)

+ (−1)p ∑
xp−1<z

s(x0 < . . . < xp−1 < z)xp−1 .

The collection (dp,x)x∈X defines a map of cosheaves dp : GpF→ Gp−1F.

Proposition 3.15. Let X be a finite topological space, R a commutative ring and F a cosheaf
of R-modules on X. Then, (G•F, ε) is a flasque coresolution of F.

Proof. Note that this is actually the dual statement of Theorem 2.14. For any p ≥ 0 define
the cosheaf KpF with costalks

(KpF)x =
⊕

y0<...<yp<x
Fyp

and maps

rxy : (KpF)y −→ (KpF)x

for x < y given by

rxys(y0 < . . . < yp < x) = s(y0 < . . . < yp < y)

−
p

∑
i=0

(−1)is(y0 < . . . < x̂i < . . . < yp < x < y)yp .

We get an injective map of cosheaves KpF→ GpF and it also holds that GpF = G0(Kp−1F)
for all p ≥ 1. For any p ≥ 1 the sequence of cosheaves

0 −→ Gp(F) −→ Kp−1(F) −→ Gp−1(F) −→ 0

is exact. Splicing all these exact sequences together, we find the complex G•(F).

We now have build enough theory to work towards the connection between sheaf coho-
mology and cosheaf homology for finite spaces. Given any sheaf F on X, we associate a
dual cosheaf to F .
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Definition 3.16. Let X be a finite topological space, R a commutative ring and F a sheaf
of R-modules on X. The dual cosheaf associated to F is the cosheaf F ∗ defined by

F ∗x = HomR(Fx, R).

The dual cosheaf F ∗ should not be confused with the dual sheaf F∨ = Hom(F , RX). We
now prove the result of this section.

Theorem 3.17. Let X be a finite topological space, R a hereditary commutative ring and F
a sheaf of R-modules on X. For any n ≥ 0 we have

Hn(X,F ∗) ∼= Ext1
Z(Hn+1(X,F ), R)⊕ Hn(X,F )∨.

Proof. Let f : X → {∗} be the map to the singleton and let D•X denote the dualizing
complex f !R•{∗} . By corollary 2.51 we have

h−n(HomShR(X)(F ,D•X)) ∼= Ext1
Z(Hn+1(X,F ), R)⊕ Hn(X,F )∨.

Let p ≥ 0, using Theorem 3.4 we have

HomShR(X)(F ,D−p
X ) = HomShR(X)

F ,
⊕

x0<...<xp

ixp ,∗R


∼=

⊕
x0<...<xp

HomShR(X)(F , ixp ,∗R).

The adjunction i−1
xp a ixp ,∗ now gives

HomShR(X)(F ,D−p
X ) ∼=

⊕
x0<...<xp

HomShR({∗})(i
−1
xp F , R{∗})

∼=
⊕

x0<...<xp

HomR(Fxp , R)

∼=
⊕

x0<...<xp

F ∗xp

= Γ(X, Gp(F ∗)).

The differential of HomShR(X)(F ,D•X) coincides with the differential of Γ(X, G•(F ∗)). We
conclude

h−n(HomShR(X)(F ,D•X)) = hn(Γ(X, G•(F ∗))) = Hn(X,F ∗).

Corollary 3.18. Let X be a finite topological space, R a commutative hereditary ring and F a sheaf
of R-modules on X. We have

Hdim X(X,F ∗) ∼= Hdim X(X,F )∨.

If R is a field (or more generally, a self-injective hereditary commutative ring), then we have

Hk(X,F ∗) ∼= Hk(X,F )∨

for all k ≥ 0.
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