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Summary

In this masterthesis we explore Shelah’s theory of possible cofinalities (pcf-theory) to find R, as an
upperbound for R, Some basic knowledge of set theory, among other about ordinal and cardinal
numbers, is unavoidable.

In Chapter 1 we introducte the topic of cardinal exponentiation, being the only operation on infinite
numbers that is non-trivial. We see Hausdorft’s formula, the theorem of Bukovsky and Hechler and a
theorem on the calculation of cardinal exponentiation. Then we consider Eastons theorem, showing
that there is a lot of freedom in cardinal exponentiation of regular cardinals. The theorems of Silver
and Galvin and Hajnal however lay limitations on the freedom of singular cardinal exponentiation.

Chapter 2 deals with some background knowledge, and is used to be precise about some widely
used definitions. In particular, on a strict linearly and partially ordered set (X, <, <) there are four
notions of a subset Y being cofinal in X:

1. cofinal: for all z € X exists y € Y such that z <y,

2. =<-cofinal: for all x € X exists y € Y such that x < y,

3. true cofinal: cofinal and linearly ordered by <,

4. <-true cofinal: <-cofinal and strict linearly ordered by <.
We investigate these different notions and find sufficient conditions under which they coincide.
When X is an ordinal with standard orderings < and <, all notions of cofinality coincide.

In the first part of Chapter 3 we start on pcf-theory. The basic definition is
pcf(a) = {cf(H a/D) : D is an ultrafilter on a},

for a set a of ordinals. Here [[a/D denotes the product of a reduced by the ultrafilter D, which
means the quotient set of [[a under the equivalence relation =p, which is given by

f=pg & {aca:f(a)=gla)}eD.

We usually assume that a is an infinite set of regular cardinals. It turns out to be very useful to
look at the ideal

Jexn(a) :={bCa: If D is an ultrafilter on a such that b € D, then cf(H a/D) < A},

the set of subsets of a that ‘force’ cf(]][a/D) below A, where A is some cardinal. We show that
[Ta/J<x is A-directed, from which is follows that cf(J[a/D) < X if and only if DN Jcy # 0.
Therefore |pcf(a)| < 29I, and pef(a) has a maximal element. Another important result is that pef(a)
is an interval of regular cardinals, when a is an interval of regular cardinals such that |a| < min(a).
In the second part of Chapter 3 we see that J_,+ is generated over J. by a single element, called
by. The proof makes use of the existence of universal sequences, that are <;_, -increasing sequences
(fe : € < A) that are cofinal in [ a/D for any ultrafilter D such that cf([[a/D) = A.

Model theory will be build up from scratch in Section 4. We will see the basic notions of a language,
a structure, formulas, sentences, satisfaction, (elementary) embeddings, definable elements, the
Tarski-Vaught test and the theorems of Skolem and Léwenheim. Then we define

H(k) := {z : z is hereditarily of cardinality less than x} = {z : | U U Ux\ < K},
n<w S=——



which will be frequently used in the remaining chapters.

Chapter 5 forms an intermezzo. We investigate characterizations and the existence of Jénsson
algebra’s, that are algebra’s that yield no strict subagebra’s of the same cardinality. There is a nice
model-theoretic characterization of the existence of a Jonsson algebra on a cardinal x, namely & is
Jonsson iff for all elementary substructures M of H (k") such that |M Nk| = k, we have k C M. We
prove the following theorem using some pcf-theory from Chapter 3: If u is singular and eventually
every v < pu is Jonsson, then p™ is Jonsson.

Chapter 6, 7 and 8 delve deep into pcf-theory. First we prove that if (min(A))/ 4 < sup(A) for some
interval A, then max pcf(A) = |[] AJ, using model theory. This already has a non-trivial corollary,
namely Nl;sl < Rgis1y+ for any limit ordinal é. In particular,

Nz‘jo < N(2N0)+.
In Chapter 7 we prove that
Ngf(a) < N(|5|cf<5))+.

We use a two-player game G¢ = Gy, where £ € k* for some fixed k such that £ = x and
f: (k7)<¥ — k. In round n, Player I picks a club C,, C k% and Player II responds with an
an € Cy. Player II wins iff f({ag,...,an—1)) = &, for all n < w. We prove that for each f there is
some & such that Player II has a winning strategy in the game G¢. Chapter 7 is independent of 8,
but contains some interesting concepts of pcf-theory, such as

pcf,(a) = U{pcf(A) :ACaand |A| < pu}.
In Chapter 8 we will finally prove Shelah’s bound R0 < R, assuming 2% < R,,. In general
Ry < Njgpea,

assuming 2/%1 < Rs. The proof of the bound is similar to the proof of bound in Chapter 6, but now
uses the result that |pcf(a)| < |a|t* for an interval of regular cardinals a such that min(a) > 2/9l.
To prove this, we need some technical lemmas. We prove that we can choose the generating sets
by such that p € by implies b, C by and pcf(by) = by. We reason that pcf(a) = [Nsi1,Rs4p41)
for some p < (2/*1)* and define a closure operation (.) on P(p + 1). The we use the club-guessing
sequences from Chapter 2 to show a contradiction of |pcf(a)| > |a| ™.



1 Introduction

1.1 Cardinal exponentiation

There are three basic operations on numbers: addition, multiplication and exponentiation. On
infinite cardinal numbers two of these operations become trivial, since we have

K+ A=k -A=max(k,\)

if at least one of k and A is an infinite cardinal. However, cardinal exponentiation turns out to be
highly non-trivial. For instance, the Continuum Hypothesis

Mo = Ny
and the Generalized Continuum Hypothesis
2% =N,,; for all ordinals «

are independent of the axioms of ZFC. Of course there is Hausdorff’s formula [8, (5.22)]:

N R
Naﬁ-l =RNay1 - NaB (1)

for all ordinals « and 3, and it’s simple generalization

I

NNB — Na-‘rn . Nozﬁ

a+n

for all ordinals « and 8 and all natural numbers n. Bukovsky and Hechler independently found the
following result:

Theorem 1.1. [1] If x is a singular infinite cardinal and (2* : u < k) becomes constant with value
A, then 2% = A\,

In general, we have the following theorem restraining the computation of cardinal exponentiation:

Theorem 1.2. [8, Theorem 5.20] Let x and A be infinite cardinals. Then

2 if K <\,
N w, if 4 < k and p* > k&,
K =
K, if K > X\, p* <k for all 4 < x and cf(k) > A,

k) i g >\ pt <k for all g < k and cf(k) < A

There appeared to be much freedom in cardinal arithmetic. Cohen’s forcing technique [3, 4] was
used to counter many potential theorems. In particular, we have the following result by Easton:



Theorem 1.3. [5, Theorem 1] [2, p.207] Assume ZFC is consistent. Suppose F : Ord — Ord
satisfies the following:

1. For all o, 8 € Ord, if a < 3 then F(a) < F(B).
2. For all a € Ord, the cofinality of Rp(,) is at least Vo 1.

Then 28+ = Rp(,) for all @ € Ord is consistent with ZFC.

Note that Easton’s theorem only talks about cardinal exponentiation of successor cardinals. It was
thought that Faston-like theorems could be generalized to singular cardinals as well, by improving
the techniques of forcing and model construction. This came to a halt by the following theorem of
Silver:

Theorem 1.4. [9] If & is singular and of uncountable cofinality, and 2* = AT for all A\ < , then
2% = KT,

A more general result was found by Galvin and Hajnal:

Theorem 1.5. [6] If X, is singular, of uncountable cofinality and such that 2* < R,, for all A < R,
then 28 < N(z\a|)+.

A great contribution to more of such theorems on cardinal exponentiation came by Saharon Shelah
(1945), an Israeli mathmeticial. Shelah’s study of cofinalities of reduced products of sets of cardinals,
Shelah’s pcf-theory, proved uttermost fruitful. We will see some of these results in this thesis.

1.2 Notational conventions

We have the following notational conventions:

e P(a) denotes the powerset of the set a.

e ON denotes the class of all ordinals, Reg denotes the class of all regular cardinals.

e ot(E) denotes the order-type of E. We use this provided that F is a well-ordered set, so that
ot(FE) is an ordinal. If F C « for some ordinal «, then ot(E) < a. _

e aUb denotes the set a Ub and simultaneously states that a and b are disjoint. Similarly | JA
denotes the set | J A and states that the elements of A are mutually disjoint.

¢ id, denotes the identity map on the set a. When « is clear from the context, we just write id.

e The arrows —, < or <> may replace the arrow — in a function f : a — b, and respectively
state that f is surjective, injective or bijective.

e C means ‘is a strict subset of’. Therefore a C b if and only if (a C b and a # b).

e supt means ‘strict supremum’ For example, if a; € ON for all i € I, then sup:re Joy =
min(a : a; < « for all ¢ € I}



2 Background
Before we can start on pcf-theory, we must agree on some basic definitions.

2.1 Orders

Definition 2.1. Let X be a set and let R C X x X, i.e. R is (binary) relation on X. Then R is
called

—_

reflexive iff (z,z) € R for all x € X,

irreflexive iff (x,2) ¢ R for all z € X,

symmetric iff (z,y) € R implies (y,z) € R,

anti-symmetric iff (z,y), (y,x) € R implies x = y,

transitive iff (x,y), (y,z) € R implies (z,2) € R,

total iff (z,y) € Ror (y,z) € R for all z,y € X,

trichotomic iff either (z,y) € R, (y,z) € Ror z =y for all z,y € X,

an equivalence relation iff R is reflexive, symmetric and transitive,

a quasi order iff R is reflexive and transitive,

a partial order iff R is reflexive, anti-symmetric and transitive,

a strict partial order iff R is irreflexive and transitive (note that this implies non-symmetry

and anti-symmetry, since (z,y), (y,2) € R can never occur),

. a linear order iff R is anti-symmetric, transitive and total (note that totality implies reflex-
ivety),

. a strict linear order iff R is transitive and trichotomic (note that irreflexivity follows from
trichotomy),

14. a well-order iff R is a strict linear order and for any Y C X exists y € Y such that y R z for

all ze Y\ {y}.

A linearly ordered set is also called a chain.

— =
OO 0N Ok W

[y
[\

—_
w

If R is a binary relation on X and Y C X, then the above definitions also apply to Y when we
consider RN (Y x Y'). For instance we say that R is a quasi order on Y iff the following hold:

1. For all y € Y we have (y,y) € R.

2. For all z,y,z € Y we have (z,y), (y,2) € R implies (z, z) € R.
When R is a relation on X and z,y € X, we also write Ry instead of (x,y) € R.
When R is an equivalence relation on X, we denote by X/R the set of equivalence classes of X and
by 2/R the equivalence class of an element z € X.
Quasi orderings and partial orderings are not that different; the only additional property of a partial
ordering is that it is anti-symmetric: (z,y), (y,z) € R implies x = y. In fact, suppose X is quasi
ordered by R, and define the relation ~ by = ~ y iff (z,y), (y,z) € R. It is easy to see that ~ is
an equivalence relation on X. Define (z/~) < (y/~) iff (z,y) € R. This is well-defined, and <
is a partial order on X/~. The quotient map X — X/~ (given by z — z/~) is obviously order
preserving: x Ry implies (z/~) < (y/~).

Definition 2.2. Let < be a quasi order on X. For m € X, Y C X and X a cardinal we say that
1. m is an upper bound for Y iff y <m for all y € Y,



2. m is a least upper bound or supremum for Y iff m is an upper bound for Y and any other
upper bound m’ for Y satisfies m < m/,

3. m is a minimal upper bound for Y iff m is an upper bound for Y and any other upper bound
m/ for Y satisfies m’ £ m or m < m/,

4. Y is bounded (in X ) iff there exists n € X such that n is an upper bound for Y,

5. X is A-directed iff every Z C X with |Z| < X is bounded in X,

Lower bound, greatest lower bound and lower bound are defined similarly. When Y is a sequence
in X instead of a subset, the same definitions apply to Y and m where we consider the image of Y
rather than Y itself.

Suppose < is a partial order on X. If m and m’ are both least upper bounds for Y, then m < m/
and m’ < m. Thus we obtain m = m/, hence a least upper bound is unique, if it exists. We denote
sup(Y’) for the supremum of Y. Similarly we denote inf(Y") for the greatest lower bound, which is
unique if it exists.

2.2 Cofinality

We often encounter a set X on which is strict partial order and a quasi order are defined. The
orders may be related, for instance as in the following definition.

Definition 2.3. Let < be a strict partial order on X and let < be a quasi order on X. Then
(X, <, <) may have the following properties:

(P1) z <y implies z < y.

(P2) (z <y and y < z) implies z < z; (x <y and y < z) implies z < z.

(P3) For each x exists y such that z < y.

For example, when (X, <) is a quasi ordered set, then, with x < y iff (x < y and y £ z) by
definition, (X, <, <) satisfies (P1) and (P2).

Note that if < is a partial order, then (z <y and y £ ) if and only if (z <y and = # y).

Definition 2.4. Let X = (X, <, <) a strict partially and quasi ordered and let Y C X. Then Y is
called

1. cofinal (in X) iff for all € X exists y € Y such that z < y,

2. <-cofinal (in X) if for all z € X exists y € Y such that x < y,

3. true cofinal (in X) iff it is cofinal and linearly ordered by <,

4. <-true cofinal (in X) iff it is <-cofinal and strict linearly ordered by <.

Note that X is cofinal in X. We furthermore define the

1. cofinality of X, denoted cf(X): The least cardinal x for which there exists a cofinal set of
cardinality x,

2. <-cofinality of X, denoted cfL(X): The least cardinal x for which there exists a <-cofinal set
of cardinality x; provided there is at least one <-cofinal set,

3. true cofinality of X, denoted tcf(X): The least cardinal x for which there exists a true cofinal
set of cardinality x; provided there is at least one true cofinal set,

4. <-true cofinality of X, denoted tcf4(X): The least cardinal x for which there exists a <-true
cofinal set of cardinality k; provided there is at least one <-true cofinal set.



Sometimes a set X only carries a strict partial order <. Then we define z < y iff (z < y or = y),
so that < is a quasi order on X. When X only has a quasi order < take z < y iff (x <y and y £ x)
by definition. Then < is a strict partial order. Definition 2.4 still applies.

In addition to Definition 2.2 we can now define the notion of an exact upper bound:

Definition 2.5. Let (X, <, <) be a strict partially and quasi ordered set, let Y C X such that <
restricted to Y satisfies (P3) and let m € X. Then m is called an ezact upper bound of Y iff it is a
least upper bound of Y and Y is cofinal in {x € X : © < m}. That is, if x < m then there exists a
y € Y such that z < y.

Now follows a lemma describing some circumstances where the different notions of cofinality coin-

cide.

Lemma 2.6. Let X = (X, <, <) a strict partially and quasi ordered set. Then the following hold:

1.

When (P2) and (P3) hold, any cofinal subset is <-cofinal. When (P1) holds, any <-cofinal
subset is cofinal.

Proof. Let Y C X. Suppose Y is cofinal. Given z € X, let 2’ € X such that z < 2’ by (P3)
and let ' <y for y € Y. By (P2), x < y. So Y is <-cofinal. Suppose that Y is <-cofinal.
Given z € X, let z <y for y € Y. Then « <y by (P1). So Y is cofinal. O

. When (P3) holds, there exists a <-cofinal set.

Proof. X itself is cofinal in X. O

. When z < y iff (z <y and y £ =) and (P3) holds, then the notions of true cofinal and <-true

cofinal coincide.

Proof. Let Y C X. Suppose Y is true cofinal. Then it is cofinal, hence <-cofinal by Lemma
2.6.1, since (P2) and (P3) are satisfied. Let y,y’ € Y. If y < 3’ and 3/ < y, then y = ¢/,
since Y is linear. If y < ¢’ and v’ € y, then y < y/; if ¥ <y and y £ ¢/, then ' < y. The
last case where y £ 3" and y’ £ y is not possible, since < is a linear order on Y. We have
thus show that Y is strict linearly ordered by <. Hence Y is <-true cofinal. Now suppose Y
is <-true cofinal. Then it is <-cofinal, hence cofinal by Lemma 2.6.1, since (P1) is satisfied.
Let y,) €Y. If y <y’ and ¢ <y, theny £y and ¢ £y, soy =1'. So < is anti-symmetric
on Y. Transitivity of < on Y is automatic. If y < 3/ then y < ¢/, if ¥/ < y then ¢y < y, if
y =1 then y <y’ (and ' <y). So < is a total order on Y. Thus Y is linearly ordered by <.
Hence Y is true cofinal. O

When < is linear, then the notions of cofinal and true cofinal coincide.

Proof. Any subset of a linear set is linear. O

. When < is strict linear, then the notions of <-cofinal and <-true cofinal coincide.

Proof. Any subset of a strict linear set is strict linear. O

We summarize the equivalences in the following diagram:



< is linear

cofinal true cofinal
(P1)-(P3) z<y<(r<y and yLx) and (P3)
is strict linea
< -cofinal < 16 strict Tnear < -true cofinal

Figure 1: Sufficient conditions for equivalences of notions of cofinality.

We now turn our attention to ordinals and ordinal-indexed sequences. For two ordinals « and (3,
we have a < fiff @« € 8, and a < B iff a = f or a < §. It is well known that any set of ordinals
is strict partially ordered by < and quasi ordered (even linearly ordered, even well-ordered) by <,
and that

a<fea<fand fLas a<Pand a#pS.

Thus a limit ordinal X satisfies all the equivalences in Figure 1. We have the very common definition
for a limit ordinal A:

1. A is called regular iff cf(X\) = .
2. X is called singular iff cf(A) < A.

Regular ordinals are automatically cardinals. A similar definition works for successor ordinals, their
cofinality and true cofinality is always 1 and they have no <-cofinality nor <-true cofinality.

Definition 2.7. Let X = (X, <, <) a strict partially and quasi ordered set. Let S be a set of
ordinals. An S-sequence in X, i.e. a map S — X denoted as (z¢ : £ € ), is called
1. non-decreasing iff £ <& = z¢ <z,
2. increasing iff £ < & = xe < zer,
3. decreasing iff £ < & = xe < g,
4. cofinal (in X ) iff it range {z¢ : £ € S} is cofinal in X. Similarly, <-cofinal, true cofinal and
=<-true cofinal are defined.

Note that the range of a non-decreasing sequence is automatically totally ordered. Since < was
already reflexive and transitive, the range is linearly ordered.

Note that the range an increasing sequence is automatically trichotomiccally ordered. Since < was
already (reflexive and) transitive, the range is strict linearly ordered.

The next three lemmas prove Theorem 2.11, which relates the <-true cofinality to the existence of
an increasing <-true cofinal sequence of regular length.

Lemma 2.8. Let X = (X, <) be a strict partially ordered set satisfying (P3). Suppose tcf(X) =
A. Then there exists an increasing <-true cofinal A-sequence in X.

Proof. Let Y be <-true cofinal in X with |Y| = A\. Let ¢ : A\ — Y be a bijection. Define an
increasing sequence (ye : &€ < ) by

1. yo :=i(0).

10



2. If (yer : & < &) is already defined and £ is a successor, let ' +1 = £. Since Y is <-true cofinal,
let yer < y for some y € Y. Let y¢ := max(y,i(§)).

3. If (yer : € < &) is already defined and ¢ is a limit ordinal. Suppose no y € Y satisfies y¢r < y
for all ¢ < &. Let x € X. Then = < y for some y € Y. Then ys £ y for some {’ < {. By
trichotomy of < on Y we have yg = y for yer > y. Thus « < yer. Thus {ye : § < &} would
be <-true cofinal, but this is impossible since || < X. So there exists y € Y such that yo <y
for all ¢ < &. Take ye := max(y,i(§)).

Then (ye : £ < A) is an increasing A-sequence in X and it is <-true cofinal: For x € X, let x < y
for some y € Y. Then £ :=i " !(y) < X and i(§) =y, s0 ye =y or y¢ = y. So T < ye. O

Lemma 2.9. Let X = (X, <) be a strict partially ordered set satisfying (P3). Suppose tef<(X) =
A. Then A is regular.

Proof. By Lemma 2.8, let (¢ : £ < A) be an increasing <-true cofinal sequence. Let (&, : o < cf(N))
be increasing cofinal in A.! Then (z¢, : a < cf()\)) is increasing and <-true cofinal in X: Obviously
increasing and for x € X, let # < x¢ for some £ < A, let £ < &, for some a < cf(\), then
T < T¢ < T¢,. By minimality of X it follows that cf(A) > A. O

Lemma 2.10. Let X = (X, <) be a strict partially ordered set satisfying (P3). Let (z¢ : & < A)
be increasing and <-true cofinal in X and suppose A is regular. Then tcf<(X) = .

Proof. Certainly p := tcf4(X) < A. By Lemma 2.8, let (y, : x < ) be an increasing <-true cofinal
sequence. For x < pu, recursively define &, < A such that &, < &, for all ¥’ < x and y, < ng.Q
Then (x¢, : x < ) is increasing and <-true cofinal in X: Increasing by construction and for » € X,
let < gy, then x < x¢ . Then (§, : x < p) is cofinal in A\: For £ < A, let z¢ < we,, then £ < §,.
Hence A = cf(A) < p. So = A O

Theorem 2.11. Let X = (X, <) be a strict partially ordered set satisfying (P3). Then tcf<(X) = A
if and only if there exists an increasing and <-true cofinal sequence (z¢ : & < A) in X and A is
regular.

Proof. Left to right are Lemma 2.8 and Lemma 2.9. Right to left is Lemma 2.10. 0

2.3 Ideals and filters

Definition 2.12. Let X be a set. An ideal (on X ) is a set I such that
1. ICP(X),0el,
2. A,B eI implies AUB € I,
3. Ael, BC A implies B € I.
A filter (on X ) is a set F' such that
1. FC P(X), X € F,
2. A,B € Fimplies ANB € F,
3. Ael, AC B implies B € F.

1To be precise, here we use Lemma 2.8 with A for X and cf()\) for A and the fact that all notions of cofinality are
equivalent for A.
2At stage ¥, {& : X' < x} is not cofinal in X since X is regular and x < p < A.

11



An ideal can be considered as a notion of smallness; a filter can be considered as a notion of
largeness.

If F is an ideal on X and P is a property, then we say that P holds D-almost everywhere or P
holds for D-almost all x € X, iff {x € X : P(z)} € D, so iff the subset of X where P holds is large.

When [ is an ideal, then I* := {X \ A: A € I} is a filter, called the dual filter of I. Similarly, when
F is a filter then F* := {X \ A: A € F} is an ideal called the dual ideal of F. Clearly (I*)* =1
and (F*)* = F.

Definition 2.13. Let F be a filter on X. Then F is called
1. proper iff F'# P(X), which is equivalent to ) ¢ F'.
Suppose F' is proper. Then F' is called

2. mazximal iff there is no proper filter F/ on X with F' C F’,

3. wltra or an ultrafilter iff for all A C X we have A € F or X \ A € F (this ‘or’ is automatically
strict),

prime iff AUB € F implies A € F or B€ F,

concentrated on B iff B € F,

principal at B iff F = {AC X : B C A}.

non-principal iff it is not principal for any B.

oot

Note that each definition for filters applies to ideals as well when we consider their duals.

Lemma 2.14. Let F be a filter on X. Then F' is maximal if and only if it is ultra if and only if it
is prime.

Proof. Exercise for the reader. O

Definition 2.15. Let X be a set and G C P(X). Then we say that G has the finite intersection
property iff AyN...NA, #0 forall Ay,...,A, € G, for all n € N.

Proposition 2.16. Let G C P(X) have the finite intersection property. Then G extends to a
proper filter F' on X.

Proof. Define F:={AC X :3neN,34;,..., A4, € GAD A N..NA,}. Then GC Fand F is a
proper filter on X. O

To be ultimately precise, in the definition above one should require n # 0 or live by the convention
that an empty intersection equals X.

Theorem 2.17 (Tarski, Ultrafilter Lemma). Let F' be a proper filter on X. Then F extends to
an ultrafilter, i.e. there exists an ultrafilter U on X such that F C U.

Proof. Let P = {F' : F' is a proper filter on X and F C F'} and order P by inclusion C. Any
C-chain C' in P has an upper bound in P, namely | JC. Then by Zorn’s Lemma, P has a maximal
element. This maximal element is a maximal filter, hence an ultrafilter on X extending F'. O

In this thesis we will often start with a proper ideal I and extend its dual filter I*, which is

automatically proper, to an ultrafilter U. Any filter extension of I* is disjoint from I, in particular
so is U.
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Also we encounter a lot of the following: We have a filter F on Y and Y C X. Then we can extend
F to a filter F' on X, by

F:={ACX:ANY € F}
={AC X :ADB forsome B e F}
—{AUB:AcF,BC(X\Y)}

Properness and ultraness are preserved under this extension. Note that F' C F. One could also
consider the filter {AU (X \Y): A € F} on X, but this filter is not ultra, except in the trivial case
where F is ultra and Y = X.

On the other hand, when F is a filter on X and Y C X, then

F':={ANnY :A€F}
is a filter on Y. Properness is not preserved under this operation, ultraness is. Clearly FNP(Y) C
F'. We have F/ = FNP(Y)ifandonlyif Y € F. If Y € F and F is proper, then F” is proper.
In a similar way, this also works for ideals.

Theorem 2.18. Let I be a proper ideal on X and let B C X be such that B ¢ I. Then there
exists a proper filter F' on X disjoint from I and such that B € F.

Proof. Since B ¢ I, there isno A € I such that B C A. So BN(X\A) # 0 forall A € I. So I*U{B}
has the finite intersection property, hence extends to a proper filter F' which is automatically disjoint
from I. O

Lemma 2.19. Let I be a filter on a and B C a. Then I' :={X Ca: X C AUDB for some A € I}
is an ideal on a and it is the smallest ideal containing B and I. If a \ B ¢ I then I’ is proper (and
I is proper). Let X,Y Ca. If (X\B)NY ¢ 1 then XNY ¢ I'.

Proof. We have

1. Clearly I' C P(a) and 0 € I'.
2. X CAUBand X' C A'UB for some A, A" € I, then XUX' C (AUB)U (A'"UB) =
(AUA)YUB eI since AUA € 1.
3. f X CAUB for some A€ I and X' C X then X’ C AU B hence X' € I'.
Clearly I’ contains B and I and any other ideal containing B and I must contain I’. If a \ B ¢ I,
thena\ B ¢ I': If a\ B C AU B for some A € I, then a \ B C A hence a \ B € I, contradiction.
EXNY el thn XNY CAUB forsome Ael. So(X\B)NY CA so(X\B)NnYel O

2.4 Club-sets, stationary sets and Fodor’s Lemma

The following notions should be familiar to set-theorists.

Definition 2.20. Let C and E be sets and a be an ordinal. We have the following definitions:

1. C is a-closed or closed in « or simply closed when « is understood iff for all 8 < « we have
(sup(C N B) = B implies g € C).

2. C is a-unbounded or unbounded in « or simply unbounded when « is understood iff for all
B < a there exists some v € C such that § <~y < a.
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3. C is closed unbounded in o or (an) a-club(set) or simply (a) club(set) when « is understood
when C is a-closed and a-unbounded.

4. C'is bounded by « iff for all § € C we have 8 < «.

5. C is bounded below «a iff there exists some 8 < a such that for all v € C' we have v < g, i.e.
iff there exists some < « such that C' is bounded by f.

6. F is a-stationary or stationary in « or simply stationary when a is understood iff any o-
clubset intersects E.

Note that we do not require an a-club set to be a subset of a. If we desire this, we say C is an
a-club subset of «, or simply write C' C «. Clearly F is already a-stationary if E intersects only
all a-club subsets of a.

Lemma 2.21. Let a be an ordinal. Then there exists a set C C « which is club in a and which
has ot(C) = cf(a).

Proof. Let (a¢ : § < cf(a)) be increasing cofinal in . For x < cf(a) recursively define o/ by

1. Base case: af, := ay,

2. Successor case: o) 4 = min({ag : & < cf(a)} \ () + 1)),

3. Limit case: o) :=sup,, ., &,
Then {a) : x < cf(a)} 2 {ag : § < cf(a)}, so (o), : x < cf(a)) is increasing, cofinal and continuous.
Hence C := {a) : x < cf(a)} is club in a and ot(C) = cf(a). O

It is well-known that every well-ordered set is isomorphic to a unique ordinal number, and this
isomorphism is unique as well. Hence also every well-ordered set carries a notion of club-subsets
and stationary subsets, via it’s unique isomorphism to a unique ordinal number.

Example 2.22. Let 8 be a limit ordinal and let C' C 8 be p-club. Then C is well-ordered. So
there is a notion of C-clubsets and C-stationary sets, namely: A C-club subset of C' is a set ¢ C C
such that

1. for all o € C exists o’ € ¢ such that a < o/,

2. if @ € C and sup(cN &) = a, then a € c.
and e C C' is C-stationary iff it intersects every C-club subset. Suppose ¢ C C' is C-club. Then it
is clearly S-unbounded, and if o < § is such that sup(¢N g) = B, then sup(CNB) = B,s0 8 € C,
thus g € ¢. Thus c is S-club. Now suppose e C C'is C-stationary. Let D be g-club. Then D N C
is f-club. Thus clearly D N C is C-club. So e intersects D N C, so intersects D. So e is in fact
[-stationary. So if ¢,e C C, then

cis C-club < ¢ is -club,
e is C-stationary < e is [S-stationary.
We have the following lemma on stationary subsets.

Lemma 2.23 (Fodor’s Lemma or Pressing Down Lemma). Let x be a regular uncountable cardinal
and let S be k-stationary. Let f be a regressive function on §, i.e. f(a) < a for all a« € S\ {0}.
Then there exists a vy such that {« € S: f(a) = v} is k-stationary.
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A proof relies on diagonal intersections of clubsets. For such a proof, see for instance [8, Theorem
8.7]. In Section 4.4 we will prove this lemma for kK = wy; and S = w;. The following lemma is a
generalization to cardinals of uncountable cofinility.

Lemma 2.24 (Generalization of Fodor’s Lemma). Let x be a cardinal of uncountable cofinality
and let S be k-stationary. Let f be a regressive function on S, i.e. f(a) < « for all @ € S\ {0}.
Then there exists a v such that {o € S: f(a) <~} is k-stationary.

Proof. Let (k; : i < cf(x)) be increasing, cofinal and continuous in k. Then T := {i < cf(k) : k; € S}
is cf(k)-stationary, namely, if C is cf(x)-club, then {k; : i € C} is k-club, hence intersects S, so
there is some ¢ € C such that ; € S, thus C intersects 1. Define

g: T — cf(k)
i = min(j : f(k;) < Kjt1)

Since f(k;) < ki, we have g(i) < i. Thus g is regressive on T, so apply Fodor’s Lemma to obtain
j < cf(k) such that B := {i € T : g(i) = j} is cf(x)-stationary. Then F' := {k; : i € E} is
k-stationary, namely, if C' is k-club, then C' N {k; : i < cf(k)} is k-club, so {i < cf(k) : k; € C} is
cf(k)-club, so intersects E, so F intersects C. Of course, F' C S, and if ¢ € F, then g(k;) = j, so
f(ki) < Kjr1. So{a e S: f(a) < kjt1} is k-stationary. O

2.5 Club-guessing

Lemma 2.25. Let p and k be infinite cardinals such that cf(k) > p and p is regular. Then
S(k,p) :={a < k:cf(a) = p} is k-stationary.

Proof. Let C be any closed unbounded subset of k. Then |C| > cf(k) > p, so let {a; : ¢ < u) be
the increasing sequence of the first y elements of C. Then o := lim;_,, o satisfies o < &, cf(a) = p
and a € C. Hence C N E # (. Since C was arbitrary, E is stationary. O

Definition 2.26. Let p, s be regular cardinals such that 4 < k. By Lemma 2.25, S(k,u) is k-
stationary. Let 7' C S be again k-stationary. The triple (k, u,T) may have the diamond property
Oclub (K, 1) (T"), which is defined as:

There exists (Sq : o € T') such that

1. for all @« € T we have S, C a and S, is a-club,
2. for all k-club C we have {a € T': S, C C} is k-stationary.

We write ocupb (K, ) for ocup (K, 1) (S(k, 1)). We call such a sequence (S, : a € T') a club-guessing
sequence for T.3.

In general ocup (K, 1) is not always true. We will prove that it holds when 8 < p* < k via the
following lemma.

Theorem 2.27. Let yu,r be regular, uncountable and such that pu* < k. Let T' C S(k, u) be
k-stationary. Let (S, : o € T) be such that S, C «, S, is a-club and |S,| = g, for all & € T.
Then there is a x-club C such that ((S, NC) : a € T) is a club-guessing sequence for T, where
(Sa NC) =S, NC if this is a-club, and (S, NC) =« if S, N C is not a-club.

3Guessing sequences are in itself an interesting topic in set theory, see for instance [7].
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Proof. Suppose not. For all 8 < ut we will define Cs and (S? : a € T) such that for all 3 the
following hold:

(i)g Cp is Kk-club.

(ii)s For all & € T we have S2 = S, N Npr<p Cp-
(iii)s {a €T :S? C Os} is not stationary in k.

We do this by recursion; suppose it has been done for all 5’ < 3, for some 8 < k. Then of course
we define S5 1= So NNg_5Cp for all a € T. Now C := (Vg5 Cp is w-club. So €' := {a €
C : sup(aNC) = a}, i.e. the set of limit points of C, is k-club (here we use that x is regular
and uncountable, or in fact that x is of uncountable cofinality). Since we assumed the lemma to
be false, (S, NC) : a € T) is not a club-guessing sequence for T, meaning that there is a x-club
Cjs such that {a € T : (So N C)" C Cg} is not k-stationary. We will show that it follows that
{a €T : S8 C Cg}is not k-stationary:

If it were, we prove that {o € T : (So N C)" C Cs} would be k-stationary. Let D be x-club.
Then D N C is k-club (since & > Rp). So D N C intersects {o € T : S7 C Cs}, say in he point
a. Since S, and aN C are a-club, also S, N (aNC) = S, NC is a-club (here we use that p
is regular and uncountable, and cf(a) = p). Thus (S, NC) = S, NC = S¥ C Cs. Therefore
ac{aeT: (S,NC) C Cg}, hence D intersects {o € T : (S, NC) C Cg}. Since D was arbitrary,
we have {a € T': (S, N C)’ C Cg} is k-stationary, a contradiction.

Let D := (\3.,+ Cp, then D is s-club. For each o € T the sequence (S8 . B < ut)is C-
decreasing, but [S2| = |Sa| = p. So we let B, < p* such that S%° = SP% for all 8’ > B,. The
assignment o — f3, restricts to a map T\ ut — pT, and this a regressive function on the r-
stationary set T\ p+. By the Pressing Down Lemma (Lemma 2.23), there exists a v < g™ such
that E:={a € T\ p* : B, = v} is still x-stationary. Now

S1=81"=8n () Co=San| () Cs|NC,=5INC,, so SICC,
B/ <y+1 B <~y

forall « € E. So {a € T :S) C C,} is k-staionary, contradicting (iii). O

Corollary 2.28. Let u, be regular, uncountable and such that u™ < x. Let T C S(k,u) be
k-stationary. Then ocup (&, 1) (T') holds.
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3 Pcf-theory

3.1 The definition of pcf
3.1.1 Relations and filters

Recall that a filter can be seen as a notion of largeness. So one notion of two functions being ‘almost
equal” would be to require that they agree on a set that is considered large by some filter. So we
will call functions equal modulo a filter F if they agree on a set in F'. The rigorous definition is as
follows:

Definition 3.1. Let X be a set and let F' be a filter on X. Let f and g be two functions with
domain X. Then f equals g modulo F, notation f =g g, iff {x € X : f(z) =g(x)} € F.

Note that equality is just some relation to compare functions. In fact, we can extend this definition
to any kind of relation.

Definition 3.2. Let X be a set and let F' be a filter on X. Let R be any binary relation. Let f
and g be two functions with domain X. Then we write f Rp g iff {x € X : f(z) Rg(x)} € F.

An example is when f and g are ordinal-valued functions, and R is taken to be the standard < or
< on the ordinals.

We often encounter not just two functions, but a set of functions. For example, we often consider
[X ={f:X = UX : f(z) € xforallz € X}. Let R be a binary relation on |JX, i.e.
RCUX xUX. Let F be an ultrafilter on X. Then again define for f,g € [ X,

fRrge{zeX: f(z) Rg(x)} €F.
From now on, we use the following notation

[f Rgl={re X : f(z) Rg(z)}.

Some properties of R from Definition 2.1 may be inherited by Rp. We list them here.

1. Reflexivety: Suppose R is reflexive. Then for any f € [[X we have [f R f] = X € F, so
f Rr f. So Ry is reflexive.
Irreflexivety, assuming F is proper: [f R f]|=0 ¢ F,so f Rr f.
Symmetry: If f Rpgthen [gR f]=[f Rg] € F,s0gRp f.
Transitivity: If f Rp g and ¢ Rp h then [f Rh] D [f RglNjg Rh]| € F, so f Rp h.
Totality, assuming F' is ultra: If f Rp g, then [f Rg]| ¢ F,so[g R f]=X\[f Rg] € F, so
gRr f.
8. Equivalence relation: Reflexivity, symmetry and transitivity are inherited.
9. Quasi order: Reflexivity and transitivity are inherited.
11. Strict partial order, assuming F' is proper: Irreflexivity and transitivity are inherited.

S ot

Other properties of R are not inherited by Rr. Recall that AU B simultaneously denotes the union
AU B of sets A and B and claims that A and B are disjoint. The following properties are not
inherited:
4. Anti-symmetry: Suppose R is anti-symmetric. If f Rp g and g Rp f then [f = g] 2 [f R
glN[g R f] € F,s0 f =F g but not necessarily f = ¢g. So Rp is not necessarily anti-symmetric.
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7. Trichotomy, even if we assume that F'is ultra: [f Rg|U[f=g]/U[g R f] = X € F, so
either [f Rgl€ For[f =g € Forg R f] €F,soeither f Rpgor f =p g (but not
necessarily f =g) or g Rp f.

10. Partial order: Only anti-symmetry is not inherited.

12. Linear order: Only anti-symmetry is not inherited.

13. Strict linear order, even if we assume that F' is ultra: Only trichotomy is not inherited.
14. Well-order: Trichotomy is not inherited.

Note that the relation Rp is C-preserving in the following sense:

If RC R and F C F', then Rp C Rp.

When Rp is an equivalence relation, for example when R is, we can look at the set of Rp-equivalence
classes in [[ X, denoted as [[ X/Rp, instead of looking at [[ X itself. We write [[ X/F :=[[ X/Rr
when R is understood. We write f/F for the equivalence class of an element f € [[ X in [[ X/F.

The following example is of crucial importance in pcf-theory.

Example 3.3. Let a be a non-empty set of ordinals and F' a proper filter on a. Consider the
relation ‘equality’ to obtain [[a/F =[] a/=pF. On [[a/F we define < and < by
1. f/F <g/F iff f <p g, where < is standard on ordinals. Then:
(a) < is well-defined: If f/F = f'/F, g/F = ¢'/F and f <p g, then [f' < ¢'] D [f' =
finlf<glnlg=g1€F,s0 f' <r g
(b) < is a strict partial order: <p is a strict partial order since < is a strict partial order.
(¢) < is a strict linear order, assuming F' is ultra: Either f/F < ¢g/F or g/F < f/F or
fIF =g/F.
2. f/F <g/F iff f <p g, where < is standard on ordinals. Then:
(a) < is well-defined: If f/F = f'/F and g/F = ¢'/F and f <p g, then [f' < ¢] D [f' =
AN[f<glnlg=4¢] € F,s0[f <¢g]€F and f <p g Another proof is: Since
< on ordinals is transitive, so is <g. Since =C <, we have =p C<p. If f/F = f'/F,
g/F =¢'/F and f <p g, then also f' <p f and g <p ¢', s0 f' <p g".
(b) < is a partial order: If f <p g and g <p f then f = g. Reflexivity and transitivity
hold for <, hence for < on [Ja/F.
(¢) < is a linear order, assuming F' is ultra: If f/F £ g/F, then [f < g] ¢ F,so [g < f] 2
[f£g9l€F, s0og/F<f/F.
We thus have that ([]a/F, <, <) is a strict partial and quasi ordered set. Does it satisfy (P1)-(P3)
from Definition 2.3, and how do < and < relate?
We have [f < g|U[f=g]=[f <g]. So[f <g] € F implies [f < g] € F and [f = g] ¢ F (assuming
F is proper). So f/F < g/F implies (f/F < g/F and f/F # g/F). So (P1) always holds. Also it
is easy to see that (P2) always holds.
When F is ultra, ([f < g] € F and [f = g] ¢ F) implies [f < g] € F, i.e. f/F < g/F if and only if
(f/F <g/F and f/F # g/F). Since < is anti-symmetric (on [[a/F), we have

fIF<g/F & [f/[F<g/Fand f/F#g/F < [f/F<g/Fandg/F{/f]/F.
If every o € a is a non-zero limit ordinal, then for any f/F € [[a/F we have f/F < (f +1)/F,
where (f + 1)(«) := f(a) + 1, so (P3) is also satisfied.
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In fact, in the above example it is not necessary to take the domain of the functions f and g to be
in [Ja. The definition of < and < still apply when f and g are just ordinal-valued functions with
domain a.

The above example leads to the following theorem:

Theorem 3.4. Suppose a # () consists of non-zero limit ordinals. Let F' be a proper filter on a
and let F’ be any proper filter with F' C F’. Suppose tcfo([[a/F) = A. Then tcf([[a/F') = A.
When F’ is ultra, we have cf([[a/F’) = A.

Proof. By Theorem 2.11 let (fe/F : £ < A\) be an increasing and <-true cofinal sequence in [[a/F
with A\ regular. Since F C F’, f/F < g¢/F implies f/F' < g/F' for any f,g € [[a. Thus
(fe/F' : € <)) is an increasing and <-true cofinal sequence in [[a/F’. Again by Theorem 2.11,
tcf<([Ja/F’') = A. When F is ultra, ([[a/F’,<,<) is strict linearly and linearly ordered, and
f/F' < g/F" if and only if (f/F' < g/F' and f/F’ # g/F’), thus (P1)-(P3) are satisfied. By
Lemma 2.6, all notions of cofinal then coincide. O

3.1.2 Properties of <;-increasing sequences

Note that everything we have done for filters in the previous paragraph, we could have done for
ideals, when considering their duals. For example, when I is an ideal on a set X and f,g € [[ X,
we have f = giff [f=g| e I*iff [f £g] € 1.

We now discuss some further properties of an <j-increasing sequence in [[a/I.

Definition 3.5. Let X be a set, let I be an ideal on X, let S be a set of ordinals and let f =
(fe : £ € S) be an <;-increasing S-sequence in ON™X. Then f is called strongly increasing iff there
exists a sequence (Z¢ : £ € S) in I such that

(<&iaca\(ZeUZy) = fela) < fe(a).

Clearly strong increase is stronger than (normal) increase. Strong increase requires some uniform
increase, each functions f¢ has only a fixed I-small set Z, where it can behave wild.

Definition 3.6. Let X be a set, let I be an ideal on X, let k < A be regular cardinals and let
f = (fe: £ <)) be an <-increasing A-sequence in ON~. Then f may satisfy the following star

property:

When S C X is unbounded, there exists So C S such that
ot(Sp) = k and (fe : £ € Sp) is strongly increasing.

Definition 3.7. Let A be a set, let I be an ideal on A, let k < X be regular cardinals and let
f = (fe : € < A\) be an <;-increasing A-sequence in ON#. Then f has the bounding projection
property for k or has bpp, iff for all (S, : @ € A) such that S, C ON and |S,| < k and « — sup S,
is an <j-upper bound for f, there exists a £ < A such that fg = proj(fe, (Sa : aw € A)), defined by
proj(fe, (Sa : @ € A))(a) = min(S, \ fe()), is an <j-upper bound for f.

Strictly speaking, it is not defined what is means to be an <j;-upper bound, since upper bounds
were only defined for quasi orders. The definition is of course straightforward: m € X is an <-upper
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bound for Y C X iff y < m for all y € Y. In the above situation, an <;-upper bound for f is
precisely an <j-upper bound for f, since f is <j-increasing. In general: If Y satisfies (P3) and X
satisfies (P2), then <;-upper bounds for Y are precisely <;-upper bounds for Y.

We will relate *,, and bppy in the following lemmas and Theorem 3.11, using strongly increasing
sequences.

Lemma 3.8. Let A be a set, let I be an ideal on A, let kK < X be regular cardinals and let
f = (fe : £ < A) be an <;-increasing A-sequence in ON* satisfying *,. If |A| < k, then f has bpp,.

Proof. Suppose not and let S = (S, : a € A) be a counterexample. Modify each fs on an I-set
such that fe(a) <supS, for all a € A. Then (fe : £ < A) still satisfies *.

For any £ < \ we associate a £ < \: If £ < ), then fg = proj(fe, S) is not an <;-upper bound for
f. Thus fe £1 f£+ for some €. When € < ¢ then fe <1 fe,s0 for &1 fg, SO [ffJr < fe]l ¢ 1.

For B < A, recursively define {5 < X such that g < &g for all 8/ < . Then S := {5 : B < \} is
unbounded in A and if £ < ¢ in S then [fg' < fer] € 1. By #,, let T C S be such that (fe : £ € T)
is strongly increasing. Let (Z¢ : £ € T)) be a sequence in I such that £ < &,a € A\ (Z:U Zy) =
fela) < fe(@).

To any & € T we will associate an o € A. Let £ € T, let &1 := min(T'\ ({+1)), then [f§+ < fer]l &1
but Z¢, Ze+ € I, hence we pick some ag € [fgr < fer]\ (Ze U Zgr).

The map 7" — A given by £ — a¢ maps a set of size s into a set of size strictly less than . So let
T' C T of size k and a € A such that o = o for all { € T". When £ < ¢ in T”, we have

fé () < fer (@) < ferla) < fi(a)

where the second inequality holds since £ < &' and o = a¢ ¢ Ze U Ze+ and a = aer & Zer U Zery+,
so a ¢ Ze+ U Zer; and the third inequality holds by definition of fgf . We thus showed that
(fgr () : £ € T') is an increasing sequence in S, of length &, thus |S,| > &, contradiction. O

Lemma 3.9. Let A be a set, let I be an ideal on A, let A be a regular cardinal and let f = (f¢ : £ <
A) be an <j-increasing sequence in ON* satisfying bppjaj+. If A > |A[T, then f has a <;-minimal
upper bound.

Proof. Suppose not. Let hy be any <j-upper bound for f, for instance ho(a) = supg’@\ fe(a). We
define SX = (SX : a € A) for x < |A|* such that for all x we have:
1. |SX| < |A] for all a.
2. For all ¥’ < x we have ngl C sx.
3. a > supSX is an <j-upper bound for f.
We do this by recursion.
1. Base case: Take SO := {ho(a)}.
2. Successor case: Given (SY : a € A) for some x, employ bbp 4+ and let & < X such that
hy = proj(fe ,(SX : a € A)) is an <j-upper bound for (fe : & < A). If § < &, then
fgx <7 fg <7 hX SO

hy = proj(fe,, SX) <1 proj(fe, %) <r proj(hy, SX) = hy,
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so in fact we have =y everywhere. We have h, is an <j-upper bound, hence an <;-upper
bound, but by assumption it is not a minimal upper bound. So there exists an upper bound
uy such that u, <; h, and h, €5 uy, so [u, < hy] ¢ I. In fact, we modify u, on an I-set
such that u, < hy. Define SXT! := SX U {u,(a)}. We establish some extra property: For
& > & we have

[proj(ff’SX+1) < u)(] c [proj(fg,sx) < ux] - [proj(fg,SX) < h’X] - [proj(fg,sx) # hx] el

since proj(fe, SX) =1 hy. Thus proj(fe, SX™') > u,. However proj(fe, SXT') < u, since u,
is an <;-upper bound for f. Thus proj(fe, SX™) =/ u,.
3. Limit case: Suppose x < |A|T is limit and assume SX" has been defined for all y/ < y. Take
SX=Uy <y 5% -
Clearly 1.-3. are always satisfied.
From the successor step of the definition above, we have map |A|"™ — X given by x — &,, and
A > |A[t, thus we can take a € < X such that & < € for all x. Let H, = proj(fg,SX) for each .

Since &y < £, we have H, =1 hy. We thus have

H, =1 hy = proj(fe, S¥) for all £ > &,, in particular for all £ > €.
Hy 11 =1 hy1 = proj(fe, Sxty =, uy for all £ > &4, in particular for all £ > 3

So Hyt1 =1 hyt41 #1 hy = H,, thus [Hy41 < H,] ¢ I. Let o, such that H,1(ay) < Hy (o).
Then we have a map |A|T — A given by x — a,, and there must be some o € A such that
infinitely many x’s have o, = «, and we obtain an infinite decreasing sequence of ordinals, a
contradiction. O

Lemma 3.10. Let A be a set, let I be an ideal on A, let A be a regular cardinal and let f = (fe :
& < \) be an <j-increasing sequence in ON4 satisfying bppy,. Then any <;-minimal upper bound
is also exact.

Proof. Suppose h is a minimal upper bound and suppose g <; h. We must show that g <; f¢ for
some &. Modify g on an I-set to get g < h. Let S, := {g(«), h(a)} for all a. Then |S,| < Xy and
f is <r-bounded by the map « +— sup S,. So let & < A such that f; = proj(fe, (Sa : v € A)) is
an upper bound for f. Clearly fgr < h but h is minimal, so we must have h <; fgr, thus fg = h.
Then by the definition of proj, we must have g <; f¢ and hence g <y f¢. O

Note that in fact we do not need f to satisfy bppy,, but only bpps.

Theorem 3.11. Let A be a set, let I be an ideal on A, let k < X\ be regular cardinals and let
f = (fe : € <)) be an <j-increasing A-sequence in ON*. If |[A|* < k and |A|* < A, then the
following are equivalent:

1. f satisfies .
2. f has bppg.
3. f has an exact upper bound g such that [cf(g) < k] € I.

Here the bracket notation [...] is used is a more general setting; we mean [cf(g) < k] = {a € a :
cf(g(a)) < k}.
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Proof. (1. = 2.) This is Lemma 3.8.

(2. = 3.) Lemma 3.9 yields the existence of a minimal upper bound ¢g and g is exact by Lemma
3.10. We will show that without loss of generality we may assume that g is nowhere zero nor a
successor ordinal.

For since fe < g for any &, we have [f¢ > g] € I, hence [¢g = 0] € I. So we can modify g on an
I-set to obtain that g is nowhere 0 and g remains an exact upper bound.

Now suppose that {« : g() is a successor ordinal} ¢ I. For a € a, define

Fo) g(a), if g(a) is limit,
) {ﬂ, if g(a) = 6+ 1.

Then § < g,s0 § <7 gand [g > g] ={a: g(a) is a successor ordinal} ¢ I, so g £; §. Since g is a
minimal upper bound, it cannot be that g is an upper bound. So for some & we have fe £ g, so
[fe=g] ¢ I, but [fe > gl € 1,50 [fe =g] ¢ I. Now [fe > fey1] € I s0

I'F[fe < ferlN[fe =3] C[fer1 > 9] C [fer1 > g

(To see I & [fe < fex1]N[fe = §], note that if X € [ and Y ¢ I, then X°NY ¢ I.) But then
fer1 £1 g, a contradiction. So {a : g(«a) is a successor ordinal} € I and again we modify g on an
I-set to obtain that ¢ is never a successor ordinal.

We will now show that P := [cf(g) < k] € I. For a € P let S,, of cardinality cf(g(a)) be cofinal in
g(a), and for a ¢ P let S, = {g(«)}. Then |S,| < k and f is <;-bounded by a +— sup S,. So let
¢ such that fgr = proj(fe, (Sa : @ € A)) is an <j-upper bound for f. Clearly fgr < g,but gisa

minimal upper bound thus g <; f;, thus [cf(g) < k] C [g > fg] el

(3. = 1.) Modity g on an I-set to have cf(g(a)) > & for all @ € A. For each a, let S, C g(w)
be unbounded of order type cf(g()). Let X C A be unbounded. We need to find an Xy C X of
order type « such that (fe : £ € Xj) is strongly increasing. We will define an <-increasing sequence
(hy : x < k) in [],c, Sa and a sequence (& : x < ) in X such that hy, <; fe, <7 hyy1. We do
this by recursion:

1. Base case: Let hg € [],c 4 Sa be arbitrary.

2. Successor case: Suppose hy € [[,c, Sa is defined. Then hy < g, so let §, € X such that
hy <1 fe,- Now fe <71 g, so fg; = proj(fe,, (Sa : @ € A)) is well defined modulo I. Let
hy+1 € [Taea Sa be such that hy1 > sup(hy, f7). Then hy < hyy1and hy <r fe, <r f{ <
hy 1, so certainly hy < fe, <1 hy41.

3. Limit case: Suppose x is limit and h,s has been defined for all X’ < x. Then take h, >
sup, <, hys, this is possible since x < x and each S, has order type cf(g(a)) > .

Then X := {£, : x < k} has order type k and (fe : £ € X() is strongly increasing by the lemma
below, since an <-increasing sequence is strongly increasing. O

Lemma 3.12. Let A be a set, let I be an ideal on A, let S be a set of ordinals, let h = (he : £ € S)
and f = (fe : € € S) be S-sequences in ON* and suppose that h is strongly increasing and
he <r fe <1 feq1 forall £ € S. Then f is also strongly increasing.

Proof. Let (Z¢ : £ € S) be a sequence in I such that £ <& ,a € A\ (Ze U Zg) = he(a) < he(a).
Let (W : € € S) be a sequence in I such that o € A\ We = he(a) < fe(a) < heyi(a). Let
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Ve :i=WeUZgUZeyqr. Then (Ve : €€ S)isasequencein I and £ <&, o€ A\ (Ve,Ver) = fe(a) <
heri(a) < he(a) < fe(o), where the first inequality is o ¢ We, the second is o ¢ Zgq U Zg
and the third is o ¢ We/. Thus the sequence (Vg : £ € S) ensures that f is strongly increasing as

well.

O

3.1.3 Definition and easy properties

It follows from Theorem 3.4 that it is possible to the define the following:

Definition 3.13. Let a be a set of non-zero limit ordinals. Then we define the set of possible
cofinalities of a as

pcf(a) : = {A: there exists a proper filter F' on A such that A\ = tcf<(H a/F)}
= {\: there exists a proper ideal I on A such that A = tcf<(H a/I)}
= {cf(H a/U) : U is an ultrafilter on a}.

We can easily prove the following properties of pcf:

Lemma 3.14. Let a be a set of non-zero limit ordinals. The following holds.

1.

pcf(a) is a set of regular cardinals.

Proof. By Theorem 2.11 a <-true cofinality is always a regular cardinal. O

. {cf(a) : € a} C pef(a).

Proof. Suppose a € a. Let U := {A C a: A > «}, i.e. U is the principal ultrafilter
concentrated on {a}. Then [[a/U = a, hence cf(][] a/U) = cf(a). O

The =-sign indicates an isomorphism, i.e. two structures only differ in their own name, names
for elements, names for orders etc. Clearly cofinality is preserved under isomorphism.

. If @ is finite, then {cf(a) : a € a} = pcf(a).

Proof. The only ultrafilters on a are the filters concentrated on singletons. From the proof of
2. equality follows. O

. If a consists of regular ordinals*, then a C pcf(a). If a is furthermore finite, then a = pcf(a).

Proof. This is a direct corollary of 2. and 3. O

. If a # 0, min(pcf(a)) = min(cf(a) : « € a). If a # 0 consists of regular cardinals then

min(pcf(a)) = min(a).

Proof. Suppose A = tcf-(J[a/F). Let f = (f¢/F : & < A) be increasing and cofinal in
[Ia/F. If A < min(cf(a) : o € a), then the map g defined by g(a) := supg'</\ fe(a) is an
element of [[a and f: < g for all £, which contradicts the assumption that f is cofinal. So
A > min(cf(a) : o € a). The remaining claims follow easily. O

4Regular ordinals are regular cardinals.
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6. If a C b, then pcf(a) C pcf(d).

Proof. Suppose A € pef(a). Let U be an ultrafilter on a such that cf([[a/U) = . Extend
U to the ultrafilter U on b. We have [[a/U = [[b/U, so A = cf([[a/U) = cf(J[b/U), hence
A € pcf(b). O

7. pef(a U b) = pef(a) U pef(b).

Proof. (2) This is 6. (C) Let A € pcf(aUb). Let U be an ultrafilter on a such that c¢f([[(a U
b)/U) = X. Then a € U or b € U, without loss of generality assume a € U. Let U’ be
the restriction of U to a; then U’ is an ultrafilter on a. We have [[(a Ub)/U = [[a/U’, so
A=cf(J[(aUb)/U) = ct(][]a/U"), hence A € pcf(a). O

8. If a # 0 consists of regular cardinals, then pcf(a \ {min(a)}) = pcf(a) \ {min(a)}.

Proof. (C) Clearly min(a) ¢ pcf(a \ {min(a)}) by 5. and pcf(a \ {min(a)}) C pcf(a) by 6.
(D) If U is an ultrafilter on pcf(a), then either U > {min(a)}, hence cf([[a/U) = min(a)
or U 3 a\ {min(a)} so U restricts to an ultrafilter U’ on a \ {min(a)} and cf(J]a/U) =

O

cf([[(a\ {min(a)})/T").

When a is finite, pcf(a) becomes trivial, so from now on we assume that a is infinite.

Theorem 3.15. Suppose min(a) > |pcf(a)|. (As we will see in Corollary 3.25, this happens for
instance if min(a) > 2/). So at least every a € a is uncountable. Then we have pcf(pcf(a)) =

pci(a).

Proof. Let b = pcf(a). Then b is a set of regular cardinals. Hence (2) is Lemma 3.14.4. To
show (C), let A € pcf(pef(a)). Let D be an ultrafilter on pcf(a) such that cf([[b/D) = A and
let (9s/D : & < A) be increasing cofinal in [[b/D. For 8 € b, let D be an ultrafilter on a
such that cf([[a/Dg) = 5 and let (ff/Dﬁ : 0 < B) be increasing cofinal in [[a/Dg. Define
D*:={ACa:{8€b: Aec Dg} € D}. We will show that cf(J[a/D*) = A. First we show that
D~ is an ultrafilter on a:
1. D*CP(a);{feb:aeDgt=beDsoaeD*;{8e€b:0eDg}=0¢&Dsol¢D*.
2. If A, A e D* then {feb: ANA e Dg}={Beb: A, A eDg}={feb:AecDg}n{Be
b: A€ Dgt e Dso ANA € D*.
3. IfAeD*and AC A, then{fcb: A eDg}D{fecb:AecDgteDso{fecb: A€
Dg} € Dso A’ € D*.
4. Let ACa If A¢D* then{fecb:AcDgt¢D,so{fecb: X\AecDg}={fecb:A¢
Dg} € D, hence X \ A € D*.

For § < )\ and « € a define

hs(a) := sup f° ).
) =5 15 @)

Since gs(f) < B this is well-defined. For all a € a, since a > min(a) > |pcf(a)] = |b] and « is
regular and fi(ﬁ) (o) < a for all B € b, we have hs(a) < o for all § < A, i.e. hs € [Ja for all § < A.
The followin claim will be proved below.

Claim 3.16. For all h € []a, there exists a 6° < X such that for all § < X satisfying §° < 6, we
have h <p- hg.
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For p < A, recursively define 8, < A: §,, = max(d°, Sup;r,<M 8,), where §° is as in the above claim
for h € [] a defined by h(a) := sup:;,<u hs,. ().

Then (hs,/D* : p < A) is increasing and cofinal in [[a/D*. Since A is regular, we obtain
cf(JTa/D*) = A by Theorem 2.11. Thus A € pcf(a). O

Proof of Claim 3.16. Fix h € [[a. For g € b, let 05 < 3 such that h <p, féﬁB. Then the map
§ + 65 is an element of []b. So let 6° < X such that (§ — dg) <p gso. Let & < X such that
5% < 6. We will show that h <p- hs. We have (J — 98) <p gso <p- gs so let B € D such that
dg < gs(B) for all B € B. For B € B we have h <p, f?ﬁ <D, ff&(ﬂ)’ so let Ag € Dg be such that

h(a) < fi(ﬁ)(a) for al & € Ag. Note that fi(ﬁ)(oz) < hs(a) for all @ € A. So for 8 € B and
a € Ag we have h(a) < hs(a). So for § € B we have Ag C [h < hs], hence [h < hs] € Dg. So
(Beb:[h<hs]eDs}2BeD,solh<hs] €D Soh<p- hs. O

3.1.4 The ideal J.y(a)

It turns out to be very interesting to look at subsets b of a which large enough to collapse [[a/D
to a small cofinality, when b € D.

Definition 3.17. Let a be an infinite set of non-zero limit ordinals. For any b C @ and any cardinal
A we say that b forces [[a to have cofinality < X or b forces cof < A iff for any ultrafilter D on a
with b € D we have cf(J][a/D) < A. Denote

Jex(a) :={bCa:bforces cof <A} = {b C a: pcf(b) C A}

The last equality holds by the following: Assume b forces cof < A. Any ultrafilter U on b extends to
the ultrafilter U on a, and cf([[a/U) = cf(J[b/U) < A. Now assume pcf(b) C A. If D is an ultrafilter
on a with b € D, then we restrict D to an ultrafilter D’ on b and cf([Ja/D) = cf([[b/D’) < A.

Proposition 3.18. Let a be an infinite set of non-zero limit ordinals. For any cardinal A, J<(a)
is an ideal on a.

Proof. We verify the conditions:
1. Jea(a) € P(a) and no ultrafilter D contains 0, so @ € J-x(a).
2. If b,c € Jcx(a), since any ultrafilter D containing b U ¢ contains b or ¢ (or both), we obtain
bUc € Jea(a).
3. If b € Jea(a) and ¢ C b, since any (ultra)filter containing ¢ also contains b, we obtain
c € Jex(a).
So indeed J<x(a) is an ideal. O

Lemma 3.19. Let a be an infinite set of non-zero limit ordinals, let b6 C a and let A be a cardinal.
Then J.x(b) = J<x(a) N P(b).

Proof. This is obvious from the second equality in definition 3.17. More directly, suppose ¢ € J<»(b).
Then ¢ € P(b) and ¢ C a. Let D be an ultrafilter on a containing ¢. Then D [ b is an ultrafilter on
band [[a/D Z[]b/(D | b), so cf([]a/D) = cf(J[b/(D [ b)) < A. Hence ¢ € J<x(a). Now suppose
¢ € Jea(a)NP(b). Let F be an ultrafilter on b containing ¢. Let F’ be the restriction of F to a, then
F' is an ultrafilter on a containing ¢ and [[a/F’ Z [[b/F. So cf(][b/F) = cf([[a/F’) < A. O
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We write J (or J<y) for Joa(a) when A and a (when a) are (is) understood.

Remember that all we have said about [[a/F for a filter F' applies to an ideal as well when we
consider its dual filter. So is makes sense to write [[a/J<x(a).

Theorem 3.20. Let A be an infinite set of regular cardinals such that min(A) > |A|. For any
cardinal A\, [Ja/J<x(a) is A-directed.

Proof. The theorem is equivalent to the statement that if B C [[ A and |B| < A, then there exists
an h € [[ A such that f <;_, hfor all f € B. We prove this by induction on |B|.
L. If |B| < |A|*, then, for a € A, define h(a) := sup;cp f(a). Then h € [[A and f < h, so
f N h.
2. If JA|" < |B| < XA and any E C [[ A with |[E| < |B| has an <;_,-upper bound, let B = {f; :
i < |B|} be an enumeration of B and for i < |B| recursively define f] to be an <;_,-upper
bound for {f] : j < i} U{fi}.> Then (f] :4 < |B]) is <;_,-increasing and any upper bound
for B' = {f! : i < |B|} is an upper bound for B. So we look for a bound for B’. We make a
case distinction.
(a) If | B| is singular, let C' C |B| be cofinal such that |C| < |B|, and let h be an upper bound
for {f! : i € C} by the induction hypothesis. Then h is an upper bound for B’ as well.
(b) If | B| is regular, recursively define g, for a < |A|T:

i g0 = fo.
ii. go = supg., gs when «a is limit. Here we mean a local supremum, i.e. go(z) =
SUPg<qo 95(T)-

iii. gat1: If g, is not an upper bound for B’ let i, < |B| be minimal such that
[9a < fi ] ¢ J<x. Then let D be an ultrafilter on A such that [go < f; ] € D but
cf(JTA/D) > A. Let h € [] A be an <p-upper bound for B’. Let go+1 = max(gq, h),
again locally.

If the recursion continues up to |A|T, then (g, : @ < |A|T) is <-increasing. For i < |B|

and « < |A|T define

bzq = [ga < fz/]

Then b D b if v < . Let o < |A|* be arbitrary.

i. If i > iq, then b = [go < f{] 24, [9a < fi] € D and DN Jcy =0, so b € D.

ii. For any 4, b9 = [gas1 < f]] C[h < f!] ¢ D.
So b¢ # b¢t! for i > i, Since |A|T < |B| and a — i, is a map |A| — | B, there is an
< |B| such that i, <7 for all a. Then (b2 : a < |A|") is a C-decreasing |A|*-sequence
of subsets of A. This is of course impossible. So some g, was already an upper bound
for B’.

O

Corollary 3.21. Let a be an infinite set of regular cardinals. If c¢f(J]a/D) < A then there exists
some b € D such that b forces cof < .

Proof. Suppose not, then DN Jcy(a) = 0. Let p:= cf(J]a/D) and let {ge¢/D : £ < u} be cofinal in
[Ta/D. Then by Theorem 3.20, {g¢/J : € < u} is bounded in [[a/J; let g/J be an upper bound.

5An <J.,-upper bound exists by the induction hypothesis, then simply add 1 everywhere so that it becomes an
<J.-upper bound.
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Then [ge £ g] € J, s0 [ge £ 9] ¢ D, so [ge < g] € D, so g/D is an upper bound for {g¢/D : { < u}
in [Ta/D, thus {ge¢/D : £ < u} is not cofinal in [[a/D, a contradiction. O

So we have
cf(JJa/D) <X & DnJc(a) #0. (2)

Clearly p < A = Jou(a) € Jea(a).

Proposition 3.22. Let a be an infinite set of non-zero limit ordinals. For limit cardinals A we
have Jox(a) = U, <) J<pu(a).

Proof. Inclusion from right to left is evident. Suppose b € Jea(a) \ U,<y J<u(a). Note that
U LA J<u(a) is a proper ideal. Recall Theorem 2.18, and let D be an ultrafilter such that b € D
and DN, J<u(a) = 0. Then cf(J]a/D) < A and by Corollary 3.21 cf(J[a/D) > p for all p < A,
which is a contradiction. O

Lemma 3.23. Let a be an infinite set of non-zero limit ordinals. Then there exists a proper ideal
I with tef<([Ta/I) = A if and only if Jox(a) # J<a+(a).

Proof. (<) Let b € Joy+(a) \ Jea(a). Let D be an ultrafilter with b € D such that cf(J][a/D) >
A. Since cf(J[]a/D) < AT, we obtain cf(J[a/D) = X. For the dual ideal I of D we thus have
cf(JJa/I) = tcf<([Ta/I) = A. (=) Since I is proper, let D be an ultrafilter extending the dual
filter I* of I. We have [[a/I = [[a/I* and by Theorem 3.4, A = tef([[a/I) = tef([[a/I*) =
cf([Ta/D). By Corollary 3.21, since cf([Ja/D) < AT, there exists some b € D which forces cof
< AT. Hence b € J_y+(a) \ J<x(a). O

3.1.5 First results using J.(a)
We have two direct corollaries of Lemma 3.23 on pcf(a):
Corollary 3.24. We have
pct(a) = {Cf(H a/D) : D is an ultrafilter on a}
={A: A =tcfc (H a/F) for some proper filter F on a}
={\: = tcf<(H a/T) for some proper ideal I on a} = {\: Jca(a) C Joy+(a)}.
Corollary 3.25. We have |pcf(a)| < 219l

Proof. For any A € pcf(a) choose a by € Joy+(a) \ Jea(a). If X < X, then Joy(a) C Joy+(a) C
Jex(a) C Joy+(a), so by # by, So b by is an injective function pef(a) — P(a). O

Since A < X implies Jo C Jcy, and Jcy € P(a), there must be a A such that J.) = J< for all
X > A. The following lemma shows that that for this A, J<, is maximal, namely P(a).

Lemma 3.26. Let a be an infinite set of non-zero limit ordinals. There exists A such that J-y(a) =
P(a).
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Proof. If not, then |, J<x(a), where we take union over all cardinals A, is a proper ideal. So let D
be an ultrafilter extending its dual filter. Let A := cf(J[ a/D). By Corollary 3.21 some b € D forces
cof <At and b € J.y+(a). But then b € DN Y, J<a(a), a contradiction. O

Theorem 3.27. Let a be an infinite set of non-zero limit ordinals. Then pcf(a) has a maximal
element.

Proof. Let A be minimal such that J.(a) = P(a); this exists by Lemma 3.26. Then A can not be
a limit cardinal, for this would violate J<x(a) = Uu<>\ J<u(a), i.e. Proposition 3.22, since then we
must have a € J<,(a) for some p < X\. So A = k. Since Jo,(a) # J<,+(a), we have k € pcf(a)
by Lemma 3.23, and again by this lemma we have that x is maximal. In particular, also x is
regular. U

Ezample. Let a := {Ng, : 0 < n < w}. Then a is an infinite set of regular cardinals and
la]t = Xy = Ny < Ry = min(a). Let 0 < k < w; we will show that Nogy1 & pcf(a). Let D
be any ultrafilter on a. If D contains a finite set, then D = {b C a : b 3 Ny, } for some 0 < n < w
and cf([]a/D) = Ny, # Rog1. If D contains no finite set, then it contains all cofinite sets. Suppose
(fe/D : & < Ngpy1) is increasing in [[a/D. Then each for n with 2n > 2k + 1, since Ropi1 < Rop,
and N, is regular and fe(n) < Ngy, for all £, we have SUPgnyy, J€ (n) < Vy,. For 0 < n < w define

£ 0, if2n <2k +1
n) =
SUPg <y, fe(n), if2n>2k+1

then f € [[a. For any § < Ng,, since [fe < f] is cofinite, we have [f¢ < f] € D. Hence
fe/D < f/D for all £ < Ropp1. Thus (fe/D : € < Nogyq) cannot be cofinal in [Ja/D. So there
exists no increasing and cofinal sequence in [[a/D of length Nog11, so Rogy1 ¢ pef(a). We have
shown that pcf(a) MR, = a, and pcf(a) need not be an interval. Furthermore, Theorem 3.27 yields
the existence of max pcf(a). We have max pcf(a) > sup(a) = R, and even > R, since R,, is singular.

3.1.6 When ¢ is in interval

In this paragraph we will see a result which shows that pcf(a) is an interval of regular cardinals
under some additional assumptions on a.

First we introduce the idea of the limit of an ultrafilter on a set of ordinals. Let a be a non-empty
set of non-zero ordinals and D an ultrafilter on a. Then (0,supa] Na € D, but (0,0] =0 ¢ D. So
let p be minimal such that (0, u] Na € D. For any v < p we have ((0,v]Na) U ((v,u]Na) € D but
((0,v]Na) ¢ D, so (v,u]Na € D. We write p = limp a and call p the D-limit of a. If p is such
that (v, u| Na € D for every v < p, then limp a = p.

Theorem 3.28. Let D be an ultrafilter on a set of regular cardinals a such that |a| < min(a), let
A = cf([]a/D) and let p = limp a. Suppose A is regular and p < X < A. Then there is a set
a’ of regular cardinals such that |a’| < |a| and an ultrafilter D’ on o’ such that limp o’ = p and

cf(JJa’/D") = N.
A proof of this theorem will follow from Lemmas 3.35 and 3.36.

By ‘a = (v, p) is an interval of regular cardinals’ we mean that a = {k : ¥ < k < p and & is regular}.
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Corollary 3.29. Let a = (v, 1) be an interval of regular cardinals such that |a| < min(a), A € pcf(a)
and X regular such that u < X < A. Then X\ € pcf(a).

Proof. Let D be an ultrafilter on a such that A = cf(J[a/D). Then i := limp(a) < sup(a) < p.
So fi < X < A. Then Theorem 3.28 yields ¢’ and D’ such that |a'| < |a|, limp @’ = f and
cf(JTa’/D’') = X. Define D" :={A Ca: ANda € D'}. Then D" is an ultrafilter on a:

1. D" CPa),dna =0¢ D sod¢g D", and = (v,u)Na 2 (v,i)Na €D soac D"
If A,Be D" then (ANB)Nd =(ANd)N(BNY)e D' so ANBe D'
IfAe D" and AC B, then BNa' D ANad € D' so Be D".
If A¢ D", then (a\ A)Na =(and)\(ANa') € D sinceana € D' but Ana’ ¢ D', so
a\AeD".
We have [[a/D" =
ctf([Ja/D") € pcf(a).

W

[Id'/D’, since ana’ € D' and ana’ € D”. Hence N = cf([[d'/D’)

O

In the above situation, when a = (v, ), it is not immediately clear that u € pcf(a), so that pef(a)
is an interval of regular cardinals. We have the following cases:

1. p is singular. Then of course u ¢ pcf(a), but pcf(a) is an interval of regular cardinals.

2. p is a successor cardinal, say u = p*. Consider a’ := (v,p). Let A = maxpcf(a). If A\ = p,
then p € pef(a) and indeed pef(a) is an interval. If A = p, then it is also obvious that pcf(a)
is an interval. If A > p, then p < p < A and A € pcf(a’) as well (an ultrafilter U on a such
that cf([[a/U) = X can be restricted to @', since {p} ¢ U). So Corollary 3.29 yields that
w € pef(a’) C pef(a). Thus pef(a) is an interval.

3. p is a regular limit cardinal. However, let u = Ny, then |a| = § and min(a) < X5 = 4. So the
assumption that min(a) > |a| rules out this possibility.

We conclude that if a = (v, i) is an interval of regular cardinals such that |a| < min(a), then pcf(a)
is an interval of regular cardinals. So if v < Rjpcqq)+, then pef(a) C (v, Rjpesq))+), and in fact there
is some ¢ < |pcf(a)|t such that pcf(a) = (v, Ns].

Corollary 3.30. Let a be an interval of regular cardinals such that min(a) > 2!/, Suppose that
the least cardinal in a is a successor cardinal; let min(a) = Ns41. Then pcf(a) contains no limit
cardinals.

Proof. Since |pcf(a)] < 2/l by Corollary 3.25 and pcf(a) is an interval of regular cardinals by
Corollary 3.29, we have pcf(a) C {Nsyq: 1 < a < (2'“‘)+}. Let 1 <a< (2'“')+ such that Ngy, is
a limit cardinal. Thus § 4+ « is a limit ordinal. Then

cf(Rs1a) = cf(d + a) = cf(a) < |a] < 219 < min(a) = R4 1 < Rsiq.
Thus N5, is a singular cardinal, and therefore does not belong to pcf(a). O

In the next definition we use the class ON of all ordinals. We use this class to express that certain
elements are ordinals, certain sequences are ordinal-valued, to express that a set consists of ordinals,
etc. All ‘things’ we actually work with are still sets and not proper classes.

8To have (v, i) Na’ € D', one needs v < ji. But this follows from (0, 1] N (v, u) € D.
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Definition 3.31. Let x and X be cardinals such that A > «* and let D be an ultrafilter on x. For
a < A let fo : K — ON. Suppose that a < o implies fo, <p for, i.6. {fo/D : a <)) is increasing
in ON"/D. Let h/D € ON"/D, A C ON"/D. Then we say that

1. h/D cuts (fo/D : o < A) iff there exist o, @’ < A such that f,/D < h/D < fo /D,
2. A cofinally cuts (fo/D : a < A) iff for all @ < A there exists h/D € A such that f,/D < h/D
and h/D cuts (f,/D : v < \).

Lemma 3.32. Let ~ and A\ be cardinals such that A\ > &%, let D be an ultrafilter on . Let
(fa/D : @ < A) be increasing in ON"/D. Then

1. (fo/D : @ < A) has a least upper bound in ON"/D, or
2. there exists sets S5 € ON for 0 < s such that [S;| < & and [];_, Ss/D cofinally cuts
(fa/D:a < A).

Proof. Assume both options do not occur. Then, for 8 < k™, we will recursively define hg € ON"
such that each hg/D is an upper bound for (fo/D : a < \) and (hg : B < k) is <p-decreasing.
Then we will arrive at a contradiction.

1. Base case: Take hg such that f,(d) < ho(d) for all @« < X and all § < k. For instance, let
ho(6) = supt_ fa(0).

2. Successor case: Given hg, since hg/D is an upper bound, but not a least upper bound for
(fa/D : o < A), let hgy1/D be an upper bound for (f,/D : o < A) with hg/D &€ hgy1/D.
Then hg11/D < hg/D, since D is an ultrafilter.

3. Limit case: Given h. for v < 3, define

(a) for § <k, S5 :={h,(0):v< S}

(b) for & < X and d < K, g4(0) := min(Ss \ fa(9)).
Note that by definition of hg, Ss \ fo(d) is never empty. Note that g, € ON" for all o < A.
Note that:

(a) For a < A we have f, < g, and thus f, <p ga.

(b) For a < o < X\ we have fo, <p fa’, 80 go <D G-

(¢) For o < X and v < B we have [go < hy] 2 [fa < hy] € D, so go <p h,. Since

hy /D < hy/D for v < ' < 8, we even have go <p h for all &« < X and v < .
Suppose (go/D : o < A) is not eventually constant. Then |Ss| < x and [[;_, Ss/D cofinally
cuts (fo/D : a < A), which is possibility 2, which we assumed not to occur: Let o < A
be given. Then g, € [[5.,. S5 and fo <p ga- Let o’ such that @ < o’ < X and such
that go #D gor- Then go <p gor- Thus [go < gor] € D, hence, by definition of the g, ’s,
[ga < fo/] € D. Hence Jo <D fo/~ So fa/D < ga/D < foz’/D'
S0 (ga/D : oo < A) is eventually constant, and we call this constant value hg/D. For all @ < A
we have fo <p hg. Let a be such that go/D = hg/D. For v < 3 we have fo, <p hy. So
hy(8) € (S5 \ fa(0)) for D-a.e. . So ga(6) < hy(6) for D-a.e. 6. Thus hg =p ga <p h,.
Since v < v/ implies hy >p h,, we even have hg <p h, for all v < 3.
Now similarly define

1. for 6 <k, S5 :={hs(8) : B < KT},

2. for a < X and § < K, §o(0) := min Ss \ fu(6).

Note again that by definition of ho, S5 \ fa(0) is never empty. Note again that g, <p hgs for all
f < kt. Given a < X and § < &, let 3(0) < kT be such that g,(0) = hg(s)(9). Let f(a) =
sups., B(6) +w. This is an ordinal < k™ since k™ is regular, and by adding w we ensure that it is a
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limit ordinal. Then o + () is a map A — k™. Since we assumed A > kT, there exist 8 < k* such
that unboundedly many a < A satisfy S(«) = 3, and this S is a limit ordinal. Note that for these
a’s, for all § < k there exists ' < 8 such that g, (d) = hg/(d). Thus for these a’s, by definition of
hg, we have g, = go. But (go/D : o < A) was eventually constant, so there exists an a such that
hg =bD ga = G, But then we have the following contradiction: hg/D = go/D = go/D < hg/D. O

Definition 3.33. Given an ordinal A, for a < A, let C, be club in a with ot(Cy,) = cf(a). For
a < A, define Cy, := {CgNa: B < A}. Then C, C P(a), |Co| < A, every C, contains a C' which is
club in « and ot(C) = cf(a) (namely C = C, = C, N ), and for any E € C, and § < a we have
EnpeCs (E=CyNaforsomey,so ENG=C,Nnanf=C,NBeCg). Wecall (Co:a <) a
silly square A-sequence.

We now start with the proof of Theorem 3.28. Let D be an ultrafilter on a set of regular cardinals
a such that |a| < min(a), A = cf([]a/D), p = limp a and X regular such that u < A’ < A. Since
limpa=p < A=cf(][a/D), we must have that D is non-principal, and p is a limit cardinal.
We will construct an increasing sequence (f,/D : @ < X'} in [] a/D which has a least upper bound
g/D, and {cf(g(a)) : a € a} is cofinal in y, and cf([],, cf(g(a))/D) = N.
Let (Cp : B < X') be a silly square X'-sequence. For «v < X recursively define f, as follows:
1. fo/D €[] a/D arbitrary.
2. Given f,/D for v < j, the set {f,/D : v < B} is not cofinal in [[a/D since cf([[a/D) = X >
XN > 3. Solet hg/D € [[a/D be such that hg £p f,, hence f, <p hg, for all v < 5. Then
fv/D < hg/D for all v < B. By adding 1 to hg, we can arrange without loss of generality
fy/D < hg/D for all v < . For a € a and E € Cg define

o) = {hﬁ(a), if o < ot(E),
B max(hg(a),sup,cp fy()), if a > ot(E).

If @ > ot(E), then o > ot(E) > |E|, and f,(o) € a for all v, and « is regular, hence
sup,cp fy(a) < a. So 9% € [Ta. Again {¢?/D : E € Cs} is not cofinal in [Ja/D, since
ICsl <N <\ Solet f5/D e [[a/D such that g5 /D < f5/D for all E € Cp.

Lemma 3.34. There are no subsets S, C « for @« € a and p/ < p such that |S,| < ¢/ and
[Iaca Sa/D cofinally cuts (f,/D :v < \).

Proof. For a € a, let S, C a such that [] ., Sa/D cofinally cuts (f,/D :~v < X), and let ' be a
cardinal such that |a| < p/ < p (note that |a| < min(a) < ). We will show that for at least one «
we have |S,| > p.

For i < X recursively define 3; < X’ by

1. By arbitrary,

2. Biy1 such that 311 > i+ 1 and fg, <p k <p fs,,, for some k € []

3. Bi =sup,; B if ¢ is limit.
Then B := {f#; : i < X'} is N-club and if i < j then fz, <p k <p fp, for some k € [] ., Sa. Let
B := B+ (note that (u/)* < p since i is a limit cardinal). Then cf(3) = (/). Let E € Cg such
that ot(E) = cf(8). Then E N B is B-club and we enumerate E N B as (v; : i < cf(3)) increasingly.
Fix i < cf(8). Let k; € [[,e, Sa be such that f,, <p k; <p f,,,,. Now

OzGaSC“

aca

31



L. gFn,, <p [y since f,, is an <p-upper bound for {g;: : F' € C,},

2. gprs, (@) > fr; () for all a such that a > ot(EN+;) and j < i.
Since ot(E) = cf(8) < p and limp a = p, let a; € a be such that a; > ot(E) and f,, (a;) < ki(oy) <
f’Yi+1(ai) and f’Yi (al) > gg‘iﬂ'yi (al)
Do this for all i < cf(3), to obtain a map cf(8) — a given by i — «;. Note that |a| < cf(3), so let
I C cf(pB) of size cf(B) consist of limit ordinals and let o € a be such that o; = o for all ¢ € I. Then
for all ¢, 5 € I such that ¢ < 7 we have

ki(a) < f'Yi+1 (O() < g;jﬁfyj (Oé) < f"{j (O[) < kj (Oé)

So {k;(a) :i € I} C S, has size cf(8) = (u')" > u/. So not for all & € a we have |S,| < 1. O

Clearly (fa : @ < X') is <p-increasing: f, <p hg < gg <p fp for a < B (and any E € Cg). Now
D is an ultrafilter on a; it transposes to an ultrafilter D on |a| via a bijection ¢ : a <> |a|. Any
f € ON? transposes to an f € ONI® by f(x) == f(i~Y(x)). Then (fy : a < X) is <p-increasing
in ONI®l. Also N >y > mina > |a|, so N > |a|*. Hence Lemma 3.32 yields that (fo/D : a < X)
has a least upper bound in QNJ‘”/E or there exist sets Ss for § < |a| such that |Ss| < |a| and
[15<)a S5/ D cofinally cuts (fo/D o <X).

Suppose the second. Consider Tj, := Sjo) N € « and ], ., Ta- We will show that [] ., 7a
cofinally cuts (f,/D : v < X'), which contradicts Lemma 3.34. Let a < \". Let h € J[;_, S5 such
that f, <p hand h/D cuts (f,/D : v < \). Then h <p for for some o’ < XN'. So [h < fo] € D. So
without loss of generality we assume that h < f, everywhere. Let h/(x) := h(i(z)) < fo (i(2)) =
far(x) < 2,80 h € [[ cq Ta- S0 [[neq Ta cofinally cuts (f,/D:vy < X).

Thus (f,/D : v < X) has a least upper bound g/D in ONI*l/D. Since cf([Ja/D) = A > X,
we may assume g(o) < « and g/D € [[a/D. Also, {a € a : g(«) is limit} € D: If not, then
g (o) +1 = g(a) for some ¢’ € [[a/D, for all o € A, for some A € D. Then ¢’ <p g and ¢’ is also
an upper bound for (f,/D : vy < A’), since this sequence in increasing. So we assume without loss
of generality that g(«) is a limit ordinal for all « € a.

For a € a, let S, C g(a) be club in g(«) and of order type cf(g(«)). Enumerate S, = (S, (i) : ¢ <
cf(g(w))). Since g(a) is always a limit ordinal, it is easy to show that []_ ., Sa/D cofinally cuts
(fa/D:a < N).

Define a' := {cf(g()) : « € a} and D' = {{cf(g(«v)) : « € A} : A € D}. Then D is an ultrafilter on
a.

aca

Lemma 3.35. We have limp: a’ = p.

Proof. Let p/ := limpra’. Since cf(g(a)) < g(a) < « for all a € a, we have p/ < p. We have
cf(g(a)) < p/ for all @ € d for some d € D. Define T, := S, if « € d and T, := {0} if « € a \ d.
Then [[,c, Ta/D = [Iaeq Sa/D, which cofinally cuts (fo/D : a < X). But |[T,| < ¢/, so Lemma
3.34 yields ' > p. O

Lemma 3.36. We have cf(][[a’/D’) = X.

Proof. Let # < X. We have fg <p g. So for D-almost all o € a we have fg(a) < g(a). For
these a, let i < cf(g(a)) be minimal such that fg(a) < So(i) and define fg(a) := S4(i). Then
f8/D € [lacq Sa/D is defined. Observe the following:
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1. (fs/D : 3 < X) is cofinal in [[ Sa/D: Given f € [[Sa, we have f <p g. Since g is a least
upper bound, f is not an upper bound for (f, : v < X'). So f, £p f for some v, hence
f <p f'y <D fw+1 <p fw+1~

2. Any S C [[Sa/D with |S| < X is not cofinal in [[ So/D: Given f € S, let B¢ < X such that
7 <pb fgf Given 8 < )\ we have fz <p g, so let £(8) < X such that f3 <p fe(p) (this exists
by the same reasoning as in 1.). Let 81 := sup;cg §(8f) < A'. Then for all f,

f<b fa; <p fesy) <D f3. <D [far-

So S is bounded by fs, € [[Sa/D.
We conclude that cf(][S,/D) = X. For 8 < X and o € d/, define

fh(e) == sup(i < o : Sa(i) = fa(e) for some o € a with cf(g(a)) = o).

This is a supremum of < |a|-many elements. Since p' < p, since limp: o’ = p, D'-almost all o/ € o’
satisfy o/ > u/. Note that |a|] < mina < p. Thus D’-almost all o/ € a’ satisfy o/ > |a|. Thus
f_é( ") < o for D'-almost every o/ € a’. So fé/D’ e[ld/D'.

To an f € [Jd’ we associate an f € [ S, by defining f() := Sa(f(cf(g(a))). Given f € [Jd/, let
B < X such that f <p fs. Then f <p fﬂ

If o € a is such that f(a) < fs(a), then f(a) =
that S, (i) = f(e). On the other hand, fala) = S,
j > 4. And we have fB(cf( (o)) = sup(k : Sa(k) =

f(cf(g(a))) < fh(a). So
{o/ €d: f(a') < fh(a')} 2 {cf(g(a)) s a € [f < f5]} € D.

Sa(F(cf(g(@)))), so f(cf(g(w))) is the i such
) for some j and thus Su(j) > Sa(é) thus
gl

alJ
f3(ct(g(7))) and cf(g(7)) = cf(g(a))) = j. So

So {fé : 8 < NY}iscofinal in [[a'/D’. Any S" C [[d’/D’" with |S’] < X is not cofinal in [[a’/D":
S:={f: f €5} satisties S C [Ta/D and |S| < X, so S is not cofinal in [[a/D. So S is bounded
by some fg, thus " is bounded by some fj. So indeed cf([[a’/D") = X'. O

Noting |a'| < |a| and combining with the two lemmas above, we have proved Theorem 3.28.

3.2 Generating J_,+ over J_,
3.2.1 Universal sequences

In paragraph 3.2.2 we will need the notion of and some results on universal sequences, which we
will describe here.

Definition 3.37. Let a be an infinite set of regular cardinals, let A € pcf(a) and let f = (fe : £ < \)
be an <j_,-increasing sequence in [[a. Then f is called A-universal iff f is cofinal in [Ja/D for
all ultrafilters D on a such that cf([]a/D) =

Theorem 3.38. Let a be an infinite set of regular cardinals such that |a|* < min(a), let A € pcf(a).
Then there exists a A-universal sequence.
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Proof. If A = min(a), define f = (f¢ : £ < A) by fe(a) =& Then f is <-increasing. If cf([[a/D) =
A =min(a), then D > {min(a)} and f is cofinal in [[a/D.
So assume |a|T < min(a) < A. Assume that no sequence is A-universal. We will construct sequences
of functions f* = (f¢ : £ < A) in [[a for a < |a|* and ultrafilters D,, on a for a < [a|* such that:
1. cf(JTa/Dy) = A for each a < |a|T,
2. f%is <j_,-increasing and <p_-bounded by f&*" for each a < |a|*,
3. fotlis cofinal in [ a/D, for each o < |a|T,
4. (f¢ + a < la|*) is <-increasing for each £ < \.

This is visualized in the following figure:

la* <-increasing in o

fotlis cofinal in [Ja/D,
s <p, -bound for f* e
a+1 :
«@ .o <j_,-increasing in £
EON

§

Figure 2: Visualization of (f§")a<|a|+ e<x-

The construction is of course by recursion, and we always assume that the functions we have
constructed satisfy 1.-4.:
i. Base case: Define fJ(z) = 0 for all z € a. Given (fg 1 € < &) for some & < A, let fgo be
an <j_,-upper bound of <fg : € < &), which exists since [Ja/J<y is A-directed by Theorem
3.20.
ii. Successor case: Suppose we have defined f¢ for some o < |a|T. Let D, be an ultrafilter
such that cf([Ta/D,) = A and that f< is not cofinal in []a/Ds. Let f§*! be an <p_-upper
bound for f¢. Let <fg‘+1 : & < A) be cofinal in [[a/D,,. Suppose we have defined f?“ for all

& < & for some 0 < & < M. Let fg)“ be an <;_,-upper bound of {fg”rl (&< U {f?“ :

€ <&} U{f&} and modify fgﬂ on a set in J. such that fg;“ > fé.
iii. Limit case: Suppose we have defined f¢ for all a < ag for some oy < |a|T. Suppose we have
defined fg“’ for all £ < & for some & < A. Then let f?o be an <;_,-upper bound for {fg"O :
§ <&}tU{sup(fg : a < ap)} and modify fi° on an Jcy-set so that fg° > sup(fg : v < o).
Then define h := sup(f§ : @ < |a|*) € [Ta. For a < |a|t let &, < A such that h <p_ f?jl, which
exists by 3. Then £ := sup;t<|a|+ £, < \. For eacht a, since &, < £ we have fgjl <Jos ng by 2,
thus fgj'l <p. fg“, thus h <p, fg“"1 as well. For each a < |a|* define A* := [h < fg] Then
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(A% : a < |a|T) is C-increasing by 4. We have
L f¢ <p. St < hby 2., 50 h £p, f&, 50 A% ¢ D,
2. h<p, fé—”l so A**tl e D,.

So (A*: a < |a|™) is even C-increasing. This is a contradiction since A% C a for all a < |a|*. O

Lemma 3.39. Let o be an infinite set of regular cardinals such that |a| < min(a), let A € pcf(a)
and let 4 be minimal such that a N p ¢ J<x(a) (indeed, a ¢ J<x(a) and ) € J<x(a) so there exists
such a p). Then there exists a A-universal sequence which satisfies x, with respect to J<y, for all
regular x < p. We can take = |a|™.

Proof. Let D be such that cf([[a/D) = A. Then {a € a:a > A} ¢ D,soan(A+1) € D, so
aN(A+1) ¢ Jex, 50 p < A+ 1. p=\is impossible: A is regular and |a| < min(a) < A, so aN A is
bounded by some u’ < X; this contradicts the minimality of u.

If u=X+1,then A € a,anN X € Joy and even J., = P(aNA), since for any A C a with A Z anN A,
there is some A > X such that M € A, and thus the ultrafilter D’ concentrated on )\ satisfies
A€ D and cf(J[Ja/D’) = N, thus A ¢ J.x. Take f = (f; : ¢ < A\) to be any A-universal sequence.
Then =) holds, since f is strongly increasing by the simple nature of J-A. Thus *, holds for any
E<p=XA+1

So we are left with the case 4 < A and a N p is unbounded in p. Thus p is a limit cardinal. Let
(gi + i < A) be any A-universal sequence. By the theorem below, for I = J.,, there exists an
< j_,-increasing sequence f = (f; : i < \) such that g; <j_, fit1, so f is A-universal, and such
that f satisfies *, if  is a regular cardinal such that K+ < A and {a €a:a < kTt} € Jo\. If
Kk <, then kT < p < Xand {a € a: a < KT} € Joy. So *, holds for all Kk < u. We have
aNlal™ C min(a), so an|a|t =0, thus |a|t < u. So we can take x = |a| ™. O

Theorem 3.40. Let a be an infinite set of regular cardinals, let A be a regular cardinal, let I be
a proper ideal on a and suppose that [[a/I is A-directed. Let (g; : ¢ < A) be a sequence in []a.
Then there exists an <j-increasing sequence (f; : i < A) in [[ a such that g; <; fiy1 for all ¢ and
that satisfies x, if x is a regular cardinal such that k™" < X and {a €a:a <rktT} € I.

Proof. We do this by recursion:
1. fo is arbitrary.
2. fi+1 is such that giyfi <7 fi+1-
3. If 4 is limit, then we have the following cases:

(a) cf(i) = kT for some regular x and {« € a : « < Tt} € I, then let E; C i be i-club
and such that ot(E;) = x™*. Define f;(a) = sup(fj(a) : j € E;) for @ > ™+, then
fila) < afor @ > k™*. Thus f; € [[ A/I is well-defined.

(b) We are not in the above situation. Then take f; to be an <;-upper bound for {f; : j < i}.

Then (f; : i < A) is clearly <j-increasing, g; <; fiy1 for all ¢ and it satisfies %, for all regular
cardinals x such that k™" < X and {a € a: @ < kT1} € I, by the following lemma. O

Lemma 3.41. Let a be an infinite set of regular cardinals, let I be an ideal on a, let kK and A be
regular such that k™ < X\, let f = (fi : i < A) be an <;-increasing sequence in ON® such that the
following holds: If cf(i) = x, then there exists E; C ¢ which is i-club and sup(f; : j € E;) <1 fi
for some ¢’ > i. Then *, holds for f.
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Proof. Suppose k > Xg and let S := S(k*T, k) (recall Lemma 2.25). By Theorem 2.27, there exists
a club-guessing sequence (C,, : a € S) for S. Let U be any unbounded set of A\. We have to find an
Uy C U of order type « such that (fe : £ € Up) is strongly increasing. For i < x*+ define § < A by

1. & arbitrary,
2. & =sup;,; §; if 4 is limit,
3. Given §; for all j <4, define hy, :=sup(fe; : j <i,j € Co} forall a € S. If hy <; f; for some
n < A, let 7, be minimal with this property. If hy £ f, for all n < A, then let 7 = & + 1.
Let &1 > sup(n, : @ € S) and such that &1 € U.
Then {& : i < kT7} is club in € := sup,.++ & and cf(§) = k1. By assumption there exists
E¢ C ¢ which is &-club and sup(f,, : n € E¢) < fe for some & > ¢. Then {§ 4 < st} N E¢ is
&-club, and thus C := {i < kT : § € E¢} is kT -club. So there is an a € S such that C,, C C,
and thus sup(f, : 7 € Co) <1 fer. Let Ny :={i € Cy : sup(CoNi) < i} ={i € Cy : (3j €
Co: (j,i)NCy = 0)}. Fori € Ny, let j; € N, be such that (j;,i) N Cy = 0. In defining &, 41,
we had hy = sup(fe, : j < ji,j € Ca) < sup(fe; : j € Co} <1 fer. So there is some 7 such
that ho < fy. Thus sup(fe; : j < ji,j € Ca) <1 fe;, 1 <1 fe,;, since f is <;-increasing. Let
Zi = [sup(fe;, 1 J < jinj € Ca) £ fe,]. Then (Z; 1 i € N,) is a sequence in I, and if i, j € N, and
i < jand a € Z; N Zj, then fe (o) < fe, (o). Thus (fe, : i € Ng) is strongly increasing. Since
fe. <t fein <1 fe, where it = min(Cy \ (i 4+ 1)), Lemma 3.12 yields that {fe, , : i € No} is
strongly increasing as well, and this is a subsequence of (fe : & € U) of order type &. O

3.2.2 Existence of generators

Definition 3.42. Let a be a set, let I, J be ideals on a and let b C a. We say that b generates J
over I when one of the following equivalent requirements holds:
1. theideal generated by IU{b} is exactly J,i.e. J =({K : K is an ideal on a and JU{b} C K}.
2. J={XCa:(FY €l: X CY U}
3. J={XCa:X\bel}.
The ideal generated by TU{b} is sometimes denoted as I+b, and thus a fourth equivalent requirement
is

4. I+b=J.

In this paragraph we will show that there always exist generators for J_y+ over J.). We have a
simple test for checking whether b is a generator:

Lemma 3.43. Let a be a set of regular cardinals, let b C a and let A € pcf(a). Then
b generates Joy+ over Jox & b€ Joy+ and [N = cf(H a/D)=be D].

Proof. (=) Clearly b € J.y+. Suppose A = cf([[a/D). Then DN Jy+ #0,s0let X € DN Jy+.
Then X \be Jox. Bt DNJoy=0,80 X\b¢ D,sobD XNbe D.

(<) Since Jey C Jox+ and b € Jop+, we have Jo) + b C J+ automatically. Now let X € J_+
be arbitrary, we will show that X € J. +b by showing X \b € J.. Let D be such that X \b € D.
Then X € D, so cf([[a/D) < A*. We have b ¢ D, so cf([[a/D) # X\ (by the assumption
[A =cf([]a/D) = b € DJ]). Hence cf([[a/D) < A. Since D was arbitrary, we have X \ b € Jc,.
Since X was arbitrary, we have that Jox +b 2 Joy+. Thus b generates J_ + over Jcy. O

36



Theorem 3.44. Let a be a set of regular cardinals such that |a| < min(a) and let A € pcf(a).
Then there exists a b which generates J_ + over Jcy.

Proof. If A = min(a), then Joy+ = {{min(a)},0} and J.n = {0}, so by = {min(a)} works. So
suppose A > min(a) > |a|. By Lemma 3.39, let (f¢ : £ < A) be a A-universal sequence satisfying
*|q+ With respect to J<x. By Theorem 3.11, (fe : £ < A) has an <;_,-exact upper bound h. Since
fe € [1a for all &, the identity function id : @ — a,« — « is an upper bound for (fe : £ < A). So
h <;j_, id, so we may assume h(a) < « for all a € a. We define b := {a € a : h(«) = o} and prove
that b satisfies the conditions of Lemma 3.43.

Suppose D is an ultrafilter on a such that b € D. If DNJ.y # 0 then c¢f(J[[a/D) < A. T DNJcy =0
then (fe/D : £ < A) is <p-increasing and h/D is still its exact upper bound. So (f¢/D : { < A)
is <p-increasing and cofinal in [[{h(a) : & € a}/D. But h =p id, so in fact (f¢/D : £ < A) is
< p-increasing and cofinal in [[a/D as well, and cf(J]a/D) = A. Since D was arbitrary, we have
shown b € Jy+.

Now suppose cf(J[a/D) = A and assume b ¢ D. Then {« € a : h(a) < a} € D so h/D € [[a/D.

We have DN Jcy =0, so fe <p h for all §, so (f¢/D : £ < X) is not cofinal in [[a/D. This
contradicts the universality of (fe : £ < A). So we have shown [A = cf([[a/D) = b € D]. O

3.2.3 Properties of generators

Now that we know the existence of generators, we can look without hesitation for properties and
extra assumptions on the generators.

In fact, the first two results are provable and interesting without knowing that generators always
exist. However, we present them here among the other properties on generators.

In this paragraph, a always denotes an infinite set of regular cardinals such that |a| < min(a) and
(bx : A € pcf(a)) is a sequence of generators.

Lemma 3.45. If J . +(a) = Jca(a) +band ¢ C a, then Joy+(c) = Jea(c) + (bNc). So ‘generators
restrict’.

Proof. By Lemma 3.43, we need to show bNc € Joy+(c) and [A = cf([[¢/D) = bne e D]. If
bNc € D, extend D to an ultrafilter D on a, then b € D so cf([[¢/D) = cf([Ta/D) < A*. So
indeed b Nc € Jox+(c). If cf([[c/D) = A, then again extend D to an ultrafilter D on a. Then

A=cf(J]¢/D) =cf([Ta/D), so b€ D. Hence bNec € D. So [A=cf([[¢/D)=bNec e D]. O

Lemma 3.46. If Jo\+ = Jcx+b=Jcy+c thenb=,_, c

Proof. We need to show that bAc =b\cUc\ b € Jcy. Let D such that bAc € D. Then bUc € D.
Note that b,c € Joy+, s0 bUc € Joy+. Hence cf([[a/D) < A*. If c¢f(J[[a/D) = A, then b,c € D
by Lemma 3.43. Hence b N ¢ € D, but since bAc € D we get ) € D, a contradiction. Hence
cf(JTa/D) < A, and bAc € Jy. O

We now give a nice characterization of cf([[ a/D) using generators. Remember that by generates
Jox+ over Joy.
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Lemma 3.47. We have
cf(J[ a/D) = min({\ : by € D}).

Proof. Let cf([Ta/D) = X. Then DN Jy+ # 0, solet b € DN J.y+. Since by generates J. + over
J<x, we have b\ by € J<). Since DN Jcy = 0, we must have b\ by ¢ D, so by 2 bNby € D. If
p < A, then b, € D implies cf([Ja/D) < p* < A, which is not true. So b, ¢ D. O

Lemma 3.48. When ¢ C a, there are A1, ..., A, € pcf(c) such that ¢ C by, U...Uby,,.

Proof. Define I := {b C c¢: there exist A1, ..., A, € pcf(c) such that b C by, U...Uby,}. Then I is
an ideal on ¢. If ¢ € I, then we are done. If ¢ ¢ I, then extend the dual filter of I to an ultrafilter
disjoint from I, and extend this to an ultrafilter D on a. Then ¢ € D and A := cf([[a/D). Also
by € D by Lemma 3.47. Hence ¢cNby € D. Therefore we have A € pcf(c Nby). Since ¢cNby C by,
we have by € I. But this contradicts DN I = 0. O

We prove a simple extension lemma for ideals, which will be used in the proof of the next theorem,
but which will be useful later on as well.

Lemma 3.49. Let X be a set, let I be an ideal on X, let x be an infinite cardinal and let
(ca : @ < K) be an Cj-decreasing sequence such that ¢, ¢ I for all a. Then there is an ultrafilter
D on X such that D D {cy : @ <k} and DNI = .

Proof. We need to show that {X \ A: A € I} U{c, : @ < k} has the finite intersection property.
Then it extends to a filter and to an ultrafilter with the desired properties. Clearly (X \ A)Ncy # 0
for any A € I and a < k. Since I is an ideal, the intersection of finitely many elements of
{X\A:AeT}isagainin {X\ A: A€ I}. Soitremains to check that (X \ A)N, cq, # 0 for
any A € I and «o; < k. Let @ = max ;. Then

ﬂ Ca; = Ca \ [(Ca \ €a;) U ... U(ca \ Ca,)] £ 1,
i=1
since ¢q \ o, € I for all i and ¢, ¢ I. Thus (X \ A) Ny ca; # 0. O

Theorem 3.50. Let a be an infinite set of regular cardinals such that |a| < min(a), let A € pcf(a).
Then th(H b)\/J<)\(b,\)) =\

Note. We use J<x(by) be ensure that we have an ideal on by. However, Jox(by) = J<a(a) N P(by)
and there is no real difference between [[bx/J<x(bx) and [ bxr/J<a(a).

Proof. Let b:=by. Let (f¢ : £ < A) be Ad-universal. Then (fe : £ < A) is <;_, (q)-increasing. Recall
that Jex(by) = J<a(a) N P(by), so that we have

fe<iovwIx = fedfiledan(a) = [feTbL fiTb]=[fe £ INbE Jr(b)
= felb<y_,w) fx b

Thus the sequence (fe [ b: § < A) is <;j_, p)-increasing. We will show that it is also cofinal in

[16/J<x(b).
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Let h € []b. Suppose h £;_, ) fe [ b for all & Then [h £ fe [ b] & J<a(b) for all £&. Furthermore
([h £ fe ID] : € < A)is Cj_,-decreasing: If £ < x, then

[ £ f TOIN TR £ fe 0] ={a€b: fe(a) > h(a) > fi()}
Claca: fyla) < fe(a)}Nb
C [fe £ fxINb € Jax(b).

So Lemma 3.49 applies and we obtain an ultrafilter on b disjoint from J.(b) and containing
[h £ fe I b] for each {. Extend it an ultrafilter D on a. Then D N Jcy(a) = @ and b € D, so
cf([Ta/D) = A. Since D 3 [h £ fe | b], any extension h of h to a function on a satisfies h >p fe,
for all £. So (f¢/D : & < A) is not cofinal in [[a/D, which contradicts the universality of the
sequence (fe : & < A). O

3.2.4 Another proof

We now present a more direct approach to show the existence of a generator for J. + over Jcy. It
is more basic and shorter than the one above, but the final step of the proof relies on the assumption
that 214! < min A.

Let A be a set of regular cardinals such that |A|* < min A.

Lemma 3.51. Let I be an ideal on A, let A be a regular cardinal and let (f; : i < A) be a sequence
in J] A such that it is <;j-increasing and <;-unbounded in [[ A/I. Then there exists a sequence
(by : vy < A) in P(A) and a function g € [] A such that

1. by ¢ 1,

2. by Cy_, by for v <o/,

3. (fi I by : @ < ) is increasing and cofinal in [] b, /1, for all v,

4. (fi i < X)is bounded by ¢ in [TA/(I+{by : v < A}). I+{by : v < A} is the ideal generated

by TU{by : vy < A}

We postpone the proof of this lemma to the end of this section.

Corollary 3.52. Let I be an ideal on A such that [[ A/ is A-directed, let D be an ultrafilter
on A such that TN D = () and assume A\ = cf(J[[ A/D). Then there exists a b € D such that

tef(TTb/(1 1 b)) = A.

Proof. Let (f; : i < A) be increasing and cofinal in [] A/D. Recursively define f/ € [[ A for i < A
by
L fo = fo,
2. f; is an upper bound in [[ A/I for {f : j < i} U{f;}, which exists by the A-directedness of
ITA/I.
Then (f! : i < \) is <s-increasing and <p-increasing. Since f; <; f/, thus f; <p f/, the sequence
is still cofinal in [[ A/D, hence can not have an upper bound. Thus the sequence is unbounded in
[T A/I as well, since any bound in [] A/I would also be a bound in [T A/D. Solet (by : v < A) and
g be as in Lemma 3.51. If DN (I+{b, : v < A}) = 0, then g would be an upper bound for (f; : i < \)
in [TA/D. So there exists a d € D, x € I and 7, ...,7, < A such that d C 2 Ub,, U...Ub,, . Since
(by : v < A) is Cj_,-increasing, this reduces to d C 2’ Ub,, for some 2’ € I and some v < A. Since
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DnNI =40, it follows that by, € D. Since (f; | by : i < A) is increasing and cofinal in []b, /I, we
have tcf([[b,/1) = A. O

Corollary 3.53. Let I be a proper ideal on A such that if D is an ultrafilter on A and DN T = 0,
then cf(J] A/D) = A. Then tcf(J]A/I) = A

Proof. We have Joy C I: If b€ J.y\ I, let D be an ultrafilter on A such that b € D and DNIT = 0,
then cf(J[] A/D) < A, which contradicts the assumption that cf(J[ A/D) = A. It follows that [ A/I
is A-directed, since [[ A/J<y is A-directed. Let I’ :={B C A: B€ I or [B ¢ I and tcf(J[ B/(I |
B)) = AJ}. Then I’ is an ideal:
1. I' C P(A), B eI,
2. If X,Y € I, then
(a) U X, Y el then XUY eI, so XUY eI,
(b) X,Y ¢ I and tcf(J[X/(I | X)) = tef(JI[Y/(I [Y)) = A, so tef([[(Y U X)/(I | (YU
X)) =Xand X UY ¢ I, hence XUY € I,
(c) without loss of generality X € I, Y ¢ I and tcf(J[Y/(I [Y)) = A, so tef([[(XUY) /(I |
(XUY))=dand XUY ¢I,so XUY €T,
3.IfXel'andY C X, then
(a) Xel,soYel,soYel,
(b) tef([TX/(I 1 X) =X, so
i.Yel,soYel,
ii. YéIsotef(JIY/(T 1Y) =tef(J[X/(I ] X)) =N s0Y €.
Only cases 2.(b), 2.(c) and 3.(b)ii. are non-trivial, and require a bit of thought about how we could
manipulate the true cofinal sequences.

If I' # P(A), then any ultrafilter D on A such that DNI" = () satisfies DNI = @ so cf(J[ A/D) = A.
Therefore there exists a b € D such that tcf(J[b/I) = X by Corollary 3.52. So DNI' # 0, a
contradiction. So I’ = P(A) and thus tcf([] A/I) = A. O

Corollary 3.54. Suppose b € Joy+(a) \ Jea(a). Then tcf(J]d/J<A(b)) = A

Proof. Consider I := J.) + (A\ D). For any ultrafiler D on A such that D NI = @, we have
DN Jcy =0, thus cf([[ A/D) £ X\. Furhermore, D Z (A \b), hence D 3 b, so cf(J[[ A/D) < A*. So
cf(J[TA/D) = A. By Corollary 3.53 tcf([[A/I) = A. But [[b/J<x(b) 2 [[A/I, so we are done. O

Theorem 3.55. If 2|4l < min A, then J_+ is generated over J_, by a single set, for any .

Proof. The proof completely relies on the assumption and Lemma 3.56 below. We have J.y+ C
Joar and [Joy+| < |P(A)| = 2/41 < min A < A, so by lemma 3.56 there exists a b € J»+ such that
cCy_,bforallce Joy+. Thus Joy +b = Joy+. O

Lemma 3.56. Let i < A be cardinals and let {b, : @ < pu} C J. +. Then there exists a b € J+
such that b, C;_, b for all a.

Proof. Without loss of generality {b, : @ < pu} C Jox+ \ Jex. By Corollary 3.54 tcf([[ ba/J<r) = A
for all a.. Let (ff :4 < A) in [[ A such that (ff | by : 4 < A) is increasing and cofinal in [] by /J<x.
Let (ff : i < A) such that {f{* : o < p}U{fS :j < i} is bounded by f/ in [[A/J<x (use the
A-directedness of [[ A/J<x). Since (f& [ by : ¢ < A) is not bounded in [] ba/J<y, it follows that
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(ff* 14 < A) is not bounded in [[A/J<x. Thus (f} : i < A) is not bounded in [[A/Jx. Thus let
(cy 17 < A) and g be as in Lemma 3.51.

Assume for now the following claim: For all o < 4 exists v, < A such that b, Cy_, c,,. Since
< A, let v < X such that v, <+ for all a. Then by, Cy_, cy for all a.

We have ¢, € Joy+: Let D be an ultrafilter on A such that ¢, € D. If DN Jcy # (0 then
cf([TA/D) < A if DN Jex = 0, then tcf([[¢y/J<r) = cf([[cy/D). But by definition of ¢,
(ff T'cy:i<A)isincreasing and cofinal in [[ ¢y /Jcx. So XA = tef([] ey /J<r) = cf([] ¢4/D). Thus
in both cases cf(J] A/D) < X hence ¢, € Jcy+.

It remains to show that for all a < p exists v, < A such that b, C;_, ¢,,. Suppose not. Let o be
such that b, \ ¢, ¢ J<y for all 7. By Lemma 3.49, let D be an ultrafilter such that D > (bs \ ¢y)
for all v and DN Jcy = 0. Then cf([]A/D) £ A. Since (f& | by : 7 < A) is cofinal in []ba/J<n,
sois (ff [ bq 14 < A). Since by, € D and DN Jcy =0, (fF 14 < A) is cofinal in [[ A/D. But this
contradicts that (f;* : 4 < A) is bounded by g in [[A/(Jcx + {cy 17 < A}). O

Proof of Lemma 3.51. First note that we must have A > min A otherwise o — sup, ., fi(a) would
be an upper bound in [JA for (f; : i < A). Assume the theorem is false. Recursively define
Ja € [T A for a < |A|T as follows:
1. Let go € [[ 4 be arbitrary.
2. Let go(z) == supg., gs(r) when « is limit, for all z € A.
3. Given gq, define b := [g < fi] for all i < X\. For some minimal i, b3 ¢ I since (f; :i < \)
is unbounded in [[ A/I. For i < A, let

— b, if i > g,
DY e ifi <
i = tae

Then (b; o : ¢ < A) is a sequence in P(A) such that by ¢ I, biow C1 bj o when ¢ < j since
(fi +1 < A)isincreasing in [[A/T and (f; : ¢ < A) is bounded by go in [TA/(I4+{bi.o : 1 < A}).
Since we assumed the lemma is false, there exists a 7o > i such that (f; [ by, o 7 < A) is

not cofinal in [ by, o/I. So let hq € [T A be such that hq [ by, o £1 fi | by, ,a for all i. So
[ha > fi] N by, o ¢ I. Let got1 := max(ga, ha)-
Now we have the map |A|"™ — X given by a + 7, and A > min A > |A|™, so let v < X be such that
Yo <y for all o and consider (b5 : a < |A|*). We have

bﬁ =[ga < f“/} 2 [gat1 < fv] = b?“
for all . We have [hy > fi]Nby o ¢ I for all 4, in particular for i = v; let € by o = b5 = [ga < f5]

be such that ho(x) > fy(z). Then z € bg but 2 ¢ b2, So b2 D b3+ So (b% : a < |A|") is a
strictly decreasing sequence of subsets of A of length |A|*, which is impossible. O
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4 Model theory

Model theory is a field of study in mathematics and logic. The first model theoretic work was done
in the first half of the twentieth century, by Skolem, Lowenheim, Gédel and Tarski. Model Theory
formalizes the idea that by assuming some basic rules (the axioms) we can look for a universe (a
model) where the axioms are satisfied. To formulate the axioms we need a language, and it is
standard to assume that every language contains a symbol = for is equal to. The language of set
theory also contains a symbol € for is element of. An example of an axiom of set theory is that if
two sets contain exactly the same elements, then they are equal. To check whether a model satisfies
an axiom we need an interpretation of the language in the model. By the theorems of Skolem and
Lowenheim it turns out that the cardinality of a model is not determined by the axioms: As soon
as there is an infinite model satisfying the axioms, there are models of every infinite cardinality
larger than or equal to the cardinality of the language.

4.1 Basic definitions
We now rigorously build up the definitions of model theory.

Definition 4.1. A language consists of a set of constants, of a set of function symbol and of a
set of relation symbols. Each function symbol and each relation symbol is equipped with an arity,
which is a natural number. The cardinality of a language is the sum of the cardinalities of the set
of constants, set of function symbols and set of relation symbols. The language of set theory has
no constant, no function symbols and one binary relation symbol €.

We denote a language as L = (Cp,, Fr, Ry) and its cardinality as |L| = |CL| + |F| + |RL|, and the
language of set theory is Lge, = (0,0,{€}).

From a language we can form terms and formulas. We can perform substitutions in both terms
and formulas, and terms and formulas may be closed.

To form terms and formulas we need auxiliary symbols:

1. Variables: Once and for all we fix a countable set V' of variables.
2. Logical symbols: =, V, = and 3.
3. Symbols for notation: (, ) and ,.

Terms and formulas will be certain finite sequences in S ;== Cr, UFL, UR, UV U{=,Vv,~,3,(,),, }.
Let &* denote the set of finite sequences of S. An element of §* is a function f : n — S for some
natural number n, but form now on we will denote such a sequence simply by writing its image

elements from left to right: f(0)f(1)f(2)...f(n —1).

Definition 4.2. The set of L-terms is the smallest subset of §* that satisfies the following:

1. If ¢ is a constant, then c¢ is a term.
2. If z is a variable, then z is a term.
3. If ty,...,t, are terms and f is a function symbol of arity n, then f(¢1,...,t,) is a term.

Note that in Definition 4.2.1. we first mean ¢ as a constant, and then ¢ as the sequence f:1 — S

given by f(0) = ¢. Something similar holds in 4.2.2. Furthermore, any intersection of a collection
of sets satisfying 1.-3. again satisfies 1.-3., so there indeed exists a smallest subset.
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Definition 4.3. The set of L-formulas is the smallest subset of S* that satisfies the following:

If t; and to are terms, then ¢; = ¢ is a formula.

If ¢4,...,t, are terms and R is a relation symbol of arity n, then R(t1,...,t,) is a formula.
If ¢ is a formula, then —(¢) is a formula.

If ¢1 and ¢9 are formulas, then (¢1) V (¢2) is a formula.

If ¢ is a formula and z is a variable, then Jz(¢) is a formula.

CU =

Now that we have defined terms and formulas, we define substitution.

Definition 4.4. Let t and s be terms and let = be a variable. We recursively define the substitution
of x by s in t, and denote this as t[s/z], as follows:

1. If t = ¢, then t[s/x] = t.

2. If t = z, then t[s/x] = s. If t =y and y # x, then t[s/z] = t.

3. It = f(t1,....tn) then t[s/x] = f(t1[s/x], ..., tn[s/x]).

Informally then a substitution of x by s in a term ¢ is just replacing every x in t by s.

Definition 4.5. Let ¢ be a formula, let ¢ be a term and let x be a variable. Define recursively the
substitution of x by t in ¢, denoted as ¢[t/x], as follows:
1. If ¢ = {t; = ta}, then ¢[t/z] = {t1[t/x] = t2[t/x]}. (The { and } are only used to express the
beginning and end of the formula.)
If ¢ = R(t1, ..., tp), then @[t/x] = R(t1[t/x], ..., tn[t/x]).
If ¢ = ~(), then ¢[t/x] = ~(¥[t/a]).
If ¢ = ¢1V b2, then @[t/x] = ¢1[t/x] V ¢o[t/x].
If ¢ = 3x(1)), then @[t/x] = Fz ().
If ¢ = Fy(1)) and y # x, then Blt/a] = Ty(v[t/]).

Definition 4.6. A term ¢ is closed iff t[y/x] =t for all variables y and x. A formula ¢ is closed iff
oly/x] = ¢ for all variables y and z. Closed formulas are also called sentences.

Gt D

Let z and y be distinct variables and let ¢ be a formula. Then ¢[y/z] equals ¢ except that some,
but maybe not all, 2’s are replaces by y’s. Any occurrence of x in ¢ that is still z in ¢[y/z] is called
bound; if it changes to y then the occurrence is called free. A variable is called free in ¢ if there is
a free occurrence of this variable in ¢. When ¢ is a formula, we denote by ¢(x1,...,x,) the same
formula, but indicate that its free variables are among z1, ..., x,. When ¢, .., ¢, are constants and
¢(x1,...,xy,) is a formula, then ¢(cq,...,cn) := ¢[c1/x1]...[cn/xn], that is for every i we replace all
free occurrences of x; by the constant ¢;. Clearly a closed formula is precisely a formula which has
no free variables and clearly ¢(cy, ..., ¢,) is a closed formula.

Definition 4.7. Let L be a language. A structure for L is a set M together with interpretations
for the constants, functions symbols and relation symbols of L. An interpretation of a constant is
an element of M, an interpretation of a function symbol of arity n is a function M™ — M and an
interpretation of a relation symbol of arity n is a subset of M™. The cardinality of a structure is
just the cardinality of the set M.

For a constant ¢, function symbol f and relation symbol R we now denote their respective interpre-

tations in M as ™, fM RM . Later on, we no longer indicate the difference between a symbol and
its interpretation. When M is a structure for L, we denote by Ly, the language which is L together
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with a new constant symbol for each element of M. By interpreting such a constant symbol in Ly,
as itself, we get that M is also a structure for the language L.

When there are only ‘few’ language symbols, we may write (M, ¢, d, ..., f,g,..., R, S, ...) instead of
just M to stipulate that M is a structure in this language, and not an other language. For instance
we will encounter the language of set theory with one additional function symbol h. A structure
for this language is denoted as (M, h, €), whereas a structure for just the language of set theory is
simply denoted by M.

We extend the interpretation of constants, function symbols and relation symbols to all closed
terms, by recursion:
1. If t = ¢, then t is closed and tM := M,
2. If t = x, then t is not closed.
3. Ift = f(t1,...,tn) and t is closed, then ¢; is closed for all 7, and their interpretation has already
been defined by the induction hypothesis, so we may define tM := fM M . M),

Now we define what it means for a structure to satisfy a sentence. This is done in two stages, first
for Ljs-sentences.

Definition 4.8. Let M be a structure for L. Now consider M as an Ljs-structure. We recursively
define when an Lj,-sentence ¢ is satisfied in M, and write M F ¢:

1. M Et =ty iff tM =),

2. M E R(ty, ..., t,) iff (M, ... t}) e RM.

3 MEoVY T ME¢or ME?1.

4. M E —(¢) iff not M E ¢, this is also denoted as M F ¢.

5. M E 3x(¢) iff there is some m € M such that M E ¢[m/x].

Note that if Jz(¢) is closed, then ¢[m/z] is closed as well. Note that m € M is just an element
of M, whereas the m in ¢[m/z] is in fact the sequence consisting of the constant m. When ¢ is
satisfied in M, we also say that M models ¢.

Definition 4.9. Let M be a structure for L. We recursively define when an L-sentence is satisfied
in M, and write M F ¢:

M Et =ty iff t] =),

. M E R(ty,...,t,) iff (M, ... tM) e RM.

. MEQVYIF ME@or ME1p.

. M E —(¢) iff not M E ¢, this is also denoted as M F ¢.

5. M E 3xz(¢) iff there is some m € M such that M E ¢[m/x].

Now in item 5., ¢[m/x] may not be an L-sentence any more. So for M E ¢[m/z] to make sense
we must use Definition 4.8, and indeed here we mean M as an Ljs-structure and ¢[m/z] as an
Lps-sentence. Again when ¢ is satisfied in M we say M models ¢ and write M E ¢.

W N

Since any L-sentence ¢ is also an L ,/-sentence, the expression M F ¢ is defined in two ways, namely
M as an Ljs-structure and ¢ as an Lj,-sentence, or just M as an L-structure and ¢ as an L-sentence.
Fortunately the definitions are equivalent; we can never have M FE ¢ in one interpretation of this
notation and M K ¢ is the other.

We have the following abbreviations for formulas:

1. If t1 and to are terms, t1 # to := = (t1 = t2).
2. If ¢ is a formula and x is a variable, then Vx(¢) := —(3z(—(¢))).
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3. If ¢ and v are formulas, then
(@) () A (¥) == ((=(e)) V (= ()))-
(b) (¢) = (¥) := (=(¢)) V (¥).
(©) (9) & (¥) := ((¢) = (¥) A ((¢) = ().
4. If ¢ is a formula and z is a variable then 3lx(¢) := 3x((¢) A Vy((d[y/z]) — (y = x))).

Specifically in the language of set theory we have the abbreviations: When ¢; and ¢ are terms,
then

1. t1 €ty := E(tl,tg),

2. t1 C ity = Vx((x S tl) — (l’ S tg)),

3. t1 Ciy:= (tl C tg) AN (tl 75 tz).
A theory is a set of sentences. A structure M satisfies a theory T or M is a model of T, denoted
as M ET,iff M E ¢ for all ¢ € T. Given a structure M, we write Th(M) for the set of a sentences
satisfied in M. Obviously M E Th(M) for any L-structure M.

Definition 4.10. Let L be a language and let M be a structure for L. Let X C M. Then X is
called definable iff there is a formula ¢(z) such that

ME ¢(m) & m e X,

and we say ¢ defines X. An element m € M is definable iff {m} is definable, and if ¢ defines {m}
then we also say ¢ defines m.

4.2 Elementary embeddings

As often when one defines mathematical objects, one can ask how two of these objects relate to
each other. It turs out that in model theory, not isomorphism (identical up to names of elements),
but elementary equivalence (satisfying the same sentences) is the best notion of sameness. We have
the following definitions:

Definition 4.11. Let L be a language and let M and N be structures for L. Let A: M — N be
a map. Then A is called a morphism iff

1. A(c™) = ¢V for all constants c,
2. A(fM(myq,....,mp)) = fN(A(my), ..., A(my)), for all (my,...,m,) € M™ and all function sym-

bols f,
3. if (my, ..., m,) € RM then (A(my), ..., A(m,)) € RN, for all (myq, ..., m,,) € M™ and all relation
symbols R.

Definition 4.12. Let L be a language, let M and N be structures for L and let A: M — N be a
morphism. Then A is called an embedding iff
1. A is injective,
2. if (A(my), ..., A(m,)) € RN then (m1,...,m,) € RM, for all (my,...,m,) € M™ and all relation
symbols R.

When M C N and the inclusion i : M — N is an embedding, we say that M is a substructure of N
and N is an extension of M. Note that by a renaming of elements, any embedding can be regarded
as an inclusion.
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Definition 4.13. Let L be a language, let M and N be structures for L and let A: M — N be an
embedding. Then A is called elementary iff for all L-formulas ¢(x1, ..., z,) and all my,..,m, € M,

ME ¢(my,....,mp) & N E ¢(A(my), ..., A(my)).

When an inclusion ¢ : M — N is elementary, we denote this as M < N and say that M is an
elementary substructure of N.

When a morphism A : M — N is bijective and its inverse A~! is also a morphism, then A is called
an isomorphism and M and N are called isomorphic. An isomorphism is always an elementary
embedding, but not every elementary embedding is an isomorphism. As mentioned, isomorphisms
are relatively unimportant compared to elementary embeddings.

Note that if M < N, then M contains all definable elements of N: For if ¢(x) defines some n € N,
then N E Jz(o(z) A Vy(Ply/z] — v = x))), hence M F Jz(p(x) A (Vy(¢ly/z] — y = x))), hence
M E ¢(m) A (Vy(oly/z] = y = m)) for some m € M, hence N E ¢p(m) A (Vy(oly/z] — y = m)),
but N E ¢(n), so m =n thus n € M.

4.3 The theorems of Skolem and Léowenheim

The theorems of Skolem an Lowenheim express that every infinite structure M has elementary
extensions of any cardinality larger than the cardinality of M and M has elementary substructures
of any cardinality larger than or equal to the cardinality of the language. We state the theorems
without proof. See for instance [10] for a thorough proof.

Theorem 4.14 (Upwards Skolem-Léwenheim). Let L be a language and let M be an infinite
structure for L. Let k > max(|M]|,|L|). Then there exists a structure N for L such that M < N
and |N| = k.

Theorem 4.15 (Downwards Skolem-Léwenheim). Let L be a language and let M be an infinite

structure for L. Let X C M. Then there exists a structure N for L such that X C N, N < M and
|N| < max(|X],|L|,Rg).

So if M is a structure for L and & is a cardinal such that max(Rg,|L]) < k < |M|, let X C M be of
size k. Then there is an structure N for L such than X C N, N < M and |N| < max(|X|, |L|,Ro) =
k. So |N| =k and M has a substructure of size .

In fact a proof of the upwards theorem uses the downward theorem. A proof of the downwards
theorem uses the Tarski-Vaught test for determining whether an embedding is elementary: When
an existential sentence is true in N, it is already witnessed by an element in M.

Lemma 4.16 (Tarski-Vaught test). Let L be a language, let M and N be models in L and let
A: M — N be an embedding. Then A is elementary if and only if the following holds: For every
Ly formula ¢(z) such that N E Jz(¢), we have N F ¢(m) for some m € M.

Note that in this definition we interpret the embedding A : M — N as an inclusion i : M — N, so
that the Ly/-formulas 3x(¢) and ¢(m) are also Ly-formulas.

Using the Tarski-Vaught test, we can also prove the following lemma.

Lemma 4.17. Let L be a language, let M be a structure for L, let i be an ordinal let (N; : j < 4)
be a C-chain of elementary substructures of M. Then N := i<i Nj with natural interpretations
is an L-structure and N < M as well.
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This lemma may also be seen al a consequence of the elementary system lemma, which we will not
show here. This lemma will be used implicitly in for instance Section 6 and in the proof of Theorem
8.21.

4.4 H(r)

Recall that a set x is transitive iff y € z implies y C x. Given z, recursively define zy = z,
Tp+1 = Jzn. Then trel(z) := U, _ @n, the transitive closure of x is the smallest transitive set
containing x.

nw

Definition 4.18. Let « be a cardinal. We define H(k) := {z : |trcl(z)| < x} and consider H (k) as
a model in the language of set theory.

If |trcl(x)| < & then x is hereditarily of cardinality less than k. H (k) is the set of sets hereditaliy of
cardinality less then k.

Example 4.19.

V., = H(Xo) E ZFC — Inf,
H(8) & ZFC — P for 0 > Ry,
V., = H(k) F ZFC for inaccessible k.

In the language of set theory, we can express many properties of sets by a formula. For example
we can express that

x is a subset of y,

x is transitive,

x is well-ordered by €,

x is an ordinal,

x is a successor ordinal,

x is a limit ordinal,

f is a function from a to b,

f is a injection (surjection, bijection) from a to b,
z is a cardinal number,

10. z is a successor cardinal number,
11. z is a limit cardinal number.

P NG W

©

Furthermore, all natural numbers are definable.

As an example of the strength and elegance of H(x) and model theory, we will prove the Pressing
Down Lemma by using Downwards Skolem-Lowenheim.

Theorem 4.20. Let f : w; — w; such that f(a) < « for all 0 < @ < wy. Then there exists a
stationary S C wy such that f | S is constant.

Proof. Note that [trel(f)] < Na so f € H(Ry). By Downwards Skolem-Loéwenheim there exists an
M < H(Xy) such that f € M and |M| = Ng. Since w and w; are definable in H(Xz), they belong
to M as well. Furthermore every n < w is definable in H(Rs), so we have w C M. If & € M Nwy,
the H(Xy) contains a surjection w — «, hence so does M. Since w C M, we obtain o« C H(Xy).
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Thus M Nwy is an initial segment of wy. Since |M| = Ry, we have § := M Nw; < w;. Let € := f(4).
Then € < § hence € € M. Then S := {a: f(a) = ¢} € M.” We will show that S is stationary.

Let club(z,y) be the following formula:

(VaEyHﬁGx(aeﬂ))/\<VozGy((VﬂGaEI’yex(ﬂ€7/\’y€a))%an))

The enlargement of the parentheses is just to ease the readability of the formula. Now club(x,w;)
expresses that = is club in wy. Suppose C' € M is such that M F club(C,w;). Then H(Xg) F
club(C,wy) hence C is club in wy. Now for all @ € (wy N M) exists § € C N M such that o € 5.
But wvyNn M =0and CNM = CnN4§. Sodis a limit point of C. Since C' is closed, we obtain
§ € C. Therefore HR) ECNS #P, so M ECNS #( as well. We have shown that for C € M,
if M E club(C,wy) then M £ C' NS # 0. Therefore M F VC(club(C,w;) — C NS # 0), hence
H(Rg) EVC(club(C,wy) — C NS # 0). This exactly says that S is stationary. O

"This is a standard result: We have H(X2) F Jly(a € y <> (a,€) € f), namely y = S. Since f,e € M, we
must have M F ly(a € y > (o,¢€) € f), so there is a T € M such that M F (a« € T < (a,€¢) € f). Then
HO)EF (a €T 4> (a€) € f), and thus T = S and S € M.
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5 Joénsson algebras

In this section we use model theory and H(k) to investigate the existence of Jénsson algebras.
Jénsson algebras are algebras which do not permit strict subalgebras of the same cardinality. In
the proof of Theorem 5.10 we will use Theorem 3.28, a result on pcf-theory.

5.1 Definition and characterization

Definition 5.1. Let A be a set. An algebra on A is a sequence (f, : n < w), where each f, is
a function A% — A for some a(n) < w. An algebra (f,)n<, on A is called Jénsson iff there is
no B C A with |B| = |A| such that (f,, | B)n<w is an algebra on B, or equivalently iff there is no
proper subalgebra of the same cardinality. A cardinal  is called Jénsson iff there is a Jénsson algebra
(fn)n<w on some set A with |A| = &, or equivalently iff there is a Jénsson algebra (f, : n < w) on
K.

It is more common to say that the tuple (A, (f)n<w), or even (A4, fo, f1, ..., ), is a (Jonsson) algebra.
We slightly deviate so that we can use the fact that ‘(f,)n<. is a (Jénsson) algebra on &’ is
expressable in the language of set theory, when « is definable.

When we say that (A, fo, f1,..., fx) is a (Jonsson) algebra we mean that, when choosing f; for each
l € (k,w) arbitrary, (A, (fn)n<w) is & (Jonsson) algebra.

Note that there is a Jénsson algebra on Ng: Define fy(n) =n+1 and fi(n+1) =n and f;(0) =0.
Then (Ro, fo, f1) has no proper subalgebra of size Ry.

We now turn to a model theoretic characterization of Jénsson algebras.

Theorem 5.2. Let x be a cardinal. Then the following are equivalent:

1. k is Joénsson.

2. For all regular § > x™ and all M < H(6) we have: (k € M and |M N k| = k) implies k C M.

3. For all M < H(k') we have: |M N k| =k implies k C M.

4. For some regular > k* and all M < H(6) we have: (k € M and |M N k| = k) implies
Kk C M.

Recall that H (k) is the set of sets hereditarily of cardinality less than x.

Proof. (1. = 2.) Let # > k*t be regular, let M < H(f), assume £ € M and |M N k| = k.
Let (K, (fn)n<w) be a Jénsson algebra. Then (f,)n<w € H(#). Being a J6nsson algebra on x is
expressable in the language of set theory, so there is a Jonsson algebra (g, )n<w on k in M as well.
Then (kN M, (g : (kN M)*™ — (kN M)),<w) is a subalgebra of (k, (gn : K*™ — K)p<w). But
(K, (gn)n<w) is a Jénsson algebra and |k N M| = &, so we have K N M = &, thus kK C M.

(2. = 3.) Take @ = k™. Then & is definable in H(xk™), so we have kK € M.

(3. = 4.) Automatic.

(4. = 1.) Let 6 > k™ be regular such that for all M < H(6) we have (v € M and |M N k| = k)
implies kK C M. Using Downwards Skolem-Lowenheim, let M < H () with k € M, kK C M and with
|M| = k. Add a function symbol A to the language of set theory, and let h* be such that h™ | x is
a bijection x <+ M. In fact we require that K™ (0) = 0, h | (x\ {0}) is a bijection &\ {0} <+ M \ {0}
and hM(a) = 0 for all @ € M \ k. Then (M, h, €) has no proper substructure of size |M| = &:
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Let (N,h,€) < (M,h,€) with N C M and |[N| = k (see Figure 3). By elementarity, h¥ = hM | N
and also k € N, since  is definable in M (it is the least non-zero ordinal « such that h™ () = 0).
We have M E Vy3z(h(z) = y), so N E Yy Iz(h(x) = y). So x = [(hN)L[N\{0}]| = [(NN&)\ {0}
Since N < H(#), k € N and |N N k| = k, we have k C N and thus M = hM[k] = WM [k N N] =
hN[k N N] C N, so in fact N = M.

We will now define a Jénsson algebra on M. For any formula ¢(z,x1,...,x,) in the language
{0,{h},{€}} define its Skolem-function, the function fy, : M™ — M by sending (m, ...,m,) € M"
to a witness of ¢p(x, mq,...,my,) if M E Jzd(z, m1,...,m,) and to 0 € M if M ¥ Jxg(xz,mq,...,my).
Then (M, (f¢)é a formula) is a Jonsson algebra: If N C M is a subalgebra of M such that |[N| =
|M], then (N, h,€) is a substructure of (M, h, €), since h itself is also a Skolem-function (of the
formula 2 = h(y)), thus indeed hM(n) € N for n € N. The embedding (N,h, <€) in (M,h,<)
passes the Tarski-Vaught test: If (M, h, €) F Jxg(x, ny,...,n,) for ny,...,n, € N, then (M,h,€) E
d(fs(n1,..c,nn),n1,...yny) and fo(ni,...,n,) € N. So the embedding is elementary. But (M, h, €)
has no proper substructures of size k. So N = M, and (M, (f3)s a formula) Nas no proper subalgebras
of size |[M| = k. So k is Jénsson. O

Figure 3: (M, €, h) with substructure (N, €, h), subset x and element . If |[N| = k, then N = M.

5.2 Existence results

We use this characterization very often to investigate the existence of Jénsson algebras. For example,
the existence of a Jénsson algebra on s implies the existence of a Jénsson algebra on x™:

Theorem 5.3. If x is Jénsson, then so is xT.

Proof. Let M < H(xk**) and suppose |[M N k™| = k*. Then there is some minimal a € M N k™
such that |[M Nal = k, and for all &/ € M N kT with o < o we also have |[M Na'| = k. For all
such o/, H(k*T) contains a bijection k <+ o’. Note that « is definable in H(x%T), thus k € M as
well. So M contains a bijection x <+ . The bijection k > a, together with |M N «| = k, ensures
|M Nk| = k. Since also k € M and there is a Jénsson algebra on s, we obtain x C M. But then the
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bijection x ++ o’ ensures o’ C M. Since there are cofinally many such o/ < ™, we obtain k™ C M.
Hence, kT has a Jénsson algebra. O

Since there is a Jénsson algebra on N, by this theorem we thus have that R,, has a Jénsson algebra
for each n < w.

Another sufficient condition for the existence of a Jénsson algebra is the existence of a particularly
shaped stationary set.

Definition 5.4. Let « be a cardinal, let S be stationary in x. Then S is called

1. reflecting at «, for some a < k, iff S N« is stationary in «,

2. reflecting iff it is reflecting at « for some a < k,

3. non-reflecting iff it is not reflecting, i.e. when for all a < x, SN« is not stationy in «, i.e. when
for all & < k there exists C,, C a closed unbounded in « such that C, NS = CyN(SNa) = 0.

Theorem 5.5. Let k be a regular cardinal and suppose there is a non-reflecting stationary subset
of k. Then there is a Jénsson algebra on k.

Proof. As we have shown there is a Jonsson algebra on ¥y, we assume k is uncountable. Let
M < H(x") and suppose |M N k| = k. Since H(x") contains a non-reflecting stationary subset
of k, so does M; let E € M be such. Let C := {a < & : sup(M Na) = a}. Then C is closed
unbounded in &:

1. Let 8 < & and suppose sup(C' N B) = . We have to show that 5 € C, i.e. sup(M Nsup(C' N
B)) = sup(CNB). Let a < sup(CNS). Let v € CNJ such that o < v < sup(CNP). Sincey € C
we have sup(M N~) =~. So let § € M such that o < § < . For an arbitrary a < sup(C'Npj)
we have found a § € M with o < ¢ < sup(C N B). Thus sup(M Nsup(C' N G)) > sup(C N f).
Also sup(M Nsup(C' N B)) < sup(C' N p) is evident.

2. Let 8 < k. Then IM NG| < |B] <k, s0|MN(k\P) =k Forn < w, recursively define
ap, = min((MN(k\B)\{ao, ...,an-1}) and a := lim,,_,,, @, < k; here we use that & is regular
and uncountable. Then sup(M Na) = a, so @ € C by definition, and 5 < «a.

Now, CNE C M.

If not, let & € (CNE)\M. Since |MNk| = kand [MNa| < |a| < &, let v € M be minimal with
a < v; then v < k. Since H (k™) contains a closed unbounded subset of v disjoint from E, so
does M; let C., C « be such. Note that H(xT) EVB € v38 € C,((B=p'VB e B)NB €7).
So this holds in M as well, meaning that [3,v) N C, N M is non-empty for any g € M N~.
Since « is minimal above «, such elements are < a. So C N« is unbounded in a. Since C,
is closed, this means o € Cy. But then a € C;, N E = (), a contradiction.

The theorem of Solovay says that E is the disjoint union of x many stationairy subsets. So H(xT),
and hence M, contains a sequence (Ey)a<r With B = J, ., Fo and E, stationairy, and automati-
cally non-reflecting, for all o < k. Let a < k be arbitrary. Certainly CNE, C M and CNE, # 0,
so suppose v € M N E,. Since M EV§ € E3B(6 € Es), we must have that o € M as well. So
k C M. Hence there is a Jonsson algebra on k. O

Non-reflecting stationairy subsets exist at least on successors of regular cardinals, as we will show

in Theorem 5.6. Recall from Lemma 2.25 that for regular cardinals xk and A such that Kk > A, the
set S(k,\) = {a < k: cf(a) = A} is k-stationary.
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Theorem 5.6. If x is regular, T has a non-reflecting stationairy subset.

Proof. Define S := {a < k" : cf(a) = k}. Then S C kT is stationary. To prove that S is non-
reflecting, let o < k™. Let (; : i < cf(a)) be increasing cofinal in « and such that a; = SUp,<; O
whenever 7 is a limit ordinal, and such that ;7 is a successor ordinal for all i. [To obtain such
a sequence, let (f; : i < cf(a)) be increasing cofinal in o and let a; = sup;_; 8; when i is a limit
and let ;11 = Bix1 + 1 for all i.]. Then C, := {a; : i < cf(a)} is closed unbounded in a. For any
i < cf(a), we have cf(a;11) = 1 and cf(a;) = cf(sup;; ;) < cf(i) < i < cf(a) = £ when i is a limit.
So a; & S for all 4, so C,NS = (). Since o was arbitrary, we have shown that S is non-reflecting. [J

Combining the previous two theorems, we obtain the following corollary:

Corollary 5.7. If k is regular, then kT is Jénsson.

Theorem 5.3 and Corollary 5.7 ensure that the successors of Jénsson or regular cardinals are Jénsson.
The following theorem has a more specific assumption.

Theorem 5.8 (Erdés, Hajnal, Rado). If 2¢ = k™ then there is a Jénsson algebra on ™.

Proof. We have |[kT]%| = (k1)" = (2%)® = kT. Enumerate [k7]" as (Sz : K < 8 < £T) and such
that Sg C 8. (Exercise for the reader that this is possible). Fix a € (k,x"). Enumerate [k, a) X «
as ((Bi,v:) : 1 < k). For i < k, recursively choose 6; € Sg, \ {9; : j < i}. Let f(d;,) = v;. Note
that §; € S, C 3; < a. Do this for all a € (k,xT). Then extend this to a function f : (k+)? — k™.
Then f satisfies

Va € (k,kT)VB € [k,a) VW < 36 < a(f(6,a) = v and § € Sp).

Then f is a Jénsson algebra on xT: Suppose A C s7T is such that |A] = k7. We will show
FIAX Al = k.

Let v < k1 be arbitrary. Let 8 € [k,xT) be such that Sg C A. Let o € (k,x") N A such that
B,v < a, this is possible since |A| = k*. Then there is some § < a with § € Sg and f(d,a) = v.
So f[A x A] D f[Ss x A] > v.

Thus if A is a subalgebra of (kT, f) with |A| = £, then A = kT. So indeed (k*, f) is a Jonsson
algebra. O

Under some assumptions, we can also prove that the successor of a singular cardinal is Jonsson.
These assumptions are satisfied for the successor of the first infinite singular cardinal.

Theorem 5.9. There is a Jénsson algebra on N, 1.

Proof. Let pn = X,, and let § = (2#)*. Then 6 is regular and pt = R} < 2% =20 < (20)T = ¢
sout € H(f). Solet M < H(f) and assume p* € M and |[M N u™| = pT. We need to show that
pt C M. Let a :={X,, : n < w}. Note that a € H(#) and R,, € H(f) for each n < w. Since Ry is
definable and successor cardinals of definable cardinals are definable, each X,, is definable in H (6),
so we have a C M. Also a is definable: Every infinite cardinal below (R,,)" distinct from R, is in
a and a consists entirely of such cardinals. Note that we use that (X,)" € M by assumption and
thus also N, € M. Every ultrafilter on a is an element of H(#). There is an ultrafilter D on a
such that cf([](a/D)) = RS = pt, since pcf(a) has a maximal element by Theorem 3.27 and by
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Corollary 3.29 pcf(a) is in interval of regular cardinals. So there is also such an ultrafilter D in M
and a sequence (fz : 3 < puT) € M N[]a which is increasing and cofinal in [JTa/D. We will show
that for cofinally many a € a we have |M Nal = a.

For suppose for all large o we have sup(M Na) < a. Then for these large a let g(a) = sup(M N «)
and extend g to an element in [[a. Then g/D € [Ja/D, so g <p fs for some 3 < p*, and since
IM N pt| = pt we may assume 8 € M. Then there is a large a € a such that g(a) < fz(a). But
fa(a) € M Na, contradicting g(a) = sup(M N ).

So for cofinally many « € a we have |[M N «| = a. Since for all @ € a there is a Jénsson algebra
on «, we have « C M for cofinally many o € a. Hence u C M. For all £ € M N [p, uT) there is a
bijection p <+ € in H(6), hence in M. Since 1 C M we obtain £ C M. Since |M Nu™| = u™, there
are cofinally many such &, hence u+ C M. Hence there is a Jénsson algebra on R, 1. O

As promised we can generalize this result.

Theorem 5.10. Let p be a singular cardinal and suppose there exists a x < p such that every
regular v € (k, ) is Jonsson. Then u™ is Jénsson.

Proof. Define
A:=min({x : K > cf(p) and if v € (k, ) is regular then v is Jonsson}.

Let 6 := (2#)*. For ¢ a formula in the language of set theory, let f, be a Skolem-function for ¢
in H(f). Let F = {F; : i < w} be the set of all compositions of the Skolem-formulas fg, that is F'
is the smallest set such that {fy : ¢ a formula} C F and if f € F is of arity n, and f1, ..., f, € F,
then f(f1,..., fn) € F as well. Here f(f1, ..., fn) denotes the function

(01171, s XLy ooy O 1y ooy O‘n,mn) — f(fl(al,lv ceny alﬂnl)’ ceny fn(an,la ceny o‘n,mn))~

Let M < (H(9),€, Fy, F1, Fa,...), where the F;’s are function symbols and their interpretation
is defined recursively, starting with the standard interpretation of the Skolem-functions. Since
pt <20 < (28)T = 0, we have p € H(0). Assume pt € M and [M Np™| = pt. We need to
show that u* C M. Since u™ € M, we have u,cf(1) € M and some increasing p-cofinal seqeunce
(i = 1 < cf(u)) € M consisting of regular cardinals. Consider a = {p; : i < cf(u)} € M. Let
D € M be an ultrafilter on a containing all the tails of (u; : ¢ < cf(u)). Then limpa = p.
Furthermore we have cf([Ja/D) > p; for all i < cf(u), hence cf([]a/D) > p, hence cf(J[Ja/D) > u
since p is singular. So either u+ = cf(J[Ja/D) or u < u™ < cf(J[]a/D). Using Theorem 3.28, let
a’ C sup(a) = p be a set of regular cardinals such that |a’| < |a| = cf(u), let D’ be an ultrafilter on
a’ such that limpsa’ = p and cf([]a’/D’) = u™. By elementarity, choose a’, D’ € M. Note that
since limpr a’ = u, we have |a’| = cf(p). We arrange that |a|, A < min(a’):

We already have ensured that |a’| < cf() < A, so we only need A < min(a’). Since limpr a’ = u we
have a” = {a €d : A <a < pu} € D' Since A € M, a”” € M. Let D" be the restriction of D’ to
a”, then D” € M. Then cf([[a”/D") = p* and limpr a” = p and |a”|, A < min(a”). So without
loss of generality we could have assumed a’ and D’ to satisfy |a’|, A < min(a’).

Let (fg/D : B < pt) € M be increasing and cofinal in [[a’/D’. Define A = {a« € M Na' :
sup(M Na) = a}.

Claim 5.11. A is cofinal in p.
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The proof of this claim follows below. So sup(A) = p. For any a € A with @ > A we have « € M
and |[M Na| = a, and « is regular and A < o < p so « is Jémsson, so &« C M. Hence p C M. Again
there are bijections p <> & in H () for all £ € [u, ut), thus in M for all € € [u, u™) N M. Combined
with the assumption |M N p™| = pT, we obtain u C M. Thus p™ is Jénsson. O

Proof of Claim 5.11. Suppose not, let sup™(A) =: i/ < u, where sup™*(A) is the strict supremum of
A. Let M’ be the closure of M Ua’ under the F;’s. Since the F;’s are closed under composition, we
have M’ = J, ., Fi[MUd']. (Of course, F; may be of arity n # 1, but then F;[M Ua'] is supposed to
mean {F;(a) :a € (MUad)".) Ifa € a’ "M N[y, pn), then sup(MNa) < a. For any o € o’ and any
finite S C M, since |a/| < min(a’) < o and « is regular, we have that F;[SUa’|Na is bounded by some
ag,; < a and by elementarity we may assume «g; € M. Also each x € M’ is in F;[S U '] for some
finite S C M and some ¢ < w. Hence sup(M’' Na) < sup(ag,; : S C M finite, i < w) < sup(M Na),
for any a € o/. Thus if « € &’ N M N [/, ), then sup(M' Na) < a.

Claim 5.12. There is some p € [p/, ) such that any 8 € o’ N [, ) satisfies sup(M’' N B) < 3.

Proof. Suppose not, then for any u” € [p',u) there is a 8 € o’ N [y, p) with sup(M’' N B) = 8.
Since A < min(a’), 8 € a’ is regular and o’ C p, we have A < 8 < p and thus there is a Jénsson
algebra on . Since M’ < H(9), |M' NG| = and g € M’, we obtain § C M’. So u C M’'. Now
Mnad C "

If there exists « € o’ N M N [p/, 1), then « C pu € M’, then sup(M’ Na) = supa = « and on the
other hand sup(M’ Na) < a as shown above. Contradiction, so M Na’ C p/'.

Recall that o’ € M. Since H(0) F Jz(x € a'), we have M F Jz(x € a/), so M Na' #0. Sou' #0
and thus A # . Let @ € A, ie. @« € M Na’ and sup(M Na) = a. Notice that A < a <
and « is regular, so a is Jénsson. Also |[M Na| = a and o« € M. Therefore « C M. We have
cf(p) = |a'| < min(a’) < o C M. It follows that cf(u) C M. Since we have a cofinal sequence (u; :
i < cf(u)) € M, we obtain that M Ny is cofinal in p. Since H(0) EVS € p3a € d' (B € aha € p),
by elementarity we obtain that M Na’ is cofinal in p. But since we assumed that Claim 5.12 does
not hold, A = {a € M Nd : sup(M Na) = a} is cofinal in M Na. So sup(A) = p, contradicting
that sup™(A) = p/ < p. O

We conclude that for all large o € o’ we have g(«) := sup(M’ Na) < a. Extend g so that g € []d'.
Then g/D’ € [[a’/D’ and for some 3 < u* we have g/D’ < f3/D’ and since |[M N ut| = pt we
can choose f € M C M’. In particular, there is some large a € ' C M’ for which g(a) < fa(e).
But fg(a) € M/ N and g(«) = sup(M’ N «), contradiction. O
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6 Pcf-theory applied to cardinal arithmetic

Recall Theorem 3.27, which says that pcf(a) has a maximal element. In this section we will find
conditions under which |[]a| = maxpcf(a). Note that |[]a| may be an interesting cardinal ex-
ponentiation, for instance |[Ta| = [T.,c, Rn = N5 for a = {R,, : 1 < n < w}. Also using that
|pcf(a)| < 21¢l, we find non-trivial results on cardinal exponentiation.

6.1 Calculation of max(pcf(a))
In this subsection we will prove the following theorem.

Theorem 6.1. Let A = [min(A),sup(A4)) be an interval of regular cardinals. Suppose that
(min(A))4 < sup(A). Then |[] A| = max pcf(A).

To prove this theorem, we use a weakened version of it.

Theorem 6.2. Let A = [min(A),sup(A)) be an interval of regular cardinals such that 2141 <
min(A) and (min A)4l < sup A. Then | ] A| = max pcf(A).

Proof of Theorem 6.1 assuming Theorem 6.2. Let
Ag := [min A, (min A)41] A} := ((min A)4/, sup A).

Then ] Ag < ((min A)/4N)4el = (min A)41 < min Ay, so |[[A] = |T] 4ol - [T A1| = | T] A1]. Also
2l41l < 2141 < (min A)14! < min(A;) and by Hausdorff’s formula (1) we have

(min(A;)) 11 = (((min A)4) )4 = (min(A) ) - (min(4) 4]
= min(4,;) - min(4)4l = min(4,) < sup(4,).

So Theorem 6.2 applies and yields | [ A1] = maxpcf(A;). So maxpcf(4) < [[[A] = |[T41] =
max pcf(A;) < max pef(A). O

So we focus on proving Theorem 6.2. For this we use model theory and H (), introduced in section
4.

Let A be an interval of regular cardinals such that 2/l < min(A) and (min A)/4l < sup A. Let 6 be
a large enough and regular cardinal. Recall that H (k) is the set of sets hereditarily of cardinality
less than k. We consider the structure H(6)* = (H(0), €, <*) where <* is a binary relation symbol
and its interpretation in H(0) is a well-order on H(6).

Definition 6.3. Let N < H(#)*. Then N is called nice iff
1. |N| = min(A),
2. Ac N,
3. min(A) C N,
4. There is a sequence (N; : i < |A|") such that
(a) N; < H(0)* for all i (the sequence is elementary),
(b) N; C N, whenever i < j (the sequence is a C-chain),
(¢) Ni=U,; N;j whenever i is a limit (the sequence is continuous),
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(d) N =Uciap Ni,
(e) (Nj:j<1i)eN forall i.

For any N < H(6)*, we define its characteristic function by

xn A — Ord,
a— xn(a) :=sup(N Na)

By N we denote the set of all nice elementary substructures of H(6)*. On N, we define the
equivalence relation ~ given by

N~M & XxXn=Xwum.

We now investigate some properties of nice elementary substructures N. Since A € N, we have
min A, pcf(A) € N. Since min A > 241 > |pcf(A)|, we have that H(0)*, and thus N, contains
a surjection min A — pcf(A). Since min(A) € N by assumption, we have pcf(A) C N. Since
A C pcf(A), we also have A C N. Since |A|T < 2/41 < min(A), we have |A|* C N as well. Hence
also N; € N;44 for all 4.

Since the map A — J(A) is definable in H()*, it is in each nice N. Let (bx : A < maxpcf(A4)) €
H(0)* be the <*-least element of H(#)* such that by generates J. +(A) over Jc(A) for all A <
max pcf(A) and byaxpet(a) = a. Then (by : A < maxpcf(A)) € N as well. It follows that for
X € pcf(A), since pcf(A) C N, we have Jox(A),by € N.

The following three lemmas form the proof of Theorem 6.2.

Lemma 6.4. Every z € H()* is contained in some nice N. Hence every f € [[ A is contained in
some nice V.

Lemma 6.5. Given some nice N, there are at most (max pcf(A))-many f € [[ A for which there
exists a nice M such that M ~ N and f € M.

Lemma 6.6. There are at most (max pcf(A))-many equivalence classes in N.
Proof of Theorem 6.2. By the above lemmas, we have
T A< IV/~[-sup([{f: BM: M ~ N and f € M}|: N € N)
< max(pcf(A)) - max(pcf(A)) = max(pcf(A)).
The other direction is trivial. O

Proof of Lemma 6.4. Let * € H(0)*. By Downwards Skolem-Léwenheim, let Ny be such that
{z, A} Umin(A) C Ny < H(0)* with |Ng| = min(A). Given N;, use Downwards Skolem-Léwenheim
to find NiJrl such that NZU{<N] : j < Z>} Q Ni+1 =< H(Q)* with |Ni+1‘ = mll’l(A) Let Nz = Uj<i Nj
when i is a limit. Since |A|" < min(A) and min(A) is regular, we find a continuous elementary C-
chain (N; :i < |A|*) and N := Ui<jaj+ is a nice elementary substructure of H(#)* which contains
x. O
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Proof of Lemma 6.5. Let some nice N be given. Suppose f € [[ A, M niceand f € M and M ~ N.
Since f € M, f: A — supA and A C M, it follows that f € (M Nsup A)“. By the lemma below,
M NsupA =N NsupA, hence f € (N Nsup A)?. Since

|(N Nsup A)4| = |N nsup A4 < |N|IA1 < min(A) 4! < sup A < max pef(A),
there are at most max pcf(A) such f’s. O
Lemma 6.7. Let M and N be nice and such that M ~ N. Then M Nsup A = N Nsup A.

Proof. We will prove the lemma by proving that M N A = N N A for all cardinals A such that
min A < A < sup A. We prove this by induction.
1. Base case: M Nmin A = min A = N Nmin A.
2. Successor case: Suppose M N A = N N A. We need to prove M N AT = NN At. We have
At € AC M, N. Since (sup(N; NAT) : i < |A|") is increasing and cofinal in sup(N NAT), we
have cf(sup(NNAT)) = |A|T and Ey := {sup(V;NA1) : i < |A|T} C N. Similarly define F);.
Then E := EyNExy € NNM is cofinal in sup(NNAT) = xy(AT) = xar(AT) = sup(M NAT).
So NN M is cofinal in NNAT and M NAT. Given « € NNM, o < AT, there exists f : A — «
and the <*-smallest such surjection is in both M and N. Since M N A = N N A, we find
NnNa=Mna. Since a was arbitrary and N N M is cofinal, M N AT = N N AT follows.
3. Limit case: MNA=U,,MNp=U,,NNp=MnNA
We conclude that M N A = N N A\ for all cardinals A such that min A < \ < sup A. O

Proof of Lemma 6.6. Let N be nice. For each A € pcf(A), let (f? :i < \) be the <*-least sequence
such that

(A) (f} by :i < \) is increasing and cofinal in [ by/J<x,

(B) When cf(i) = |A|*, then

fMa) = min(sup(fj‘(a) 17 €C):Cisi-club and |C] = cf(i))

for all « € A.

Such a sequence exists by Lemma 6.8. Note that this sequence is definable in H(6)* since by, J<x €
N. We define a sequence {(Ap,, pm, Am) : m < n) such that

1. A € pct(4),

2. pm < Ams

3. A C A,

4. A, € J<)\m,

5. (Am : m < n) is decreasing,

as follows, by recursion:

1. Ao := maxpcf(A), po := sup(N N Ag) and Ag := [f)0 < xn]. Clearly A € pcf(A), po < Ao,
Ao € Aand Ay = AgN by, € Jci, by Lemma 6.9.

2. Given (Am, pm, Am) and provided that A, # 0 and A,, # {min A}, define A, such that
A, € J</\:7+1 \Jrpmir- Then Api1 € pef(A), Apy1 # min A and since A, € Jy,, but A, ¢

Am
Trpsrs We have A1 < Ay Define pp, 1 := sup(N N Apq1) and A1 = [forh < xn|NAm.

Clearly ppmt1 < Am41 and A1 € A. By Lemma 6.9, | ;\,:Ljf <XN]Nbx, .,y € Jan,s,- Also

A, SUrmin bx,...- Therefore A, 1 € Joy

m41°
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Since (\,,) is stricty decreasing, it must stop at some finite n, and there 4,, = @ or A, = {min A}.
By Lemma 6.9, f,ﬁ‘m < xn for all m < n. By definition of the A,,’s, we have xy [ (A\ Ap) =

20 1 (AN Ao), xiv | (Ao \ A1) = 20 1 (Ao \ A1)y xv | (Anc1 \ An) = £ 1 (Ana \ An).
Therefore xn [ (A\ A,) = max(fg‘o",fg‘ll,..., I;\:) I (A\ 4,). Since A, =0 or A,, = {min A}, and
X~ (min A) = min A, we have that yn is completely determined by {fjoo, fg‘ll, A

Therefore

N/~ = |[{xn : N € N'}| < |{finite subsets of {(p,\) : p < X € pcf(A4)}}]

{(p.A) : p < A€ pef(A)}}]

< Z max pef(A) < 241 max pef(4) < max pef(A).
A€Epcf(A)

So indeed there are at most (max pcf(A))-many equivalence classes of nice elementary substructures
of H(9)*. O

Lemma 6.8. Let A € pcf(A). Then there exists a sequence (f; : ¢ < A) which satisfies (A) and (B).

Proof. By Theorem 3.50, tcf([Jba/J<x) = A. Solet (g; : i < A) in [] A such that (g; [ by : i < A)
is increasing and cofinal in [[by/J<x. For i@ < A, recursively define f; € [] A as follows:
1. fo = go.
2. Given f;, let fi11 = fi + 1. That is, fi11(a) = fi(a) + 1 for all a € A.
3. Suppose i is limit.
(a) If cf(i) # |A|*, consider {f; [ by : j <i}U{g; | ba}. This set has a strict upperbound in
[10x/J<x, extend this to a function f; defined on A.
(b) If cf(i) = |A|T, let

fi(a) = min(sup(f;(a) : j € C) : C club in ¢ and |C| = cf(7)).

Since |C| = cf(i) = |A|T < min A for all C' and f;(«) < « for all , we obtain f; € [T A.
We now prove that (f; : i < A) satisfies (A) and (B). (B) is trivial by definition of (f; : i < A). We
have
1. Only if cf(i) = [A|™ it is not immediately clear that f; <;_, f; forall j <. Solet cf(i) = |A|T.
For each a € A, let C,, be i-club such that |C| = |A|T and f;(a) = sup(ff‘ :j € Cy). Then
C = \aea Ca is an intersection of fewer than |i|-many i-clubsets, hence C' is an i-clubset
and f;(a) = sup(fj(a) : j € C). Soif j € C, then f; < f;. Since C' is cofinal in ¢ and (f; |
by : j < i} is <j_,-increasing (by the induction hypothesis), we obtain f; [ by <j_, fi | ba
for all j < 1.
2. There are cofinaly many 4’s in A such that cf(i) # |A|*.

So (A) is also satisfied. O

Lemma 6.9. Let A € pcf(A) \ min(A) and let p := sup(N N A). Let (f} : i < \) be the <*-least
sequence satisfying (A) and (B). Then fg‘ < xn and [f,j\ < xn]Nby € Jex.

Proof. Since (sup(N; N'A) : 4 < |A|T) is increasing and cofinal in sup(N N A) = p, we have cf(p) =
|A|T. Notice that {sup(N; N \) : i < |A|*} is p-club. For each a € A, let C, be p-club such
that |C] = [A[* and f)(a) = sup(f) : i € Cy). Then C := (N, Ca is an intersection of fewer
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than [p|-many p-clubsets, hence C is a p-clubset and f(a) = sup(f(«) : i € C) for all a. Now
C":= Cn{sup(N;NA) : i < |A|*} is again p-club, lies entirely in N and f,'(ar) = sup(f(a) : i € C)
for all a.. Since |A|* < minA C N and (f} :i < \) € N, we have f} € N for alli € NN\ and
fa) € N for all @ and i € NN So f)(«) = sup(f} () : i € C") < sup(N Na) = xn(a) for
all o, which shows the first assertion. Now consider ¢ := | f,;\ < xn] Nbx. We need to show that
¢ € Jex. For a € ¢, let 7, € N Na be such that f) (@) < 7. Then {7, : o € c}| < |A| < |A|*, s0
there is an 4 < |A|* such that v, € N; for all a. Then f[f‘ lc<xn, [cand xn, [ by <j_, fjA [ ba
for some j € N, j < A. Thus xn, [ bx <j_, ff;\ | by. Hence we must have ¢ € J. O

Note. In the above proof it would not work to simply say xn | by < f | by for some i < A, since
it would not be clear whether ¢ € N. Also it is not clear whether xn is an element of N. (xn;, is
definable since N; € N, but this does not work for N, since clearly N ¢ N.)

6.2 Corollaries

We now prove three corollaries of Theorem 6.1.
Corollary 6.10. R0 < N(anoy+-
Proof. Suppose 2% > R,,. Then R0 < (2%0)Ro = 280 < (2R0)F < Ryny)1 as wanted. So suppose
2% < R,. Let a = [N, N,). By Hausdorff’s formula (1) we have
RHO = Ry - RO =Ry - Ry - RO = Ry - Ry - 280 = max(Ry, 280) < R,

Thus min(a)l®l = RY° < R, = sup(a). Also |a|" = R = X; < Ry = min(a). Thus Theorem 6.1
applies and yields max(pcf(a)) = [[Tal = [T;<,<, Nn = Ri°. Recall that pef(a) is an interval of
regular cardinals, that a C pcf(a) and that |pef(a)| < 2/%. Therefore we have

Ngo = max(pcf(a)) < R, pet(a)+ < Nw+(2No)+ = N(2N0)+.

This result generalizes to arbitrary limit ordinals § instead of just w:

Corollary 6.11. Let § be a limit ordinal. Then N?l < Nglsly+-

Proof. The proof is a generalization of the proof of Corollary 6.10. Suppose 2!/ > Rs. Then
N?l < (2Bl = 29 < (2lPh+ < N(gis1y+ as wanted. So suppose 219 < Rs. We prove the theorem
under the assumption that ¢ is the disjoint union of 6| many d-cofinal subsets. This assumption is
made without loss of generality, since for every ordinal § there exists an ordinal ¢’ := 6 + |§] > §
which has the same cardinality as § and is the disjoint union of |4| many J-cofinal subsets. Let
a = [(21°)*,R;). By Hausdorff’s formula (1), we have

((2|5|)+)\6\ - (2\5\)+ . (2|5|>\5\ - (2\6\)+ .oldl — (2|6|)+ < Ng.
Hence min(a)!®l = ((21°h)*1)IPl < Rs = sup(a). Also |a|* < |0]T < 211 < (21)* = min(a). Thus

Theorem 6.1 applies and yields max(pcf(a)) = |[[ a| = N?‘ (in the last equality we use that ¢ is the
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disjoint union of |§|-many d-cofinal subsets). Recall that pcf(a) is an interval of regular cardinals,
that a C pef(a) and that |pcf(a)| < 2/%l. Therefore we have

) f +
Nl; | = max(pc (a)) < N(S-Q-|pcf(a)|Jr <7 N6+(2‘a‘) <7 N(m‘”) ’
]

Corollary 6.12. Let a = [min(a),sup(a)) be an interval of regular cardinals such that min(a)!®l <
sup(a). Then |[](a)| is a regular cardinal and in particular, if 2% < R,,, then R0 is regular.

Proof. By Theorem 6.1, |[[ a|] = max(pcf(a)) € pcf(a), so [[[al is a regular cardinal. As in the
proof of Corollary 6.10, X¥0 = max(pcf(a)) where a = [Nz, R,,), hence R0 is regular. O

It is consistent that N, is a strong limit cardinal and 2%« = Nytwie [2, Remark 5.3]. In this
case, let a = [Ny, 41, 8,4w). It has been shown that max(pcf(a)) < Ny 4y41. Furthermore, |[]Ja| =

Tlon o Rogn > RE0 = RICW) — 9% — R\ 1o where the penultimate equality is (5.23) in Jech.
So max(pcf(a)) # | [ al. Indeed, min(a)l®l = Ni‘h > N = 2% =N, 1,10 > Ny, = sup(a), so
min(a)!? ¢ sup(a). Note that 2/¢l = 2% < R .1 = min(a). So the assumption min(a)® < sup(a)
of Theorem 6.1 cannot be replaced by 2%l < min(a).
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7 Pcf-theory applied to cardinal arithmetic 2

7.1 Games

Let x be a cardinal such that s = k. Let f : (k7)<“ — k be a function. For each sequence
&= (& 1 n <w) € kY, we define the following two-player game G¢ of full information and with
either Player I or Player II as winner: The game consists of w rounds; for all n < w, in round n
Player I picks a x*-club subset C,, of kT, and Player II responds by picking an element o, € C,,.
Player IT wins precisely when f({ao, ..., an—1)) = &, for all n < w. By G¢((Co, ag, ..., Cn=1,an-1))
we denote the game G¢ where for all ¢ < n, in round 4, I picks C; and II picks a;.

Let C be the set of all KT-club subsets of x+.

Now a winning strategy for Player I for the game G¢ would be a function o : (k7)<¥ — C
such that any play Co,ao,Cy, a1, ... of the game G¢ where C,, = o({ag,...,an—1)) for all n < w
is winning for Player I. A winning strategy for Player I would be a function o : C<¥ — kT
such that o((Cy,...,Cp)) € C, for all (Cy,...,C,) € C<¥ and any play Cpy, ag,C1,qq,... of the
game G¢ where a,, = 0((Cy,...,Cy)) for all n < w is winning for Player II. A winning strat-
egy for Player I for the game G¢((Co,aq, ...,Cn—1,an—_1)) would be a function o : (k7)<¥ — C
such that any play Co, ag, ..., Cr—1,an—1, Ch, Qn, ... of the game G¢({Cy, ag, ..., Cn_1,an—1)) where
Cm = c({(an, ...y am—1)) for all m < w such that n < m is winning for Player I.

Lemma 7.1. Given £ € k¥, n < w and {Co, ag, -..,Cp—1,an—1) such that a; € C; for all i < n,
if there exists a C, such that for all a,, € C,, there is a winning strategy for Player I in the
game G¢({(Co, ag, ...,Cn—1,an-1,Cr, ay)), then there is a winning strategy for Player I in the game
G§(<Co, Ay eeey Cnfl, an,1>).

Proof. Let C,, be such. For a, € C,, let 0,, be a winning strategy for Player I in the game
Ge((Co, a0, ...,Cn_1,an-1,Cy, ay)). Then define

o: (kM) = C
0= Cn,

(Qny Qg 1y ooy Gme1) V> O, (Qng1y ooy G—1) (n+l<m<uw)

That is, Player I picks C,, in round n and from then on follows strategy o,,, if Player II responds with
a, in round n. Of course o is a winning strategy for Player I in the game G¢((Co, ao, ..., Cn—1, @n—1)).
O

Corollary 7.2. Given ¢ € k¥, n < w and (Cy, ag, ..., Cr—1, an—1) such that a; € C; for all i < n, if
Player I has no winning strategy in the game G¢((Co, ao, ..., Cn—1,an—1)), then for all C,, € C exists
ap € C,, such that Player I has no winning strategy in the game G¢((Co, ag, ..., Cn—1, an—1,Ch, an)).

Lemma 7.3. If Player I has no winning strategy in G¢, then Player II has.

Proof. Recursively define a function o : C<% — k™ such that if Player I has no winning strategy
in the game G¢((Co, ao, ...,Cnh—1,an-1)) and a; = o((Cy,...,C;)) for all i < n, and Player I picks
C,, in round n of that game, then o({Cy, ...,C,,—1,Cy)) = a, for some a,, such that Player I has no
winning strategy in the game G¢((Co, ag, ..., Cn—1,an—1,Chn, ay)). Then o is a winning strategy for
Player II:
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Let Co,ao,C1,a1,... be a play of the game G¢ such that a, = o((Co,...,Cy)) for all n < w.
We prove by induction on n < w that for all n < w, Player I has no winning strategy in
G5(<Co, AQy +eny On—l, an_1>) and thus f(<a,07 ceey a”_1>) = fn-
1. Player I is assumed to have no winning strategy for Ge, thus f(0) = &.
2. If f({ag,...,an—1)) = &, for some n < w and Player I has no winning strategy in the game
Ge((Co, ag, ..., Cn—1, an_1)), then Player I has no winning strategy in the game G¢({ag, ..., an—1, Cn, an))
since a, = o((Co,...,Cpn—1)). In particular, f({(ag,...,an—1,an)) = &nt+1, otherwise Player I
would win.

O

So the game G¢ is determined: There is always a player with a winning strategy. Of course Lemma
7.3 has the following logical consequence.

Corollary 7.4. If Player II has no winning strategy for the game G¢, then Player I has.

Lemma 7.5. There exists { € x* such that Player II has a winning strategy for the game Gk¢.

Proof. Suppose that for all £ € k“, Player II has no winning strategy for the game G¢. For each
£ € kY, let 0¢ be a winning strategy for Player I for the game G¢. Using Skolem-Léwenheim, let
(M, : n < w) be a C-chain of elementary substructures of H(6) such that

1. {o¢: & € k¥} C My,

2. M,, € M,,41 for all n < w,

3. |My,| =k for all n < w,

4. there is a set M of size k such that M C My and M € My. (For instance, let {o¢ : £ € kK¥} €

My.)

Since M,,, kT € M, 1, we have M,, Nx™ € M, 1. Note that M, Nk* € k: We assumed that My,
hence M,,, contains a set M of size x such that M C My C M,,. If 3 € M,, N k™, then M,, contains
a surjection M — B. Since M C M, we obtain 8 C M,. Thus M, N k™ is an initial segment of
k* and it is proper since |M,| =k < k*. So a,, := M, NKkT < kT,
Now define £ = (§, : n < w) € k¥ by &, = f({ag,...,an—1)) for all n < w. We will show that
Co, 2, C1, 0, ..., where C,, = o¢({ag,...,an—1)) for all n < w, is a play of the game G¢. But
although Player I follows strategy o, this game is won by Player II, which is a contradiction.

It remains to show that Cy, o, C1, a4, ..., where C,, = g¢({ap, ..., n—1)) for all n < w, is a play
of the game G¢. Clearly C), is a kT-club subset of k™. Since o¢, g, ...,an—1 € M,, we have
Cp = o¢({ap, ..., an—1)) € M,,. Since H() EVa € kt 38 € skt NC,, (a € B), this holds in M, as
well, yielding the following: Vo € k™ N M,, 38 € k* N C,, N M, (o € B). But since a,, = kT N M,
this says exactly that «,, is a limit point of C),, and since C), is closed, we get «,, € C,. Thus
Co, ap,C1, a1, ... is a play of the game. O

Lemma 7.6. There exists £ € k¥ and a set T C (k7)< such that when ¢ € T'N (xkT)", then
f(t) =&, (thus ‘T is &-homogeneous’) and furthermore {«a € k1 : t7{a} € T} is kT -stationary for
allt eT.

Note. By t~{a} we mean a concatenation of sequences: t~{a}; = t; for 0 < i < nand t™{a}, = a.
Also we require that T' is not empty, because otherwise the existence of T" would be trivial.
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Proof. By Lemma 7.5, let £ € x* and let ¢ be a winning strategy for Player II in the game G¢. Let
T be set of finite sequences induced by o:

T:=|J{te ()" : (HCo,...Cno1) €C™: 0((Co, ... Crm)) = Ly for all m < n}.

n<w

Since ¢ is a winning strategy for Player II, clearly T is £-homogeneous. Let t € T and let C C s
be kT-club. Let (Co,...,Cr_1) € C™ be such that o((Co,...,Cp)) = t,, for all m < n. Let
a = o((Co,...,Cp—1,C)). Then a € C and t~{a} € T. Hence CN{a € st : t7{a} € T} is
non-empty, which proves that {a € x* : ¢~ {a} € T} is k*-stationary. O

7.2 A covering lemma

Lemma 7.7. Let A be a regular cardinal and let W be a set such that |WW| < Xy. Then there
exists a set B(W,\) C [W]* such that |[B(W,\)| < |W| and for all A € [W]* exists B € B(W,\)
such that |[ANB| = A.

Thus B(W, \) is some sort of covering set for [W]* of limited size.

Proof. We prove this by induction on |W|.
1. If [W| < A, then [W]* = () and B(W, \) := () works.
2. If |[W| = A, then B(W, \) := {W} works.
3. Suppose A < |W| and the claim has been shown for all W’ such that |W’| < |W|.
(a) If |W| is regular, let W = {w; : i < |W|} be an enumeration of W. Then B({w; : j <
i}, A) exists for all ¢ < [W[, and B(W,A) := U, B({w; : j <}, A) works.
(b) If W] is singular, let W = {J,_.qus) Wi where [W;| < [W| for all i. Then B(W;, A) exists
for all 4, and B(W, A) := U, cqu) B(Wi, A) works:
i BV, \)| < [Wil, so [BOW, V)| < [17].
ii. Let @ < X be such that |[W| = R,. Then cf|W| = cf(R,) = cf(a) < a < A.
Therefore, since A is regular, any A € [W]* must satisfy |[A N W;| = \ for some
i. Hence [ANW; N B| = A for some B € B(W;,\), thus |[AN B| = X for some
B € B(W,\).

<
A

O

7.3 Main theorem

The following theorem is a generalization of Corollary 6.11.
Theorem 7.8. Let é be a limit ordinal. Then

Ngf(a) < N(|5|cf<5))+ .

The remainder of this section is devoted to the proof of this theorem.

Let p := cf(d). If 2# > Ry, then the theorem is easily proven:

RGO < (24 = 2 < [0 < Rygpu < Njgpern o
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So assume 2# < Ns;. Define a := (2#,85). Note that |a| < [§]. Define J := [a]>* \ {0} and
pef, (a) := U e 7 Pef(A).

Claim 7.9. (JoxN[a]S* : X € pef,(a)) is C-increasing.

Proof. Of course the sequence is C-increasing. If A € pcf,(a), then A € pcf(A) for some A € [a]=H,
SO J<)\ ﬂP(A) = J<A(A) C J<)\+(A) = J<)\+ ﬂP(A), SO J<)\ N [a]gu C J<)\+ N [a]gu. O

Hence |pcf), (a)| < |[a]=#| = |a]" < |d]".

Claim 7.10. pcf,(a) is an interval of regular cardinals.

Proof. We have a C pcf,(a) and N; is singular: cf(Ns) = p < 2# < Ns5. So we need to show that if
A € pef, (a) and )\ is regular such that X5 < A" < A, then \ € pcf,(a). We have cf([[ A/D) = A for
some A € [a]<* and we must have limp A < sup A = N;5. So limp A < ) < A and Theorem 3.28
yields a set of regular cardinals A" and an ultrafilter D’ on A’ such that |A’'| < |A], limp A’ = limp A
and cf([TA’/D’) = XN. Since N;s is singular and limps A" = limp A < Vs, we may assume that
A" C ¥5, and even A’ C a, because a is an interval. So A € pcf(A’) C pef,, (A). O

If follows directly from Definition 3.17 that for any cardinal x we have J C J<, < pcf,(a) C k.
Let x be minimal such that it is regular and pcfu(a) C k. Then k < N(54)+ by Claim 7.10. We
also have N5 < k: Since cf(N5) = cf(§) = p, there exists a set A C a which is cofinal in N5 and of
cardinality u. Thus A € J and pcf(A) has a maximum > Ns. Thus k > Rs. Since Ny is singular,
in fact there exists a cardinal > R; in pef, (a).

Claim 7.11. R <k -[d]".

To prove this claim we need to do some hard work. The proof is therefore postponed to the next
subsection. Now since £ < R(|5uy+ and [0[* < R j5uy+, it follows that N(C;f(a) < N(|5jm)+- So we have
proved Theorem 7.8 assuming Claim 7.11.

7.4 Proof of Claim 7.11

Suppose Claim 7.11 does not hold, so assume Rf > x and R > |§|*. We will ultimately show a
contradiction. We have |[§]* < Vs < k. So A := (|§]*)TF < Ny < k. We have M\ = ((|6|*)TT)" =
(|81%) - (J6|*)* = (J§|*) T = X\ by Hausdorff’s formula (1).

Claim 7.12. For A € J and v a cardinal, A € J.,, if and only if there is a subset F4 C [ A which
is <-cofinal in [T A and of size < v.

Proof. (<) Suppose such Fy exists and D is an ultrafilter on A. Then {f/D : f € Fa} is clearly
cofinal in [[ A/D. (=) We prove this by induction on v. If A € J,, then min(A4) < v.
1. If v = (min(A)) ", then A = {min(A)} and |[[ A] = |min A| < v so F4 =[] A works.
2. Suppose for every B € J., exists such Fg. Let A € J.,+. We may assume A ¢ J.,,
so A € Jou+ \ Jep and thus tef([]A/J<,) = v by Corollary 3.54, so let (f; : i < v) be
<j.,-increasing and cofinal. Let

Fa:={fil(A\B)Ug:i<v,0#BeP(A)NJc,g¢€ Fgp}.
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Then |Fa| < |v]-|[P(A) N J<u| - suppepiayns., |[FBl = v < v, since |[P(A) N Jc, | < 214l <

2 < min(A) < v. Also F4 is cofinal in [] A: Let f € [[ A, then f <,_, fi for some %, so

' (A\B) < fi | (A\ B) for some B € J., N P(A) and f | B < g for some g € Fp. So
f<fil(A\B)Ug€ Fa4.

3. If v is a limit cardinal, then J., = |J

J<,» and the claim holds by the induction hypothesis.
O

v'<v

Since J C Jcy, for each A € J, let Fiy C [] A be cofinal such that |F4| < k, which exist by Claim
7.12. For each A € J, |Fa| < k < R(j5p)+ < Ry and A is regular. So Lemma 7.7 applies and we
obtain sets B(Fa, \).

For all ordinals  and 3, let Z(a”) be the set of increasing sequences in o, and similarly Z(a<?)

the set of increasing sequences in a<#. For a increasing sequence 7, let oran(n) be the least ordinal

« such that ran(n) C «. Note that dom(n) is a limit ordinal precisely if oran(n) is a limit ordinal.

Let 6 be a large enough regular cardinal and let H(0)* = (H(6), €, <*) where <* is a well-order on

H(0).

Let (S; : i < k) € ([N]*)"

that for almost all 4, S;

for some N such that |

j>,\ = {AEJZAO)\

define, for av < A:

1. M, for all n € Z(A<#) which satisfy oran(n) = a,
2. fa
3. fé’A for all A € Jsa,
such that the following holds:
1. For all § € Z(\*), the sequence (M, : 1) C ) is a continuous C-chain of elementary substruc-
tures. To be precise:
(a) Mi < H(0)* for all n € Z(A<H).
(b) My =U;c, MC Us<dom) M g for all n € Z(A<#) such that dom(n) is a limit ordinal.
(Of course, by ¢ C 1 we mean C Cnand ( € X<H)
(c) It n,n™(B) € Z(A<F), then M} C M:I )
|M| = p for all n € Z(A<H).

{a, A} U S; U € M (note that |S;| < p).

ran(n) C Mj, for all n € Z(A<*) (note that [ran(n)| < p).

(ME:CCm) = (Mg B <dom(n),(fs: 8 <a)(fa:B<aAde Ty €M, foral

n € Z(A<H) such that oran(n) = o and « is a successor.

6. fi € [1(a\X) and for all p € a\ X we have fi(p) = sup(U{M;Np:n € Z(A<*) and oran(n) <
a}). Since |M}] < pand p>X> 5" >2" > pand p > X = M = [A<#|, we indeed have
falp) <p- _ _ _ , ,

7. For each A € J> we have f, 4, € Fa such that f, [ A< f, 4 and f5 4 < f; 4 forall 3 <o
Indeed, for A € Jsx and p € A, sup({f%(p)} U{fs4(p) : B < a} < p, since a < A < p. So
F4 contains a function > sup({f. | A} U {fé 4B <a}l).

For i < r and € Z(\), define My = U,y M), = Us., Mj;5. This is again an elementary
substructure of H(#)*. Note that we use the symbol 6 for an element in Z(A\*) and for a cardinal.

be a k-sequence of distinct elements in [Rs]#. We will ultimately show
; C S for some S such that |P(S)] < & (in case p > Ng), or S; C N
[N]#] < k (in case u = Rg). This is of course a contradiction. Define
= (}. Note that J # 0, so no A € J~, is empty. For i < &, recursively

U N
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It will be clear from the context which one we mean.
For A € J=, (f! 4@ <) is <-increasing. Hence {f/, 4 : & < A} has size A. So let tiy € B(Fa,\)

«

be such that ty N {f, 4 : @ < A} has size \. Enumerate each t’y as {g, , : @ < A} such that if

th, = ti‘, then ¢, and t% have equal enumeration. Define
Ch ={B<XA:[Va<BICE(aB): (fia=9ca)}
NB<A:Va<B:(3<Agha<fia)= (3E<B(gha<fia)}
Claim 7.13. For all i < x and A € J>», CY is A-club.

Proof. Let i < k and A € J~). We will show that both X := {f < A: Va < 3, ¢ € (o, B) :
(fea =9} and Y := {8 <A : [Var < B: (36 < Mga,a < fe,a)) = (36 < Blga,a < fe a))]} are
A-club.

X is A-unbounded: Let vy < A be arbitrary. We define v, < A for n < w: Given ~,, let &,,(, €
(Yn, A) be such that fi , = gf 4. This is possible since there are ty N {f} 4 : @ < A} has size \.
Given &,,(n < A, let vp41 := max(&,, Yn). Let 8 :=sup, ., 7. Since X is uncountable regular, we
have 8 < A, and clearly v < . Also it is easy to see that § € X.

X is A-closed: Let 8 < X be arbitrary and suppose sup(X N 3) = 5. Let a <  be arbitrary.
Then o < B’ for some 8’ € X N B. So there exist &,¢ € («, ") such that féA = géA. But then
&, Ce(a,B). SopeX.

Y is A-unbounded: Let 79 < A. Define the map A — A by a — &,, where £, is the minimal £ such
that gg)A < féA. Of course such £ does not necessarily exists, in which case we take £, = 0. We
define v,, < A for n < w: Given ~,, let M, := {&, : @ < v,}. Given M, let vy,41 := sup M,,. Since
A is regular and |[M,,| < A, we have v,41 < A. Let S := sup,,,, vn. Since A is uncountable and
regular, we have 8 < A. Clearly 7o < B. It is easy to verify that g € X.

Y is A-closed: Let 8 < A be arbitrary and suppose sup(Y N 3) = 3. Let aw < 8 be arbitrary. Then
a < (' for some 8/ € Y NB. Soif gé,A < fg’A for some & < )\, then it is possible to choose £ < .
But then £ < 8. Thus B € Y. Hence Cy = X NY is A-club. O

For i < k, define C* := 4 7, C4. Since A > [0 = |T| > |T>a], C* is A-club as well.

We now have to consider two cases: We have y > Ng or p = Ry. These will be considered in the
following two paragraphs.

7.4.1 The case > Ny

Assume p > Wy. Since u < A, for each i < k, let 8; € C* be such that cf(3;) = u. Consider the
following maps, for any A € J~, 8 < X and 6 € Z(\*):

kK = A K — VSY .n—>B(FA,)\).I~€—>FA./$—>j
i o= B i (Mina)\X T i e thy i fha 00— MENA
Note that each domain has cardinality less than x: A < &, |Tsa] < |T| < |0]F < A, |B(Fa, )| <
|Pal < k. Sowelet I Ck, B <A A€ Jsy, 0 € Z(A) such that oran(f) = 3, t € B(Fa, ) and
f € Fj such that |I| = k, and 8; = 8, (M{Na)\ A = A, t}y =t and f[iﬂ,A = fforallie I, and
M(; N A is independent of z" € I. Define t, := {gé’A : B < a}; this is independent of i € I since
tY =t for all 4, thus each t', has the same enumeration.
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Claim 7.14. fé [ A is independent of i € I.

Proof. Let p € A be arbitrary. We have the following equalities, which will be justified below:

W N

Fip) = sup(_{Mi np:y € Z(A<") and oran(y) < A})
2 sup(sup( LJ{MZ Np:n€I(AH") and oran(n) < a}):a < B)
= sup(fa(p) s a < B)
= sup(fi,4(p) @ < )
2 sup(g(p) : g € tp, g < fi, 4 for some a < 3)
& sup(g(p) : g € t3,9 < f).

By definition.

Since cf(8) = p, any n € Z(A<*) does not have oran(n) = 3.

By definition.

(<) fi1 A< fi o forall a < 5 (>) Consider fi a(p) for some a < . Recall that
oran(f) = 3, and that peAC M = U,co M, Thus let ¢ < p be such that a < 6(§) and

p € Mg,y Then (f, 4 :a/ <oran(f | §+1) =0(§)+1,A" € J>g) € My, by definition.
Therefore

Loalp) <sup(fis ar(p): o/ <0(&) +1,A" € Tog) <sup(Mgei1 Np) < fogera(0)-

. (>)g < fzi,A for some o < 3. (<) Let a < B. We have 3 € C* thus 8 € CY%, thus let

§,¢ € (, B) be such that fi , = g¢ 4. Then g:= g , satisfies g < f7, 4 for some o/ < 8 (for
instance o/ = £ + 1), and f, 4(p) < f¢ a(p) = 9(p).

S (2) It g < fl 4, then g < ff 4 = f. (<) As g € tg, we have g = g/, , for some o < 3. Since

BeCy andg:géyA<f=fé7A let§<5suchthatg:gg7A<féA.

The last expression is independent of 7 € I. O

Claim 7.15. For p € A we have f}(p) = sup(M; N p).

Proof. Let p € A be arbitrary. We have

since
1.

Fi(p) = sup(_{Mi N p:n € Z(A<") and oran(y) < A})
= SUP(U{Mérg Np:&<pu})
Z sup(M; N p),

By definition of f3(p)

2. (>) Clear. (<) Let n € Z(A<#) such that oran(n) < . Since c¢f(3) = p, we have oran(n) < .

So let & < p be such that p € My, and oran(n) < 6(£). Since also (f;, : o < oran(f |
§+1)=0() +1),0(8) € Mgy, we have sup(M; N p) < fi)(p) € M1 N p by definition
of fé(g) (p),
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3. By definition of M.

Claim 7.16. For p < N, Mg N p is independent of i € I.

Proof. We prove this by induction on p. We already have Mg N\ is independent of i € I. Thus for
p < X there is nothing to be done. If p is limit and for all p’ < p, M} N p’ is independent of i € I,
then M Np= Up,<p M} N p is independent of i € I. Suppose p > A and M} N p is independent of
p. If for all ig,i € I, M{° N pT = M} N p*, then we are done. So let ig € I and o € M° N p* \ p.
Then |a| = p, so p,pt € M°. Foralli € I, (MjNa)\ A= A, soany i € I has pt € M}, hence
p € M. For any i € I, (sup(Mg,, NpT) : a < p) is continuous and cofinal in sup(M; N pT). So
for all i € I, {sup(My,, Np™):a <pu} € MjNpTis club in sup(Mg N pt) = f4(p™) (Claim 7.15),
and thus cf(f5(p*)) = p. Note that sup(Mg N p*) = fi(p) is independent of i € I by Claim 7.14.
So K := {sup(Mg?a Npt)ra < p}n{sup(Mg,, Np*) : o < p} C M N Mjnpt is cofinal in
M;O N pt and in M} N pT. For a € K, let h be the <*-least bijection p > « in H(6)*. Then
MiNna = h[MjNp] =h[MNp| = Mo N o for all i. Since K is cofinal in both M N pt and
M N p*, we obtain M Npt = Mjnpt. O

So define S := MgiﬂN(;. For each i € I, S; C Mé - Mg and S; C Ns, 80 5; CS. So{S;:i¢€
I} C P(S). But this contradicts |P(S)| < 2* < N5 < k. So Claim 7.11 is now shown under the
assumption that g > RNg.

7.4.2 Case p =1V

Assume p = RNg. Since (|§|*)T < A, for each i < k, let 8; € C? be such that cf(3;) = (]6|*)T.
Consider the map k — X given by i — f;; let I C k and § < A be such that |I| = k and 5; = 8
for all i € I. Let C C 8 be f-club and such that |C|] = (]6]*)*. Note that (|6]*)* = |§]* and
[a]=#] = a|* < |6]*. Forie I,let f: C<“ — [a]=* be given by 1 +— (M, Na)\ Xif  is increasing
and n — ( if 1 is not increasing. Then Lemma 7.6 applies and yields a nonempty 7% C C<% and a
sequence (A% :n < w) in [a]S* such that fi(n) = A% for alln € T°N " and {a € C : ™ {a} € T}
is C-stationary for all € T". Since there must be increasing sequences of every length in T, we in
fact have that A%, = f(n) = (M} Na)\ A for such sequences. Since (M Na)\ X # 0, we in fact have
that every sequence in T is increasing. Consider the map I — ([a]<#)%0 given by i + (A% 1 n < w).
Since |I| = & and |([a]S#)¥| = (Ja|*)Y° = |a|* < 6* < X < K, thin out® I an let (A, : n < w) such
that (A% :n <w) = (A, :n<w)foralliecl.

Let A:=J,., An € [a]5#\ {0}. Consider the maps

I = B(FgAN I — Fyp
i t% A f”z‘

Since |B(Fy3)| < |F4| < & = |I], thin out I again and let t € B(F5) and f € Fy be such that
;,Z = f and t’j =t for all i € I. Recall that we enumerated t = tiz = {g;’Z 2B < A} let
to = {g;,ﬁ 1B < al.

8This means that we take a J C I with the desired property and such that |J| = |I| = s, and we rename I = J.
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Claim 7.17. fé | A is independent of i.

Proof. Given i € I, let § € 5% be such that § [ n € T° N 3" for all n < w. This is possible since
{a : n™{a} € T'} is stationary for all € T®. The proof is now the same as the proof of Claim
7.14. O

Let f = fi | A. For all p € A, we have f(p) = f}(p) = sup,g fL(p).

Claim 7.18. For any i, for p € A, (fi(p) : @ < B) is eventually increasing. Hence cf(fé(p)) = cf(B).

Proof. Fix some i. Let n < w be such that p € A,,. There is ann € T*NA", and A, = (M}, Na)\ \.
We will show that (fi(p) : n(n —1) < a < ) is increasing.

Let n(n —1) < oy < ag < . We have <Méﬁ{al}rk tk<n)e Méﬁ{al}, n e Mff{al} (since n < w
is definable), so My € M;_ .+, and a,A € M, , s0 Ay = (MyNa)\ A e M, .. Also
ran(n~{ea}) € My, y. 80 a1 € My v And (fy 4 ra<ar+1,A€ Ton) € My, 4. So
fora, € My~ Since p € Ay = (MyNa)\XC M, , weobtain f3, 4 (p) € M, . So
we have

Fo (p) < fhy a, (p) S sUp(M— (013 N p) < a1 (p) < fly (p)-

O

For p € A, let C, C f(p) be f(p)-club and such that |C,| = cf(8). By Downwards Skolem-
Lowenheim, let N be such that |[N| = A and

AurulJc, cN<H©O)"
pEA

Since |A] < p =Yg and |C,| = cf(8) < B < A, this is possible.
Fix i € I. We will show that S; C N.

Claim 7.19. For all n € T°N 3" and p € A,, exists o < 3 such that p\sup(M,é Np) ONOM:‘]“{Q}
is non-empty.

Proof. Since {fi(p) : & < B} and C, are club in fj(p), and cf(f5(p)) = cf(8) = (|6]*)F, we have
{falp) :a < BINC, isclubin f5(p), and {a < B : fi(p) € C,} is B-club. Alsosup(M;Np) < S, since
|Mp| = p. So there exists an o < 8 such that f,(p) € C,, sup(M; N p) < f5(p) and n~{a} € T".
Then clearly f,(p) € p\sup(M; N p)N N. Since (f; : v < oran(n™{a}) = a+1) € My oy
peA, = (M Na)\\C MéA{a} and « € ran(n~{a}) C Mflﬁ{a}, we have fi(p) € Mf]ﬁ{a}. O

Observe that if p \ sup(M} N p) NN N Mflﬁ{a} is non-empty and ¢ C n and n~{a} C (’, then
p \ sup(M} N p) N N N M¢, is non-empty as well.

Let ¢ € TP N ™ and n € T* N B™ such that ¢ € 5. Then 4, = (MZﬁa)\/\g (Mzﬂa)\)\zAm.
So (A4, : n < w) is C-increasing.
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From these two observations and Claim 7.19 it follows that there is a sequence (1, : n < w) such
that if n < m then n,, C 1y, for all n we have 7, € T'N B and if p € A,,, then there exists m > n
such that p\ sup(M;, Np)) N M) NN is non-empty.

77'"/
Let 6 = U, ., € 8, then Mg =, ., M, and A= (Mjna)\\

n<w

Claim 7.20. For all p € A we have that M] N N N p is cofinal in M} N p.

Proof. Let p € Ag. Let ¢ € M} N p, then o € M,?n N p for some n. Then p € Ay ax(k,n) and
o€ M ... Forsomem >max(k,n) we have p\sup(M; . ~Np)NM,; NN is non-empty.

So there exists a 7 > o, 7 € Mj NN N p. O

Claim 7.21. We have Mei NNs C N NN,

Proof. We prove this by induction on all cardinals p < Ns. For p < A this is trivial since A C N, so
MiNACX=NnA If pis a limit cardinal, this follows easily from the induction hypothesis. So
suppose Rs > p > A and MjNp C NNp. We will show MjNp*t C NNp*t. Suppose a € Min(p™\p).
Then |a] = p € M}, so p* € (MiNna)\ X = A. By Claim 7.20, let 8 € M, N N N pT be such
that o < 8. Then |3| = p € M N N. So the <*-least bijection h : p <+ 8 is in M} and in N by
elementarity. So M} N B = h[MjNp] Ch[NNp]=NnpS. So MjnaC NNBCNNp". Since a
was arbitrary, we have M, N pt C N npT. O

Since S; C M(}) C Mg and S; C N5, we have S; C MgﬂN(; C NNYNg,s0.5; CN.
Now |[N]#] = A =X < k= |{S; : i € I}|. This contradicts S; C N for all i € I.
So Claim 7.11 is now shown under the assumption that p = Ry.
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8 Shelah’s bound on R

In this section we will prove Shelah’s renowned and surprising bound R¥0 < R, , assuming 2% < .

8.1 First essential lemma

In this subsection we let A be a singular cardinal of uncountable cofinality, i.e. A > cf(\) > w.

Lemma 8.1. There exists a A-cofinal closed set C' C [cf(\), A) of order type cf(\) consisting of
singular cardinals.

Proof. Let (\; : i < cf(\)) be increasing and cofinal in A. For ¢ < cf()) define p; < A by

1. po = cf(N),
2. pip1 = limp <, p™™ where g := max(u;, A;),
3. ;= limj; py if 4 is limit.

Then (u; : i < cf(A\)) is increasing, cofinal in A, and A, is singular for all i. O

For any set of cardinals A and any natural number n, let AT™ := {A\T" : A € A} and let A™" :=
A At e A}

Let C be a A-cofinal closed subset of [cf(A), ) consisting of singular cardinals as in Lemma 8.1.
Define ¢ := Uy <jcq, CtF. Then c is an infinite set of regular cardinals, so pcf-theory comes into
play. For all cardinals p, we have a generator b, (c) of J.,+(c) over J,(c). If p ¢ pcf(c), then
bu(c) = 0. In particular, we have generators by+x(c) for all 1 <k < w.

The remainder of this subsection will be the proof of the following theorem.

Theorem 8.2. For any 1 < n < w we have that {p € C : p™ € |J; <<, ba+x(c)} has a subset
which is A-club. -

Assume the theorem is false and let n be minimal such that {p € C' : p™ € B} contains no A-club
subset, where B := |J, <., ba+x(c). Define a = C*" and

I:={ACa:{p(e C):pt™ € A} is not stationary in A}
={ACa:A"(NC) is not stationary in A}.

‘e C" and ‘NC” are in brackets because they are automatically satisfied.

Then I is easily shown to be a proper ideal on a. By assumption, {p € C: p™ € B} = {p e C :
p™™ € (BNa)} contains no A-club subset. So any A-club subset D of X satisfies D™ Na\ B # 0,
so a\ B ¢ I. On the other hand, subsets of a which are bounded below X are in I. If A € J.y(a),
then pcf(A4) C A. Since pcf(A4) has a maximum, we have in fact that pcf(A), and thus A itself, is
bounded below A. Thus Jcy(a) C 1.

Note that B generates J.y+n+1(c) over Joy+(c) = J<a(c) and that BNa generates J.y+n+1(a) over
Joat+(a) = Jea(a). (For instance, use the third characterization in Definition 3.42).

Let I* = I+ (BNa), then I* is still proper (since a\ B ¢ I, so a ¢ I*). Since I D J.(a), we have
I* D Joy+n+1(a). By Theorem 3.20 we therefore have that [Ja/I* is AT"*l-directed.

As in Definition 3.33 let (Cpg : 8 < A™") be a silly square sequence, i.e.
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Cs C P(B),

|CB| < )‘—HL?

Cs contains a closed S-unbounded set of order type cf(5),

E e Cpg, v < fimplies EN~y € C.

We will define an <;«-increasing sequence (f, : @ < AT} in [Ja. Let fy € [] a be arbitrary. Given
(fy : v < B) for some B < AT let h € [[a be such that f, <;« h for all v < j, this is possible
since [Ta/I* is AT !-directed. For E € Cs and « € a, let

N

(0) = {h(a), if o < ot(E),
Ip\%) = max(h(a),sup,cp fr (@), if a > ot(E).

Then g5 (a) < a, hence ¢g& € [Ja. Since |Cg| < A*™ and [[a/I* is At 1-directed, let f5 € [[a
be an <j«-upper bound for {gfJ 1 E e Cg}.

Lemma 8.3. Let D be any ultrafilter such that D N I* = (). Then there are no < A and S, C «
for each a € a such that |S,| < p and [],., Sa/D cofinally cuts (f,/D : o < AT™).

aca

Proof. Suppose not, let S, C a be such that [],., Sa/D cofinally cuts (fo/D : o < A™™) and
such that |S,| < p for some g < A. Assume that g < |a|, this is without loss of generality
since |a| = cf(A\) < A. Given any § < A", there is a k € [],c, So and #/ < A*" such that
fs <p k <p fgr. So there exists a AT"-club set B C A™" such that for all 3,3’ € B such that
B < B, there exists k € [[,c, Sa such that fs <p k <p fs. Note that |B| > cf(AT") = AT".
Let 3 be the supremum of the smallest u* elements of B, then cf(3) = pt and ut < A since A
is singular. Let E € Cj be a closed f-unbounded set of order type cf(8). Then BN and E are
B-club, so BNNE =FENB is f-club and ot(E N B) = cf(f), solet ENB = {p; : i < cf(p)} be
an increasing enumeratlon For each 1, choose k; € Haea « such that fg, <p ki <p fgit1. We
already have fs, >p gEn for all 7, and gEmB (a) > fs,(a) for all a > ot(£ N F;), in particular for
a > ot(E), and all j < i. Since DN I* = (), D contains no bounded sets, hence for each i < cf(B8),
there is an a; > ot(E) such that fg, (a;) < ki(a;) < fa,,, (i) and fg, (o) > gEﬁBi (). Let £(cf(B))
be the set of limit ordinals in cf(/5). Then consider the map ¢(cf(5)) — a given by i — «;. Since
[0(ct(B))] = |cf(B)] = ut > p, there must be a set I C £(cf(B)) such that |I| = cf(3) and there is an
« € a such that «; = « for all ¢ € I. Then we have

ki) < fo,0, () < gl (@) < f5,(0) < ki)

for 4,5 € I such that ¢ < j. Thus (k;(a) : ¢ € I) is increasing, which contradicts |S,| < p < pt =
cf(). O

Let D be an ultrafilter on a such that DN T* = (. Then (f, : a < A" is <p-increasing. Now
D is an ultrafilter on a; it transposes to an ultrafilter D on |a| via a bijection ¢ : a <> |a|]. Any
f € ON® transposes to an f € ONI® by f(x) := f(i='(x)). Then (f, : a < AT™") is < p-increasing
in ONI?l. Also A™™ > AT > cf(\)* = |a|*, and AT and |a| are regular. Hence Lemma 3.32 yields
that (fo/D : o < A+n) has a least upper bound in QN‘“‘/E or there exist sets S5 for § < |a| such
that |Ss| < |a| and ][5, Ss/D cofinally cuts (fo/D : a < A*7).

Suppose the second. Consider Tj, := Sj) N € « and ], ., Ta. We will show that [], ., 7w
cofinally cuts (f,/D : v < A™"), which contradicts Lemma 3.34. Let o < A™". Let h € [s<pa IS‘s

72



such that f, <p h and h/D cuts (f,/D : v < A*™). Then h <p for for some o/ < A*™. So
[h < fo] € D. So without loss of generality we assume that h < fo everywhere. Let h/(z) :=
Wi(2)) < for(i(2)) = for(x) < 2,50 b € [[ o Ta- S0 [Toeq Lo cofinally cuts (f,/D : vy < A*™).

Thus (f,/D : v < A*™) has a least upper bound ON'?/ /D, and thus also (f,/D : v < At") has a
least upper bound g/D in ON®/D. Now [Ja/I* is A*"!.directed, hence there is an upper bound
h/I* € [Ta/I*. Thus g <p h and thus g < h everywhere and g € []a without loss of generality,
ie. gla) <aforall a €a. If {a €a:cf(g(a)) <lal} € D, then this would violate Lemma 8.3:
For these «, we let S, be cofinal in g(«) of size cf(g(a)) and for all other « let S, = {0}. Then
[Sa| < |al. Then for any o < AT™ there exists an h € [Iocq Sa such that fo, <p h. But h <p g
so there exists 8 < AT such that h <p fg. Thus [],., Sa cofinally cuts (fo/D : a < A*T™), a
contradiction.

We thus must have {a € a : cf(g(®)) > |a|} € D and thus cf(g(a)) > |a| for all a without loss of
generality.

Consider {cf(g(a)) : a € a} = {cf(g(p™)) : p € C}. Define Sy := {p € C : cf(g(p™)) < p}
and for 1 < k < n, define Sy := {p € C : cf(g(p*™)) = p™*}. Then C = Sy U UZ;iSk and
a=S8"U UZ;;S,:” Exactly one S;™ (0 < k < n) must be in D.

Lemma 8.4. We have Sj" € D.

aca

Proof. If not, let 1 < k < n such that S,j" € D. Since k < n, we have {p € C : p™F ¢

k . +k k
—10A ; C N - :
U, eq ba+m ()} has a A-club subset; let K C C be A-club such that K™% C J, _; bx+m(c). Let
"= CT* and

D' :={ACd :{p™:peCpFecAleD}={A" " .AecD},

i.e. we shift D so that it becomes an ultrafilter on a’. For any f € [] a, we define f (ptF) = f(p*™)
for pe C. Then f':a’ — Ja, but f' ¢ [[d is possible. For f € [1d we define f(pt™) := f(pt*)
for p € C, then always f eTla. Clearly (.) and (.) are each others inverses. Also f <p g if and
only if f' <p/ ¢g’. We have the sequence (f,/D : o < A*™) in [Ja/D, which is increasing and has
least upper bound g/D. Another fact is that we assumed that {p™ : p € C’,g(p*") =pt*} € D,
so {ptF :pe O g (pt*) = pt*} € D'. Since f, <p g for all a, we have f/ <p/ ¢’ =p idy for all
«. Thus f} € []d’. Hence (f./D : a < A\T) is an increasing sequence in Ha’/D’ Now suppose
there is some h such that f/, <p/ h for all a. Then f, <p h for all a, 80 g <p h so h ¢ []d.

Therefore (f/,/D : o < A1) is increasing and cofinal (since D’ is an ultraﬁlter) in [[a’/D’ thus
cf([Ta’/D’) = A*™. Consider A € D. Then A ¢ I, thus A™" is stationary in ), hence intersects
K. Thus KT intersects A. Thus K1 intersects each element of D. By the finite intersection
property and the fact that D is maximal, we must have K" € D as well. Hence K™% ¢ D’.
Hence U]:n:1 by+m(¢) Na’ € D', by which by+m(a’) = by+m(c) Na’ € D’ for some 1 < m < k, hence
cf([Ta’/D’) < AT™+1 < X\*". This contradicts cf([]a’/D’) = A*™. O

Definition 8.5. Let b C a. Then we call (fz : 8 < A™™) cofinal in [[b/I* below g iff for any
k € T]b such that k <7« g | b, we have k <;- fg | b for some 3 < A*™.

Lemma 8.6. We have (fg : 8 < A*™) cofinal in [[b/I* below g for some b € D.

Proof. Suppose not. We recursively define a sequence (hg : 8 < |a]™) in [[a and a sequence
(ig : B < la|t) in AT such that
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1. (hg: B < lal™) is <-increasing,

2. hg < g for all 3,

3. For all 8 and a € (ig, \T™) we have [fo > hgi1] C [fo > hgl.
We do this as follows:

1. Base case: ho(y) = 0 for all 4.

2. Successor case: Suppose (hg : 8 < ) and (ig : ' < B) have been defined. If [fo > hg| ¢ D
for all o, then fo, <p hg, hence f, <p hg for all a. But hg < g, contradicting the minimality
of g. So let ig < A™" such that bfﬁ = [fiy > hp] € D. By assumption (f, : v < A*") is not
cofinal in []b] /I* below g. Let h € [[b], such that h <;- g [ b but h Zy- f [ b, for all
v < A*™ and assume without loss of generality that h < g | bfﬁ everywhere. Now extend h to
[Ia by h(y) =0 for v € a'\ bfﬁ. Then let hgy1 = max(hg, h). Then hgy1 € [[a, hg41 > hg
and hgy1 < g. Let a € (ig, AT") be arbitrary. We have h £+ fo [b?ﬁ so [h> fa]N biﬁﬂ ¢ I
But fo >7- fi,. So there is some v € [fo > hg] such that h(y) > fu(v). Since hgy1 > h we
obtain [fo > hgt1] C [fa > hgl.

3. Limit case: Suppose (hg : ' < B) and (igr : B/ < B) have been defined for some limit
ordinal 8 < |a|T. Let hg(y) := sup({hg () : B/ < B}). Since B < |a|T < cf(g(7)), we have
hg(v) < g(y) <. So hg € [[a and hg < g.

Let i := supg|q+ ig. Since ig < A" for all g, |a|" = cf(A\)T < X < AT™ and A*" is regular, we
have i < X*™. Then for any o € (i, A\T™) we have that ([fo > hg])g<|a+ is a C-decreasing sequence
of subsets of a, which is a contradiction. O

So let b € D such that (fz: 8 < A*™) is cofinal in []b/I* below g. For a < AT let

do :={v€b: falv) <gM}={r€a: faly) <g()}Nbe D.

Since S{™ € D we also have d), := d, N S{™ € D, thus d,, ¢ I* so d, \ B ¢ I. Hence S® :=
(d\B)™™ ={p€ Sy:p™ €d,\B} is stationary in A. Since S* C Sy we have cf(g(p™)) < p for all
p € S%, thus the function S* — A given by p — cf(g(p™™)) is regressive. By Lemma 2.24 let n, < A
such that {p € S : cf(g(p*™)) < na} is A-stationary. Then {y € (d,,\ B) : c¢f(9(7)) < na} ¢ I, thus

{vedy:ct(g() <nat ¢ I" and {y € b: fo(y) < g(7) and cf(g(7)) < na}t & I*. Since 1 < A for
all @ < AT let n < A such that {o < AT™™ : 5, = n} has cardinality A*T".

Suppose 7, = n and 8 < a. Then X := {y € b: fo(y) < g(v) and cf(g(y)) < n} ¢ I* and
[fs £ fol € I*, hence I* Z X N [fs < fo] C {y € b: fz(7) < g(7) and cf(g(7y)) < n}. Hence we
could have chosen ng = 71 as well.

Thus we can assume that ¢, := {7y € b: fo(7) < g(7) and cf(g(y)) < n} ¢ I*, for all @ < AT
Note that {c, : @ < AT™) is Cr--decreasing. Hence Lemma 3.49 applies and there is an ultrafilter
D* on a disjoint from I which contains all the ¢, and thus contains b since b O ¢g. Then f, <p~ g
for all @« < A*™. So g is an <p--upper bound for (f, : @ < A*™). It is also a least upper bound:
If h/D* < g/D*, then without loss of generality h < g everywhere and h € [[a. Then h [ b <;-
fa T b for some «. Since b € D*, we have h/D* < f,/D* < foy1/D*, hence h is not an upper
bound for {f,/D* : o < A\T™).

Now let e := {y € b: cf(g()) < n} € D*. For v € ¢, let S, C g(v) be cofinal in g(vy) and such that
[Sy| < |n| < A. For v € (a\ ¢), let S, = {0}. Note that g € []a, hence S, C «. On the one hand,
[1,c. S7/D* cannot cofinally cut (fo/D* : o < AT™) by Lemma 8.3. On the other hand, it does
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cofinally cut: Let o < A™™. For v € ¢, let k(y) € S, such that {y € ¢: fo(y) < k(y)} € D*, this
is possible since fo <p- g and e € D*. Extend k to a function in [] ., S, by taking k(y) = 0 for
v € (a\e). Then fo, <p- k and k <p- g. Since g is a least upper bound, we must have k <p- f3
for some B < A*™. But now we have shown that [[ ., S, cofinally cuts (fo/D* : @ < A*"). Thus
our first assumption, that Theorem 8.2 is false, is false. This proves Theorem 8.2.

8.2 An extra assumption on generators

Most of this subsection will be concerned with proving the following lemma.

Lemma 8.7. Let a be an infinite set of regular cardinals such that 2%/ < min(a). Then we can
choose the generators (by : A € pcf(a)) such that u € pef(by) implies b, C by

So this lemma states that we can choose the generators in such a way that the relation p < A
defined by u € by is transitive: If y € by and X\ € b,, then by C b,, so u € b, hence u < v.

Before starting on the proof, we first note that by using this lemma, we can even make an extra
assumption on the generators:

Lemma 8.8. Let a be an infinite set of regular cardinals such that 2/l < min(a) and suppose we
have a sequence of generators (by : A € pcf(a)) be such that 1 € pef(by) implies b, C by. Then we
may arrange that pcf(by) = by for all .

Proof. From (by : A € pcf(a)) we will define a sequence (b3 : A € pcf(a)) such that p € pef(b})
implies b7, C b} and pcf(by) = b3.
L. If A = min(a), then b3 := by = {A}. Clearly pcf(b}) = b3 and p € by = b} C b3.
2. Suppose bj has been defined for all § < A. Since pcf(pef(by)) = pef(by) € A1, by Lemma
3.48, there exist 01, ...,0, € pcf(by) N A such that pcf(by) C by U...Uby Uby =: b}. Since
by C b} € Joa+, we have that b3 is indeed a generator. Now

n

pcf(by) = U pcf(bg, ) U pcf(by) = U bp, Upcf(by) = b3.

i=1 i=1

If p € b} and for all n € b} with n < p we have by C bJ, then
(a) p € b, s0by Cby Cby,or
(b) p€by,s0b, Cby C b} and by = by, U...Uby Ub, for ny, ..., nn € pcf(b,)Np C pef(by) C b3,
s0 by, ..., by C b3, thus b7 C b3.
So by induction, if p € pef(b}) = b} then b} C b3.
So (by : A € pcf(a)) is as desired: For all A € pcf(a), by generates Joy+ over Jcy, p € pcf(b})
implies by, C b and pcf(by) = b3. O
We now start with the proof of Lemma 8.7. Let a be an infinite set of regular cardinals such that
2lel < min(a).
Let 6 be a large enough regular cardinal and consider again H(0)* = (H(#),€,< *). For any

M < H(0)* let xpr denote its characteristic function defined by xar(p) = sup(M N p) for any
regular cardinal p. Similar to section 6, we have a notion of a nice elementary substructure.

Definition 8.9. An structure N < H(6)* is called nice iff
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1. |N| = 2lal,
2. there exists a sequence (N : i < 2/} such that
(a) N; < H(0)* for all 4,
Nz' Q Ni—i—l for all i,
N; = U;; N; for all limit 4,
i<2lal
j< Z> € Nl+1 for all ¢,
2‘ fc

*

Of course, similar to Lemma 6.4, for any x € H(6)* there exists a nice structure N < H(#)* such

that = € Np.

Lemma 8.10. Let A € pef(a). Suppose f = (f; : i < A) is persistently cofinal, i.e. for all h € []a
there exists ¢ < A such that h [ by <;y_, f;j [ by for all j > ¢, where by is any generator of J\+ over
J< (note that this is independent of the chosen generator, since two generators only differ on a set
in J<y). Let N < H(0)* be a nice structure such that f € Ny. Then [xn [ a < fy,(n)] generates
Jox+ over Joy.

Proof. Let i* = yn(\). Since a € Ny, we have pcf(a) € Ny. Bu |pef(a)| < 21l and 2/9l € Ny. So
pcf(a) € Np, and A € Ny. So Joy+, J<r € Ny and there is some generator by € Ny. For any « € a,
if fi-(a) < xn(a), let in < 219 be such that fi-(a) < Xn;, (). Since |a| < 2lal | there is some ¢
such that i, < ¢ for all o, and hence

[fir <xn Ta]l=[fi- <xn; [a]
Note that xn, | @ € [[anN N, since xn, | a is definable in N;;; for all i. So (xn, [ @) |
by <y_, fj I by for some j € N N A, and thus xn, [ by <y_, fir [ by, since j < i*. So
[fir TOx <xnv [OA] = [fir Ty <xn; [0a] € Jcn.
Note that A ¢ pcf(a\ by): If cf(J[(a \ br)/D) = A, then cf(] ] a/D) = X for some D which does not
contain by. But this contradicts cf([[a/D) = min(X : by € D).
So Jex(a\ by) = Jox+(a\by) and [J(a\by)/J<r = [[(a\b))/Jcr+ is AT-directed. So we have the
following

H(0)* £ 3hYi < A(fi | (a\by) <s_, h)

NE IRV < A(fi | (a\ by) <s_, h)
There is an h € N such that N EVi < A(fi [ (a\by) <j_, h)
There is an h € N such that H(0)* EVi < X(f; | (a\bx) <j_, h)

Let h € [[(a\ bx) NN be such, then in particular f;+ | (a\ bx) <j_, h. So [xn < fi=] \bx C [fir >
hlN(a\ by) € Jcx. Combining this with [xn | by > f,* b € Jex, we get [xn [ a < fix] =5, ba
and indeed this set is generating. O

For any M < H(0)*, let
M={y€ON:sup(MNy)=yorye M} ={sup(MN~):vy€ON}U{y€ ON:v€ M},
i.e. M is the ordinal closure of M. If N < H(6)* is nice, then
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1. since N; € N;41 and the ordinal closure is definable, we have N; € Nit1.

2. since N; € N;y1 and N; C N;; 1, we have N; C N;;1: Let v € N;, then v € N; C Ny
or sup(N; Ny) = 7. In the second case, if § € N; is minimal above (or equal to) ~, then
v = sup(N; Ny) = sup(N; NJ) € Nijp1. If N;\ v =0, then v = sup(V; Ny) = sup(N;NON) €
Niy1. So v € N;11 in all cases.

Definition 8.11. Let A and p be cardinals and let a be any set. A sequence (f; : ¢ < A) of functions
with domain a is called p-minimally obedient iff for all i < X such that cf(i) = u, we have

fi(a) = min(sup(f;(a) : j € C) : C is an i-clubset of order type p)
for all o € a.

Suppose (f; : ¢ < A) is py-minimally obedient. Suppose i < X satisfies cf(i) = p, and for a € a
choose Cy, i-club of order type p such that fj(a) = sup(fj(a) : j € Cq). Consider C := [, ¢, Ca-
If |a|,w < u, then C' is also an i-club set of order type p and we have

fila) =sup(fj(e):j € C)
for all o € a.

Lemma 8.12. Let A € pcf(a). Suppose f = (f; 14 < A) is 2lel_minimally obedient. Let N < H(#)*
be nice and such that f € No. If v € (N'\ N) N A, then there exists a y-clubset D of order type
2lal such that fy =sup(f; : j € D) and D C N. In particular f,(a) € N for all a € a, and thus

f'ySXNra-

Proof. We have v = sup(NN~) and thus (sup(N;Ny) : i < 2l%!) is cofinal in y. This sequence is also
increasing: sup(N; N7y) € N; C N; 11 and sup(N; N7) < v, so sup(N; N7) < sup(N; 11 N7). Thus
cf(y) = 2l9l. Since |a|,w < 2!, there exists an i-club C of order type 2/ such that fy =sup(fi :
i € C). Then D := CN{sup(N;N7) : i < 2%} suffices: D C N and D C C, so f, = sup(f; :i € D).
Since f € N, D C N and a C N, f,(«a) is a supremum of elements in N, so an element of N, for
all o € a. O

Remark 8.13. In particular, if v = yn(A), then v € (N '\ N) N A and the lemma applies, so
Fxn) S XN-

Now for each \ € pcf(a), let f* = (f} : i < A) be A\-universal and 2/*/-minimally obedient. This is
possible: Start with a A-universal sequence (g; : i < A) and define fg' = go, f{; > max(f;, g;) for all
i, if cf(i) = 21l of course take f(a) = min(sup(f;(e) : j € ) : C is an i-clubset of order type 2lal)
and if 7 is limit but cf(i) # 2%/, let f} be a <j_,-upper bound for {f;‘ : j < i}, which exists since
[Ta/J<x is A-directed. Then clearly (f : i < \) is <,_,-increasing, cofinal in [[a/D for all D
such that cf(J[Ja/D) = A, and 2/%-minimally obedient.

Now for A € pcf(a) and v < A, we will define functions F,;\ € [] a. First, for A € pcf(a) and « € q,
define

F o : = {finite decreasing sequences in a from A to o}
={( A0y An): 0 <N <w,Ag =M\ =, A1 €Ean ) forall i <n}.
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For each sequence (X, ..., A\p) € Fa o and each v < A, define g = v and 7,41 = f,‘)/\ii(>\i+1) for i < n,
and set Elx,, .. x,)(7) := Yn. Define

My = {El g, () 1 Qo oy An) € Faal

Now define F}(a) := max Mj , if this maximum exists, and otherwise F)Ma) = [ (o).

Then we have f§\ < Fﬂj‘: If @ < A, then (A, @) € F) o, 50 El(y 0)(7) = f?(a) € My . If a> A, then
M , = 0. In both cases F} () > f3(a).

Now let N be nice and such that (f* : A € pcf(a)) € Ng. Since pcf(a) C Ny, each f* € Ny. We
have FQN(A) <xn | a:

Let v = xn(A). If & > A, then F} o) = f?‘(a) < xn(«@), where the last inequality follows from
Lemma 8.12 or Remark 8.13. If o < A, then for each (Ag,..., A\n) € F) o, again by Lemma 8.12,

f,i‘()\l) € N, and by induction and the definition of F,i‘, F,i‘(a) € N. So F,yA <xn | a.
Since F§\ is definable from f7)\7 and each fA;\ is an element of N, we have that N is nice and
(F} i < \) € Ny. Also, since f,i‘ < F§\, the sequence (F; : i < \) is still persistently cofinal. Thus

Lemma 8.10 applies to (F? : i < \) as well, and we obtain that [yx [ a < F}

XN(/\)] generates Joy+

over J.. Combining this with F$‘ < xn | a, we get
By =[xy a= FQN()\)] generates J + over Jcy.

It remains to show that if Ay € B,,, then By, C B),.
Solet A\; € By, and o € By,. The cases A\ = \g or a = )\ is trivial, so assume a < A\; < Ag. Then
1. since A\; € B,, we have F)?f](/\o)()\l) = xn(A1). We proved that no sequence reaches a

higher value than y (A1), and also f;‘;’v()\o)()\l) < xnv(Ap). If f;\;}v(z\o)()\l) = xn (A1), then
the sequence (A, A1) reaches the highest possible value, otherwise, there must be some other
sequence reaching it. Thus there is a sequence s € Fy, x, such that El;(xn(Xo)) = xn(A1);
2. by the same reasoning, there is a sequence ¢ € F, o such that El;(xn(A1)) = xn ().
But then the concatenation of these sequences is a sequence u in F), o and El,(xn(Ao)) = xn ().
But no seqeunce can reach a higher value, so F)?J‘)V()\O)(a) = xn~(a) and o € By,. So we have proved

Lemma 8.7.

8.3 Second essential lemma

We have the following setting: Let a be a set of regular cardinals such that min(a) > 2/%!, define
¢ = pcf(a), let d C ¢ and suppose p € pef(d). Let (by : A € pcf(c)) be as in Lemma 8.7, i.e. by
generates J.y+(c) over Jea(c), p € by implies b, C by and pcf(by) = ba.

By Theorem 3.15 we have pcf(pcf(a)) = pef(a). If e € pef(a), then min(e) > min(a) > 211 > 2/l so
again Theorem 3.15 applies and we have pcf(pcf(e)) = pcf(e). Also note that by = pcf(by) C A+ 1.

Lemma 8.14. There exists d C d such that pcf(d) C b, and u € pef(d).

Proof. Since pi € pcf(d), let D be an ultrafilter on d such that p = cf([[d/D). Extend D to an
ulrafilter D on ¢, then we know p = cf(J] ¢/D) = min({\ : by € D} by Lemma 3.47, hence b, € D,
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hence d := dNb, € D. Then pu € pcf(d) since we can restrict D to d. Hence p € pef(d) C pef(b,) =
by. O

Lemma 8.15. As in Lemma 8.14, let d C d be such that uwE pcf(cf) C b,,. There exists d C d such
that u € cf(d) and pef(d) N p has no maximum.

Proof. Suppose pcf(d) Ny has a maximal element py. Let di := d \ b,,. We will show that
pa & pef(da):

Let D be any ultrafilter on d;. Extend D to an ultrafilter D on ¢, then cf([[di/D) = cf(]] ¢/D) =
min{\ : by € D}, where the last equality is Lemma 3.47. We have b,,, ¢ D, otherwise D > d;Nb,,, =
(0; hence cf(][d1/D) # p1.

Since u € pcf(d), let D be an ultrafilter on d such that cf([[d/D) = pu. Extend D to an ultrafilter
D on ¢, then b,, ¢ D since 1 < p, hence dy € D thus p € pef(dy). Since pef(dy) C pef(d), it
follows that pcf(dy) N p C py. If also pef(dy) N has a maximum po, find in the same manner a
dy C dy such that p € pef(ds) and pef(de) N C pa. Repeat this until there is a dj, C d such that
1 € pef(dy) but pef(di) N g has no maximum. Then d = dy, is as desired. O

Lemma 8.16. There exists d’ C d such that |d’| < |a| and p € pef(d).

Proof. We will prove this by induction on the cardinality u, so assume that for all v < p the
theorem has been shown. As in Lemma 8.14, let d C d be such that u € pcf(d) C b,. As in
Lemma 8.15, let d C d be such that p € pef(d) and pef(d) N g has no maximum. Note that still
pef(d) € b,. Note that pef(d) Ny is infinite. Let (u; : i < k) be a cofinal subset of pef(d) Ny, where
k= cf(pef(d) N p) > No. Then p € pef({p; : i < k}):

Let D be an ultrafilter on {y; : ¢ < x} which contains all the tails. We have

of (] [{mi : i < 5}/D) € pef({pi : i < w}) € pef(pef(d)) = pef(d) C by = pef(b,)  p+ 1

so cf([T{pi : ¢ < k}) < u™. On the other hand, pu; < cf([[{pi : i < k}/D) for all j and {y; : i < K}
is cofinal in pcf(d) N . Thus we must have cf([[{u; : i < k}/D) =

We will define an e C {p; : i < s} such that |e|] < |a| and p € pcf(e), and construct a d’' from
this e. Assume that & > |al|, otherwise e = {u1 : i < k} works. Let S C & such that |S| = |a
and a N J;.,. by € Ujeg by, and let e = {p; : i € S}. Clearly |e| < |a|; it remains to show that
w € pef(e). By Lemma 3.48, e C bs, U ... U bs, for some 41, ..., 0y € pcf(e).

If §; # p for all 4, then 6; < p for all i, since §; € pef(e) C pef({p; : i < k}) C p+ 1. We will
derive a contradiction. Since |S| = |a| < &, let j < k be such that p; > ¢; for all ¢ and define
A:=an(by, \ (b5, U...Ubs,)). Since u; € pcf(a), let p; = cf([]a/U) for some ultrafilter U. Extend
U to an ultrafilter U on ¢. Since p; = cf([J¢/U) = min{\ : by € U}, we have by, € U. Clearly
s,y -y bs, & U, 80 bs, U...Ubs, ¢ U. Since U is concentrated on a, we obtain A € U. In particular
A # (). On the other hand, p; € e C bs, U... Ubs, for all i € S, so J;cqbu, € bs, U ... Ubs, (since
p € by implies b, C by). So aNby, € J;cgbu, € bs, U... Ubs,, which implies A = ), contradiction.
So §; = p for some i. So we have e C {y; : i < k} such that |e] < |a| and p € pcf(e). Now for any
d € e we have § € pcf(cZ) N u, so in particular & < u, so by the induction hypothesis let ds C d such
that |ds| < |a| and ¢ € pcf(ds). Let d' := Usc, ds € d. Then |d'| = |e| - |a| < |a| - |a| = |a|. For any
0 € e we have § € pcf(ds) C pef(d’), hence e C pef(d’). So u € pef(e) C pef(pef(d’)) = pef(d’). O
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8.4 Proof of the bound

In this subsection we will prove that |pcf(a)| < |a|T® when a is an interval of regular cardinals such
that min(a) > 2lel . We start with the definition of a specific closure operation. In general, a closure
operation on a set A is a map (.) : P(A) = P(A) suchthat =0 and X CX, X CY = X CY,

XUY=XUY and X = X for all X,Y € P(A).

Definition 8.17. Let a be an interval of regular cardinals such that min(a) > 2/l and such that
min(a) is a successor cardinal. Let min(a) = Rs41. Since |pcf(a)| < 2!%! by Corollary 3.25 and pcf(a)

is an interval of regular cardinals by Corollary 3.29, we have pcf(a) C {Nsy0:1 < a < (2‘“‘)+}. By
Theorem 3.27, pcf(a) contains a maximal element, and by Lemma 3.30 pcf(a) consists of successor

cardinals. Hence pcf(a) = {Nspat+1 : 0 < a < p} for some p < (2‘“‘)Jr and we have a bijection
pcf(a) <> {a: 0 < o < p} which will be frequently used. We define the map

():P(p+1) = P(p+1)
X — Y = {"}/ : N§+—y+1 € pCf({N5+a+1 To e X})}

Note that pcf(pef(a)) = pef(a) by Theorem 3.15, hence indeed X C p + 1 for all X.

Definition 8.18. Let p be an ordinal and x be a cardinal. Then a map (.) : P(p + 1) — P(p+ 1)
may have the following properties:

() 0=0and XCX,XCY=XCY,XUY=XU

(.) is indeed a closure operation. o

11) For all X € P(p+1), if v € X there exists some X’ C X such that |[X'| < x and v € X" .
ii) X has a maximal element for all X € P(p + 1).
iv) If
)

Y, X=X forall X,Y € P(p+1), i.e

[ ’y4< ]p aIEdJcmLf( ]) > w there exists a y-club C' C 7 such that C C v + 1.
KT KT p

Note that it may be the case that k™ > p, then we have the convention that [xT4, p] = 0. In this
case (v) is already implied by (i).

Proposition 8.19. The map (.) : P(p 4+ 1) — P(p + 1) from Definition 8.17 satisfies properties
(i)-(v) from Definition 8.18 for k = |a.

Proof. () 0=0,XCX,XCY=XCY,XUY = XUY follow from the facts that pcf(§) = @,
a C pcf(a), a € b= pef(a) C pef(b) and pef(aUb) = pef(a)Upcf(b). It remains to show X = X.
Denote X : = {Nsyat1 1 @ € X}. Then X C pef(a), so pcf(X) C pef(pef(a)) = pef(a).
Therefore |pcf( )| < |pef(a)] < 214l < min(a) < min(X). Again by Theorem 3.15 using
min(X ) > |pef(X)| we obtain pef(pef(X)) = pef(X). It follows that X = X.

(ii) If v € X there there exists some X’ C X such that |X’| < k and v € X’ by Lemma 8.16.

(iii) X has a maximal element: Since pcf({Nsipt1 : 1 € X}) C pef({Roqnt1 :m € p+1}) =
pcf(pef(a)) = pef(a), and pef({Rsyp41 1 € X}) has a maximum, this maximum is Ns4p041
for some 19 < p, and 79 is the maximum of X.

(iv) Suppose v < p and cf(y) > w. Let A := Rs4.,. Since X is a limit cardinal, the proof of Lemma
3.30 shows that X is singular. Also cf(\) = cf(Rs4~) = cf(d +7) = cf(y) > w. Thus we have
A > cf(A) > w. Let I' C v be vy-cofinal, be consisting of non-zero limit ordinals and such that
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ot(I") = cf(vy). Define E := {Rs1o : @ € I'}. Then, again by the proof of Lemma 3.30, E
consists of singular cardinals; also £ C [cf(\), \) [since min(E) > Rsyq > (2l4h+ > p >4 >
cf(v) = cf(N)] and ot(E) = cf(y) = cf(A). As in subsection 8.1, let ¢ := J; 1, ET* and let
bu(c) generate J,+(c) over J<,(c). Note that ¢ C a and pcf(c) C pcf(a) = a. By Theorem
82forn=1,let DC {pe E:ptt €by+(c)} be A-club. Then C := {a : 54, € D} is y-club.
Now d := DT = {Rs1a11 : @ € C} C by+, so pef(d) € [Rypq, AT)T) = [Rop1, Nopq41], s0
C C [0,9] = v+ 1. So we have shown the existence of a C' C 7 such that C is y-club and
CCy+1.
(v) Since min(b) = min(pcf(b)) for all b C a, we have [a, p] = [a, p] for all a.

O

Proposition 8.20. Suppose p > x4 and (.) : P(p+1) — P(p+ 1) satisfies properties (i)-(v) from
Definition 8.18 for . Define

Cl: P(k™ +1) = P(kT™ +1)

X, if X Crtt+1,

X ClX) = {(Xﬂ kY U}, fX kT + 1

Then Cl satisfies properties (i)-(v) from Definition 8.18 (where p = k*4) for .

Proof. We do a simple and elaborate check of the properties.

(i) Cl(0) =P, X CCIX), X CY = Cl(X) C CL(Y), C(X UY) = CI(X) UCL(Y) are easy to
prove. Tt remains to show that C1(C1(X)) = C1(X). If X C x*4+1 then also X = X C r+4+1,
hence C1(C1(X)) = CI(X) = X = X = CI(X). If X € s+4+1, then CI(X) = (Xn&+4)U{xt4}
and

CI(X)= (X Nkt U{st) = XNkt U{st} C XU [kT4,p] = X U [n+4,p].

If CI(X) C k™ + 1, then CI(X) C (X NnxT*) U {kt*} = CI(X), so CI(X) = CI(X) and
CI(CI(X)) = CI(X) = CI(X). If CI(X) € x™* + 1, then

CI(CI(X)) = (CI(X) NnwTH U {sT*}

(XU, ) N U {r) = (X et u et = Cx),

N

hence Cl(Cl(X)) = CI(X).
(ii) Suppose v € Cl(X).
(a) Suppose X C x+4+1. Then v € CI(X) = X, so there exists X’ C X such that |X'| < &
and vy € X' C X C kT + 1, thus v € X’ = CI(X").
(b) Suppose X Z kT + 1. Then v € (X NxT) U {xH1}.
i. Assume v € X Nkt Let X’ C X such that |X’| < x and v € X. Then v € CI(X").
ii. Assume v = x*4. Let § € X such that § ¢ x** + 1. Let X’ C X such that
|X'| <kand d € X’. Then X’ k4 +1, hence CI(X') = (X’ Nk ) U{xT*}. Thus
v =kt e ClI(X).
(iii) It is obvious that C1(X) has a maximal element.
(iv) If v < k** and cf(y) > w, then v < p, so let C' C v be y-club and such that C C v+ 1. Then
CCkt™+150ClC)=CCvy+1.
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(v) We have {k+4} C [st4,p] =[x T4, p].
(a) Suppose {4} C k% + 1. Then {k+4} = {k*1}, hence Cl({kT1}) = {k+4} = {xT1}.

(b) Suppose {kt4} € kT + 1, then Cl({s*1}) = ({kT} Nt U {kT} = {kT1}.
So Cl[s+4, k1] = [rH4, k14

O

Theorem 8.21. Let a be an interval of regular cardinals such that min(a) > 2%/, Then |pcf(a)| <
la|+3.

Proof. Define p and (.) : P(p+1) — P(p+1) as in Definition 8.17. We are done once we show that
p < la|t®. So assume the contrary, i.e. p > |a|T*. By Proposition 8.19 we know that (.) satisfies
properties (i)-(v) of Definition 8.18 for p and & := |a|. If p > |a|™, then Proposition 8.20 yields
a map Cl: P(k* 4+ 1) — P(k™ + 1) also satisfying (i)-(v). Thus in any case, there is a map
() : P(k** +1) — P(k** 4 1) that satisfies properties (i)-(v). Note that |a|t!, |a|™3 are regular
uncountable cardinals and (Ja|™1)T < |a|*3. Let S = S(|a|™3, |a|") = {B < |a|™3 : cf(B) = |a|}.
By Corolarry 2.28, let (S, : a € S) be a oqup (a3, |a|1)-sequence, i.e.:

1. For all @ € S we have S, C « and S, is a-club.

2. For all |a|™3-club C we have {a € S : S, C C} is |a|3-stationary.

Now let # be regular and large enough and let (Mg : 8 < |a|*3) such that

1. Mg < H(0) for all B < |a|*3, i.e. Mg is an elementary substructure of H (),
B < B = Mg C Mg for all /, < |a|*3, i.e. the sequence is C-increasing,
Mg =g .3 Mp: for all limits 3 < |a|™®, i.e. the sequence is continuous,
(M| = af*S for all § < |a]*
la|*3 C Mo, {{X,X): X Cla|t* +1} € My and (S, : a € S) € My,
6. (Mg : 3" < B) € Mgy for all B < |a|T3.
For B < |a|*3, let 5 := sup(Mp N |a|**). Since |[Mg| = |a| ™, we have vz € |a|™ for all 8 < |a|3.
We have (75 : 6 < 8) € Mg for all B < |a|T3:
Let B < |a|™3. Since |a|™® C Mgy and (Mg : 8 < B) € Mpi1, we have My € Mgy for all
B’ < B. Since |a|T € Mgy1, we must have vg = sup(Mpg N |a|™) € Mgyq for all B < B by
elementarity. Then (75 : 0 < 8) € Mpy1.

Cr Lo

For a € S, let E® = {5 : 6 < 8,6 € Sa}, then Ef € My,1, thus ES € Mg 1. Note that if
Ef € Mg is bounded below |a|™, then ES C vg+1 by elementarity.

Let C' C 7jqp+3 be 7jq)+3-club and such that C' C 7j4+s + 1. Both C and {7 : 8 < |a|™®} are closed
unbounded in the ordinal 7|4+s, and cf(7y)4)+3) = la|*3 > w. So their intersection is Y|a|+3-club, thus
{B < |a|*t3:~v5 € C} is |a|T>-club. Since {a € S: S, C{B < |a|™®: 75 € C}} is |a|"3-stationary,
there is at least one o € S such that S, C {8 < |a|™® : y3 € C}. Define S := {v5: B € S} and
note that S* C C. Since S, is a-club, S¥ is y,-club (note that « is a limit ordinal). Then S* has
a maximum z, and = > 7,. Now there is some X’ C S¥ such that |X’| < |a| and z € X".

Since X’ C S ={y5: 8 € Sa} C {15 : 8 < a} Ca, |X'| < |a|] and cf(a) = |a|T, there is some
B < a such that X’ C S% N~g. Therefore
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So EZ is bounded below la|*4, so

T e Eg C 78+1 < Ya-
This contradicts = > 4. O

So we have now shown that |pcf(a)| < |a|t* under some reasonable assumptions on a. We can of
course use this fact to prove some non-trivial bounds on cardinal exponentiation.

Theorem 8.22. Let § be a limit ordinal. If 2I° < Ry, then
R < Ry

In particular, if 2% < 8, then
NP0 < R 44

Proof. We prove the theorem under the assumption that ¢ is the disjoint union of |6| many d-cofinal
subsets. This assumption is made without loss of generality, since for every ordinal § there exists an
ordinal ¢’ := § + |4| > ¢ which has the same cardinality as ¢ and is the disjoint union of |§| many J-
cofinal subsets. The proof in essentially the same as the proof of Corollary 6.11. Let a = [(2°)*, Rs).
Then min(a)ll = ((2°) )1 < Rs; = sup(a), and |a|t < [0]F < 2° < (2°H* = min(a). Thus
Theorem 6.1 applies and yields max(pcf(a)) = |[[ a| = Nl;” (in the last equality we use that ¢ is the
disjoint union of |§]-many d-cofinal subsets). Recall that pcf(a) is an interval of regular cardinals by
Corollary 3.29, and that a C pcf(a). This lies a bound on how far pcf(a) can reach. In particular,

5
Ry = max(pef(a)) < Ry jperia+ < Rojafrs < Rjgjra.

83



Index

algebra, 49 definability, 45
Joénsson, 49 diagonal intersection, 15
subalgebra, 49 directed, 8, 26, 34, 39, 40, 71-73
almost everywhere, 12
arity, 42 elementary equivalence, 45
axiom, 42 equality, 42

equivalence relation, 7
binary relation, see relation

bounded, 8, 14 filter, 11
bounded below, 14 concentrated, 12
dual, 12
cardinal maximal, 12
exponentiation, 5 modulo, 17
computation, 5 non-principal, 12
regular, 10 prime, 12
interval of, 28 principal, 12
cardinality proper, 12
of a language, 42 ultra, 12
of a structure, 43 finite intersection property, 12, 13, 38, 73
chain, 7, 12, 46, 55, 56, 62, 65 forces, 25
characteristic function, 56, 75 forcing, 5, 6
class, 29 formula, 42
proper, 29 closed, 42
closed, 13 substitution, 43
closed unbounded, 14
club, 14 Godel, 42
cofinality game, 61
<-cofinal, 8 generator, 36

=<-cofinality, 8
<-true cofinal, 8
=<-true cofinality, 8
cofinal, 8 ideal, 11
cofinal below, 73 éual 19
cofinality, 8 ’
persistentently cofinal, 76
sequence, 10

true cofinal, 8

true cofinality, 8

Hausdorff’s formula, 5, 55, 59, 64
hereditary, 47, 49, 55

extension lemma, 38
interpretation, 42, 43
isomorphism, 23

of structures, 45

cofinally cutting, 30-32, 72-75 Jonsson algebra, 49

constant, 42 model-theoretic characterization, 49
interpretation, 43

Continuum Hypothesis, 5 Lowenheim, 42
Generalized, 5 language, 42

cutting, 30, 32, 73 of set theory, 42
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Lemma symmetric, 7

Fodor, 14, 47 total, 7
generalization, 15 transitive, 7
Pressing Down, 14, 16, 47 trichotomic, 7
ultrafilter, 12
limit, 28 satisfaction, 44, 45

lower bound, 8 sentence, 43

greatest, 8 sequence ’
maximal, 8 club-guessing, 15, 16, 36

concatenation, 62

model, 42, 44, 45 silly square, 31, 71
strongly increasing, 19, 20, 22, 23
order universal, 33-35, 37-39
linear order, 7 Skolem, 42
partial order, 7 function, 50, 53
quasi order, 7 stationary, 14
strict linear order, 7 non-reflecting, 51, 52
strict partial order, 7 reflecting, 51
well-order, 6, 7, 10, 14, 18, 47, 55, 65 structure, 43
ordinal elementary embedding, 46
regular, 10 elementary equivalence, 45
sequence, 10 embedding, 45
=<-cofinal, 10 extension, 45
<-true cofinal, 10 isomorphism, 45, 46
cofinal, 10 morphism, 45
decreasing, 10 satisfaction, 45
increasing, 10 substructure, 45
non-decreasing, 10 elementary, 46
true cofinal, 10 substitution, 43
singular, 10 symbol
auxiliary, 42
pct, 23 function, 42
definition of, 23 interpretation, 43
properties, 23 logical, 42
pcf-theory, 3, 6, 7, 18, 49, 71 notational, 42
property relation
¢ (diamond), 15, 16, 36, 82 interpretation, 43

* (star), 19-21, 35, 37
bpp (bounding projection property), 19-21  Tarski, 42
Tarski-Vaught test, 46, 50

relation, 7 term, 42
anti-symmetric, 7 substitution, 43
element, 42 Theorem
equivalence relation, 7 Bukovsky-Hechler, 5
irreflexive, 7 Easton, 6
reflexive, 7 Erdos, Hajnal, Rado, 52
symbol, 42 Galvin-Hajnal, 6
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Silver, 6
Skolem-Lowenheim, 42, 46, 47, 49, 56, 62,
69
Tarski, 12
theory, 45
thinning out, 68
transitive, 47
transitive closure, 47

ultrafilter, 12

unbounded, 13

upper bound, 7
exact, 9
least, 8
minimal, 8

variable, 42
bound, 43
free, 43

Zermelo-Fraenkel Choice (ZFC), 5
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