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Chapter 1

Introduction

The study of systems of ODEs of one hundred or more equations is becoming more and
more common. Such systems can arise by discretizing a PDE in its spatial dimensions.
Large systems are also seen in systems biology and neurophysiology, where large systems of
ODEs are used to describe the complex dynamics of various biological processes. Periodic
orbits can occur in both types of large systems of ODEs. For example, in [1] it is described
that sustained oscillations were seen in a model of the mitochondrial respiratory chain.

Therefore, efficient methods for investigating periodic orbits in large systems of ODEs
are needed. In this thesis we focus on the dependence of periodic orbits on parameters
in large systems of ODEs, by computing the changes in a periodic orbit that occur if a
parameter is changed. The process of tracking changes in cycles caused by a change of a
parameter is called continuation of cycles. Continuation can also be applied to equilibria
and their bifurcations, as well as to homoclinic and heteroclinic orbits. In section 1.2
a rigorous definition of continuation is given, and a basic algorithm for continuation is
described.

In the software package Matcont, numerical continuation of limit cycles and their bifur-
cations in small systems of ODEs based on orthogonal collocation is implemented. Orthog-
onal collocation is also known as Gauss-Legendre collocation or spline collocation. Using
Matcont, limit cycles could already be continued in systems of first order ODEs with up to
about 100 equations. However, the methods for detection of bifurcations used in Matcont
do not perform well for large systems. The cycle routines from Matcont were imported into
the software package CL_MATCONTL and subsequently modified to suit large systems,
as a part of this thesis project. In chapter 2, we discuss the changes we made in this
code that allow continuation of cycles in systems of up to about 400-500 equations, and
in chapter 5, we discuss methods for detecting bifurcations that scale well up to any size
system in which cycles can be continued.

In addition to improving in the orthogonal collocation code, the methods single shooting
with Newton-Picard, and multiple shooting with Newton-Picard were implemented.1 The
shooting methods will be discussed in their respective chapters.

Three examples that illustrate the methods that were implemented are presented in
chapter 6. The first example is a 1D transport model of plasma in a TOKAMAK reactor.
Using the orthogonal collocation method cycles have been continued in this system of three
PDEs for the first time (see Figure 1). The Brusselator reaction-diffusion model is also
discussed. It is a system in which it is very easy to vary the number of mesh points. Hence,

1K. Lust mentions in his thesis that orthogonal collocation with Newton Picard is also possible, but
since he did not provide a complete mathematical description of such a method, it is outside the scope of
this thesis.
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Figure 1.1: Continuation of a cycle in the plasma-system for N = 50

it is an good system to demonstrate to capabilities of the Newton-Picard methods, which
are especially suited to very large systems. In the third and last example, a branch of
cycles is continued in a convection-diffusion system that models a nonadiabatic tubular
reactor.

The various continuation methods for cycles are features that were added to
CL_MATCONTL, which is a continuation package for bifurcations in large systems of
ODEs. CL_MATCONTL is derived from Matcont, which is a continuation package for
bifurcations for ODEs [2]. CL_MATCONTL already supported continuation of equi-
libria, and many bifurcations of equilibria using the continuation of invariant subspaces
[3]. However, continuation of cycles was not yet supported. A collection of tutorials for
CL_MATCONTL is available on the website of Mark Pekkér (aka Mark Friedman) [4],
which will include several tutorials about cycles based on this thesis.

The main strategy used in CL_MATCONTL for efficient continuation of bifurcations
of equilibria is continuation of invariant subspaces. The Newton-Picard methods for cycle
continuation also use invariant subspaces. The main difference between the use of invariant
subspaces for equilibria and the use of invariant subspaces for cycles is that the matrix
whose action preserves the subspace is fully available during continuation of equilibria, but
is not readily available during continuation of cycles.

One important aspect of Newton-Picard methods, is that unlike all the previous types of
continuation curves in Matcont and CL_MATCONTL, the Newton-Picard method does
not use the newtcorrL function for corrections. Due particular nature of the Newton-
Picard method, it is more practical to write a separate corrector function for each Newton-
Picard method. In chapters 3 and 4 in is stated where to find these functions in the
CL_MATCONTL code.
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1.1 Summary of contributions to CL_MATCONTL

In summary, the following contributions were made to CL_MATCONTL as a part of
this thesis:

• The code for continuation by orthogonal collocation was taken from Matcont, and
merged into CL_MATCONTL

• The orthogonal collocation code was improved and adapted for large systems.
(see section 2.1)

• The curve-files single_shooting.m and multiple_shooting.m were added.
Curve-files specify the continuation curve by defining a function F as in algorithm 1

• Newton-Picard methods for single shooting and multiple shooting were added

• Methods for detection of bifurcations were conceived and implemented which can
cope with large systems.

1.2 Continuation

Continuation is a process of finding a curve of solutions to a parameter-dependent
problem. Specifically, suppose F is a continuously differentiable function from Rn × R
to Rn, we know F (y0, γ0) = 0 for a given y0 ∈ Rn and γ0 ∈ R, and we wish to find an
approximation to the curve (y(η), γ(η)), parameterized by η, for which F (y(η), γ(η)) =
0, y(0) = y0, γ(0) = γ0. The most obvious example of a continuation problem is the
continuation of an equilibrium of a system of autonomous first order ODEs dy/dt = f(y, γ),
although continuation can be applied to other problems as well, such as the continuation
of limit cycles.

To get an idea of what a continuation procedure look like, see Algorithm 1. Note
that in practice a continuation procedure would include many refinements, which are not
shown there. One of the most important refinements is adaptation of the step size. This
is, in a limited sense, comparable to step size adaption in time integration of ODEs. In
both cases one can achieve optimal performance by adjusting the step size after each step,
based on the properties of the curve at the current step. In continuation, an important
step size adjustment is to reduce the step size if the Newton corrections fail to converge or
to increase it if the corrections converge rapidly.
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Input:

• a continuously differentiable function
F : Rn × R→ Rn : (y, γ) 7→ F (y, γ)

• an initial point (y0, γ0) ∈ Rn × R such that
∥∥F (y0, γ0)

∥∥ < toleranceF .

• stepsize > 0, and toleranceF , tolerance∆x > 0

Result: A list of approximations to points
(x0, ..., xm) = ((y0, γ0), ..., (ym, γm)) ∈ Rn × R on the curve
defined by F (y, γ) = 0

Set i← 0
while i < m do

• Compute the Jacobian matrix Fx,γ(xi, γi) = ∂(F )
∂(x,γ)(xi, γi). This can be

done either by finite differences, or evaluating the symbolic derivative.

• Compute a vector v∗i ∈ Rn+1 that spans the kernel of Fx,γ(xi, γi). The
vector v∗i is tangent to the curve we wish to approximate.

• Normalize v∗i by computing vi ← v∗i /
∥∥v∗i ∥∥

• Predict the next point: xi+1 = xi + stepsize · vi

• Apply Newton corrections until
∥∥F (xi+1)

∥∥ < toleranceF and the
norm of the last correction ∆x is less than tolerance∆x

end
Algorithm 1: Continuation

The Newton Corrections are defined as follows. To obtain a unique solution of F (x) = 0
near xi+1, we require that xi+1 satisfies:

〈vi, xi+1 − xi〉 = 0

This method of defining the next point in the continuation is called the pseudo-arclength
continuation [5, section on pseudo-arclength continuation].

Therefore, to solve for xi+1 we apply Newton’s method to{
F (xi+1) = 0

〈vi, xi+1 − xi〉 = 0

Suppose we have a candidate xji+1 for the next point xi+1 in the continuation. We compute
an approximation xj+1

i+1 that is more accurate than xji+1 by computing the Jacobian matrix
∂xF (xji+1), and then solving(

∂xF (xji+1)
vTi

)
(xj+1
i+1 − x

j
i+1) +

(
F (xji+1)

0

)
= 0

where we see v as a column vector. Thus, Newton Corrections are performed as follows:
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Input:

• an approximation x to a point on the curve F (x) = 0

• a tangent vector v (as a column vector) to the curve F (x) = 0 at a previous
continuation point

• tolerances toleranceF and tolerance∆x

Output:

• an approximation x such that
∥∥F (x)

∥∥ < toleranceF and∥∥∥∥∥
(
∂xF (x)
vT

)−1

F (x)

∥∥∥∥∥ < tolerance∆x

done ← false
while not done do

∆x← −
(
∂xF (x)
vT

)−1

F (x)

x← x+ ∆x
done =

∥∥F (x)
∥∥ < toleranceF and

∥∥∆x
∥∥ < tolerance∆x

end
Algorithm 2: Newton Corrections

Note that we drop the subscript and superscript of x here, since we don’t need them.
Once the approximation starts to converge, one should see quadratic convergence, that

is
∥∥∥F (xj+1

i )
∥∥∥ ≈ ∥∥∥F (xji )

∥∥∥2
, until other numerical errors become dominant. Since we are

interested in the x rather than F (x), it is important to demand that the norm of ∆x is
below a certain tolerance, since if the gradient of F (x) is small, there will be large changes
in x even if F (x) is nearly zero.
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Chapter 2

Continuation of cycles using
orthogonal collocation

Orthogonal Collocation is a method of discretizing a Boundary Value Problem for
ODEs [6]. Continuation of a limit cycle can be viewed a boundary value problem. Hence,
the problem of continuing a limit cycle can be discretized using orthogonal collocation [7].
Specifically, suppose we wish to continue limit cycles in the system:

dy/dt = f(y, γ), y ∈ Rn, γ, t ∈ R

and let φ(y0, t, γ) be the solution of the initial value problem dφ/dt = f(φ, γ), φ(0) = y0,
evaluated at time t. The boundary value problem we must solve to find a limit cycle is{

dφ/dt = f(φ, γ)

φ(y0, γ, 0) = φ(y0, γ, T )
(2.1)

One would solve this problem for a fixed γ by finding an initial value y0 ∈ Rn, and a period
T ∈ R such that the equations (2.1) are satisfied.

It is customary to rescale time such that the period of the cycle in the rescaled time is
one. With this rescaling (2.1) becomes{

dφ/dt = Tf(φ, γ)

φ(y0, γ, 0) = φ(y0, γ, 1)
(2.2)

Suppose that a cycle C with period T has been found. Note that any point y0 on C
will satisfy (2.2). To uniquely define y0 we must add a phase condition to (2.2). In a
continuation context this is done using the derivative w.r.t. time of the periodic solution
w at the previous continuation step. Hence, the phase condition will be∫ 1

0
〈ẇ(τ), φ(τ)〉dτ = 0 (2.3)

This phase condition ensures that φ is close to w. Specifically, phase condition ensures
that the φ is a minimizer of the 2-norm of the difference of φ and w, when minimizing over
the set of functions {φs : τ 7→ φ(τ + s) | s ∈ [0, 1]}, i.e. the set of all phase shifts of φ.
[5].

When using orthogonal collocation, we approximate the periodic orbit with a piecewise
polynomial function. The periodic orbit is approximated using ntst polynomials. Each
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polynomial approximates the periodic orbit on one of the ntst mesh intervals. We denote
the boundaries of these intervals by:

0 = τ0 < τ1 < · · · < τntst = 1 (2.4)

We will call the points (2.4) mesh points. The mesh points can be chosen freely within the
constraints of (2.4). They are typically chosen to optimize the accuracy of the discretiza-
tion.

On each mesh interval [τi, τi+1] for i ∈ {0, ..., ntst − 1} we define basis points τi,j :

τi,j = τi +
j

ncol
(τi+1 − τi) for j ∈ {0, . . . , ncol} (2.5)

Note that the last basis point of mesh interval i is equal to the first basis point of mesh
interval i+1, that is, we have ui,ncol = ui+1,0 for i ∈ {1, ..., ntst−1}. On each mesh interval
[τi, τi+1] for i ∈ {0, ..., ntst − 1} the solution will be approximated by the polynomial:

u(i)(τ) =

ncol∑
k=0,k 6=j

ui,jli,j(τ) (2.6)

where ui,j are constants and li,j are a Lagrange basis polynomials, defined as

li,j(τ) =

ncol∏
k=0,k 6=j

τ − τi,k
τi,j − τi,k

Note that we have

li,j(τi,j) =

ncol∏
k=0,k 6=j

τi,j − τi,k
τi,j − τi,k

= 1

and if j∗ ∈ {0, ..., ncol} and j∗ 6= j then we have

li,j(τi,j∗) =

ncol∏
k=0,k 6=j

τi,j∗ − τi,k
τi,j − τi,k

= 0

since one of the factors of the numerator vanishes. Thus, we have u(i)(τi,j) = ui,j . Hence,
we conveniently choose the points τi,j , as the points where the φ equals u(i) exactly, since
then the coefficients ui,j are simply equal to φ(τi,j). Consequently, to compute the first
point on a continuation curve of cycles, we find ui,j by computing φ(τi,j). Here φ is
typically found by time integration towards a stable cycle, or constructing a small, elliptic
orbit around a Hopf point.

Now, we require that the periodic orbit is a solution of the differential equation. When
discretizing using orthogonal collocation, we require that the differential equation is satis-
fied at the Gauss points ζi,k in each mesh interval. The Gauss points are the roots of the
ncol-th order Legendre polynomial relative to the mesh interval. Specifically, suppose ηk is
the k-th root of te m-th order Legendre polynomial. Then we have:

ζi,k = τi +
ηk + 1

2
(τi+1 − τi) for i ∈ {0, . . . , ntst − 1} and k ∈ {1, . . . ,m}

Note that the roots of the Legendre polynomial lie in the interval (−1, 1). Hence, we have
ζi,k ∈ (τi, τi+1) for all i ∈ {0, . . . , ntst − 1} and k ∈ {1, . . . , ncol}.
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Having defined the Gauss points, we can now require that the differential equation is
satisfied at these points:

ncol∑
j=0

ui,jl′(ζi,k) = Tf

ncol∑
j=0

ui,jl(ζi,k), γ

 for i ∈ {0, . . . , ntst−1} and k ∈ {1, . . . , ncol}

(2.7)
The discrete version of the condition φ(y0, γ, 0) = φ(y0, γ, 1) is:

u0,0 = untst−1,ncol (2.8)

Finally, the discrete version of (2.3) is then

ntst−1∑
i=0

(∆t)i

ncol∑
j=0

ωju
i,jTf(vi,j , γ) = 0 (2.9)

where (∆t)i is the width of the i-th mesh interval, and ωj are the Newton-Cotes quadrature
coefficients of degree ncol + 1.

2.1 Improvements made to cycle continuation in Matcont

The algorithm described in the first part of this chapter, has been implemented in
Matcont since 2002 [8, 9]. The Matcont implementation was based on the collocation code
in auto86 [10]. We will describe the changes made to the Matcont implementation of
continuation of cycles by collocation to allow the continuation of cycles in large systems of
ODEs.

First of all, the computation of the initial tangent vector for continuation as it was
implemented in Matcont, was not well suited for large systems. The old way of computing
the tangent vector sometimes required multiple attempts to find the tangent vector. As
the size of the system increased, the number of attempts needed to be increased as well.
Sometimes the procedure would fail all together.

A better way to compute the tangent vector is to pick a vector from the nullspace of
the Jacobian matrix of the defining function of the curve of cycles.

Secondly, the computation of the Jacobian matrix of the curve function had to be made
more efficient in terms of memory footprint. Since this Jacobian matrix is large and sparse,
it should be stored as a sparse matrix, which was to a certain degree already the case in
Matcont. One important improvement is that a more accurate upper bound on the number
of nonzero’s in the matrix is specified.

Finally, the way Floquet multipliers are computed has also been improved. The com-
putation time has been reduced.

2.1.1 Sparsity of the Jacobian matrix

As mentioned, the Jacobian matrix is large and sparse. An important improvement in
CL_MATCONTL was to derive a more accurate upper bound on the number of nonzero’s
of this matrix. This is important, since for a large enough system, one will run out of
memory. Hence, with this improvement larger systems can be continued with the same
amount of memory. One should note that CL_MATCONTL leaks memory. That is,
during continuations, the amount of memory used by Matlab will steadily increase. For
continuations of large enough systems, this is problematic. These memory leaks could are
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Figure 2.1: Sparsity pattern of the Jacobian matrix

bugs in either CL_MATCONTL or Matlab, and, ideally, they should be fixed.1 In the
meantime, the easiest way deal with these memory leaks is to restart Matlab often, and to
use the latest version of Matlab.

The part of the code where the reduction of memory use was realized, were the mex-
functions in CL_MATCONTL. Mex-functions are extensions to Matlab written in C or
Fortran. The mex-functions in Matcont compute the Jacobian matrix of the limit cy-
cle continuation problem, and other similar Jacobian matrices related to period doubling
bifurcations (PD), limit points of cycles (LPC), Neimark-Sacker bifurcations (NS), and
Branching Points of Cycles (BPC). These Jacobian matrices are sparse, and very large.
The reason that the effort was made to write the functions that compute these Jacobian
matrices as a mex-function, was to speed up the continuation of cycles (see the last section
of [11]).

The sparsity structure of the Jacobian matrix of the cycle continuation problem is
illustrated in the diagram below. Note that some nonzero’s we count will be zeros for
specific problems. Hence, the number of nonzero’s we count now represents the worst case.
In this diagram the number of coordinates of the system of ODE’s nODE is three, the
number of mesh intervals ntst is five, and the number of collocation points ncol is four.

1perhaps by using http://undocumentedmatlab.com/blog/undocumented-profiler-options
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We count the number of non-zero elements as a function of nODE , ntst, and ncol.
The height of the matrix is ntst ncol nODE + nODE + 1, and the width of the matrix
is ntst ncol nODE + nODE + 2. The rectangular blocks (colored in blue in the diagram) are
ncol nODE elements high and ncol nODE + nODE = (ncol + 1)nODE elements wide. Thus,
the number of nonzero’s in one blocks is ncol (ncol + 1)n2

ODE , and the number of nonzero’s
in all these blocks is ntst ncol (ncol + 1) n2

ODE

The nonzero’s related to the boundary conditions are colored in red in the diagram
above. There are 2nODE such nonzero’s. The remaining nonzero’s are the nonzero’s
in the last two columns and the last row (colored green in the diagram). We assume
that the matrix can be dense here. The number of nonzero’s in the last two columns
and the last two rows is twice the height plus once the width minus two, which equals
3(ntst ncol nODE + nODE) + 2.

All together there are at most:

nnz = ntst ncol (ncol + 1)n2
ODE + 3ntst ncol nODE + 5 nODE + 2 (2.10)

nonzero’s in the Jacobian matrix of the continuation problem of limit cycles.
Before this new bound on the number of nonzero’s was used, Matcont allocated storage

for n2
tst n

2
col n

2
ODE nonzero’s. Hence, using (2.10) the memory footprint of the Jacobian

matrix has been reduced by factor of ntst, to leading order of ntst, ncol, and nODE .
Note that when continuing cycles in spatially discretized PDEs, these Jacobian matrices

much sparser than stated in (2.10). Should the need for even more frugal use of memory
arise, a good strategy would be to allocate a fraction of the upper bound (2.10), and
then reallocate and copy the Jacobian matrix if the allocated space is full. This will
probably work well in practice, since memory to memory copying is very fast. Another
more sophisticated option would be to assume or prove that the additional sparsity in one
block (referring the blocks are in blue the diagram) is similar for each block.

One should keep in mind that after construction of the Jacobian matrix, its LU decom-
position will be computed, which will cause some fill-in, and thus require more memory.
Hence, at some point, reducing the storage requirements for constructing the Jacobian
matrix will not reduce the minimum memory requirement for continuation of cycles using
orthogonal collocation.

2.1.2 Floquet Multipliers

The way Floquet multipliers are computed during continuations of cycles using orthog-
onal collocation was also improved. Floquet multipliers are computed using the Jacobian
matrix discussed in the previous section, evaluated at point that results from the Newton
corrections. When computing the Floquet multipliers, only a part of the Jacobian matrix
is used. Specifically, only the nonzeros that are colored in blue in Figure 2.1.1 are used.
We refer to this submatrix as J∗. This can be explained as follows. The Jacobian matrix
represents the rate of change of the defining function, w.r.t. the curve variables. At con-
vergence the norm of the defining function is close to zero. Therefore, when computing
multipliers, we assume it to be exactly zero. We refer to this assumption as assumption A.

The monodromy matrix is the Jacobian of untst−1,ncol w.r.t. u0,0. Using the matrix J∗

and assumption A, we can express the variation of untst−1,ncol , in terms of u0,0. In effect
we will compute the linear map M : u0,0 7→ untst−1,ncol such that we have J∗u = 0, where
u is the column vector whose first nODE elements are equal to the elements of u0,0, the
last nODE elements are equal to minus one times the elements of untst−1,ncol and whose
other elements are zero.
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The first step in computing the multipliers is called “condensation of parameters”. In
this step many nonzero’s in J∗ are eliminated used Gaussian elimination. The resulting
sparsity pattern is illustrated in figure 2.1.2 for nODE = 3, ntst = 5, and ncol = 4.
Condensation of parameters can by carried out for each block in parallel. The system of
equations corresponding to the nonzero’s that are colored red and green in figure 2.1.2 can
be solved independently. This way we have eliminated all the variables that correspond to
the internal points of mesh intervals. We define the sequences of matrices Ai, and Bi for
i ∈ {1, ..., ntst} as indicated in figure 2.1.2.

We will now derive an equation for untst−1,ncol in terms of u0,0. To make the equation
more readable we will write ui for ui,0 (i ∈ {0, ..., ntst − 1}, and untst = untst−1,ncol . Using
this notation we find Aiui−1 + Biui = 0 for i = {1, 2, ..., ntst} from J∗ after condensation
of parameters. Hence we have ui = −B−1

i Aiui−1 for i = {1, 2, ..., ntst}. By applying this
formula recursively we have:

untst = B−1
ntst Antst B

−1
ntst−1 Antst−1 . . . B

−1
2 A2 B−1

1 A1u0

Thus an approximation of the monodromy matrix is:

B−1
ntst Antst B

−1
ntst−1 Antst−1 . . . B

−1
2 A2 B−1

1 A1 (2.11)

Periodic Schur decomposition

We have shown how to compute the monodromy matrix from the Jacobian. However, in
[12] it is argued that direct computation of the eigenvalues of the monodromy matrix using
(2.11), is numerically unstable, when large eigenvalues are present. In [12], it is proposed
that a numerically more stable approach is to use the periodic Schur decomposition. The
periodic Schur decomposition is derived in [13]. With the permission of Daniel Kressner,
his implementation of the periodic Schur decomposition was included in CL_MATCONTL,
to compute Floquet multipliers of cycles. Daniel Kressner described some of the details of
his implementation in [14].

Kressner’s implementation is indeed efficient. It is partly written in FORTRAN. How-
ever, the current implementation does not always converge. Hence, it is sometimes nec-
essary to fall back on direct matrix multiplication. This is fine, as long as there are no
large multipliers. In case of large multipliers, CL_MATCONTL will fall back on another
way of computing multipliers, namely the one that was implemented in Matcont, which
is also uses the same Jacobian matrix. This algorithm was based on the Floquet multi-
plier algorithm of AUTO97. In [12] it shown that the error in the trivial multiplier of the
AUTO97 algorithm and the periodic Schur decomposition is similar in one example. The
AUTO97 algorithm incorporates insights from [15]. Its current Matlab implementation
is, however, much slower than either direct matrix multiplication or using the Kressner’s
implementation of the periodic Schur decomposition.

Alternatively, it is possible to compute multipliers using the periodic Schur decompo-
sition, even if it has not fully converged. However, this has not been implemented.
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Figure 2.2: Sparsity pattern of J∗ after condensation of parameters.
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Chapter 3

Continuation of cycles using single
shooting with Newton-Picard

We will describe a method of continuation of cycles of large systems of ODEs using the
Newton-Picard method.

The Newton-Picard method described by K. Lust in [16, 17] and [18], is an algorithm
for the continuation of cycles based on single shooting. First, we describe the standard
method of continuing cycles with single shooting.

3.1 Continuing cycles with single shooting

We define a parameter-dependent autonomous system of first order ODEs:

dy

dt
= f(y, γ), y ∈ RnODE , γ ∈ R

To find a periodic orbit, we solve the system:{
r(y0, T, γ) := φ(y0, T, γ)− y0 = 0

s(y0, T, γ) = 0
(3.1)

for y0. Here T is the period, φ(y0, T, γ) is the solution of the ODE for initial condition
y(0) = y0, evaluated at T , for parameter value γ, and s is a phase condition to make the
solution unique. This condition is needed since to eliminate the invariance of a periodic
solution under time translation. We use:

s(y0; y0
0, γ0) =

〈
f(y0

0, γ0), y0 − y0
0

〉
(3.2)

Where y0
0 is the previous continuation point, and γ0 is the parameters value at the previous

continuation point. Hence, f(y0
0, γ0) is the tangent vector to the periodic solution at

y0
0. Note that this is related to the phase condition used in continuation by orthogonal
collocation. Specifically, in orthogonal collocation, one essentially integrates 3.2 over the
entire cycle.

Once a solution is found, it can be continued by adding a pseudo arc-length continuation
condition n to system (3.1). If we have x = (y0, T, γ), and v a tangent vector to the
continuation curve at the previous continuation point x∗, and h is the step size, then the

15



continuation condition is n(y0, T, γ) = n(x) = 〈x− (x∗ + hv), v〉.
r(y0, T, γ) = 0

s(y0, T, γ) = 0

n(y0, T, γ) = 0

(3.3)

To solve system (3.3), Newton’s method can be applied, as explained in section 1.2. At
each continuation point the next continuation point is found by applying Newton correc-
tions as follows. We compute the corrections (∆y,∆T,∆γ) fromM − I bT bγ

cTs ds,T ds,γ
cTn dn,T dn,γ

∆y
∆T
∆γ

 = −

r(y0, T, γ)
s(y0, T, γ)
n(y0, T, γ)

 (3.4)

Where M − I bT bγ
cTs ds,T ds,γ
cTn dn,T dn,γ

 :=
∂(r, s, n)(y0, T, γ)

(y0, T, γ)

∣∣∣∣
(y0,T,γ)

(3.5)

Then the corrections are applied:

yj+1 = yj + ∆y

T j+1 = T j + ∆T

γj+1 = γj + ∆γ

Specifically, for the choices for n and s we make here, we have:M − I bT bγ
cTs ds,T ds,γ
cTn dn,T dn,γ

 =

 M − I f(y0, γ) bγ
f(y0

0, γ0)T 0 0
vTy vT vγ


Note that the vector vT , which is the continuation tangent vector (see section 1.2), spans
the entire last row of this matrix. Hence, vy, vT , and vγ are the components of v that are
related to y, T , and γ respectively. The matrix M is the monodromy matrix. It can be
computed by finite differences, or by solving the variational problem:{

M ′(t) = ∂yf(φ(t), γ)M(t)

M(0) = I

If the dimension nODE of the state vector of the ODE is large, computing the mon-
odromy matrix M , by finite differences or by solving the variational problem will be pro-
hibitively expensive in terms of computation time. If the ODE is a discretization of a PDE,
the monodromy matrix will typically have many eigenvalues that are nearly zero. This is
exploited by the Newton-Picard method.

3.2 Single Shooting with Newton-Picard

As mentioned in at the end of the previous subsection, straightforward continuation of
cycles with single shooting, will be prohibitively expensive. The Newton-Picard method
computes an invariant subspace V of M spanned by eigenvectors associated to the eigen-
values of with a norm greater than ρ. For the solution of the Q-systems to converge one
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needs ρ < 1. The smaller ρ the faster the solution of the Q-system converges, but for small
ρ the system must be solved in the Newton correction is larger. One could, for instance,
choose ρ = 1/2. In practice, one should choose a value ρ to minimize total computation
time.

The p dimensional invariant subspace V will be defined using the eigenvectors associ-
ated to the dominant eigenvalues of M . Suppose we have an orthogonal basis Vp for V .
Then we can decompose Rn into V and V ⊥. The idea of the Newton-Picard method is
that we apply Newton’s method to the part of the problem in V and a Picard iteration in
the part of the problem in V ⊥.

We will now derive the Newton-Picard method. When we write Vp and Vq we think
of them as being in the form of a nODE × p resp. nODE × (nODE − p) matrix, where p is
the size of the basis, and where the columns of the matrices are the vectors in the bases.
Thinking of Vp and Vq this way, we define the projectors:

P := VpV
T
p

Q := VqV
T
q = I − VpV T

p

Note that P projects onto V and Q projects onto V ⊥. Note that Vq is used purely for
theoretical purposes and will not be explicitly computed, since it is quite big.

Any y ∈ RnODE can be decomposed as x = p + q with p = Py and Q = Qy. If we
decompose all vectors in the phase space of the ODE as x = p+ q in the left hand side of
equation 3.4, we getM − I bT bγ

cTs ds,T ds,γ
cTn dn,T dn,γ

P∆y +Q∆y
∆T
∆γ

 = −

r(y, T, γ)
s(y, T, γ)
n(y, T, γ)

 (3.6)

Since the subspaces V and V ⊥ are orthogonal, we can separate the equations in the
phase space RnODE into equations in V and equations in V ⊥, to obtain the 2nODE + 2
dimensional system:

M − I M − I bT bγ
cTs cTs ds,T ds,γ
cTn cTn dn,T dn,γ



Q∆y
P∆y
∆T
∆γ

 = −

r(y, T, γ)
s(y, T, γ)
n(y, T, γ)

 (3.7)

We substitute VqV T
q for Q, and VpV T

p for P :

M − I M − I bT bγ
cTs cTs ds,T ds,γ
cTn cTn dn,T dn,γ



VqV

T
q ∆y

VpV
T
p ∆y

∆T
∆γ

 = −

r(y, T, γ)
s(y, T, γ)
n(y, T, γ)

 (3.8)

By moving the factors Vq and Vp into the matrix, the system is once again nODE dimen-
sional: (M − I)Vq (M − I)Vp bT bγ

cTs Vq cTs Vp ds,T ds,γ
cTnVq cTnVp dn,T dn,γ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 = −

r(y, T, γ)
s(y, T, γ)
n(y, T, γ)

 (3.9)
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Now we multiply the first nODE rows of both sides of the equation by [Vq Vp]
T on the left

side.
V T
q (M − I)Vq V T

q (M − I)Vp V T
q bT V T

q bγ
V T
p (M − I)Vq V T

p (M − I)Vp V T
p bT V T

p bγ
cTs Vq cTs Vp ds,T ds,γ
cTnVq cTnVp dn,T dn,γ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 = −


V T
q r

V T
p r

s(y, T, γ)
n(y, t, γ)

 (3.10)

Since V is an invariant subspace of M , the vectors MVp span V . Therefore, V T
q (M −

I)Vp is zero at convergence. Thus, we neglect this term.
Similarly, V T

q bT is zero at convergence as well. We have bT = ∂φ(y, T, γ)/∂T =
f(φ(y, T, γ), γ). Since f(φ(y, T, γ)) is the eigenvector that corresponds to the eigenvalue
one of the monodromy matrix M , and this eigenvector is in the subspace V , we have
V T
q bT = 0 at convergence. Thus, we neglect V T

q bT , as well. 1 Hence, the system we want
to solve is now:


V T
q (M − I)Vq 0 0 V T

q bγ
V T
p (M − I)Vq V T

p (M − I)Vp V T
p bT V T

p bγ
cTs Vq cTs Vp ds,T ds,γ
cTnVq cTnVp dn,T dn,γ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 = −


V T
q r

V T
p r

s(y, T, γ)
n(y, t, γ)

 (3.11)

The systems [
V T
q (M − I)Vq

] [
V T
q ∆qr

]
= −

[
V T
q r
]

(3.12)

[
V T
q (M − I)Vq

] [
V T
q ∆qγ

]
= −

[
V T
q bγ

]
(3.13)

can be solved by an iterative method, which we will describe in section 3.3. These systems
are called the Q-systems. For now, we consider the Q-systems solved, and we rewrite the
first block row of equation (3.11) in terms of the solutions V T

q ∆qr, and V T
q ∆qγ .


InODE−p 0 0 −V T

q ∆qγ
V T
p (M − I)Vq V T

p (M − I)Vp V T
p bT V T

p bγ
cTs Vq cTs Vp ds,T ds,γ
cTnVq cTnVp dn,T dn,γ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 = −


−V T

q ∆qr
V T
p r

s(y, T, γ)
n(y, t, γ)

 (3.14)

Note that since Vq and Vp are orthogonal have V T
p Vq = 0, thus we have V T

p (M − I)Vq =

V T
p MVq − V T

p Vq = VpMVq. Thus we have:


InODE−p 0 0 −V T

q ∆qγ
V T
p MVq V T

p (M − I)Vp V T
p bT V T

p bγ
cTs Vq cTs Vp ds,T ds,γ
cTnVq cTnVp dn,T dn,γ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 = −


−V T

q ∆qr
V T
p r

s(y, T, γ)
n(y, t, γ)

 (3.15)

Note that the equations in the upper nODE − p rows can be written as:

V T
q ∆y − V T

q ∆qγ∆γ = V T
q ∆qr (3.16)

1Even though we choose to neglect V T
q bT , is it not necessary. In [19], K. Lust mentions that V T

q bT can
be treated in a similar manner as V T

q bγ
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In each of the three lower block rows, we substitute the term with V T
q ∆y with V T

q ∆qγ∆γ+

V T
q ∆qr. In other words, we use Gaussian elimination to introduce zero’s in the lower three

positions of the first block column of the matrix. This is relatively simple, because of the
zeros in the first block row.

IN−p 0 0 −V T
q ∆qγ

0 V T
p (M − I)Vp V T

p bT V T
p bγ + V T

p MVqV
T
q ∆qγ

0 cTs Vp ds,T ds,γ + cTs VqV
T
q ∆qγ

0 cTnVp dn,T dn,γ + cTnVqV
T
q ∆qγ



V T
q ∆y

V T
p ∆y

∆T
∆γ

 =

−


−V T

q ∆qr
V T
p r + V T

p MVqV
T
q ∆qr

s(y, T, γ) + cTs VqV
T
q ∆qr

n(y, t, γ) + cTnVqV
T
q ∆qr

 (3.17)

We can now solve the the systemV T
p (M − I)Vp V T

p bT V T
p bγ + V T

p MVqV
T
q ∆qγ

cTs Vp ds,T ds,γ + cTs VqV
T
q ∆qγ

cTnVp dn,T dn,γ + cTnVqV
T
q ∆qγ

V T
p ∆y

∆T
∆γ

 =

−

 V T
p r + V T

p MVqV
T
q ∆qr

s(y, T, γ) + cTs VqV
T
q ∆qr

n(y, T, γ) + cTnVqV
T
q ∆qr

 (3.18)

Which is considerably smaller than (3.4).
When solving the Q-systems, we actually solve the simpler nODE-dimensional systems

(3.19), instead of the nODE − p-dimensional systems (3.12) and (3.13).[
M − I

] [
∆qr

]
= −

[
Qr
] [

M − I
] [

∆qγ
]

= −
[
Qbγ

]
(3.19)

subject to ∆qγ ,∆qr ∈ V ⊥, and where we only require (near) equality in the equations
(3.19) in V ⊥. Hence, we will find ∆qr and ∆qγ such that:

VqV
T
q ∆qr = Q∆qr = ∆qr

VqV
T
q ∆qγ = Q∆qγ = ∆qγ

and thus equation (3.18) becomes:V T
p (M − I)Vp V T

p bT V T
p bγ + V T

p M∆qγ
cTs Vp ds,T ds,γ + cTs ∆qγ
cTnVp dn,T dn,γ + cTn∆qγ

V T
p ∆y

∆T
∆γ

 = −

 V T
p r + V T

p M∆qr
s(y, T, γ) + cTs ∆qr
n(y, T, γ) + cTn∆qr

 (3.20)

3.3 Solving the Q-systems

The nODE-dimensional vectors ∆qr and ∆qγ are computed using the following iterative
method. Kurt Lust also described how to use GMRES to compute ∆qr and ∆qγ , but that
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is outside the scope of this thesis. Moreover, it is unclear if GMRES would perform better.
Input:

• a basis Vp for an invariant subspace V of M associated to the dominant eigenvalues
(in norm) of M . In this algorithm basis Vp is used as a matrix whose columns are
the basis vectors.

• a right hand side rhs of the Q-system (M − I)∆q = −rhs

• a way to compute Mx given a vector x. We denote the function call to compute
Mx from x by compute_M(x). Note that we make a distinction between the
stored values M∆q, and the function call compute_M(∆q) to compute it.

• A maximum number of iterations max_iterations. If, for instance, the stepsize in
the continuation is too large, the solution might not converge. For such a
contingency, we stop after a certain number of iterations, so that the stepsize can
be reduced.

Result:

• Vq∆q and MVq∆q

residual← rhs− VpV T
p rhs

M∆q = 0
if
∥∥residual∥∥ < tolerance then
∆q = 0
return M∆q and ∆q

end
for iteration number = 1 up to max_iterations do

∆q ←M∆q + rhs
∆q ← ∆q − VpV T

p ∆q
M∆q ← compute_M(∆q)
residual← rhs+M∆q −∆q
residual← residual − VpV T

p residual

if
∥∥residual∥∥ < tolerance then
return M∆q and ∆q

end
end

Algorithm 3: How to solve the Q-system

3.4 Continuation of the subspaces

In this section, we will explain how to compute the basis Vp, and how to update it
each continuation step. To compute Vp, the function eigs in Matlab was used. The
function eigs can accept a function that applies a linear operator to a vector. By sup-
plying the Monodromy operator of the current approximation of the cycle to eigs, we
find the eigenvectors of associated to the eigenvalues of greatest norm. Denote the mon-
odromy operator by M . The result Mx can be computed using Algorithm 4. It is im-
plemented in the file Continuer/+NewtonPicard/+SingleShooting/monodromy_map.m in
the CL_MATCONTL source. This function is also the implementation of the function
compute_M in algorithm 3.

When computing the current approximation of the cycle and evaluating the mon-
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odromy map, one can specify tolerances to the time integration function. The time in-
tegration function used is the Matlab ODE solver ode15s (although one can easily spec-
ify in the CL_MATCONTL commands that another Matlab or Matlab compatible ODE
solver should be used). Choosing the tolerance of the ODE solver is a matter of balancing
accuracy versus computation time. Choosing low tolerances will increase accuracy. Low
tolerances will also enable bigger step sizes in the continuation. On the other hand, the
computation time per step will increase. Choosing extremely low tolerances will guar-
antee that the continuation will proceed with a minimum of failed steps, but will likely
cause the computation time per step to be unnecessarily high. On the other hand, one
should set absolute integration tolerance lower than the continuation tolerance, otherwise
the continuation steps will probably not converge down to the continuation tolerance.

Input:

• a vector x for which we want to compute Mx

• the current approximation of the period T of the limit cycle.

• the current approximation yc of the periodic orbit

Output:

• Mx

1. Solve the initial value problem y(0) = x, dydt = fy(yc(t))y
By default, the Matlab function ode15s is used for this.

2. return y(T )

Algorithm 4: How to compute Mx

If a basis Vp from a previous continuation step is already known, this basis can be
continued. The advantage of this is that the changes in the basis will be smooth. That
is, out of all the possible orthonormal bases that span the subspace, with continuation we
find a basis that is close to the basis in the previous step. Continuation of a subspace
of a monodromy matrix is done as shown in algorithm 5, and is implemented in the
file Continuer/+NewtonPicard/+SingleShooting/continue_subspace.m This algorithm
is based on algorithm 1 in [18].
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Input:

• the basis Vp used for the previous Newton-Picard correction

Result:

• a basis Vp to be used for the current Newton-Picard correction

Add random some vectors to the basis Vp = {vi}i
effective_basis_size = 0
for iteration = 1 up to max_iteration do

if iteration > 1 then
for i = effective_basis_size + 1 up to the size of the basis do

vi ← wi
end
orthonormalize the column vectors of Vp starting at
column effective_basis_size + 1

end
for i = effective_basis_size up to the size of the basis do

wi ←Mvi
end
W ← {wi}i
U ← VpW
compute the Schur factorization Y, S of U (Y, S such that UY = Y S, where S is
upper triangular, and Y is unitary) such that the Schur vectors are ordered
according to the norm of the associated eigenvalues.
Vp ← VpY
for k = size of the basis down to 1 do

Compute the largest singular value s of the first k columns of W − VpS
if s <tolerance then

effective_basis_size ← k
break

end
end
if effective_basis_size >= required_basis_size then

return Vp
end

end
Algorithm 5: Continuation of the basis
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3.5 Summary

To summarize, combining single shooting with Newton-Picard entails that we replace
the Newton correction (algorithm 2) with a more sophisticated variant summarized in algo-
rithm 6. The while loop (without the statements inside it) in algorithm 6 is implemented in
the file Continuer/+NewtonPicard/do_corrections.m in the CL_MATCONTL source,
and the statements inside the while loop are implemented in the file
Continuer/+NewtonPicard/+SingleShooting/do_one_correction.m.

The number of evaluations of the monodromy map (Algorithm 4) needed for one cor-
rection cannot be determined exactly a priori. We do know that MVp must be computed,
which requires one evaluation of the Monodromy map for every vector in Vp. Hence, com-
puting MVp requires p evaluations of the monodromy map. The number of evaluations of
the monodromy map needed for solving of the Q-systems cannot be determined a priori.
In rare cases it may not need any evaluations at all.
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done ← false
while not done do

1. Compute the current approximation yc of the cycle by integration from the starting
point y, by time integration using ode15s, or a similar time integration method.

2. Compute the subspace Vp using the eigs function in Matlab or continue the
subspace Vp using algorithm 5. When calling either of these functions, pass
algorithm 4 and an argument, and pass the result yc computed in step 1 to
algorithm 4.

3. Compute ∆qr, M∆qr, ∆qγ , and M∆qγ using algorithm 3, again passing algorithm
4 as an argument, and passing yc to algorithm 4.

4. Compute the matrix J :

J =

V T
p (M − I)Vp V T

p bT V T
p bγ + V T

p M∆qγ
cTs Vp ds,T ds,γ + cTs ∆qγ
cTnVp dn,T dn,γ + cTn∆qγ



=

V T
p MVp − I V T

p f(φ(T ), p) V T
p

(
∂(φ(T ))
∂γ +M∆qγ

)
f(y0

0, γ0)TVp 0 f(y0
0, γ0)T∆qγ

vTy Vp vT vγ + vTy ∆qγ


with:
y0

0 equal to the coordinates of the point on the cycle at the previous continuation
point ( see equation (3.2) )
γ0 equal to the parameter of the system ODEs at the previous continuation point.
and vy, vT , and vγ equal to the parts of the continuation tangent vector associated
to the point on the cycle x, the period T and the parameter γ, respectively.

5. Solve the linear system: J

V T
p ∆y

∆T
∆γ

 = −

 V T
p r + V T

p M∆qr
s(y, T, γ) + cTs ∆qr
n(y, T, γ) + cTn∆qr


6. Compute the corrected values of y, T , and γ:

∆y ← VpV
T
p ∆y + ∆qr

y ← y + ∆y

T ← T + ∆T

γ ← γ + ∆γ

7. we are done if:∥∥(
∥∥r(y, T, γ)

∥∥
∞ , s(y, T, γ), n(y, T, γ))

∥∥
∞ < toleranceF

and ∥∥(∆y,∆T,∆γ)
∥∥
∞ < tolerance∆x

end
Algorithm 6: how to compute a Newton-Picard corrections for single shooting
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Chapter 4

Continuation of cycles using multiple
shooting with Newton-Picard

In his PhD Thesis Kurt Lust has shown that the methods described in chapter 3 can
be extended to multiple shooting. However, no implementation of any multiple shooting
method for large systems, which is publicly available, has been found, though others have
also been working on multiple shooting methods for cycles in large systems [20]. In this
chapter we will discuss Lust’s methods, and briefly comment on how they were implemented
in Matlab.

At each step in a continuation of periodic orbits using multiple shooting the following
equations have to be solved for the set of vector valued variables {xi | 1 ≤ i ≤ m}:

φ(x1,∆s1T, γ)− x2 = 0

φ(x2,∆s2T, γ)− x3 = 0

φ(x2,∆s3T, γ)− x3 = 0

....

φ(xm−1,∆sm−1T, γ)− xm = 0

φ(xm,∆smT, γ)− x1 = 0

s(x0, ..., xm, T, γ) = 0

n(x0, ..., xm, T, γ) = 0

(4.1)

where φ(x0, T, γ) is the solution of the initial value problem dx/dt = f(x, γ), x(0) = x0

evaluated at T , and where the given function f defines the system of ODEs. Here we use
the notation of [19, K. Lust, PhD Thesis ], except for the indices of ∆x, where we use ∆x1

up to ∆xm, instead of ∆x0 up to ∆xm−1, to be consistent with the 1-based indexation
convention of Matlab. To solve these nonlinear equation’s one can apply Newton’s method.
This leads to the linear system:

G1 −I bT,1 bγ,1
G2 −I bT,2 bγ,2

. . . . . . . . . . . .
−I Gm bT,m bγ,m
cTs,1 cTs,2 . . . cTs,m ds,T ds,γ
cTn,1 cTn,2 . . . cTn,m dn,T dn,γ





∆x1

∆x2
...

∆xm
∆T
∆γ


=



r1

r2
...
rm
s
n


(4.2)
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Figure 4.1: Diagram of multiple shooting

where:

ri(xi−1, xi, T, γ) =

{
φ(xi,∆siT, γ)− xi+1 if i < m

φ(xm,∆siT, γ)− x1 if i = m
(4.3)

and:
Gi =

∂φ(xi,∆siT, γ)

∂xi

Bi =
[
bT,i bγ,i

]
=

∂ri
∂(T, γ)

Ci =

[
cTs,i
cTn,i

]
=
∂(s, n)

∂xi

D =

[
ds,T ds,γ
dn,T dn,γ

]
=
∂(s, n)

∂(T, γ)

(4.4)

LetM1 = GmGm−1 . . . G1. Note thatM1 is the monodromy matrix of the cycle relative
to x1, if the continuation step has converged. Define alsoMi = Gi−1Gi−2 . . . G1Gm . . . Gi+1Gi,
i.e. Mi is the product G’s that ends with Gi. Note that this choice of indexation for
Mi, Pi, Qi, Vp,i, Vq,i is another deviation from the notations in Kurt Lust’ PhD thesis [19].
Note that Mi is the monodromy matrix of the cycle relative to xi, if the continuation step
has converged.

The multiple shooting method for large systems can be derived in a manner similar to
the derivation of the single shooting method derived in chapter 3. We will not go into as
much detail as in chapter 3. We introduce the projectors Pi = Vp,iV

T
p,i and Qi = I − Pi =

Vq,iV
T
q,i, where Vp,i is a basis for the subspace Vi of Mi corresponding to the set of leading

eigenvalues in norm. When we write Vp,i we think of it as being in the form of a nODE × p
matrix, where p is the size of the basis, and where the columns are the vectors in the basis.
Note that at convergence the eigenvalues of everyMi are the same. In the linearized system
(4.2) we split ∆xi into Pi∆xi +Qi∆xi. We split ri into Pi+1ri +Qi+1ri for i < m and rm
into P1rm +Q1rm, since ri is the residual near the point xi+1, and rm is the residual near
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x1. See also figure 4.1.



G1 −I bT,1 bγ,1
G2 −I bT,2 bγ,2

. . . . . . . . . . . .
−I Gm bT,m bγ,m
cTs,1 cTs,2 . . . cTs,m ds,T ds,γ
cTn,1 cTn,2 . . . cTn,m dn,T dn,γ





P1∆x1 +Q1∆x1

P2∆x2 +Q2∆x2
...

Pm∆xm +Qm∆xm
∆T
∆γ


=



P2r1 +Q2r1

P3r2 +Q3r2
...

Pmrm−1 +Qmrm−1

P1rm
s
n


(4.5)

In a manner similar to the single shooting case, two systems are derived from this. One
system is Kurt Lust calls the P -system and the other the Q-system. The Q-system is
solved by an iterative method, and the P system is solved directly. The P -system is:

[
F 0
pp {V T

p,i(Bi + ∆qi,γ)}
{CTi Vp,i} D +

∑m
i=1C

T
i ∆qi,γ

]


V T
p,1∆x1

V T
p,2∆x2

...
V T
p,m∆xm

∆T
∆γ


=



V T
p,2r1

V T
p,3r2
...

V T
p,1rm
s
n


(4.6)

where:

F 0
pp =


V T
p,2G1Vp,1 −I

V T
p,3G1Vp,2 −I

. . . . . .
V T
p,mGm−1Vp,m−1 −I

−I V T
p,1GmVp,m

 (4.7)

{V T
p,i(Bi + ∆qi,γ)} =


V T
p,2bT,1 Vp,2(bγ,1 + ∆q1,γ)

V T
p,3bT,2 Vp,3(bγ,2 + ∆q2,γ)
...

...
V T
p,mbT,m−1 Vp,m(bγ,m−1 + ∆qm−1,γ)

V T
p,1bT,m Vp,1(bγ,m + ∆qm,γ)

 (4.8)

and:

{CTi Vp,i} =

[
cTs,1Vp,1 cTs,2Vp,2 . . . cTs,mVp,m
cTn,1Vp,1 cTn,2Vp,2 . . . cTn,mVp,m

]
(4.9)

The sequences of m nODE-dimensional vectors {∆qi,γ}mi=1 and {∆qi,r}mi=1 are the solutions
of the following Q-systems:

G0

∆q1,r
...

∆qm,r

 =


Q2r1
...

Qmrm−1

Q1rm

 and G0

∆q1,γ
...

∆qm,γ

 =


Q2bγ,1

...
Qmbγ,m−1

Q1bγ,1


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with:

G0 =


G1 −I

G2 −I
. . . . . .

Gm−1 −I
−I Gm

 (4.10)

28



4.1 Solving the Q-systems

The Q-systems are solved using algorithm 7, which is based on algorithm 6.2 in [19].
It is implemented in the file
Continuer/+NewtonPicard/+MultipleShooting/solve_Q_system.m

Input:

• bases Vp,i for the subspaces Vi of Mi

• a right hand side rhs of the Q-system

• a way to compute Gix given a vector x. We denote the function call to compute
Gix from x by compute_G(x, i). Note that we make a distinction between the
stored values G∆qi, and the function call compute_G(∆qi, i) to compute it.

• A maximum number of iterations max_iterations. If, for instance, the stepsize in
the continuation is too large, the solution might not converge. For such a
contingency, we stop after a certain number of iterations, so that the stepsize can
be reduced.

Result:

• ∆qi and Gi∆qi for 1 < i < m.

for i = 1 up to m do

inext ←

{
i+ 1 if i < m

1 if i = m

/* We project rhsi on the subspace spanned by Vq,inext. This is
equivalent to rhsi ← Qinextrhsi, but since we dont’t want to
compute Qi, we do: */

rhsi ← rhsi − Vp,inextV T
p,inext

rhsi
end
∆qi = 0 for all i
G∆qi = 0 for all i
for iteration number = 1 up to max_iterations do

for i = 2 up to m do
∆qi ← G∆qi−1 + rhsi−1

∆qi ← ∆qi − ViV T
i ∆qi

G∆qi ← compute_G(∆qi, i)
end
condensed_residual← G∆qm + rhsm
condensed_residual← condensed_residual − V1V

T
1 condensed_residual

if
∥∥condensed_residual∥∥ < tolerance then
return ∆q and G∆q

end
else

G∆q1 ← compute_G(∆q, 1)
end

end
Algorithm 7: how to solve the Q-systems for multiple shooting
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4.2 Computation of the subspaces

We now discuss how to compute Vi (1 ≤ i ≤ m). Kurt Lust provides a sophisticated
algorithm in his PhD thesis for the continuation of the bases. However, the implementation
of this algorithm was outside the scope of this thesis. Instead, we use the same methods
used for single shooting to continue V1, and then compute Vi for 2 ≤ i ≤ m by applying
Gi−1 to each vector of Vi−1, and the orthonormalizing the resulting set of vectors.

4.3 Adaptation of the time mesh

In multiple shooting we continue the cycle by continuing multiple points on the cycle.
There is some freedom in choosing the time intervals between the points. We wish to
choose the time intervals in such a way that it increases the domain of attraction of the
Newton corrections. The way we do this is to distribute the points along the cycle such
that the norm of the gradient along the cycle between each mesh point is the same.

4.4 Summary

We summarize the algorithm discussed in this chapter in algorithm 8. The while loop,
without the statements inside it in implemented in the file

Continuer/+NewtonPicard/do_corrections.m

in the CL_MATCONTL source. The statements inside the while loop are implemented in
the file

Continuer/+NewtonPicard/+MultipleShooting/do_one_correction.m

in the CL_MATCONTL source.

30



done ← false
while not done do

- Compute the current approximation of the cycle by integration from the
starting point x1

- Compute the the partial cycle trajectories form starting point xi for a time
interval of length ∆siT for 2 ≤ i ≤ m
- Compute the subspace V1 using the eigs function in Matlab or continue the
subspace Vp using algorithm 5.
- Compute the subspaces Vi for 2 ≤ i ≤ m by applying Gi−1 to the vectors of
Vi−1 and orthonormalize the result.
- Compute ∆qi,r, Gi∆qr, ∆qi,γ , and Gi∆qi,γ for 1 ≤ i ≤ m using algorithm 7.
- Compute the matrix J :[

F 0
pp {V T

p,i(Bi + ∆qi,γ)}
{CTi Vp,i} D +

∑m
i=1C

T
i ∆qi,γ

]
For the definitions of F 0

pp, {V T
p,i(Bi + ∆qi,γ)}, and {CTi Vp,i}, see equations

(4.7), (4.8), and (4.9).
- Solve the linear system:

J



V T
p,1∆x1

V T
p,2∆x2

...
V T
p,m∆xm

∆T
∆γ


=



V T
p,2r1

V T
p,3r2
...

V T
p,1rm
s
n


- Compute the corrected values of xi (1 ≤ i ≤ m), T , and γ:

∆xi ← VpV
T
p ∆xi + ∆qi,r (1 ≤ i ≤ m)

xi ← xi + ∆xi (1 ≤ i ≤ m)

T ← T + ∆T

γ ← γ + ∆γ

- we are done if: ∥∥(
∥∥r1

∥∥
∞ , . . . ,

∥∥rm∥∥∞ , s, n, )∥∥∞ < toleranceF

and ∥∥(
∥∥∆x1

∥∥
∞ , . . . ,

∥∥∆xm
∥∥
∞ ,∆T,∆γ)

∥∥
∞ < tolerance∆x

end
Algorithm 8: how to compute a Newton-Picard corrections for multiple shooting
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Chapter 5

Detection of Bifurcations

When continuing a branch of cycles, various bifurcations can occur. These are points in
the branch where the stability of the cycle changes. There are three types of codimension
one bifurcations. These types are period doubling points (PD), a limit points of cycles
(LPC), and Neimark-Sacker bifurcations (NS). Although a branching point of cycles (BPC)
is a codimension 2 phenomenon, one can encounter them in branches of cycles due to
symmetries in the system.

We wish to detect and locate these bifurcations. The methods that were implemented
in Matcont were not always adequate for large systems.

5.1 Detection of Limit Points of Cycles (LPC)

The only bifurcation detection method that could be used without any changes was
the detection method for limit points of cycles. LPCs are detected by monitoring for a
sign change in the coordinate vγ of the continuation tangent vector that corresponds to
the active parameter. The active parameter is the parameter of the system of ODEs that
is being changed. If the sign of vγ changes, an LPC has been found. Due to the simplicity
of this method it can be used for large systems as well.

5.2 Detection of Period Doubling points (PD)

The method of detecting PDs was changed. LetM be the monodromy matrix of a cycle.
In Matcont PDs were detected by computing the determinant of M + I and monitoring
this result for a sign change. This works, since at a PD one of the multipliers of the cycles
is equal to -1. The multipliers are the eigenvalues of the monodromy matrix. Therefore,
M + I has a zero eigenvalues at a PD. Thus, det(M + I) changes sign at a PD.

However, if we use Newton Picard, the monodromy matrix is not readily available. The
whole point of Newton Picard is to avoid computing the monodromy matrix. Therefore,
to detect PDs, we simply look at a subset of the Floquet multipliers. This subset S will
be the subset of eigenvalues of which the norm is greater than a certain value ρ, which
can be configured by the user. To detect bifurcations, ρ must less than one. This way, we
compute only the multipliers that are relevant to detecting bifurcations. To detect PDs,
we compute:

ψPD =
∏
µ∈S

(µ+ 1)

The function ψPD changes sign when a PD is passed, since then one of the multipliers
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crosses the unit circle at −1, thereby changing the sign of one of the factors in the product.
To accommodate for the changing size of S, we recompute ψPD every time a the size of S
changes.

5.3 Detection of Neimark-Sacker bifurcations (NS)

When an NS bifurcation occurs, a pair of complex eigenvalues crosses the unit circle.
To detect such a crossing, Matcont computed the bialternate product of the monodromy
matrix. The eigenvalues of bialternate product B of the monodromy matrix are exactly
the products of all pairs of eigenvalues of the monodromy matrix. Therefore, at a NS
bifurcation, one of the eigenvalues of B is equal to one, since when a complex pair crosses
the unit circle, it’s product is equal to one.

However, as we said before, the monodromy matrix is not readily available. Therefore,
as with period doubling points, we look at the subset of multipliers of which the norm is
greater than a certain value ρ. We count the number of complex eigenvalues with norm
greater than one. When this number changes, a Neimark-Sacker bifurcation has occurred.
It could happen that a pair of real multipliers with norm greater than one becomes complex,
but there are usually not so many multipliers with norm greater than one. Hence, this
method will not produce many false positives.

5.4 Detection of Branching Points of Cycles (BPC)

At a branching point of cycles, two of the multipliers are equal to one. That is, in
addition to the trivial multipliers that is always equal to one, at a BPC there is another
multiplier equal to one. Hence, one way to detect a BPC is to compute

ψBPC =
∏
µ∈S∗

(µ− 1),

and monitor for sign changes. Here, S∗ is a subset of multipliers with norm greater than
ρ < 1, and with the trivial multiplier removed. However, ψBPC also changes sign at a
limit point of cycles, since at a limit point of cycles two of the multipliers are equal to
one as well. Therefore, if ψBPC changes sign, we check if an LPC has been detected. The
software will then indicate a BPC has been found, if no LPC has been detected.

One potential downside of this method of detecting BPCs is that if a BPC and an
LPC occur between the same two continuation points, the BPCs will not be detected.
Therefore, it might be worthwhile to detect BPC by detecting a rank drop in the Jacobian
of the continuation. This way of detection BPCs was already implemented in Matcont for
continuation of cycles by means of orthogonal collocation, but has not been successfully
ported to CL_MATCONTL yet. Detecting BPCs by detecting a rank drop in the Jacobian
matrix of the continuation could also work for single shooting and multiple shooting, but
this was outside the scope of this thesis.

This problem of detecting BPCs in the presence of LPCs in especially problematic in
case of a pitchfork bifurcation of cycles. In a pitchfork bifurcation a BPC and an LPC
occur at the same point. In this case on the branch with the LPC no BPC will be detected.
It is, however, still possible to detect the BPC on the other branch.

Another limitation of this method of detecting BPCs it may give false positives in cer-
tain systems, if the accuracy of the multipliers is low. In particular, if there are multipliers
within the range of accuracy of the trivial multiplier, then one of these multipliers, instead
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of the trivial multiplier is removed from the set of multipliers to form the set S∗, which
may result is a sign change of ψBPC even if there is no BPC.

This problem was noticed when continuing the fusion system with the number of mesh
points N equal to 75 using orthogonal collocation. When computing multipliers with the
methods outlined in section 2.1.2, it was observed that the multipliers included many real
multipliers just below one. When computing multipliers using the eigs function in Matlab,
such values are not seen. Furthermore, there are less of these just-less-than-one-multipliers
when the number of mesh interval is increased. Hence, these just-less-than-one multipliers
are most likely due to numerical errors.

Hence, one can mostly avoid detecting false BPCs by either using a many mesh intervals
or by applying the Matlab function eigs to action of the monodromy map. When using
eigs, one evaluates the action of the monodromy map using algorithm 4.
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Chapter 6

Examples

6.1 The Brusselator

The first example of a system with cycles is the Brusselator reaction-diffusion model.
The model consists of system of two PDEs:

∂X

∂t
=
DX

L2

∂2X

∂z2
+X2Y − (B + 1)X +A

∂X

∂t
=
DY

L2

∂2Y

∂z2
−X2Y +BX

(6.1)

with the Dirichlet boundary conditions:

X(t, z = 0) = X(t, z = 1) = A

Y (t, z = 0) = Y (t, z = 1) = B/A
(6.2)

We use finite differences with an equidistant grid to discretize in space. For i ∈ {1, 2, ..., N}
let Xi(t) be the approximation of X(t, z = ih) and similarly let Yi(t) be the approximation
of Y (t, z = ih), where h = 1/(N + 1), and N is the number of grid points. Note that all
grid points are in the interior of the interval [0, 1], since the Dirichlet boundary conditions
fix X and Y at the boundaries. To ease notation we define the reaction terms at grid point
i as:

RX,i := X2
i Yi − (B + 1)Xi +A

RY,i := −X2
i Yi +BX

(6.3)

where we drop the argument t of RX,i, RY,i, Xi and Yi for sake of legibility. For the two
grid points h and 1− h that are near the boundary we have:

∂2X

∂z2
|z=h ≈

X(t, 0)− 2X(t, h) +X(t, 2h)

h2
≈ A− 2X1 +X2

h2

∂2Y

∂z2
|z=h ≈

Y (t, 0)− 2Y (t, h) + Y (t, 2h)

h2
≈ B/A− 2Y1 + Y2

h2

∂2X

∂z2
|x=1−h ≈

X(t, 1− 2h)− 2X(t, 1− h) +X(t, 1)

h2
≈ XN−1 − 2XN +A

h2

∂2Y

∂z2
|x=1−h ≈

Y (t, 1− 2h)− 2Y (t, 1− h) + Y (t, 1)

h2
≈ YN−1 − 2YN +B/A

h2

(6.4)
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Thus, we have:
∂X1

∂t
≈ DX

L2

A− 2X1 +X2

h2
+RX,1

∂Y1

∂t
≈ DY

L2

B/A− 2Y1 + Y2

h2
+RY,1

∂XN

∂t
≈ DX

L2

XN−1 − 2XN +A

h2
+RX,N

∂XN

∂t
≈ DY

L2

YN−1 − 2YN +A

h2
+RY,N

(6.5)

And for the grid points ih, i ∈ {2, 3, ..., N − 1} we have:
∂Xi

∂t
≈ DX

L2

Xi−1 − 2Xi +Xi+1

h2
+RX,i

∂Yi
∂t
≈ DY

L2

Yi−1 − 2Yi + Yi+1

h2
+RY,i

(6.6)

We use this discretization of the Brusselator model to study cycles in the Brusselator.
To find a cycle we continue the trivial, spatially homogeneous equilibrium X(t, z) =
A, Y (t, z) = B/A with respect to the parameter L, to find Hopf points at L ≈ 0.5128, and
L ≈ 1.02439. We continue the cycles that emerge from these Hopf points. This produces
the following bifurcation diagram:

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
L

2.9

3

3.1

3.2

3.3

3.4

3.5

p
e
ri

o
d

BPC

NS NS BPC

BPC

NS NS 

BPC

The branch B1 that starts at L ≈ 0.5128 has a branching point of cycles (BPC), from
which another branch of cycles BBPC originates. The branch BBPC was continued as
well. It has two Neimark-Sacker bifurcations (NS). The branch B1 also has two Neimark-
Sacker bifurcations and another branching point of cycles. The branch B2 which starts at
L ≈ 1.02439 has a branching point of cycles and a Neimark-Sacker bifurcation.

The diagram was produced using orthogonal collocation. Cycles in the Brusselator can
also be continued using single shooting and multiple shooting with Newton Picard, but
branch switching at branching points of cycles in not yet implemented. The diagram above
shows similar results as the diagram on page 75 of [19].
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6.2 A 1D transport model of a fusion plasma

The second example is about cycles in a finite difference discretization of a one di-
mensional transport model of a fusion plasma in TOKAMAK reactor. The model was
originally proposed in [21]. Continuation of equilibria, and bifurcation of equilibria in this
model was already included in the CL_MATCONTL tutorials. The following description
of the model is copied verbatim from the CL_MATCONTL tutorials.

The transport model consists of three coupled PDEs describing the particle density n,
the plasma temperature T and the radial electric field or poloidal rotation Z:

∂n

∂t
= −∂Γ

∂x
Γ = −D(Z)

∂n

∂x
, (6.7)

∂U

∂t
= −∂q

∂x
q = −χ(Z)n

∂T

∂x
+

ΓT

γ − 1
, (6.8)

ε
∂Z

∂t
= µ

∂2Z

∂x2
+ cn

T

n2

∂n

∂x
+
cT
n

∂T

∂x
+G(Z), (6.9)

where
D(Z) = D0 +D1 tanh(Z), (6.10)

χ(Z) =
1

(γ − 1)ζ
D(Z), (6.11)

G(Z) = a− b(Z − ZS)− (Z − ZS)3. (6.12)

The internal energy U is related to temperature T and density n by

U :=
nT

γ − 1
. (6.13)

The following boundary conditions are used for the problem

Γ|x=∞ = Γ∞, q|x=∞ = q∞,
∂Z

∂x

∣∣∣∣
x=∞

= 0, (6.14)

∂n

∂x

∣∣∣∣
x=0

=
n

λn
,

∂T

∂x

∣∣∣∣
x=0

=
T

λT
,

∂2Z

∂x2

∣∣∣∣
x=0

= 0. (6.15)

We use a finite difference discretization on the nonuniform grid

Θ := {0 = x0 < x1 < x2, . . . , < xN = L}, xi = L (i/N)3 . (6.16)

The finite difference formulas can be found in (for example) [22]. This leads to a system
of n = 3(N − 1) ODEs.

The parameter values at the starting point are Γ∞ = −0.8, q∞ = −0.72, D0 = 1.9,
D1 = −1.1, a = −1, b = −0.3, ζ = 1.1, µ = 0.05, ε = 0.05, ZS = 0, γ = 5/3, λn = 1.25,
λT = 1.5, cn = 1.1, and cT = 0.9. In this example, we use N = 50 so the size of the system
is n = 3(N − 1) = 147.

The cycle, from which we start the continuation, is found by integrating from the initial
point of which all coordinates of equal 1. From there, we continue the cycle w.r.t. the
parameter q∞. When starting the continuation with increasing q∞ from q∞ = 0.72, we
find a three limit points of cycles (LPC) and two period doubling points (PD). Note that
the second LPC occurs almost immediately after the first PD. After the second period

37



-0.84 -0.82 -0.8 -0.78 -0.76 -0.74 -0.72 -0.7 -0.68

q
inf

3

4

5

6

7

8

9

p
e
ri

o
d

LPC

PD 

LPC
PD 

LPC

LPC

PD 
LPC

PD 

LPC

Figure 6.1: Continuation of a cycle in the plasma-system for N = 50

doubling point, the continuation goes on for a few more steps and then reverses direction
a limit point of cycles. The same sequence of bifurcations is also seen when starting the
continuation with decreasing q∞ from q∞ = −0.72. The continuation of that produced this
diagram was computed using orthogonal collocation. We used ntst = 40 mesh intervals to
continue this branch of cycles. The computation ran on Matlab R2019a and a Intel(R)
Core(TM) i7-8750H CPU running at 2.20GHz, and takes about 2 hours. The continuation
of this same branch was also performed for N = 75 for q∞ ∈ [−0.72,−0.69]. For N = 75
the size of the system of ODEs is 223.

The branch of cycles in figure 6.2 can be continued with multiple shooting as well.
However, the size of the system is not so large that the Newton Picard method to leads to
time savings. Rather, continuation with Newton-Picard and multiple shooting takes much
longer than orthogonal collocation in this system for N up to 75. Continuation of this
branch with single shooting will fail, since at some point the cycles become very unstable.
In fact, the leading Floquet multiplier will become larger than 10000.

In [23], it was stated that a limit cycle was observed near a saddle-focus homoclinic
bifurcation, for q∞ = −0.7, a = −1, b = −0.3, and N = 50. A plot of the Z0-coordinate of
this cycle is shown in figure 6.2. This cycle can be continued using orthogonal collocation
with CL_MATCONTL. Due to the complicated shape of the cycle, ntst = 100 mesh
intervals were used.

The result of the continuation is shown in figure 6.2. The continuation produces a closed
curve with 4 limit points of cycles (LPC) and 4 period doubling points (PD). Three of the
four period doubling points are very close to a limit point of cycles. It would be interesting
to see if this cycle can be continued to a point nearer to the homoclinic to saddle-focus,
and how well the continuation methods would cope with an increasingly complicated cycle.
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Figure 6.2: Periodic orbit near a saddle-focus homoclinic orbit (at q∞ = 0.7, b = −0.3, and
a = −1 for N = 50 grid points)
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Figure 6.3: Continuation of the cycle shown in figure 6.2
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6.3 The nonadiabatic tubular reactor

As a third example, we consider the model:
∂y

∂t
=

1

Pem

∂2y

∂x2
− ∂y

∂x
−Dy exp

[
γ

(
1− 1

γ

)]
∂θ

∂t
=

1

Peh

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θ0)−BDy exp

[
γ

(
1− 1

γ

)] (6.17)

with boundary conditions:

yx(0, t) = Pem(y − 1), φx(0, t) = Peh(φ− 1), yx(1, t) = φx(1, t) = 0

A limit cycle in this model was described in section 10.1.6 of [22]. The cycle was found by
time integration from the initial conditions y(x, 0) = 1, φ(x, 0) = 1 for all x ∈ [0, 1] and
parameter values:

D = 0.165, Pem = 5, Peh = 5, β = 2.35, φ0 = 1, γ = 25, B = 0.5

This model was discretized using a equidistant mesh. This limit cycle was continued w.r.t.
D to produce the following bifurcation diagram:
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Near D = 0.16 there are two limit points of cycles:
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Near D = 0.155 the cycle appears to converge to a homoclinic orbit. This can be seen in
the plot below. In the plot we show the base 10 logarithm of the norm of the gradient of
the discretized system along the cycle. There is one interval of time for which the norm
of the gradient is significantly smaller than any other time period along the cycle. This
indicates that the cycle is converging to a homoclinic orbit.
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Chapter 7

Conclusion

The Single Shooting-Newton-Picard and Multiple Shooting-Newton-Picard algorithms
have been implemented successfully. The algorithms will be made publicly available in the
CL_MATCONTL package, along with new tutorials that show how to use them [4]. Up to
now, no Matlab program was available, that implemented these algorithms. These methods
should be valuable, since they reduce the amount of computations by only considering the
most unstable modes of a cycle explicitly, and considering the other, more stable modes,
by an iterative method.

In particular, using Newton-Picard with single shooting, one can continue the stable
cycle emerging from the Hopf point at L ≈ 0.5 in the Brusselator with 1000 mesh points,
leading to a system of 2000 ODEs. The first step takes less than one minute and uses less
than 3GB of memory. In contrast, orthogonal collocation will will run out of memory at
400 mesh points on a PC with 8GB of RAM. As shown by equation 2.10 the memory use
of collocation is still quadratic in the size of the system nODE , whereas for Newton-Picard
methods, if the number of nonzero’s in Jacobian matrix of the system of ODEs is linear
in nODE , and the amount of memory used by applying the inverse action of this matrix is
also linear, then the amount of memory used by Newton-Picard methods is linear in nODE .

Multiple shooting with Newton-Picard is an essential extension of single shooting with
Newton-Picard. This is demonstrated by the fact that the cycles is the plasma model
become too unstable for single shooting. Hence, if such extremely unstable cycles are to
be analyzed in really large systems, Multiple Shooting with Newton-Picard is essential.

However, orthogonal collocation also performs very well. It is our estimation that
is system with up to about 400 to 500 equations, orthogonal collocation will be faster.
However, the multipliers obtained with the methods of section 2.1.2 orthogonal collocation
are less accurate than the multipliers computed for the shooting methods if the number
of mesh intervals is low. In particular, with many mesh points, many real multipliers just
below one will appear.

The question in which cases Newton-Picard methods are superior to collocation, is
something which requires more research. In particular, a large system with cycles with
few unstable modes, is likely to be a good candidate to demonstrate the practical value of
Newton-Picard methods.

If Newton-Picard methods are to be applied, it would be very helpful to use a Mat-
lab cluster to speed up to computations, since for systems of hundreds of equations the
computations can take hours or even days on a single computer. Some parts of the single
and multiple shooting code can already be run in parallel, but more parallelization should
be added. Especially in multiple shooting there are many simple loops over all the mesh
intervals that can be readily parallelized, in the sense that there are no conceptual changes
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to the algorithm are needed. The parallelization does require some programming effort,
since global variables are (understandably) not distributed over the entire cluster of Matlab
workers, which requires that all variables in a loop, that is to be parallelized, to be copied
to local variables.

Continuation of bifurcations of limit cycles can also be considered. In chapter 7 his
PhD thesis [19], K. Lust outlines methods for continuing period doubling bifurcations,
Neimark-Sacker bifurcations, and limit point of cycles in large systems of using Newton-
Picard methods. For period doubling bifurcations Lust has implemented and tested his
method [24, 25]. Hence, it seems that continuation of bifurcations of limit cycles in large
systems of ODEs is a relatively simple task of implementing Lust’ methods.
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