
Gröbner bases for decoding linear codes
Imran, M.

Citation
Imran, M. (2019). Gröbner bases for decoding linear codes.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3596927

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3596927

Muhammad Imran

Gröbner Bases for Decoding Linear Codes

Master Thesis

Thesis Advisor: Prof. S.J. Edixhoven

A thesis presented for the degree of
Master of Science

Date Master Examination: August 05, 2019
Mathematisch Instituut

Universiteit Leiden

Abstract

Gröbner bases are special sets of generators of ideals in multivariate polynomial
rings, which provide some powerful theoretical and computational properties
for solving problems in many fields such as coding theory, cryptanalysis, opti-
mization, geometric modelling, some problems in control theory, robotics, and
statistics.
One of the main ingredients in the construction of Gröbner bases is monomial
orderings. In fact, monomial orderings have crucial role which determines the
complexity of the computation of Gröbner bases. Different monomial order-
ings will lead to different levels of complexity in the computation process of a
Gröbner basis. The first part of this thesis is devoted to discuss the well-known
classification of monomial orderings by Robiano, which represents a monomial
ordering on the set of monomials of a multivariate polynomial ring by a certain
set of orthogonal vectors in Rn. Furthermore, we give an explicit bijection be-
tween the set of all monomial orderings and such family of orthogonal vectors
that enables us to construct a monomial ordering from such set of orthogonal
vectors and vice versa.
The first algorithm for computing Gröbner bases was formulated by Buchberger.
The core of this algorithm is the concept of S-polynomials of pairs of polynomi-
als. However, the major disadvantage of this algorithm is the amount of useless
pairs of polynomials that the algorithm has to compute. Hence, the second
part of this thesis is devoted to discuss the concept of Gröbner bases and Buch-
berger’s algorithm. Furthermore, we describe some strategies to optimize the
computations of Gröbner bases.
The last part of this thesis is devoted for the application of Gröbner bases in
decoding problems. We describe how Gröbner bases get involved in solving
decoding problems, especially for linear codes. Particularly, we discuss how to
translate decoding problems of linear codes into the problem of solving system
of multivariate polynomial equations.

Acknowledgements

It is a great pleasure for me to thank those who have helped and encouraged me
throughout the long process, that was full of struggle, of completing my master
course and finishing my master thesis.

First and foremost, I am wholeheartedly thankful to Prof. Bas Edixhoven for
his great supervision, encouragement, guidance and support from the very first
I was accepted in this program until he become my thesis supervisor. I ap-
preciate all his contributions of time, ideas, and suggestions to make my study
experience in this university more exciting and valuable.

The next, I owe my deepest gratitude to my whole family, especially my mother
and my father, who have raised me with love, knowledge, and prayers and who
always support me in all my pursuits. There are no suitable words that can
fully describe their everlasting love to me.

I would like to thank my other family, Student Association of Indonesia and my
fellow Indonesian students, who have made my stay in Leiden so fun and un-
forgettable. Among them there are Pararawendy Indarjo, Ramadhan Iskandar,
and Noly Cristino, who helped me out in my adaptation period here. There are
also Rahmat Latif, Ikhwan Dawam, Rumaisha Annida, Tasia Amelia, Aninda
Wibowo, Firda Juhairiyah, and Meily Setiawati who showed me how to enjoy
the last year of my study.

Using this chance I also would like to thank to all lectures at the group ”Alge-
bra, Geometry and Number Theory” for teaching me useful subjects during my
study. Among them there are, Dr. David Holmes who is also my study advisor,
Prof. Bart de Smit, Prof. Peter Stevenhagen, Dr. Roland van der Veen, Dr.
Marco Streng, Dr. Martin Bright and Dr. Peter Bruin.

Last but not least, I would like to express my huge gratitude to the Govern-
ment of Republic of Indonesia who have empowered me to pursue and finish
my study in this world-class university. Without the Lembaga Pengelola Dana
Pendidikan (Indonesian Endowment Fund for Education) Scholarship that you
hosted, It would not possible for me to achieve all my precious experiences to
live and study here.

Contents

1 Introduction 1
1.1 What is a Gröbner Basis . 1
1.2 Thesis Overview . 2

2 Order Theory 3
2.1 Monomial Ordering . 3
2.2 Representation of Monomial Orderings 8

3 Gröbner Bases 14
3.1 Multivariate Division . 14
3.2 The Notion of Gröbner Bases and Buchberger’s Algorithm 16
3.3 Weight Vector of Ideals . 21
3.4 Optimization of a Gröbner Basis Computation 23

3.4.1 The selection of monomial orderings 24
3.4.2 Detecting Useless S-polynomials 25
3.4.3 Removing Superfluous Polynomials 25

4 Gröbner Bases for Decoding Linear Codes 26
4.1 Introduction . 26
4.2 Cyclic Codes . 30
4.3 Decoding Codes with Gröbner Bases Method 36

4.3.1 Decoding Cyclic Codes with Gröbner Bases 37
4.3.2 Decoding Linear Codes with Gröbner Bases 43

Bibliography 50

Chapter 1

Introduction

1.1 What is a Gröbner Basis

Let I be an ideal of a polynomial ring. A Gröbner basis of the ideal I is a
certain set of generators for I which provides some special theoretical and com-
putational properties. In fact, many practical problems in various fields can be
solved by Gröbner bases such as decoding problems, cryptanalysis, optimization,
geometric modelling, some problems in control theory, robotics, and statistics.
The basic idea is translating such problems into polynomial ideals language
and then reducing the problems into problems of solving system of polynomial
equations or the ideal membership problem. Technically speaking, by applying
multivariate division algorithm, any polynomial f has a unique remainder with
respect to a Gröbner basis of I. Moreover, any polynomial f in I reduces to zero
with respect to a Gröbner basis of I. The basic idea of computing Gröbner bases
is based on the divison algorithm, hence in the case of polynomial rings with
more than one variable we need multivariate division algorithm which leads us
to the notion of monomial orderings. Distinct monomial orderings give different
levels of complexity in the computation process of a Gröbner basis.

The notion of Gröbner bases was introduced by Bruno Buchberger during his
Ph.D thesis [7] under the supervision of Wolfgang Gröbner, in 1965. Moreover,
he formulated an algorithm to compute such bases as well as a proof for the
fundamental theorem on which the correctness and termination of the algorithm
depends on. Intensive researches in Gröbner bases theory, related algorithms
and applications have been developing since then. Nowadays, Gröbner bases
becomes one of the important tools in computer algebra. Many computer al-
gebra systems like Maculay2, Magma, Maple, Mathematica, Singular, or Sage
have implemented various versions of Buchberger’s algorithm. The importance
of this concept and the algorithm of computing it is related to the fact that we
have a systematic way for computing generators of any ideal. Moreover, most
of recent algorithms for computing such bases are still based on Buchberger’s
algorithm.

1

1.2 Thesis Overview

In this thesis, we would like to see how monomials ordering are classified which
have significant roles in the construction of Gröbner bases, and then discuss
some properties of Gröbner bases and how to compute such bases efficiently,
and lastly dive in one of the applications of Gröbner bases, particularly, we will
discuss in details how the problem of decoding linear codes can be translated
into a system of polynomials which can be solved by computing its Gröbner
basis.

This thesis is structured into four chapters. In chapter 2: first, we recall some
definitions and properties in order theory for multivariate polynomial rings.
Then we discuss the classifications of monomial orderings by Lorenzo Robiano,
which represents a monomial ordering on the set of monomials of a multivariate
polynomial ring by a certain set of orthogonal vectors in Rn, and we give some
examples, in the case of polynomial rings with two variables, to describe how
such monomial orderings flow on N2 and divide Q2 on xy-plane into three parts,
i.e., positive, zero and negative part. Moreover, in the last part of the chapter
we give an explicit bijection between the set of all monomial orderings and such
family of orthogonal vectors that enables us to construct a monomial orderings
from such set of orthogonal vectors and vice versa.

In chapter 3: we bring the reader into the notion of Gröbner bases. First,
we recall some definitions and properties of multivariate division with respect
to a fixed monomial ordering that we need and we give a multivariate division
procedure to obtain a unique remainder with respect to the procedure which
will be helpful in Buchberger’s algorithm. Then, we recall the formal definition
of Gröbner bases, its properties and all details of how to construct them. Then,
we recall the notion of weight vector from Bernd Sturmfels which will be helpful
to optimize the computation of a Gröbner basis. Lastly, we describe various
ways to optimize the computational performance of a Gröbner basis, followed
by some examples in practice.

In chapter 4: we discuss the application of Gröbner bases in decoding linear
codes. First, we recall some definitions and properties of linear codes and one
particular class of linear codes, namely cyclic codes, which have special algebraic
properties. Then we present some methods of how to translate cyclic codes
and linear codes in general into a system of polynomial equations, followed by
the application of Gröbner bases in solving decoding problems by using ideals
generated by these translations. Lastly, we give some examples to describe these
methods in practice.

2

Chapter 2

Order Theory

2.1 Monomial Ordering

In this chapter we discuss different ways to order the monomials of a polynomial
ring. This is needed in order to set up a division algorithm in the case of several
variables. A monomial in a polynomial ring R = F[x1, . . . , xn] over a field F is
a product of the form xa = xa11 · · ·xann with a = (a1, . . . , an) ∈ Nn. We write
Mon(x) for the set of all monomials in R. Firstly, we observe the polynomial ring
F[x] in one variable x over a field F. By Euclidean division algorithm, we have
that F[x] is a principal ideal domain. The most important thing in Euclidean
division algorithm is the term of degree of a polynomial, so for every polynomial
f ∈ F[x] we can rearrange monomials in f in unambiguously descending (or
ascending) order with respect to the degree of its monomials. Therefore, we
would like to apply this method in polynomial rings with more variables, hence
we need to know how we order monomials in polynomial rings over a field with
more variables. The definition of a monomial ordering is given below to allow
us to do the arrangement.

Definition 2.1.1. A monomial ordering on R = F[x1, . . . , xn] is a relation ≺
on Mon(x) such that

(a) ≺ is a total ordering on Mon(x), i.e., any two monomials xa and xb, we
have either xa ≺ xb or xa = xb or xb ≺ xa;

(b) ≺ is multiplicative, i.e., for fixed xa, xb ∈ Mon(x) and for all xc ∈ Mon(x),
we have

xa ≺ xb ⇐⇒ xaxc ≺ xbxc;

(c) For all xa ∈ Mon(x) we have 1 � xa.

Remark.

• For condition (a): we need this condition in order to rearrange the mono-
mials in a polynomial in unambiguously descending (or ascending) order.

3

• For condition (b): we need this condition to avoid the effect of the product
operation on polynomials. In other words the leading monomial of fg
could be different from the product of leading monomials f and g with
f, g ∈ R.

Notice that we have a bijection from Mon(x) onto Nn via

xa 7→ a = (a1, . . . , an).

So we can consider a monomial ordering as a non-negative total ordering on Nn
and hence we call (Nn,≺) totally ordered non-negative semigroup.

The next lemma shows that the definition of monomial orderings can also
be stated in another equivalent way in which we replace the non-negativity
property by the well-ordering property, i.e., any nonempty subset of Nn has a
minimal element or equivalently any strictly descending sequence in Nn termi-
nates. We need this condition in order to have a terminating division algorithm
on multivariate polynomial rings.

Lemma 2.1.2. Let ≺ be an ordering on Nn satisfying the following properties:

1. It is a total ordering;

2. It is additive, i.e., for any a, b, c ∈ Nn we have

a ≺ b ⇐⇒ a+ c ≺ b+ c;

3. For all a ∈ Nn we have 0 � a.

Then ≺ is a well-ordering.

Proof. Now we prove this lemma by induction on n. Let n = 1 and ≺ be an
ordering on N satisfying the conditions above. From property 3, we have 0 ≺ 1,
and hence from property 2, the only ordering on N satisfying the properties
above is the usual ordering and hence any nonempty subset of N has a unique
minimal element.

Suppose that any ordering on Nn−1 satisfying the properties above is a well-
ordering. Now let ≺n be an ordering on Nn satisfying the properties above and
let S be any nonempty subset of Nn. Consider the ordering ≺n−1 on Nn−1 given
by a = (a1, . . . , an−1) ≺n−1 (b1, . . . , bn−1) = b if and only if (a1, . . . , an−1, 0) =
(a, 0) ≺n (b1, . . . , bn−1, 0) = (b, 0) in Nn. Therefore,

• Since ≺n is a total ordering, any two distinct elements a and b in Nn−1,
we have either

(a, 0) ≺n (b, 0) or (b, 0) ≺n (a, 0).

• For any a, b, c ∈ Nn−1 we have a ≺n−1 b ⇐⇒ (a, 0) ≺n (b, 0) and also

(a, 0) ≺n (b, 0) ⇐⇒ (a, 0) + (c, 0) ≺n (b, 0) + (c, 0).

So a ≺n−1 b ⇐⇒ a+ c ≺n−1 b+ c.

4

• For all a ∈ Nn−1 we have 0 �n−1 a, since 0 �n (a, 0).

Therefore the ordering ≺n−1 is a well-ordering.
Now consider the set

S1 := {(a1, . . . , an−1) ∈ Nn−1 |∃ an ∈ N such that (a1, . . . , an) ∈ S}.

By induction hypothesis, S1 has a unique minimal element with respect to the
ordering ≺n−1 on Nn−1. Let a = (a1, . . . , an−1) be the minimal element of S1.
Let an ∈ N be smallest natural number such that a′ = (a1, . . . , an−1, an) ∈ S.
We claim that for any b = (b1, . . . , bn) ∈ S with bn ≥ an we have a′ ≺n b.
Indeed, since (a1 . . . , an−1, 0) ≺n (b1, . . . , bn−1, 0), then (a1 . . . , an−1, bn) ≺n
(b1, . . . , bn−1, bn). On the other hands, since we have 0 ≺n (0, . . . , 0, bn − an),
then a′ ≺n (a1, . . . , an−1, bn) and hence the claim follows.

Therefore, it is left to consider all elements b ∈ S where its last coordinate
less than an. Now For each 0 ≤ bn < an we have

Sbn := {(b1, . . . , bn−1) ∈ Nn−1 |(b1, . . . , bn−1, bn) ∈ S}.

Hence again by induction hypothesis, we have a unique minimal element for
each Sbn . Therefore, by adding bn as the last coordinate in the unique minimal
element of each set Sbn we have a finite subset S′ of S containing a′ and all those
elements. By the total order property of ≺n and the finiteness of S′, we have
a unique minimal element c = (c1, . . . , cn) of S′. We claim that the minimal
element of S′ is the minimal element of S. Indeed, since any element c of S has
last coordinate either cn < an or an ≤ cn, thus if an ≤ cn then a′ ≺n c and if
cn < an then c is contained in one of the set Sbn .

There are some well-known monomial orderings which have been used fre-
quently in computation, some of them are provided below.

Examples of Monomial Ordering:

(1) Lexicographic Order is the ordering ≺lex on Nn such that for a =
(a1, . . . , an) and b = (b1, . . . , bn) elements in Nn, we have a ≺lex b if and only
if the leftmost nonzero coordinate in the difference b− a ∈ Zn is positive. The
picture below shows how elements in N2 are ordered:

Figure 1.1

y

x

Note that:

∀m ∈ N : (0,m) ≺lex (1, 0) ;

(1,m) ≺lex (2, 0) ;
...

etc.

5

(2) Graded Lexicographic Order is the ordering ≺ on Nn such that for
a = (a1, . . . , an) and b = (b1, . . . , bn) elements in Nn, we have a ≺ b if and only
if either:

• |a| = a1 + a2 + · · ·+ an < |b| = b1 + · · ·+ bn or

• |a| = |b| and the leftmost nonzero coordinate in the difference b − a is
positive.

The picture below shows how elements in N2 are ordered:

Figure 1.2

y

x

Note that:
∀m,n ∈ N : (m, 1−m) ≺ (n, 2− n) ;

(m, 2−m) ≺ (n, 3− n) ;
.
.
.

etc.

(3) Block Ordering or Product Ordering. Let ≺1 be an ordering on Nj
and ≺2 be an ordering on Nk satisfying definition 2.1.1. The block ordering
on Nn with n = j + k is defined as follows: (a1, . . . , aj , aj+1, . . . , aj+k) ≺3

(b1, . . . , bj , bj+1, . . . , bj+k) if and only if either:

• (a1, . . . , aj) ≺1 (b1, . . . , bj) or

• (a1, . . . , aj) = (b1, . . . , bj) and (aj+1, . . . , aj+k) ≺2 (bj+1, . . . , bj+k).

(4) Elimination Ordering. Let ≺ be an ordering on Nj+k, where j and
k are nonzero natural numbers with j + k = n. The ordering ≺ is called an
elimination ordering for j, if and only if any element a in Nj+k with nonzero
for at least one coordinate in the first j coordinates is greater than any element
b in Nj+k with zero at all the first j coordinates. It is easy to verify that such
block orderings are elimination orderings.

Definition 2.1.3. An ordering ≺ on a commutative group G means an ordering
≺ on G such that (G,≺) is totally ordered group.

The next two lemmas show how a total ordering ≺ on the semigroup Nn
extends uniquely on Zn such that (Zn,≺) is a totally ordered group and hence
extends uniquely on Qn such that (Qn,≺) is totally ordered group in which we
have more special structure, i.e., we may embed Qn into Rn on which we have
the usual inner product and the induced Euclidean topology.

6

Lemma 2.1.4. Let ≺ be a total ordering on Nn such that (Nn,≺) is a totally
ordered non-negative semigroup. Then ≺ extends uniquely on Zn such that
(Zn,≺) is a totally ordered group.

Proof. Let a, b ∈ Zn be distinct elements, we say a ≺ b if and only if there
exists an element c ∈ Nn such that a + c, b + c ∈ Nn and a + c ≺ b + c. If
a, b ∈ Nn, then we may choose c to be the zero vector and the order of a+ c = a
and b+ c = b does not change, so ≺ extends on Zn. Moreover, its extension is
unique, otherwise there exist c, c′ ∈ Nn such that a + c, b + c, a + c′, b + c′ are
all in Nn and satisfying:

a+ c ≺ b+ c and b+ c′ ≺ a+ c′

on Nn and by the property (b) in the definition 2.1.1, we have

a+ (c+ c′) ≺ b+ (c+ c′) and b+ (c+ c′) ≺ a+ (c+ c′)

which contradicts ≺ as a total ordering on Nn. Now it is left to show that its
extension is a total ordering on Zn. Let a, b, c ∈ Zn:

• (Antisymmetry): If a � b and b � a, then there exist d, d′ ∈ Nn such that
a+d, b+d, a+d′, b+d′ are all in Nn and satisfying a+d � b+d and b+d′ �
a+ d′. So by the property (b) in the definition 2.1.1, we have

a+ (d+ d′) � b+ (d+ d′) and b+ (d+ d′) � a+ (d+ d′).

Since ≺ is a total ordering on Nn, we have a = b.

• (Transitivity): If a ≺ b and b ≺ c, then there exist d, d′ ∈ Nn such that
a+d, b+d, b+d′, c+d′ are all in Nn and satisfying a+d ≺ b+d and b+d′ ≺
c+ d′. Again by the property (b) in the definition 2.1.1, we have

a+ (d+ d′) ≺ b+ (d+ d′) and b+ (d+ d′) ≺ c+ (d+ d′).

Hence we have a+ (d+ d′) ≺ c+ (d+ d′) and a ≺ c.

• (Connexity): Since for any a = (a1, . . . , an) and b = (b1, . . . , bn) elements
in Zn, we can always find an element c ∈ Nn such that a+ c and b+ c are
in Nn for example by taking c = (c1, . . . , cn) where ci = max{|ai|, |bi|}.
So any two elements in Zn are comparable.

Lemma 2.1.5. Let ≺ be a total ordering on Zn such that (Zn,≺) is a totally
ordered group. Then ≺ extends uniquely on Qn such that (Qn,≺) is also a
totally ordered group.

Proof. Let a, b ∈ Qn be distinct elements, we say a ≺ b if and only if there
exists r ∈ N+ such that ra and rb are in Zn and satisfying ra ≺ rb in Zn. If
a, b ∈ Zn, then we may choose r = 1 and the order of 1 ·a = a and 1 · b = b does

7

not change, so ≺ extends on Qn. Moreover, its extension is unique, otherwise
there exists r, r′ ∈ N+ such that ra, rb, r′a, r′b are all in Zn and satisfying:

ra ≺ rb and r′b ≺ r′a

on Zn and since (Zn,≺) is totally ordered group, i.e., ≺ is translation-invariant,
we have rr′a ≺ rr′b and rr′b ≺ rr′a which contradicts ≺ as a total ordering
on Zn. Now it is left to show that its extension is a total ordering on Qn. Let
a, b, c ∈ Qn :

• (Antisymmetry): If a � b and b � a, then there exist r, r′ ∈ N+ such that
ra, rb, r′a, r′b are all in Zn and satisfying ra � rb and r′b � r′a. Since
(Zn,≺) is a totally ordered group, i.e., ≺ is translation-invariant, thus
rr′a � rr′b and rr′b � rr′a. Therefore, since ≺ is a total ordering on Zn
we have rr′a = rr′b and hence a = b.

• (Transitivity): If a ≺ b and b ≺ c, then there exist r, r′ ∈ N+ such that
ra, rb, r′b, r′c are all in Zn and satisfying ra ≺ rb and r′b ≺ r′c. Again
since ≺ is translation-invariant, we have rr′a ≺ rr′b and rr′b ≺ rr′c and
hence rr′a ≺ rr′c. So we have a ≺ c.

• (Connexity): Since for any a = (a1, . . . , an) and b = (b1, . . . , bn) elements
in Qn, we always can find an element r ∈ N+ such that ra and rb are in
Zn for example by taking r equal to the lowest common multiple of all
denominators of all coordinates of a and b. So any two elements in Qn are
comparable.

2.2 Representation of Monomial Orderings

Now we are going to classify all orderings on Nn satisfying definition 2.1.1 and
represent each of monomial orderings as a set of orthogonal vectors which sat-
isfies some given properties. The classification of monomial orderings in this
section is mostly based on Robiano in [26], but we provide an explicit map
which enables us to see the bijection between the set of all monomial orderings
of a polynomial ring and such sets of orthogonal vectors. To simplify, firstly we
see the case step by step on n = 1 and n = 2:

The case n = 1. We have seen in the proof of Lemma 2.1.2 that the only
ordering on N satisfying definition 2.1.1 is the usual ordering.

The case with n = 2. We have more interesting things to observe in this
case because we look at all orderings ≺ on the set N2 satisfying definition 2.1.1.
From lemma 2.1.4 and 2.1.5 we may use its extension on Q2 such that (Q2,≺)
is a totally ordered group and we embed Q2 into R2 and then examining the
orderings we have above.

8

• The lexicographic ordering: Let a = (a1, a2) and b = (b1, b2) ∈ Q2. Then
a ≺lex b if and only if ((a1 < b1) or (a1 = b1 and a2 < b2)). So we can
choose a vector v = (1, 0) and u = (0, 1) to describe the above conditions
by using the inner product 〈, 〉 in R2 as follows: a ≺lex b if and only if
((〈v, a〉 < 〈v, b〉) or (〈v, a〉 = 〈v, b〉 and 〈u, a〉 < 〈u, b〉)). The picture below
shows how these two orthogonal vectors divide the Q2 into three parts:
positive, negative and the zero.

Figure 1.3

v2 = (0, 1)

v1 = (1, 0)

y

x

The subset of Q2 on the gray area of the xy-plane is the positive part
of Q2 with respect to the lexicographic ordering given above where the
dashed y−axis is excluded. While the subset of Q2 on the other area on
the plane excluding the zero vector is the negative part.

• The graded lexicographic ordering: Let a = (a1, a2) and b = (b1, b2) ∈ Q2.
Then a ≺ b if and only if ((a1 + a2 < b1 + b2) or (a1 + a2 = b1 + b2 and
a1 < b1)). So we can choose a vector v = (1, 1) and u = (1,−1) to describe
the above conditions by using the inner product 〈, 〉 in R2 as follows: a ≺ b
if and only if ((〈v, a〉 < 〈v, b〉) or (〈v, a〉 = 〈v, b〉 and 〈u, a〉 < 〈u, b〉)). The
picture below shows how these two orthogonal vectors divide Q2 into three
parts: positive, negative and the zero.

v1 = (1, 1)

v2 = (1,−1)

y

x

Figure 1.4

9

The subset of Q2 on the gray area of the xy-plane is the positive part of
Q2 with respect to the graded lexicographic ordering given above where
the dashed line orthogonal to the vector v1 = (1, 1) is excluded. While
the subset of Q2 on the other area on the plane excluding the zero vector
is the negative part.

Therefore, from two examples above we may expect that for any ordering on
Nn, we can find at most n (we can find less than n in some cases) orthogonal
vectors on Rn and by using the inner product on Rn we can describe the ordering.
The following we give an example of an ordering on N2 on which we need only
one vector to describe the ordering.

Consider the quadratic field extension Q(
√

2) ⊂ R of Q, and we have Q(
√

2)
and Q2 are isomorphic as Q-vector spaces via (a, b) 7→ a + b

√
2. Hence we can

define an ordering on N2 as follows: (a, b) ≺ (c, d) if and only if a+b
√

2 < c+d
√

2
in R. Hence we need only to choose the vector (1,

√
2) ∈ R2 to describe the

ordering on N2 above. The picture below shows how this vector divides Q2 into
three parts: positive, negative and the zero.

v1 = (1,
√

2)

y

x

Figure 1.5

The subset of Q2 on the gray area of the xy-plane is the positive part of Q2

with respect to the ordering given above. While the subset of Q2 on the other
area on the plane excluding the zero vector is the negative part. The interesting
thing happens in this case where we do not need the second vector orthogonal
to v1. The reason is the only element in Q2 on the line orthogonal to v1 is the
zero vector.

Proposition 2.2.1. Any positive irrational number determines a monomial
ordering.

Proof. Let r be any irrational number and v = (1, . . . , 1, r) ∈ Rn. For any
a = (a1, . . . , an) and b = (b1, . . . , bn) vectors in Nn, we say a ≺ b if and only
if 〈v, a〉 < 〈v, b〉. Since the usual ordering < on the set of real number satisfies
definition 2.1.1, then ≺ is a monomial ordering.

Proposition 2.2.2. Any two distinct positive irrational numbers give two dis-
tinct monomial orderings.

10

Proof. Let r and s be any two distinct irrational numbers. Then there exists
a rational number p

q such that r < p
q < s. Let v = (1, . . . , 1, r) and w =

(1, . . . , 1, s). Then for the two vectors p′ = (p, 0, . . . , 0) and q′ = (0, . . . , 0, q) we
have

〈v, q′〉 < 〈v, p′〉, but 〈w, p′〉 < 〈w, q′〉.

Hence any two irrational numbers give two distinct monomial orderings.

The rest of this section will study the classification of all monomial orderings
and the translation of all monomial orderings into vectors as we have done in
the three previous examples.

Let ≺ be an ordering on Qn satisfying definition 2.1.3, and we embed Qn
into Rn as previous. Let r be a positive integer and let V be a Q-subvectorspace
of Qn of dimension r and we denote V ⊗ R the R-subvectorspace of Rn by VR.
By restricting the ordering ≺ on V , we denote V + and V − as the positive part
and the negative part of V respectively.

Lemma 2.2.3. Let I = V + ∩ V − where V + and V − are the closure of V +

and the closure of V + in VR respectively. Then I is a subvectorspace of VR of
dimension r − 1.

Proof. Since any two vector spaces of the same dimension over a field are iso-
morphic, it is sufficient to show this for V = Qr. Firstly, we show that I is a
Q-subvectorspace of VR. If λ ∈ Q>0, then λ · V + = V + and λ · V − = V − and
hence for any v ∈ I we have λ · v ∈ I. If λ ∈ Q<0, then λ · V + = V − and
λ · V − = V + and hence for any v ∈ I we have λ · v ∈ I. Now it is left to show
that I is closed under addition. So let v, w ∈ I. Since v and w are inside V +

and also inside V −, there exist (v+m)m≥0, (w
+
m)m≥0 in V + converging to v and w

respectively and also there exist (v−m)m≥0, (w
−
m)m≥0 in V − converging to v and

w respectively. Then (v+m + w+
m)m≥0 converges to v + w and for all m ≥ 0 we

have v+m + w+
m ∈ V +. The same kind of argument for (v−m + w−m)m≥0, the limit

is v + w and for all m ≥ 0 we have v−m + w−m ∈ V −. So v + w ∈ I and hence
I is a Q-subvectorspace of VR. Moreover, as multiplication by a real number
is continuous, I is closed in VR and any real number can be approximated by
rational numbers, I is closed under scalar multiplication in R and hence I is
R−subvectorspace of VR.

Now it is left to show that dimR(I) = r−1. Since VR−I = (V +−I)∪(V −−I)
where V +− I and V −− I are open and disjoint, so VR− I is disconnected. Let
m be a positive integer such that dimR(I) = m. Since any two vector spaces
of the same dimension over a field are isomorphic, then VR ∼= Rr and hence
I ∼= Rm×{0}. Thus we have

VR − I ∼= Rr −Rm×{0} = Rm×Rr−m−Rm×{0} = Rm×(Rr−m−{0})

and hence this excludes the possibility m < r − 1 otherwise Rr−m−{0} is
connected and so is VR − I. Furthermore, since V is a totally ordered group we
may choose a basis {e1, . . . , er} as a Q-subvectorspace such that {e1, . . . , er} ⊂
V +. Therefore e1 + · · ·+ er ∈ V + but it is not inside I since by taking a small

11

enough open neighbourhood U of e1 + · · · + er, any element of U has positive
coordinates. Then we could not have dim I = r.

Now some definitions stated below are used to classify all monomial orderings
on a polynomial ring.

Definition 2.2.4. Let ≺ be an ordering on V as before. Then we denote by
H(V) the half-line orthogonal to I and contained in V +.

Definition 2.2.5. Given a vector v ∈ Rn, we denote by d(v) the dimension of
the Q-subvectorspace of R spanned by the coordinates of v and we call it the
rational dimension of v.

Lemma 2.2.6. Let V and VR be as before. Let v ∈ VR. Then d(v) ≤ r =
dimQ V .

Proof. Let v1, . . . , vr be a basis of V . Let v ∈ VR be any vector and we write as∑
λivi with λi ∈ R. Then the vector space over Q spanned by the coordinates

of v is contained in the vector space spanned by {λ1, . . . , λr}.

Definition 2.2.7. Let d ∈ {1, . . . , n}, we denote by A(d) the quotient set
B(d)/ ∼, where B(d) is the set of all vectors v ∈ Rn such that d(v) = d and ∼
is the equivalence relation given by v ∼ v′ if and only if there exists λ ∈ R>0

with v = λv′.

Now by using previous definitions, the classification of all monomial order-
ings on a polynomial ring R = F[x1, . . . , xn] is given in the following theorem.

Theorem 2.2.8. Let Ord(R) be the set of all monomial orderings on Mon(x),
the set of monomials in R. Then there is a bijection, given explicitly in the
proof below, from Ord(R) onto the set M defined by{

(t, ρ, u)

 1 ≤ t ≤ n, ρ is a partition of n in t parts,

and u = (u1, . . . , ut) ∈ A(d1)× · · · ×A(dt)

}
in which

(a) for every i = 1, . . . , t − 1, if Vi is the Q−subvectorspace of Qn of the
vectors orthogonal to {u1, . . . , ui}, then ui+1 ∈ ViR = Vi ⊗ R.

(b) for every v ∈ Nn \{0}, the first non-zero coordinate of (v · u1, . . . , v · ut) is
positive.

Proof. Let {u1, . . . , us} is given as above. Then we can construct a monomial
ordering on R or equivalently on Nn with respect to this set of orthogonal vectors
as follows: Let a, b ∈ Nn. Then

a ≺ b ⇐⇒ (a · u1, . . . , a · ut) ≺lex (b · u1, . . . , b · ut)

where a · ui is the usual dot product in Rn. Clearly the construction above
defines a map from M into Ord(R) and we claim that the map is surjective. Let

12

≺ be a monomial ordering on Nn. From lemma 2.1.4 and lemma 2.1.5 we may
extend this ordering on Qn, and hence by embedding V = Qn in VR = Rn we
have I, the (n− 1)−dimensional R-subvectorspace of Rn, and we have the half-
line H(V). Take u1 ∈ H(V) and denote d1 as its rational dimension. Moreover,
we denote by V1 the Q−subvectorspace of Qn defined by V1 = I ∩ Qn. Since
V ⊥1 = (I∩Qn)⊥ ∼= Qd1 , dimV1 = n−d1 and for every v ∈ Qn \V1, we have v > 0
if and only if v · u1 > 0 (as a real number). Hence it is left for us to consider all
vectors in V1. By the same steps as previous we have (V1)R = V1 ⊗Q R and the
R-vector space IV1

and a vector u2 ∈ H(V1) with d(u2) = d2 ≤ n − d1. Since
the rational dimensions are positive integers then this procedure ends after a
finite number of steps and we eventually get the integer t, the partition of n
into {d1, . . . , dt}, and the vectors u1, . . . , ut which satisfy the given properties
above. Moreover, the injectivity follows from the constructions of (u1, . . . , ut)
above. Indeed, from the proof of the surjectivity of this map, any monomial
ordering ≺ produces unique u1 ∈ A(d1) as I is of n − 1 dimensional subspace
and hence its orthogonal space is one dimensional space, so by the equivalence
class in A(d1), u1 is unique. Therefore, the map is injective and hence bijective.

Corollary 2.2.9. Let ≺ be an ordering on Nn satisfying the properties in 2.1.1.
Then there exists a natural number s with 1 ≤ s ≤ n and an s×n matrix M with
real entries such that for any v, v′ ∈ Nn, v ≺ v′ if and only if v ·M ≺lex v′ ·M
on Rs.

13

Chapter 3

Gröbner Bases

3.1 Multivariate Division

Recall that a polynomial ring over a field with one variable is a principal ideal
domain and hence we have an Euclidean division algorithm. By observing the
division algorithm on a polynomial ring over a field with one variable we see
that we use the term of degree of polynomials to do the algorithm, therefore
the same steps we want to apply on any polynomial ring over a field with n
variables to get a multivariate division method. By fixing a monomial ordering
≺ on the set of monomials in R = F[x1, . . . , xn] for a fixed field F, it leads us to
give the following definitions:

Definition 3.1.1. Let f =
∑
a cax

a be a polynomial, we denote Mon(f) :=
{xa : ca 6= 0}. Suppose that xa is the greatest element of Mon(f) with respect
to the monomial ordering ≺, then xa is called the leading monomial of f and
denoted by lm≺(f), the coefficient ca of xa is called the leading coefficient of f
and lt≺(f) = cax

a is called the leading term of f .

As we see on the remarks of definition 2.1.1, we need condition b in order
to guarantee that for any f, g ∈ R we have lm≺(fg) = lm≺(f)lm≺(g). There-
fore, the lemma below shows this and also gives the effect on the addition of
polynomials.

Lemma 3.1.2. Let f1, . . . , fr be nonzero polynomials in R such that f1+· · ·+fr
is also nonzero. Then

(i) lm≺(f1 . . . fr) = lm≺(f1) · · · lm≺(fr)

(ii) lm≺(f1 + · · ·+ fr) � max{lm≺(f1), . . . , lm≺(fr)}. Moreover, let cj be the
leading coefficient of fj . The equality holds if and only if the sum taken
over cj for which lm≺(fj) � lm≺(fi) for all 1 ≤ i ≤ r is nonzero.

Proof.

14

(i) By definition, we have lm≺(f1) · · · lm≺(fr) � u1u2 · · ·ur for all ui ∈
Mon(fi) and since all monomials in Mon(f1 · · · fr) are of the form u1 · · ·ur
with ui ∈ Mon(fi) and since lm≺(f1) · · · lm≺(fr) ∈ Mon(f1 · · · fr) thus the
equality holds if and only if ui = lm≺(fi) for all i = 1, . . . , r.

(ii) Note that Mon(f1 + · · ·+ fr) ⊆
⋃r
i=1 Mon(fi). Therefore, we have

lm≺(f1 + · · ·+ fr) � max{u|u ∈
r⋃
i=1

Mon(fi)}

lm≺(f1 + · · ·+ fr) � max{lm≺(f1), . . . , lm≺(fr)}.

Now let u = max{lm≺(f1), . . . , lm≺(fr)} and suppose that
∑r
j cj 6= 0,

where the sum is taken over those j such that lm≺(fj) = u. Thus it
follows that u ∈ Mon(f1 + · · ·+ fr) and hence

lm≺(f1 + · · ·+ fr) � u = max{lm≺(f1), . . . , lm≺(fr)}.

Thus the equality holds.

Conversely, if
∑r
j cj = 0, then u 6∈ Mon(f1 + · · ·+ fr) and hence

lm≺(f1 + · · ·+ fr) 6= max{lm≺(f1), . . . , lm≺(fr)}.

Let G = {g1, . . . , gm} be a finite subset of R = F[x1, . . . , xn] and let f ∈ R
be any polynomial. We say that f is reducible by G if there exists an element
u ∈ Mon(f) which is divisible by lm≺(gi) for some i with 1 ≤ i ≤ m.

Now suppose that f is reducible by G. Then such element u exists, and we
may reduce f into f − c·u

lt≺(gi)
gi where c is the coefficient of u in f . Therefore,

the procedure cancels the term c · u in f and by keep doing this we can see
whether f is a linear combination of elements of G or not. Hence it leads us to
the following proposition.

Proposition 3.1.3. Let f and g1, . . . , gm be polynomials in R with gi are
nonzero polynomials for 1 ≤ i ≤ m. Then there exists polynomials h1, . . . , hm
and a polynomial r in R such that f = g1h1 + · · ·+ gmhm + r and no element
of Mon(r) is contained in the ideal 〈lm≺(g1), . . . , lm≺(gm)〉.

Proof. By fixing a monomial ordering ≺, we can perform the reduction process
as previously described on the biggest element of u ∈ Mon(f) which is divisible
by lm≺(gi) for some i with 1 ≤ i ≤ m. So we have the reduced form of f is
f − c·u

lt≺(gi)
gi where c is the coefficient of u in f and we can perform again the

reduction process on the biggest element of Mon(f − c·u
lt≺(gi)

gi) and continued

the previous procedures. Clearly this process terminates somehow by the well-
ordering property of ≺ and we end up either with 0 or a remainder r of f by G.
Therefore, the existence of such polynomials h1, . . . , hm and r is guaranteed.

15

This remainder r of f by a finite set G is, in general, not unique as it depends
on the order of reductions as the following example demonstrate. Let ≺ be the
lexicographic ordering with x ≺ y on Q[x, y] and let f = xy+y, g1 = x+ 1, and
g2 = x. Then

f = yg1 as well as f = yg2 + y.

In the first case we have the remainder of f is 0, but in the other one its
remainder is y. Hence we say f reduces to zero by a finite set G = {g1, . . . , gm}
if it has a remainder with respect to G, which is zero.

Let G be a finite subset of R = F[x1, . . . , xn] with cardinality m for some
field F. In order to get a unique remainder r of a polynomial f by G, we proceed
the reduction process as follows:

1. Take m-tuple (g1, . . . , gm) of nonzero distinct elements of G;

2. Take the greatest element xa ∈ Mon(f) with respect to ≺ which is
divisible by some lm≺(gi) with 1 ≤ i ≤ m. If there is no such element xa,
then r := f ;

3. Let gj ∈ G be the element such that lm≺(gj) divides xa and xa is not

divisible by any lm≺(gi) for i < j, then take new f := f − cax
a

lt≺(gj)
gj ,

where ca is the coefficient of xa;

4. Back to step 2;

Therefore, by the above procedure, we obtain a unique remainder of f by any
tuple of nonzero distinct elements in R and we denote the remainder of f by
G under the above procedure with respect to ≺ as Rem(G,≺)(f). Hence if we
apply the above procedure on the previous example f = xy+ y, g1 = x+ 1, and
g2 = x with respect to x ≺lex y, then we have Rem(G,≺)(f) = 0.

3.2 The Notion of Gröbner Bases and Buch-
berger’s Algorithm

Now we are ready to give a definition of a Gröbner basis of an ideal of a poly-
nomial ring over a fixed field F with respect to a fixed monomial ordering ≺.
This is a nice set of generators, because a reduction of a polynomial by this set
always leads to a unique remainder. Firstly, we fix a monomial ordering ≺ on
Mon(x) ⊂ R.

Definition 3.2.1. Let I ⊂ R be an ideal. The set of leading monomials of I is
the set {lm≺(f) : f ∈ I} with respect to ≺. The ideal generated by this set is
called the leading monomial ideal of I with respect to ≺ and it is denoted by
lm≺(I).

Definition 3.2.2. Let I ⊂ R = F[x1, . . . , xn] be an ideal. A finite subset
{g1, . . . , gm} ⊂ I is a Gröbner basis of I with respect to ≺ if and only if lm≺(I) =
〈lm≺(g1), . . . , lm≺(gm)〉.

16

Remark. A finite subset G of I is a Gröbner basis if and only if for all f ∈ I
there exists g ∈ G such that lm≺(g) divides lm≺(f).

The next theorem shows that every ideal of a polynomial ring has a Gröbner
basis and that any Gröbner basis of I generates I.

Theorem 3.2.3. Every ideal I in R = F[x1, . . . , xn] has a Gröbner basis
{g1, . . . , gm}. Moreover, I = 〈g1, . . . , gm〉.

Proof. Let I be an ideal in R and lm≺(I) is the ideal of its leading monomials.
Then by Hilbert’s basis theorem lm≺(I) is generated by a finite subset of lm≺(I),
i.e., lm≺(I) = 〈xa(1), . . . , xa(m)〉. Therefore, there exist g1, ..., gk ∈ I such that
lm≺(gi) = xa(i) for all i = 1, . . . ,m. Now we are going to show that I =
〈g1, . . . , gm〉. Clearly, 〈g1, . . . , gm〉 ⊂ I since every gi ∈ I. Conversely, let
f ∈ I be any polynomial. By proposition 3.1.3, we can write f = g1h1 +
· · · + gmhm + r where hi, r ∈ R and there is no element in Mon(r) divisible
by any lm≺(g1), . . . , lm≺(gm). We claim that r = 0. Indeed, otherwise r =
f−g1h1−· · ·−gmhm 6= 0 and lm≺(r) ∈ lm≺(I). Then there exist q1, . . . , qm ∈ R
such that lm≺(r) =

∑m
i=1 qix

a(i) and hence there exists i with 1 ≤ i ≤ m
on which lm≺(r) is a monomial in fix

a(i). So lm≺(r) is divisible by some
xa(i) = lm≺(gi). This contradicts proposition 3.1.3.

We have introduced the notion of elimination ordering in section 2. By using
an elimination ordering we have a powerful property of Gröbner bases that we
can use to solve systems of multivariate polynomial equations.

Proposition 3.2.4. Let I be an ideal in R = F[x1, . . . , xn] and G be a Gröbner
basis of I with respect to an elimination ordering ≺. Then G∩F[x1, . . . , xi] is a
Gröbner basis of the ideal I ∩F[x1, . . . , xi] with respect to the induced ordering
on F[x1, . . . , xi].

Proof. LetG = {g1, . . . , gm} with gi’s are distinct. Assume thatG∩F[x1, . . . , xi] =
{g1, . . . , gs}, then lm≺(gj) 6∈ F[x1, . . . , xi] for all s < j ≤ m. Now we show that
〈lm≺(g1), . . . , lm≺(gs)〉 = lm≺(〈Gi〉) where Gi = G ∩ F[x1, . . . , xi].

Let f ∈ I be a nonzero polynomial. Then lm≺(f) ∈ lm≺(I) and lm≺(f) is a
monomial in the first i-th variables. Hence lm≺(f) is divisible by some lm≺(gj)
for j ≤ s. Therefore, lm≺(〈Gi〉) ⊆ 〈lm≺(g1), . . . , lm≺(gs)〉. Because it is obvious
that 〈lm≺(g1), . . . , lm≺(gs)〉 ⊆ lm≺(〈Gi〉) , then the result follows.

Now if we apply a Gröbner basis in proposition 3.1.3, it gives us the results
below.

Proposition 3.2.5. Let G = {g1, . . . , gm} be a Gröbner basis for an ideal
I ⊂ R = F[x1 . . . , xn] and let f ∈ I be a nonzero polynomial. Then there exists
a unique r ∈ R satisfying:

• No element of Mon(r) is divisible by any of lm≺(g1), . . . , lm≺(gm);

• There is a g ∈ I such that f = g + r.

17

This r is the remainder of f by G, we denote by NF(G,≺)(f) and it is also called
the normal form of f with respect to G.

Proof. From proposition 3.1.3 and theorem 3.2.3, it is left to show that r is
unique. Let f = g+ r and f = g′+ s be two expressions we have after reducing
f by G. Since g and g′ are in I, then r − s = g′ − g ∈ I. Suppose that
r − s 6= 0. Then lm≺(r − s) ∈ lm≺(I) = 〈lm≺(g1), . . . , lm≺(gm)〉, however, no
elements of Mon(r) and Mon(s) which are divisible by any lm≺(gi), so it is a
contradiction.

Corollary 3.2.6. Let I ⊂ R be an ideal and G = {g1, . . . , gm} is a finite set
of generators of I. Then G is a Gröbner basis of I if and only if for every
f ∈ I we have f = h1g1 + · · · + hmgm for some polynomials hi ∈ R such that
lm≺(f) � lm≺(higi) for all i = 1, . . . ,m.

Therefore, by using a Gröbner basis of an Ideal I ⊂ R = F[x1, . . . , xn], we
have a method to check the membership problem of the ideal I as follows.

Corollary 3.2.7. Let G = {g1, . . . , gm} be a Gröbner basis for an ideal I ⊂ R
with respect to the monomial ordering ≺ and let f ∈ R be a polynomial. Then
f ∈ I if and only if the normal form r of f with respect to G is zero.

Note that a Gröbner basis of an ideal I ⊂ R is not uniquely determined. For
example to any Gröbner basis G of I one could add a few more elements of I to
G and would obtain another Gröbner basis. But by some additional conditions,
a Gröbner basis can be unique. Therefore, we call the unique Gröbner basis of
I as reduced Gröbner basis. Before we give the definition of a reduced Gröbner
basis, we state the following lemma which will help us to construct a reduced
Gröbner basis.

Lemma 3.2.8. Let G be a Gröbner basis of an ideal I ⊂ R. Let f be a poly-
nomial in G such that lm≺(f) ∈ lm≺(G\{f}). Then G\{f} is also a Gröbner
basis for I.

Proof. Since lm≺(f) ∈ lm≺(G\{f}) and we have lm≺(I) = lm≺(G), thus it
follows that lm≺(G\{f}) = lm≺(G) = lm≺(I).

Therefore a Gröbner basis G of I is called minimal if there is no f ∈ G with
lm≺(f) ∈ lm≺(G\{f}).

Definition 3.2.9. Let I ⊂ R = F[x1, . . . , xn] be an ideal. ThenG = {g1, . . . , gm}
is reduced Gröbner basis of I, if G is a Gröbner basis for I and satisfying the
following conditions:

• The leading coefficient of each gi is 1;

• For all i 6= j, there is no element u ∈ Mon(gi) is divisible by lm≺(gj).

Theorem 3.2.10. Each ideal I ⊂ A has a unique reduced Gröbner basis.

18

Proof. Let lm≺(I) = 〈u1, . . . , um〉 and G = {g1, . . . , gm} be a finite subset of
I such that lm≺(gi) = ui, then G is a Gröbner basis for I. By lemma 3.2.8
we may assume that G is minimal and by proposition 3.1.3 we may write each
gi =

∑
j 6=i qjgj + hi, then we have the normal form hi of each gi with respect

to G\{gi}. Therefore, there is no mi ∈ Mon(hi) which is divisible by lm≺(gj)
for j 6= i.

We have lm≺(gi) � lm≺(qjgj) for i 6= j. Suppose that lm≺(gi) = lm≺(qjgj)
for some j. Then ui = lm≺(gi) = lm≺(qj)uj , which is impossible as G is
a minimal Gröbner basis of I. Hence from lemma 3.1.2, we have lm≺(hi) =
lm≺(gi) = ui for all i. Therefore by dividing all leading coefficients of all hi
such that all of its leading coefficients are 1, then H = {h1, . . . , hm} is a reduced
Gröbner basis.

Now it is left to show the uniqueness. Let H and H ′ be two reduced Gröbner
bases for I. Then we have lm≺(H) = lm≺(H ′) and hence for any h ∈ H there
exists h′ ∈ H ′ with lm≺(h) = lm≺(h′). So we are going to show that h = h′.
Since h, h′ ∈ I, then h−h′ ∈ I and hence h−h′ reduces to zero by H. But also
we have lm≺(h) = lm≺(h′) so these terms cancel in h − h′ and the remaining
term is not divisible by any element in lm≺(H) = lm≺(H ′) since both H and H ′

are reduced. Therefore, this shows that the normal form of h− h′ with respect
to H is again h− h′ and hence h− h′ = 0. This completes the proof.

Once the reduced Gröbner basis can be computed, we can decide whether
two ideals are equal as they are equal if and only if they have the same reduced
Gröbner basis.

So far we only know the existence from theorem 3.2.3 and the usefulness
of of such Gröbner bases from corollary 3.2.7. However, the proof of theorem
3.2.3 is not constructive and offers us little insight of how actually to obtain
such basis. Therefore, Buchberger constructed a special polynomial to derive a
criterion which allows us to answer this question in a finite number of steps.

Definition 3.2.11. Let f and g be nonzero polynomials in R = F[x1, . . . , xn].
The S−polynomial of f and g is defined as

S(f, g) =
xc

lt≺(f)
· f − xc

lt≺(g)
· g

where xc = lcm(lm≺(f), lm≺(g)). Note that S stands for ”syzygy”.

Example 3.2.1. Let I = 〈f, g〉 with f = xyz− y, g = x2y− yz ∈ Q[x, y, z] and
let ≺ be the graded lexicographic order with z ≺ y ≺ x. Then

S(f, g) = x · f − z · g = yz2 − xy.

By using the concept of S-polynomial, the following theorem tells us how to
see whether a set of generators of an ideal I is a Gröbner basis or not and also
the theorem is followed by an algorithm how to compute such Gröbner basis.

Theorem 3.2.12 (Buchberger’s Criterion). Let I be an ideal in R. Then
G = {g1, . . . , gm} is a Gröbner basis for I if and only if for all pairs i 6= j, the
normal form of S(gi, gj) with respect to G is zero.

19

Algorithm 1: Buchberger’s Algorithm:

Data: A finite set of generators F = {f1, . . . , fm} of an ideal I and a
monomial ordering ≺.

Result: A Gröbner basis G for the ideal I with respect to ≺.
1 i := 0;
2 Gi := F
3 repeat
4 Gi+1 := Gi ∪ {Rem(Gi,≺)(S(f, g)) 6= 0| f, g ∈ Gi}
5 i := i+ 1;

6 until Gi+1 = Gi
7 Return: G = Gi is a Gröbner basis for I.

This algorithm ends in a finite number of steps. Indeed, each time we add
a nonzero remainder Rem(Gi,≺)(S(f, g)) of an S−polynomial to Gi, the ideal
〈lm≺(g) : g ∈ Gi〉 becomes strictly larger and while we repeat the algorithm
we have an ascending chain condition because R = F[x1 . . . , xn] is a Noetherian
ring.

Example 3.2.2. Let I be the ideal of Q[x, y, z] generated by f = xyz − y and
g = x2y− yz. Let G0 = {f, g} and let ≺ be the graded lexicographic order with
z ≺ y ≺ x. From example 3.2.1 we have S(f, g) = yz2−xy, and the normal form
of S(f, g) is NF(G0,≺)(S(f, g)) = yz2−xy 6= 0. So we add h = NF(G0,≺)(S(f, g))
as an element of new set of generators G1 = {f, g, h}. Next we repeat the
previous process on G1:

S(f, h) = g, and we get NF(G1,≺)(S(f, h)) = 0

S(g, h) = x · g − z · h = x3y − yz3, and we get NF(G1,≺)(S(g, h)) = 0.

Hence by Buchberger’s criterion in theorem 3.2.12 we have G1 is a Gröbner
basis of the ideal I.

The Gröbner basis is determined by choice of a monomial ordering. The
choice of a monomial ordering affects the process of reduction and influence the
complexity of Buchberger’s algorithm. The following examples shows different
monomial orderings give various complexity of Buchberger’s algorithm.

Example 3.2.3. Let I be the ideal in Q[x, y] generated by f = xy + y2 and
g = xy2+x2y+x2. Then by using Buchberger’s algorithm , we obtain a Gröbner
basis G = {f,−x2,−y3} of I with respect to the lexicographic order with y ≺ x.
On the other hands, if we use the lexicographic order with x ≺ y, we obtain
G = {f,−x2} as a Gröbner basis for I.

Now we denote Ord(x) the set of all possible monomial orderings on Mon(x).
Furthermore, let I ⊂ R = F[x1, . . . , xn] be an ideal. We say that two monomial
ordering ≺1 and ≺2 in Ord(x) are equivalent over the ideal I if and only if
lm≺1

(I) the ideal of leading monomials of I with respect to ≺1 equals to lm≺2
(I)

the ideal of leading monomials of I with respect to ≺2. Therefore, V. Ene and
J. Herzog, in [15], give the following result.

20

Proposition 3.2.13. Let I be an ideal in R. The set

Ord(I) := {lm≺(I)| ≺∈ Ord(x)}

is finite.

Proof. Suppose that the set Ord(I) is infinite. Let f1 ∈ I be a nonzero poly-
nomial. Then for any ideal J ∈ Ord(I) there exists u1 ∈ Mon(f1) such that
u1 ∈ J . Since the set Mon(f1) is finite, thus there exists u1 ∈ Mon(f1) such
that the set S1 := {J ∈ Ord(I)|u1 ∈ J} is infinite. In particular, there exists at
least one J ∈ S1 with J 6= 〈u1〉 and hence from theorem 2.16, monomials which
do not belong to 〈u1〉 are linearly dependent modulo I. Therefore, there exists
f2 ∈ I with Mon(f2) ∩ 〈u1〉 = ∅. Moreover, we can repeat previous steps, there
exists u2 ∈ Mon(f2) such that the set S2 := {J ∈ Ord(I)|u2 ∈ J} is infinite.
Since u2 6∈ 〈u1〉, then 〈u1〉 is strictly contained in 〈u1, u2〉. Again since S2 is
infinite thus there exists J ∈ S2 with J 6= 〈u1, u2〉 and so we can construct u3
as before. By doing the procedures above we have an infinite ascending chain
of ideals of R = F[x1, . . . , xn]

〈u1〉 ⊂ 〈u1, u2〉 ⊂ 〈u1, u2, u3〉 ⊂

Hence this contradicts the result from commutative algebra that R is a Noethe-
rian ring.

Therefore, the finiteness of the set Ord(I) guarantees that we can vary
monomials ordering we use in Buchberger’s algorithm and it still terminates.
Moreover, in [19] P.Gritzmann and B.Sturmfels proved that for any ideal I =
〈f1, . . . , fm〉 ⊂ A the set Ord(I) is in one to one correspondence with the vertices
of the affine Newton polytope of the set {f1, . . . , fm}.

3.3 Weight Vector of Ideals

We have seen that we can correspond a monomial ordering to a set of orthogonal
vectors in the previous chapter. However, in case of Gröbner basis, we work
mostly with ideals I of a polynomial ring, so in this section we restrict the
discussion of representation of monomial orderings on ideals of a polynomial
ring instead of the whole polynomial ring. B.Sturmfels also gave a classification
of monomial orderings in [28] by using vectors. But instead of describing the set
of orthogonal vectors like in the previous section, he showed that for a particular
ideal I of a polynomial ring there exists a single vector which describes the
monomial ordering on that ideal which is called as weight vector. In the next
chapter, in fact, the main role of monomial orderings is as the main tool to find
a certain set of generators of an ideal. Therefore, it makes sense to only look
how a monomial ordering works on an ideal instead of on the whole polynomial
ring.

21

Definition 3.3.1. Let v ∈ Rn be a real vector with non negative entries and ≺
be an arbitrary monomial ordering on Mon(x) ⊂ R = F[x1, . . . , xn] for some field
F. We define a new ordering ≺v on Mon(x) as follows: For any xa, xb ∈ Mon(x),
we say xa ≺v xb if and only if 〈v, a〉 < 〈v, b〉 or 〈v, a〉 = 〈v, b〉 and xa ≺ xb.

Proposition 3.3.2. Let ≺ be an arbitrary monomial ordering and v ∈ Rn with
non negative entries. Then ≺v is a monomial ordering.

Proof. This follows directly from the assumption that ≺ is a monomial ordering
and the fact that for any two vectors a, b ∈ Nn we have either 〈v, a〉 < 〈v, b〉,
〈v, a〉 > 〈v, b〉 or 〈v, a〉 = 〈v, b〉.

Since the preposition above shows that for suitable vector v we have a mono-
mial ordering ≺v, it leads us to the following definitions.

Definition 3.3.3. Let v ∈ Rn. For any polynomial f =
∑
a cax

a ∈ R =
F[x1, . . . , xn] for some field F we define the leading form lmv(f) of f with respect
to the vector v to be the sum of all monomials Cax

a for which 〈v, a〉 is maximal
in the set {〈v, a〉|xa ∈ Mon(f)}.

Definition 3.3.4. Let I be an ideal inR and v ∈ Rn. Then we define the leading
form ideal lmv(I) of I with respect to the vector v as the ideal generated by the
set {lmv(f)|f ∈ I}.

The following is an example of the leading form of a polynomial f , which is
a monomial with respect to some vector v, but it is not a monomial with respect
to some other vector v′.

Example 3.3.1. Let f(x, y) = x6y2 + 2x5y3 + x3 − x2y4 ∈ Q[x, y]. Let ≺ be
the lexicographic ordering on the set of monomials of Q[x, y]. We compute the
leading form of f with respec to ≺v and ≺v′ where v = (2, 1) and v′ = (1, 1) as
follows: For v = (2, 1), we have to see the maximal element in the set

{〈v, (6, 2)〉, 〈v, (5, 3)〉, 〈v, (3, 0)〉, 〈v, (2, 4)〉, } = {14, 13, 6, 8}.

So we obtain lmv(f) = x6y2.
For v′ = (1, 1), we have to see the maximal element in the set

{〈v′, (6, 2)〉, 〈v′, (5, 3)〉, 〈v′, (3, 0)〉, 〈v′, (2, 4)〉, } = {8, 8, 3, 2}.

So we obtain lmv′(f) = x6y2 + 2x5y3 which is not a monomial.

Also, Sturmfels showed important results for monomial ordering with respect
to weight vector.

Proposition 3.3.5. Let v ∈ Rn be a real vector with non negative entries and
I ⊂ R be an ideal. If lmv(I) is a monomial ideal, i.e., lmv(I) is generated by
monomials, then lmv(I) is equal to the leading monomial of I with respect to
the monomial ordering ≺v.

22

Proof. Firstly we notice from definition 3.3.1 and 3.3.3 that for any nonzero
polynomial f ∈ R, we have the leading monomial of the polynomial lmv(f)
with respect to ≺ is equal to lm≺v

(f). Therefore, the ideals lm(lmv(I)) and
lm≺v

(I) contain the same monomials and hence these two ideals are equal.
Suppose that lmv(I) is a monomial ideal. Then we have

lmv(I) = lm≺v
(lmv(I))

and hence by the definition of ≺v, the proposition follows.

Theorem 3.3.6. For any monomial ordering ≺ and any ideal I ⊂ R, there
exists a vector v with non negative integer entries such that lmv(I) is equal to
the leading monomial ideal of I.

Sturmfels showed that by taking any v ∈ CI,≺ ∩ Zn where CI,≺ is the set
all non negative vectors v ∈ Rn≥0 such that for all g in the reduced Gröbner
basis G of I with respect to ≺ we have lmv(g) = lm≺(g). For more details
see [28] in proposition 1.11. For v ∈ Rn and a monomial ordering ≺ such that
lmv(I) = lm(I), we call v weight vector representation of I with respect to ≺.

Example 3.3.2. Let I ⊂ Q[x, y, z] be the ideal generated by f = xyz − y and
g = x2y − yz. Let ≺ be the graded monomial ordering on the set of monomials
of Q[xy, z]. In example 3.2.1, we obtain G = {f, g, h} with h = yz2 − xy as a
Gröbner basis of I. Therefore, by definition 3.2.9, G is the Gröbner basis of I.
Now we choose v = (1, 1, 1) and it is obvious that lmv(f) = lm≺(f), lmv(g) =
lm≺(g), and lmv(h) = lm≺(h). Moreover, by proposition 3.3.5 and the fact that
G is a Gröbner basis of I, we have lmv(I) = lm≺(I).

A vector weight from Sturmfels in 3.3.6, in fact, can be obtained from the first
vector we achieved in the set of orthogonal vectors representing ≺ in theorem
2.2.8.

3.4 Optimization of a Gröbner Basis Computa-
tion

In the previous section we have seen Buchberger’s algorithm to compute a
Gröbner basis of a given ideal I of a polynomial ring R = F[x1, . . . , xn] for
some field F and in order to make the algorithm works we have to make a prior
choice of monomial orderings. Besides of choosing a monomial ordering as the
main tool in the algorithm, we also have a notion of S-polynomials which re-
quires us to choose pairs of polynomials in the initial proposed set of generators
and we have noticed in section 3.1 that reduced form of a polynomial with re-
spect to a finite set G of polynomials depends on the order of reductions we
choose.

Therefore, the choices made in the computational process affects the effi-
ciency of the algorithm such as the number of S-polynomials we have to com-
pute. It might happen that the choices we made obligates us to compute more

23

S-polynomials which will be eliminated again after reduction process. In this
section we discuss some approaches to boost the performance of Gröbner bases
computation.

3.4.1 The selection of monomial orderings

The complexity of an algorithm of computing Gröbner basis extreamly relies on
the monomial ordering we chose. C.Kollreider showed, in [23], the selection of
monomial orderings influences the complexity of Buchberger’s algorithm. The
following example simply demonstrates how two distinct monomial orderings
give different number of computational steps by using Buchberger’s algorithm.

Example 3.4.1. Let I be an ideal of Q[x, y] generated by f1 = x + y2, f2 =
x2 − y3, and f3 = y2 − y. Let ≺1 and ≺2 be the lexicographic order and the
graded lexicographic order respectively with y ≺i x for i = 1, 2.

Firstly we compute a Gröbner basis of I with respect to ≺1 by using Buch-
berger’s algorithm: We have G = {f1, f2, f3}; and we compute S(f1, f2) =
xy2 + y3, S(f1, f3) = xy + y4, and S(f2, f3) = x2y − y5 which all have zero
normal forms with respect to the set G, i.e.,

S(f1, f2) = xy2 + y3 = y2f1 + y2f3

S(f1, f3) = xy + y4 = yf1 − y2f3
S(f2, f3) = x2y − y5 = yf2 + y3f3.

So by theorem 3.2.2, G is already a Gröbner basis.
However, by the same algorithm but using ≺2 instead of ≺1, we need more

steps and computations to produce G = {f1, f2, f3,−x2−yx, x+y} as a Gröbner
basis of I.

From the example, it might happen that we compute a Gröbner basis with
respect to a particular monomial ordering that is computationally less efficient.
In the first chapter we have seen that any monomial ordering is related to a
matrix and the lexicographic on a finite dimensional real vector space, so it
leads us to see the relation between a Gröbner basis of an ideal I with respect
to a particular monomial ordering ≺1 and a Gröbner basis of I with respect to
another monomial ordering ≺2. In other words, we compute a Gröbner basis
of I with respect to some computationally efficient monomial ordering and the
transform it into a Gröbner basis of I for the desired monomial ordering.

The algorithm for converting a Gröbner bases was introduced by Collart et
al., in [11], in 1997 which is Gröbner walk. Also Gröbner walk is discussed by
Amrhein et al. in [1] and by Tran in [29]. Furthermore, if we only focus on
finding a Gröbner basis of an ideal ithout any particular monomial ordering
required, then we can determine a good monomial ordering to start with as
discussed by Tran in [30] and in [31].

24

3.4.2 Detecting Useless S-polynomials

In Buchberger’s algorithm, the process of computing S-polynomials and the
reduction process are quite a time-consuming steps that we need to reduce. For
instance, computing the S-polynomials of pairs which have zero normal forms,
which is unnecessary or even useless process. Therefore, Buchberger, in [6],
introduced two criteria to identify pairs of polynomial which have zero normal
forms and Gebauer as follows:

• Criterion 1: If two polynomials f and g has property that

gcd(lm≺(f), lm≺(g)) = 1,

then S(f, g) reduces to zero by the set {f, g}.

• Criterion 2: Let f, g, h be polynomials in the current basis set G such that
lm≺(h) divides lcm(lm≺(f), lm≺(g)) and S(f, h),S(g, h) reduce to zero,
then S(f, g) reduces to zero by the current basis set G.

The following example shows how to take advantages from these criteria.

Example 3.4.2. Let I be the ideal generated by f = x2 + xy2, g = x2 − y3
and h = y3 − y2. Let ≺ be the lexicographic ordering on the set of monomials
of Q[x, y]. Therefore, by criterion 1, we do not need to compute S(f, h) and
S(g, h). Hence we only need to do computation for S(f, g) and by computing
this polynomial we have S(f, g) = xy2 +y2 which has nonzero normal form with
respect to G = {f, g, h}. Moreover, since lm≺(h) divides lcm(lm≺(f), lm≺(h)
and lcm(lm≺(g), lm≺(h), then by using criterion 2, we have G′ = {f, g, h, xy2 +
y2} is a Gröbner basis of I.

3.4.3 Removing Superfluous Polynomials

As we have seen in lemma 3.2.8, we may remove some polynomials from a
Gröbner basis we have from the computation which are unnecessary or to make
the Gröbner basis into minimal. The removal process is mostly performed after
we produce a Gröbner basis, but it is possible to do the removal of superfluous
polynomials intermediately at each reduction step. The removal process at each
reduction step is as follows:
Let G be a Gröbner basis of an ideal I ⊂ R = F[x1, . . . , xn]. Let g, g′ ∈ G be
distinct elements. If lm≺(g) divides lm≺(g′), then g′ can be expressed by g and
the polynomial S(g, g′). Hence once we reduce S(g, g′) into normal form, we
may remove g from our Gröbner basis G, this follows from the second property
of reduced Gröbner bases in definition 3.2.9.

The process of removing superfluous polynomials at each reduction step
makes the algorithm much more efficient as we only need to compute less S-
polynomials.

25

Chapter 4

Gröbner Bases for
Decoding Linear Codes

4.1 Introduction

The problem of information transmission where the information is transmitted
through a channel is one of the problems that is encountered in the digital
era. For example, if an information source A sends an information to a receiver
B where A and B are mobile phones, then the channel is the space where
electromagnetic waves propagate. Therefore, we need to consider the case in
which some interference or noise appears in the channel where the information
transmitted through. Hence the interference in the channel can distort the
transmitted information.

The basic idea of coding theory consists of adding some redundancy to the
information that the information source A wants to send to a receiver B which
we call as an encoding procedure to get a longer word. Because of the appearance
of noise, the transmitted information containing additional redundancy can be
distorted. If the occurred errors are not too many, the receiver B is able to
recover the original word which we call as a decoding procedure.

In this chapter we discuss how to apply Gröbner bases to decode a particular
class of codes called linear codes. Therefore, in this section we recall some basic
definitions and results from classical coding theory.

Definition 4.1.1. A linear code C is a linear subspace of Fnq where Fq is a finite
field with q elements and elements of C are called codewords. The dimension
of a linear code is its dimension as a linear subspace over Fq. We write a linear
code C over Fq of length n and dimension k as an [n, k]q code.

Since any two vector spaces of the same dimension over a field are isomorphic,
it is clear that an [n, k]q code has size qk. Moreover, the information rate of an
[n, k]q code is k/n and its redundancy is n− k. If we have a linear code, we can
obtain another linear code by taking its orthogonal space as follows.

26

Definition 4.1.2. Let C be [n, k]q code, its dual C⊥ is the set of vectors or-
thogonal to C:

C⊥ : {v ∈ Fnq |∀c ∈ C, 〈v, c〉 = 0}.

Thus C⊥ is an [n, n− k]q code.

Now by taking a basis of C as a linear subspace of Fnq , we can obtain a linear

map E from Fkq into Fnq and the image of this linear map is the code C. So we

can see Fkq as the source of words and the process of applying this such linear
map is referred to as encoding or coding process.

Definition 4.1.3. Let C be an [n, k]q code. Then a matrix G whose rows form
a basis for C is called a generator matrix for G. If G is of row reduced echelon
form then we say G is in a standard form.

Therefore, we can write an encoding process by

E :Fkq → Fnq
v 7→ vG.

A generator matrix G of C is a tool to do encoding. But to do decoding
or to check whether a received word is a codeword or not, it is more useful to
consider the following matrix.

Definition 4.1.4. A parity-check matrix for an [n, k]q code C is a generator
matrix H for C⊥.

By the definition above we see that C may be expressed as the null-space of
a parity matrix H:

∀x ∈ Fnq , HxT = 0 ⇐⇒ x ∈ C.

Now we give a simple example to describe what could happen during the trans-
mission process. Suppose that the source of words is

(F2)2 = {(0, 0), (1, 0), (0, 1), (1, 1)}

and let C be the [6, 2]2 code generated by G =

(
0 0 0 1 1 1
1 1 1 0 0 0

)
. Then we

have

C = {(0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1), (1, 1, 1, 1, 1, 1)}.

To send (1, 0) we transmit the word (1, 0)G = (1, 1, 1, 0, 0, 0). By our assump-
tion, typically during the transmission the word is distorted by interference and
the receiver has to perform some operations to obtain the transmitted word
which is referred to a decoding process. Let v be the received vector. There are
several different situations may come up:

27

• v = (1, 1, 1, 0, 0, 0), thus v ∈ C, so the receiver deduces correctly that no
errors have occurred and no correction is needed. It concludes that the
word was (1, 0).

• v = (1, 0, 1, 0, 0, 0) 6∈ C, so the receiver concludes that some errors have
occurred. In this case it may “correct” and “detect” the error as follows.
It may suppose that the word transmitted was (1, 1, 1, 0, 0, 0) since that
is the word that differs in the least number of positions from the received
word v.

• v = (0, 0, 1, 0, 0, 0) 6∈ C, so the receiver correctly reaches the conclusion
that there were some errors during the transmission, but if it tries to
correct as in the previous case, it concludes that the word “nearest” to v
is (0, 0, 0, 0, 0, 0). In this case it corrects in a wrong way.

• v = (0, 0, 0, 0, 0, 0) ∈ C, then the receiver deduces incorrectly that no
errors have occurred.

From the previous example we understand that, when the decoder gets a
received vector which is not an element in C, it has to find the element in C
which has been sent by the encoder, i.e., among all elements of C, it has to find
the one which has the “highest probability” of being sent. To do this we need
the following definitions.

Definition 4.1.5. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two elements
in Fnq . The weight wt(u) of u is defined as the number of nonzero coordinate
of u and the Hamming distance d(u, v) is defined as the number of coordinates
where u and v differ:

d(u, v) = |{i|ui 6= vi}|.

By direct verification, one can show that the Hamming distance is a well-
defined metric on Fnq , meaning that it satisfies all properties below:

• For all x, x′ ∈ Fnq , we have d(x, x′) ≥ 0;

• For all x, x′ ∈ Fnq , we have d(x, x′) = 0 if and only if x = x′;

• For all x, x′ ∈ Fnq , we have d(x, x′) = d(x′, x);

• For all x, x′, y ∈ Fnq , we have d(x, x′) ≤ d(x, y) + d(y, x′).

Definition 4.1.6. The distance of a linear code C is the minimal distance
between distinct words in C:

d(C) := min{d(c, c′)|c, c′ ∈ C and c 6= c′}

Remark. The distance of C is equal to the minimum weight of nonzero words
in C.

28

We write a linear code of length n and dimension k over Fq which has distance
d as an [n, k, d]q code.

In the previous example, there is a case where the receiver can detect errors
in the transmitted vector but the receiver failed to correct it and also there is
a case when the receiver could not detect errors occurred in the transmitted
vector. Therefore, the following theorem tells us how many errors occurred can
be detected and how many errors occurred can be recovered correctly.

Theorem 4.1.7. Let C be an [n, k, d]q code. Then

• C has detection capability l = d− 1;

• C has correction capability τ = bd−12 c.

Proof. Let c ∈ C be a transmitted codeword and v ∈ Fnq be the received word.
Suppose that d(c, v) ≤ d− 1. Since d is the minimum distance in C, thus v 6∈ C
and we proved that we can detect errors happened if and only if the number of
errors happened is at most d− 1. Moreover, we suppose that d > 2τ . Let c ∈ C
be a transmitted codeword and v ∈ Fnq be the obtained word from c with at
most τ errors. We need to show that c is closer to v than any other codewords
r ∈ C. Since the Hamming distance is well-defined metric on Fnq , the triangle
inequality holds and hence

d(c, v) ≤ d(c, r) + d(r, v)

−d(c, r) + d(c, v) ≤ d(r, v)

τ + 1 = 2τ + 1− τ ≤ d(v, r).

Conversely, suppose that c is closer to v than any other codeword r ∈ C. Then
for r ∈ C\{c}, we have d(v, r) ≥ τ+1 and again by using the triangle inequality

d(v, r) ≤ d(v, c) + d(c, r)

−d(v, c) + d(v, r) ≤ d(c, r)

2τ + 1 = τ + 1 + τ ≤ d(c, r).

Proposition 4.1.8. Let C be an [n, k, d]q code. Then

d ≤ n− k + 1.

Proof. Let C be a linear code with distance d. Let we consider the projection
from Fnq to Fn−(d−1)q , say on the last n− (d− 1) coordinates of each codewords
of C. Hence the restriction of the projection on C is injective, since all of
elements in C have Hamming distance at least d from each other. Therefore,
|C| = qk ≤ |Fn−(d−1)q | = qn−d+1. So we have k ≤ n − d + 1 or equivalently
d ≤ n− k + 1.

A code achieving the equality above is called maximum distance separable
(MDS) code.

29

4.2 Cyclic Codes

Now we give a brief overview of an important class of linear codes that is called
cyclic codes which have special algebraic properties.

Definition 4.2.1. An [n, k, d]q code C is cyclic if and only if the cyclic shift of
every codeword c ∈ C is again a codeword in C, i.e.,

(c1, . . . , cn) ∈ C ⇐⇒ (cn, c1, . . . , cn−1) ∈ C.

Proposition 4.2.2. The dual of a cyclic code is again cyclic.

Proof. Let C be a cyclic code. Then σ(c) ∈ C for all c ∈ C. Then

σn−1(c) = (c1, c2, . . . , cn−1, c0) ∈ C for all c ∈ C.

Let x ∈ C⊥. Then

σ(x) · c = xn−1c0 + x0c1 + · · ·+ xn−2cn−1 = x · σn−1(c) = 0

for all c ∈ C. Hence C⊥ is cyclic.

Now let we consider the quotient ring Cq,n := Fq[x]/(xn − 1). Thus the set
{1, x, x2, . . . , xn−1} form a basis for Cq,n over Fq. The following proposition
shows that we can consider Fnq as Cq,n and cyclic codes [n, k]q are in one-to-one
correspondence with ideals in Cq,n.

Proposition 4.2.3. Consider the map φ between Fnq and Cq,n defined by

φ : v = (v0, . . . , vn−1) 7→ v(x) = v0 + v1x+ · · ·+ vn−1x
n−1.

Then the map φ is an isomorphism of vector spaces. Moreover, cyclic codes in
Fnq correspond one-to-one to ideals in the ring Cq,n.

Proof. The map φ is clearly linear and it maps the standard basis of Fnq to
{1, x, x2, . . . , xn−1}. Hence φ is an isomorphism of vector spaces. Let ψ the
inverse map of φ.

Let I be an ideal in Cq,n. Then C := ψ(I) is a linear code as ψ is a linear
map and we can think of I as a subvectorspace of Cq,n. Let c ∈ C. Then
φ(c) ∈ I and since I is an ideal then x · φ(c) ∈ I where

x · φ(c) = c0x+ · · ·+ cn−1x
n = cn−1 + c0x+ · · ·+ cn−2x

n−1.

Therefore, C is a cyclic code.
Conversely, let C be a cyclic code in Fnq , and let I := φ(C). Then I is closed

under addition as C is a linear code and φ is a linear map. Moreover, if a ∈ Fnq
and c ∈ C, then

φ(a)φ(c) =
∑
i

∑
j

aicj−ix
j ,

30

where the indices i and j are taken modulo n. Hence

φ(a)φ(c) = φ(a0c+ a1σ(c) + · · ·+ an−1σ
n−1(c)),

where σ is the cyclic shift map, i.e., σ(c) = (cn−1, c0, . . . , cn−2). Thus φ(a)φ(c)
is in I and hence I is an ideal in Cq,n.

Since Fq[x] is a principal ideal domain as we have Euclidean division algo-
rithm in the ring, thus Cq,n is a principal ideal ring. Therefore, from proposition
4.2.3 any cyclic code corresponds to a principal ideal, meaning that we can ob-
tain a generator polynomial of each cyclic code. Moreover, by looking at the
corresponding ideal I as an ideal in Fq[x] containing the ideal (xn − 1) rather
than as an ideal in the quotient ring Cq,n, it leads to the uniqueness of a gener-
ator polynomial of any cyclic code, which is the monic polynomial of minimal
degree in I.

Definition 4.2.4 (Generator Polynomial). Let C be a cyclic code and let I be
the corresponding ideal of C in Fq[x] containing the ideal (xn − 1). Then the
monic polynomial g(x) ∈ I of minimal degree is called the generator polynomial
of C.

Let φ be the isomorphism in theorem 4.2.3 with the inverse map ψ and let
ϕ be the quotient map. Let we consider the following diagram

Fq[x] Cq,n

Fnq

ϕ

ψ

From the diagram above, we have a surjective map from Fq[x] onto Fnq . More-
over, we have the following result.

Corollary 4.2.5. There exists a bijection between the set of all cyclic codes C
over Fq of length n and the set of all monic factors of xn − 1 in Fq[x] given by

Φ : C 7−→ g(x)

where g(x) is the monic minimal degree polynomial in the ideal ϕ−1(φ(C)) of
Fq[x].

Proof. Let C be a cyclic code over Fq of length n. From proposition 4.2.3,
φ(C) is an ideal in Cq,n. Moreover, by the first isomorphism theorem for rings,
ϕ−1(φ(C)) is an ideal in Fq[x] containing (xn − 1). Therefore, since Fq[x] is
a principal ideal domain, we can obtain the monic minimal degree polynomial
g(x) which generates ϕ−1(φ(C)). Furthermore, g(x) divides xn − 1 as xn −
1 ∈ ϕ−1(φ(C)). So the map is well-defined. Moreover, the injectivity and the
surjectivity follow from the bijection map φ.

31

Remark. It is obvious that the minimum distance d of a cyclic code C with
generator polynomial g(x) satisfies d ≤ wt(g(x) mod xn − 1), and one of a
natural goal of coding theory is to construct a code with maximum distance
or it is called as maximum distance separable code (MDS). Hence we need a
cyclic code with generator polynomial g(x) = xr + ar−1x

r−1 + · · ·+ a0 with all
coefficients ajare nonzero. One subclass of cyclic codes satisfying the criteria is
Reed-Solomon codes RSk(n, b) in definition 4.3.6.

So far we know that to find such generator matrix for a cyclic code C,
we need to take the monic generator of its corresponding ideal in Fq[x] which
contains (xn − 1). But by using a certain generator matrix of C that we have
in the previous section we can obtain its generator polynomial and also the
corresponding ideal.

Theorem 4.2.6. Let g(x) = g0 +g1x+ · · ·+gmx
m be a polyomial ∈ Fq[x]. Let

n be an integer with m ≤ n. Let k = n−m. Let G be the k×n matrix defined
by

G =

g0 g1 . . . gm 0 . . . 0

0 g0 g1 . . . gm
. . .

...
...

. . .
. . .

.
. . . 0

0 . . . 0 g0 g1 . . . gm

 .

(1) If g(x) is the generator polynomial of a cyclic code C, then the dimension
of C is equal to k and G is a generator matrix of C.

(2) If gm = 1 and G is a generator matrix of a code C such that

(gm, 0, . . . , 0, g0, g1, . . . , gm−1) ∈ C

then C is cyclic with generator polynomial g(x).

Proof.

(1) Suppose that g(x) is the generator polynomial of a cyclic code C. Then
g = (g0, . . . , gm) generates the code C and coefficients of each g(x), xg(x),
. . . , xk−1g(x) correspond to the rows of the matrix G above. Since g(x)
is the generator matrix of C, then gm = 1 and the k × k submatrix of
G consisting the last k columns is a lower diagonal matrix with ones on
the diagonal, so the rows of G are linearly independent. Moreover, every
polynomial c(x) ∈ (g(x)) with c = (c0, . . . , cn) ∈ C is equal to a(x)g(x)
for some polynomial a(x) ∈ Fq[x]. Since g(x) divides xn − 1, there exists
polynomial e(x) and f(x) in Fq[x] such that

a(x)c(x) = e(x)(xn − 1) + f(x) and deg(f(x)) < n or f(x) = 0.

But xn−1 is divisible by g(x) as g(x) is the generator polynomial of C. So
f(x) = b(x)g(x) for some polynomial b(x) ∈ Fq[x] with deg(b(x) ≤ n−m =
k or b(x) = 0. Therefore, c(x) = a(x)g(x) = b(x)g(x) mod (xn − 1). So
every codeword c ∈ C is a linear combination of rows of the matrix G and
k is the dimension of C.

32

(2) Suppose that gm = 1 and G is a generator matrix of a code C such
that (gm, 0, . . . , 0, g0, g1, . . . , gm−1) ∈ C. Then for all i < k, we have
the cyclic shift of the i-th row of G is the (i + 1)-th row of G and
(gm, 0, . . . , 0, g0, g1, . . . , gm−1) is the cyclic shift of the k-th row of G.
Therefore, as any codeword c ∈ C is of the linear combination of rows
of G and the cyclic shift is a linear transformation, C is a cyclic code
of dimension k. Moreover, since any polynomial in the corresponding
ideal of the cyclic code C is a linear combination of the polynomials
g(x), xg(x), . . . , xk−1g(x) and also g(x) is monic, thus g(x) is the gen-
erator polynomial of C.

Consider a cyclic code of length n over Fq with generator polynomial g(x)
and the corresponding generator matrix G as in theorem 4.2.6. Let the word
m = (m0, . . . ,mk−1) ∈ Fkq be mapped to the codeword c = mG. Then in terms
of polynomials that means that

c = φ(m)g(x) mod xn − 1, where φ(m) = m0 +m1x+ · · ·+mk−1x
k−1.

Proposition 4.2.7. Let g(x) be the generator polynomial of a cyclic code C
and h(x) = xn−1

g(x) . Then we have

c(x) ∈ C ⇐⇒ c(x)h(x) = 0 mod xn − 1.

The polynomial h(x) is called the parity check polynomial of the cyclic code C.

Proof. Let c ∈ C. Then there exists a polynomial a(x) such that

φ(c) = a(x)g(x).

Since g(x)h(x) = 0 mod xn − 1, then c(x)h(x) = a(x)g(x)h(x) = 0 ∈ Cq,n.
Conversely, suppose that c(x)h(x) = 0 mod xn − 1. Then there exist poly-

nomials a(x) and b(x) such that

c(x) = a(x)g(x) + b(x) and b(x) = 0 or deg(b(x)) < deg(g(x)).

Since we have deg(b(x)h(x)) is at most n − 1, thus if b(x) is nonzero, then
b(x)h(x) 6= 0 mod xn − 1. Hence b(x) = 0 and φ(c) = a(x)g(x) ∈ Cq,n and
c ∈ C.

Remark. Since g0 6= 0 as we have g(x)h(x) = xn − 1, the generator matrix
in theorem 4.2.6 is upper diagonal at the first k positions with nonzero entries
on the diagonal. So the reduced echelon form of G has k × k identity ma-
trix at the first k columns and the last row is up to the constant g0 equal to
(0, . . . , 0, g0, . . . , gm). So we can obtain the monic generator polynomial of any
cyclic code from the standard form of generator matrix.

33

One might expect that if h(x) is the parity check polynomial of the cyclic
code C, then h(x) is the generator polynomial of the dual code C⊥. However,
this is not the case but the following result shows how we obtain the generator
polynomial of the dual code C⊥ from the parity check polynomial h(x) of the
cyclic code C.

Proposition 4.2.8. Let h(x) be the parity check polynomial of a cyclic code C.

Then the monic reciprocal of h(x), i.e., g⊥(x) = xdeg(h(x))h(x−1)
h(0) , is the generator

polynomial of the code C⊥.

Proof. Let C be a cyclic code of length n and of dimension k with generator
polynomial g(x) and parity check polynomial h(x). We are going to show this
by using induction on k.

If k = 0, then g(x) = xn − 1 and h(x) = 1 and similarly if k = n, then
g(x) = 1 and h(x) = xn − 1. Hence this is true for these cases.

Now suppose that 0 < k < n. Then h(x) = h0 + h1x+ · · ·+ hkx
k. Hence

xkh(x−1) = hk + hk−1x+ · · ·+ h0x
k.

The i-th position of xkh(x−1) is hk−i. Let l = n − k. Then g(x) = g0 + g1x +
· · · + glx

l and gl = 1. The elements xtg(x) generate C. The i-th position of
xtg(x) is equal to gi+t. Hence the inner product of the words ψ(xtg(x)) and
ψ(xkh(x−1) is

k∑
i=0

gi+thk−i,

which is the coefficient of the term xt+k in xtg(x)h(x). But xtg(x)h(x) is equal
to xn+t−xt and 0 < k < n, hence this coefficient is zero. So

∑n
i=0 gi+thk−i = 0

for all t. So ψ(xkh(x−1)) ∈ C⊥.
Now since g(x)h(x) = xn− 1, so g(0)h(0) = −1. Hence the monic reciprocal

of h(x) is well-defined, is monic, represents an element of C⊥, has degree k and
the dimension of C⊥ is n − k. Hence by theorem 4.2.6 xkh(x−1)/h(0) is the
generator polynomial of the code C⊥.

A very interesting case is when gcd(q, n) = 1 as all roots of xn−1 are simple.
Let F = Fqm be the splitting field of the polynomial xn−1 over Fq and let α ∈ F
be a root of unity of order n over Fq. We have

xn − 1 =

n−1∏
i=0

(x− αi).

In this case the generator polynomial of C has powers of α as roots. Recall that
given g ∈ Fq[x], if g(αi) = 0, then g(αiq) = 0.

Definition 4.2.9. Let C be an [n, k, d]q cyclic code with generator polynomial
g(x) with gcd(n, q) = 1. The set

SC,α = SC = {i ∈ Z /nZ |g(αi) = 0}

is called the complete defining set of C.

34

Any cyclic code C is defined by its complete defining set SC = {i1, . . . , in−k},
since

C = {c(x) ∈ Cq,n|c(αi) = 0,∀i ∈ SC} ⇐⇒ g(x) =
∏
i∈SC

(x− αi).

Conversely, any subset S ⊆ Z /nZ which is invariant under multiplication by q
gives a cyclic code with generator polynomial g(x) =

∏
i∈S(x− αi). Therefore,

by this fact it follows that

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
. . .

...
1 αin−k α2in−k . . . α(n−1)in−k

 (4.1)

is a parity check matrix of the code C, since

HcT =

c(αi1)
c(αi2)
. . .

c(αin−k)

 = 0 ⇐⇒ c ∈ C.

Another interesting case is when n divides q− 1 as all roots of xn − 1 are in
Fq. Hence the splitting field of xn − 1 over Fq is Fq itself and such parity check
matrix in equation 4.1 is a matrix over Fq.

In coding theory, the minimum distance of a linear code is also crucial as the
correction capability of a linear code in theorem 4.1.7 depends on its minimum
distance. For cyclic codes we have the following result from Bose, Chaudhuri,
and Hocquenghem which gives a bound for the minimum distance of a cyclic
code.

Theorem 4.2.10. [BCH Bound] Let C be a cyclic code of length n that has at
least γ − 1 consecutive elements in SC modulo n. Then the minimum distance
of C is at least γ.

Proof. See [25], page: 173.

Now we give some examples of cyclic codes where its minimum distance is
equal to the weight of its generator polynomial.

Example 4.2.1. Let C be the [6, 3]7 cyclic code with the generator polynomial
g(x) = x3 + 3x2 + x+ 6. Since all roots of x6 − 1 over Fq are all elements of F∗q
where 3 generates F∗q . Then we have 3, 32 and 33 are the zeros of g(x) over Fq
and so by BCH bound in theorem 4.2.10 we have d(C) ≥ 4. Moreover, since we
have wt(g(x)) = 4, d(C) = 4. Hence the code C is an MDS code.

Example 4.2.2. Let C be the [7, 4]2 cyclic code with the generator polynomial
g(x) = x3+x+1. We know from Galois theory that the splitting field of x3+x+1

35

is isomorphic to F23 . Suppose that α ∈ F8 is a root of g(x) = x3 +x+ 1. Hence
by the Frobenius morphism, α2 is also a root of g(x). Hence we have that αj

is a zero of g(x) for two consecutive values of j = 1, 2. So by the BCH bound
we have d(C) ≥ 3 and by the weight of g(x) we have d(C) ≤ 3. So we conclude
that d(C) = 3.

4.3 Decoding Codes with Gröbner Bases Method

The idea of using Gröbner bases in decoding problems is by associating a certain
polynomial system over a finite field to a non codeword such that the solution
of the polynomial system of equations corresponds to the error vector.

Let C be a linear code and v ∈ Fnq . Decoding problem is the problem of
finding the closest codeword D(v) ∈ C to v, if it exists, with respect to the
Hamming distance. However, as we have seen in theorem 4.1.7, a linear code
only has correction capability up to τ := bd−12 c errors. Hence we need to restrict
the decoding problem for all non codewords v which satisfy

d(v,C) = min{d(v, c)|c ∈ C} ≤ τ.

If d(v,C) ≤ τ , then there exists a unique codeword D(v) ∈ C such that d(v,C) =
d(v,D(v)).

Definition 4.3.1. Let H be a parity check matrix for a linear code C and let
v ∈ Fnq . Then the vector s ∈ Fn−kq satisfying sT = HvT is called the syndrome
of v and it is denoted by s(v).

So the syndrome of v is zero if and only if v is a codeword in C. Otherwise,
there are errors occurring during the transmission.

Definition 4.3.2. Two words v and u in Fnq are said related if and only their

syndromes are equal, i.e., HvT = HuT . If v and u are related we denote it by
v ∼ u.

Lemma 4.3.3. The relation ∼ in definition 4.3.2 is an equivalence relation.

Suppose that v = c+e be a received word composed of a codeword c ∈ C and
an error vector e ∈ Fnq of weight at most τ . So by the property of parity check
matrix of C we have the syndromes of v and e are equal. So, given v ∈ Fnq with
s(v) = s, we have the corresponding equivalence class [v] = {u ∈ Fnq |s(U) = s}.
Hence we need to find the vector e of weight at most τ which has syndrome
equals to s. The vector e is unique by theorem 4.1.7 and e is the error vector
occurred in v. Therefore, to decode a received word v we go through the subset
of Fnq containing all vectors of weight i, where i = 1, . . . up to we reach where
the vector e lies. The following algorithm shows how we find the vector e and
recover the received word v systematically. The algorithm is called syndrome
decoding algorithm.

36

Algorithm 2: Syndrome Decoding Algorithm

Input: A parity check matrix H of a linear code C, a received word
v ∈ Fnq of distance to C at most τ .

Output: The unique codeword D(v).
1 HvT := sT ;
2 i := 1;
3 if s = 0 then
4 v is a codeword and D(v) := v.

5 else
6 Compute:
7 Ei := {e ∈ Fnq |wt(e) = i};
8 HETi := {HeT |e ∈ Ei};
9 while sT 6∈ HETi do

10 i:=i+1;

11 Take the element e ∈ Ei such that sT = HeT and compute
D(v) := v − e.

Remark. The number of elements of Fnq of weight i is equal to

(
n
i

)
(q − 1)i.

Hence if the worst case happens, i.e., the number of errors occurred is equal to τ ,
then the complexity of the algorithm is O(nτ (q−1)τ). Therefore, the algorithm
is not really efficient even if we work on binary codes as the complexity is still
polynomial in term of the length n of the codes. So we need more efficient
methods to solve such decoding problems.

4.3.1 Decoding Cyclic Codes with Gröbner Bases

There are several methods for decoding cyclic codes. One of the first approaches
using non-linear system of equations was formulated by Cooper in [12]. Another
method for decoding cyclic codes by using Gröbner bases is Newton identities
method in [3], [4], [8], and [9]. In this part we discuss Cooper philosophy, and we
provide some examples to describe how we use Gröbner bases in this method.

Let Fqm be the splitting field of xn − 1 over Fq with gcd(n, q) = 1 and let
α ∈ Fqm be a root of unity of order n. Let C be the [n, k, d]q cyclic code with
generator polynomial g(x) and complete defining set SC = {i1, . . . , ir} with
r = n− k as we have in definition 4.2.9. So

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
. . .

...
1 αir α2ir . . . α(n−1)ir

 (4.2)

is a parity check matrix of C. Now we write all codewords and words in terms
of polynomials, i.e., for every vector v = (v1, . . . , vn) ∈ Fnq we associate it with

37

v(x) =
∑n−1
i=0 vix

i. Let v = c + e be a received word with error vector e of
weight at most τ . Then by the equality

sT = HvT = HeT ,

for all i ∈ SC we have si = e(αi). Therefore, we have the following Fq-algebra
morphism

Φ : Cq,n = Fq[x]/(xn − 1) −→ Frqm
f 7−→ (f(αi1), f(αi2), . . . , f(αir))

with kernel is equal to C. Therefore we have all entries of the syndrome s of v:

siu = v(αiu) = e(αiu) =
n−1∑
j=0

ej(α
iu)j , 1 ≤ u ≤ r. (4.3)

The ej 6= 0 if and only if there is error occured on the coordinate j of v.
Moreover, if J = {j1, . . . , jl} with l ≤ τ is the set of indices on which ej 6= 0,
then we may reduce the summation in the equations 4.3 to be

siu = v(αiu) = e(αiu) = ej1(αiu)j1 + · · ·+ ejl(α
iu)jl , 1 ≤ u ≤ r.

So j1, . . . , jl refers to the error locations and ej1 , . . . , ejl refers to the error values.
Since we assume that the number of errors occured is at most τ , we introduce

the variables x1, . . . , xτ and z1, . . . , zτ , where xl stands for the error locations
and zl stands for the error values. So xl := αjl and zl := ejl is a solution to the
equations

siu =

τ∑
l=1

zlx
iu
l , 1 ≤ u ≤ r. (4.4)

Now we will show how to find the value of xl which are the error locations of
a received word. After we find the value of the xl we are able to compute the
error values zl by using Gaussian elimination on the equation 4.4. To find the
values of xl we are going to consider Cooper’s philosophy or also know as the
power sum method.

In order to specify which values of the variables that are allowed in equations
4.4, we consider some additional equations to the system of equations we have
in 4.4:

• Since α is an n-th root of unity, we add xnl = 1 for all 1 ≤ l ≤ τ ;

• Since ejl ∈ F∗q , we add zql = zl for all 1 ≤ l ≤ τ ;

• To ensure that for each distinct pair k and l we have distinct values for
xk and xl, we add xkxlp(n, xk, xl) = 0 for all 1 ≤ k < l ≤ τ where

p(n, x, y) =
xn − yn

x− y
=

n−1∑
i=0

xiyn−1−i.

38

Because we do not know how many errors occurred, we use w as the variable
for the number of weight of the error vector e. Therefore we have an ideal in
Fq[x, z] where x = (x1, . . . , xw) and z = (z1, . . . , zw) generated by the following
system of equations:

Cooperq,r,w(x, z) =

∑w
l=1 zlx

iu
l = siu 1 ≤ u ≤ r;

xnl = 1 1 ≤ l ≤ w;
zql = zl 1 ≤ l ≤ w;
xkxlp(n, xk, xl) 1 ≤ k < l ≤ w.

Hence the decoding problem can be transformed into the problem of finding the
reduced Gröbner basis of the ideal generated by the system of equations.

Let I be an ideal in F[x1, . . . , xn] for some field F with finitely many zeros
and all are defined over F. Let V = V (I) ⊂ Fn be the zero set of the ideal I.
Then the zero set of I ∩F[x1, . . . , xi] for some i < n is equal to the projection of
V on the first i coordinates. This fact and proposition 3.2.4 lead us to eliminate
the variables z1, . . . , zw, x2, . . . , xw in Cooperq,r,w(x, z) to find error locations
of a received word. Indeed, if (x1, . . . , xw) is the x-part of a solution (x, z) to
Cooperq,r,w(x, z), then any permutation of the xi is also a solution (apply the
same permutation on the z-part of the solution). Hence every error-locators will
appear as the first coordinate of the x-part of a solution to Cooperq,r,w(x, z).
Therefore, we need an elimination ordering to compute a Gröbner basis of the
ideal generated by Cooperq,r,w(x, z). To do this we choose the lexicographic
ordering ≺ with x1 ≺, . . . , xw ≺ zw ≺, . . . ,≺ z1. Hence the elimination ideal
(Cooperq,r,w(x, z))∩Fqm [x1] will contain a unique polynomial g where the roots
of g are the error-locators we are looking for.

Proposition 4.3.4. Let v be a received word with the number of errors occured
is t ≤ τ and let g(x1) be the monic generator of the ideal (Cooperq,r,t(x, z)) ∩
Fqm [x1]. Then the zeros of g are the error-locators of the received word v.

Proof. See [10], proposition 3.6, page: 264.

The generator we obtained from proposition 4.3.4 will be called the error-
locator polynomial and it is denoted as l(x1).

Theorem 4.3.5. Let v be a received word with the number of errors occured
is t ≤ τ and Cooperq,r,w(x, z) be its corresponding system of equations. Let
l(x1) denote the error-locator polynomial from proposition 4.3.4. Let g(x1) be
the generator of the ideal (Cooperq,r,w(x, z)) ∩ Fqm [x1]. Then

g(x1) =

{
1 if w < t;
l(x1) if w = t.

Proof. See [10], theorem 3.7, page: 264.

Therefore, to decode a received word v we perform the following algorithm:

39

Algorithm 3: Cooper Philosophy

Input: A parity check matrix H of a linear code C as in 4.2 , a received
word v ∈ Fnq of distance to C at most τ .

Output: The unique codeword D(v).
1 Begin

2 vHT := s;
3 if s = 0 then
4 v is a codeword and D(v) := v.

5 else
6 w := 1;
7 G : {1}
8 while 1 ∈ G do
9 G := Grobner(Cooperq,r,w(x, z));

10 w := w + 1;

11 Compute the roots of the unique element g(x1) ∈ G ∩ Fqm [x1];
12 Apply Gaussian elimination on the system 4.4;
13 Find the error vector e from the solution of the system 4.4;
14 D(v) := v − e.
15 Return D(v);
16 End

We give some examples to describe how to use the algorithm above:

Example 4.3.1. Let C be the [7, 4]2 cyclic code as in example 4.2.2. The
generator polynomial of C is g(x) = x3 + x + 1 and we have the correction
capability is τ = 1. Suppose that α ∈ F8 is a root zero of g(x). Then α2 and
α4 are also zeros of g(x) by Frobenius automorphism. So SC = {1, 2, 4} and we
have its parity check matrix:

H =

1 α1 α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α4 α α5 α2 α6 α3

 .

Suppose that we the transmitted code is c = (1, 0, 0, 0, 1, 1, 0)) but we received
v = (1, 0, 0, 0, 1, 0, 0). Then we have

Cooper2,3,1(x, z) =

z1x1 = 1 + α4;
z1x

2
1 = 1 + α;

z1x
3
1 = 1 + α2;

x71 = 1;
z21 = z1.

Hence by using SINGULAR we obtain a Gröbner basis for Cooper7,3,1(x, z) with
respect to the lexicographic ≺ with x1 ≺ z1 which is an elimination ordering,
G = {z1 + 1, x1 + (α2 + α + 1}. So we can determine the error vector e =
(e0, e1, . . . , e6): Since x = α2 + α + 1, then the error position is the coordinate

40

j such that αj = α2 + α + 1 which is j = 5 as we have from α3 + α + 1 = 0
and α5 = α3 + α2. Since the error value is z1 = 1, the error vector is e =
(0, 0, 0, 0, 0, 1, 0) and we get the original code c = v − e.

Example 4.3.2. Let C be the [6, 3]7 cyclic code as in example 4.2.1. The
generator polynomial of C is g(x) = x3 + 3x2 + x + 6 with 3, 2 and 6 are its
zeros. Hence SC = {1, 2, 3} and we have its parity check matrix:

H =

1 3 2 6 4 5
1 2 4 1 2 4
1 6 1 6 1 6

 .

Suppose that we have sent c = (1, 1, 1, 1, 1, 1) but we received v = (1, 1, 2, 1, 1, 1).
Then we have

Cooper7,3,1(x, z) =

z1x1 = 2;
z1x

2
1 = 4;

z1x
3
1 = 1;

x61 = 1;
z71 = z1.

Hence by using SINGULAR we obtain a Gröbner basis for Cooper7,3,1(x, z) with
respect to the lexicographic ≺ with x1 ≺ z1 which is an elimination ordering,,
G = {z1 − 1, x1 − 2}. So we can determine the error vector e = (e0, e1, . . . , e5):
Since x = 2, then the error position is the coordinate j such that 3j = 2 which
is j = 2 and the error value is 1. So the error vector is e = (0, 0, 1, 0, 0, 0) and
the transmitted code is v − e = c.

Now in the following example we consider one of subclass of cyclic codes namely
Reed-Solomon (RS) codes.

Definition 4.3.6. Let q be a power of some prime p and let α be a primitive
element, i.e., a generator of F∗q . Let n = q − 1. Let b and k be non-negative
integers with 0 ≤ b, k ≤ n. A RS code is a cyclic code with generator polynomial

gb,k(x) = (x− αb) . . . (x− αb+n−k−1)

and it is denoted by RSk(n, b).

Proposition 4.3.7. The code RSk(n, b) with n = q − 1, is MDS of dimension
k and (RSk(n, b))⊥ = RSn−k(n, n− b+ 1). Moreover, the complete defining set
of C = RSk(n, b) is SC = {b, b+ 1, . . . , b+ n− k − 1}

Proof. See [25], page:201.

Example 4.3.3. Now we consider the code RS3(7, 1). It is a cyclic code over
F8 with generator polynomial

g1,3(x) = (x− α)(x− α2)(x− α3)(x− α4)

41

where α3 = α + 1. So the minimum distance of RS3(7, 1) is 5 and hence the
correction capability is τ = 2. By the generator matrix g1,3(x), we have its
corresponding parity check matrix:

H =

1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3

 .

Suppose that we the transmitted code is c = (1, 1, 1, 1, 1, 1, 1) but we received
v = (1, 1, 0, 1, 1, 0, 1). Then we have

Cooper2,3,1(x, z) =

z1x1 = 1 + α+ α3 + α4 + α6;
z1x

2
1 = 1 + α2 + α6 + α+ α5;

z1x
3
1 = 1 + α3 + α2 + α5 + α4;

z1x
4
1 = 1 + α4 + α5 + α2 + α3;

x71 = 1;
z21 = z1.

Hence by using SINGULAR we obtain a Gröbner basis for Cooper7,3,1(x, z) with
respect to the lexicographic ≺ with x1 ≺ z1 which is an elimination ordering,
G1 = 1. So we continue to compute a Gröbner basis G2 for

Cooper2,3,2(x, z) =

z1x1 + z2x2 = 1 + α+ α3 + α4 + α6;
z1x

2
1 + z2x

2
2 = 1 + α2 + α6 + α+ α5;

z1x
3
1 + z2x

3
2 = 1 + α3 + α2 + α5 + α4;

z1x
4
1 + z2x

4
2 = 1 + α4 + α5 + α2 + α3;

x71 = 1;
x72 = 1;
z21 = z1;
z22 = z2.

Again by SINGULAR we have G2 ∩ F8[x1] = x21 + (α)x + 1 with respect to
the lexicographic ≺ with x1 ≺ x2 ≺ z2 ≺ z1 which is an elimination ordering.
Moreover, the roots of x21+(α)x+1 are α2 and α5 which are the error locators. So
the error occured at the coordinate e2 and e5. By using the roots of x21+(α)x+1
we obtain the error vector e = (0, 0, 1, 0, 0, 1, 0).

Remark. The decoding process described above requires us to compute a
Gröbner bases for Cooperq,r,w(x, z) every time we receive y. This would cer-
tainly take too much time to be practical. Instead of computing a Gröbner bases
for every such word, it is nicer to compute a Gröbner basis one time which works
for every y we receive. To do this we need to treat all syndromes si as variables
and work on a bigger polynomial ring, namely the ring T [s1, . . . , sr] where T is
the polynomial ring Fq[x1, . . . , xw, z1, . . . , zw]. The advantage is now one only
needs to compute a single Gröbner basis for decoding words with exactly t ≤ τ
errors. But the disadvantage is an increase time and storage consuming for the
computations of Gröbner bases as we work on a bigger polynomial ring. For
more detail, see [25].

42

4.3.2 Decoding Linear Codes with Gröbner Bases

There are several methods for decoding arbitrary linear codes using Gröbner
bases as the main tools, namely, Fitzgerald-Lax method in [17], decoding by
embedding in MDS code, decoding by normal form computation in [5], etc. In
this part we discuss the Fitzgerald-Lax method, and we provide examples to
describe how to use this method.

Fitzgerald-Lax Method:

The main idea of this method is representing linear codes as another class of
codes which we call affine variety codes.

Definition 4.3.8. Let q = pr for some prime p and positive integer r. Let Fq
be the finite field with q elements and Fq be the closure of Fq. Let S be a subset

of Fq[x1, . . . , xm]. The set of all simultaneous solutions of S in Fmq ,

V (S) := {(a1, . . . , am) ∈ Fmq)|∀f ∈ S, f(a1, . . . , am) = 0},

is called the affine variety of S.

Definition 4.3.9. Let Y be a subset of Fnq . The set of all polynomials in
Fq[x1, . . . , xs] which vanish on Y is denoted by I(Y).

Remark.

• If I is the ideal generated by S, then V (I) = V (S);

• For any subset Y of Fmq , I(Y) is an ideal in Fq[x1, . . . , xm];

• By Hilbert’s Nullstellensatz, for any ideal I of Fq[x1, . . . , xm], we have

I(V (I)) =
√
I and V (I) = V (I(V (I))) = V (

√
I), where

√
I denotes the

radical of I.

An element (a1, . . . , an) of V (S) is called a point of V (S) and all points of
V (S) whose coordinates lie in Fq are called the Fq-rational points of V (S).

Proposition 4.3.10. Let I be an ideal of Fq[x1, . . . , xm]. Then the Fq-rational
points of V (I) are the points of V (Iq) where Iq = I + (xq1 − x1, . . . , xqm − xm).

Proof. Since I ⊆ Iq, we have V (Iq) ⊆ V (I). Let (a1, . . . , am) ∈ V (Iq). Since
fi = xqi − x ∈ Iq, we have fi(a1, . . . , am) = 0. Therefore, by the property that
ai ∈ Fq if and only if aqi = ai we have (a1, . . . , am) is an Fq-rational point.

Conversely, let (a1, . . . , am) be an Fq-rational point of V (I). Therefore,
aqi = ai as ai ∈ Fq and hence fi(a1, . . . , am) = 0 for fi = xqi − xi. Moreover,
since (a1, . . . , am) ∈ V (I) we have g(a1, . . . , am) = 0 for all g ∈ I. Therefore we
have (a1, . . . , am) is a zero of any polynomial of the form

g(x1, . . . , xm)l(x1, . . . , xm) +

m∑
i=1

hi(x1, . . . , xm)(xqi − xi).

Hence (a1, . . . , am) ∈ V (Iq).

43

Now we are going to show that the ideals in Fq[x1, . . . , xm] of the form Iq
are radical. The following lemma from Seidenberg is useful to show such ideals
Iq are radical.

Lemma 4.3.11. (Seidenberg’s Lemma 92) Let J ⊂ Fq[x1, . . . , xm] be a zero
dimensional ideal, i.e., V (J) is finite, and assume that for 1 ≤ i ≤ m, J contains
a polynomial fi ∈ Fq[xi] with gcd(fi, f

′
i) = 1. Then J is an intersection of

finitely many maximal ideals. Particularly, J is a radical ideal.

Proof. See lemma 92 in [27].

Since Fq consist of q elements, V (I) contains at most qm Fq-rational points
and so V (Iq) is finite.

Corollary 4.3.12. Let I be an ideal of Fq[x1, . . . , xm]. Then Iq is a radical
ideal.

Proof. Since V (Iq) is finite, Iq is a zero dimensional ideal. By lemma 92 in [27],
it is enough to show that gcd(fi, f

′
i) = 1 for fi = xqi − xi, 1 ≤ i ≤ m. The

formal derivative f ′i is qxq−1i − 1 = −1 as the characteristic of Fq is p which
means gcd(fi, f

′
i) = 1.

We need the following isomorphism of vectors to construct an affine variety
code.

Lemma 4.3.13. Let R := Fq[x1, . . . , xm]/Iq for some ideal I of Fq[x1, . . . , xm].
Let n be the number of points of V (Iq). Then the map φ defined by

φ : R→ Fnq

f 7→ (f(P1), . . . , f(Pn)),

where f is the image of f under the quotient map from Fq[x1, . . . , xm] onto R
and Pi are the distinct elements in V (Iq), is an isomorphism of Fq-vector spaces.

Proof. Suppose that f̄1 = f̄2. Then f2 = f1 + g for some g ∈ Iq. Therefore,
for every P ∈ V (Iq) we have f2(P) = f1(P) + g(P) = f1(P) as g ∈ Iq. Then
φ(f̄1 = φ(f̄2 and so φ is well-defined.

We are going to show that the map is injective. Let f̄1 and f̄2 are in R such
that φ(f̄1 = φ(f̄2. Then φ(f̄1 − f̄2) = 0 ∈ Fnq which means f1 − f2 is zero at

every point of V (Iq). By he Nullstellensatz, that implies f1 − f2 is in
√
Iq, but

Iq is radical so f1 − f2 ∈ Iq and f̄1 − f̄2 = 0.
Furthermore, Iq is the intersection of the n maximal ideals corresponding

to each distinct point Pi ∈ V (Iq) as Iq is radical. By the Chinese Remainder
theorem, R is of dimension n as a vector space of Fq and hence the map is
surjective.

Definition 4.3.14. Let I be an ideal of Fq[x1, . . . , xm] and let L be an Fq-
vector subspace of R := Fq[x1, . . . , xm]/Iq. Let φ be the isomorphism in lemma
4.3.13. We define the affine variety code C(I, L) as the image φ(L) of L.

44

Note that different numbering of the points P1, . . . , Pn of V (Iq) gives differ-
ent linear codes. But they are still equivalent, i.e., two codes C1 and C2 are
equivalent if a generator matrix of C1 can be obtained by a column permutation
of a generator matrix of C2.

Theorem 4.3.15. (Fitzgerald and Lax in [16]) Let C be any linear code over
Fq of length n of dimension k. Then there exist a positive integer m which is
the least integer satisfying qm ≥ n, an ideal I ⊂ Fq[x1, . . . , xm] and a subspace
L ⊂ R such that C = C(I, L).

Proof. Let C be a linear code over Fq of length n and dimension k. Let G = [cij]
with 1 ≤ i ≤ k and 1 ≤ j ≤ n be a generator matrix of C. Let m be the least
integer satisfying qm ≥ n. Let Y = {P1, . . . , Pn} ⊆ Fmq where Pi’s are distinct
and let I = I(Y). We write all points in Fmq by Pj = (aj1, . . . , ajm). Consider
the following polynomial

XPj (x1, . . . , xm) =

m∏
l=1

(1− (xl − ajl)q−1).

By Delsarte, Goethals and MacWilliams in [18], the polynomial XPj is zero at
every point in Fmq except at Pj where the value is 1.

Consider the following polynomials

f̄i =

n∑
j=1

cijX̄Pj

for i = 1, . . . , k and X̄Pj
is the image of XPj

in the quotient ring Fq[x1, . . . , xm]/Iq.
Let L = (f̄1, . . . , f̄k). Then C = C(I, L).

Example 4.3.4. Let C be the [8, 4, 4]3 linear code with generator matrix:

G =

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 .

We order the points of F2
3 as follows: P1 = (0, 0), P2 = (0, 1), P3 = (0, 2), P4 =

(1, 0), P5 = (1, 1), P6 = (1, 2), P7 = (2, 0), P8 = (2, 1), P9 = (2, 2). Consider
the first eight points of F2

3. Therefore, by Delsarte, Goethals and MacWilliams
in [18], the ideal I ⊆ F3[x, y] such that V (I3) = {P1, . . . , P8} is generated
by the polynomials XP9 = (−x2 + 4x − 3)(−y2 + 4y − 3). Now we compute
fi =

∑n
j=1 cijXPj

for i = 1, 2, 3, 4:

• f1 = (1 − x2)(1 − y2) + (−x2 + 2x)(−y2 + 4y − 3) + (−x2 + 4x − 3)(1 −
y2) + (−x2 + 4x− 3)(−y2 + 2y);

• f2 = (1 − x2)(−y2 + 2y) + (−x2 + 2x)(−y2 + 2y) + (−x2 + 4x − 3)(1 −
y2) + (−x2 + 4x− 3)(−y2 + 2y);

45

• f3 = (1− x2)(−y2 + 4y− 3) + (−x2 + 2x)(−y2 + 2y) + (−x2 + 4x− 3)(1−
y2) + (−x2 + 4x− 3)(−y2 + 2y);

• f4 = (−x2 + 2x)(1 − y2) + (−x2 + 2x)(−y2 + 2y) + (−x2 + 4x − 3)(1 −
y2) + (−x2 + 4x− 3)(1− y2).

Thus by theorem 4.3.15, we have the code C is C(I, L) where I is the ideal
generated by (−x2 + 4x− 3)(−y2 + 4y− 3) and L = 〈f̄1, f̄2, f̄3, f̄4〉 with f̄i is the
image of fi in F3[x, y]/I3.

To do decoding, it is more convenient to represent a linear code C as an affine
variety code of the form C⊥(I, L) for some suitable ideal I and subspace L of
Fq[x1, . . . , xm]/Iq because we would like to work with syndromes. So instead we
start with a generator matrix G in theorem 4.3.15, we use a parity check matrix.
Let C be a linear code over Fq of length n and dimension k. Let C⊥(I, L) be
the corresponding affine variety code of C, where I = (g1, . . . , gl) ⊆ Fq[x1, . . . , xm];

L = (f̄1, . . . , f̄n−k) ⊆ Fq[x1, . . . , xm]/Iq;
V (Iq) = {P1, . . . , Pn}.

Then by the construction of C in theorem 4.3.15, we have a parity check matrix
H for C where H = [fi(Pj)] with i = 1, . . . , n− k and j = 1, . . . n.

Let y be a received word and let s = (s1, . . . , sn−k) be the syndrome of y.
Then we have si =

∑n
j=1 yjfi(Pj). Moreover, if y = c + e for some c ∈ C and

e is the error vector, then si =
∑n
j=1 ejfi(Pj). Hence the points Pj ∈ V (Iq),

on which fi(Pj) is nonzero, corresponds to the error locations and we call these
points as error points.

Like cyclic codes case in previous subsection, we need to find the error posi-
tions and the error values for each position. Now we restrict the case when the
number of errors t occurred is at most τ := bd−12 c, to make sure that the error
vector e such that y − e ∈ C is unique.

Definition 4.3.16. Let y ∈ Fnq which has nonzero syndrome s = (s1, . . . , sn−k).
Let w ≤ τ be the variable for the number of errors occured in y. Let z =
(z1, . . . , zw) and x = (x11, . . . , x1m, . . . , xw1, . . . , xwm). The error locator ideal
Ew(y) ⊆ Fq[x, z] of the received word y is defined as the ideal generated by

∑w
j=1 zjfi(xj1, . . . , xjm)− si) 1 ≤ i ≤ n− k;

gh(xj1, . . . , xjm) 1 ≤ h ≤ l;
zq−1j − 1 1 ≤ j ≤ w.

Note that the variables xj1, . . . , xjm for j = 1, . . . , w correspond to coordi-
nates of each error points of V (Iq) and the variables z1, . . . , zw correspond to
the error values at those errors points. Moreover, let t be the number of errors
occured in y. As we have in cyclic case, if w < t the ideal Ew(y) has no solu-
tion. If w = t, then the ideal yields all information about the error vector of
y. Therefore, the problem of decoding has been translated into the problem of
computing a Gröbner basis of Ew(y).

46

Definition 4.3.17. Define the projection map π : Fw+mw
q → F1+m

q by

π(u) = π(x11, . . . , x1m, . . . , xw1, . . . , xwm, z1, . . . , zw) = (x11, . . . , x1m, z1).

J.Fitzgerald showed in [16] the following result, which makes easier to find the
error points of V (Iq).

Proposition 4.3.18. (x11, . . . , x1m, . . . , xw1, . . . , xwm, z1, . . . , zw) ∈ V (Ew(y))
if and only if (x11, . . . , x1m, z1) ∈ π(V (Ew(y)).

Proof. See [16], proposition 2.2.13.

Therefore, the proposition allows us to use elimination property of a Gröbner
basis with respect to an elimination ordering on the variables x11, . . . , x1m, z1.
Hence, to decode a received word v we perform the following algorithm:

Algorithm 4: Linear Code Decoding

Input: A parity check matrix H of a linear code C = C⊥(I, L), a
received word v ∈ Fnq of distance to C at most τ , an elimination
ordering ≺.

Output: The unique codeword D(v).
1 Begin

2 HvT := sT ;
3 if s = 0 then
4 v is a codeword and D(v) := v.

5 else
6 w := 1;
7 G : {1};
8 while 1 ∈ G do
9 G := Grobner(Ew(v));

10 w := w + 1;

11 Use the elimination property to compute V (G ∩ Fq[x11, . . . , x1m, z1]);
12 Determine the error points which correspond to the error locations;
13 Compute the error vector e;
14 D(v) := v − e.
15 Return D(v);
16 End

In the example below we give step by step how to use the algorithm above.
The example is by Fitzgerald:

Example 4.3.5. Let F4 = F2(α) with α2 = α + 1. Let I = (y2 + y − x3) ⊂
F4[x, y] and R = F4[x, y]/I4. The points of V (I4) are the F4-rational points of
V (I) which are P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2), P5 = (α, α),
P6 = (α, α2), P7 = (α2, α), P8 = (α2, α2). Let L = 〈1, x̄, ȳ, x̄2, x̄ȳ〉. Then the
code C = C⊥(I, L) has minimum distance 5 by [32]. Therefore we have a parity

47

check matrix of C = C⊥(I, L) is

H =

1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

0 0 1 1 α2 α2 α α
0 0 α α2 α2 1 1 α

 .

Suppose that the error vector is e = (0, 0, 1, 0, 0, α, 0, 0). Then the syndrome
of y is s = (α2, α, α2, 0, 0). Hence the error locator ideal E is the ideal in
F4[x1, y1, x2, y2, z1, z2] generated by the following polynomials:

z31 − 1, z32 − 1,

x41 − x1, x42 − x2, y41 − y1, y42 − y2,
y21 + y1 − x31, y22 + y2 − x32,
z1 + z2 − α2, z1x1 + z2x2 − α, z1x21 + z2x

2
2, z1x1y1 + z2x2y2.

By using the lexicographic ≺ with x1 ≺ y1 ≺ z1 ≺ x2 ≺ y2 ≺ z2 which is an
elimination ordering we can obtain a Gröbner basis G with respect to ≺ via the
computer program SINGULAR:

G = {x21 +α2x1 +α, y1 +αx1, z1 + x1, x2 + x1 +α2, y2 +αx1 + 1, z2 + x1 +α2}.

By proposition 4.3.18, we only need to consider G∩F4[x1, y1, z1] = {x21+α2x1+
α, y1 +αx1, z1 +x1} where the first coordinates of the error points are the roots
of x21 + α2x1 + α which are α and 1. When we substitute the values of x1 in
y1 +αx1 = 0, we obtain the two error points P3 = (1, α) and P6 = (α, α2) which
correspond to the error positions 3 and 6 in e. Moreover, from the polynomial
z1 + x1 = 0, we see that the error value at each point is the same as the first
coordinate at that point.

One might wonder how if we treat a cyclic code using this method. The
following example shows that using the algebraic properties of a cyclic code,
namely its generator polynomial or equivalently its defining set, we will see that
the ideal defined in definition 4.3.16 and the ideal Cooperq,r,w(x, z) are really
the same.

Example 4.3.6. Let Fqm be the splitting field of xn − 1 with gcd(n, q) = 1
and let α is the root of unity of order n. Let C be a cyclic code with complete
defining set SC. By taking V = {1, α, . . . , αn−1}, we have

I := I(V) = (Xn − 1)Fqm [x].

If we take the vector space L = 〈xj |j ∈ SC〉 over Fqm , Then we have C =
C⊥(I, L). Moreover, the ideal Et defined in definition 4.3.16 and the ideal
Cooperq,r,t(x, z) are really the same.

48

Remark. The decoding process described above requires us to compute a
Gröbner bases for Ew(y) every time we receive y. This would certainly take
too much time to be practical. Instead of computing a Gröbner bases for every
such word, it is nicer to compute a Gröbner basis one time which works for ev-
ery y we receive. To do this we need to treat all syndromes si as variables and
work on a bigger polynomial ring, namely the ring T [s1, . . . , sn−k] where T is the
polynomial ring Fq[x11, . . . , x1m, . . . , xw1, . . . , xwm, z1, . . . , zw] where 1 ≤ w ≤ τ .
The advantage is now one only needs to compute a single Gröbner basis for de-
coding words with exactly w errors. But the disadvantage is an increase in time
and storage consuming for the computations of Gröbner bases as we work on a
bigger polynomial ring. For more detail, see [17].

49

Bibliography

[1] B. Amrhein, O. Gloor, and W. Küchlin. On The Walk. Theoretical Com-
puter Science, pages 179-202, 1997.

[2] M. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Uni-
versity of Oxford, 1969.

[3] D. Augot, M. Bardet, and J.-C. Faugére. On the Decoding of Cyclic Codes
with Newton Identities. J. Symb. Comp., Vol:44, pages:1606-1625, 2009.

[4] M. A. Boer and R. Pellikaan. Gröbner Bases for Codes. Chap.10 of: Some
Tapas of Computer Algebra, Springer-Verlag, Berlin, 1999.

[5] M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick, and E.
Martinez-Moro. Gröbner Bases and Combinatorics fro Binary Codes. Appl.
Algebra Eng. Comm. Comput., Vol:19, pages: 393-411, 2008.

[6] B. Buchberger. A Criterion for Detecting Unnecessary Reduction in The
Construction of Gröbner Basis. Proceedings of EUROSAM, pages:3-21,
Springer, 1979.

[7] B. Buchberger. An Algorithm for Finding the Bases Elements of the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal (German). Uni-
versity of Innsbruck, Austria, 1965.

[8] S. Bulygin and R. Pellikaan. Decoding and Finding the Minimum Dis-
tance with Gröbner Bases. Series on Coding Theory and Cryptology, Vol:7,
Pages:585-622, 2010.

[9] X.Chen, I.S. Reed, T. Helleseth, and T.K. Truong. Algebraic Decoding of
Cyclic Codes: A Polynomial point of view. Contemporary Math. Vol. 168,
pages:15-22, 1994.

[10] A. M. Cohen, H. Cuypers, H. Strerk. Some Tapas of Computer Algebra.
Algorithms and computation in mathematics. Springer Verlag, New York,
Berlin, Heidelberg, 1999.

[11] S. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner
Walk. Camp. Linz. Bericht Nr.124, 1978.

50

[12] A. B. Cooper. Toward a New Method of Decoding Algebraic Codes Using
Gröbner Bases. Transactions of the Tenth Army Conference on Applied
Mathematics and Computing, pages: 1-11, 1993.

[13] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer Publishing Company, Incorporated, 4th edition, 2015.

[14] P. Delsarte, J. M. Goethals, and F. J. MacWilliams. On Generalized
Reed-Muller Codes and their Relatives. Information and Control, Vol. 16,
pages:403-442, 1970.

[15] V. Ene, and J. Herzog. Gröbner bases in Commutative Algebra. American
Mathematical Society, Rhode Island, 2010.

[16] J. Fitzgerald. Applications of Gröbner Bases to Linear Codes. Ph.D. Thesis,
Louisiana State Un., 1996.

[17] J. Fitzgerald and R.F. Lax. Decoding Affine Variety Codes Using Gröbner
Bases. Design. Code. Cryptogr., Vol:13, pages:147-158, 1998.

[18] R. Gebauer and H. Moller. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation, pages:275-286, 1988.

[19] P. Gritzmann and B. Sturmfels. Minkowski Addition of Polytopes: Compu-
tational Complexity and Applications to Gröbner Bases. SIAM J. Discrete
Math, pages:246-269, 1993.

[20] R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977.

[21] T. W. Hungerford. Algebra. Springer-Verlag, New York, 1997.

[22] N. Koblitz Algebraic Aspects of Cryptography. Algorithms and Computa-
tion in Mathematics, vol. 3, Springer, 1997.

[23] C. Kollreider. Polynomial Reduction: The Influence of the Ordering of
Terms on a Reduction Algorithm. Journal of Symbolic Computation, pages
465-469, 1997.

[24] D. W. C. Kuijsters. Coding theory a Gröbner basis approach. Ph.D Thesis,
Eindhoven University of Technology, 2017.

[25] R. Pellikaan, X. Wu, S. Bulygin, and R. Jurrius. Codes, Cryptology and
Curves with Computer Algebra. Cambridge University Press, Cambridge,
2018.

[26] L. Robbiano. Term Ordering on the Polynomial Ring. EUROCAL 85, vol.2
(Linz,1985), Lecture Notes in Comput. Sci , Vol. 204, Springer, pages: 513-
517, 1985.

51

[27] A. Seidenberg. Constructions in Algebra. Transactions of the American
Mathematical Society, pages: 273-313, 1974.

[28] B. Sturmfels. Gröbner Bases and Convex Polytopes. University Lecture
Series, Vol.8, AMS, Providence RI, 1996.

[29] Q.N. Tran. A Fast Algorithm for Gröbner Basis Conversion and its Appli-
cations. Journal of Symbolic Computation, pages: 451-467, 2000.

[30] Q.N. Tran. Ideal Specified-term Orders for Elimination and Application in
Implicitization. Tenth International Conferenceon Application of Computer
Algebra, pages: 15-25, 2005.

[31] Q.N. Tran. A New Class of Term Orders for Elimination. Journal of Sym-
bolic Computation, pages: 533-548, 2007.

[32] K. Yang and P. V. Kumar. On The True Minimum Distance of Hermitian
Codes. Coding Theory and Algebraic Geometry: Proceedings of AGCT-3,
pages: 99-107, 1991.

52

	Introduction
	What is a Gröbner Basis
	Thesis Overview

	Order Theory
	Monomial Ordering
	Representation of Monomial Orderings

	Gröbner Bases
	Multivariate Division
	The Notion of Gröbner Bases and Buchberger's Algorithm
	Weight Vector of Ideals
	Optimization of a Gröbner Basis Computation
	The selection of monomial orderings
	Detecting Useless S-polynomials
	Removing Superfluous Polynomials

	Gröbner Bases for Decoding Linear Codes
	Introduction
	Cyclic Codes
	Decoding Codes with Gröbner Bases Method
	Decoding Cyclic Codes with Gröbner Bases
	Decoding Linear Codes with Gröbner Bases

	Bibliography

