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Abstract

Metastability is a phenomenon where a dynamical system can move between different states that are
not its global equilibrium state. On short time scales the system can find itself equilibrized in a certain
region of its state space (a local equilibrium), whereas on a long time scale it will make quick tran-
sitions between new, different regions of its state space. These local equilibria are referred to as the
metastable states.
One of the uses of metastability is for model reduction. In this thesis we will restrict ourselves to
Markovian processes and consider the networks associated to the transitions of the Markov chains.
Instead of considering a Markov process on a very large state space, one can look at the process on a
reduced state space representing these metastable states. The idea is that this coarse-grained network
"mimics" the behaviour of the original network. We shall give two different mathematical definitions
for metastability of Markov chains.
In most cases where metastability is studied, limiting asymptotics are wielded. One must think of
taking limits of large volume or low temperature. However in the paper [1] by Avena, Castell, Gaudil-
lière and Mélot a new framework is introduced by which to describe "metastability" without the use of
these limits. The network of transitions of a given Markov process is coarse-grained to a state space
that represents probability measures which focus on different regions of the original finite state space
(the local equilibria). It does so through the use of intertwining dualities. We say that a n× n-matrix
A is intertwined with a m×m-matrix C with respect to a m× n-matrix B if

BA = CB.

For our discussion we are given a Markov process on a finite state space with an associated transition
matrix P in order to find another Markov process on a smaller state space with transition matrix P
and a matrix Λ such that

ΛP = PΛ

where the rows of Λ are probability measures on the original state space (representing the local equi-
libria).

In this thesis we will explore this framework based on intertwining on a toy model consisting of three
nodes that we want to reduce to a network of two nodes.
The goal is to illustrate the method in [1] in this explicit model and explore which evolutions among
the local equilibria can be described; how this relates to the spectrum of the transition matrix P of the
Markov chain in this model; and its implications on the mixing time.
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Outline of the thesis

The goal of this thesis is to test and explore on a simple toy model a novel framework, introduced in
[1], to describe the evolution of local equilibria of Markov processes on finite state spaces.

The outline of the thesis is as follows:

In Chapter 1 we present a brief introduction to metastability theory. In particular we shall explore the
development of metastability theory and discuss metastability in the context of Markov chains.

Chapter 2 contains a presentation of the framework of [1] and the main results that we use for the
thesis.

Chapters 3 and 4 contain original material.

In Chapter 3 we see how this framework applies to a toy model consisting of a network with three
nodes. Even though the model is simple, the phenomenology that arises is very rich and is explored
in Section 3.4.

We then continue our exploration of the framework in Chapter 4, where we consider a random walk
on the same model, but now a walk consisting of a fixed number T ∈ N steps instead of solely one
step.
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Chapter 1

Introduction to metastability

A dynamical system tends to have an equilibrium at its state of least energy. Eventually the system will
converge to this stable equilibrium state. However, it could be that the system has other quasi-stable
states. On different time scales the system can move between such quasi-equilibria under influence of
noisy dynamics before it finally settles in its true equilibrium.
For a very big state space it can find itself equilibrized within a certain region of that state space on
very short time scales, whereas on very big time scales the system can encounter a different, new
region of the space that serves as quasi-equilibrium through very fast transitions.
The phenomenon described here is known as metastability and these quasi-equilibria are called metastable
states.

Metastability is encountered in many natural occurrences, be they physical, chemical, economical,
biological or other.

• Phase transitions such as the freezing of water are examples of this in physics. Here water will
still be in the metastable state of the liquid phase even though its temperature is below zero
degrees Celsius, before quickly freezing to the stable state of ice.

• In chemistry two compounds that react can first remain in a metastable state before transitioning
to the stable state. For example we observe this when carbon dioxide and water form bicarbon-
ate. This reaction is very slow, so the carbon dioxide and water stay in a mixture before the
application of a catalytic enzyme triggers the transition to bicarbonate.

• In computational neuroscience metastability, where brain signals can persist for a long time in
metastable states that are not the equilibrium state, is used to analyze how the brain responds to
random environmental cues.

We shall describe metastability from the point of view of statistical mechanics. Statistical mechanics
uses probabilistic techniques in order to describe systems of many particles and to demonstrate the
relation between concepts of the macroscopic view and the description of microscopic behaviour.
In equilibrium statistical mechanics the Gibbs measure is used. This is a probability measure on a config-
uration space and is given by Boltzmann weight factors that are based on interaction Hamiltonians. A
first-order phase transition is a transition of certain internal properties in a system due to a change in
external variables such as temperature or pressure. This transition as a function of these external vari-
ables is discontinuous. As this variable is changed, the system stays for a long and unpredictable time
in the old phase (the metastable state) before quickly transitioning to the true equilibrium. So metasta-
bility falls under non-equilibrium statistical mechanics, which is occupied with the dynamical properties
of the system whereas the equilibrium statistical mechanics is occupied with the static properties.

In this chapter we shall first consider a few informative examples that highlight the basic characteristics
of metastability, after which we present some simple mathematical models for metastability and the
further development of this subject. We follow the discussion in Chapters 1 and 2 of [2]. Then we
present a mathematical description of metastability on Markov chains [18]. Finally we give an outline
of this thesis.
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1.1 Some informative examples

The example we consider now is the formation of rain.
The transition from water vapour to liquid is determined by the free energy of the system. When the
free energy of the gas-phase is greater than that of the liquid-phase, the water molecules will aggregate
and form a rain droplet. The effective free energy ∆G(r) of a droplet (depending on its radius r) is
the sum of the interfacial energy σrd−1 between the two phases (where σ > 0 is this effect per unit
surface) and the difference between the bulk free energies −δrd of the two phases (where δ > 0 is this
effect per unit volume):

∆G(r) = σrd−1 − δrd. (1.1)

This function is shown below:

Figure 1.1: Effective free energy ∆G(r) as a function of its radius r. [2]

We can see that the effective free energy of the droplet increases with the radius r until a critical radius
r∗, after which it only decreases. If a droplet of radius larger than the critical one is formed, then this
radius will tend to grow. Those smaller will evaporate.
In order to grow larger than r∗, the system must temporarily violate the laws of thermodynamics and
increase the free energy. These thermal fluctuations can produce supercritical droplets, however if r∗ is
very large, they will do so only rarely.
Thus we find a quick transition from the metastable gas-phase (which persists for a long time) to the
stable liquid-phase after many failed attempts at the formation of a supercritical droplet.

Another example where we can see the formation of a supercritical droplet is the kinetic Ising model
[3]. In the figure below we see a spin system that starts with all spins aligned minus and then, after
the appearance of a critical droplet, transitions to the equilibrium state where all spins are aligned plus.

Figure 1.2: The Ising model starts out in the metastable minus phase where it stays for a long time
until a supercritical droplet is formed. After that it quickly transitions to the equilibrium of all plus.
[3]
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The first three pictures are taken at times 471, 7482 and 13403 and represent the metastable state of
the minus phase. After many unsuccessful attempts, a supercritical droplet is finally formed after a
long time at time 14674. The system then quickly transitions to the stable state of the plus phase. The
following pictures are taken at times 15194, 15432, 15892, 16558, 17328, 23645 and 40048 respectively.

1.2 Models for metastability

We discuss now two toy models that clearly describe metastability, namely the Kramers model for Brown-
ian motion in a double-well and the finite-state Markov process with exponentially small transition probabilities.

One of the earliest mathematical descriptions of metastability was developed by van ’t Hoff[4] in 1884

and refined by Arrhenius[5] in 1889, with the Arrhenius equation for temperature dependence of the
rate constant R associated with a chemical reaction:

R = A exp
(
− E

kBT

)
(1.2)

where A is the amplitude, E the activation energy of the reaction, kB the Boltzmann constant and T
the temperature.
Before the molecules can react they must achieve an energy E. The fraction of molecules that have
that energy at temperature T is proportional to exp

(
− E

kBT

)
, so the probability of a single collision to

cause a reaction is exp
(
− E

kBT

)
. We can see A as the average number of collisions per unit time, R as

the average number of collisions per unit time that causes a reaction and 1/R as the average reaction
time. The exponential captures the leading asymptotic behaviour.

The Arrhenius equation (1.2) turns out to be a very good formula for the average metastable crossover
time of many models with stochastic dynamics in small volumes at low temperatures.
In 1940 Kramers[6] developed a toy model to mathematically verify equation (1.2) that replaces the
microscopic collisions by a Brownian motion in a mesoscopic system. The model describes Brownian
motion in a double-well potential using the one-dimensional diffusion equation

dXt = b(Xt)dt +
√

2εdBt, (1.3)

where Xt is the particle’s position at time t in a drift field b = −W ′, W : R → R is a double-well
potential (a function with two local minima and two steep walls) and Bt is the position of the standard
Brownian motion at time t.

Figure 1.3: The double-well potential which has two wells at u and v. [2]

We see an example of a double-well potential above, where we have a local minimum at u, a global
minimum at v and a saddle point at z∗.
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The Kramers formula for average transition time from local minimum u to global minimum v through
saddle point z∗ is given by

Eu[τv] = [1 + o(1)]
2π√

[−W ′′(z∗)]W ′′(u)
exp[(W(z∗)−W(u))/ε]. (1.4)

Notice the similarity with equation (1.2), where now we have activation energy E = W(u)−W(z∗),
amplitude A = 2π√

[−W ′′(z∗)]W ′′(u)
and inverse temperature 1

kBT = 1
ε . Furthermore, the leading order

asymptotics are exponential as we have

ε ln Eu[τv] = [1 + o(1)](W(z∗)−W(u)) (1.5)

as ε ↓ 0.
A multi-dimensional generalisation of equation (1.4) was found by Eyring[7] and is called the Eyring-
Kramers formula. We shall not present it here.

Seeing as the particle in the Kramers model spends most of the time near the two minima, the model
can be simplified further to a system of two states u and v, the wells in the potential. The particle then
jumps from u to v after approximately a time τv, the first hitting time of v starting from u. Similarly it
jumps from v to u after approximately τu. In the limit ε ↓ 0, it holds that τv and τu tend to exponentially
distributed random variables. Hence we can approximate the Kramers model by a continuous-time
Markov process on the state space with two states u and v. The transition rates are given by

c(u, v) = exp(−r(u, v)/ε), r(u, v) = W(z∗)−W(u),
c(v, u) = exp(−r(v, u)/ε), r(v, u) = W(z∗)−W(v).

(1.6)

Figure 1.4: The Markov chain showing transitions between the two states u and v. [2]

The average crossover times Eu[τv] = 1/c(u, v) and Ev[τu] = 1/c(v, u) give us the same leading order
asymptotics as in (1.5).
Of course a system can have more than two metastable states[8]. In that case we can generalize this
system to a continuous-time Markov chain on a finite state space {m1, ..., mn} with transition rates
c(mi, mj) = exp(−r(mi, mj)/ε) for i, j = 1, ..., n. The theory of metastability then has the objective to
find these transition rates.

1.3 Further development of metastability theory

After the Kramers model in 1940 further developments in the theory of metastability were made.
These in turn led to what is known as the pathwise approach to metastability, proposed by Freidlin
and Wentzell[8] in the 1960’s and 1970’s. They suggested that metastability is determined by large
deviations of the random processes that govern the dynamics of the system. This theory consists of
minimizing the large deviation rate function in path space in order to find the most likely path between
metastable states. With that knowledge, one can ascertain the crossover time and obtain information
about the system before and after the crossover. One main disadvantage of this theory however is the
general difficulty with which one can discern this rate function.
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A rigorous theory for metastability for particle systems was developed by Penrose and Lebowitz[9] in
1971. They identified the following three characteristics which a metastable state must possess:

1. there is only one stable state in the system,

2. the metastable state persists for a very long time,

3. the decay time from a metastable state to the stable one is much smaller than the return time
from stable to metastable.

In the 1980’s Davies ([10] to [14]) demonstrated that if the spectrum of the generator of a reversible
Markov process contains a set of real eigenvalues that are very small and separated by a large gap from
the other eigenvalues, then the system displays metastable behaviour. This spectral approach has as dis-
advantage that the assumptions on the spectrum made by Davies are generally difficult to substantiate.

In 2001 a new approach to metastability was suggested by Bovier, Eckhoff, Gayrard and Klein[15].
This potential-theoretic approach considers the analogy of equilibrium potentials and capacities of elec-
tric networks instead of Markov processes. In this analogy, we treat the configurations of the system
as vertices in the electric network; transitions between configurations as edges; and transition proba-
bilities as conductances of their respective edges.
In that case the hitting probability of a set of certain configurations as function of a starting configu-
ration is viewed as the equilibrium potential where the potential is set to 1 on the target set and 0 on
the vertex associated to the starting configuration. The average hitting time for metastable sets is the
inverse of the capacity.
The powerful insight in this theory is that variational principles and renewal equations can be used to
estimate and bound these capacities.

1.4 Metastability as model reduction

Let us now turn our attention to metastability in the context of Markov processes. Motivated by a
specific example we will study how we can describe the evolution of a Markov chain by simpler dy-
namics, in particular one where the state space is smaller than the original yet still exhibiting the same
main features of the original chain. The discussion is based on the theory presented by Landim in [18].

Define for N ≥ 1 the set ΛN = {1, ..., N}2 and Ej,N , 0 ≤ j ≤ 3, be copies of ΛN . Then we see in
the figure below that the set EN is the union of these four squares, where each pair of neighbouring
squares share exactly one point.

Figure 1.5: The set EN . [18]
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Let ηN(t) be the continuous-time, irreducible Markov chain that takes values in EN by waiting at point
in EN with mean-one exponential time and then jumping uniformly to one of the neighbours. The
projection YN : EN → {0, 1, 2, 3} given by

YN(η) =
3

∑
k=0

kχEk,N (η),

where χA is the indicator of a set A ⊂ EN , helps us define the evolution of the reduced model

YN(t) = YN(ηN(t)).

It is known that the symmetric continuous-time random walk on ΛN has mixing time of order N2 and
time that is needed to hit a point at distance N of order αN = N2 log N. Using this knowledge we can
consider the time that is needed to hit one the intersection points of the Ej,N when starting from the
middle of an Ej,N . Let B be the set of these intersection points, then we denote this first hitting time as

HN
B = inf{t ≥ 0 : ηN(t) ∈ B}.

Note that this hitting time is of order much larger than the mixing time of the random walk on ΛN .
This means that the chain on EN will equilibrate in the starting Ej,N before hitting one of the corners.
After equilibration, the chain will stay for a time of order αN in Ej,N after which it hits an intersection
point with Ej±1,N (we take summation modulo 4), with probability 1

2 for either of the neighbouring
corners. For simplicity we take that neighbour to be Ej+1,N and denote the corner point by ξ.
Let us now fix a sequence (lN)N≥1 such that lN → ∞ and lN/N → 0. We define VN to be the set
of points in EN that are a distance lN or less away from ξ. After ξ is hit, ηN(t) will move within VN
for a time of order l2

N . As this time is much smaller than αN , this escape time from VN is negligible
in this time scale. After escape from VN the chain will end up in either Ej,N or in Ej+1,N , both with
probability 1

2 . Then it takes again a time of order αN to hit B, meaning that the chain will equilibrate
again inside the square. Thus we arrive at the initial settings and the process begins anew.

In the time scale αN we can see that a coarse-grained process is defined by

YN(t) := YN(tαN) = YN(ηN(tαN)).

This is a continuous-time process with values in {0, 1, 2, 3}, where the holding rates are given by some
λ > 0 and transition probabilities are p(j, j± 1) = 1

2 . Because of the memory loss that arises from the
equilibration, we expect this process to converge to a Markov chain. The question that we must pose
is: how exactly does YN(t) converge to a Markov chain? We see in the figure below a realization of
this process. The walk stays for a time of order αN in a state in {0, 1, 2, 3}, after which it makes very
short excursions around a corner point (these excursions are represented by the black rectangles).

Figure 1.6: A trajectory of YN(t). [18]

These fluctuations are the reason that YN(t) does not converge to a Markov chain in any of the
Skorohod topologies. In order to fix this, we shall alter the trajectories of YN(t) by removing these
fluctuations.
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First let us define E j
N to be the set of points in Ej,N that are at least a distance lN away from the faces

of Ej,N . This can be seen in the figure below.

Figure 1.7: The sets E j
N within each Ej,N . [18]

There are two ways in which we will alter the trajectories to obtain convergence in the Skorohod
topology, namely by last passage and by the trace process. Before presenting these, we lay down a
general framework.

1.4.1 General framework

Let (EN)N≥1 be a sequence of finite state spaces and ηN(t) a continuous-time irreducible Markov chain
with values in EN . It has a generator LN that acts on functions f : EN → R by

(LN f )(η) = ∑
ξ∈EN

RN(n, ξ)[ f (ξ)− f (η)];

and it has a unique stationary distribution πN . For a set A ⊂ EN , the first hitting time of A and the
first return time to A are given respectively by

HA := inf{t ≥ 0 : ηN(t) ∈ A}, H+
A = inf{t ≥ τ1 : ηN(t) ∈ A}

where τ1 = inf{t ≥ 0 : ηN(t) 6= ηN(0)}.
Now for n > 1 we create a partition of EN consisting of disjoint sets E1

N , ..., En
N , ∆N . We also define

EN :=
n⋃

k=1

E k
N .

For S = {1, ..., n} we define the projection that sends η ∈ EN to S ∪ {δ} by

ΦN(η) :=
n

∑
k=1

kχE k
N
(η) + δχ∆N (η).

Then
XN(t) := ΦN(ηN(t))

is the process with values in S ∪ {δ} that is determined by ηN(t).

7



1.4.2 Last passage

In the method of last passage, we alter the trajectories through removing the fast fluctuations and only
considering the last set E k

N that is visited.

First we define the left limit of ηN at time t by

ηN(t−) = lim
s↑t

ηN(s).

Then the process XV
N(t) is defined by

XV
N(t) := ΦN(ηN(vN(t)))

where

vN(t) =

{
t if ηN(t) ∈ EN

wN(t)− otherwise,

and
wN(t) := sup{s ≤ t : ηN(s) ∈ EN}.

We see that wN(t) is the last time that ηN was in one of the E k
N before time t. Thus vN(t) will always

give us a time that the chain ηN is in one of the E k
N and we get rid of the fast fluctuations that take

place in ∆N .
Suppose we start in E k

N and then visit E j
N . Then in the time interval [0, HE j

N
), the process XV

N remains

constantly equal to k where HE j
N

is of the order αN . Since we have now got rid of the fast fluctuations,

the process XV
N in the time scale αN converges to a Markov chain in the Skorohod topology.

We give the definition of metastability in this case:
Definition 1.1 (LP metastability). The Markov chain ηN(t) is LP-metastable in the time scale αN if
there exists a partition {E1

N , ..., En
N , ∆N} of EN and a continuous-time Markov chain X(t) with values

in S = {1, .., n} such that

1. for all k ∈ S and all (ξN)N≥1 where ξN ∈ E k
N : starting from ξN , the process XV

N(t) = XV
N(tαN)

converges to X(t) in the Skorohod topology;

2. for all t > 0:

lim
N→∞

max
η∈EN

EN
η

[∫ t

0
χ∆N (ηN(sαN))ds

]
= 0,

i.e. we can disregard the time in ∆N . Here EN
η is the expectation with respect to the probability

measure PN
η induced by ηN(t) starting from η on the space D([0, ∞), EN) of càdlàg trajectories

endowed with the Skorohod topology.

The problem with this alteration is that the process ηN(vN(t)) is not markovian, making things hard
to prove.

1.4.3 Trace process

Now we will remove the fast fluctuations by using the trace process.

We see for a non-empty, proper subset F ( EN that

TF(t) :=
∫ t

0
χF(ηN(s))ds

is the time that ηN spends in F on the interval [0, t]. Its generalized inverse is given by

SF(t) := sup{s ≥ 0 : TF(s) ≤ t}.

8



As the chain is irreducible, SF(t) is almost surely finite for all t > 0.
Now we can define the trace of ηN(t) on the set F to be

ηF
N(t) := ηN(SF(t)).

It is a known result that ηF
N(t) is an irreducible, cotinuous-time Markov chain that takes values in F.

Its jump rates are
RF

N(η, ξ) := λ(η)Pη [H+
F = Hη ], η, ξ ∈ F, η 6= ξ,

where for the jump rates RN(η, ξ) of the original chain we have holding rates λ(η) = ∑
ξ∈EN

RN(η, ξ).

We can get a better understanding of these quantities from the figure below.

Figure 1.8: The first figure shows the trajectory of a Markov chain with values in a state space E, where
we focus on the subset F = {a, b}. The second graph is TF(t). We remark that if the chain is not in
F, then TF(t) is constant. Otherwise it increases linearly. The third graph shows the trace process. We
can view this as the process where time is frozen when the chain hits FC until the time when it is again
in F and time continues normally. This means that we remove excursion to FC from the trajectory and
then push back what remains. [18]

For our situation we study ηEN
N (t), the trace of ηN on EN . Defining a new projection

ΨN(η) =
n

∑
k=1

kχE k
N
(η)

that only acts on EN , we can consider a new process

XT
N(t) := ΨN(η

EN (t))

to give the following definition of metastability. (Note that XT
N is the trace of XN on S.)

Definition 1.2 (Trace metastability). The Markov chain ηN(t) is trace-metastable in the time scale αN if
there exists a partition {E1

N , ..., En
N , ∆N} of EN and a continuous-time Markov chain X(t) with values

in S = {1, .., n} such that

1. for all k ∈ S and all (ξN)N≥1 where ξN ∈ E k
N : starting from ξN , the process XT

N(t) = XT
N(tαN)

converges to X(t) in the Skorohod topology;

2. for all t > 0:

lim
N→∞

max
η∈EN

EN
η

[∫ t

0
χ∆N (ηN(sαN))ds

]
= 0,

i.e. we can disregard the time in ∆N . Here EN
η is the expectation with respect to the probability

measure PN
η induced by ηN(t) starting from η on the space D([0, ∞), EN) of càdlàg trajectories

endowed with the Skorohod topology.

1.4.4 Remarks

Remark 1. Note that the given definitions differ from our description of metastability in the earlier
sections. There metastability is used to describe the transition from a metastable state to a stable one.
In these definitions of metastability that would match the case where the state space consists of one
transient and one absorbing state.
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Remark 2. In both definitions the second condition tells us that the transition between two metastable
states is very fast, as the time spent in ∆N is negligible. This corresponds with what we discussed
in earlier sections where it was known that in the metastable time-scale the transitions happen very
quickly.
Remark 3. In the examples in Section 1.1 we saw that metastability happens due to a present energy
barrier. If the system overcomes this barrier, it will reach a new section of the state space. In the
example in this section it is not an energy barrier but a bottleneck that causes metastability.
In this thesis we shall also study a model where metastability arises due to a bottleneck.
Remark 4. The approach of Landim can be used to investigate dynamics that are represented as a
Markov chain on a state space of fixed, finite size.
Transition path theory ([19] to [22]), where one studies the statistical properties of the portions of the
path of a Markov process that correspond to transitions between two pre-specified subsets of the state
space, is an example of this. The same goes for the intertwining method ([1], [3], [23], [24]), which we
will study in greater detail in the next chapter.

1.5 Relation to this thesis

In the paper [1] by Avena, Castell, Gaudillière and Mélot a novel general approach is proposed by
which to describe the evolution of local equilibria of a finite Markov chain. Different metastable states
are probability measures concentrated on different parts of a possibly very large network. Then the
interest lies in coarse-graining this network, or in other words to coalesce vertices of the network in
order to consider a simpler Markov process on a reduced state space.
Until now we have always assumed an asymptotic regime such that we could examine metastability,
be it large volume (as in [18]) or low temperature limits. Now, however, the novelty in the work of
Avena et al. lies in the fact that we can in principle describe metastable behaviour outside of these
asymptotic regimes.

The original contents of this thesis consist of working out the framework of [1] on explicit models and
exploring the resulting phenomenology.
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Chapter 2

Evolution of local equilibria through
intertwining

In this section we will present the results of [1] that form the basis for this thesis.

Let X be a finite state space of size |X | = n ∈ N. We consider an irreducible discrete time Markov
process {Xt, t ≥ 0} on X that is characterized by an irreducible stochastic transition matrix P. The
general goal is to observe the evolution of distributions that are localized in different regions of its
state space.

We will do this through intertwining dualities, the concept of which is introduced in Section 2.1.
In Section 2.2 we will state the main general theorem which will explain how to make sense of the
evolution of the local equilibria ("metastable states"). In Section 2.3 we will observe how all this is
related to the spectrum of P. And Section 2.4 summarizes further results developed in [1] in case an
analytic explicit analysis is out of reach.

2.1 Intertwining

We will now explore the tool of intertwining and discuss in which context we shall use it for our
purposes.
Definition 2.1 (Intertwining). Consider a Markov process X on state space X of size m ∈ N with
transition matrix P. The Markov process X is intertwined with X with respect to a matrix Λ : X ×X →
[0, 1] if

ΛP = PΛ. (2.1)

Note that this is in general not a symmetric relation, unless Λ is invertible.
Furthermore we can choose for the rows of Λ to be probability measures on X :

Λ(x, ·) = νx.

In the literature intertwining has appeared in many contexts. Rogers and Pitman[16] use intertwining
to state identities in laws for diffusion processes. Here they considered measures νx with disjoint sup-
port.
Diaconis and Fills[17] examined intertwining without this restriction in order to study Markov chains.
They did this in order to construct strong stationary times and to control convergence rates to equilib-
rium.
In these studies there was always the assumption that the size m of X was much larger than or equal
to the size n of X . For our purposes we take m to be smaller than n.
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In fact, for the intents of [1] our goal is:
Given (X, P,X ), find m probability measures νx = Λ(x, ·) (where m < n = |X |) that are concentrated
on different regions of X and find a transition matrix P on {1, ..., m} such that

ΛP = PΛ,

which is equivalent to
νxP = ΛP(x, ·) = PΛ(x, ·) = ∑

y∈X
P(x, y)νy.

Remark. Note that if we take all νx to be equal to the invariant measure π of P, we see that the
intertwining equation is always satisfied.
For all x ∈ X and x ∈ X we observe then that:

PΠ(x, x) = ∑
y∈X

P(x, y)π(x)

=

 ∑
y∈X

P(x, y)

π(x)

= π(x)
= πP(x)
= ΠP(x, x).

We will now show that if the coarse-grained process has thermalized, then so has the original.
Remark (Thermalization of coarse-grained process implies thermalization of the original process).
Suppose that the process X has a unique stationary distributions π, the process X has unique station-
ary distribution π and Λ is such that ΛP = PΛ. Then

πΛ = π.

In other words thermalization of the coarse-grained process implies thermalization of the original
process.

Proof. We see that

(πΛP)a = ∑
i
(πΛ)i Pi,a

= ∑
i

∑
j

π jΛj,iPi,a

= ∑
i

∑
j

π jPj,iΛi,a

= ∑
i

πiΛi,a

= (πΛ)a .

�

2.2 Coarse-grained dynamics and the evolution of local equilibria

By finding solutions of the intertwining equations as described in the previous section, we can de-
scribe the evolution of local equilibria. In this way we can discuss metastability outside any asymp-
totic regime. From one local equilibrium νx the process X evolves to another equilibrium νy chosen
according to P after a random time that is also determined by P.
The following theorem (Proposition 6 of [1]) explains this in rigorous terms.

12



Theorem 2.1 (Evolution of local equilibria in intertwining context). If X is intertwined with X
with respect to measures νx = Λ(x, ·), then there exists a filtration F such that X is F -adapted
and for each x ∈ X there exist a stopping time Tx and a random variable Yx with values in X\{x}
and law P that satisfy

1. Tx is geometrically distributed with parameter 1− P(x, x);

2. νx is stationary until time Tx, which means that

Pνx (Xt = ·|Tx > t) = νx(·); (2.2)

3. for all y ∈ X\x we have

P(Yx = y) =
P(x, y)

1− P(x, x)
; (2.3)

4.
Pνx (X(Tx) = ·|Yx = y) = νy(·); (2.4)

5. (X(Tx), Yx) and Tx are independent.

This is very alike the heuristic description of Penrose and Lebowitz in 1971 that was discussed in
Section 1.3:

1. First of all since we consider an irreducible and periodic chain on a finite state space there is a
unique invariant measure. This is the unique stable state of the system.

2. Secondly a metastable state x persists for a random time Tx, which in general can be very long.
This we see in (2.2).

3. The decay time from metastable state to another is much shorter. In fact the transition is imme-
diate as we can see from (2.4).

This general theorem is interesting provided we can solve the intertwining and if the corresponding
measures νx are good for our purpose, in the sense that they are localized in different regions of the
state space and separated as much as possible.

2.3 Spectral characterization of solutions to the intertwining equa-
tions

We are interested in finding non-degenerate solutions of the intertwining equations, i.e. where the νx
are linearly independent, and preferably such that the νx have as little overlap as possible.
We noticed earlier that if we take all νx to be the invariant measure, we retrieve a trivial solution.
Theorem 2.2 (Lemma 10 of [1]) shows us that if non-trivial intertwining solutions (Λ, P) exist and we
have knowledge of the spectrum of P, we can find a matrix C = (C(x, j))x∈X ,j∈J (where J is a subset
of {0, 1, ..., n− 1} of size m) such that we can write the rows νx of Λ as perturbations of the invariant
measure by this C.

Theorem 2.2 (Spectral characterization of non-trivial intertwining equations). Denote the n eigen-
values of P by

1 = θ0 > θ1 ≥ ... ≥ θn−1 ≥ −1

and denote the set [n] = {0, 1, 2, ..., n− 1}.
If Λ is of rank m such that ΛP = PΛ, then there exist an orthonormal basis of eigenvectors
{µj : 0 ≤ j < n} of P such that

µjP = θjµj

for all 0 ≤ j < n; a subset J ⊂ [n] such that 0 ∈ J and |J| = m; and an invertible matrix
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C = (C(x, j))x∈X ,j∈J such that C(x, 0) = 1 for all x ∈ X and

νx = ∑
j∈J

C(x, j)µj (2.5)

for all x ∈ X and
PC(·, j) = θjC(·, j) (2.6)

for all j ∈ J.

Note that µ0 = π and C(x, 0) = 1, which means that indeed νx adds the other eigenvectors µj of P to
π through the perturbation matrix C.

Theorem 2.2 gives us a spectral characterization of solutions to our intertwining problem, but tells us
nothing about how "good" these solutions are.
The subsequent proposition (Lemma 11 of [1]) gives us a recipe for how we can find a reversible and
stochastic irreducible matrix P with a spectrum that is contained in that of P.
If we find this explicit P, we can make the task of finding intertwining solutions easier as we must
only find Λ instead of both Λ and P. In particular the Λ’s that result should be good in the sense that
they are localized in different regions of the state space. However no assertions can be made about the
separation between the measures.

Proposition 2.1 (Universal solutions with good properties). For any

1 = θ0 > θ1 ≥ ... ≥ θm−1 ≥ 0

there always exists a reversible and irreducible stochastic matrix P with those as eigenvalues.

We show how the matrix P in Lemma 2.2 is constructed.
For 1 ≤ k ≤ m define

Σk = ∑
j<k

θj. (2.7)

Then P is given by

P =



Σ1+θ1
1×2

Σ1−θ1
2×3

Σ1−θ1
3×4 . . . Σ1−θ1

(m−1)m
Σ1−θ1

m
Σ1−θ1

1×2
Σ2+22θ2

2×3
Σ2−2θ2

3×4 . . . Σ2−2θ2
(m−1)m

Σ2−2θ2
m

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3+32θ3
3×4 . . . Σ3−3θ3

(m−1)m
Σ3−3θ3

m
...

...
...

. . .
...

...
Σ1−θ1

1×2
Σ2−2θ2

2×3
Σ3−3θ3

3×4 . . . Σm−1+(m−1)2θm−1
(m−1)m

Σm−1−(m−1)θm−1
m

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3−3θ3
3×4 . . . Σm−1−(m−1)θm−1

(m−1)m
Σm
m


. (2.8)

Remark. Further we observe that in order to construct the P of Lemma 2.2, we must have full knowl-
edge of the spectrum of P. This however, may prove too difficult in cases where we study processes
on very large state spaces.
Nonetheless in [1] an algorithm based on random spanning forests was introduced to build approxi-
mate solutions to the intertwining equations. It is not the goal of this thesis to dig into this algorithmic
process. Instead we shall focus on exploring analytically the solutions to a simple model.

2.4 Approximate solutions to the intertwining equations

Of course in many cases, such as when we consider immense state spaces, "good" exact solutions to the
intertwining equations can be too difficult to find. In sections 5.2.1 and 5.2.2 of [3] a way of building
approximate "good" solutions is presented. This method uses an algorithm and the concept of random
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forests to construct a measure-valued process on a smaller state space with dynamics resembling those
of the original process.

First we consider a directed and weighted graph G = (V, E, w) on state space of size |V| = n ∈N, where
E is the set of directed edges and w : V × V → R>0 is a strictly positive weight function. A rooted
spanning forest φ is a subgraph of G without cycles, where a root of φ are the vertices x ∈ V such that
for all y ∈ V the edge (x, y) is not in φ. The set of roots of φ is denoted by R(φ) and the set of all
possible rooted spanning forests by F . We can now define what we call the forest measure for fixed
positive q ∈ R>0, which is the law of the F -valued random variable known as the random forest Φq:

P(Φq = φ) =
w(φ)q|R(φ)|

∑
ψ∈F

w(ψ)q|R(ψ)|
.

Here w(φ) = ∏
e∈φ

w(e) is the weight of φ ∈ F and |R(φ)| is the number of roots of φ.

The algorithm of [3] consists of the following steps: Given an irreducible and reversible graph G on
state space of size |V| = n with associated Markov process X and invariant measure µ, we must

1. Choose m ≤ n and partition the graph into P(G) = [A1, ..., Am].

2. Define new vertex set V = {1, ..., m}.
3. Set the Λ-matrix as

Λ(x, ·) = νx(·) := µ(·|Ax)

for x ∈ V and where µ(·|Ax) is the invariant measure µ conditioned to Ax ⊂ V.

4. We define Tq′ as an independent exponential random variable of parameter q′ > 0. For x, y ∈ V,
the new process is given by the law

Pq′(x, y) := Pνx

[
X(Tq′) ∈ Ay

]
.

The randomization of this deterministic algorithm is implemented by choosing

m = m(q) = |R(Φq)|
and

P(G) = P(Φq) := [A1, ..., Am(q)].

Some comments on this procedure:

• If the constructed (Λ, Pq′) is close to a solution of the intertwining equations, then we can con-
sider the resulting network G as a coarse-grained measure-valued description of G on time scale
Tq′ .

• For any q′ > 0, because of the last step and irreducibility of the original G, the resulting G with
weights given by Pq′ is a complete graph with non-homogeneous weights. In particular Pq′ is
again irreducible and reversible.

• To see that the measures νx have disjoint support, we refer the reader to Theorem 10 of [3].

• To see that the constructed (Λ, Pq′) is close to a solution we refer the reader to Theorem 12 of [3].
Here a bound is given on

E

|R(Φq)|

∑
x=1

dTV(ΛKq′(x, ·), Pq′Λ(x, ·))


where E is the expectation with respect to the forest measure P. Further Kq′(x, ·) is the dis-
tribution of the original process started at x ∈ V and considered at an exponential time Tq′ of
parameter q′ > 0. The total variation distance function dTV for two probability measures µ, ν on V
is given by

dTV(µ, ν) =
1
2 ∑

x∈V
|µ(x)− ν(x)|.
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Chapter 3

One-step random walk on the 3-node
toy model

In this chapter we shall investigate the framework of [1] on an explicit model of three nodes.

• In Section 3.1 we present the model (characterized by a parameter 0 < p < 1), calculate its in-
variant measure and explain the intuition behind the coarse-graining of the network.

• In Section 3.2 we solve the intertwining solutions for the one-step distribution on this model. We
show that there are non-trivial solutions for all p.

• In Section 3.3 we rederive the solutions of the previous section through Theorem 2.2 and explore
how "good" the universal solutions of Proposition 2.1 are.

• In Section 3.4 we investigate the evolution of local equilibria by using Theorem 2.1 and the
intertwining solutions of Section 3.2.

• Finally Section 3.5 contains investigation of the phenomenology that arises from this evolution
of the local equilibria and in particular find a bound on the mixing time of the original chain.

3.1 The 3-node toy model

Let G be the graph on state space X = {1, 2, 3} as in the following figure:

1 2 3

1− p

1− p p

p

p 1− p

The transition matrix on this graph is defined using a parameter p ∈ (0, 1) as follows:

P =

 p 1− p 0
1− p 0 p

0 p 1− p

 . (3.1)

As this Markov chain is irreducible and aperiodic on a finite state space, we know that it has a unique
invariant measure. To find its invariant measure π = (π(1), π(2), π(3)), we must solve

πP = π.

This gives us

π(1) = π(2) = π(3) =
1
3

. (3.2)
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Lemma 3.1. Furthermore for general p, the matrix P has eigenvectors

µ0 =

1
1
1

 , µ1 =


1−2p−λ

p
−1+p+λ

p
1

 and µ2 =


1−2p+λ

p
−1+p−λ

p
1


for eigenvalues θ0 = 1, θ1 = λ and θ2 = −λ respectively, where we define

λ :=
√

3p2 − 3p + 1 ∈ [1/2, 1).

Proof. We find that the determinant of λI − P is given by

det

λ− p p− 1 0
p− 1 λ −p

0 −p λ− (1− p)

 =(λ− p)(λ2 − λ(1− p)− p2) + (1− p)(p− 1)(λ− (1− p))

=λ3 − λ2(1− p)− p2λ− pλ2 + λp(1− p) + p3 − λ(p2 − 2p + 1)

+ 3p2 − 3p + 1− p3

=λ3 − λ2 + λ(−3p2 + 3p− 1) + 3p2 − 3p + 1.

This has solutions λ = 1 and λ = ±
√

3p2 − 3p + 1.

For the eigenvectors we must solve Pµ = λµ. Then we findpµ(1) + (1− p)µ(2)
(1− p)µ(1) + pµ(3)
pµ(2) + (1− p)µ(3)

 =

λµ(1)
λµ(2)
λµ(3)

 .

Thus we find
µ(2) =

−1 + p + λ

p
µ(3)

and

µ(1) =
1− p
λ− p

µ(2)

=
(1− p)(−1 + p + λ)

p(λ− p)
µ(3)

=
−1 + p + λ + p− p2 − pλ

p(λ− p)
µ(3)

=
(1− 2p− λ)(λ− p)

p(λ− p)
µ(3)

=
1− 2p− λ

p
µ(3).

�

For our intertwining discussion we place the following parametric probability measures on the graph:

ν1 =(M1, M2, M3),
ν2 =(m1, m2, m3),

where the Mi and mi are in [0, 1] and add up to 1 respectively. Then define the matrix Λ as

Λ =

(
ν1
ν2

)
=

(
M1 M2 M3
m1 m2 m3

)
. (3.3)

18



We consider a coarse-grained network on state space X = {1, 2}. The intuition behind this is that if
we take p to be large, the process on X will stay for a long time in either the node 1 or the pair 2-3.
Thus we can collapse the nodes 2 and 3 into 2 that represents a measure that places most of its mass
on 2, 3 and similar for 1 with 1. Similarly if p is small, the process will stay for a long time in either
the pair 1-2 or in 3.
We place the graph on X in the following figure:

1 2

1− p

q

p 1− q

The transition matrix on this graph is given by

P =

(
p 1− p
q 1− q

)
(3.4)

where p and q are as of yet unknown transition probabilities in [0, 1].

3.2 Intertwining: characterization of solutions for the one-step dis-
tribution

We shall now show that there exist non-trivial solutions of the intertwining equation for all p’s. The
full characterization of solutions is given in Proposition 3.1.

Proposition 3.1 (Full characterization of solutions to intertwining in the 3-node model). Let P
be as in (3.1), Λ as in (3.3) and P as in (3.4). The solutions (Λ, P) to the intertwining equation
ΛP = PΛ are characterized by the difference p − q, which can only be ±λ. The solutions are
identified by

• 1. If p− q = +λ, then either

0 ≤ m1 ≤
1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
(3.5)

or
0 ≤ M1 ≤

1
3
≤ m1 ≤

−p + 1 + λ

2 + 2λ− 3p
; (3.6)

2. If p− q = −λ, then either

max
{

0,
1− λ− p

2− 2λ− 3p

}
≤ m1 ≤

1
3

(3.7)

1
3
(1 + λ)− λm1 ≤ M1 ≤ min

{
−p

1− λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
; (3.8)

or

1
3
≤ m1 ≤

−p
1− λ− p

(3.9)

max
{

0,
1− λ− p

2− 2λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
≤ M1 ≤

1
3
(1 + λ)− λm1; (3.10)
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•

M2 =
(1 + α− 3p)M1 + p

1 + α
(3.11)

and

m2 =
(1 + α− 3p)m1 + p

1 + α
; (3.12)

•
M3 = 1−M1 −M2 (3.13)

and
m3 = 1−m1 −m2; (3.14)

and finally given M1 6= m1,

•

q =
p(1− p)(1− 3m1)

(1 + α)(M1 −m1)
, (3.15)

where α = p− q.

Proof. We want to solve
ΛP = PΛ.

In order to do this, we first find

ΛP =

(
pM1 + (1− p)M2 (1− p)M1 + pM3 pM2 + (1− p)M3
pm1 + (1− p)m2 (1− p)m1 + pm3 pm2 + (1− p)m3

)
(3.16)

and

PΛ =

(
pM1 + (1− p)m1 pM2 + (1− p)m2 pM3 + (1− p)m3
qM1 + (1− q)m1 qM2 + (1− q)m2 qM3 + (1− q)m3

)
. (3.17)

The intertwining relation gives us the following constraints on Λ and P:

pM1 + (1− p)M2 = p(M1 −m1) + m1 (3.18)
(1− p)M1 + pM3 = p(M2 −m2) + m2 (3.19)
pM2 + (1− p)M3 = p(M3 −m3) + m3 (3.20)
pm1 + (1− p)m2 = q(M1 −m1) + m1 (3.21)
(1− p)m1 + pm3 = q(M2 −m2) + m2 (3.22)
pm2 + (1− p)m3 = q(M3 −m3) + m3 (3.23)

M1 + M2 + M3 = 1 (3.24)
m1 + m2 + m3 = 1 (3.25)

M1, M2, M3, m1, m2, m3, p, q ∈ [0, 1]. (3.26)

We shall find solutions as functions of M1 and m1 in the following steps.

1. Suppose that M1 6= m1 and M3 6= m3. Else we only find trivial solutions.
We see this as the equations (3.18) and (3.21) force M2 = m2 if M1 = m1 and similar for (3.20)
and (3.23) if M3 = m3. Then equations (3.19) and (3.22) give us now that

(1− p)M1 + pM3 = (1− p)m1 + pm3.

Hence we obtain
M1 −m1 =

−p
1− p

(M3 −m3).

Thus Mi = mi for all i.
From equation (3.18) and (3.19) we can then see that M1 = M2 = M3. Plugging this in (3.24),
returns the invariant measure. Note that M1 = M2 = M3 = m1 = m2 = m3 = 1

3 clearly satisfies
all constraints.
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2. If M2 = m2, then there are only non-trivial solutions for p = 1
2 .

From the relation M1 −m1 = −p
1−p (M3 −m3) and equation (3.24) we see

M1 + M2 + M3 =
−p

1− p
(M3 −m3) + m1 + m2 + M3 = 1.

Using (3.25) which states m1 + m2 = 1−m3, we rewrite this as

−p
1− p

(M3 −m3) + 1−m3 + M3 = 1,

or equivalently as
1− 2p
1− p

(M3 −m3) = 0.

For p 6= 1
2 , this gives us M3 = m3, and by the derivation above thus the invariant measure.

For p = 1
2 we refer the reader to Step 11.

3. Now we use equations (3.18) to (3.230) to find a condition for α = p− q.
We combine equations (3.18)-(3.21), (3.19)-(3.22), and (3.20)-(3.23) in the following three equations
respectively, where we eliminate the term mi in each pair:

pM1 + (1− p)M2 + p(m1 −M1) = pm1 + (1− p)m2 + q(m1 −M1)

(1− p)M1 + pM3 + p(m2 −M2) = (1− p)m1 + pm3 + q(m2 −M2)

pM2 + (1− p)M3 + p(m3 −M3) = pm2 + (1− p)m3 + q(m3 −M3).

We rewrite these in the following way:

p(M1 −m1) + (1− p)(M2 −m2) + (p− q)(m1 −M1) = 0 (3.27)
(1− p)(M1 −m1) + p(M3 −m3) + (p− q)(m2 −M2) = 0 (3.28)
p(M2 −m2) + (1− p)(M3 −m3) + (p− q)(m3 −M3) = 0. (3.29)

We see that equations (3.27) and (3.29) give us the following relation:

M2 −m2 =
p− q− p

1− p
(M1 −m1) =

p− q− (1− p)
p

(M3 −m3). (3.30)

Now we must check whether this satisfies (3.28) as well, so we obtain:[
(1− p)2

p− q− p
+

p2

p− q− (1− p)
− (p− q)

]
(M2 −m2) = 0.

As we assumed that M2 6= m2, this gives us a condition on p, q, namely that:

(1− p)2

p− q− p
+

p2

p− q− (1− p)
− (p− q) = 0.

We write
α = p− q

and compute:

0 =(1− p)2(α− (1− p)) + p2(α− p)− α(α− (1− p))(α− p)

=(1− p)2α− (1− p)3 + p2α− p3 − α3 + pα2 + (1− p)α2 − p(1− p)α

=(1− 2p + p2)α− 1 + 3p− 3p2 + p3 + p2α− p3 − α3 + pα2 + (1− p)α2 − pα + p2(α)

=− α3 + α2 + α(3p2 − 3p + 1)− 3p2 + 3p− 1.

So the condition on α becomes

α3 − α2 − α(3p2 − 3p + 1) + 3p2 − 3p + 1 = 0. (3.31)
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4. Now we find that α = ±λ.
We do this by imposing consistency with equations (3.24) and (3.25) on the central relation (3.31)
that we found. We see

1 =M1 + M2 + M3

=
1− p

p− q− p
(M2 −m2) + m1 + M2 +

p
p− q− (1− p)

(M2 −m2) + m3

=

[
1− p

p− q− p
+

p
p− q− (1− p)

+ 1
]
(M2 −m2) + 1.

This returns [
1− p

α
+

p
α− (1− p)

+ 1
]
(M2 −m2) = 0.

As we assumed that M2 −m2 6= 0, we find another condition on α = p− q namely that

0 =(1− p)(α− (1− p)) + p(α− p) + (α− p)(α− (1− p))

=α− (1− p)2 − p2 + α2 + p(1− p)− pα− (1− p)α.

This is equivalent to

α2 = (1− p)2 + p2 − p(1− p)

= 1− 2p + p2 + p2 − p + p2

= 3p2 − 3p + 1. (3.32)

We observe that the solution of (3.31) and (3.32) is given by

α = ±
√

3p2 − 3p + 1. (3.33)

5. In steps 5 to 11 we consider α = +λ. We start by rewriting equations (3.27) to (3.29):

(λ− p)(M1 −m1) = (1− p)(M2 −m2) (3.34)
λ(M2 −m2) = (1− p)(M1 −m1) + p(M3 −m3) (3.35)

(λ− (1− p))(M3 −m3) = p(M2 −m2). (3.36)

Note that λ = p iff p = 1
2 and λ = 1− p iff p = 1

2 . Both imply M2 = m2 as we see from (3.34)
and (3.36). Therefore we consider p 6= 1

2 . The case of p = 1
2 and M2 = m2 can be found in Step

11.

6. We give expressions for q, p, m2, M2.
To do this we consider the three expressions for q from (3.21) to (3.23). We will exploit consistency
of (3.21) and (3.22) and use (3.34). Then we check consistency of (3.35), (3.36) and (3.23) in Step
7.
Equations (3.21) and (3.20) give us

q =
(1− p)(m2 −m1)

M1 −m1

q =
(1− p)m1 + pm3 −m2

M2 −m2
.

Substituting (3.34) and m3 = 1−m1 −m2 in (3.22) we find

q =
1− p
λ− p

(1− p)m1 + p− pm1 − pm2 −m2

M1 −m1
.

Hence it must hold that

m2 −m1 =
1

λ− p
[(1− 2p)m1 + p− (1 + p)m2]

22



which means that (
1 +

1 + p
λ− p

)
m2 =

1
λ− p

[(1 + λ− 3p)m1 + p]

giving thus

m2 =
(1 + λ− 3p)m1 + p

1 + λ
. (3.37)

Substituting this in (3.21) returns

q =
1− p

M1 −m1

(1 + λ− 3p)m1 + p− (1 + λ)m1

1 + λ

=
p(1− p)(1− 3m1)

(1 + λ)(M1 −m1)
. (3.38)

Then also

p = q + λ

=
p(1− p)(1− 3m1) + (λ + 3p2 − 3p + 1)(M1 −m1)

(1 + λ)(M1 −m1)

=
p(1− p) + (1 + λ)(λM1 −m1)

(1 + λ)(M1 −m1)
. (3.39)

Substituting this p in (3.18) we can find M2:

M2 =
p(1− p)(1− 3m1) + λ(1 + λ)(M1 −m1) + (m1 − pM1)(1 + λ)

(1 + λ)(1− p)

=
p(1− p)(1− 3m1) + (1 + λ)[(λ− p)M1 + (1− λ)m1]

(1 + λ)(1− p)

=
p(1− p)(1− 3m1) + (1 + λ)(λ− p)M1 + (1− 3p2 + 3p− 1)m1

(1 + λ)(1− p)

=
p(1− p) + [(1− p)λ + 3p2 − 4p− 1]M1

(1 + λ)(1− p)

=
p(1− p) + (1− p)[λ + 1− 3p]M1

(1 + λ)(1− p)

=
[1 + λ− 3p]M1 + p

1 + λ
. (3.40)

7. We will now check consistency of (3.35), (3.36) and (3.23).
First we find

M2 −m2 =
[1 + λ− 3p](M1 −m1)

1 + λ

M3 −m3 = −(M1 −m1)− (M2 −m2)

=
−2− 2λ + 3p

1 + λ
(M1 −m1).

For (3.35) we find that

λ(1 + λ− 3p) = λ + λ2 − 3pλ

= λ + 3p2 − 3p + 1− 3pλ

and

(1− p)(1 + λ) + p(−2− 2λ + 3p) = 1 + λ− p− pλ− 2p− 2pλ + 3p2

= λ + 3p2 − 3p + 1− 3pλ.
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For (3.35) we find that

(λ− (1− p))(−2− 2λ + 3p) = −2λ− 2λ2 + 3pλ + 2 + 2λ− 3p− 2p− 2pλ + 3p2

= −2λ− 6p2 + 6p− 2 + 3pλ + 2 + 2λ− 3p− 2p− 2pλ + 3p2

= p + pλ− 3p2.

and

p(1 + λ− 3p) = p + pλ− 3p2.

For (3.23) we find

m3 = 1−m1 −m2

=
(1−m1)(1 + λ)− (1 + λ− 3p)m1 − p

1 + λ

=
(−2− 2λ + 3p)m1 − p + 1 + λ

1 + λ

and hence

m2 −m3 = 1−m1 − 2m3

=
(1−m1)(1 + λ) + (4 + 4λ− 6p)m1 + 2p− 2− 2λ

1 + λ

=
(3 + 3λ− 6p)m1 + 2p− 1− λ

1 + λ

=
(−1− λ + 2p)(1− 3m1)

1 + λ
.

This gives us

q = (M3 −m3)
−1 p(m2 −m3)

=
p(−1− λ + 2p)(1− 3m1)

(−2− 2λ + 3p)(M1 −m1)

=
p(1− p)(1− 3m1)

(1 + λ)(M1 −m1)
.

8. Now that we found intertwining solutions, we must also impose the conditions (3.26) on these
solutions.
Note that

0 ≤ q, p ≤ 1

is equivalent with
0 ≤ q ≤ 1− λ.

In this step we shall investigate the consequences of these conditions on q.
We first verify when q ≥ 0.
Suppose M1 −m1 ≥ 0. Then we must have

1− 3m1 ≥ 0.

For q ≤ 1− λ, we must have

p(1− p)(1− 3m1)

(1 + λ)(M1 −m1)
≤ (1− λ)(1 + λ)(M1 −m1)

(1 + λ)(M1 −m1)
=

(−3p2 + 3p)(M1 −m1)

(1 + λ)(M1 −m1)
.

If M1 −m1 ≥ 0, then it follows that M1 ≥ 1
3 .

So the final condition becomes either

0 ≤ m1 ≤
1
3
≤ M1 ≤ 1 (3.41)

or
0 ≤ M1 ≤

1
3
≤ m1 ≤ 1. (3.42)
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9. Now we must impose that M2, M3, m2, m3 ∈ [0, 1]. As M3 = 1−M1 −M2 and M1 ∈ [0, 1] and
similar for m3, this is equivalent with imposing that

0 ≤ M2 ≤ 1−M1

and

0 ≤ m2 ≤ 1−m1.

In this step we investigate the first condition M2 ≥ 0.
This gives us

(1 + λ− 3p)M1 ≥ −p.

Note that 1 + λ− 3p > 0 for p < 1
2 and 1 + λ− 3p < 0 for p > 1

2 , giving us that we must impose

M1 ≥
−p

1 + λ− 3p

for p < 1
2 and

M1 ≤
−p

1 + λ− 3p

for p > 1
2 .

Figure 3.1: We see that the function f (p) = 1 + λ− 3p > 0 for p < 1
2 and f (p) = 1 + λ− 3p < 0 for

p > 1
2 .

Note that for M1 ∈ [0, 1] this is always the case for all p ∈ (0, 1) as we can see in the figure below.
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Figure 3.2: The function f (p) = −p
1+λ−3p . Clearly for all M1 ∈ [0, 1] we have M1 > f (p) for p < 1

2 and

M1 < f (p) for p > 1
2 .

10. The second condition M2 ≤ 1−M1 is equivalent with

(1 + λ− 3p)M1 + p
1 + λ

≤ (1−M1)(1 + λ)

1 + λ

which is to say
(2 + 2λ− 3p)M1 ≤ −p + 1 + λ.

We can see in the figure below that 2 + 2λ− 3p ≥ 0 for all p ∈ (0, 1).

Figure 3.3: We see that the function f (p) = 2 + 2λ− 3p ≥ 0 for all p ∈ (0, 1).

Thus our condition becomes

M1 ≤
−p + 1 + λ

2 + 2λ− 3p
.

In the figure below we see −p+1+λ
2+2λ−3p for p ∈ (0, 1).

26



Figure 3.4: We see that the function f (p) = −p+1+λ
2+2λ−3p gives us a non-trivial bound M1 ≤ −p+1+λ

2+2λ−3p .

Note that due to the similarity in (3.37) and (3.40), we have the same condition for m1.

Thus our total conditions are either

0 ≤ m1 ≤
1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
(3.43)

or
0 ≤ M1 ≤

1
3
≤ m1 ≤

−p + 1 + λ

2 + 2λ− 3p
. (3.44)

11. Now we investigate the case p = 1
2 .

Equations (3.18) and (3.22) quickly give us that M1 + M3 = m1 +m3. Imposing 1 = m1 +m2 +m3,
we find that M1 + M2 + M3 = m1 + m3 −M3 + m2 + M3 = 1.
However, let us consider again equations (3.18) and (3.20). Equation (3.18) becomes

1
2

M1 +
1
2

M2 −m1 = p(M1 −m1)

and (3.20) becomes
1
2

M2 +
1
2

M3 −m3 = −p(M1 −m1).

So we obtain
1
2

M1 +
1
2

M2 −m1 = −1
2

M2 −
1
2

M3 + m3.

Enforcing (3.24) and (3.25) again we find

1
2
= −1

2
M2 + 1−m2,

or equivalently

−1
2
= −3

2
M2.

Thus we must have that M2 = m2 = 1
3 .

Now equations (3.24) and (3.25) give us that

M1 + M3 = m1 + m3 =
2
3

.

Note that the expression for q is not affected by the assumptions p = 1
2 and M2 = m2, thus the

conditions that arise due to (3.27) do not change.
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12. We now consider α = −λ. Repeating the steps 5 to 7, we find

q =
p(1− p)(1− 3m1)

(1− λ)(M1 −m1)

M2 =
(1− λ− 3p)M1 + p

1− λ

m2 =
(1− λ− 3p)m1 + p

1− λ
.

So it only rests to impose the conditions q, p, Mi, mi ∈ [0, 1].
In this step we will prove when q, p ∈ [0, 1].
Note that this is equivalent to

λ ≤ q ≤ 1.

The condition q ≥ λ is equivalent to

q =
p(1− p)(1− 3m1)

(1− λ)(M1 −m1)
≥ λ(1− λ)(M1 −m1)

(1− λ)(M1 −m1)
.

As p(1− p) = 1
3 (3p− 3p2) = 1

3 (1− λ2), we thus see that this condition translates to (We assume
now M1 ≥ m1 and keep this assumption until the end of the proof, noting that the reverse
case can be found doing a similar analysis.)

(1 + λ)

(
1
3
−m1

)
≥ λ(M1 −m1),

which is the same as

M1 ≤
1
3

(
1 +

1
λ

)
− m1

λ
. (3.45)

The condition q ≤ 1 we find in a similar way to be the same as

M1 ≥
1
3
(1 + λ)− λm1. (3.46)

Note then that these two functions of m1 intersect when

1
3

(
1 +

1
λ

)
− m1

λ
=

1
3
(1 + λ)− λm1

m1

(
λ− 1

λ

)
=

1
3

(
λ− 1

λ

)
m1 =

1
3

for all p ∈ [0, 1].
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Figure 3.5: On the y-axis we have M1 as a function of m1 on the x-axis where p = 2
3 . The red graph is

M1 = m1, the blue graph is 1
3

(
1 + 1

λ

)
− m1

λ and the purple graph is 1
3 (1 + λ)− λm1.

From the figure above we see that q, p ∈ [0, 1] is equivalent to

0 ≤ m1 ≤
1
3

(3.47)

1
3
(1 + λ)− λm1 ≤ M1 ≤

1
3

(
1 +

1
λ

)
− m1

λ
. (3.48)

13. Now we investigate the condition

0 ≤ M2 ≤ 1−M1.

For M2 ≥ 0, we must have M1 ≤ −p
1−λ−3p .

Figure 3.6: The function −p
1−λ−3p for p ∈ [0, 1].

Note that −p
1−λ−3p ≥

1
3 for all p ∈ [0, 1].
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The condition M2 ≤ 1−M1 can be rewritten as

(1− λ− 3p)M1 + p ≤ 1− λ− (1− λ)M1,

which is equivalent to

M1 ≥
1− λ− p

2− 2λ− 3p
.

Figure 3.7: The function 1−λ−p
2−2λ−3p for p ∈ [0, 1].

Note that for p < 1
2 , 1−λ−p

2−2λ−3p is negative and for p = 1 it equals 1
3 .

Further we note that we have the same conditions for m1, due to the expression for m2.

14. Now we must combine all these conditions.
For m1 we can easily see that we must have

0 ≤ m1 ≤
1
3

for p ≤ 1
2 and

1− λ− p
2− 2λ− 3p

≤ m1 ≤
1
3

for p > 1
2 .

For M1 we first notice that as 1−λ−p
2−2λ−3p ≤

1
3 for all p, the only lower bound for M1 is

1
3
(1 + λ)− λm1 ≤ M1.

For the upper bound we study the figure below.
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Figure 3.8: On the y-axis we have M1 as a function of m1 on the x-axis where p = 2
3 . The blue graph is

1
3

(
1 + 1

λ

)
− m1

λ and the purple graph is 1
3 (1 + λ)− λm1. The green graph is the value M1 = −p

1−λ−3p

and the red graph the value m1 = 1−λ−p
2−2λ−3p .

Thus M1 is bounded by

M1 ≤ min
{

−p
1− λ− 3p

,
1
3

(
1 +

1
λ

)
− m1

λ

}
.

�

3.3 Testing the spectral solutions on the 3-node toy model

In Lemma 3.2 we show that by applying Theorem 2.2 and perturbing the invariant measure, we can
retrieve the non-trivial solutions of Proposition 3.1.
In Lemma 3.3 we show that the spectral solutions that are found by constructing a P as in Proposition
2.1 can also be non-trivial, but with less freedom than the ones of Proposition 3.1.

3.3.1 Solutions from the spectral knowledge (Theorem 2.2)

Let us investigate Theorem 2.2 for our model where n = 3 and m = 2.
In Theorem 2.2 we started from the assumptions that we had non-trivial solutions (Λ, P). Now that
we know what they are for our model, we can find the perturbation matrix C(x, j) explicitly.
We find the following result.

Lemma 3.2 (Non-trivial perturbed solutions to intertwining). Let p ≥ 1
2 .

Consider the eigenvector µ1 =


1−2p−λ

p
−1+p+λ

p
1

 of P with eigenvalue λ and the eigenvector µ2 =


1−2p+λ

p
−1+p−λ

p
1


with eigenvalue −λ.
Let

C1 =

(
1 a
1 b

)
be an invertible matrix where

• either − 1
3 ≤ a ≤ 0 ≤ b ≤ −p

3(1−2p−λ)
or − 1

3 ≤ b ≤ 0 ≤ a ≤ −p
3(1−2p−λ)

;

• a 6= b
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and let

C2 =

(
1 a′

1 b′

)
be an invertible matrix where

• either

−1
3
≤ b′ ≤ 0

−λb′ ≤ a′ ≤ min
{
−b′

λ
,−1

3
p

−1 + p− λ

}
or

0 ≤ b′ ≤ −1
3

p
−1 + p− λ

− b′

λ
≤ a′ ≤ −λb;

If (Λ, P) satifies the intertwining equation where Λ =

(
ν1
ν2

)
is of rank 2, then

ν1 = π + A(1, 1)µ1 (3.49)

ν2 = π + A(2, 1)µ1 (3.50)

and
PA(·, 1) = λA(·, 1), (3.51)

for either A = C1 or A = C2.

Proof. For the set J defined in Theorem 2.2 we could either have J = {0, 1} or J = {0, 2}.

1. Consider J = {0, 1}. For the νx in equation (2.5) we then find

νx = π + C1(x, 2)µ2.

If we write a := C(1, 2) and b := C(2, 2), we see

ν1 =

(
1
3
+ a

1− 2p− λ

p
,

1
3
+ a
−1 + p + λ

p
,

1
3
+ a
)

,

ν2 =

(
1
3
+ b

1− 2p− λ

p
,

1
3
+ b
−1 + p + λ

p
,

1
3
+ b
)

.

We impose the constraints that all terms of νx and all terms of P must be in [0, 1], to find
constraints on a, b.

• First of all, we notice

−1
3
≤ a ≤ 2

3
.

• We now impose

0 ≤ 1
3
+ a

1− 2p− λ

p
≤ 1.
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Figure 3.9: The function of 1− 2p− λ as a function of p ∈ [0, 1].

In the figure above we see that 1−2p−λ
p is negative for all 0 ≤ p ≤ 1, so we conclude

2
3

p
1− 2p− λ

≤ a ≤ −1
3

p
1− 2p− λ

.

• We now impose

0 ≤ 1
3
+ a
−1 + p + λ

p
≤ 1.

Figure 3.10: The function of −1 + p + λ as a function of p ∈ [0, 1].

In the figure above we see that −1+p+λ
p is negative for all p ≤ 1

2 and positive for p ≥ 1
2 , so

we conclude
2
3

p
−1 + p + λ

< a < −1
3

p
−1 + p + λ

for p < 1
2 and

−1
3

p
−1 + p + λ

< a <
2
3

p
−1 + p + λ

for p > 1
2 .

• First we look at these lower bounds.
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Figure 3.11: The red graph is the constant − 1
3 , the blue graph is 2

3
p

1−2p−λ , the green graph is 2
3

p
−1+p+λ

(which in this case we only consider for p < 1
2 ) and the purple graph is − 1

3
p

−1+p+λ (which we only

consider for p > 1
2 ).

From the figure above we conclude that we must impose

a ≥ −1
3

.

Now we investigate the upper bounds.

Figure 3.12: The red graph is the constant 2
3 , the blue graph is − 1

3
p

1−2p−λ , the green graph is 2
3

p
−1+p+λ

(which in this case we only consider for p > 1
2 ) and the purple graph is − 1

3
p

−1+p+λ (which we only

consider for p < 1
2 ).

From the figure above we conclude that we must impose

a ≤ −1
3

p
1− 2p− λ

.

Since the discussion for b is similar, we conclude

−1
3
≤ a, b ≤ −1

3
p

1− 2p− λ
.

• Further we see that

PC =

(
p 1− p
q 1− q

)(
1 a
1 b

)
=

(
1 p(a− b) + b
1 q(a− b) + b

)
.
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This must equal (
1 λa
1 λb

)
,

so we find

p =
λa− b
a− b

q =
(λ− 1)b

a− b
.

We shall assume now that a > b.

• Note that imposing 0 ≤ p ≤ 1 gives us

a ≥ b
λ
∧ a ≥ 0.

And imposing 0 ≤ p ≤ 1 gives us

b ≤ 0 ∧ b ≤ a
λ

.

• We conclude that our constraints are a 6= b and

−1
3
≤ b ≤ 0 ≤ a ≤ −p

3(1− 2p− λ)

or

−1
3
≤ a ≤ 0 ≤ b ≤ −p

3(1− 2p− λ)
.

2. Consider J = {0, 2}. For the νx in equation (2.5) we then find

νx = π + C2(x, 2)µ2.

If we write a′ := C2(1, 2) and b′ := C2(2, 2), we see

ν1 =

(
1
3
+ a′

1− 2p + λ

p
,

1
3
+ a′
−1 + p− λ

p
,

1
3
+ a′

)
,

ν2 =

(
1
3
+ b′

1− 2p + λ

p
,

1
3
+ b′
−1 + p− λ

p
,

1
3
+ b′

)
.

Further

p =
−λa′ − b′

a′ − b′

q =
(−λ− 1)b′

a′ − b′
.

• We assume a′ > b′, the other case can be investigated in a similar analysis.
The conditions that p, q ∈ [0, 1] translate to

b′ ≤ 0

and

−λb′ ≤ a′ ≤ −b′

λ
.

• Now we look at the bounds on νx. It is immediately clear that

−1
3
≤ a′, b′ ≤ 2

3
.
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• Now we must impose

0 ≤ 1
3
+ a′

1− 2p + λ

p
≤ 1

and
0 ≤ 1

3
+ b′

1− 2p + λ

p
≤ 1.

Figure 3.13: We present here functions of p. The red graph is − 1
3

p
1−2p+λ , the black graph is 12

3
p

1−2p+λ ,

the upper blue graph is −b′
λ and the lower blue graph is −b′λ, where we took b′ = − 3

10 .
The constants are − 1

3 and 2
3 .

From the figure above we see that our conditions on a′, b′ remain for the moment

−1
3
≤ b′ ≤ 0

and

−λb′ ≤ a′ ≤ −b′

λ
.

• Now we must impose

0 ≤ 1
3
+ a′
−1 + p− λ

p
≤ 1

and
0 ≤ 1

3
+ b′
−1 + p− λ

p
≤ 1.

Figure 3.14: We present here functions of p. The red graph is − 1
3

p
−1+p−λ , the black graph is 12

3
p

−1+p−λ ,

the upper blue graph is −b′
λ and the lower blue graph is −b′λ, where we took b′ = − 2

10 .
The constants are − 1

3 and 2
3 .
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In the figure above we see that the conditions on b′ do not change, but those on a′ do. Now
a′ has the upperbound

a′ ≤ min{−b
λ

,
−1
3

p
−1 + p− λ

}.

�

Remark. Note that the solutions for the eigenvalue +λ are indeed equivalent to those in Proposition
3.1 where p− q = +λ.
If we take a = −p

3(1−2p−λ)
, we see that M1 = 0. If we take a = 0, we see that M1 = 1

3 . If we take a = − 1
3 ,

we see that

1
3
− 1

3
· 1− 2p− λ

p
=

1
3
· p− 1 + 2p + λ

p

=
1

3p
· (3p− 1 + λ)(2 + 2λ− 3p)

2 + 2λ− 3p

=
1

3p
· 6p + 6pλ− 9p2 − 2− 2λ + 3p + 2λ + 2λ2 − 3pλ

2 + 2λ− 3p

=
1

3p
· −3p2 + 3p + 3pλ

2 + 2λ− 3p

=
−p + 1 + λ

2 + 2λ− 3p
.

Furthermore if we substitute

M1 =
p/3 + a(1− 2p− λ)

p
,

in the expression (3.18) of M2, we must have consistency. This gives

M2 =

1+λ−3p
p (p/3 + a(1− 2p− λ)) + p

1 + λ
.

This must equal the expression of the perturbed M2 giving us the relation

1+λ−3p
p (p/3 + a(1− 2p− λ)) + p

1 + λ
=

p/3 + a(−1 + p + λ)

p

that must be verified.
We compute:

(1 + λ− 3p)(p/3 + a(1− 2p− λ)) + p2 =(1 + λ)p/3− p2 + a(1− 2p− λ + λ− 2pλ

− λ2 − 3p + 6p2 + 3pλ) + p2

=(1 + λ)p/3 + a(3p2 − 3p + pλ)

and

(1 + λ)(p/3 + a(−1 + p + λ)) =(1 + λ)p/3 + a(−1 + p + λ− λ + pλ + λ2)

=(1 + λ)p/3 + a(3p2 − 2p + pλ).

Remark. We can also see that the solutions for the eigenvalue−λ are equivalent to those in Proposition
3.1 where p− q = −λ.
Consistency with the expression for M2, m2 can be seen as it is similar to what we did in the remark
above.
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We shall focus instead on the bounds. If b′ = 0, then m1 = 1
3 . If b′ = − 1

3 , then

m1 =− 1
3
−p + 1− 2p + λ

p

=− 1
3

1− 3p + λ

p
2− 2λ− 3p
2− 2λ− 3p

=− 1
3p

2− 2λ− 3p− 6p + 6pλ + 9p2 + 2λ− 2λ2 − 3pλ

2− 2λ− 3p

=− 1
3p

3pλ + 9p2 − 9p + 2− 6p2 + 6p− 2
2− 2λ− 3p

=
1− λ− p

2− 2λ− 3p
.

Further if m1 = 1
3 + b′ 1−2p+λ

p , then b′ = p
1−2p+λ

(
m1 − 1

3

)
.

Then we see that a′ = −λb′ implies that M1 = 1
3 − λ

p
1−2p+λ

(
m1 − 1

3

)
1−2p+λ

p = −λm1 +
1
3 (1 + λ).

If a′ = −b′
λ , then M1 = 1

3 −
1
λ

p
1−2p+λ

(
m1 − 1

3

)
1−2p+λ

p = −m1
λ + 1

3

(
1 + 1

λ

)
.

If a′ = − 1
3

p
−1+p−λ , then

M1 =
1
3

[
1− p
−1 + p− λ

1− 2p + λ

p

]
=

1
3
−1 + p− λ− 1 + 2p− λ

−1 + p− λ

=
−2 + 3p− 2λ

−3 + 3p− 3λ
.

To verify that this equals −p
1−λ−3p , we must check whether

−p(−3 + 3p− 3λ) = (1− λ− 3p)(−2 + 3p− 2λ).

We compute

(1− λ− 3p)(−2 + 3p− 2λ) =− 2 + 3p− 2λ + 2λ− 3pλ + 2λ2 + 6p− 9p2 + 6pλ

=3pλ− 9p2 + 9p− 2 + 6p2 − 6p + 2

=3p− 3p2 + 3pλ.

Thus indeed these are the solutions of Proposition 3.1 for p− q = −λ.

Considering these two remarks we may conclude that we have rederived the solutions of Section 3.2.

3.3.2 Testing the universal solutions of Proposition 2.1

Using Proposition 2.1 we can construct an explicit P. We shall use this P to find a Λ that satisfies the
intertwining relation ΛP = PΛ. This P is constructed from the eigenvalue θ0 = 1 > λ ≥ 0 in the
following way

P =

( 1+λ
2

1−λ
2

1−λ
2

1+λ
2

)
. (3.52)

We shall see that there will be non-trivial solutions that can be found from Proposition 2.1 only for
p = 1

2 , but with more constraints than the solutions found in Proposition 3.1.

38



Lemma 3.3 (Non-trivial universal solutions to intertwining). The only non-trivial Λ that satisfies
intertwining for the explicit P given above can be found only when p = 1

2 and is of the form

Λ =

(
M1

1
3

2
3 −M1

2
3 −M1

1
3 M1

)
,

where 0 ≤ M1 ≤ 2
3 .

Proof. The constraints that we find on solutions of the intertwining are as follows for the given p and
q:

pM1 + (1− p)M2 =
1
2

√
3p2 − 3p + 1(M1 −m1) +

1
2
(M1 + m1) (3.53)

(1− p)M1 + pM3 =
1
2

√
3p2 − 3p + 1(M2 −m2) +

1
2
(M2 + m2) (3.54)

pM2 + (1− p)M3 =
1
2

√
3p2 − 3p + 1(M3 −m3) +

1
2
(M3 + m3) (3.55)

pm1 + (1− p)m2 =
1
2

√
3p2 − 3p + 1(m1 −M1) +

1
2
(M1 + m1) (3.56)

(1− p)m1 + pm3 =
1
2

√
3p2 − 3p + 1(m2 −M2) +

1
2
(M2 + m2) (3.57)

pm2 + (1− p)m3 =
1
2

√
3p2 − 3p + 1(m3 −M3) +

1
2
(M3 + m3) (3.58)

M1 + M2 + M3 = 1 (3.59)
m1 + m2 + m3 = 1 (3.60)

M1, M2, M3, m1, m2, m3 ∈ [0, 1]. (3.61)

To ease our notation we shall write ζ := 1
2

√
3p2 − 3p + 1.

We find the solutions to these equations in the following steps.

1. We first show that M1 + m1 = M2 + m2 = M3 + m3 = 2
3 .

If we use equations (3.53) and (3.56) to eliminate the term with ζ, we find

pM1 + (1− p)M2 −
1
2
(M1 + m1) =

1
2
(M1 + m1)− pm1 − (1− p)m2.

This can be rewritten as (1− p)(M1 + m1) = (1− p)(M2 + m2), giving the condition

M1 + m1 = M2 + m2.

Doing the same with equations (3.55) and (3.58), we find

M2 + m2 = M3 + m3.

From (3.59) and (3.60) we find

1 =M1 + M2 + M3

=M1 + M1 + m1 −m2 + M1 + m1 −m3

=3(M1 + m1)− 1,

giving

M1 + m1 = M2 + m2 = M3 + m3 =
2
3

(3.62)

as a new relation that must be satisfied.

2. Now we show that we must separate the cases p 6= 1
2 and p = 1

2 .
From equation (3.53) we find M2 as a function of M1:

M2 = (1− p)−1
[
(2ζ − p)M1 −

2
3

ζ +
1
3

]
(3.63)
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and from (3.55) we find M2 as a function of M3:

M2 =p−1
[

ζ(2M3 −
2
3
) +

1
3
− (1− p)M3

]
=p−1

[
(2ζ − (1− p))M3 −

2
3

ζ +
1
3

]
. (3.64)

Note that we assume here
2ζ 6= p.

We will consider the case 2ζ = p in Step 6.

3. For p 6= 1
2 , we will use the two expressions (3.63) and (3.64) for M2 in order to express M3 in

terms of M1:

(1− p)(2ζ − (1− p))M3 + (1− p)(−2
3

ζ +
1
3
) = p(2ζ − p)M1 + p(−2

3
ζ +

1
3
).

Then we find

M3 =
p(2ζ − p)M1 + (2p− 1)(− 2

3 ζ + 1
3 )

(1− p)(2ζ − (1− p))
=

p(2ζ − p)M1 + (2p− 1)(− 2
3 ζ + 1

3 )

Z
, (3.65)

where
Z := (1− p)(2ζ − (1− p)).

4. We now check using (3.63) and (3.65), when we retrieve (3.54).
We compute

− pM3 + ζ(M2 −m2) +
1
2
(M2 + m2)

= −pM3 + ζ(2M2 −
2
3
) +

1
3

= Z−1
[
−p2(2ζ − p)M1 − p(2p− 1)(−2

3
ζ +

1
3
) + (1− p)(2ζ − (1− p))ζ(2M2 −

2
3
)

+
1
3
(1− p)(2ζ − (1− p))

]
= Z−1

[
−p2(2ζ − p)M1 − p(2p− 1)(−2

3
ζ +

1
3
) + 2ζ(2ζ − (1− p))((2ζ − p)M1 −

2
3

ζ +
1
3
)

− 2
3

ζ(1− p)(2ζ − (1− p)) +
1
3
(1− p)(2ζ − (1− p))

]
= Z−1

[
(2ζ − p)M1(4ζ2 − 2(1− p)ζ − p2)− (2p2 − p)(−2

3
ζ +

1
3
)

+ (4ζ2 − 2(1− p)ζ)(−2
3

ζ +
1
3
)− (

2
3

ζ − p
2
3

ζ)(2ζ − (1− p)) + (
1
3
− 1

3
p)(2ζ − (1− p))

]
= Z−1

[
(2ζ − p)M1(4ζ2 − 2(1− p)ζ − p2) + (−2

3
ζ +

1
3
)(4ζ2 − 2(1− p)ζ − 2p2 + p))

+ (1− p)(2ζ − (1− p))
1
3
(1− 2ζ)

]
.

For (3.54) to hold we must have that this equals (1− p)M1. That is the case when[
(2ζ − p)(4ζ2 − 2(1− p)ζ − p2)− (1− p)Z

]
M1 =− (−2

3
ζ +

1
3
)(4ζ2 − 2(1− p)ζ − 2p2 + p))

− (1− p)(2ζ − (1− p))
1
3
(1− 2ζ).
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5. We now show that consistency with (3.54) is only possible for the invariant measure.
We find from the condition in Step 4 that

(2ζ − p)(4ζ2 − 2(1− p)ζ − p2)− (1− p)(1− p)(2ζ − (1− p))

= 8ζ3 − 4(1− p)ζ2 − 2p2ζ − 4pζ2 + 2p(1− p)ζ + p3 − 2ζ + 1− p + 4pζ − 2p + 2p2

− 2p2ζ + p2 − p3

= ζ2(8ζ − 4) + ζ(−2p2 + 2p(1− p)− 2− 2p2 + 4p) + 1− p + p2 − 2p + 2p2

= ζ2(8ζ − 4) + ζ(−6p2 + 6p− 2) + 1− 3p + 3p2.

On the other side we find

(−2ζ + 1)(4ζ2 − 2(1− p)ζ − 2p2 + p)) + (1− p)(2ζ − (1− p))(1− 2ζ)

= −8ζ3 + 4(1− p)ζ2 + 4p2ζ − 2pζ + 4ζ2 − 2(1− p)ζ − 2p2 + p + (2ζ(1− p)− (1− p)2)(1− 2ζ)

= ζ2(−8ζ + 4) + ζ(4p2 − 2p + 2 + 2p2 − 4p)− 2p2 + p− 1− p2 + 2p

= ζ2(−8ζ + 4) + ζ(6p2 − 6p + 2)− 3p2 + 3p− 1.

Thus we find that (3.54) is satisfied if and only if M1 = 1
3 . In that case the only solution to the

constraints is M1 = M2 = M3 = m1 = m2 = m3 = 1
3 .

6. We assume now that p = 1
2 .

From (3.62) and (3.63) it follows then that

M2 = m2 =
1
3

.

As M1 + M2 + M3 = 1, it follows that

M1 + M3 =
2
3

.

Substitution of p = 1
2 and the above identities show that equations (3.53) to (3.61) are all satisfied

for arbitrary 0 ≤ M1 ≤ 2
3 .

�

3.4 Evolution of local equilibria for the one-step simple random
walk on the 3-node model

Now that we know which non-trivial solutions exist to the intertwining equations in this model, we
may adapt Theorem 2.1 to this specific case. This is done in the following proposition.

Proposition 3.2 (Evolution of local equilibria of 1-step distribution on the 3-node model). Let

P =

 p 1− p 0
1− p 0 p

0 p 1− p


be the transition matrix associated to the process X of a one-step simple random walk on the
3-node model with parameter p ∈ (0, 1) and λ :=

√
3p2 − 3p + 1.

Let

Λ =

(
M1 M2 M3
m1 m2 m3

)
,

be such that

• 1. If
0 ≤ m1 ≤

1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
(3.66)
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or
0 ≤ M1 ≤

1
3
≤ m1 ≤

−p + 1 + λ

2 + 2λ− 3p
, (3.67)

then p = q + λ.

2. If

max
{

0,
1− λ− p

2− 2λ− 3p

}
≤ m1 ≤

1
3

(3.68)

1
3
(1 + λ)− λm1 ≤ M1 ≤ min

{
−p

1− λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
, (3.69)

or

1
3
≤ m1 ≤

−p
1− λ− p

(3.70)

max
{

0,
1− λ− p

2− 2λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
≤ M1 ≤

1
3
(1 + λ)− λm1, (3.71)

then p = q− λ.

•

M2 =
(1 + α− 3p)M1 + p

1 + α
(3.72)

and

m2 =
(1 + α− 3p)m1 + p

1 + α
; (3.73)

•
M3 = 1−M1 −M2 (3.74)

and
m3 = 1−m1 −m2; (3.75)

and finally given M1 6= m1,

•

q =
p(1− p)(1− 3m1)

(1 + α)(M1 −m1)
, (3.76)

where α = p− q.

Then there exist two stopping times

T1 ∼ Geom (1− p) (3.77)
T2 ∼ Geom (q) (3.78)

for the process X such that

1. νx is stationary until time Tx, which means that

Pνx (X(t) = ·|Tx > t) = νx(·); (3.79)

2. for all x 6= y we have
Pνx (X(Tx) = ·) = νy(·); (3.80)

3. X(Tx) and Tx are independent for all x.

The non-trivial solutions that we found in Proposition 3.1 allow us to explicitly give the parameters in
Theorem 2.1.
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We found

1− P(1, 1) = 1− p = 1− p(1− p) + (1 + λ)(λM1 −m1)

(1 + λ)(M1 −m1)
=
−p(1− p)(1− 3M1)

(1 + λ)(M1 −m1)
;

1− P(2, 2) = q =
p(1− p)(1− 3m1)

(1 + λ)(M1 −m1)
.

Since the coarse-grained state space X has only two states 1, 2, the need for a random variable Yx
disappears. After a random time Tx, the process X that starts from the part of the graph associated to
x will transition almost surely to the only other part of the graph y 6= x.

3.5 Analysis of the solutions

In consideration of our discussion of metastability, we would like to find ν1 and ν2 that place most of
their mass on the region of the state space that is associated to 1 and 2 respectively.
Proposition 3.1 gives us an easy way of doing that by taking the maximal M1 and minimal m1 (or vice
versa), i.e. if we take

M1 =
−p + 1 + λ

2 + 2λ− 3p
, m1 = 0.

However it turns out that if we fix M1 and vary 0 ≤ m1 ≤ 1
3 , interesting observations can be made.

• In Section 3.5.1 we will see that the average geometric time Tν1
of escaping the course grained

state 1 decreases linearly as m1 increases from 0 to 1
3 .

• Further we discuss the role of intertwining in the context of mixing times in Section 3.5.2.

In this discussion we shall only consider the case p− q = +λ.

3.5.1 Behaviour of the geometric escape times

We shall now examine the geometric time of Proposition 3.2.
First let us fix the notation. As we associate the states of the coarse-grained set x ∈ X to the measures
νx, we shall write

Tν1

for the geometric time of Proposition 3.2 that tells us when the process escapes the "metastable" region
of the state space that is indicated by 1 (corresponding to the original process starting from the measure
ν1). Analogously for

Tν2
.

Lemma 3.4 (Dependence of geometric escape time on parameter m1). For fixed p ∈ (0, 1) consider
the two measures

ν1 =

(
M1,

(1 + λ− 3p)M1 + p
1 + λ

,
1 + λ− p + (−2− 2λ + 3p)M1

1 + λ

)
and

ν2 =

(
m1,

(1 + λ− 3p)m1 + p
1 + λ

,
1 + λ− p + (−2− 2λ + 3p)m1

1 + λ

)
,

where 1
3 ≤ M1 ≤ −p+1+λ

2+2λ−3p is fixed and 0 ≤ m1 ≤ 1
3 .

If
m1 = 0,

then the average time of escaping 1, i.e. E[Tν1
], is maximal and the average time of escaping 2, i.e.

E[Tν2
] is minimal.
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Proof. Recall that
Tν1
∼ Geom(1− p)

and
Tν2
∼ Geom(q).

• We first see that

E[Tν1
] = (1− p)−1

=
(1 + λ)(M1 −m1)

−p(1− p)(1− 3M1)

=
(1 + λ)M1

−p(1− p)(1− 3M1)
− (1 + λ)m1

−p(1− p)(1− 3M1)

Note that (1+λ)m1
−p(1−p)(1−3M1)

is non-negative for all 0 ≤ M1 ≤ −p+1+λ
2+2λ−3p and p ∈ (0, 1). This means

we can conclude that E[Tν1(m1)] decreases linearly as a function of m1. Thus it will be maximal
for m1 = 0.

• For the other escape time we observe that

E[Tν2
] = q−1

=
(1 + λ)(M1 −m1)

p(1− p)(1− 3m1)

As we are constrained to m1 ≤ 1
3 ≤ M1, we see that E[Tν2

] → ∞ as m1 → 1
3 (as we expect since

in that case ν2 is the invariant measure).

Figure 3.15: The escape time Tν2
as a function of m1, where we have chosen M1 = 3

4 and p = 3
4 .

In the figure above we see that E[Tν2
] is minimal for m1 = 0.

�

Intuitively this result makes sense, as it will take the process a longer time to go from a measure ν1 that
places most of its mass on the region of the state space associated to 1 to the other extreme measure
that lays no mass on state 1. On the other hand escaping from 2 will take less time when m1 = 0, since
increasing m1 will cause ν2 to approach the invariant measure.

Example 3.1. We can see this already in the balanced set-up, where p = 1
2 . Let us take ν1 to place as

much mass as possible on the first vertex, i.e.

ν1 =

(
2
3

,
1
3

, 0
)

.
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• If we take m1 = 0, i.e.

ν2 =

(
0,

1
3

,
2
3

)
,

we see that

E[Tν1
] = 4,

E[Tν2
] = 4.

• If we take m1 = 1
3 , i.e.

ν2 =

(
1
3

,
1
3

,
1
3

)
,

we see that

E[Tν1
] = 2,

E[Tν2
] = ∞.

Thus once the global minimum is reached, the walk will stay there infinitely long.

3.5.2 Bounds on the mixing times in the context of coarse graining

It is a known fact that finite state irreducible aperiodic Markov chains have a unique invariant distribu-
tion and that no matter what the initial distribution, the time-t distribution of the chain will converge
to the invariant distribution. This is also the case for our 3-node toy model.

In order to be able to speak about convergence of the time-t distribution, we need a notion of distance
between the distributions for which we will use the total variation distance.

Definition 3.1 (Total variation distance). Let µ, ν be two probability measures on a state space X . The
total variation distance between µ and ν is given by

dTV(µ, ν) =
1
2 ∑

x∈X
|µ(x)− ν(x)|. (3.81)

Thus we know that in our model for any initial distribution µ on X it holds

dTV(µPt, π)→ 0

as t→ ∞.
Now it is interesting to see how quickly the time-t distribution converges to π. That is where the
concept of mixing time comes in.

Definition 3.2 (Mixing time). For ε > 0 and initial distribution µ, the mixing time of the chain starting
from µ is given by

tµ
mix(ε) = min{t ≥ 0 : dTV(µPt, π) < ε}. (3.82)

The interesting subject that we are able to discuss now is the behaviour of mixing times in the context
of intertwining. Since our metastable states are measures νx for x ∈ X , we can look at the mixing time
of the process X when starting from such a measure νx, which we will denote by

tνx
mix(ε)

for ε > 0. Then we can compare this to the mixing time of the coarse-grained process when starting
from the measure δx, which we will denote by

tδx
mix(ε)
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for ε > 0.

Indeed Proposition 2.1 tells us something about these mixing times. Since we know that thermaliza-
tion of the coarse-grained process implies that the original process has already thermalized, we can
conclude that

tνx
mix(ε) ≤ tδx

mix(ε).

The question is how good is this bound? We will explore this question for the 3-node model by
using the explicit intertwining solutions of Proposition 3.1. In particular we see for which choice of
parameters M1, m1 this bound is optimal.

Lemma 3.5 (Optimal bound on mixing time of the original chain). For fixed p ∈ [1/2, 1) consider
the two measures

ν1 =

(
M1,

(1 + λ− 3p)M1 + p
1 + λ

,
1 + λ− p + (−2− 2λ + 3p)M1

1 + λ

)
and

ν2 =

(
m1,

(1 + λ− 3p)m1 + p
1 + λ

,
1 + λ− p + (−2− 2λ + 3p)m1

1 + λ

)
,

where 1
3 ≤ M1 ≤ −p+1+λ

2+2λ−3p and 0 ≤ m1 ≤ 1
3 .

Then

tδx
mix(ε)− tνx

mix(ε) =
log(M1 −m1)

log λ
≥ 0.

Remark. Since we have that

tδx
mix(ε)− tνx

mix(ε) =
log(M1 −m1)

log λ
.

we see that this difference vanishes when M1−m1 = 1. Due to the constraints on M1, m1, we conclude
that the bound is optimal in the case

m1 = 0, M1 =
−p + 1 + λ

2 + 2λ− 3p
.

Proof. (Lemma 3.4)
The proof is given in the following steps:

1. First we compute ν1Pt.
We must first find the t-step distributions of the Markov chain.
For the network we have

Pt
even =

1
3

1 + 2λt 1− λt 1− λt

1− λt 1 + 2λt 1− λt

1− λt 1− λt 1 + 2λt

 (3.83)

if t is even and

Pt
odd =

1
3

 1 + (3p− 1)λt−1 1 + (−3p + 2)λt−1 1− λt−1

1 + (−3p + 2)λt−1 1− λt−1 1 + (3p− 1)λt−1

1− λt−1 1 + (3p− 1)λt−1 1 + (−3p + 2)λt−1

 (3.84)

if t is odd (to see this derivation we refer the reader to Section 4.1).

• We now compute ν1Pt
even.
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We find

ν1Pt
even(1) =

1
3
(M1 + 2M1λt + M2 −M2λt + M3 −M3λt)

=
1
3
(1 + 3M1λt − λt)

=
1
3
(1 + (3M1 − 1)λt)

ν1Pt
even(2) =

1
3
(1 + (3M2 − 1)λt)

ν1Pt
even(3) =

1
3
(1 + (3M3 − 1)λt),

where

3M2 − 1 =
(3 + 3λ− 9p)M1 + 3p− 1− λ

1 + λ

=
1 + λ− 3p

1 + λ
(3M1 − 1),

3M3 − 1 =
−(6 + 6λ− 9p)M1 + 2 + 2λ− 3p

1 + λ

= −2 + 2λ− 3p
1 + λ

(3M1 − 1).

• We now compute ν1Pt
odd.

We find

ν1Pt
odd(1) =

1
3
(1 + (3p− 1)λt−1M1 + (−3p + 2)λt−1M2 − λt−1M3)

=
1
3
+

λt−1

3
(3pM1 + (3− 3p)M2 − 1)

=
1
3
+

λt−1

3(1 + λ)
(3p(1 + λ)M1 + (3− 3p)(1 + λ− 3p)M1 + (3− 3p)p− (1 + λ))

=
1
3
+

λt−1

3(1 + λ)
((3p + 3pλ + 3 + 3λ− 9p− 3p− 3pλ + 9p2)M1 − 1− λ + 3p− 3p2)

=
1
3
+

λt−1

3(1 + λ)
(λ2 + λ)(3M1 − 1)

=
1
3
(1 + (3M1 − 1)λt)

ν1Pt
odd(2) =

1
3
+

λt−1

3
(3pM3 + (3− 3p)M1 − 1)

=
1
3
+

λt−1

3(1 + λ)
(3p(1 + λ)− 3p2 + (−6p− 6pλ + 9p2 + 3− 3p + 3λ− 3pλ)M1 − (1 + λ))

=
1
3
+

λt−1

3(1 + λ)
(−λ2 + 3pλ− λ + (9p2 − 9p + 3− 9pλ + 3λ)M1)

=
1
3
+

λt

3(1 + λ)
(−1− λ + 3p + 3(λ− 3p + 1)M1)

=
1
3
(1 +

1 + λ− 3p
1 + λ

(3M1 − 1)λt)
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ν1Pt
odd(3) =

1
3
+

λt−1

3
(3pM2 + (3− 3p)M1 − 1)

=
1
3
+

λt−1

3(1 + λ)
(3p(1 + λ− 3p)M1 + 3p2 + (3− 3p)(1 + λ− p)

− (3− 3p)(2 + 2λ− 3p)M1 − (1 + λ))

=
1
3
+

λt−1

3(1 + λ)
[3M1(p + pλ− 3p2 − 2− 2λ + 3p + 2p + 2pλ− 3p2)

+ 3p2 + 3− 3p + 3λ− 3pλ− 3p + 3p2 − 1− λ]

=
1
3
+

λt−1

3(1 + λ)
[3M1(−2λ2 + 3pλ− 2λ) + 2λ2 + 2λ− 3pλ]

=
1
3
(1− 2 + 2λ− 3p

1 + λ
(3M1 − 1)λt).

2. Then we calculate dTV(ν1Pt, π).

As we know that π =
(

1
3 , 1

3 , 1
3

)
, we find that it equals

dTV(ν1Pt, π) =
1
6

[
1 +

∣∣∣∣1 + λ− 3p
1 + λ

∣∣∣∣+ ∣∣∣∣2 + 2λ− 3p
1 + λ

∣∣∣∣] λt(3M1 − 1).

In the figure below we see that 1 + λ− 3p is negative for p ≥ 1
2 .

Figure 3.16: The function 1 + λ− 3p as a function of p ∈ [0, 1].

And below we see that 2 + 2λ− 3p is positive for all p.

Figure 3.17: The function 2 + 2λ− 3p as a function of p ∈ [0, 1].
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Thus we have

dTV(ν1Pt, π) =
1
6

[
1 + λ− 1− λ + 3p + 2 + 2λ− 3p

1 + λ

]
λt(3M1 − 1)

=
1
3

λt(3M1 − 1). (3.85)

3. We compute δ1Pt.
First we must find Pt. This equals

Pt
=

(
p 1− p
q 1− q

)t

=

(
1 p−1

q
1 1

)(
1 0
0 λt

)( q
1−λ

1−p
1−λ

−q
1−λ

q
1−λ

)

=
1

1− λ

(
q + λt(1− p) (1− p)(1− λt)

q(1− λt) 1− p + λtq

)
.

Then we find from our expressions of p and q that

δ1Pt
=

p(1− p)
(1− λ2)(M1 −m1)

(
(1− 3m1) + λt(3M1 − 1), (1− λt)(3M1 − 1)

)
=

1
3(M1 −m1)

(
(1− 3m1) + λt(3M1 − 1), 3M1 − 1− λt(3M1 − 1)

)
. (3.86)

4. Now we must find the invariant measure π of the coarse-grained process.
We want to solve the system of equations

π1 = pπ1 + qπ2

π2 = (1− p)π1 + (1− q)π2

π1 + π2 = 1.

This is equivalent to solving
(1− p + q)π1 = q.

Solving this returns

π1 =
1− 3m1

3(M1 −m1)
, π2 =

−1 + 3M1

3(M1 −m1)
. (3.87)

5. Then we find that

dTV(δ1Pt, π) =
1
3

λt 3M1 − 1
M1 −m1

. (3.88)

6. Finally we give the respective mixing times.
For ε > 0 we find from Steps 2 and 5 that

tνx
mix(ε) =

log 3ε
3M1−1

log λ
(3.89)

and that

tδx
mix(ε) =

log
[

3ε
3M1−1 (M1 −m1)

]
log λ

=
log 3ε

3M1−1

log λ
+

log(M1 −m1)

log λ

= tνx
mix(ε) +

log(M1 −m1)

log λ
. (3.90)

�
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Chapter 4

T-step random walk on the 3-node toy
model

We saw in the previous chapter that intertwining on the 3-node model has non-trivial solutions if
we consider the one-step distribution. We expect however for the space of solutions to increase if we
examine the T-step distribution on the same model for T ∈ Z>1. We expect this as PT looks at the
random walk on a certain time scale T. Since now we can fix T from the start and choose it to be
large, we will see more solutions and in particular that the dynamics of more local equilibria can be
captured. This is what we shall show in practice in this section. In fact the space of solutions depends
on the parity of T.

• In Section 4.1 we first compute the T-step distribution.

• In Section 4.2 we show that for T odd, we only find the same non-trivial solutions of Λ as for the
one-step distribution but with a different P depending on T.

• If T is even, the space of solutions increases. We show in Section 4.3 that there are non-trivial
solutions for all p ∈ (0, 1) and we have more freedom to choose the measure νx than in the case
of T odd. Furthermore the solutions of the one-step are a subset of this space of solutions.
(Sections 4.2 and 4.3 find solutions to our intertwining problem through direct computation and
thus are analogous to Section 3.2.)

• We reformulate Theorem 2.1 in Section 4.4 to account for the increased number of solutions when
T is even.

• Finally it is demonstrated that we can also find non-trivial intertwining solutions using the
spectral solutions of Lemma 2.2, but again with extra conditions imposed on them.

Note that we take T here to be finite. If that were not the case, we know that each row of PT becomes
the invariant measure since our model is an irreducible and aperiodic Markov chain on a finite state
space.
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4.1 Finding the T-step distribution

Before finding solutions of intertwining in this case, we must find the expressions for PT , where T ∈N.

Proposition 4.1 (Closed form expression of PT). For the transition matrix P of (3.1) and T ∈ N,
we find that PT equals:

PT =
1
3

1 + 2λT 1− λT 1− λT

1− λT 1 + 2λT 1− λT

1− λT 1− λT 1 + 2λT


if T is even and

PT =
1
3

 1 + (3p− 1)λT−1 1 + (−3p + 2)λT−1 1− λT−1

1 + (−3p + 2)λT−1 1− λT−1 1 + (3p− 1)λT−1

1− λT−1 1 + (3p− 1)λT−1 1 + (−3p + 2)λT−1


if T is odd.

Proof. We can write

P = SJS−1,

with the J the diagonal matrix of P:

J =

1
−λ

λ

 ,

where

λ :=
√

3p2 − 3p + 1, (4.1)

and the other matrices are given by

S =

1 −2p+λ+1
p

−2p−λ+1
p

1 p−λ−1
p

p+λ−1
p

1 1 1


and

S−1 =


1
3

1
3

1
3

1
6

(
1
λ − 1

)
−(3p+λ−1)

6λ
3p+2λ−2

6λ

1
6

(
− 1

λ − 1
)

3p−λ−1
6λ

−(3p−2λ−2)
6λ

 .

To find PT = SJTS−1, we first compute JTS−1:

JTS−1 =


1
3

1
3

1
3

1
6 (−λ)T

(
1
λ − 1

)
−(−λ)T 3p+λ−1

6λ (−λ)T 3p+2λ−2
6λ

1
6 λT

(
− 1

λ − 1
)

λT 3p−λ−1
6λ −λT −(3p−2λ−2)

6λ

 .

We compute now the nine values in PT :
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PT
1,1 =

1
3
+

λT

6p

(
(−1)T(

1
λ
− 1)(−2p + λ + 1) + (

−1
λ
− 1)(−2p− λ + 1)

)
=

1
3
+

λT

3

(
1 + (−1)T

)
+

λT−1

6p
(1− 2p− λ2)

(
−1 + (−1)T

)
=

1
3
+

λT

3

(
1 + (−1)T

)
+

λT−1

6
(−3p + 1)

(
−1 + (−1)T

)
(4.2)

PT
1,2 =

1
3
+

λT−1

6p

(
(−1)T+1(3p + λ− 1)(−2p + λ + 1) + (3p− λ− 1)(−2p− λ + 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
− λT−1

6p
(λ2 − 6p2 + 5p− 1)

(
−1 + (−1)T

)
=

1
3
− λT

6

(
1 + (−1)T

)
− λT−1

6
(−3p + 2)

(
−1 + (−1)T

)
(4.3)

PT
1,3 =

1
3
+

λT−1

6p

(
(−1)T(3p + 2λ− 2)(−2p + λ + 1)− (3p− 2λ− 2)(−2p− λ + 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
+

λT−1

6p
(2λ2 − 6p2 + 7p− 2)

(
−1 + (−1)T

)
=

1
3
− λT

6

(
1 + (−1)T

)
+

λT−1

6

(
−1 + (−1)T

)
(4.4)

PT
2,1 =

1
3
+

λT

6p

(
(−1)T(

1
λ
− 1)(p− λ− 1) + (

−1
λ
− 1)(p + λ− 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
− λT−1

6p
(1− p− λ2)

(
−1 + (−1)T

)
=

1
3
− λT

6

(
1 + (−1)T

)
− λT−1

6
(−3p + 2)

(
−1 + (−1)T

)
(4.5)

PT
2,2 =

1
3
+

λT−1

6p

(
(−1)T+1(3p + λ− 1)(p− λ− 1) + (3p− λ− 1)(p + λ− 1)

)
=

1
3
+

λT

3

(
1 + (−1)T

)
− λT−1

6p
(−λ2 + 3p2 − 4p + 1)

(
−1 + (−1)T

)
=

1
3
+

λT

3

(
1 + (−1)T

)
+

λT−1

6

(
−1 + (−1)T

)
(4.6)

PT
2,3 =

1
3
+

λT−1

6p

(
(−1)T(3p + 2λ− 2)(p− λ− 1)− (3p− 2λ− 2)(p + λ− 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
+

λT−1

6p
(−2λ2 + 3p2 − 5p + 2)

(
−1 + (−1)T

)
=

1
3
− λT

6

(
1 + (−1)T

)
+

λT−1

6
(−3p + 1)

(
−1 + (−1)T

)
(4.7)

PT
3,1 =

1
3
+

λT

6p

(
(−1)T(

1
λ
− 1) + (

−1
λ
− 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
+

λT−1

6

(
−1 + (−1)T

)
(4.8)

PT
3,2 =

1
3
+

λT−1

6p

(
(−1)T+1(3p + λ− 1) + (3p− λ− 1)

)
=

1
3
− λT

6

(
1 + (−1)T

)
− λT−1

6
(3p− 1)

(
−1 + (−1)T

)
(4.9)

PT
3,3 =

1
3
+

λT−1

6p

(
(−1)T(3p + 2λ− 2)− (3p− 2λ− 2)

)
=

1
3
+

λT

3

(
1 + (−1)T

)
+

λT−1

6
(3p− 2)

(
−1 + (−1)T

)
. (4.10)
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Note for our sanity check that if we sum up the rows, we indeed get back 1 thus having a stochastic
matrix.

Now that we have the explicit transition probabilities for the T-step random walk, we can write down
the constraints of the intertwining:

p(M1 −m1) + m1 =
1
3
+

λT

6

(
1 + (−1)T

)
(2M1 −M2 −M3) (4.11)

+
λT−1

6

(
−1 + (−1)T

)
[(−3p + 1)M1 + (3p− 2)M2 + M3]

p(M2 −m2) + m2 =
1
3
+

λT

6

(
1 + (−1)T

)
(−M1 + 2M2 −M3) (4.12)

− λT−1

6

(
−1 + (−1)T

)
[(−3p + 2)M1 −M2 + (3p− 1)M3]

p(M3 −m3) + m3 =
1
3
+

λT

6

(
1 + (−1)T

)
(−M1 −M2 + 2M3) (4.13)

+
λT−1

6

(
−1 + (−1)T

)
[M1 + (−3p + 1)M2 + (3p− 2)M3]

q(M1 −m1) + m1 =
1
3
+

λT

6

(
1 + (−1)T

)
(2m1 −m2 −m3) (4.14)

+
λT−1

6

(
−1 + (−1)T

)
[(−3p + 1)m1 + (3p− 2)m2 + m3]

q(M2 −m2) + m2 =
1
3
+

λT

6

(
1 + (−1)T

)
(−m1 + 2m2 −m3) (4.15)

− λT−1

6

(
−1 + (−1)T

)
[(−3p + 2)m1 −m2 + (3p− 1)m3]

q(M3 −m3) + m3 =
1
3
+

λT

6

(
1 + (−1)T

)
(−m1 −m2 + 2m3) (4.16)

+
λT−1

6

(
−1 + (−1)T

)
[m1 + (−3p + 1)m2 + (3p− 2)m3]

1 =M1 + M2 + M3 (4.17)
1 =m1 + m2 + m3 (4.18)

[0, 1] 3M1, M2, M3, m1, m2, m3, p, q. (4.19)

Note that (4.11) to (4.16) reduce to two different sets of equations depending on the parity of T.

54



4.2 Characterization of intertwining solutions for odd T-step distri-
bution

Let us investigate what happens if T is odd. It turns out that the the solutions found here are consist
of the same Λ as those of the one-step distribution, but now with different P.

Lemma 4.1 (Characterization of intertwining solutions for odd T-step distribution). If T is odd,
the solutions (Λ, PT) of the intertwining ΛPT = PTΛ of the form

Λ =

(
M1 M2 M3
m1 m2 m3

)
and

PT =

(
p 1− p
q 1− q

)
are characterized by the difference p− q, which can only be ±λT . The solutions are identified by

• 1. If p− q = +λT , then either

0 ≤ m1 ≤
1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
(4.20)

or
0 ≤ M1 ≤

1
3
≤ m1 ≤

−p + 1 + λ

2 + 2λ− 3p
; (4.21)

2. If p− q = −λT , then either

max
{

0,
1− λ− p

2− 2λ− 3p

}
≤ m1 ≤

1
3

(4.22)

1
3
(1 + λ)− λm1 ≤ M1 ≤ min

{
−p

1− λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
; (4.23)

or

1
3
≤ m1 ≤

−p
1− λ− p

(4.24)

max
{

0,
1− λ− p

2− 2λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
≤ M1 ≤

1
3
(1 + λ)− λm1; (4.25)

•

M2 =
(1 + α− 3p)M1 + p

1 + α
(4.26)

and

m2 =
(1 + α− 3p)m1 + p

1 + α
; (4.27)

•
M3 = 1−M1 −M2 (4.28)

and
m3 = 1−m1 −m2; (4.29)

and finally given M1 6= m1,

•

q = (M1 −m1)
−1
[

1
3
(1− λT−1) +

λT−1 p(1− p)
1 + α

+ (αT − 1)m1

]
; (4.30)
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•
p = q + αT ; (4.31)

where α = +λ if p− q = +λT and α = −λ if p− q = −λT .

Proof. If T is odd, the intertwining constraints (4.11) to (4.16) reduce to:

p(M1 −m1) + m1 =− λT−1

3
[(−3p + 1)M1 + (3p− 2)M2 + M3]

p(M2 −m2) + m2 =
λT−1

3
[(−3p + 2)M1 −M2 + (3p− 1)M3]

p(M3 −m3) + m3 =− λT−1

3
[M1 + (−3p + 1)M2 + (3p− 2)M3]

q(M1 −m1) + m1 =− λT−1

3
[(−3p + 1)m1 + (3p− 2)m2 + m3]

q(M2 −m2) + m2 =
λT−1

3
[(−3p + 2)m1 −m2 + (3p− 1)m3]

q(M3 −m3) + m3 =− λT−1

3
[m1 + (−3p + 1)m2 + (3p− 2)m3] .

If we use the identities M1 + M2 + M3 = 1 and m1 + m2 + m3 = 1, we can rewrite these equations to:

p(M1 −m1) + m1 =
1
3
(1− λT−1) + λT−1 [pM1 + (1− p)M2] (4.32)

p(M2 −m2) + m2 =
1
3
(1− λT−1) + λT−1 [(1− p)M1 + pM3] (4.33)

p(M3 −m3) + m3 =
1
3
(1− λT−1) + λT−1 [pM2 + (1− p)M3] (4.34)

q(M1 −m1) + m1 =
1
3
(1− λT−1) + λT−1 [pm1 + (1− p)m2] (4.35)

q(M2 −m2) + m2 =
1
3
(1− λT−1) + λT−1 [(1− p)m1 + pm3] (4.36)

q(M3 −m3) + m3 =
1
3
(1− λT−1) + λT−1 [pm2 + (1− p)m3] . (4.37)

We find the solutions to these constraints in the following steps.

1. First we derive a new set of constraints.
Combining equation (4.32) with (4.35) to eliminate the term m1 − 1

3 (1− λT−1), we find

(λT−1 p− α)(M1 −m1) + λT−1(1− p)(M2 −m2) = 0

where we define
α := p− q. (4.38)

Similarly from the pairs (4.33)-(4.36) and (4.34)-(4.37) we find respectively

−α(M2 −m2) + λT−1(1− p)(M1 −m1) + λT−1 p(M3 −m3) = 0

(λT−1(1− p)− α)(M3 −m3) + λT−1 p(M2 −m2) = 0.

We rewrite these three equations as

(α− β)x− γy = 0 (4.39)
αy− γx− βz = 0 (4.40)
(α− γ)z− βy = 0, (4.41)
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where

β := λT−1 p

γ := λT−1(1− p)
x := M1 −m1

y := M2 −m2

z := M3 −m3.

2. Now we consider α = 0.
If α = 0, the equations (4.39) to (4.41) become

−βx− γy = 0
−γx− βz = 0
−γz− βy = 0.

Substituting the first two equations in the third, we obtain(
γ2

β
+

β2

γ

)
x = 0.

Since γ2 + β2 = λ2T−2((1− p)2 + p2) 6= 0, it follows that x = 0 and hence y = z = 0 as well.
Plugging this into (4.35) to (4.37) we obtain the equations for the invariant measure:

m1 =
1
3
(1− λT−1) + λT−1 [pm1 + (1− p)m2]

m2 =
1
3
(1− λT−1) + λT−1 [(1− p)m1 + pm3]

m3 =
1
3
(1− λT−1) + λT−1 [pm2 + (1− p)m3] .

3. If now either α = β or α = γ, then y = 0. The other equations return x = z = 0, hence we again
find the invariant measure.

4. Now suppose α is neither 0, β nor γ; then we shall show that we must have α = λT−1 or
α = ±λT .
Equations (4.39) and (4.41) tell us that

x =
γ

α− β
y

z =
β

α− γ
y.

Plugging this into (4.40) we find [
α− γ2

α− β
− β2

α− γ

]
y = 0. (4.42)

We ignore y = 0 (as then x = z = 0 and we retrieve the invariant measure) and find

0 =α(α− β)(α− γ)− γ2(α− γ)− β2(α− β)

=α3 − γα2 − βα2 + βγα− γ2α + γ3 − β2α + β3

=α3 + α2(−γ− β) + α(βγ− γ2 − β2) + γ3 + β3

=α3 − λT−1α2 + λ2T−2α(p− p2 − 1− p2 + 2p− p2) + λ3T−3(1 + 3p2 − 3p)

=α3 − λT−1α2 − λ2Tα + λ3T−1

=(λT−1 − α)(λ2T − α2).

This has solutions
α = λT−1 ∨ α = ±λT .
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5. Let us first consider the case α = λT−1.
We rewrite (4.39) to (4.41) as

(1− p)(M2 −m2) = (1− p)(M1 −m1)

M2 −m2 = (1− p)(M1 −m1) + p(M3 −m3)

p(M2 −m2) = p(M3 −m3).

Thus M1 −m1 = M2 −m2 = M3 −m3 and

1 =M1 + M2 + M3

=M1 + M1 −m1 + m2 + M1 −m1 + m3

=3(M1 −m1) + 1

returns us again M1 −m1 = 0 and the invariant measure.

6. We show now that we retrieve the Λ of the one-step walk.
Let us now consider

α = ±λT . (4.43)

We rewrite (4.39) to (4.41) as

(1− p)(M2 −m2) = (±λ− p)(M1 −m1) (4.44)
±λ(M2 −m2) = (1− p)(M1 −m1) + p(M3 −m3) (4.45)

p(M2 −m2) = (±λ− (1− p))(M3 −m3). (4.46)

But these are exactly the same equations as for the one-step simple random walk. Thus we find
the same Λ here.

7. The following step is to find q.
We use for this equation (4.35), and find in the case α = +λT :

q = (M1 −m1)
−1
[

1
3
(1− λT−1) + λT−1

(
pm1 +

1− p
1 + λ

[(1 + λ− 3p)m1 + p]
)
−m1

]
= (M1 −m1)

−1
[

1
3
(1− λT−1) + λT−1(

p(1− p)
1 + λ

+
m1

1 + λ
[1 + λ− 3p− p− pλ

+ 3p2 + p + pλ])−m1

]
= (M1 −m1)

−1
[

1
3
(1− λT−1) + λT−1(

p(1− p) + m1(λ + 3p2 − 3p + 1)
1 + λ

)−m1

]
= (M1 −m1)

−1
[

1
3
(1− λT−1) +

λT−1 p(1− p)
1 + λ

+ (λT − 1)m1

]
. (4.47)

For the case α = −λT , we find similarly

q = (M1 −m1)
−1
[

1
3
(1− λT−1) +

λT−1 p(1− p)
1− λ

+ (−λT − 1)m1

]
. (4.48)

8. It rests now to discover that the constraints on M1, m1 that are induced by the constraints
q, p, Mi, mi ∈ [0, 1] are the same as in the one-step case.
Let us first assume that M1 ≥ m1. Then the constraint that q ≥ 0 gives us that

m1 ≤
1
3 (1− λT−1) + λT−1 p(1−p)

1+λ

1− λT .

Note that as p(1− p) = 1
3 (1− λ2), we find

1
3 (1− λT−1) + λT−1 p(1−p)

1+λ

1− λT =
1
3

(
1− λT−1 + λT−1(1− λ)

1− λT

)
=

1
3

.
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Further the constraint q ≤ 1− λT gives us

1
3
(1− λT−1) +

λT−1 p(1− p)
1 + λ

+ (λT − 1)m1M1 −m1 ≤ (1− λT)
M1 −m1

M1 −m1
.

This gives us

M1 ≥
1
3 (1− λT−1) + λT−1 p(1−p)

1+λ

1− λT =
1
3

.

Note finally that, as the Mi, mi depend on M1, m1 in the same way as in the one-step random
walk, we have the same constraints. Thus it must hold that

0 ≤ m1 ≤
1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
.

�

Remark. It was clear from the start that the non-trivial intertwining solutions for the one-step distri-
bution would also be solutions for the T-step distribution as

ΛPT = (ΛP)PT−1

= (PΛ)PT−1

= ...

= PTΛ.

Thus the same Λ can be used in combination with PT , which is not the same as P.

4.3 Characterization of intertwining solutions for even T-step dis-
tribution

In this section we will show that for T even, the solution space increases. The exact solutions are
given in Lemma 4.2.

Lemma 4.2 (Characterization of intertwining solutions for even T-step distribution). If T is even,
then there are non-trivial solutions (Λ, PT) of the intertwining ΛPT = PTΛ of the form

Λ =

(
M1 M2 M3
m1 m2 m3

)
and

PT =

(
p 1− p
q 1− q

)
iff

• it is satisfied that
1 ≥ M1 ≥

1
3
≥ m1 ≥ 0 (4.49)

or
1 ≥ m1 ≥

1
3
≥ M1 ≥ 0; (4.50)

• for

0 ≤M2 ≤ 1−M1 (4.51)
0 ≤m2 ≤ 1−m1 (4.52)

it holds that
1
3
(M1 −m1) +

(
m1 −

1
3

)
M2 +

(
1
3
−M1

)
m2 = 0. (4.53)

59



• and finally

M3 = 1−M1 −M2 (4.54)
m3 = 1−m1 −m2. (4.55)

If it holds that M1 6= m1, then the transition matrix P on the coarse-grained network is given by

P =

(
p 1− p
q 1− q

)
, (4.56)

where

p =

1
3 −m1 + λT

(
M1 − 1

3

)
M1 −m1

, (4.57)

q = (1− λT)

(
1
3 −m1

)
M1 −m1

. (4.58)

Proof. If T is even, then we find:

p(M1 −m1) + m1 =
1
3
+

λT

3
(2M1 −M2 −M3) (4.59)

p(M2 −m2) + m2 =
1
3
+

λT

3
(−M1 + 2M2 −M3) (4.60)

p(M3 −m3) + m3 =
1
3
+

λT

3
(−M1 −M2 + 2M3) (4.61)

q(M1 −m1) + m1 =
1
3
+

λT

3
(2m1 −m2 −m3) (4.62)

q(M2 −m2) + m2 =
1
3
+

λT

3
(−m1 + 2m2 −m3) (4.63)

q(M3 −m3) + m3 =
1
3
+

λT

3
(−m1 −m2 + 2m3). (4.64)

We shall find the solution to these constraints in the following steps.

1. First we derive a new set of equations.
We use the equations (4.59) and (4.62) to eliminate the term m1 − 1

3 to obtain(
p− q− 2λT

3

)
(m1 −M1)−

λT

3
(M2 −m2)−

λT

3
(M3 −m3) = 0. (4.65)

Doing similarly for the pairs (4.60)/(4.63), (4.61)/(4.64) we obtain(
p− q− 2λT

3

)
(m2 −M2)−

λT

3
(M1 −m1)−

λT

3
(M3 −m3) = 0, (4.66)

(
p− q− 2λT

3

)
(m3 −M3)−

λT

3
(M1 −m1)−

λT

3
(M2 −m2) = 0. (4.67)

To ease notation, we shall write

α̃ := p− q− 2λT

3

β :=
λT

3
x := M1 −m1

y := M2 −m2

z := M3 −m3.
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Our system of equations (4.65)-(4.67) can be rewritten to be

−α̃x− βy− βz = 0 (4.68)
−α̃y− βx− βz = 0 (4.69)
−α̃z− βx− βy = 0. (4.70)

2. If we suppose now that α̃ = 0, i.e. α = 2λT

3 , we only find the trivial solutions.
We see from (4.68) to (4.70) that

M1 −m1 = M2 −m2 = M3 −m3 = 0.

Plugging in 1 = m1 + m2 + m3 into (4.62) to (4.64), we find

M1 = m1 = M2 = m2 = M3 = m3 =
1
3

.

3. If we suppose that α̃ 6= 0, then we shall find that either α̃ = β or x = y.
From (4.68) we find

−βz = α̃x− βy,

plugging this into (4.69) we find
(α̃− β)x = (α̃− β)y. (4.71)

This is satisfied if α̃ = β or if x = y.

4. If α̃ = β, M1 6= m1 and M2 6= m2, then

1
3
(M1 −m1) +

(
m1 −

1
3

)
M2 +

(
1
3
−M1

)
m2 = 0.

Suppose that α̃ = β, i.e.
α = λT . (4.72)

Substituting p = q + λT in (4.59) we obtain

q(M1 −m1) + λT(M1 −m1)m1 =
1
3
+

λT

3
(3M1 − 1). (4.73)

Rewriting this and doing the same for (4.60) and (4.61) we find

q(M1 −m1) =
(

1− λT
)(1

3
−m1

)
(4.74)

q(M2 −m2) =
(

1− λT
)(1

3
−m2

)
(4.75)

q(M3 −m3) =
(

1− λT
)(1

3
−m3

)
. (4.76)

Note that (4.62), (4.63) and (4.64) return the same equations. Further using M3 = 1−M1 −M2
and m3 = 1−m1 −m2 we find that (4.76) is equivalent to (4.74) and (4.75).

• Now suppose wlog that M1 6= m1. Then we find

q =
(

1− λT
) ( 1

3 −m1

)
M1 −m1

. (4.77)

If also M2 6= m2, then we must have

q =
(

1− λT
) ( 1

3 −m2

)
M2 −m2

(4.78)

which must equal the quantity in (4.77). Thus we must have (M1 −m1)
(

1
3 −m2

)
= (M2 −

m2)
(

1
3 −m1

)
which gives the condition

1
3
(M1 −m1) +

(
m1 −

1
3

)
M2 +

(
1
3
−M1

)
m2 = 0. (4.79)
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• Now imposing the condition q, p ∈ [0, 1] is equivalent to

0 ≤ q ≤ 1− λT ,

as we use the pact that p = q + λT .
To obtain q ≥ 0, we consider (4.77) and see that either

m1 ≤
1
3
∧ m1 ≤ M1

or
m1 ≥

1
3
∧ m1 ≥ M1.

To obtain q ≤ 1− λT , we must have
1
3−m1

M1−m1
≤ 1 which is the case when

m1 ≤
1
3
∧ m1 ≤ M1

or
m1 ≥

1
3
∧ m1 ≥ M1.

Combining these two restrictions, we find that M1 and m1 must satisfy either

M1 ≤
1
3
≤ m1 (4.80)

or
m1 ≤

1
3
≤ M1. (4.81)

5. If x = y, we find a subset of the solution space of Step 4, when α = λT .
We see that (4.68) and (4.69) both give

−(α̃ + β)x− βz = 0.

• If α̃ = β, then z = 0 and (4.70) gives x = y = 0, which altogether return the invariant
measure.

• Otherwise
x = y =

−β

α̃ + β
z

which using (4.70) returns (
2β2

α̃ + β
− α̃

)
z = 0. (4.82)

Again z = 0 implies x = y = 0, which return the invariant measure.

So we consider when 2β2

α̃+β − α̃ = 0.
Then we must have that

2β2 − α̃2 − α̃β = 0

which is the same as

−
(

α− 2λT

3

)2

− λT

3

(
α− 2λT

3

)
+ 2

(
λT

3

)2

= 0.

This has solutions
α = 0 ∨ α = λT .

The case when α = λT was solved earlier, so we will now consider α = 0.
Then combining (4.59) and (4.62) while using p = q and 1 = M1 + M2 + M3 and 1 =
m1 + m2 + m3, we find M1 = m1. Similarly M2 = m2, M3 = m3. Earlier we saw that
M1 −m1 = M2 −m2 = M3 −m3 implies the invariant measure.

�
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Remark. Again we want the one-step solutions to be a subset of the space of these solutions. Therefore
we verify whether the expression (3.18) for M2 satisfies the condition (4.48).
When p− q = +λ, we have for M2 = (1+λ−3p)M1+p

1+λ and m2 = (1+λ−3p)m1+p
1+λ that

1
3
(M1 −m1) + (m1 −

1
3
)
(1 + λ− 3p)M1 + p

1 + λ
+ (

1
3
−M1)

(1 + λ− 3p)m1 + p
1 + λ

=
1
3 (1 + λ)(M1 −m1) + (m1 − 1

3 )(1 + λ− 3p)M1 + ( 1
3 −M1)(1 + λ− 3p)m1 + p(m1 −M1)

1 + λ

=
1
3 (1 + λ− 3p)(M1 −m1) + (1 + λ− 3p)[m1M1 − 1

3 M1 +
1
3 m1 −m1M1]

1 + λ

= 0.

The same holds true when p− q = −λ. Thus indeed the one-step solutions are also solutions for the
even T-step walk.

4.4 Evolution of local equilibria for the T-step simple random walk
on the 3-node model

In this section we again state the theorem that follows from combining Theorem 2.1 with the non-
trivial solutions of intertwining. First we do this for T odd, as there will not be many changes in
comparison with T = 1, and then for T even.

Proposition 4.2 (Evolution of local equilibria of odd T-step distribution on the 3-node model). Let
XT be the process of a T-step simple random walk on the 3-node model associated with one-step
transition matrix

P =

 p 1− p 0
1− p 0 p

0 p 1− p


where T is odd.
Let

Λ =

(
M1 M2 M3
m1 m2 m3

)
,

where

• 1. If
0 ≤ m1 ≤

1
3
≤ M1 ≤

−p + 1 + λ

2 + 2λ− 3p
(4.83)

or
0 ≤ M1 ≤

1
3
≤ m1 ≤

−p + 1 + λ

2 + 2λ− 3p
, (4.84)

then p− q = +λT .

2. If

max
{

0,
1− λ− p

2− 2λ− 3p

}
≤ m1 ≤

1
3

(4.85)

1
3
(1 + λ)− λm1 ≤ M1 ≤ min

{
−p

1− λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
(4.86)

or

1
3
≤ m1 ≤

−p
1− λ− p

(4.87)

max
{

0,
1− λ− p

2− 2λ− 3p
,

1
3

(
1 +

1
λ

)
− m1

λ

}
≤ M1 ≤

1
3
(1 + λ)− λm1, (4.88)
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then p− q = −λT .

•

M2 =
(1 + α− 3p)M1 + p

1 + α
(4.89)

and

m2 =
(1 + α− 3p)m1 + p

1 + α
; (4.90)

•
M3 = 1−M1 −M2 (4.91)

and
m3 = 1−m1 −m2; (4.92)

and finally given M1 6= m1,

•

q = (M1 −m1)
−1
[

1
3
(1− λT−1) +

λT−1 p(1− p)
1 + α

+ (αT − 1)m1

]
; (4.93)

•
p = q + αT ; (4.94)

where α = +λ if p− q = +λT and α = −λ if p− q = −λT .

Then there exist two stopping times

Todd
1 ∼ Geom (1− p) (4.95)

Todd
2 ∼ Geom (q) (4.96)

for the process XT such that

1. νx is stationary until time Todd
x , which means that

Pνx

(
XT(t) = ·|Todd

x > t
)
= νx(·); (4.97)

2. for all x 6= y we have
Pνx (XT(Todd

x ) = ·) = νy(·); (4.98)

3. XT(Todd
x ) and Todd

x are independent for all x.

So we see indeed that the only change compared with the one-step distribution is in the parameters
by which we define the geometric random times Todd

1
and Todd

2
.

Proposition 4.3 (Evolution of local equilibria of even T-step distribution on the 3-node model). Let
XT be the process of a T-step simple random walk on the 3-node model associated with one-step
transition matrix

P =

 p 1− p 0
1− p 0 p

0 p 1− p


where T is even.
Let

Λ =

(
M1 M2 M3
m1 m2 m3

)
,

such that

• it is satisfied that
1 ≥ M1 ≥

1
3
≥ m1 ≥ 0 (4.99)
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or
1 ≥ m1 ≥

1
3
≥ M1 ≥ 0; (4.100)

• for

0 ≤M2 ≤ 1−M1 (4.101)
0 ≤m2 ≤ 1−m1 (4.102)

it holds that
1
3
(M1 −m1) +

(
m1 −

1
3

)
M2 +

(
1
3
−M1

)
m2 = 0. (4.103)

• and finally

M3 = 1−M1 −M2 (4.104)
m3 = 1−m1 −m2. (4.105)

Then there exist two stopping times

Teven
1 ∼ Geom

(1− λT)

(
M1 − 1

3

)
M1 −m1

 (4.106)

Teven
2 ∼ Geom

(1− λT)

(
1
3 −m1

)
M1 −m1

 (4.107)

for the process XT such that

1. νx is stationary until time Teven
x , which means that

Pνx (XT(t) = ·|Teven
x > t) = νx(·); (4.108)

2. for all x 6= y we have
Pνx (XT(Teven

x ) = ·) = νy(·); (4.109)

3. XT(Teven
x ) and Teven

x are independent for all x.

Here we see that the parameters by which we define the random times are the same as for when T
is odd but for the generality of λ, however the set of measures νx has increased and we consider all
p ∈ (0, 1) allowing us to have many more solutions in our possession.

Example 4.1. In particular we may intertwine with a Dirac measure, where

M1 = 1, M2 = M3 = 0.

If we take m1 = 1, we see that (4.103) forces

m2 = m3 =
1
2

.

Equations (4.106) and (4.107) give us that

E
[

Teven
1

]
=

(
2
3
− 2

3
λT
)−1

E
[

Teven
2

]
=

(
1
3
− 1

3
λT
)−1

.
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4.5 Testing the universal spectral solutions for the T-step distribu-
tion

We shall now demonstrate that the proposed spectral solutions of Proposition 2.1 now again return
the non-trivial solutions with extra conditions, whereby we refer to the computations in Sections 4.2
and 4.3.

Lemma 4.3. The proposed spectral solutions of Proposition 2.1 in the case of both odd and even
T are those of Lemma 4.1 with the extra condition

M1 + m1 =
2
3

. (4.110)

Proof. Note that the eigenvalues of PT are just the eigenvalues of P to the power T.

• When T is odd we find the spectrum to be

{1, λT ,−λT}.

The proposed P of Equation (2.8) becomes

P =
1
2

(
1 + λT 1− λT

1− λT 1 + λT

)
. (4.111)

Defining p, q as usual, we see that for α = p− q we obtain

α = λT .

Solutions of intertwining for general P with α = λT have been found in the proof of Lemma 4.1,
starting from Equation (4.39). Now we will investigate which solutions correspond to

q =
1− λT

2
.

We see that [
1
3 (1− λT−1) + λT−1 p(1−p)

1+λ + (λT − 1)m1

]
M1 −m1

=
1− λT

2

which we rewrite to be

2
3
(1− λT−1) +

2λT−1 p(1− p)
1 + λ

+ 2(λT − 1)m1 = (1− λT)(M1 −m1)

returning

M1 + m1 =
2
3 (1− λT−1) + 2λT−1 p(1−p)

1+λ

1− λT

=

2
3 (1− λT−1)− 2λT−1(λ2−1)

3(1+λ)

1− λT

=
2
3
· 1− λT−1 − λT−1(λ− 1)

1− λT

=
2
3

.

• For even T, we only have eigenvalues

θ0 = 1, θ1 = λT .
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The proposed P of Equation (2.8) becomes

P =
1
2

(
1 + λT 1− λT

1− λT 1 + λT

)
(4.112)

and we see that
α = λT .

Again the solutions of intertwining for general P with α = λT have been found in the proof of
Lemma 4.2, starting from Equation (4.67). These include the non-trivial solutions given in the
statement of Lemma 4.2. Now we will investigate which solutions correspond to

q =
1− λT

2
.

We see that

(1− λT)
1
3 −m1

M1 −m1
=

1− λT

2

which we rewrite to be
2
3
− 2m1 = M1 −m1.

This gives us the condition

M1 + m1 =
2
3

.

�
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Chapter 5

Conclusion

In this thesis the following original work has been done:

• We illustrated how to use the coarse-grained framework introduced in [1] to describe the evolu-
tion of local equilibria in all details for an explicit toy example.

• We found meaningful solution to the intertwining equations in this model, i.e. measures that
are really localized in different regions of the state space. This shows us how promising the
machinery is.

• We explored how "good" the universal spectral solutions of Proposition 2.1 were (for the one-step
random walk in Section 3.3 and for the T-step random walk in Section 4.5) and observed that
they are not optimal.

• We explored what sort of bounds on the mixing times of the original process can be obtained by
looking at the mixing times of the coarse-grained process.
In particular we found that the bound on the mixing times of the original process is optimal if
the two measures that are used to intertwine have as much difference as possible in placing their
mass on the first state of the state space.

• The cardinality of the space of intertwining solutions increases as we increase the number of
steps T of the random walk that is performed on the network.
In particular for even T ≥ 2, we can intertwine with Dirac measures, i.e. measures that place
all of their mass on one state. Thus evolution of "very localized states" can be described by
intertwining the T-step process.

We may conclude due to Proposition 3.2 and the analysis performed in Section 3.5 that the framework
in [1] indeed leads to results that one would intuitively expect. Our further suggestion would be to
continue exploring the framework on larger and more challenging models.
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