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1 Introduction

Let α1, ..., αn ∈ C be non-zero multiplicatively independent numbers. We write α = (α1, ..., αn),
and for x = (x1, ..., xn) ∈ Zn we use the notation

αx = αx1
1 · · ·αxnn .

We consider the Diophantine equation

αx = f(x) in x ∈ Zn, (1.1)

where f(x) = f(x1, ..., xn) ∈ C[x1, ..., xn] is a polynomial of total degree δ. By a special case of a
theorem of Laurent [6, 7, 8] the above equation has only finitely many solutions. Explicit upper
bounds for the number of solutions have been studied as well. Let K be the field
K := Q(α1, ..., αn) and write ∆ :=

(
n+δ
n

)
and B := ∆ + 1. In 2000, Schlickewei and Schmidt [15]

proved the following upper bound in the case where K is a number field.

Theorem 1.1. If K is a number field of degree d, then (1.1) has at most d6B
2

235B
3

solutions.

This is in fact a special case of what Schlickewei and Schmidt proved, namely Theorem 2.12 in
§2, which gives an upper bound for the number of solutions to so called exponential-polynomial
equations, of which (1.1) is a special case. Then, in 2009, Schmidt [19] generalised this result as
follows.

Theorem 1.2. If the set of all roots of unity in K generates a number field of finite degree d0,
then (1.1) has at most d6B

2

0 exp
(
B9B

)
solutions.

Notice that the previous two results only give an upper bound under certain assumptions on the
αi, and that the upper bounds depend on the αi. Building further on Schmidt’s ideas, Corvaja,
Schmidt and Zannier [2] were in 2010 the first to prove an upper bound that only depends on
the number of variables n and the total degree δ of f . Their result is as follows.

Theorem 1.3. Equation (1.1) has at most exp
(
B9B

)
solutions.

In this thesis we prove the following sharpening of the upper bound in Theorem 1.3.

Theorem 1.4. Equation (1.1) has at most (8B)9B
6

solutions.

Writing the upper bounds as

(8B)9B
6

= exp
(
9B6 log(8B)

)
and exp

(
B9B

)
= exp (exp (9B logB)) ,

we see that our gain is in loosing one exponential. In [2], it is remarked that Theorem 1.3 is
easily generalised to the same upper bound for the number of rational solutions to (1.1), if we fix
the values of logα1, ..., logαn (so that we can define αxii := exi logαi for xi ∈ Q). In the following
corollary, we generalise Theorem 1.4 in this way. The proof is given in §4.6.

Corollary 1.5. If we fix values for logα1, ..., logαn, then the equation

αx1
1 · · ·αxnn = f(x1, ..., xn) in x ∈ Qn (1.2)

has at most (8B)9B
6

solutions.
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1.1 Lower bounds

One could wonder whether the upper bound in Theorem 1.4 is close to being sharp as n → ∞.
Obviously there is no general lower bound for the number of solutions to (1.1). For example, if
the αi are algebraically independent and f ∈ Q[x1, ..., xn] and f(0, ..., 0) 6= 1, then (1.1) has no
solutions at all. The question remains whether there are particular classes of equations of the
form (1.1) for which the number of solutions is large when n → ∞, and in particular whether
this number can get close to the upper bound from Theorem 1.4. Therefore we consider classes
of equations

αx1
1 · · ·αxnn = f(x1, ..., xn)

for which the number of solutions g(n) satisfies g(n)→∞ as n→∞. We construct two of such
examples.

Example 1.6. For any multiplicatively independent complex numbers α1, ..., αn, let f be the
linear polynomial f(x1, ..., xn) := α1x1 + ... + αnxn. Let ei ∈ Zn denote the vector with i-th
coordinate equal to 1 and the other coordinates equal to 0. Then e1, ..., en are n solutions to
(1.1) for our choice of f . For this f we have δ = 1, so B =

(
n+1
n

)
+ 1 = n + 2, and (1.1) has at

least n ≥ B − 2 solutions.

Notation. For functions g, h : Z>0 → R>0 we use the notation f(n) ∼ g(n) if lim
n→∞

f(n)
g(n) = 1.

In the following example we apply Stirling’s estimate n! ∼
√

2πn
(
n
e

)n
in order to study the

growth of the number of solutions as a function of n.

Example 1.7. Let again α1, ..., αn be any multiplicatively independent complex numbers. For
a vector y = (y1, ..., yn) ∈ {0, 1}n, we write |y| := y1 + ...+ yn. Now let f be the polynomial

f(x1, ..., xn) :=
∑

y∈{0,1}n
(−1)|y|αy11 · · ·αynn (1− y1 − x1) · · · (1− yn − xn),

then we have f(x) = αx for each x ∈ {0, 1}n. Since f has total degree n, we have ∆ =
(
2n
n

)
, so

by Stirling’s estimate

B ∼ ∆ ∼ (2n)!

(n!)2
∼ 4n√

πn
.

Thus, for n large enough we have B ≤ 4n, and the equation (1.1) has at least 2n ≥
√
B solutions.

This is a smaller number of solutions than in Example 1.6, but in this new example the total
degree δ of f satsfies δ →∞ as n→∞, while the polynomial in Example 1.6 is linear for any n.

There is still a large gap between the lower bounds B−2 and
√
B that we found in our examples,

and the upper bound (8B)9B
6

from Theorem 1.4. To the best of the author’s knowledge, such
lower bounds have not been studied yet in the literature, so it is an open challenge to ”close the
gap”, i.e. to construct equations of the form (1.1) with more solutions and/or to improve the
upper bound from Theorem 1.4.

In the following example we fix n = 1, but the degree δ of f tends to infinity.

Example 1.8. Consider the equation αx = f(x) in x ∈ Z, where α ∈ C is not a root of unity
and where

f(x) =

k∑
i=1

 k∏
j=1
j 6=i

x− j
i− j

αi,
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with k a positive integer. Notice that for all integers 1 ≤ x ≤ k we have f(x) = αx. In this
example we have B =

(
1+k
1

)
+ 1 = k + 2, and our equation αx = f(x) has at least k = B − 2

solutions.

1.2 Outline of the thesis

We now provide a sketch of how we improve the upper bound from Theorem 1.3 to the one from
Theorem 1.4. Let K be a field of characteristic 0, let n ≥ 2 be an integer and let Γ ⊂ (K∗)n be
a subgroup of rank r. For coefficients a1, ..., an ∈ K∗, we consider the equation

a1x1 + ...+ anxn = 1 in (x1, ..., xn) ∈ Γ. (1.3)

A solution to this equation is called non-degenerate if no proper subsum of the left-hand side
vanishes. Evertse, Schlickewei and Schmidt [3] proved in 2002 that the number of non-degenerate
solutions to (3.4) is at most exp

(
(6n)3n(r + 1)

)
. In 2009, Amoroso and Viada [1] improved this

upper bound to (8n)4n
4(n+r+1). In §4 we prove Theorem 1.4. In this proof we follow the argu-

ments given in the proofs of Theorem 1.2 and Theorem 1.3. At the point where these proofs
apply the upper bound of Evertse, Schlickewei and Schmidt, we apply the new upper bound from
Amoroso and Viada. Using this new upper bound in the further calculations, we will arrive at
our result as stated in Theorem 1.4.

In §2 we study some general theory of exponential-polynomial equations and their relation to
linear recurrence sequences. In §3, we discuss some basic terminology related to linear equations,
the results of Evertse, Schlickewei and Schmidt, and of Amoroso and Viada, and (very briefly)
some of the techniques behind the proofs of these results.

Notation. Throughout this thesis, we use the notation N := {1, 2, 3, ...}, and by Q we denote
an algebraic closure of Q. For a set S and n ∈ N, we use the notation Sn = S × ... × S for
the n-fold cartesian product. For a multiplicative group G and n ∈ N, we use the notation
G[n] := {gn : g ∈ G}.

2 Linear recurrence sequences and exponential-polynomial
equations

In this section we treat some standard theory of linear recurrence sequences and exponential-
polynomial equations, as well as the current best known upper bounds for the number of solutions
of such equations. This section is for a large part based on Section 10.11 from [5]. For an extensive
treatment of the theory of linear recurrence sequences and exponential-polynomial equations, we
refer to the chapter on linear recurrence sequences by Schmidt in [11].

2.1 Linear recurrence sequences

We start with treating some standard theory of linear recurrence sequences. Let K be an
algebraically closed field of characteristic 0.

Definition 2.1. A linear recurrence sequence in K is a sequence L = (an)∞n=0 ⊂ K given by a
linear recurrence

an = c1an−1 + ...+ ckan−k for n ≥ k, (2.1)

5



where c1, ..., ck ∈ K and ck 6= 0, and by initial values a0, ..., ak−1 ∈ K, not all zero.

The most famous example of a linear recurrence sequence is the Fibonacci sequence
F = (Fn)∞n=0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...) given by the recurrence Fn = Fn−1 + Fn−2 for
n ≥ 2 and initial values F0 = 0 and F1 = 1. Of course this sequence can also be given by the
recurrence Fn = 2Fn−2 +Fn−3 and by initial values F0 = 0, F1 = F2 = 1. Therefore we need the
following definition.

Definition 2.2. Let L = (an)∞n=0 be a linear recurrence sequence as in Definition 2.1. The
minimal k ∈ N for which an expression such as (2.1) exists, is called the order of L.

Lemma 2.3. Let L = (an)∞n=0 be a linear recurrence sequence as in Definition 2.1, where k is
the order of L. Then the coefficients c1, ..., ck for which (2.1) holds are unique.

Proof. Suppose we have for all n ≥ k that

c1an−1 + ...+ ckan−k = an = d1an−1 + ...+ dkan−k,

with d1, ..., dk, c1, ..., ck ∈ C, with ck, dk non-zero, and assume that (c1, ..., ck) 6= (d1, ..., dk). Let
i be the smallest 1 ≤ j ≤ k such that cj 6= dj . Combining the two expressions for an yields

an−i =
1

di − ci
((ci+1 − di+1)an−i−1 + ...+ (ck − dkan−k)) ,

contradicting the minimality of k.

Definition 2.4. Let L = (an)∞n=0 be a linear recurrence sequence as in Definition 2.1, where
k is the order of L. Then we associate to L its companion polynomial fL ∈ C[X] given by
fL(X) := Xk − c1Xk−1 − ...− ck−1X − ck.

Note that the companion polynomial is well-defined, because of Lemma 2.3. For example, the
Fibonacci sequence F has companion polynomial

fF = X2 −X − 1 = (X − ϕ)(X − ψ),

where ϕ := 1+
√
5

2 is the golden ratio and ψ := 1−
√
5

2 is its conjugate in the field Q
(√

5
)
. It is

well known that the Fibonacci numbers can be calculated directly without using recursion, via
the expression

Fn =
ϕn − ψn√

5
for all n ≥ 0,

This turns out to be a general phenomenon, as is indicated by Theorem 2.5, which states
that there is a one to one correspondence between linear recurrence sequences and exponential-
polynomial expressions in one variable. Let L be a linear recurrence sequence as in Definition
2.1 of order k. Since K is algebraically closed, we can factorise the companion polynomial fL as
fL(X) = (X − α1)e1 · · · (X − αm)em , with α1, ..., αm ∈ K pairwise different and e1, ..., em ∈ N.

Theorem 2.5. There are polynomials g1(X), ..., gm(X) with deg gi = ei−1 for each i, such that
for all n ≥ 0 we have

an = g1(n)αn1 + ...+ gm(n)αnm. (2.2)

On the other hand, every sequence (an)∞n=0 of the form (2.2) is a linear recurrence sequence.
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Proof. The idea of the proof is to write the formal power series
∞∑
n=0

anX
n in two different ways,

which gives relation (2.2) for an. The polynomial f(X) := XkfL
(

1
X

)
= 1 − c1X − ... − ckXk

factorises as
f(X) = (1− α1X)e1 · · · (1− αmX)em .

Define g(X) := f(X)
∞∑
n=0

anX
n, and write c0 := −1 and ci := 0 for i ≥ k + 1. Then we have

g(X) = −

( ∞∑
i=0

ciX
i

)( ∞∑
n=0

anX
n

)
= −

∞∑
l=0

( ∑
i+n=l

cian

)
X l.

For l ≥ k, the recurrence relation (2.1) gives that
∑

i+n=l

cian = 0, so g is in fact a polynomial of

degree at most k− 1. Partial fraction decomposition gives that there are coefficients ci,j ∈ K for
1 ≤ i ≤ m and 1 ≤ j ≤ ei, with ci,j 6= 0 if j = ei, such that

∞∑
n=0

anX
n =

g(X)

f(X)

=

m∑
i=1

ei∑
j=1

ci,j
(1− αiX)j

=

m∑
i=1

ei∑
j=1

ci,j

∞∑
n=0

(
n+ j − 1

n− 1

)
αni X

n =

∞∑
n=0

 m∑
i=1

 ei∑
j=1

ci,j

(
n+ j − 1

n− 1

)αni

Xn.

Comparing coefficients on both sides, we see that an satisfies a relation of the form (2.2).

Now assume (an)∞n=0 is a sequence of the form (2.2). We show that an satisfies the relation

(2.1). Writing gi(x) =
ei−1∑
j=0

ci,jx
j , we have for all n ≥ k that

k∑
h=1

chan−h =

k∑
h=1

ch

m∑
i=1

ei−1∑
j=0

ci,j(n− h)jαn−hi

=

m∑
i=1

ei−1∑
j=0

ci,j

k∑
h=1

chα
n−h
i (n− h)j .

(2.3)

Let x d
dx be the operator that first takes the derivative of a function in x and then multiplies it

with x. By induction on j one can show that for each j ≥ 0 we have(
x
d

dx

)j (
xn−kfL(x)

)
=

k∑
h=0

chx
n−h(n− h)j . (2.4)

Because of the factorisation of fL, we have f
(j)
L (αi) = 0 for each 0 ≤ j ≤ ei − 1, so evaluating

(2.4) in αi yields
k∑
h=0

chα
n−h
i (n− h)j = 0.
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Combining this with (2.3) provides us with

k∑
h=1

chan−h =

m∑
i=1

ei−1∑
j=0

ci,jn
jαni = an.

Definition 2.6. For L = (an)∞n=0 a linear recurrence sequence, we call
N(L) := #{n ∈ Z≥0 : an = 0} the zero multiplicity of L (which is possibly infinite).

Because of Theorem 2.5, determining the zero multiplicity of linear recurrence sequences is
equivalent to determining the number of solutions to exponential-polynomial equations

g1(n)αn1 + ...+ gm(n)αnm = 0 in n ∈ Z≥0, (2.5)

with g1, ..., gm ∈ K[X] non-zero polynomials and α1, ..., αm ∈ K∗ pairwise different.

Definition 2.7. Let L = (an)∞n=0 be a linear recurrence sequence with companion polynomial
fL = Xk−c1Xk−1− ...−ck−1X−ck, where fL factorizes as fL(X) = (X−α1)e1 · · · (X−αm)em .
Then L is called non-degenerate if αiαj is not a root of unity for all i 6= j, and L is called degenerate

if it is not non-degenerate.

Degenerate linear recurrence sequences can have infinitely many zeroes. For example, the se-
quence L = (an)∞n=0 with a0 = 2, a1 = 0 and an = 4an−2 for n ≥ 2, satifies an = 2n + (−2)n

and has companion polynomial fL(X) = (X − 2)(X + 2), while 2
−2 = −1 is a root of unity. The

following theorem states that this cannot happen for non-degenerate linear recurrence sequences.

Theorem 2.8. If L is a non-degenerate linear recurrence sequence, then L has finite zero mul-
tiplicity.

In 1935, Skolem [20] proved Theorem 2.8 in the case K = Q, and in the same year Mahler
[10] proved the case K = Q. Finally, in 1953 Lech [9] proved Theorem 2.8 for any field K of
characteristic 0. Their proofs are based on p-adic analysis. After these results were proven, study
has been made of explicit upper bounds for zero multiplicities of linear recurrence sequences.
Schmidt [18] was the first to prove an upper bound for the zero multiplicity only depending on
the order of the sequence.

Theorem 2.9. If L is a non-degenerate linear recurrence sequence of order k, then

N(L) ≤ exp(exp(exp(3k log k))).

The current best known upper bound was obtained by Amoroso and Viada [1].

Theorem 2.10. If L is a non-degenerate linear recurrence sequence of order k, then

N(L) ≤ exp(exp(70k)).

This main reason for this improvement is that Amoroso and Viada used their improved upper
bound for the number of solutions to linear equations in a multiplicative group [1] (Theorem 3.6
in this thesis) instead of an earlier result from Evertse, Schlickewei and Schmidt [3] (Theorem
3.5 in this thesis).
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2.2 General exponential-polynomial equations

Equation of the type (2.5), which correspond to zeroes of linear recurrence sequences, are expo-
nential polynomial equations in one variable. Now we consider general exponential-polynomial
equations. Let again K be an algebraically closed field of characteristic 0, and let n ∈ N. Recall
the notation αx = αx1

1 · · ·αxnn , for α = (α1, ..., αn) ∈ (K∗)n and x = (x1, ..., xn) ∈ Zn. Let
f1, ..., fm ∈ K[x1, ..., xn] be non-zero polynomials, and let α1, ..., αm ∈ (K∗)n, and consider the
equation

f1(x)α1
x + ...+ fm(x)αm

x = 0 in x ∈ Zn. (2.6)

A solution x ∈ Zn to (2.6) is called non-degenerate if there is no strict non-empty subset I of
{1, ...,m} such that ∑

i∈I
fi(x)αi

x = 0.

Let Λ(α1, ..., αm) ⊂ Zn be the subgroup

Λ(α1, ..., αm) := {x ∈ Zn : α1
x = ... = αm

x}.

Laurent ([6], [7] [8]) proved the following finiteness result.

Theorem 2.11. If Λ(α1, ..., αm) = {0}, then (2.6) has finitely many non-degenerate solutions.

As mentioned in the introduction, this implies that (1.1) has finitely many solutions, as we now
show. Writing α1 := α, α2 := (1, ..., 1), f1 = 1 and f2 = −f , equation (1.1) is equivalent to

f1(x)α1
x + f2(x)α2

x = 0.

Since α1, ..., αn are multiplicatively independent, we have Λ(α1, α2) = {0}, so indeed (1.1) has
finitely many solutions by Theorem 2.11.

Theorem 2.11 also implies Theorem 2.8. By Theorem 2.5 we have to show that (2.5) has finitely
many solutions, where g1, ..., gm ∈ K[x] are non-zero polynomials and where none of the quo-
tients αi

αj
(i 6= j) is a root of unity. We proceed by induction on m. If m = 1, then the result is

obvious, since a non-zero polynomial in one variable has only finitely many zeroes. Now let m ≥ 2
and suppose that equations of the form (2.5) in fewer than m variables have only finitely many
solutions. Since none of the quotients αi

αj
(i 6= j) is a root of unity, we have Λ(α1, ..., αm) = {0},

so by the one variable case of Theorem 2.11, equation (2.5) has only finitely many non-degenerate
solutions. Now assume n ∈ Z≥0 is a degenerate solution to (2.5), then there is a strict non-empty
subset I ⊂ {1, ...,m} with ∑

i∈I
gi(n)αni = 0,

such that the above does not hold for any strict non-empty subset of I. But then n is a non-
degenerate solution to the equation above, so by the induction hypothesis there are finitely many
possibilities for n for each I. Since there are finitely many possibilities for I as well, there are
finitely many degenerate solutions to (2.5), completing the inductive proof of Theorem 2.8.

It is still an open problem to find an upper bound for the number of non-degenerate solutions
to (2.6) that only depends on the number of variables n, the total degrees of the polynomials fi,
and the number of polynomials m (and not on the values of the αi), under the assumption that
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Λ(α1, ..., αm) = {0}. Such upper bounds are known for exponential-polynomial equations with
only one polynomial involved, i.e. equations of the form (1.1), and for exponential-polynomial
equations in one variable, i.e. equations of the form (2.5), as we discussed in §1 resp. §2.1. The
following theorem of Schlickewei and Schmidt [15] from 2000 provides an upper bound for the
number of non-degenerate solutions to (2.6) over number fields, with a dependence on the αi.

Theorem 2.12. Assume that Λ(α1, ..., αm) = {0}. Further suppose that the coordinates of the
vectors αi and the coefficients of the polynomials fi (i = 1, ...,m) are contained in an algebraic
number field of degree d. For i = 1, ...,m, let δi be the total degree of fi and let

B := max

{
n,

m∑
i=1

(
n+ δi
n

)}
.

Then the number of non-degenerate solutions to (2.6) is at most d6B
2

235B
3

.

Theorem 1.1 is a special case of this upper bound (in order to see this, note that the we may
assume that the coeffients of f lie in K, as we show in §4.3.1).

3 Linear equations

3.1 Results on linear equations

Definition 3.1. A multiplicatively written abelian group Γ has rank r ∈ Z≥0 if it has a free
subgroup Γ0 of rank r such that for each γ ∈ Γ there is an n ∈ N with γn ∈ Γ0.

Let K be a field of characteristic 0, let n ≥ 2 be an integer and let Γ ⊂ (K∗)n be a subgroup of
some finite rank r, where (K∗)n = K× ...×K is the n-fold cartesian product. Let λ1, ..., λn ∈ K∗
be some coefficients, and consider the linear equation

λ1x1 + ...+ λnxn = 0 in (x1, ..., xn) ∈ Γ. (3.1)

A solution (x1, ..., xn) of (3.1) is called non-degenerate if there is no strict and non-empty subset
I of {1, ..., n} satisfying ∑

i∈I
λixi = 0. (3.2)

Similarly, a solution to the equation

λ1x1 + ...+ λnxn = 1 in (x1, ..., xn) ∈ Γ (3.3)

is called non-degenerate if (3.2) does not hold for any I. We call two solutions (x1, ..., xn) and
(y1, ..., yn) to (3.1) proportional, denoted as (x1, ..., xn) ∼ (y1, ..., yn), if there is a λ ∈ K∗ such
that (x1, ..., xn) = (λy1, ..., λyn). Equations of the type (3.3) and upper bounds for the number
of non-degenerate solutions to such equations play a crucial role in the proof of Theorem 1.4.
The following lemma, which is standard, allows us to switch between linear equations of the form
(3.1) and (3.3).

10



Lemma 3.2. Let S0 denote the set of non-degenerate solutions to (3.1) in Γ, and let S0/ ∼
denote the corresponding collection of proportionality classes. Let Γ′ ⊂ (K∗)n−1 be the subgroup

Γ′ :=
{(

x1

xn
, ..., xn−1

xn

)
: (x1, ..., xn) ∈ Γ

}
and let S1 be the set of non-degenerate solutions

(x1, ..., xn−1) ∈ Γ′ to the equation

γ1x1 + ...+ γn−1xn−1 = 1,

where γi := − λi
λn

for all 1 ≤ i ≤ n− 1. Then the sets S0/ ∼ and S1 are in bijection.

Proof. Define the map f : (S0/ ∼)→ S1 by

[(x1, ..., xn)] 7→
(
x1
xn
, ...,

xn−1
xn

)
,

and the map g : S1 → S0/ ∼ by

(y1, ..., yn−1) 7→ [(y1, ..., yn−1, 1)].

Writing out the definitions shows that these maps are well-defined and each other’s inverses.

Remark 3.3. The reason we consider only non-degenerate solutions to (3.3), is that we are
interested in upper bounds for the number of solutions, while there may be infinitely many
degenerate solutions. For example, assume we have an infinite multiplicative subgroup G ⊂ K∗

of finite rank, and let Γ := Gn ⊂ (K∗)n. Suppose we have a solution (x1, ..., xn) ∈ Γ to (3.3),
satisfying λ1x1 + ... + λmxm = 1 and λm+1xm+1 + ... + λnxn = 0, for some 1 ≤ m < n. Then
for each g ∈ G, (x1, ..., xm, gxm+1, ..., gxn) ∈ Γ is a solution to (3.3) as well, giving us infinitely
many degenerate solutions to (3.3).

Evertse [4] proved in 1999 the following result for linear equations in roots of unity.

Theorem 3.4. For any λ1, ..., λn ∈ C∗, equation (3.3) has at most (n+1)3(n+1)2 non-degenerate
solutions (x1, ..., xn) for which x1, ..., xn ∈ C are all roots of unity.

Next, we consider more general results on linear equations. For coefficients a1, ..., an ∈ K∗, we
consider the equation

a1x1 + ...+ anxn = 1 in (x1, ..., xn) ∈ Γ. (3.4)

Evertse, Schlickewei and Schmidt proved the following upper bound for the number of non-
degenerate solutions to this equation, which remarkably only depends on the number of variables
n and on the rank r of Γ, but not on the field K, the coefficients ai or the group Γ itself.

Theorem 3.5. Equation (3.4) has at most exp
(
(6n)3n(r + 1)

)
non-degenerate solutions.

In 2009, Amoroso and Viada [1] improved this upper bound as follows.

Theorem 3.6. Equation (3.4) has at most (8n)4n
4(n+r+1) non-degenerate solutions.

11



3.2 Some ideas and techniques behind the proofs of Theorems 3.5 and
3.6

We very briefly sketch some of the ideas and techniques behind the proofs of these results. Since
the proofs have a considerable overlap, we treat both proofs at the same time, and point out
where they differ. This subsection is based on the proof of Theorem 3.5 given in Section 6.3 of
[5]. The first step in the proof is to show via a so called specialisation argument that it suffices
to consider the case where K is an algebraic number field, i.e. a finite extension of Q (see §4.2
for another specialisation argument). In the proof a distinction is made between small and large
solutions in terms of algebraic heights. In §3.2.1, we recall some algebraic number theory needed
to define these heights. For a more extensive treatment of this material, we refer to [12]. In order
to estimate the number of non-degenerate solutions to (3.4), a version of the so called Subspace
Theorem is used, which we discuss in §3.2.2. Then we provide a sketch of the proof in §3.2.3.

3.2.1 Algebraic number theory and heights

Let OK denote the ring of integers of a number field K, i.e. OK consists of all elements α ∈ K
for which there is a monic polynomial f ∈ Z[X] with f(α) = 0. A fractional OK-ideal is a
non-zero OK-submodule I of K, such that for some x ∈ K∗ we have xI ⊂ OK . Henceforth, we
mean by a prime ideal of OK a non-zero prime ideal. Fractional OK-ideals have unique prime
ideal factorisation. That is, any fractional OK-ideal I can be factorised in a unique way as

I =
∏
p

pordp(I),

where the product runs over all prime ideals p, and the exponents ordp(I) are all integers, and
are non-zero for at most finitely many p. For x ∈ K∗, let ordp(x) be the order of the principal
fractional ideal xOK at p, and let ordp(0) :=∞. Notice that a fractional OK-ideal I is an integral
OK-ideal (i.e., an ideal of the ring OK) if and only if ordp(I) ≥ 0 for each prime p. Applying
this to principal fractional ideals, we see that OK can be described as

OK = {x ∈ K : ordp(x) ≥ 0 for each prime p}, (3.5)

and that its unit group O∗K equals

O∗K = {x ∈ K : ordp(x) = 0 for each prime p},

Finally, a prime ideal p of OK has absolute norm NK(p) := |OK/p|.

For σ : K → R a real embedding of K (i.e. a field homomorphism), we call the singleton
set {σ} a real place of K. For σ : K → C a complex embedding (i.e. a field homomorphism
with σ(K) 6⊂ R), we call the set {σ, σ} a complex place of K. An infinite place of K is a real
or complex place of K. A finite place of K is a prime ideal p of OK . Finally, a place of K is a
finite or infinite place of K, and we let MK denote the set of all places of K.

For each place v ∈MK , there is an absolute value | · |v on K, defined as follows: for x ∈ K, let

|x|v :=


|σ(x)|, if v = {σ} is a real place,

|σ(x)|2, if v = {σ, σ} is a complex place,

NK(p)−ordp(x), if v = p is a finite place,

12



where | · | denotes the standard Euclidean absolute value on C.

By (3.5), OK consists of all elements x ∈ K having |x|p ≤ 1 for each prime. Allowing finitely
many exceptions brings us to the concept of S-integers. Let S be a finite set of places, containing
all the infinite places. Then the ring of S-integers OS is defined by

OS := {x ∈ K : |x|v ≤ 1 for each v ∈MK \ S},

and its unit group O∗S equals

O∗S := {x ∈ K : |x|v = 1 for each v ∈MK \ S}.

Now for x = (x1, ..., xn) ∈ Kn, the height H(x) is defined as

H(x) :=
∏

v∈MK

max (1, |x1|v, ..., |xn|v)1/[K:Q]
. (3.6)

This definition turns out to be independent on the choice of K, so the height is well-defined. By
large solutions of (3.4), we mean solutions x of this equation for which H(x) is large.

3.2.2 The Subspace Theorem

A linear form in C[X1, ..., Xn] is a homogeneous polynomial L ∈ C[X1, ..., Xn] of degree 1,
i.e. L = α1X1 + ... + αnXn with α1, ..., αn ∈ C not all zero. A collection of n linear forms
Li = αi,1X1 + ...+αi,nXn (1 ≤ i ≤ n) is called linearly dependent if there are λ1, ..., λn ∈ C, not
all zero, such that λ1L1 + ...+ λnLn is zero in C[X1, ..., Xn], and is called linearly independent
otherwise. Further, for a vector x = (x1, ..., xn) ∈ Cn, we denote by ||x|| the maximum norm of
x, i.e.

||x|| := max{|x1|, ..., |xn|}.

Finally, we denote by Q the algebraic closure of Q in C. The following theorem is the original
Subspace Theorem, proved by Schmidt in 1972.

Theorem 3.7. Let L1, ..., Ln ∈ C[X1, ..., Xn] be n linearly independent linear forms, with coef-
ficients in Q, and let C > 0, ε > 0. Then the set of solutions of the inequality

|L1(x) · · ·Ln(x)| ≤ C||x||−ε in x ∈ Zn \ {0}, (3.7)

is contained in a union of finitely many proper linear subspaces of Qn.

Later, many variations and generalisations of Schmidt’s Subspace Theorem were obtained. We
state a particular generalisation of Theorem 3.7 that is convenient for our purposes. Let K be
a number field of degree d. For v ∈MK , denote by Kv the completion of K w.r.t. the absolute
value | · |v, and let Kv be an algebraic closure of Kv. It turns out that | · |v can be extended in a
unique way to an absolute value on Kv, which we also denote by | · |v.

Theorem 3.8. Let S be a finite set of places of K containing all the infinite places. For any
v ∈ S, let L1,v, ..., Ln,v ∈ Kv[X1, ..., Xn] be n linearly independent forms (n ≥ 2), with coefficients
that are algebraic over K, let Cv be a positive real constant, and let c1,v, ..., cn,v ∈ R be such that

∑
v∈S

n∑
i=1

ci,v < 0.
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Then the set of solutions to the system of inequalities

|Li,v(x)|v ≤ CvH(x)d·ci,v (v ∈ S, i = 1, ..., n) in x ∈ OnS ,

is contained in a union of finitely many proper linear subspaces of Kn, where H(x) is the height
as defined in (3.6).

Theorem 3.8 is equivalent to the p-adic Subspace Theorem as proved by Schlickewei [16, Theorem
2.1]. In the particular case that S consists only of the infinite places it follows from work of
Schmidt [17]. Theorem 3.7 and Theorem 3.8 are both ineffective, in the sense that the proofs do
not reveal in which particular subspaces the solutions lie, and do not give an upper bound for
how many such subspaces there are. In the proofs of Theorem 3.5 and 3.6, a quantitative version
of Theorem 3.8 is used, which gives an upper bound for the number of subspaces independent of
the cardinality of S.

3.2.3 Sketch of the proofs

The proofs of Theorems 3.5 and 3.6 consist of the following steps.

(i): As mentioned earlier, the theorem is reduced to the case where K is a number field. Fur-
thermore, it is shown that we may suppose that Γ is finitely generated. Choose a finite set T
of generators for Γ. Let S ⊂ MK consist of all infinite places and the primes that occur in the
factorisations of the coordinates of the elements of T . Then S is finite, and Γ ⊂ (O∗S)n, which
enables us to apply a quantitative version of Theorem 3.8 to the solutions of (3.4).

(ii): A quantitative version of Theorem 3.8 is applied to show that the solutions of (3.4) with
large height are contained in a bounded number of subspaces of Kn.

(iii): One finds an upper bound for the number of subspaces of Kn in which the solutions
to (3.4) with small height lie. Schmidt was the first to find such an upper bound, and this
upper bound is applied in the proof of Theorem 3.5. Using techniques from commutative alge-
bra, Amoroso and Viada improved this upper bound, and obtained Theorem 3.6 as a corollary.
We remark that in the paper of Evertse, Schlickewei and Schmidt [3], the upper bound for the
number of small solutions is larger than the upper bound for number of large solutions.

(iv) One applies induction on n to bound the number of non-degenerate solutions to (3.4). By
step (ii) and (iii), it suffices to find a convenient upper bound for the number of non-degenerate
solutions to (3.4) lying in an (n − 1)-dimensional subspace of Kn. Combining the equation for
such a subspace with (3.4) then yields an equation in fewer than n variables, which enables us
to apply the induction hypothesis.

For more details on the proof, we refer to Section 6.3 from [5].

4 Proof of Theorem 1.4

4.1 Two results from the paper of Corvaja, Schmidt and Zannier

The main new ingredients in the paper of Corvaja, Schmidt and Zannier [2] compared to the
paper of Schmidt [19], are the following two results. Let K be any number field of degree D.
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Theorem 4.1. Let u ∈ Q∗, and assume there is a positive integer n with un ∈ K∗. Let q be the
smallest such n, and let ζ be a primitive q-th root of unity. Then we have

[K(u) : K] ≥ ϕ(q)

[K ∩Q(ζ) : Q]
.

Theorem 4.2. Let G be a multiplicative subgroup of Q∗ generated by n elements.
Define H := G∩K∗, and assume that the quotient group G/H is finite. Let V ⊂ Q be a K-vector
space of finite dimension r. Then V has non-empty intersection with at most g(r,D)n cosets of
H in G, where we may take

g(r,D) = g1(r,D) = 2(r + 1)12(r+1)2D4,

or
g(r,D) = g2(r,D) = 52320(r + 1)6.3(r+1)2D1+3(log+ log+D)

−1

,

where log+ x = max{1, log x}.

Remark 4.3. In [2] this lemma is proved with g2(r,D) = c(r + 1)12(r+1)2D1+(log+ log+D)
−1

instead, for some unknown absolute constant c > 0. We follow the same proof, but make a
little extra effort with technicalities to obtain our bound for g2(r,D). However, for our proof of
Theorem 1.4, the upper bound g1(r,D) suffices.

We prove these theorems following the paper of Corvaja, Schmidt and Zannier [2].

4.1.1 Proof of Theorem 4.1

Let ζ be a primitive q-th root of unity, and let L := K (u, ζ). As L is the decomposition field
of the polynomial Xq − uq over K, the extension L/K is Galois. Writing G := Gal(L/K),
X := Gal (L/K(u)) and Z := Gal (L/K(ζ)), we have the following Galois correspondence,

G

Z X

{1}

K

K(ζ) K(u)

L

. (4.1)

Using multiplicativity of field degrees in towers, we see that

[K(u) : K] =
|Z|
|X|

[K(ζ) : K]. (4.2)

In the Lemmas 4.4, 4.5 and 4.7 we estimate the quantities |X|, |Z| and [K(ζ) : K], and then we
combine these estimates with (4.2) to prove Theorem 4.1. Crucial in the proofs of these lemmas
are the maps α : G → (Z/qZ)

∗
and β : G → Z/qZ, which we define as follows. For g ∈ G, let

α(g) ∈ (Z/qZ)
∗

and β(g) ∈ Z/qZ be such that g(ζ) = ζα(g) and g(u) = uζβ(g). Notice that any
g ∈ G is completely determined by α(g) and β(g). Further, for g, h ∈ G we have

ζα(gh) = gh(ζ) = g
(
ζα(h)

)
= ζα(g)α(h),

ζβ(gh)u = gh(u) = g
(
ζβ(h)u

)
= ζα(g)β(h)+β(g)u,
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hence

α(gh) = α(g)α(h) and β(gh) = α(g)β(h) + β(g). (4.3)

By our Galois correspondence (4.1) we have

Z = {g ∈ G : α(g) = 1} and X = {g ∈ G : β(g) = 0}. (4.4)

From (4.3) and (4.4) we conclude that α and the restriction of β to Z are homomorphisms.

Lemma 4.4. We have |Z| = q
m for some divisor m of q.

Proof. By (4.4) and by the Galois correspondence (4.1), β|Z has kernel Z ∩X = {1}, hence β|Z
is an injective homomorphism from Z into Z/ (qZ). Thus, for some divisor m of q we have

Z ∼= β(Z) = {mx : x ∈ Z/ (qZ)}, (4.5)

and therefore |Z| = q
m .

Write q = m′q′, with m′ composed of prime factors dividing m and with q′ coprime to m. For
any x ∈ Z/qZ, write x := x mod m for its reduction in Z/mZ.

Lemma 4.5. The order of X is at most ϕ(q′)m′

m .

Proof. The proof consists of the following five observations.

(i): Via α, we can interpret G/Z as a subgroup of (Z/qZ)
∗
.

Indeed, this follows by the isomorphism theorem, as α has kernel Z by (4.4). This also implies
that G/Z is commutative and that we can interpret α(X) as a subgroup of G/Z.

(ii): The elements β(g), g ∈ G are coprime in Z/qZ, i.e. there is no divisor d > 1 of q
such that β(G) ⊂ d(Z/qZ).
Suppose the contrary, then for such a d we have for all g ∈ G that

g
(
uq/d

)
=
(
ζ
β(g)
d

)q
u
q
d = u

q
d .

Then we have u
q
d ∈ K, contradicting the minimality of q.

(iii): For g ∈ G, the values α(g) and β(g) only depend on the class of g in G/Z. Hence
we can define ατ := α(g) and βτ := β(g) if τ ∈ G/Z is the class of g.
Namely, for all z ∈ Z we have α(z) = 1, so α(z) = 1, and β(z) = 0 by (4.5). Combining these
facts with (4.3) we see that for all g ∈ G and z ∈ Z we have the desired congruences

α(gz) ≡ α(g)α(z) ≡ α(g) ≡ α(z)α(g) ≡ α(zg) mod m,

β(gz) ≡ β(g) + α(g)β(z) ≡ β(g) ≡ β(z) + α(z)β(g) ≡ β(zg) mod m.

Definition 4.6. Let T ⊂ G/Z be the set of all τ ∈ G/Z with βτ = 0.
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(iv): We have |X| ≤ |T |.
Recalling from observation (i) that via α we can interpret G/Z as a subgroup of (Z/qZ)

∗
, we

can consider α(X) as a subgroup of G/Z as well. For g ∈ X we have β(g) = 0 by (4.4), and thus
β(g) = 0. Thus for τ ∈ α(X) ⊂ G/Z we have βτ = 0, hence τ ∈ T , which shows that α(X) ⊂ T .
By (4.4) and the Galois correspondence (4.1) we have ker (α|X) = Z ∩X = {1}, so α is injective
on X, and |X| = |α(X)| ≤ |T |.

(v): We have |T | ≤ ϕ(q′)m′

m .
Again we identify G/Z with a subgroup of (Z/qZ)

∗
. This identification shows that G/Z is

abelian, hence for all σ, τ ∈ G/Z we have by (4.3),

βσ + ασβτ = βστ = βτσ = βτ + ατβσ,

which yields
βσ(ατ − 1) = βτ (ασ − 1).

Therefore, we have for all σ ∈ G/Z and τ ∈ T that βσ(ατ − 1) = 0 in Z/mZ. Fixing τ ∈ T
and letting σ run through G/Z, it follows by observation (ii) that ατ = 1. Using this and the
inclusion T ⊂ G/Z ⊂ (Z/qZ)

∗
, we get an inclusion

T ⊂ {x ∈ Z/qZ : (x, q) = 1 and x ≡ 1 mod m} = {x ∈ Z/qZ : (x, q′) = 1 and x ≡ 1 mod m},
(4.6)

since x ≡ 1 mod m implies that (x,m′) = 1. The equation (x, q′) = 1 has ϕ(q′) solutions

in Z/q′Z, and the equation x ≡ 1 mod m has m′

m solutions in Z/m′Z. Since q = q′m′ and

(q′,m′) = 1, it follows by the Chinese remainder theorem and (4.6) that |T | ≤ ϕ(q′)m
′

m .

Combining observations (iv) and (v) completes the proof of Lemma 4.5.

Lemma 4.7. We have [K(ζ) : K] = ϕ(q)
[K∩Q(ζ):Q] .

Proof. The extension Q(ζ)/ (K ∩Q(ζ)) is Galois. Taking the compositum with K, we see that
the extension K(ζ)/K is Galois as well with degree

[K(ζ) : K] = [Q(ζ) : K ∩Q(ζ)] =
[Q(ζ) : Q]

[K ∩Q(ζ) : Q]
=

ϕ(q)

[K ∩Q(ζ) : Q]
.

Since q = q′m′ and q′ and m′ are coprime, we have ϕ(q) = ϕ(q′)ϕ(m′). Combining this observa-
tion with the previous three lemmas and equation (4.2), we get

[K(u) : K] ≥ q/m

ϕ(q′)m′/m

ϕ(q)

[K ∩Q(ζ) : Q]
=

qϕ(m′)

m′[K ∩Q(ζ) : Q]
. (4.7)

By the expression ϕ(n)
n =

∏
p|n

(
1− 1

p

)
and because m′ divides q, we have ϕ(m′)

m′ ≥
ϕ(q)
q . Applying

this to (4.7) completes the proof of Theorem 4.1.

17



4.1.2 Proof of Theorem 4.2

Preparatory work

Lemma 4.8. For all n ≥ 2 we have

ϕ(n) ≥ n

5 log+ log+ n
.

Proof. For 2 ≤ n ≤ 15 we have log+ log+ n = 1 and the claim can be checked by inspection. For
n ≥ 16, we have log+ log+ n = log log n. Letting γ denote the Euler–Mascheroni constant, we
use the estimate [14]

ϕ(n) >
n

e−γ log log n+ 3
log logn

.

We conclude the proof by noting that for all n ≥ 16 we have

e−γ log log n+
3

log log n
≤ 5 log log n.

Lemma 4.9. For all x, y ∈ R>0 we have

log+ log+(xy) ≤ 2 log+ log+(x) · log+ log+(y). (4.8)

Proof. If x < 16 and y < 16, then

log+ log+(xy) < log+ log+(256) < 2.

If x ≥ 16 and y ≥ 16, then (4.8) is equivalent to the inequality

log log(xy) ≤ 2 log log(x) · log log(y),

which holds. Finally, if x ≥ 16 and y < 16, then

log+ log+(xy) < log+ log+(16x)

≤ log+ log+(16) log+ log+(x) ≤ 2 log+ log+(y) log+ log+(x).

Let K be any subfield of C.

Definition 4.10. A complex number ξ is called a radical of K if there is a positive integer n
such that ξn ∈ K∗.

Definition 4.11. For ξ1, ..., ξn ∈ C∗, let K(ξ1 : ... : ξn) denote the extension of K generated by
all the quotients ξi

ξj
, where 1 ≤ i, j ≤ n with ξj 6= 1.

Lemma 4.12. Let n ≥ 2 be an integer, and suppose we have coefficients λ1, ..., λn ∈ K∗. Assume
(ξ1, ..., ξn) ∈ Cn is a non-degenerate solution to the equation

λ1ξ1 + ...+ λnξn = 0, (4.9)
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with the ξi radicals of K. Then we have

[K(ξ1 : ... : ξn) : K] ≤ n3n
2

.

In the case that K is a number field of degree D, there is q ∈ N with(
ξi
ξj

)q
∈ K∗ for all 1 ≤ i, j ≤ n, (4.10)

where q can both be bounded by

q ≤ Q1(n,D) = n6n
2

D2

and by

q ≤ Q2(n,D) = 80n3n
2

log+(n)D log+ log+(D).

Remark 4.13. In [2] this lemma is proved with Q2(n,D) = cn6n
2

D log+ log+D instead, for
some unknown absolute constant c > 0. We follow the same proof, but make a little extra effort
with technicalities to obtain our bound for Q2(n,D).

Proof. In order to prove the first statement, we show that K(ξ1 : ... : ξn) has at most n3n
2

embeddings in C that are the identity on K. Let σ be such an embedding. For any i there is
an ni ∈ N with ξnii ∈ K∗ and thus σ(ξi)

ni = ξnii . Therefore, σ(ξi) = ξiζσ,i where ζσ,i is an ni-th
root of unity. Now by (4.9) we have

λ1ξ1ζσ,1 + ...+ λnξnζσ,n = 0.

Considering the above as an equation in the variable (ζσ,1, ..., ζσ,n), it follows from combining

Theorem 3.4 and Lemma 3.2 that there are at most n3n
2

solutions (ζσ,1, ..., ζσ,n) modulo propor-
tionality. Since

σ

(
ξi
ξj

)
=
ξi
ξj

ζσ,i
ζσ,j

,

σ is determined by the quotients
ζσ,i
ζσ,j

and thus by the proportionality class of (ζσ,1, ..., ζσ,n). We

conclude that there are at most n3n
2

possible values for σ, which concludes the proof of the first
statement.

Now assume K is a number field of degree D. Consider the multiplicative subgroup G of C∗
generated by the elements ξi

ξj
(1 ≤ i, j ≤ n), and let H be the subgroup H := G ∩ K∗. Now

G/H is generated by the classes of the elements ξi
ξj

, and since the ξi are radicals of K, the

element ξi
ξj

have finite order as elements of G/H. Hence, G/H is a finite abelian group, so by

the fundamental theorem for abelian groups we have a group isomorphism

G/H ∼= Z/n1Z⊕ ...⊕ Z/ntZ

for some natural numbers n1, ..., nt with n1|n2|...|nt−1|nt. Thus, letting q := nt, we can pick an
element u ∈ G, such that its class u in G/H has order q and note that each element of G/H has
order dividing q. In particular, this q satisfies (4.10). Now we can bound [K(u) : K] from below
by Theorem 4.1 and from above by the first statement of the current lemma, and combine these
bounds to bound q as desired. To be precise, we have

ϕ(q)

D
≤ [K(u) : K] ≤ n3n

2

, (4.11)
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which yields ϕ(q) ≤ Dn3n
2

. Without loss of generality we may assume that q ≥ 3 (otherwise q
certainly satisfies the upper bounds we wish to prove), and therefore ϕ(q) >

√
q, which yields

q ≤ D2n6n
2

. Combining (4.11) with Lemma 4.8 we get

q ≤ 5Dn3n
2

log+ log+ q. (4.12)

Combining the bounds ϕ(q) >
√
q and (4.11) with Lemma 4.9 we get

log+ log+ q ≤ 2 log+ log+ ϕ(q) ≤ 4 log+ log+(D) · log+ log+
(
n3n

2
)
. (4.13)

For n ≥ 3 we have

log+ log+
(
n3n

2
)

= log+
(
3n2 log+(n)

)
≤ log+

(
n4
)
≤ 4 log+(n), (4.14)

while one can check that log+ log+
(
n3n

2
)
≤ 4 log+(n) also holds for n = 2. Combining the

estimates (4.12), (4.13) and (4.14) yields the second bound for q.

Having established this lemma, we start with the proof of Theorem 4.2.

Introducing a lattice

The first key idea of the proof is to introduce a lattice as follows. Let ξ1, ..., ξn ∈ G be a set of
generators of G. For m = (m1, ...,mn) ∈ Zn, we write

ξm = ξm1
1 · · · ξmnn .

Composing the surjective group homomorphism Zn → G, m 7→ ξm with the projection map
π : G→ G/H, we obtain a surjective homomorphism ϕ : Zn → G/H, m 7→ [ξm]. Now

L := ker(ϕ) = {m ∈ Zn : ξm ∈ K∗}

is a subgroup of Zn, and by the isomorphism theorem ϕ yields an isomorphism

ϕ : Zn/L ∼−→ G/H (4.15)

Since G/H is finite, there is for each 1 ≤ i ≤ n a positive integer mi such that ξmii ∈ H. Thus
the n vectors (m1, 0, ..., 0), ..., (0, ..., 0,mn) ∈ Zn all lie in L, so L is a lattice of full rank in Zn.

Reduction to representatives

The next step in the proof is the observation that whether a residue class of G/H has non-empty
intersection with V , only depends on one representative of the class lying in V or not. Let
R be a set of representatives for the classes of Zn/L, then by the isomorphism (4.15) the set
{ξm : m ∈ R} is a set of representatives of the classes from G/H. For any m ∈ R and m′ ∈ L,
we have ξm ∈ V if and only if ξm · ξm′ ∈ V , because ξm

′
lies in K∗ and V is a K-vector space.

Thus, the number of cosets of H in G that have non-empty intersection with V equals |M |, where

M := {m ∈ R : ξm ∈ V } . (4.16)
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Applying induction and constructing a special basis of V

We prove Theorem 4.2 by induction on the dimension r of V . Firstly, consider the case r = 1,
then V = λ ·K for some λ ∈ Q∗. Assume we have vectors m,m′ ∈M . Then there are α, α′ ∈ K∗
such that ξm = λα and ξm

′
= λα′. This shows that ξm−m

′
= α

α′ lies in H, hence m−m′ ∈ L.
Since m and m′ lie in R this implies that m = m′, so |M | ≤ 1 ≤ min{g1(1, D), g2(1, D)}, which
completes the base case of our induction.

Now let r ≥ 2 be given and assume that for any vector space V of dimension r′ < r we have
|M | ≤ min{g1(r′, D), g2(r′, D)}. We may assume without loss of generality that V is generated
by the set {ξm : m ∈ M}. Namely, assume this is not the case, then the subspace V ′ ⊂ V
generated by {ξm : m ∈M} has some dimension r′ < r, and we have

M = {m ∈ R : ξm ∈ V ′} .

Now the induction hypothesis yields |M | ≤ min{g1(r′, D)n, g2(r′, D)n} ≤ min{g1(r,D)n, g2(r,D)n}.
In order to construct a convenient basis for V , we use this observation combined with some more
lattice theory.

Definition 4.14. For h ∈ N and for vectors a1, ...,ah ∈ M , let q(a1, ...,ah) be the smallest
q ∈ N such that for all 1 ≤ i, j ≤ h we have q(ai − aj) ∈ L.

Remark 4.15. As Zn/L is finite, there is a q ∈ N satisfying qm ∈ L for each m ∈ Zn. Therefore,
q(a1, ...,ah) is a well-defined number.

Remark 4.16. For any 1 ≤ i, j ≤ h, we have that q(a1, ...,ah) · (ai − aj) ∈ L, so q(a1, ...,ah) is
divisble by the order q(ai,aj) of ai − aj in Zn/L.

We define the quantity T := max{q(u,v) : u,v ∈M}. Since no two elements of M are congruent
modulo L, we have q(u,v) = 1 if and only if u = v. Choose a1,a2 ∈ M with q(a1,a2) = T .
We may clearly suppose that |M | > 1, and thus T > 1 and a1 6= a2. Since a1 and a2 represent
different classes of Zn/L, we have a1 − a2 /∈ L and thus ξa1−a2 /∈ K. Thus, ξa1 and ξa2 are
linearly independent over K, while we assumed that V is generated by the set {ξm : m ∈ M},
so we can extend {ξa1 , ξa2} to a basis (ξa1 , ..., ξar) of V for some a1, ...,ar ∈M .

A case distinction

By the previous paragraph, for each m ∈ M , there are unique coefficients λ1,m, ..., λr,m ∈ K
such that

ξm = λ1,mξ
a1 + ...+ λr,mξ

ar . (4.17)

Viewing the above as an equation of the form (4.9) in r + 1 variables, we make a distinction
between the degenerate and the non-degenerate solutions - the former can be estimated with
the induction hypothesis, while the latter can be estimated with Lemma 4.12. More precisely,
writing

Mi := {m ∈M : λi,m = 0 in (4.17)}

for 1 ≤ i ≤ r, and
M ′ := {m ∈M : λi,m 6= 0 in (4.17) for each i},
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we can estimate |M | by

|M | ≤ |M ′|+
r∑
i=1

|Mi|. (4.18)

Fix 1 ≤ i ≤ r, and let m ∈ Mi. Then the K-vectorspace Vi generated by the vectors
{ξal : 1 ≤ l ≤ r, l 6= i}, has dimension r − 1, and

Mi ⊂ {m ∈ R : ξm ∈ Vi}.

Thus, by the induction hypothesis we obtain

|Mi| ≤ min{g1(r − 1, D), g2(r − 1, D)}.

This provides us with

r∑
i=1

|Mi| ≤ rmin{g1(r − 1, D), g2(r − 1, D)} ≤ 1

2
min{g1(r,D), g2(r,D)}. (4.19)

For any m ∈M ′, the second part of Lemma 4.12 shows that

p(m) := q(m,a1, ...,ah) ≤ min{Q1(r + 1, D), Q2(r + 1, D)} =: S. (4.20)

By Remark 4.16, it follows that l := p(m)
q(a1,a2)

is a positive integer that is at most S
T . Hence there

are at most S
T possible values for l and thus for p(m). To deduce from this an estimate for the

number of possible values for m ∈M ′, we use the following definition and lemma.

Definition 4.17. For n ∈ N, let τ(n) be the number of positive divisors of n. For any real
x ≥ 1, let

h(x) := max
n∈N
n≤x

τ(n).

Lemma 4.18. We have
h(x) ≤ x

1.07

log+ log+ x .

Proof. For those x with log+ log+ x = 1 the result is obviously true. For larger x, the result
follows from the bound

τ(n) ≤ 21.538
logn

log logn ,

which is established in [13].

By Remark 4.16, q(m,a1) is a divisor of p(m). Thus, if the value of p(m) is given, there are by
(4.20) at most h(S) possible values of q(m,a1). We conclude that there are at most S

T · h(S)
possible values of q(m,a1) in total. Finally, we estimate the number of choices for m ∈M ′ when
q(m,a1) has a fixed value, say q(m,a1) = t. Now because of the definitions, we have t ≤ T and

t(m− a1) ∈ L.

Letting ϕt : Zn/L → Zn/L be given by x 7→ t · x, this means that m − a1 ∈ ker(ϕt), and we
estimate # ker(ϕt) with the following lemma.

Lemma 4.19. Let Z/kZ be the cyclic group of order k ∈ N and let ψt : Z/kZ → Z/kZ be the
homomorphism given by ψt(x) = t · x. Then the kernel of ψt has at most t elements.
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Proof. Writing t = t1t2 with t1 = gcd(t, k) and gcd(t2, k) = 1, the congruence tx ≡ 0 mod k is
equivalent to x being a multiple of k

t1
. The number of such 1 ≤ x ≤ k is at most k

k/t1
= t1 ≤ t.

Now since Zn/L is a product of at most n cyclic groups it follows that # ker(ϕt) ≤ tn ≤ Tn, so
there are at most Tn possibilities for m given that q(m,a1) = t. Putting everything together we
arrive at

|M ′| ≤ S

T
· h(S) · Tn ≤ h(S)Sn, (4.21)

as T = q(a1,a2) divides p(m) for any m ∈M ′, while we have the estimate (4.20).

Explicit estimates

Using (4.21) and that h(S) ≤ S ≤ Q1(r + 1, D), we get

|M ′| ≤ Sn+1 ≤ S2n =

(
1

2
g1(r,D)

)n
≤ 1

2
(g1(r,D))

n
. (4.22)

By Lemma 4.18, we can bound h(S) by

h(S) ≤ Q2(r + 1, D)
1.07

log+ log+ Q2(r+1,D)

≤
(

80(r + 1)3(r+1)2 log+(r + 1)
)1.07 (

D log+ log+(D)
) 1.07

log+ log+ D .

Since r ≥ 2 we have log+(r+ 1) ≤ (r+ 1)0.01(r+1)2 . Writing D0 := D1/ log+ log+D and using that

(log+ log+D)
1.07

log+ log+ D ≤ 3,

we arrive at

h(S) ≤ 801.07(r + 1)3.23(r+1)2 · 3D1.07
0 ≤ 327(r + 1)3.3(r+1)2D1.07

0 (4.23)

Combining (4.23) with (4.21) and with the estimate

S ≤ 80(r + 1)3(r+1)2 log+(r)D log+ log+(D) ≤ 80(r + 1)3.01(r+1)2D log+ log+(D),

we get

|M ′| ≤ 327(r + 1)3.23(r+1)2D1.07
0

(
80(r + 1)3.01(r+1)2D log+ log+(D)

)n
≤ 1

2

(
52320(r + 1)6.3(r+1)2DD3

0

)n
,

(4.24)

where the last inequality is obtained using

D1.07
0

(
log+ log+(D)

)n ≤ D3n
0 .

This inequality holds, since for D ≤ 15 we have log+ log+D = 1 and then it is obvious, and for
D ≥ 16 the inequality is equivalent to

n log log logD ≤ (3n− 1.07)
log(D)

log logD
.

Combining (4.18), (4.19) (4.22) and (4.24) completes the induction step, and thus the proof of
Theorem 4.2.
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4.2 A specialisation argument

Let us recall the notation from §1. Let α1, ..., αn ∈ C be non-zero multiplicatively independent
numbers, and let f(x) = f(x1, ..., xn) ∈ C[x1, ..., xn] be a polynomial of total degree δ. We write
α = (α1, ..., αn), and for x = (x1, ..., xn) ∈ Zn we use the notation

αx = αx1
1 · · ·αxnn .

We consider the Diophantine equation

αx = f(x) in x ∈ Zn, (4.25)

Let K be the field K := Q(α1, ..., αn) and write ∆ :=
(
n+δ
n

)
and B := ∆ + 1. Our aim is to show

that (4.25) has at most (8B)9B
6

solutions.

Via a so called specialisation argument, we reduce our proof to the case where the αi and
the coefficients of f lie in an algebraic number field. This slightly eases the arguments from
Schmidt’s paper [19]. Let U be the set containing α1, ..., αn, the non-zero coefficients of f , and
the multiplicative inverses of these elements. The following lemma is a direct consequence of [21,
Lemma 2].

Lemma 4.20. There is a ring homomorphism ϕ : Z[U ] → Q, such that ϕ(α1), ..., ϕ(αn) are
multiplicatively independent.

Assume we have proven that (4.25) has at most (8B)9B
6

solutions in the case that the αi and the
coefficients of f lie in a number field. Now consider (4.25) in the general case. Let ϕ(f) denote
the polynomial obtained by applying ϕ to the coefficients of f . Then each solution x ∈ Zn of
(4.25) is also a solution to the equation

ϕ(α1)x1 · · ·ϕ(αn)xn = ϕ(f)(x1, ..., xn). (4.26)

Thus we can injectively map the set of solutions of (4.25) to the set of solutions of (4.26). But
(4.26) is an equation of the type (4.25) with the numbers ϕ(αi) and the coefficients of ϕ(f) lying

in an algebraic number field. So by assumption, (4.26) has at most (8B)9B
6

solutions, so the
same holds for (4.25).

4.3 Schmidt’s paper

So far we have established the two results from the paper of Corvaja, Schmidt and Zannier
[2], and we have seen that we may suppose without loss of generality that α1, ..., αn and the
coefficients of f lie in an algebraic number field. In particular, K = Q(α1, ..., αn) is an algebraic
number field. The arguments in this section are based on Schmidt’s earlier paper [19].

4.3.1 Some reductions

We first show that we may assume that all coefficients of f lie in K. Let W be the K-vector
space generated by the coefficients of f . For each x ∈ Zn, the left-hand side αx in (4.25) lies
in K∗, while the right-hand side f(x) lies in W . Thus, if W ∩ K = {0}, then (4.25) has no
solutions at all and we are done. So we may assume that K ⊂W , and W has a basis of the form
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1, λ1, ..., λt for some λi ∈ C. Writing the coefficients of f as linear combinations in this basis and
grouping terms we can write f as

f(x) = f0(x) + λ1f1(x) + ...+ λtft(x)

with f0(x), ..., ft(x) ∈ K[x]. Now for any solution x ∈ Zn to (4.25), we have the following
K-linear equality,

(f0(x)− αx) · 1 + f1(x) · λ1 + ...+ ft(x) · λt = 0,

and by linear independence it follows that x is a solution to αx = f0(x). Thus, (4.25) is equivalent
to an equation of the same form with f(x) ∈ K[x].

Notation. Let S denote the set of all embeddings (i.e. injective homomorphisms) of K into C.
For ξ ∈ K and σ ∈ S, write ξ(σ) := σ(ξ), and for a vector ξ ∈ Kn, write ξ(σ) = (σ(ξ1), ..., σ(ξn)).
Further, let V be the Q-vector space generated by the coefficients of f .

We may assume that K is not a number field of degree at most ∆, for otherwise, Theorem 1.1
already provides us with a convenient upper bound for the number of solutions to (4.25).

4.3.2 Reducing our main equation to a determinant equation

Since we have #{(i1, ..., in) ∈ (Z≥0)
n

: i1 + ... + in ≤ δ} = ∆, we see that f has at most ∆
non-zero coefficients, hence V has a Q-basis b1, ..., br with r ≤ ∆. Now let M be the matrix with
rows (

b
(σ)
1 ... b

(σ)
r

)
, σ ∈ S,

with the rows in some arbitrary order.

Lemma 4.21. The matrix M has rank r.

Proof. We have to show that the vectors bi :=
(
b
(σ)
i : σ ∈ S

)
, for i = 1, ..., r, are linearly

independent over C. Assume this is not the case, then these vectors span a C-vector space of
some dimension m < r. By symmetry we may suppose that b1, ...,bm are linearly independent
over C. Now there are unique c1, ..., cm ∈ C such that

bm+1 = c1b1 + ...+ cmbm.

This means that (c1, ..., cm) is the unique solutions in Cm to the system of equations

σ(bm+1) = c1σ(b1) + ...+ cmσ(bm), for σ ∈ S. (4.27)

Now the compositum N of the fields σ(K) (σ ∈ S) is a finite normal extension of K, so the
elements of S are embeddings of K into N . Since all coefficients σ(bi) (σ ∈ S, 1 ≤ i ≤ m+ 1) lie
in N , it follows by Cramer’s rule that c1, ..., cm ∈ N . Applying τ ∈ Gal(N/Q) to both sides of
(4.27) yields

τ(σ(bm+1)) = τ(c1)τ(σ(b1)) + ...+ τ(cm)τ(σ(bm)), for σ ∈ S, τ ∈ Gal(N/Q).

When τ runs through Gal(N/Q) and σ runs through S, the composition τ ◦ σ runs through S
as well. Thus, for all τ ∈ Gal(N/Q) and σ ∈ S we have

σ(bm+1) = τ(c1)σ(b1) + ...+ τ(cm)σ(bm).

25



Hence, for each τ ∈ Gal(N/Q), (τ(c1), ..., τ(cm)) ∈ Cm is a solution to the system (4.27). Since
(c1, ..., cm) is the unique solution in Cm to this system, we get for each 1 ≤ i ≤ m that τ(ci) = ci
for all τ ∈ Gal(N/Q), hence ci ∈ Q. Now (4.27) with σ the identity, gives a non-trivial Q-linear
relation between b1, ..., bm+1, contradicting that b1, ..., br are linearly independent over Q.

Let x ∈ Zn be a solution of (4.25), then there are µ1, ..., µr ∈ Q satisfying

αx = µ1b1 + ...+ µrbr.

Applying every σ ∈ S on both sides we obtain(
α(σ)

)x
= µ1b

(σ)
1 + ...+ µrb

(σ)
r for all σ ∈ S.

It follows that the vectors
((
α(σ)

)x
: σ ∈ S

)
,
(
b
(σ)
1 : σ ∈ S

)
,...,

(
b
(σ)
r : σ ∈ S

)
satisfy a non-trivial

linear relation over C. Hence, for any σ0, ..., σr ∈ S we have a vanishing determinant∣∣∣∣∣∣∣∣
(
α(σ0)

)x
b
(σ0)
1 · · · b

(σ0)
r

...
...

...(
α(σr)

)x
b
(σr)
1 · · · b

(σr)
r

∣∣∣∣∣∣∣∣ = 0. (4.28)

Notation. For η1, ..., ηr ∈ S, let A(η1,...,ηr) be the determinant of the (r × r)-matrix with(
b
(η1)
i ... b

(ηr)
i

)T
as its i-th column.

Expanding the determinant in (4.28) along the first column we can now write this equation as(
α(σ0)

)x
A(σ1,...,σr) −

(
α(σ1)

)x
A(σ0,σ2...,σr) + ...+ (−1)r

(
α(σr)

)x
A(σ0,σ1...,σr−1) = 0. (4.29)

By Lemma 4.21, M has a (r × r)-submatrix with non-zero determinant. That is, for some
τ1, ..., τr ∈ S we have A(τ1,...,τr) 6= 0. We fix such τ1, ..., τr.

Notation. We write A(1,...,r) := A(τ1,...,τr), and for any σ ∈ S, we let
A(i+1,...,r,σ,1,...,i−1) := A(τi+1,...,τr,σ,τ1,...,τi−1).
For ξ ∈ K, write ξ(i) := ξ(τi), and for ξ ∈ Kn, we write ξ(i) := ξ(τi).

Now in (4.29), we let σ = σ0 run through S, while we fix σ1 = τ1,...,σr = τr, to obtain that for
any σ ∈ S we have(

α(σ)
)x
A(1,...,r) −

(
α(1)

)x
A(σ,2...,r) + ...+ (−1)r

(
α(r)

)x
A(σ,1,...,r−1) = 0. (4.30)

4.3.3 A case distinction

Notation. For σ ∈ S, and 1 ≤ k ≤ r, we let G(σ, k) be the subgroup of Zn defined by

G(σ, k) :=
{

y ∈ Zn :
(
α(σ)

)y
=
(
α(k)

)y}
.

As Zn is free of rank n, each group G(σ, k) has rank at most n. We consider the assumption that

there is σ ∈ S such that for all 1 ≤ k ≤ r we have rank G(σ, k) < n. (4.31)

In our proof of Theorem 1.4 we make a distinction between the cases where (4.31) does or does
not hold.

26



4.4 Application of Theorem 4.2 to equation (4.25)

In this subsection we prove Theorem 1.4 in the case where (4.31) does not hold. The arguments
in this subsection are based on the paper of Corvaja, Schmidt and Zannier [2].

Let G be the multiplicative subgroup of Q∗ generated by α1, ..., αn, and for m ∈ N, let
G[m] := {αm : α ∈ G}.

Lemma 4.22. Assume that (4.31) does not hold. Then there there are a number field L of degree
at most r, and a number m ∈ N, such that L is contained in K and G[m] is contained in L.

Proof. Let d be the degree of K over Q. Denote the elements of S by ξ 7→ ξ(i), for i = 1, ..., d,
where ξ(i) = ξ(τi) for i = 1, ..., r. For i = 1, ..., d, write G(i, k) = G(σ, k) if σ is the embedding
of K given by σ : ξ 7→ ξ(i). By assumption, for each 1 ≤ i ≤ d, there is k ∈ {1, ..., r} such that
G(i, k) has rank n. By the pigeonhole principle, there are 1 ≤ k ≤ r and a subset I ⊂ {1, ..., d}
with |I| ≥ d

r , such that for all i ∈ I we have rank G(i, k) = n. But then the intersection
⋂
i∈I

G(i, k)

still has rank n, hence there is an m ∈ N such that for all v ∈ Zn we have mv ∈
⋂
i∈I

G(i, k).

Thus, for all i, j ∈ I and all v ∈ Zn we have

((αv)m)
(i)

= ((αv)m)
(k)

= ((αv)m)
(j)

Letting L be the number field generated over Q by G[m], this means that all embeddings
ξ 7→ ξ(i), i ∈ I, act the same on L. Thus, some embedding of L has at least |I| ≥ d

r extensions

to K, hence [K : L] ≥ d
r . This yields

[L : Q] =
[K : Q]

[K : L]
≤ d

d/r
= r,

while the required property G[m] ⊂ L is clear from the definition of L.

The following lemma establishes a stronger upper bound than the one in Theorem 1.4 in the case
that (4.31) not hold.

Lemma 4.23. If (4.31) does not hold, then equation (4.25) has at most 254B
4

solutions.

Proof. Let L and m ∈ N be as in Lemma 4.22, and let H := G ∩ L∗. Since G[m] ⊂ L∗, we see
that H has finite index in G. Let W denote the L-vector space spanned by the coefficients of
f . Since f has at most ∆ non-zero coefficients, W has dimension at most ∆ = B − 1, and L
has degree at most r ≤ B. Thus, by Theorem 4.2, W has non-empty intersection with at most
g1(B − 1, B)n cosets of H. Now let x ∈ Zn be a solution to (4.25). Then we have αx ∈ W , so
αx lies in a union of at most g1(B − 1, B)n cosets of H. Since B ≥ 3, we have the estimate

g1(B − 1, B) = 2 ·B12B2

B4 ≤ 213B
3

.

Now let us estimate the number of possibilities for x given that αx lies in a fixed coset of H, say
αx ∈ αzH for some z ∈ Zn. Since H is of finite index in the free group G of rank n, H is also
free of rank n. Hence there are h1, ...,hn ∈ Zn such that β1 := αh1 , ..., βn := αhn form a basis
of H. Therefore, there are y1, ..., yn ∈ Z such that

x = z + y1h1 + ...+ ynhn. (4.32)
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Since x is a solution to (4.25), it follows that

βy11 · · ·βynn = α−zf(z + y1h1 + ...+ ynhn) = g(y1, ..., yn), (4.33)

where g ∈ K[x1, ..., xn] is a polynomial that only depends on the coset αzH. Now (4.33) is an
equation of the form (1.1) in the vector y = (y1, ..., yn), but with β1, ..., βn ∈ L, while L is a

number field of degree at most r ≤ B. Hence by Theorem 1.1, there are at most B6B2

235B
3

possibilities for y and thus for x, by (4.32). We claim that

B6B2

235B
3

≤ 241B
3

.

Indeed, for B = 3 the inequality holds, while the right-hand side grows faster in B than the
left-hand side, which can be seen by taking logarithms of both sides. Multiplying this amount
with the number of classes in which αx can lie, we conclude that the number of solutions to
(4.25) is at most

213nB
3

· 241B
3

≤ 254B
4

.

4.5 Proof of Theorem 1.4 by induction

The arguments in this subsection are based on Schmidt’s paper [19]. Since n ≤ B, the following
lemma implies Theorem 1.4.

Lemma 4.24. Equation (4.25) has at most (8B)9nB
5

solutions.

Remark 4.25. This upper bound is improved in comparison to the one derived in the paper of
Corvaja, Schmidt and Zannier [2], due to the fact that we apply Theorem 3.6 instead of Theorem
3.5 in the proof.

Proof. The proof is by induction on n. By Lemma 4.23, we may assume in both the base case
and the induction step that (4.31) holds. Indeed, we have 254B

4 ≤ (8B)9B
5

, since the inequality
holds for B = 3 and the right-hand side grows faster in B than the left-hand side. Throughout
the proof, we fix σ as in (4.31). Let x ∈ Zn be a solution to (4.25), then x is a solution to (4.30)
for our fixed σ. Since A(1,...,r) 6= 0, we can find a non-empty subset K ⊂ {1, ..., r}, such that

A(1,...,r)
(
α(σ)

)x
+
∑
k∈K

(−1)kA(1,...,k−1,σ,k+1,...,r)
(
α(k)

)x
= 0, (4.34)

and such that the above does not hold for any strict subset of K. The number of possibilities for

K is at most 2r. For given K, we can interpret the vector w(x) :=
((
α(σ)

)x
,
(
α(k)

)x
: k ∈ K

)
as

a non-degenerate solution to (4.34). Since 1 + |K| ≤ 1 + r ≤ 1 + ∆ = B, (4.34) is an equation
in at most B variables, and our solutions w(x) lie in the subgroup 〈(w(e1), ..., w(en)〉 of (C∗)n,
which has rank at most n. Thus, by Lemma 3.2 and by Theorem 3.6, we see that for given K the
solutions w(x) fall into at most (8B)4B

4(B+n) proportionality classes. Multiplying this with the
number of possibilities for K, we see that the solutions x of (4.25) are distributed over at most

(8B)4B
4(B+n) · 2r ≤ (8B)8B

5

· 2B ≤ (8B)9B
5
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proportionality classes. The next step is to investigate how many solutions each class contains.
Let x,x′ ∈ Zn be solutions to (4.25) such that w(x) and w(x′) are proportional, then for any
k ∈ K we have (

α(σ)
)x−x′

=
(
α(k)

)x−x′
.

By definition this means that x − x′ ∈ G(σ, k). Letting s := rank G(σ, k), we get in the case

s = 0 that x = x′, hence the number of solutions to (4.25) is at most (8B)9B
5

. In particular,
for n = 1 we have s = 0 by (4.31), so this concludes the base case. Now assume that n ≥ 2 and
suppose that we have proved the lemma for all n′ < n. We can assume that 0 < s < n, and
G(σ, k) has some basis v1, ...,vs. There are unique a1, ..., as ∈ Z such that

x− x′ = a1v1 + ...+ asvs, (4.35)

hence for βi := αi
vi ∈ K we have by (4.25),

βa11 · · ·βass = α−x
′
f(x). (4.36)

Notice that g(a1, ..., as) := α−x
′
f(x) is a polynomial in s < n variables, depending on x′,v1, ...,vs,

so by the induction hypothesis applied to (4.36), there are at most (8B)9(n−1)B
5

possibilities for
(a1, ..., as). Thus, by (4.35) this is an upper bound for the number of solutions in each class.
Multiplying with the number of classes, and using n ≤ B, we find that the number of solutions
to (4.25) is bounded above by

(8B)9B
5

· (8B)9(n−1)B
5

≤ (8B)9nB
5

,

which concludes the induction step. The lemma now follows by induction.

Concluding remarks

Let us compare the proofs of Theorems 1.2, 1.3 and 1.4. In the case that (4.31) holds, the papers
of Schmidt [19], and of Corvaja, Schmidt and Zannier [2] use the same arguments. The improve-
ment in the latter paper comes from the case that (4.31) does not hold, due to the application
of Theorem 4.2 instead of other arguments of Schmidt that we did not discuss in this thesis. In
the case that (4.31) does not hold, we obtained the same upper bound as Corvaja, Schmidt and

Zannier, namely 254B
4

.

In our proof of Lemma 4.24, we followed the same arguments as in the two papers for the
case that (4.31) holds. However, we applied Theorem 3.6 instead of Theorem 3.5 in our induc-
tion, and this is the reason we obtain a sharper upper bound than Corvaja, Schmidt and Zannier.
Finally we remark that the proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4 all make use
of Theorem 1.1 in the case that (4.31) does not hold, by reducing equation (1.1) to an equation
of the same form, but with the αi lying in the number field L.

4.6 Proof of Corollary 1.5

We show that the equation

αx1
1 · · ·αxnn = f(x1, ..., xn) in x = (x1, ..., xn) ∈ Qn (4.37)
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also has at most (8B)9B
6

solutions, if we fix values for logα1, ..., logαn. For N ∈ N, let S(N)
be the set of solutions x = (x1, ..., xn) ∈ Qn to (4.37), with the property that N !xi ∈ Z for each

1 ≤ i ≤ n. Now fix N ∈ N. For 1 ≤ i ≤ n, define βi := α
1
N!
i = exp

(
1
N ! logαi

)
, and note that

β1, ..., βn are multiplicatively independent. Further define the polynomial
g(x1, ..., xn) := f

(
x1

N ! , ...,
xn
N !

)
and note that f and g have the same total degree. Now for any

x = (x1, ..., xn) ∈ S(N), note that y = (y1, ..., yn), given by yi := N !xi, is an integer solution to
the equation

βz11 · · ·βznn = g(z1, ..., zn) in (z1, ..., zn) ∈ Zn.

Now it follows by Theorem 1.4 that |S(N)| ≤ (8B)9B
6

. Since we have a chain of inclusions
S(1) ⊂ S(2) ⊂ S(3) ⊂ ..., and the cardinalities of the sets S(N) are uniformly bounded from
above, there is N0 ∈ N such that S(N) = S(N0) for each N ≥ N0. Hence S(N0) is the complete

set of rational solutions to (4.37), so (4.37) has at most (8B)9B
6

solutions.
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