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Summary

In this masterthesis we explore Shelah’s theory of possible cofinalities (pcf-theory) to find ℵω4 as an
upperbound for ℵℵ0

ω . Some basic knowledge of set theory, among other about ordinal and cardinal
numbers, is unavoidable.
In Chapter 1 we introducte the topic of cardinal exponentiation, being the only operation on infinite
numbers that is non-trivial. We see Hausdorff’s formula, the theorem of Bukovský and Hechler and a
theorem on the calculation of cardinal exponentiation. Then we consider Eastons theorem, showing
that there is a lot of freedom in cardinal exponentiation of regular cardinals. The theorems of Silver
and Galvin and Hajnal however lay limitations on the freedom of singular cardinal exponentiation.
Chapter 2 deals with some background knowledge, and is used to be precise about some widely
used definitions. In particular, on a strict linearly and partially ordered set (X,≺,≤) there are four
notions of a subset Y being cofinal in X:

1. cofinal: for all x ∈ X exists y ∈ Y such that x ≤ y,
2. ≺-cofinal: for all x ∈ X exists y ∈ Y such that x ≺ y,
3. true cofinal: cofinal and linearly ordered by ≤,
4. ≺-true cofinal: ≺-cofinal and strict linearly ordered by ≺.

We investigate these different notions and find sufficient conditions under which they coincide.
When X is an ordinal with standard orderings < and ≤, all notions of cofinality coincide.
In the first part of Chapter 3 we start on pcf-theory. The basic definition is

pcf(a) := {cf(
∏

a/D) : D is an ultrafilter on a},

for a set a of ordinals. Here
∏
a/D denotes the product of a reduced by the ultrafilter D, which

means the quotient set of
∏
a under the equivalence relation =D, which is given by

f =D g ⇔ {α ∈ a : f(α) = g(α)} ∈ D.

We usually assume that a is an infinite set of regular cardinals. It turns out to be very useful to
look at the ideal

J<λ(a) := {b ⊆ a : If D is an ultrafilter on a such that b ∈ D, then cf(
∏

a/D) < λ},

the set of subsets of a that ‘force’ cf(
∏
a/D) below λ, where λ is some cardinal. We show that∏

a/J<λ is λ-directed, from which is follows that cf(
∏
a/D) < λ if and only if D ∩ J<λ 6= ∅.

Therefore |pcf(a)| ≤ 2|a|, and pcf(a) has a maximal element. Another important result is that pcf(a)
is an interval of regular cardinals, when a is an interval of regular cardinals such that |a| < min(a).
In the second part of Chapter 3 we see that J<λ+ is generated over J<λ by a single element, called
bλ. The proof makes use of the existence of universal sequences, that are <J<λ -increasing sequences
〈fξ : ξ < λ〉 that are cofinal in

∏
a/D for any ultrafilter D such that cf(

∏
a/D) = λ.

Model theory will be build up from scratch in Section 4. We will see the basic notions of a language,
a structure, formulas, sentences, satisfaction, (elementary) embeddings, definable elements, the
Tarski-Vaught test and the theorems of Skolem and Löwenheim. Then we define

H(κ) := {x : x is hereditarily of cardinality less than κ} = {x : |
⋃
n<ω

⋃
...
⋃

︸ ︷︷ ︸
n

x| < κ},
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which will be frequently used in the remaining chapters.
Chapter 5 forms an intermezzo. We investigate characterizations and the existence of Jónsson
algebra’s, that are algebra’s that yield no strict subagebra’s of the same cardinality. There is a nice
model-theoretic characterization of the existence of a Jónsson algebra on a cardinal κ, namely κ is
Jónsson iff for all elementary substructures M of H(κ+) such that |M ∩κ| = κ, we have κ ⊆M . We
prove the following theorem using some pcf-theory from Chapter 3: If µ is singular and eventually
every ν < µ is Jónsson, then µ+ is Jónsson.
Chapter 6, 7 and 8 delve deep into pcf-theory. First we prove that if (min(A))|A| < sup(A) for some
interval A, then max pcf(A) = |

∏
A|, using model theory. This already has a non-trivial corollary,

namely ℵ|δ|δ < ℵ(2|δ|)+ for any limit ordinal δ. In particular,

ℵℵ0
ω < ℵ(2ℵ0 )+ .

In Chapter 7 we prove that

ℵcf(δ)
δ < ℵ(|δ|cf(δ))+ .

We use a two-player game Gξ = Gξ,f , where ξ ∈ κω for some fixed κ such that κℵ0 = κ and
f : (κ+)<ω → κ. In round n, Player I picks a club Cn ⊆ κ+ and Player II responds with an
an ∈ Cn. Player II wins iff f(〈a0, ..., an−1〉) = ξn for all n < ω. We prove that for each f there is
some ξ such that Player II has a winning strategy in the game Gξ. Chapter 7 is independent of 8,
but contains some interesting concepts of pcf-theory, such as

pcfµ(a) :=
⋃
{pcf(A) : A ⊆ a and |A| < µ}.

In Chapter 8 we will finally prove Shelah’s bound ℵℵ0
ω < ℵω4 assuming 2ℵ0 < ℵω. In general

ℵ|δ|δ < ℵ|δ|+4 ,

assuming 2|δ| < ℵδ. The proof of the bound is similar to the proof of bound in Chapter 6, but now
uses the result that |pcf(a)| < |a|+4 for an interval of regular cardinals a such that min(a) > 2|a|.
To prove this, we need some technical lemmas. We prove that we can choose the generating sets
bλ such that µ ∈ bλ implies bµ ⊆ bλ and pcf(bλ) = bλ. We reason that pcf(a) = [ℵδ+1,ℵδ+ρ+1)
for some ρ < (2|a|)+ and define a closure operation (.) on P (ρ + 1). The we use the club-guessing
sequences from Chapter 2 to show a contradiction of |pcf(a)| ≥ |a|+4.
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1 Introduction

1.1 Cardinal exponentiation

There are three basic operations on numbers: addition, multiplication and exponentiation. On
infinite cardinal numbers two of these operations become trivial, since we have

κ+ λ = κ · λ = max(κ, λ)

if at least one of κ and λ is an infinite cardinal. However, cardinal exponentiation turns out to be
highly non-trivial. For instance, the Continuum Hypothesis

2ℵ0 = ℵ1

and the Generalized Continuum Hypothesis

2ℵα = ℵα+1 for all ordinals α

are independent of the axioms of ZFC. Of course there is Hausdorff’s formula [8, (5.22)]:

ℵℵβα+1 = ℵα+1 · ℵ
ℵβ
α (1)

for all ordinals α and β, and it’s simple generalization

ℵℵβα+n = ℵα+n · ℵ
ℵβ
α

for all ordinals α and β and all natural numbers n. Bukovský and Hechler independently found the
following result:

Theorem 1.1. [1] If κ is a singular infinite cardinal and 〈2µ : µ < κ〉 becomes constant with value
λ, then 2κ = λ.

In general, we have the following theorem restraining the computation of cardinal exponentiation:

Theorem 1.2. [8, Theorem 5.20] Let κ and λ be infinite cardinals. Then

κλ =


2λ, if κ ≤ λ,
µλ, if µ < κ and µλ ≥ κ,
κ, if κ > λ, µλ < κ for all µ < κ and cf(κ) > λ,

κcf(κ), if κ > λ, µλ < κ for all µ < κ and cf(κ) ≤ λ.

There appeared to be much freedom in cardinal arithmetic. Cohen’s forcing technique [3, 4] was
used to counter many potential theorems. In particular, we have the following result by Easton:
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Theorem 1.3. [5, Theorem 1] [2, p.207] Assume ZFC is consistent. Suppose F : Ord → Ord
satisfies the following:

1. For all α, β ∈ Ord, if α < β then F (α) ≤ F (β).
2. For all α ∈ Ord, the cofinality of ℵF (α) is at least ℵα+1.

Then 2ℵα+1 = ℵF (α) for all α ∈ Ord is consistent with ZFC.

Note that Easton’s theorem only talks about cardinal exponentiation of successor cardinals. It was
thought that Easton-like theorems could be generalized to singular cardinals as well, by improving
the techniques of forcing and model construction. This came to a halt by the following theorem of
Silver:

Theorem 1.4. [9] If κ is singular and of uncountable cofinality, and 2λ = λ+ for all λ < κ, then
2κ = κ+.

A more general result was found by Galvin and Hajnal:

Theorem 1.5. [6] If ℵα is singular, of uncountable cofinality and such that 2λ < ℵα for all λ < ℵα,
then 2ℵα < ℵ(2|α|)+ .

A great contribution to more of such theorems on cardinal exponentiation came by Saharon Shelah
(1945), an Israeli mathmeticial. Shelah’s study of cofinalities of reduced products of sets of cardinals,
Shelah’s pcf-theory, proved uttermost fruitful. We will see some of these results in this thesis.

1.2 Notational conventions

We have the following notational conventions:
• P (a) denotes the powerset of the set a.
• ON denotes the class of all ordinals, Reg denotes the class of all regular cardinals.
• ot(E) denotes the order-type of E. We use this provided that E is a well-ordered set, so that

ot(E) is an ordinal. If E ⊆ α for some ordinal α, then ot(E) ≤ α.
• a ∪̇ b denotes the set a ∪ b and simultaneously states that a and b are disjoint. Similarly

⋃̇
A

denotes the set
⋃
A and states that the elements of A are mutually disjoint.

• ida denotes the identity map on the set a. When a is clear from the context, we just write id.
• The arrows �, ↪→ or ↔ may replace the arrow → in a function f : a → b, and respectively

state that f is surjective, injective or bijective.
• ⊂ means ‘is a strict subset of’. Therefore a ⊂ b if and only if (a ⊆ b and a 6= b).
• sup+ means ‘strict supremum’. For example, if αi ∈ ON for all i ∈ I, then sup+

i∈I αi =
min(α : αi < α for all i ∈ I}.
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2 Background

Before we can start on pcf-theory, we must agree on some basic definitions.

2.1 Orders

Definition 2.1. Let X be a set and let R ⊆ X ×X, i.e. R is (binary) relation on X. Then R is
called

1. reflexive iff (x, x) ∈ R for all x ∈ X,
2. irreflexive iff (x, x) /∈ R for all x ∈ X,
3. symmetric iff (x, y) ∈ R implies (y, x) ∈ R,
4. anti-symmetric iff (x, y), (y, x) ∈ R implies x = y,
5. transitive iff (x, y), (y, z) ∈ R implies (x, z) ∈ R,
6. total iff (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ X,
7. trichotomic iff either (x, y) ∈ R, (y, x) ∈ R or x = y for all x, y ∈ X,
8. an equivalence relation iff R is reflexive, symmetric and transitive,
9. a quasi order iff R is reflexive and transitive,

10. a partial order iff R is reflexive, anti-symmetric and transitive,
11. a strict partial order iff R is irreflexive and transitive (note that this implies non-symmetry

and anti-symmetry, since (x, y), (y, x) ∈ R can never occur),
12. a linear order iff R is anti-symmetric, transitive and total (note that totality implies reflex-

ivety),
13. a strict linear order iff R is transitive and trichotomic (note that irreflexivity follows from

trichotomy),
14. a well-order iff R is a strict linear order and for any Y ⊆ X exists y ∈ Y such that y R z for

all z ∈ Y \ {y}.
A linearly ordered set is also called a chain.

If R is a binary relation on X and Y ⊆ X, then the above definitions also apply to Y when we
consider R ∩ (Y × Y ). For instance we say that R is a quasi order on Y iff the following hold:

1. For all y ∈ Y we have (y, y) ∈ R.
2. For all x, y, z ∈ Y we have (x, y), (y, z) ∈ R implies (x, z) ∈ R.

When R is a relation on X and x, y ∈ X, we also write x R y instead of (x, y) ∈ R.
When R is an equivalence relation on X, we denote by X/R the set of equivalence classes of X and
by x/R the equivalence class of an element x ∈ X.
Quasi orderings and partial orderings are not that different; the only additional property of a partial
ordering is that it is anti-symmetric: (x, y), (y, x) ∈ R implies x = y. In fact, suppose X is quasi
ordered by R, and define the relation ∼ by x ∼ y iff (x, y), (y, x) ∈ R. It is easy to see that ∼ is
an equivalence relation on X. Define (x/∼) ≤ (y/∼) iff (x, y) ∈ R. This is well-defined, and ≤
is a partial order on X/∼. The quotient map X → X/∼ (given by x 7→ x/∼) is obviously order
preserving: x R y implies (x/∼) ≤ (y/∼).

Definition 2.2. Let ≤ be a quasi order on X. For m ∈ X, Y ⊆ X and λ a cardinal we say that
1. m is an upper bound for Y iff y ≤ m for all y ∈ Y ,

7



2. m is a least upper bound or supremum for Y iff m is an upper bound for Y and any other
upper bound m′ for Y satisfies m ≤ m′,

3. m is a minimal upper bound for Y iff m is an upper bound for Y and any other upper bound
m′ for Y satisfies m′ 6≤ m or m ≤ m′,

4. Y is bounded (in X) iff there exists n ∈ X such that n is an upper bound for Y ,
5. X is λ-directed iff every Z ⊆ X with |Z| < λ is bounded in X,

Lower bound, greatest lower bound and lower bound are defined similarly. When Y is a sequence
in X instead of a subset, the same definitions apply to Y and m where we consider the image of Y
rather than Y itself.

Suppose ≤ is a partial order on X. If m and m′ are both least upper bounds for Y , then m ≤ m′

and m′ ≤ m. Thus we obtain m = m′, hence a least upper bound is unique, if it exists. We denote
sup(Y ) for the supremum of Y . Similarly we denote inf(Y ) for the greatest lower bound, which is
unique if it exists.

2.2 Cofinality

We often encounter a set X on which is strict partial order and a quasi order are defined. The
orders may be related, for instance as in the following definition.

Definition 2.3. Let ≺ be a strict partial order on X and let ≤ be a quasi order on X. Then
(X,≺,≤) may have the following properties:
(P1) x ≺ y implies x ≤ y.
(P2) (x ≺ y and y ≤ z) implies x ≺ z; (x ≤ y and y ≺ z) implies x ≺ z.
(P3) For each x exists y such that x ≺ y.

For example, when (X,≤) is a quasi ordered set, then, with x ≺ y iff (x ≤ y and y 6≤ x) by
definition, (X,≺,≤) satisfies (P1) and (P2).
Note that if ≤ is a partial order, then (x ≤ y and y 6≤ x) if and only if (x ≤ y and x 6= y).

Definition 2.4. Let X = (X,≺,≤) a strict partially and quasi ordered and let Y ⊆ X. Then Y is
called

1. cofinal (in X) iff for all x ∈ X exists y ∈ Y such that x ≤ y,
2. ≺-cofinal (in X) if for all x ∈ X exists y ∈ Y such that x ≺ y,
3. true cofinal (in X) iff it is cofinal and linearly ordered by ≤,
4. ≺-true cofinal (in X) iff it is ≺-cofinal and strict linearly ordered by ≺.

Note that X is cofinal in X. We furthermore define the
1. cofinality of X, denoted cf(X): The least cardinal κ for which there exists a cofinal set of

cardinality κ,
2. ≺-cofinality of X, denoted cf≺(X): The least cardinal κ for which there exists a ≺-cofinal set

of cardinality κ; provided there is at least one ≺-cofinal set,
3. true cofinality of X, denoted tcf(X): The least cardinal κ for which there exists a true cofinal

set of cardinality κ; provided there is at least one true cofinal set,
4. ≺-true cofinality of X, denoted tcf≺(X): The least cardinal κ for which there exists a ≺-true

cofinal set of cardinality κ; provided there is at least one ≺-true cofinal set.
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Sometimes a set X only carries a strict partial order ≺. Then we define x ≤ y iff (x ≺ y or x = y),
so that ≤ is a quasi order on X. When X only has a quasi order ≤ take x ≺ y iff (x ≤ y and y 6≤ x)
by definition. Then ≺ is a strict partial order. Definition 2.4 still applies.
In addition to Definition 2.2 we can now define the notion of an exact upper bound:

Definition 2.5. Let (X,≺,≤) be a strict partially and quasi ordered set, let Y ⊆ X such that ≺
restricted to Y satisfies (P3) and let m ∈ X. Then m is called an exact upper bound of Y iff it is a
least upper bound of Y and Y is cofinal in {x ∈ X : x ≺ m}. That is, if x ≺ m then there exists a
y ∈ Y such that x ≤ y.

Now follows a lemma describing some circumstances where the different notions of cofinality coin-
cide.

Lemma 2.6. Let X = (X,≺,≤) a strict partially and quasi ordered set. Then the following hold:
1. When (P2) and (P3) hold, any cofinal subset is ≺-cofinal. When (P1) holds, any ≺-cofinal

subset is cofinal.

Proof. Let Y ⊆ X. Suppose Y is cofinal. Given x ∈ X, let x′ ∈ X such that x ≺ x′ by (P3)
and let x′ ≤ y for y ∈ Y . By (P2), x ≺ y. So Y is ≺-cofinal. Suppose that Y is ≺-cofinal.
Given x ∈ X, let x ≺ y for y ∈ Y . Then x ≤ y by (P1). So Y is cofinal.

2. When (P3) holds, there exists a ≺-cofinal set.

Proof. X itself is cofinal in X.

3. When x ≺ y iff (x ≤ y and y 6≤ x) and (P3) holds, then the notions of true cofinal and ≺-true
cofinal coincide.

Proof. Let Y ⊆ X. Suppose Y is true cofinal. Then it is cofinal, hence ≺-cofinal by Lemma
2.6.1, since (P2) and (P3) are satisfied. Let y, y′ ∈ Y . If y ≤ y′ and y′ ≤ y, then y = y′,
since Y is linear. If y ≤ y′ and y′ 6≤ y, then y ≺ y′; if y′ ≤ y and y 6≤ y′, then y′ ≺ y. The
last case where y 6≤ y′ and y′ 6≤ y is not possible, since ≤ is a linear order on Y . We have
thus show that Y is strict linearly ordered by ≺. Hence Y is ≺-true cofinal. Now suppose Y
is ≺-true cofinal. Then it is ≺-cofinal, hence cofinal by Lemma 2.6.1, since (P1) is satisfied.
Let y, y′ ∈ Y . If y ≤ y′ and y′ ≤ y, then y 6≺ y′ and y′ 6≺ y, so y = y′. So ≤ is anti-symmetric
on Y . Transitivity of ≤ on Y is automatic. If y ≺ y′ then y ≤ y′, if y′ ≺ y then y′ ≤ y, if
y = y′ then y ≤ y′ (and y′ ≤ y). So ≤ is a total order on Y . Thus Y is linearly ordered by ≤.
Hence Y is true cofinal.

4. When ≤ is linear, then the notions of cofinal and true cofinal coincide.

Proof. Any subset of a linear set is linear.

5. When ≺ is strict linear, then the notions of ≺-cofinal and ≺-true cofinal coincide.

Proof. Any subset of a strict linear set is strict linear.

We summarize the equivalences in the following diagram:

9



cofinal true cofinal

≺ -cofinal ≺ -true cofinal

≤ is linear

(P1)-(P3) x≺y⇔(x≤y and y 6≤x) and (P3)

≺ is strict linear

Figure 1: Sufficient conditions for equivalences of notions of cofinality.

We now turn our attention to ordinals and ordinal-indexed sequences. For two ordinals α and β,
we have α < β iff α ∈ β, and α ≤ β iff α = β or α < β. It is well known that any set of ordinals
is strict partially ordered by < and quasi ordered (even linearly ordered, even well-ordered) by ≤,
and that

α < β ⇔ α ≤ β and β 6≤ α⇔ α ≤ β and α 6= β.

Thus a limit ordinal λ satisfies all the equivalences in Figure 1. We have the very common definition
for a limit ordinal λ:

1. λ is called regular iff cf(λ) = λ.
2. λ is called singular iff cf(λ) < λ.

Regular ordinals are automatically cardinals. A similar definition works for successor ordinals, their
cofinality and true cofinality is always 1 and they have no <-cofinality nor <-true cofinality.

Definition 2.7. Let X = (X,≺,≤) a strict partially and quasi ordered set. Let S be a set of
ordinals. An S-sequence in X, i.e. a map S → X denoted as 〈xξ : ξ ∈ S〉, is called

1. non-decreasing iff ξ ≤ ξ′ ⇒ xξ ≤ xξ′ ,
2. increasing iff ξ < ξ′ ⇒ xξ ≺ xξ′ ,
3. decreasing iff ξ < ξ′ ⇒ xξ′ ≺ xξ,
4. cofinal (in X) iff it range {xξ : ξ ∈ S} is cofinal in X. Similarly, ≺-cofinal, true cofinal and
≺-true cofinal are defined.

Note that the range of a non-decreasing sequence is automatically totally ordered. Since ≤ was
already reflexive and transitive, the range is linearly ordered.
Note that the range an increasing sequence is automatically trichotomiccally ordered. Since ≺ was
already (reflexive and) transitive, the range is strict linearly ordered.
The next three lemmas prove Theorem 2.11, which relates the ≺-true cofinality to the existence of
an increasing ≺-true cofinal sequence of regular length.

Lemma 2.8. Let X = (X,≺) be a strict partially ordered set satisfying (P3). Suppose tcf≺(X) =
λ. Then there exists an increasing ≺-true cofinal λ-sequence in X.

Proof. Let Y be ≺-true cofinal in X with |Y | = λ. Let i : λ → Y be a bijection. Define an
increasing sequence 〈yξ : ξ < λ〉 by

1. y0 := i(0).
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2. If 〈yξ′ : ξ′ < ξ〉 is already defined and ξ is a successor, let ξ′+1 = ξ. Since Y is ≺-true cofinal,
let yξ′ ≺ y for some y ∈ Y . Let yξ := max(y, i(ξ)).

3. If 〈yξ′ : ξ′ < ξ〉 is already defined and ξ is a limit ordinal. Suppose no y ∈ Y satisfies yξ′ ≺ y
for all ξ′ < ξ. Let x ∈ X. Then x ≺ y for some y ∈ Y . Then yξ′ 6≺ y for some ξ′ < ξ. By
trichotomy of ≺ on Y we have yξ′ = y for yξ′ � y. Thus x ≺ yξ′ . Thus {yξ′ : ξ′ < ξ} would
be ≺-true cofinal, but this is impossible since |ξ| < λ. So there exists y ∈ Y such that yξ′ ≺ y
for all ξ′ < ξ. Take yξ := max(y, i(ξ)).

Then 〈yξ : ξ < λ〉 is an increasing λ-sequence in X and it is ≺-true cofinal: For x ∈ X, let x ≺ y
for some y ∈ Y . Then ξ := i−1(y) < λ and i(ξ) = y, so yξ = y or yξ � y. So x ≺ yξ.

Lemma 2.9. Let X = (X,≺) be a strict partially ordered set satisfying (P3). Suppose tcf≺(X) =
λ. Then λ is regular.

Proof. By Lemma 2.8, let 〈xξ : ξ < λ〉 be an increasing ≺-true cofinal sequence. Let 〈ξα : α < cf(λ)〉
be increasing cofinal in λ.1 Then 〈xξα : α < cf(λ)〉 is increasing and ≺-true cofinal in X: Obviously
increasing and for x ∈ X, let x ≺ xξ for some ξ < λ, let ξ < ξα for some α < cf(λ), then
x ≺ xξ ≺ xξα . By minimality of λ it follows that cf(λ) ≥ λ.

Lemma 2.10. Let X = (X,≺) be a strict partially ordered set satisfying (P3). Let 〈xξ : ξ < λ〉
be increasing and ≺-true cofinal in X and suppose λ is regular. Then tcf≺(X) = λ.

Proof. Certainly µ := tcf≺(X) ≤ λ. By Lemma 2.8, let 〈yχ : χ < µ〉 be an increasing ≺-true cofinal
sequence. For χ < µ, recursively define ξχ < λ such that ξχ′ ≺ ξχ for all χ′ < χ and yχ ≺ xξχ .2
Then 〈xξχ : χ < µ〉 is increasing and ≺-true cofinal in X: Increasing by construction and for x ∈ X,
let x ≺ yχ, then x ≺ xξχ . Then 〈ξχ : χ < µ〉 is cofinal in λ: For ξ < λ, let xξ ≺ xξχ , then ξ < ξχ.
Hence λ = cf(λ) ≤ µ. So µ = λ.

Theorem 2.11. Let X = (X,≺) be a strict partially ordered set satisfying (P3). Then tcf≺(X) = λ
if and only if there exists an increasing and ≺-true cofinal sequence 〈xξ : ξ < λ〉 in X and λ is
regular.

Proof. Left to right are Lemma 2.8 and Lemma 2.9. Right to left is Lemma 2.10.

2.3 Ideals and filters

Definition 2.12. Let X be a set. An ideal (on X) is a set I such that
1. I ⊆ P (X), ∅ ∈ I,
2. A,B ∈ I implies A ∪B ∈ I,
3. A ∈ I, B ⊆ A implies B ∈ I.

A filter (on X) is a set F such that
1. F ⊆ P (X), X ∈ F ,
2. A,B ∈ F implies A ∩B ∈ F ,
3. A ∈ I, A ⊆ B implies B ∈ F .
1To be precise, here we use Lemma 2.8 with λ for X and cf(λ) for λ and the fact that all notions of cofinality are

equivalent for λ.
2At stage χ, {ξχ′ : χ′ < χ} is not cofinal in λ since λ is regular and χ < µ ≤ λ.
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An ideal can be considered as a notion of smallness; a filter can be considered as a notion of
largeness.
If F is an ideal on X and P is a property, then we say that P holds D-almost everywhere or P
holds for D-almost all x ∈ X, iff {x ∈ X : P (x)} ∈ D, so iff the subset of X where P holds is large.
When I is an ideal, then I∗ := {X \A : A ∈ I} is a filter, called the dual filter of I. Similarly, when
F is a filter then F ∗ := {X \ A : A ∈ F} is an ideal called the dual ideal of F . Clearly (I∗)∗ = I
and (F ∗)∗ = F .

Definition 2.13. Let F be a filter on X. Then F is called
1. proper iff F 6= P (X), which is equivalent to ∅ /∈ F .

Suppose F is proper. Then F is called
2. maximal iff there is no proper filter F ′ on X with F ⊂ F ′,
3. ultra or an ultrafilter iff for all A ⊆ X we have A ∈ F or X \A ∈ F (this ‘or’ is automatically

strict),
4. prime iff A ∪B ∈ F implies A ∈ F or B ∈ F ,
5. concentrated on B iff B ∈ F ,
6. principal at B iff F = {A ⊆ X : B ⊆ A}.
7. non-principal iff it is not principal for any B.

Note that each definition for filters applies to ideals as well when we consider their duals.

Lemma 2.14. Let F be a filter on X. Then F is maximal if and only if it is ultra if and only if it
is prime.

Proof. Exercise for the reader.

Definition 2.15. Let X be a set and G ⊆ P (X). Then we say that G has the finite intersection
property iff A1 ∩ ... ∩An 6= ∅ for all A1, ..., An ∈ G, for all n ∈ N.

Proposition 2.16. Let G ⊆ P (X) have the finite intersection property. Then G extends to a
proper filter F on X.

Proof. Define F := {A ⊆ X : ∃n ∈ N,∃A1, ..., An ∈ G,A ⊇ A1 ∩ ... ∩An}. Then G ⊆ F and F is a
proper filter on X.

To be ultimately precise, in the definition above one should require n 6= 0 or live by the convention
that an empty intersection equals X.

Theorem 2.17 (Tarski, Ultrafilter Lemma). Let F be a proper filter on X. Then F extends to
an ultrafilter, i.e. there exists an ultrafilter U on X such that F ⊆ U .

Proof. Let P = {F ′ : F ′ is a proper filter on X and F ⊆ F ′} and order P by inclusion ⊆. Any
⊆-chain C in P has an upper bound in P , namely

⋃
C. Then by Zorn’s Lemma, P has a maximal

element. This maximal element is a maximal filter, hence an ultrafilter on X extending F .

In this thesis we will often start with a proper ideal I and extend its dual filter I∗, which is
automatically proper, to an ultrafilter U . Any filter extension of I∗ is disjoint from I, in particular
so is U .
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Also we encounter a lot of the following: We have a filter F on Y and Y ⊆ X. Then we can extend
F to a filter F̂ on X, by

F̂ : = {A ⊆ X : A ∩ Y ∈ F}
= {A ⊆ X : A ⊇ B for some B ∈ F}
= {A ∪B : A ∈ F,B ⊆ (X \ Y )}

Properness and ultraness are preserved under this extension. Note that F ⊆ F̂ . One could also
consider the filter {A∪ (X \Y ) : A ∈ F} on X, but this filter is not ultra, except in the trivial case
where F is ultra and Y = X.
On the other hand, when F is a filter on X and Y ⊆ X, then

F ′ : = {A ∩ Y : A ∈ F}

is a filter on Y . Properness is not preserved under this operation, ultraness is. Clearly F ∩P (Y ) ⊆
F ′. We have F ′ = F ∩ P (Y ) if and only if Y ∈ F . If Y ∈ F and F is proper, then F ′ is proper.
In a similar way, this also works for ideals.

Theorem 2.18. Let I be a proper ideal on X and let B ⊆ X be such that B /∈ I. Then there
exists a proper filter F on X disjoint from I and such that B ∈ F .

Proof. Since B /∈ I, there is no A ∈ I such that B ⊆ A. So B∩(X\A) 6= ∅ for all A ∈ I. So I∗∪{B}
has the finite intersection property, hence extends to a proper filter F which is automatically disjoint
from I.

Lemma 2.19. Let I be a filter on a and B ⊆ a. Then I ′ := {X ⊆ a : X ⊆ A∪B for some A ∈ I}
is an ideal on a and it is the smallest ideal containing B and I. If a \B /∈ I then I ′ is proper (and
I is proper). Let X,Y ⊆ a. If (X \B) ∩ Y /∈ I then X ∩ Y /∈ I ′.

Proof. We have
1. Clearly I ′ ⊆ P (a) and ∅ ∈ I ′.
2. If X ⊆ A ∪ B and X ′ ⊆ A′ ∪ B for some A,A′ ∈ I, then X ∪ X ′ ⊆ (A ∪ B) ∪ (A′ ∪ B) =

(A ∪A′) ∪B ∈ I ′ since A ∪A ∈ I.
3. If X ⊆ A ∪B for some A ∈ I and X ′ ⊆ X then X ′ ⊆ A ∪B hence X ′ ∈ I ′.

Clearly I ′ contains B and I and any other ideal containing B and I must contain I ′. If a \B /∈ I,
then a \ B /∈ I ′: If a \ B ⊆ A ∪ B for some A ∈ I, then a \ B ⊆ A hence a \ B ∈ I, contradiction.
If X ∩ Y ∈ I ′, then X ∩ Y ⊆ A ∪B for some A ∈ I. So (X \B) ∩ Y ⊆ A, so (X \B) ∩ Y ∈ I.

2.4 Club-sets, stationary sets and Fodor’s Lemma

The following notions should be familiar to set-theorists.

Definition 2.20. Let C and E be sets and α be an ordinal. We have the following definitions:
1. C is α-closed or closed in α or simply closed when α is understood iff for all β < α we have

(sup(C ∩ β) = β implies β ∈ C).
2. C is α-unbounded or unbounded in α or simply unbounded when α is understood iff for all
β < α there exists some γ ∈ C such that β ≤ γ < α.
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3. C is closed unbounded in α or (an) α-club(set) or simply (a) club(set) when α is understood
when C is α-closed and α-unbounded.

4. C is bounded by α iff for all β ∈ C we have β ≤ α.
5. C is bounded below α iff there exists some β < α such that for all γ ∈ C we have γ ≤ β, i.e.

iff there exists some β < α such that C is bounded by β.
6. E is α-stationary or stationary in α or simply stationary when α is understood iff any α-

clubset intersects E.

Note that we do not require an α-club set to be a subset of α. If we desire this, we say C is an
α-club subset of α, or simply write C ⊆ α. Clearly E is already α-stationary if E intersects only
all α-club subsets of α.

Lemma 2.21. Let α be an ordinal. Then there exists a set C ⊆ α which is club in α and which
has ot(C) = cf(α).

Proof. Let 〈αξ : ξ < cf(α)〉 be increasing cofinal in α. For χ < cf(α) recursively define α′χ by
1. Base case: α′0 := α0,
2. Successor case: α′χ+1 := min({αξ : ξ < cf(α)} \ (α′χ + 1)),
3. Limit case: α′χ := supχ′<χ α′χ′ .

Then {α′χ : χ < cf(α)} ⊇ {αξ : ξ < cf(α)}, so 〈α′χ : χ < cf(α)〉 is increasing, cofinal and continuous.
Hence C := {α′χ : χ < cf(α)} is club in α and ot(C) = cf(α).

It is well-known that every well-ordered set is isomorphic to a unique ordinal number, and this
isomorphism is unique as well. Hence also every well-ordered set carries a notion of club-subsets
and stationary subsets, via it’s unique isomorphism to a unique ordinal number.

Example 2.22. Let β be a limit ordinal and let C ⊆ β be β-club. Then C is well-ordered. So
there is a notion of C-clubsets and C-stationary sets, namely: A C-club subset of C is a set c ⊆ C
such that

1. for all α ∈ C exists α′ ∈ c such that α < α′,
2. if α ∈ C and sup(c ∩ α) = α, then α ∈ c.

and e ⊆ C is C-stationary iff it intersects every C-club subset. Suppose c ⊆ C is C-club. Then it
is clearly β-unbounded, and if α < β is such that sup(c ∩ β) = β, then sup(C ∩ β) = β, so β ∈ C,
thus β ∈ c. Thus c is β-club. Now suppose e ⊆ C is C-stationary. Let D be β-club. Then D ∩ C
is β-club. Thus clearly D ∩ C is C-club. So e intersects D ∩ C, so intersects D. So e is in fact
β-stationary. So if c, e ⊆ C, then

c is C-club⇔ c is β-club,
e is C-stationary⇔ e is β-stationary.

We have the following lemma on stationary subsets.

Lemma 2.23 (Fodor’s Lemma or Pressing Down Lemma). Let κ be a regular uncountable cardinal
and let S be κ-stationary. Let f be a regressive function on S, i.e. f(α) < α for all α ∈ S \ {0}.
Then there exists a γ such that {α ∈ S : f(α) = γ} is κ-stationary.
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A proof relies on diagonal intersections of clubsets. For such a proof, see for instance [8, Theorem
8.7]. In Section 4.4 we will prove this lemma for κ = ω1 and S = ω1. The following lemma is a
generalization to cardinals of uncountable cofinility.

Lemma 2.24 (Generalization of Fodor’s Lemma). Let κ be a cardinal of uncountable cofinality
and let S be κ-stationary. Let f be a regressive function on S, i.e. f(α) < α for all α ∈ S \ {0}.
Then there exists a γ such that {α ∈ S : f(α) ≤ γ} is κ-stationary.

Proof. Let 〈κi : i < cf(κ)〉 be increasing, cofinal and continuous in κ. Then T := {i < cf(κ) : κi ∈ S}
is cf(κ)-stationary, namely, if C is cf(κ)-club, then {κi : i ∈ C} is κ-club, hence intersects S, so
there is some i ∈ C such that κi ∈ S, thus C intersects T . Define

g : T → cf(κ)
i 7→ min(j : f(κi) < κj+1)

Since f(κi) < κi, we have g(i) < i. Thus g is regressive on T , so apply Fodor’s Lemma to obtain
j < cf(κ) such that E := {i ∈ T : g(i) = j} is cf(κ)-stationary. Then F := {κi : i ∈ E} is
κ-stationary, namely, if C is κ-club, then C ∩ {κi : i < cf(κ)} is κ-club, so {i < cf(κ) : κi ∈ C} is
cf(κ)-club, so intersects E, so F intersects C. Of course, F ⊆ S, and if i ∈ E, then g(κi) = j, so
f(κi) < κj+1. So {α ∈ S : f(α) ≤ κj+1} is κ-stationary.

2.5 Club-guessing

Lemma 2.25. Let µ and κ be infinite cardinals such that cf(κ) > µ and µ is regular. Then
S(κ, µ) := {α < κ : cf(α) = µ} is κ-stationary.

Proof. Let C be any closed unbounded subset of κ. Then |C| ≥ cf(κ) > µ, so let 〈αi : i < µ〉 be
the increasing sequence of the first µ elements of C. Then α := limi→µ αi satisfies α < κ, cf(α) = µ
and α ∈ C. Hence C ∩ E 6= ∅. Since C was arbitrary, E is stationary.

Definition 2.26. Let µ, κ be regular cardinals such that µ < κ. By Lemma 2.25, S(κ, µ) is κ-
stationary. Let T ⊆ S be again κ-stationary. The triple (κ, µ, T ) may have the diamond property
�club(κ, µ)(T ), which is defined as:
There exists 〈Sα : α ∈ T 〉 such that

1. for all α ∈ T we have Sα ⊆ α and Sα is α-club,
2. for all κ-club C we have {α ∈ T : Sα ⊆ C} is κ-stationary.

We write �club(κ, µ) for �club(κ, µ)(S(κ, µ)). We call such a sequence 〈Sα : α ∈ T 〉 a club-guessing
sequence for T .3.

In general �club(κ, µ) is not always true. We will prove that it holds when ℵ1 < µ+ < κ via the
following lemma.

Theorem 2.27. Let µ, κ be regular, uncountable and such that µ+ < κ. Let T ⊆ S(κ, µ) be
κ-stationary. Let 〈Sα : α ∈ T 〉 be such that Sα ⊆ α, Sα is α-club and |Sα| = µ, for all α ∈ T .
Then there is a κ-club C such that 〈(Sα ∩ C)′ : α ∈ T 〉 is a club-guessing sequence for T , where
(Sα ∩ C)′ = Sα ∩ C if this is α-club, and (Sα ∩ C)′ = α if Sα ∩ C is not α-club.

3Guessing sequences are in itself an interesting topic in set theory, see for instance [7].
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Proof. Suppose not. For all β < µ+ we will define Cβ and 〈Sβα : α ∈ T 〉 such that for all β the
following hold:
(i)β Cβ is κ-club.
(ii)β For all α ∈ T we have Sβα = Sα ∩

⋂
β′<β Cβ′ .

(iii)β {α ∈ T : Sβα ⊆ Cβ} is not stationary in κ.
We do this by recursion; suppose it has been done for all β′ < β, for some β < κ. Then of course
we define Sβα := Sα ∩

⋂
β′<β Cβ′ for all α ∈ T . Now C :=

⋂
β′<β Cβ′ is κ-club. So Ĉ := {α ∈

C : sup(α ∩ C) = α}, i.e. the set of limit points of C, is κ-club (here we use that κ is regular
and uncountable, or in fact that κ is of uncountable cofinality). Since we assumed the lemma to
be false, 〈(Sα ∩ C)′ : α ∈ T 〉 is not a club-guessing sequence for T , meaning that there is a κ-club
Cβ such that {α ∈ T : (Sα ∩ C)′ ⊆ Cβ} is not κ-stationary. We will show that it follows that
{α ∈ T : Sβα ⊆ Cβ} is not κ-stationary:
If it were, we prove that {α ∈ T : (Sα ∩ C)′ ⊆ Cβ} would be κ-stationary. Let D be κ-club.
Then D ∩ Ĉ is κ-club (since κ > ℵ0). So D ∩ Ĉ intersects {α ∈ T : Sβα ⊆ Cβ}, say in he point
α. Since Sα and α ∩ C are α-club, also Sα ∩ (α ∩ C) = Sα ∩ C is α-club (here we use that µ
is regular and uncountable, and cf(α) = µ). Thus (Sα ∩ C)′ = Sα ∩ C = Sβα ⊆ Cβ . Therefore
α ∈ {α ∈ T : (Sα∩C)′ ⊆ Cβ}, hence D intersects {α ∈ T : (Sα∩C)′ ⊆ Cβ}. Since D was arbitrary,
we have {α ∈ T : (Sα ∩ C)′ ⊆ Cβ} is κ-stationary, a contradiction.
Let D :=

⋂
β<µ+ Cβ , then D is κ-club. For each α ∈ T the sequence 〈Sβα : β < µ+〉 is ⊆-

decreasing, but |S0
α| = |Sα| = µ. So we let βα < µ+ such that Sβ′α = Sβαα for all β′ > βα. The

assignment α 7→ βα restricts to a map T \ µ+ → µ+, and this a regressive function on the κ-
stationary set T \ µ+. By the Pressing Down Lemma (Lemma 2.23), there exists a γ < µ+ such
that E := {α ∈ T \ µ+ : βα = γ} is still κ-stationary. Now

Sγα = Sγ+1
α = S0

α ∩
⋂

β′<γ+1
Cβ′ = S0

α ∩

 ⋂
β′<γ

Cβ′

 ∩ Cγ = Sγα ∩ Cγ , so Sγα ⊆ Cγ

for all α ∈ E. So {α ∈ T : Sγα ⊆ Cγ} is κ-staionary, contradicting (iii)γ .

Corollary 2.28. Let µ, κ be regular, uncountable and such that µ+ < κ. Let T ⊆ S(κ, µ) be
κ-stationary. Then �club(κ, µ)(T ) holds.
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3 Pcf-theory

3.1 The definition of pcf

3.1.1 Relations and filters

Recall that a filter can be seen as a notion of largeness. So one notion of two functions being ‘almost
equal’ would be to require that they agree on a set that is considered large by some filter. So we
will call functions equal modulo a filter F if they agree on a set in F . The rigorous definition is as
follows:

Definition 3.1. Let X be a set and let F be a filter on X. Let f and g be two functions with
domain X. Then f equals g modulo F , notation f =F g, iff {x ∈ X : f(x) = g(x)} ∈ F .

Note that equality is just some relation to compare functions. In fact, we can extend this definition
to any kind of relation.

Definition 3.2. Let X be a set and let F be a filter on X. Let R be any binary relation. Let f
and g be two functions with domain X. Then we write f RF g iff {x ∈ X : f(x)R g(x)} ∈ F .

An example is when f and g are ordinal-valued functions, and R is taken to be the standard < or
≤ on the ordinals.
We often encounter not just two functions, but a set of functions. For example, we often consider∏
X := {f : X →

⋃
X : f(x) ∈ x for all x ∈ X}. Let R be a binary relation on

⋃
X, i.e.

R ⊆
⋃
X ×

⋃
X. Let F be an ultrafilter on X. Then again define for f, g ∈

∏
X,

f RF g ⇔ {x ∈ X : f(x) R g(x)} ∈ F.

From now on, we use the following notation

[f R g] = {x ∈ X : f(x) R g(x)}.

Some properties of R from Definition 2.1 may be inherited by RF . We list them here.
1. Reflexivety: Suppose R is reflexive. Then for any f ∈

∏
X we have [f R f ] = X ∈ F , so

f RF f . So RF is reflexive.
2. Irreflexivety, assuming F is proper: [f R f ] = ∅ /∈ F , so f 6RF f .
3. Symmetry: If f RF g then [g R f ] = [f R g] ∈ F , so g RF f .
5. Transitivity: If f RF g and g RF h then [f R h] ⊇ [f R g] ∩ [g R h] ∈ F , so f RF h.
6. Totality, assuming F is ultra: If f 6RF g, then [f R g] /∈ F , so [g R f ] = X \ [f R g] ∈ F , so
g RF f .

8. Equivalence relation: Reflexivity, symmetry and transitivity are inherited.
9. Quasi order: Reflexivity and transitivity are inherited.

11. Strict partial order, assuming F is proper: Irreflexivity and transitivity are inherited.
Other properties of R are not inherited by RF . Recall that A ∪̇B simultaneously denotes the union
A ∪ B of sets A and B and claims that A and B are disjoint. The following properties are not
inherited:

4. Anti-symmetry: Suppose R is anti-symmetric. If f RF g and g RF f then [f = g] ⊇ [f R
g]∩[g R f ] ∈ F , so f =F g but not necessarily f = g. So RF is not necessarily anti-symmetric.
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7. Trichotomy, even if we assume that F is ultra: [f R g] ∪̇ [f = g] ∪̇ [g R f ] = X ∈ F , so
either [f R g] ∈ F or [f = g] ∈ F or [g R f ] ∈ F , so either f RF g or f =F g (but not
necessarily f = g) or g RF f .

10. Partial order: Only anti-symmetry is not inherited.
12. Linear order: Only anti-symmetry is not inherited.
13. Strict linear order, even if we assume that F is ultra: Only trichotomy is not inherited.
14. Well-order: Trichotomy is not inherited.

Note that the relation RF is ⊆-preserving in the following sense:

If R ⊆ R′ and F ⊆ F ′, then RF ⊆ R′F ′ .

When RF is an equivalence relation, for example when R is, we can look at the set of RF -equivalence
classes in

∏
X, denoted as

∏
X/RF , instead of looking at

∏
X itself. We write

∏
X/F :=

∏
X/RF

when R is understood. We write f/F for the equivalence class of an element f ∈
∏
X in

∏
X/F .

The following example is of crucial importance in pcf-theory.

Example 3.3. Let a be a non-empty set of ordinals and F a proper filter on a. Consider the
relation ‘equality’ to obtain

∏
a/F =

∏
a/=F . On

∏
a/F we define < and ≤ by

1. f/F < g/F iff f <F g, where < is standard on ordinals. Then:
(a) < is well-defined: If f/F = f ′/F , g/F = g′/F and f <F g, then [f ′ < g′] ⊇ [f ′ =

f ] ∩ [f < g] ∩ [g = g′] ∈ F , so f ′ <F g′.
(b) < is a strict partial order: <F is a strict partial order since < is a strict partial order.
(c) < is a strict linear order, assuming F is ultra: Either f/F < g/F or g/F < f/F or

f/F = g/F .
2. f/F ≤ g/F iff f ≤F g, where ≤ is standard on ordinals. Then:

(a) ≤ is well-defined: If f/F = f ′/F and g/F = g′/F and f ≤F g, then [f ′ ≤ g′] ⊇ [f ′ =
f ] ∩ [f ≤ g] ∩ [g = g′] ∈ F , so [f ′ ≤ g′] ∈ F and f ′ ≤F g′. Another proof is: Since
≤ on ordinals is transitive, so is ≤F . Since =⊆≤, we have =F ⊆≤F . If f/F = f ′/F ,
g/F = g′/F and f ≤F g, then also f ′ ≤F f and g ≤F g′, so f ′ ≤F g′.

(b) ≤ is a partial order: If f ≤F g and g ≤F f then f =F g. Reflexivity and transitivity
hold for ≤F , hence for ≤ on

∏
a/F .

(c) ≤ is a linear order, assuming F is ultra: If f/F 6≤ g/F , then [f ≤ g] /∈ F , so [g ≤ f ] ⊇
[f 6≤ g] ∈ F , so g/F ≤ f/F .

We thus have that (
∏
a/F,<,≤) is a strict partial and quasi ordered set. Does it satisfy (P1)-(P3)

from Definition 2.3, and how do < and ≤ relate?
We have [f < g] ∪̇ [f = g] = [f ≤ g]. So [f < g] ∈ F implies [f ≤ g] ∈ F and [f = g] /∈ F (assuming
F is proper). So f/F < g/F implies (f/F ≤ g/F and f/F 6= g/F ). So (P1) always holds. Also it
is easy to see that (P2) always holds.
When F is ultra, ([f ≤ g] ∈ F and [f = g] /∈ F ) implies [f < g] ∈ F , i.e. f/F < g/F if and only if
(f/F ≤ g/F and f/F 6= g/F ). Since ≤ is anti-symmetric (on

∏
a/F ), we have

f/F < g/F ⇔ f/F ≤ g/F and f/F 6= g/F ⇔ f/F ≤ g/F and g/F 6≤ f/F.

If every α ∈ a is a non-zero limit ordinal, then for any f/F ∈
∏
a/F we have f/F < (f + 1)/F ,

where (f + 1)(α) := f(α) + 1, so (P3) is also satisfied.
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In fact, in the above example it is not necessary to take the domain of the functions f and g to be
in
∏
a. The definition of < and ≤ still apply when f and g are just ordinal-valued functions with

domain a.
The above example leads to the following theorem:

Theorem 3.4. Suppose a 6= ∅ consists of non-zero limit ordinals. Let F be a proper filter on a
and let F ′ be any proper filter with F ⊆ F ′. Suppose tcf<(

∏
a/F ) = λ. Then tcf<(

∏
a/F ′) = λ.

When F ′ is ultra, we have cf(
∏
a/F ′) = λ.

Proof. By Theorem 2.11 let 〈fξ/F : ξ < λ〉 be an increasing and <-true cofinal sequence in
∏
a/F

with λ regular. Since F ⊆ F ′, f/F < g/F implies f/F ′ < g/F ′ for any f, g ∈
∏
a. Thus

〈fξ/F ′ : ξ < λ〉 is an increasing and <-true cofinal sequence in
∏
a/F ′. Again by Theorem 2.11,

tcf<(
∏
a/F ′) = λ. When F ′ is ultra, (

∏
a/F ′, <,≤) is strict linearly and linearly ordered, and

f/F ′ < g/F ′ if and only if (f/F ′ ≤ g/F ′ and f/F ′ 6= g/F ′), thus (P1)-(P3) are satisfied. By
Lemma 2.6, all notions of cofinal then coincide.

3.1.2 Properties of <I-increasing sequences

Note that everything we have done for filters in the previous paragraph, we could have done for
ideals, when considering their duals. For example, when I is an ideal on a set X and f, g ∈

∏
X,

we have f =I g iff [f = g] ∈ I∗ iff [f 6= g] ∈ I.
We now discuss some further properties of an <I -increasing sequence in

∏
a/I.

Definition 3.5. Let X be a set, let I be an ideal on X, let S be a set of ordinals and let f =
〈fξ : ξ ∈ S〉 be an <I -increasing S-sequence in ONX . Then f is called strongly increasing iff there
exists a sequence 〈Zξ : ξ ∈ S〉 in I such that

ξ < ξ′, α ∈ a \ (Zξ ∪ Zξ′) ⇒ fξ(α) < fξ′(α).

Clearly strong increase is stronger than (normal) increase. Strong increase requires some uniform
increase, each functions fξ has only a fixed I-small set Zξ where it can behave wild.

Definition 3.6. Let X be a set, let I be an ideal on X, let κ ≤ λ be regular cardinals and let
f = 〈fξ : ξ < λ〉 be an <I -increasing λ-sequence in ONX . Then f may satisfy the following star
property:

∗κ : When S ⊆ λ is unbounded, there exists S0 ⊆ S such that
ot(S0) = κ and 〈fξ : ξ ∈ S0〉 is strongly increasing.

Definition 3.7. Let A be a set, let I be an ideal on A, let κ ≤ λ be regular cardinals and let
f = 〈fξ : ξ < λ〉 be an <I -increasing λ-sequence in ONA. Then f has the bounding projection
property for κ or has bppκ iff for all 〈Sα : α ∈ A〉 such that Sα ⊆ ON and |Sα| < κ and α 7→ supSα
is an <I -upper bound for f , there exists a ξ < λ such that f+

ξ = proj(fξ, 〈Sα : α ∈ A〉), defined by
proj(fξ, 〈Sα : α ∈ A〉)(α) = min(Sα \ fξ(α)), is an <I -upper bound for f .

Strictly speaking, it is not defined what is means to be an <I -upper bound, since upper bounds
were only defined for quasi orders. The definition is of course straightforward: m ∈ X is an <-upper
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bound for Y ⊆ X iff y < m for all y ∈ Y . In the above situation, an <I -upper bound for f is
precisely an ≤I -upper bound for f , since f is <I -increasing. In general: If Y satisfies (P3) and X
satisfies (P2), then <I -upper bounds for Y are precisely ≤I -upper bounds for Y .
We will relate ∗κ and bppκ in the following lemmas and Theorem 3.11, using strongly increasing
sequences.

Lemma 3.8. Let A be a set, let I be an ideal on A, let κ ≤ λ be regular cardinals and let
f = 〈fξ : ξ < λ〉 be an <I -increasing λ-sequence in ONA satisfying ∗κ. If |A| < κ, then f has bppκ.

Proof. Suppose not and let S = 〈Sα : α ∈ A〉 be a counterexample. Modify each fξ on an I-set
such that fξ(α) < supSα for all α ∈ A. Then 〈fξ : ξ < λ〉 still satisfies ∗κ.
For any ξ < λ we associate a ξ̄ < λ: If ξ < λ, then f+

ξ = proj(fξ, S) is not an <I -upper bound for
f . Thus fξ̄ 6<I f+

ξ for some ξ̄. When ξ̄ < ξ′ then fξ̄ <I fξ′ , so fξ′ 6≤I f+
ξ , so [f+

ξ < fξ′ ] /∈ I.
For β < λ, recursively define ξβ < λ such that ξβ′ < ξβ for all β′ < β. Then S := {ξβ : β < λ} is
unbounded in λ and if ξ < ξ′ in S then [f+

ξ < fξ′ ] /∈ I. By ∗κ, let T ⊆ S be such that 〈fξ : ξ ∈ T 〉
is strongly increasing. Let 〈Zξ : ξ ∈ T 〉 be a sequence in I such that ξ < ξ′, α ∈ A \ (Zξ ∪ Zξ′) ⇒
fξ(α) < fξ′(α).
To any ξ ∈ T we will associate an αξ ∈ A. Let ξ ∈ T , let ξ+ := min(T \(ξ+1)), then [f+

ξ < fξ+ ] /∈ I
but Zξ, Zξ+ ∈ I, hence we pick some αξ ∈ [f+

ξ < fξ+ ] \ (Zξ ∪ Zξ+).
The map T → A given by ξ 7→ αξ maps a set of size κ into a set of size strictly less than κ. So let
T ′ ⊆ T of size κ and α ∈ A such that αξ = α for all ξ ∈ T ′. When ξ < ξ′ in T ′, we have

f+
ξ (α) < fξ+(α) ≤ fξ′(α) ≤ f+

ξ′ (α)

where the second inequality holds since ξ+ ≤ ξ′ and α = αξ /∈ Zξ ∪Zξ+ and α = αξ′ /∈ Zξ′ ∪Z(ξ′)+ ,
so α /∈ Zξ+ ∪ Zξ′ ; and the third inequality holds by definition of f+

ξ′ . We thus showed that
〈f+
ξ (α) : ξ ∈ T ′〉 is an increasing sequence in Sα of length κ, thus |Sα| ≥ κ, contradiction.

Lemma 3.9. Let A be a set, let I be an ideal on A, let λ be a regular cardinal and let f = 〈fξ : ξ <
λ〉 be an <I -increasing sequence in ONA satisfying bpp|A|+ . If λ > |A|+, then f has a ≤I -minimal
upper bound.

Proof. Suppose not. Let h0 be any <I -upper bound for f , for instance h0(α) = sup+
ξ<λ fξ(α). We

define Sχ = 〈Sχα : α ∈ A〉 for χ < |A|+ such that for all χ we have:
1. |Sχα | ≤ |A| for all α.
2. For all χ′ ≤ χ we have Sχ′α ⊆ Sχα .
3. α 7→ supSχα is an <I -upper bound for f .

We do this by recursion.
1. Base case: Take S0

α := {h0(α)}.
2. Successor case: Given 〈Sχα : α ∈ A〉 for some χ, employ bbp|A|+ and let ξχ < λ such that
hχ := proj(fξχ , 〈Sχα : α ∈ A〉) is an <I -upper bound for 〈fξ : ξ < λ〉. If ξχ < ξ, then
fξχ <I fξ <I hχ so

hχ = proj(fξχ , Sχ) ≤I proj(fξ, Sχ) ≤I proj(hχ, Sχ) = hχ,
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so in fact we have =I everywhere. We have hχ is an <I -upper bound, hence an ≤I -upper
bound, but by assumption it is not a minimal upper bound. So there exists an upper bound
uχ such that uχ ≤I hχ and hχ 6≤I uχ, so [uχ < hχ] /∈ I. In fact, we modify uχ on an I-set
such that uχ ≤ hχ. Define Sχ+1

α := Sχα ∪ {uχ(α)}. We establish some extra property: For
ξ ≥ ξχ we have

[proj(fξ, Sχ+1) < uχ] ⊆ [proj(fξ, Sχ) < uχ] ⊆ [proj(fξ, Sχ) < hχ] ⊆ [proj(fξ, Sχ) 6= hχ] ∈ I

since proj(fξ, Sχ) =I hχ. Thus proj(fξ, Sχ+1) ≥I uχ. However proj(fξ, Sχ+1) ≤I uχ since uχ
is an ≤I -upper bound for f . Thus proj(fξ, Sχ+1) =I uχ.

3. Limit case: Suppose χ < |A|+ is limit and assume Sχ′ has been defined for all χ′ < χ. Take
Sχα :=

⋃
χ′<χ S

χ′

α .
Clearly 1.-3. are always satisfied.
From the successor step of the definition above, we have map |A|+ → λ given by χ 7→ ξχ, and
λ > |A|+, thus we can take a ξ̃ < λ such that ξχ < ξ̃ for all χ. Let Hχ := proj(fξ̃, Sχ) for each χ.
Since ξχ < ξ̃, we have Hχ =I hχ. We thus have

Hχ =I hχ = proj(fξ, Sχ) for all ξ ≥ ξχ, in particular for all ξ ≥ ξ̃.
Hχ+1 =I hχ+1 = proj(fξ, Sχ+1) =I uχ for all ξ ≥ ξχ+1, in particular for all ξ ≥ ξ̃.

So Hχ+1 =I hχ+1 6≥I hχ = Hχ, thus [Hχ+1 < Hχ] /∈ I. Let αχ such that Hχ+1(αχ) < Hχ(αχ).
Then we have a map |A|+ → A given by χ 7→ αχ, and there must be some α ∈ A such that
infinitely many χ’s have αχ = α, and we obtain an infinite decreasing sequence of ordinals, a
contradiction.

Lemma 3.10. Let A be a set, let I be an ideal on A, let λ be a regular cardinal and let f = 〈fξ :
ξ < λ〉 be an <I -increasing sequence in ONA satisfying bppℵ0 . Then any ≤I -minimal upper bound
is also exact.

Proof. Suppose h is a minimal upper bound and suppose g <I h. We must show that g ≤I fξ for
some ξ. Modify g on an I-set to get g < h. Let Sα := {g(α), h(α)} for all α. Then |Sα| < ℵ0 and
f is <I -bounded by the map α 7→ supSα. So let ξ < λ such that f+

ξ := proj(fξ, 〈Sα : α ∈ A〉) is
an upper bound for f . Clearly f+

ξ ≤ h but h is minimal, so we must have h ≤I f+
ξ , thus f+

ξ =I h.
Then by the definition of proj, we must have g <I fξ and hence g ≤I fξ.

Note that in fact we do not need f to satisfy bppℵ0 , but only bpp3.

Theorem 3.11. Let A be a set, let I be an ideal on A, let κ ≤ λ be regular cardinals and let
f = 〈fξ : ξ < λ〉 be an <I -increasing λ-sequence in ONA. If |A|+ ≤ κ and |A|+ < λ, then the
following are equivalent:

1. f satisfies ∗κ.
2. f has bppκ.
3. f has an exact upper bound g such that [cf(g) < κ] ∈ I.

Here the bracket notation [...] is used is a more general setting; we mean [cf(g) < κ] = {α ∈ a :
cf(g(α)) < κ}.
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Proof. (1. ⇒ 2.) This is Lemma 3.8.
(2. ⇒ 3.) Lemma 3.9 yields the existence of a minimal upper bound g and g is exact by Lemma
3.10. We will show that without loss of generality we may assume that g is nowhere zero nor a
successor ordinal.
For since fξ <I g for any ξ, we have [fξ ≥ g] ∈ I, hence [g = 0] ∈ I. So we can modify g on an
I-set to obtain that g is nowhere 0 and g remains an exact upper bound.
Now suppose that {α : g(α) is a successor ordinal} /∈ I. For α ∈ a, define

g̃(α) :=
{
g(α), if g(α) is limit,
β, if g(α) = β + 1.

Then g̃ ≤ g, so g̃ ≤I g and [g > g̃] = {α : g(α) is a successor ordinal} /∈ I, so g 6≤I g̃. Since g is a
minimal upper bound, it cannot be that g̃ is an upper bound. So for some ξ we have fξ 6<I g̃, so
[fξ ≥ g̃] /∈ I, but [fξ ≥ g] ∈ I, so [fξ = g̃] /∈ I. Now [fξ ≥ fξ+1] ∈ I so

I 63 [fξ < fξ+1] ∩ [fξ = g̃] ⊆ [fξ+1 > g̃] ⊆ [fξ+1 ≥ g]

(To see I 63 [fξ < fξ+1] ∩ [fξ = g̃], note that if X ∈ I and Y /∈ I, then Xc ∩ Y /∈ I.) But then
fξ+1 6<I g, a contradiction. So {α : g(α) is a successor ordinal} ∈ I and again we modify g on an
I-set to obtain that g is never a successor ordinal.
We will now show that P := [cf(g) < κ] ∈ I. For α ∈ P let Sα of cardinality cf(g(α)) be cofinal in
g(α), and for α /∈ P let Sα = {g(α)}. Then |Sα| < κ and f is <I -bounded by α 7→ supSα. So let
ξ such that f+

ξ = proj(fξ, 〈Sα : α ∈ A〉) is an <I -upper bound for f . Clearly f+
ξ ≤ g, but g is a

minimal upper bound thus g ≤I f+
ξ , thus [cf(g) < κ] ⊆ [g > f+

ξ ] ∈ I.
(3. ⇒ 1.) Modify g on an I-set to have cf(g(α)) ≥ κ for all α ∈ A. For each α, let Sα ⊆ g(α)
be unbounded of order type cf(g(α)). Let X ⊆ λ be unbounded. We need to find an X0 ⊆ X of
order type κ such that 〈fξ : ξ ∈ X0〉 is strongly increasing. We will define an <-increasing sequence
〈hχ : χ < κ〉 in

∏
α∈a Sα and a sequence 〈ξχ : χ < κ〉 in X such that hχ <I fξχ <I hχ+1. We do

this by recursion:
1. Base case: Let h0 ∈

∏
α∈A Sα be arbitrary.

2. Successor case: Suppose hχ ∈
∏
α∈a Sα is defined. Then hχ < g, so let ξχ ∈ X such that

hχ <I fξχ . Now fξχ <I g, so f+
ξχ

= proj(fξχ , 〈Sα : α ∈ A〉) is well defined modulo I. Let
hχ+1 ∈

∏
α∈A Sα be such that hχ+1 > sup(hχ, f+

ξχ
). Then hχ < hχ+1 and hχ <I fξχ ≤I f+

ξχ
<

hχ+1, so certainly hχ <I fξχ <I hχ+1.
3. Limit case: Suppose χ is limit and hχ′ has been defined for all χ′ < χ. Then take hχ >

supχ′<χ hχ′ , this is possible since χ < κ and each Sα has order type cf(g(α)) ≥ κ.
Then X0 := {ξχ : χ < κ} has order type κ and 〈fξ : ξ ∈ X0〉 is strongly increasing by the lemma
below, since an <-increasing sequence is strongly increasing.

Lemma 3.12. Let A be a set, let I be an ideal on A, let S be a set of ordinals, let h = 〈hξ : ξ ∈ S〉
and f = 〈fξ : ξ ∈ S〉 be S-sequences in ONA and suppose that h is strongly increasing and
hξ <I fξ ≤I fξ+1 for all ξ ∈ S. Then f is also strongly increasing.

Proof. Let 〈Zξ : ξ ∈ S〉 be a sequence in I such that ξ < ξ′, α ∈ A \ (Zξ ∪ Zξ′) ⇒ hξ(α) < hξ′(α).
Let 〈Wξ : ξ ∈ S〉 be a sequence in I such that α ∈ A \ Wξ ⇒ hξ(α) < fξ(α) ≤ hξ+1(α). Let
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Vξ := Wξ ∪Zξ ∪Zξ+1. Then 〈Vξ : ξ ∈ S〉 is a sequence in I and ξ < ξ′, α ∈ A \ (Vξ, Vξ′)⇒ fξ(α) <
hξ+1(α) ≤ hξ′(α) < fξ′(α), where the first inequality is α /∈ Wξ, the second is α /∈ Zξ+1 ∪ Zξ′
and the third is α /∈ Wξ′ . Thus the sequence 〈Vξ : ξ ∈ S〉 ensures that f is strongly increasing as
well.

3.1.3 Definition and easy properties

It follows from Theorem 3.4 that it is possible to the define the following:

Definition 3.13. Let a be a set of non-zero limit ordinals. Then we define the set of possible
cofinalities of a as

pcf(a) : = {λ : there exists a proper filter F on A such that λ = tcf<(
∏

a/F )}

= {λ : there exists a proper ideal I on A such that λ = tcf<(
∏

a/I)}

= {cf(
∏

a/U) : U is an ultrafilter on a}.

We can easily prove the following properties of pcf:

Lemma 3.14. Let a be a set of non-zero limit ordinals. The following holds.
1. pcf(a) is a set of regular cardinals.

Proof. By Theorem 2.11 a <-true cofinality is always a regular cardinal.

2. {cf(α) : α ∈ a} ⊆ pcf(a).

Proof. Suppose α ∈ a. Let U := {A ⊆ a : A 3 α}, i.e. U is the principal ultrafilter
concentrated on {α}. Then

∏
a/U ∼= α, hence cf(

∏
a/U) = cf(α).

The ∼=-sign indicates an isomorphism, i.e. two structures only differ in their own name, names
for elements, names for orders etc. Clearly cofinality is preserved under isomorphism.

3. If a is finite, then {cf(α) : α ∈ a} = pcf(a).

Proof. The only ultrafilters on a are the filters concentrated on singletons. From the proof of
2. equality follows.

4. If a consists of regular ordinals4, then a ⊆ pcf(a). If a is furthermore finite, then a = pcf(a).

Proof. This is a direct corollary of 2. and 3.

5. If a 6= ∅, min(pcf(a)) = min(cf(α) : α ∈ a). If a 6= ∅ consists of regular cardinals then
min(pcf(a)) = min(a).

Proof. Suppose λ = tcf<(
∏
a/F ). Let f = 〈fξ/F : ξ < λ〉 be increasing and cofinal in∏

a/F . If λ < min(cf(α) : α ∈ a), then the map g defined by g(α) := sup+
ξ<λ fξ(α) is an

element of
∏
a and fξ < g for all ξ, which contradicts the assumption that f is cofinal. So

λ ≥ min(cf(α) : α ∈ a). The remaining claims follow easily.
4Regular ordinals are regular cardinals.
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6. If a ⊆ b, then pcf(a) ⊆ pcf(b).

Proof. Suppose λ ∈ pcf(a). Let U be an ultrafilter on a such that cf(
∏
a/U) = λ. Extend

U to the ultrafilter Û on b. We have
∏
a/U ∼=

∏
b/Û , so λ = cf(

∏
a/U) = cf(

∏
b/Û), hence

λ ∈ pcf(b).

7. pcf(a ∪ b) = pcf(a) ∪ pcf(b).

Proof. (⊇) This is 6. (⊆) Let λ ∈ pcf(a ∪ b). Let U be an ultrafilter on a such that cf(
∏

(a ∪
b)/U) = λ. Then a ∈ U or b ∈ U , without loss of generality assume a ∈ U . Let U ′ be
the restriction of U to a; then U ′ is an ultrafilter on a. We have

∏
(a ∪ b)/U ∼=

∏
a/U ′, so

λ = cf(
∏

(a ∪ b)/U) = cf(
∏
a/U ′), hence λ ∈ pcf(a).

8. If a 6= ∅ consists of regular cardinals, then pcf(a \ {min(a)}) = pcf(a) \ {min(a)}.

Proof. (⊆) Clearly min(a) /∈ pcf(a \ {min(a)}) by 5. and pcf(a \ {min(a)}) ⊆ pcf(a) by 6.
(⊇) If U is an ultrafilter on pcf(a), then either U 3 {min(a)}, hence cf(

∏
a/U) = min(a)

or U 3 a \ {min(a)} so U restricts to an ultrafilter U ′ on a \ {min(a)} and cf(
∏
a/U) =

cf(
∏

(a \ {min(a)})/U ′).

When a is finite, pcf(a) becomes trivial, so from now on we assume that a is infinite.

Theorem 3.15. Suppose min(a) > |pcf(a)|. (As we will see in Corollary 3.25, this happens for
instance if min(a) ≥ 2|a|). So at least every α ∈ a is uncountable. Then we have pcf(pcf(a)) =
pcf(a).

Proof. Let b = pcf(a). Then b is a set of regular cardinals. Hence (⊇) is Lemma 3.14.4. To
show (⊆), let λ ∈ pcf(pcf(a)). Let D be an ultrafilter on pcf(a) such that cf(

∏
b/D) = λ and

let 〈gδ/D : δ < λ〉 be increasing cofinal in
∏
b/D. For β ∈ b, let Dβ be an ultrafilter on a

such that cf(
∏
a/Dβ) = β and let 〈fβδ /Dβ : δ < β〉 be increasing cofinal in

∏
a/Dβ . Define

D∗ := {A ⊆ a : {β ∈ b : A ∈ Dβ} ∈ D}. We will show that cf(
∏
a/D∗) = λ. First we show that

D∗ is an ultrafilter on a:
1. D∗ ⊆ P (a); {β ∈ b : a ∈ Dβ} = b ∈ D so a ∈ D∗; {β ∈ b : ∅ ∈ Dβ} = ∅ 6∈ D so ∅ 6∈ D∗.
2. If A,A′ ∈ D∗, then {β ∈ b : A ∩A′ ∈ Dβ} = {β ∈ b : A,A′ ∈ Dβ} = {β ∈ b : A ∈ Dβ} ∩ {β ∈
b : A′ ∈ Dβ} ∈ D so A ∩A′ ∈ D∗.

3. If A ∈ D∗ and A ⊆ A′, then {β ∈ b : A′ ∈ Dβ} ⊇ {β ∈ b : A ∈ Dβ} ∈ D so {β ∈ b : A′ ∈
Dβ} ∈ D so A′ ∈ D∗.

4. Let A ⊆ a. If A /∈ D∗, then {β ∈ b : A ∈ Dβ} 6∈ D, so {β ∈ b : X \ A ∈ Dβ} = {β ∈ b : A 6∈
Dβ} ∈ D, hence X \A ∈ D∗.

For δ < λ and α ∈ a define

hδ(α) := sup
β∈b

fβgδ(β)(α).

Since gδ(β) < β this is well-defined. For all α ∈ a, since α ≥ min(a) > |pcf(a)| = |b| and α is
regular and fβgδ(β)(α) < α for all β ∈ b, we have hδ(α) < α for all δ < λ, i.e. hδ ∈

∏
a for all δ < λ.

The followin claim will be proved below.

Claim 3.16. For all h ∈
∏
a, there exists a δ0 < λ such that for all δ < λ satisfying δ0 ≤ δ, we

have h ≤D∗ hδ.
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For µ < λ, recursively define δµ < λ: δµ = max(δ0, sup+
µ′<µ δµ′), where δ0 is as in the above claim

for h ∈
∏
a defined by h(α) := sup+

µ′<µ hδµ′ (α).
Then 〈hδµ/D∗ : µ < λ〉 is increasing and cofinal in

∏
a/D∗. Since λ is regular, we obtain

cf(
∏
a/D∗) = λ by Theorem 2.11. Thus λ ∈ pcf(a).

Proof of Claim 3.16. Fix h ∈
∏
a. For β ∈ b, let δβ < β such that h ≤Dβ fβδβ . Then the map

δ 7→ δβ is an element of
∏
b. So let δ0 < λ such that (δ 7→ δβ) ≤D gδ0 . Let δ < λ such that

δ0 ≤ δ. We will show that h ≤D∗ hδ. We have (δ 7→ δβ) ≤D gδ0 ≤D∗ gδ so let B ∈ D such that
δβ ≤ gδ(β) for all β ∈ B. For β ∈ B we have h ≤Dβ f

β
δβ
≤Dβ f

β
gδ(β), so let Aβ ∈ Dβ be such that

h(α) ≤ fβgδ(β)(α) for al α ∈ Aβ . Note that fβgδ(β)(α) ≤ hδ(α) for all α ∈ A. So for β ∈ B and
α ∈ Aβ we have h(α) ≤ hδ(α). So for β ∈ B we have Aβ ⊆ [h ≤ hδ], hence [h ≤ hδ] ∈ Dβ . So
{β ∈ b : [h ≤ hδ] ∈ Dβ} ⊇ B ∈ D, so [h ≤ hδ] ∈ D∗. So h ≤D∗ hδ.

3.1.4 The ideal J<λ(a)

It turns out to be very interesting to look at subsets b of a which large enough to collapse
∏
a/D

to a small cofinality, when b ∈ D.

Definition 3.17. Let a be an infinite set of non-zero limit ordinals. For any b ⊆ a and any cardinal
λ we say that b forces

∏
a to have cofinality < λ or b forces cof < λ iff for any ultrafilter D on a

with b ∈ D we have cf(
∏
a/D) < λ. Denote

J<λ(a) := {b ⊆ a : b forces cof < λ} = {b ⊆ a : pcf(b) ⊆ λ}.

The last equality holds by the following: Assume b forces cof < λ. Any ultrafilter U on b extends to
the ultrafilter Û on a, and cf(

∏
a/Û) = cf(

∏
b/U) < λ. Now assume pcf(b) ⊆ λ. IfD is an ultrafilter

on a with b ∈ D, then we restrict D to an ultrafilter D′ on b and cf(
∏
a/D) = cf(

∏
b/D′) < λ.

Proposition 3.18. Let a be an infinite set of non-zero limit ordinals. For any cardinal λ, J<λ(a)
is an ideal on a.

Proof. We verify the conditions:
1. J<λ(a) ⊆ P (a) and no ultrafilter D contains ∅, so ∅ ∈ J<λ(a).
2. If b, c ∈ J<λ(a), since any ultrafilter D containing b ∪ c contains b or c (or both), we obtain
b ∪ c ∈ J<λ(a).

3. If b ∈ J<λ(a) and c ⊆ b, since any (ultra)filter containing c also contains b, we obtain
c ∈ J<λ(a).

So indeed J<λ(a) is an ideal.

Lemma 3.19. Let a be an infinite set of non-zero limit ordinals, let b ⊆ a and let λ be a cardinal.
Then J<λ(b) = J<λ(a) ∩ P (b).

Proof. This is obvious from the second equality in definition 3.17. More directly, suppose c ∈ J<λ(b).
Then c ∈ P (b) and c ⊆ a. Let D be an ultrafilter on a containing c. Then D � b is an ultrafilter on
b and

∏
a/D ∼=

∏
b/(D � b), so cf(

∏
a/D) = cf(

∏
b/(D � b)) < λ. Hence c ∈ J<λ(a). Now suppose

c ∈ J<λ(a)∩P (b). Let F be an ultrafilter on b containing c. Let F ′ be the restriction of F to a, then
F ′ is an ultrafilter on a containing c and

∏
a/F ′ ∼=

∏
b/F . So cf(

∏
b/F ) = cf(

∏
a/F ′) < λ.
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We write J (or J<λ) for J<λ(a) when λ and a (when a) are (is) understood.
Remember that all we have said about

∏
a/F for a filter F applies to an ideal as well when we

consider its dual filter. So is makes sense to write
∏
a/J<λ(a).

Theorem 3.20. Let A be an infinite set of regular cardinals such that min(A) > |A|. For any
cardinal λ,

∏
a/J<λ(a) is λ-directed.

Proof. The theorem is equivalent to the statement that if B ⊆
∏
A and |B| < λ, then there exists

an h ∈
∏
A such that f ≤J<λ h for all f ∈ B. We prove this by induction on |B|.

1. If |B| < |A|+, then, for α ∈ A, define h(α) := supf∈B f(α). Then h ∈
∏
A and f ≤ h, so

f ≤J<λ h.
2. If |A|+ ≤ |B| < λ and any E ⊆

∏
A with |E| < |B| has an <J<λ-upper bound, let B = {fi :

i < |B|} be an enumeration of B and for i < |B| recursively define f ′i to be an <J<λ-upper
bound for {f ′j : j < i} ∪ {fi}.5 Then 〈f ′i : i < |B|〉 is <J<λ-increasing and any upper bound
for B′ = {f ′i : i < |B|} is an upper bound for B. So we look for a bound for B′. We make a
case distinction.
(a) If |B| is singular, let C ⊆ |B| be cofinal such that |C| < |B|, and let h be an upper bound

for {f ′i : i ∈ C} by the induction hypothesis. Then h is an upper bound for B′ as well.
(b) If |B| is regular, recursively define gα for α < |A|+:

i. g0 = f ′0.
ii. gα = supβ<α gβ when α is limit. Here we mean a local supremum, i.e. gα(x) =

supβ<α gβ(x).
iii. gα+1: If gα is not an upper bound for B′, let iα < |B| be minimal such that

[gα < f ′iα ] /∈ J<λ. Then let D be an ultrafilter on A such that [gα < f ′iα ] ∈ D but
cf(
∏
A/D) ≥ λ. Let h ∈

∏
A be an ≤D-upper bound for B′. Let gα+1 = max(gα, h),

again locally.
If the recursion continues up to |A|+, then 〈gα : α < |A|+〉 is ≤-increasing. For i < |B|
and α < |A|+ define

bαi := [gα < f ′i ]

Then bαi ⊇ bα
′

i if α < α′. Let α < |A|+ be arbitrary.
i. If i ≥ iα, then bαi = [gα < f ′i ] ⊇J<λ [gα < f ′iα ] ∈ D and D ∩ J<λ = ∅, so bαi ∈ D.

ii. For any i, bα+1
i = [gα+1 < f ′i ] ⊆ [h < f ′i ] /∈ D.

So bαi 6= bα+1
i for i ≥ iα. Since |A|+ ≤ |B| and α → iα is a map |A| → |B|, there is an

ῑ < |B| such that iα ≤ ῑ for all α. Then 〈bαῑ : α < |A|+〉 is a ⊂-decreasing |A|+-sequence
of subsets of A. This is of course impossible. So some gα was already an upper bound
for B′.

Corollary 3.21. Let a be an infinite set of regular cardinals. If cf(
∏
a/D) < λ then there exists

some b ∈ D such that b forces cof < λ.

Proof. Suppose not, then D∩ J<λ(a) = ∅. Let µ := cf(
∏
a/D) and let {gξ/D : ξ < µ} be cofinal in∏

a/D. Then by Theorem 3.20, {gξ/J : ξ < µ} is bounded in
∏
a/J ; let g/J be an upper bound.

5An ≤J<λ -upper bound exists by the induction hypothesis, then simply add 1 everywhere so that it becomes an
<J<λ -upper bound.
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Then [gξ 6≤ g] ∈ J , so [gξ 6≤ g] /∈ D, so [gξ ≤ g] ∈ D, so g/D is an upper bound for {gξ/D : ξ < µ}
in
∏
a/D, thus {gξ/D : ξ < µ} is not cofinal in

∏
a/D, a contradiction.

So we have

cf(
∏

a/D) < λ ⇔ D ∩ J<λ(a) 6= ∅. (2)

Clearly µ ≤ λ ⇒ J<µ(a) ⊆ J<λ(a).

Proposition 3.22. Let a be an infinite set of non-zero limit ordinals. For limit cardinals λ we
have J<λ(a) =

⋃
µ<λ J<µ(a).

Proof. Inclusion from right to left is evident. Suppose b ∈ J<λ(a) \
⋃
µ<λ J<µ(a). Note that⋃

µ<λ J<µ(a) is a proper ideal. Recall Theorem 2.18, and let D be an ultrafilter such that b ∈ D
and D∩

⋃
µ<λ J<µ(a) = ∅. Then cf(

∏
a/D) < λ and by Corollary 3.21 cf(

∏
a/D) ≥ µ for all µ < λ,

which is a contradiction.

Lemma 3.23. Let a be an infinite set of non-zero limit ordinals. Then there exists a proper ideal
I with tcf<(

∏
a/I) = λ if and only if J<λ(a) 6= J<λ+(a).

Proof. (⇐) Let b ∈ J<λ+(a) \ J<λ(a). Let D be an ultrafilter with b ∈ D such that cf(
∏
a/D) ≥

λ. Since cf(
∏
a/D) < λ+, we obtain cf(

∏
a/D) = λ. For the dual ideal I of D we thus have

cf(
∏
a/I) = tcf<(

∏
a/I) = λ. (⇒) Since I is proper, let D be an ultrafilter extending the dual

filter I∗ of I. We have
∏
a/I ∼=

∏
a/I∗ and by Theorem 3.4, λ = tcf<(

∏
a/I) = tcf<(

∏
a/I∗) =

cf(
∏
a/D). By Corollary 3.21, since cf(

∏
a/D) < λ+, there exists some b ∈ D which forces cof

< λ+. Hence b ∈ J<λ+(a) \ J<λ(a).

3.1.5 First results using J<λ(a)

We have two direct corollaries of Lemma 3.23 on pcf(a):

Corollary 3.24. We have

pcf(a) = {cf(
∏

a/D) : D is an ultrafilter on a}

= {λ : λ = tcf<(
∏

a/F ) for some proper filter F on a}

= {λ : λ = tcf<(
∏

a/I) for some proper ideal I on a} = {λ : J<λ(a) ⊂ J<λ+(a)}.

Corollary 3.25. We have |pcf(a)| ≤ 2|a|.

Proof. For any λ ∈ pcf(a) choose a bλ ∈ J<λ+(a) \ J<λ(a). If λ < λ′, then J<λ(a) ⊂ J<λ+(a) ⊆
J<λ′(a) ⊂ J<λ′+(a), so bλ 6= bλ′ . So b 7→ bλ is an injective function pcf(a)→ P (a).

Since λ < λ′ implies J<λ ⊆ J<λ′ , and J<λ ⊆ P (a), there must be a λ such that J<λ = J<λ′ for all
λ′ > λ. The following lemma shows that that for this λ, J<λ is maximal, namely P (a).

Lemma 3.26. Let a be an infinite set of non-zero limit ordinals. There exists λ such that J<λ(a) =
P (a).
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Proof. If not, then
⋃
λ J<λ(a), where we take union over all cardinals λ, is a proper ideal. So let D

be an ultrafilter extending its dual filter. Let λ := cf(
∏
a/D). By Corollary 3.21 some b ∈ D forces

cof < λ+, and b ∈ J<λ+(a). But then b ∈ D ∩
⋃
λ J<λ(a), a contradiction.

Theorem 3.27. Let a be an infinite set of non-zero limit ordinals. Then pcf(a) has a maximal
element.

Proof. Let λ be minimal such that J<λ(a) = P (a); this exists by Lemma 3.26. Then λ can not be
a limit cardinal, for this would violate J<λ(a) =

⋃
µ<λ J<µ(a), i.e. Proposition 3.22, since then we

must have a ∈ J<µ(a) for some µ < λ. So λ = κ+. Since J<κ(a) 6= J<κ+(a), we have κ ∈ pcf(a)
by Lemma 3.23, and again by this lemma we have that κ is maximal. In particular, also κ is
regular.

Example. Let a := {ℵ2n : 0 < n < ω}. Then a is an infinite set of regular cardinals and
|a|+ = ℵ+

0 = ℵ1 < ℵ2 = min(a). Let 0 < k < ω; we will show that ℵ2k+1 /∈ pcf(a). Let D
be any ultrafilter on a. If D contains a finite set, then D = {b ⊆ a : b 3 ℵ2n} for some 0 < n < ω
and cf(

∏
a/D) = ℵ2n 6= ℵ2k+1. If D contains no finite set, then it contains all cofinite sets. Suppose

〈fξ/D : ξ < ℵ2k+1〉 is increasing in
∏
a/D. Then each for n with 2n > 2k + 1, since ℵ2k+1 < ℵ2n

and ℵ2n is regular and fξ(n) < ℵ2n for all ξ, we have supξ<ℵ2k+1
fξ(n) < ℵ2n. For 0 < n < ω define

f(n) :=
{

0, if 2n ≤ 2k + 1
supξ<ω2k+1

fξ(n), if 2n > 2k + 1

then f ∈
∏
a. For any ξ < ℵ2n, since [fξ ≤ f ] is cofinite, we have [fξ ≤ f ] ∈ D. Hence

fξ/D ≤ f/D for all ξ < ℵ2k+1. Thus 〈fξ/D : ξ < ℵ2k+1〉 cannot be cofinal in
∏
a/D. So there

exists no increasing and cofinal sequence in
∏
a/D of length ℵ2k+1, so ℵ2k+1 /∈ pcf(a). We have

shown that pcf(a)∩ℵω = a, and pcf(a) need not be an interval. Furthermore, Theorem 3.27 yields
the existence of max pcf(a). We have max pcf(a) ≥ sup(a) = ℵω, and even > ℵω since ℵω is singular.

3.1.6 When a is in interval

In this paragraph we will see a result which shows that pcf(a) is an interval of regular cardinals
under some additional assumptions on a.
First we introduce the idea of the limit of an ultrafilter on a set of ordinals. Let a be a non-empty
set of non-zero ordinals and D an ultrafilter on a. Then (0, sup a] ∩ a ∈ D, but (0, 0] = ∅ /∈ D. So
let µ be minimal such that (0, µ]∩ a ∈ D. For any ν < µ we have ((0, ν]∩ a) ∪̇ ((ν, µ]∩ a) ∈ D but
((0, ν] ∩ a) /∈ D, so (ν, µ] ∩ a ∈ D. We write µ = limD a and call µ the D-limit of a. If µ is such
that (ν, µ] ∩ a ∈ D for every ν < µ, then limD a = µ.

Theorem 3.28. Let D be an ultrafilter on a set of regular cardinals a such that |a| < min(a), let
λ = cf(

∏
a/D) and let µ = limD a. Suppose λ′ is regular and µ < λ′ < λ. Then there is a set

a′ of regular cardinals such that |a′| ≤ |a| and an ultrafilter D′ on a′ such that limD′ a
′ = µ and

cf(
∏
a′/D′) = λ′.

A proof of this theorem will follow from Lemmas 3.35 and 3.36.
By ‘a = (ν, µ) is an interval of regular cardinals’ we mean that a = {κ : ν < κ < µ and κ is regular}.
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Corollary 3.29. Let a = (ν, µ) be an interval of regular cardinals such that |a| < min(a), λ ∈ pcf(a)
and λ′ regular such that µ < λ′ < λ. Then λ′ ∈ pcf(a).

Proof. Let D be an ultrafilter on a such that λ = cf(
∏
a/D). Then µ̃ := limD(a) ≤ sup(a) ≤ µ.

So µ̃ < λ′ < λ. Then Theorem 3.28 yields a′ and D′ such that |a′| ≤ |a|, limD′ a
′ = µ̃ and

cf(
∏
a′/D′) = λ′. Define D′′ := {A ⊆ a : A ∩ a′ ∈ D′}. Then D′′ is an ultrafilter on a:

1. D′′ ⊆ P (a), ∅ ∩ a′ = ∅ /∈ D′ so ∅ /∈ D′′, a ∩ a′ = (ν, µ) ∩ a′ ⊇ (ν, µ̃) ∩ a′ ∈ D′ so a ∈ D′′.6
2. If A,B ∈ D′′, then (A ∩B) ∩ a′ = (A ∩ a′) ∩ (B ∩ b′) ∈ D′ so A ∩B ∈ D′.
3. If A ∈ D′′ and A ⊆ B, then B ∩ a′ ⊇ A ∩ a′ ∈ D′ so B ∈ D′′.
4. If A /∈ D′′, then (a \ A) ∩ a′ = (a ∩ a′) \ (A ∩ a′) ∈ D′ since a ∩ a′ ∈ D′ but A ∩ a′ /∈ D′, so
a \A ∈ D′′.

We have
∏
a/D′′ ∼=

∏
a′/D′, since a ∩ a′ ∈ D′ and a ∩ a′ ∈ D′′. Hence λ′ = cf(

∏
a′/D′) =

cf(
∏
a/D′′) ∈ pcf(a).

In the above situation, when a = (ν, µ), it is not immediately clear that µ ∈ pcf(a), so that pcf(a)
is an interval of regular cardinals. We have the following cases:

1. µ is singular. Then of course µ /∈ pcf(a), but pcf(a) is an interval of regular cardinals.
2. µ is a successor cardinal, say µ = ρ+. Consider a′ := (ν, ρ). Let λ = max pcf(a). If λ = µ,

then µ ∈ pcf(a) and indeed pcf(a) is an interval. If λ = ρ, then it is also obvious that pcf(a)
is an interval. If λ > µ, then ρ < µ < λ and λ ∈ pcf(a′) as well (an ultrafilter U on a such
that cf(

∏
a/U) = λ can be restricted to a′, since {ρ} /∈ U). So Corollary 3.29 yields that

µ ∈ pcf(a′) ⊆ pcf(a). Thus pcf(a) is an interval.
3. µ is a regular limit cardinal. However, let µ = ℵδ, then |a| = δ and min(a) < ℵδ = δ. So the

assumption that min(a) > |a| rules out this possibility.
We conclude that if a = (ν, µ) is an interval of regular cardinals such that |a| < min(a), then pcf(a)
is an interval of regular cardinals. So if ν < ℵ|pcf(a)|+ , then pcf(a) ⊆ (ν,ℵ|pcf(a)|+), and in fact there
is some δ < |pcf(a)|+ such that pcf(a) = (ν,ℵδ].

Corollary 3.30. Let a be an interval of regular cardinals such that min(a) > 2|a|. Suppose that
the least cardinal in a is a successor cardinal; let min(a) = ℵδ+1. Then pcf(a) contains no limit
cardinals.

Proof. Since |pcf(a)| ≤ 2|a| by Corollary 3.25 and pcf(a) is an interval of regular cardinals by
Corollary 3.29, we have pcf(a) ⊆ {ℵδ+α : 1 ≤ α <

(
2|a|
)+}. Let 1 ≤ α <

(
2|a|
)+ such that ℵδ+α is

a limit cardinal. Thus δ + α is a limit ordinal. Then

cf(ℵδ+α) = cf(δ + α) = cf(α) ≤ |α| ≤ 2|a| < min(a) = ℵδ+1 ≤ ℵδ+α.

Thus ℵδ+α is a singular cardinal, and therefore does not belong to pcf(a).

In the next definition we use the class ON of all ordinals. We use this class to express that certain
elements are ordinals, certain sequences are ordinal-valued, to express that a set consists of ordinals,
etc. All ‘things’ we actually work with are still sets and not proper classes.

6To have (ν, µ̃) ∩ a′ ∈ D′, one needs ν < µ̃. But this follows from (0, µ̃] ∩ (ν, µ) ∈ D.
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Definition 3.31. Let κ and λ be cardinals such that λ > κ+ and let D be an ultrafilter on κ. For
α < λ, let fα : κ→ ON. Suppose that α < α′ implies fα <D fα′ , i.e. 〈fα/D : α < λ〉 is increasing
in ONκ/D. Let h/D ∈ ONκ/D, A ⊆ ONκ/D. Then we say that

1. h/D cuts 〈fα/D : α < λ〉 iff there exist α, α′ < λ such that fα/D < h/D < fα′/D,
2. A cofinally cuts 〈fα/D : α < λ〉 iff for all α < λ there exists h/D ∈ A such that fα/D < h/D

and h/D cuts 〈fγ/D : γ < λ〉.

Lemma 3.32. Let κ and λ be cardinals such that λ > κ+, let D be an ultrafilter on κ. Let
〈fα/D : α < λ〉 be increasing in ONκ/D. Then

1. 〈fα/D : α < λ〉 has a least upper bound in ONκ/D, or
2. there exists sets Sδ ⊆ ON for δ < κ such that |Sδ| ≤ κ and

∏
δ<κ Sδ/D cofinally cuts

〈fα/D : α < λ〉.

Proof. Assume both options do not occur. Then, for β < κ+, we will recursively define hβ ∈ ONκ

such that each hβ/D is an upper bound for 〈fα/D : α < λ〉 and 〈hβ : β < κ+〉 is <D-decreasing.
Then we will arrive at a contradiction.

1. Base case: Take h0 such that fα(δ) < h0(δ) for all α < λ and all δ < κ. For instance, let
h0(δ) := sup+

α<λ fα(δ).
2. Successor case: Given hβ , since hβ/D is an upper bound, but not a least upper bound for
〈fα/D : α < λ〉, let hβ+1/D be an upper bound for 〈fα/D : α < λ〉 with hβ/D 6≤ hβ+1/D.
Then hβ+1/D < hβ/D, since D is an ultrafilter.

3. Limit case: Given hγ for γ < β, define
(a) for δ < κ, Sδ := {hγ(δ) : γ < β}
(b) for α < λ and δ < κ, gα(δ) := min(Sδ \ fα(δ)).

Note that by definition of h0, Sδ \ fα(δ) is never empty. Note that gα ∈ ONκ for all α < λ.
Note that:
(a) For α < λ we have fα ≤ gα and thus fα ≤D gα.
(b) For α < α′ < λ we have fα <D fα′ , so gα ≤D gα′ .
(c) For α < λ and γ < β we have [gα ≤ hγ ] ⊇ [fα < hγ ] ∈ D, so gα ≤D hγ . Since

hγ′/D < hγ/D for γ < γ′ < β, we even have gα <D hγ for all α < λ and γ < β.
Suppose 〈gα/D : α < λ〉 is not eventually constant. Then |Sδ| ≤ κ and

∏
δ<κ Sδ/D cofinally

cuts 〈fα/D : α < λ〉, which is possibility 2, which we assumed not to occur: Let α < λ
be given. Then gα ∈

∏
δ<κ Sδ and fα <D gα. Let α′ such that α < α′ < λ and such

that gα 6=D gα′ . Then gα <D gα′ . Thus [gα < gα′ ] ∈ D, hence, by definition of the gα’s,
[gα < fα′ ] ∈ D. Hence gα <D fα′ . So fα/D < gα/D < fα′/D.
So 〈gα/D : α < λ〉 is eventually constant, and we call this constant value hβ/D. For all α < λ
we have fα <D hβ . Let α be such that gα/D = hβ/D. For γ < β we have fα <D hγ . So
hγ(δ) ∈ (Sδ \ fα(δ)) for D-a.e. δ. So gα(δ) ≤ hγ(δ) for D-a.e. δ. Thus hβ =D gα ≤D hγ .
Since γ < γ′ implies hγ >D hγ′ , we even have hβ <D hγ for all γ < β.

Now similarly define
1. for δ < κ, S̄δ := {hβ(δ) : β < κ+},
2. for α < λ and δ < κ, ḡα(δ) := min S̄δ \ fα(δ).

Note again that by definition of h0, S̄δ \ fα(δ) is never empty. Note again that ḡα <D hβ for all
β < κ+. Given α < λ and δ < κ, let β(δ) < κ+ be such that ḡα(δ) = hβ(δ)(δ). Let β(α) :=
supδ<κ β(δ)+ω. This is an ordinal < κ+ since κ+ is regular, and by adding ω we ensure that it is a
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limit ordinal. Then α 7→ β(α) is a map λ→ κ+. Since we assumed λ > κ+, there exist β < κ+ such
that unboundedly many α < λ satisfy β(α) = β, and this β is a limit ordinal. Note that for these
α’s, for all δ < κ there exists β′ < β such that ḡα(δ) = hβ′(δ). Thus for these α’s, by definition of
hβ , we have gα = ḡα. But 〈gα/D : α < λ〉 was eventually constant, so there exists an α such that
hβ =D gα = gα. But then we have the following contradiction: hβ/D = gα/D = ḡα/D < hβ/D.

Definition 3.33. Given an ordinal λ, for α < λ, let Cα be club in α with ot(Cα) = cf(α). For
α < λ, define Cα := {Cβ ∩ α : β < λ}. Then Cα ⊆ P (α), |Cα| ≤ λ, every Cα contains a C which is
club in α and ot(C) = cf(α) (namely C = Cα = Cα ∩ α), and for any E ∈ Cα and β < α we have
E ∩ β ∈ Cβ (E = Cγ ∩α for some γ, so E ∩ β = Cγ ∩α∩ β = Cγ ∩ β ∈ Cβ). We call 〈Cα : α < λ〉 a
silly square λ-sequence.

We now start with the proof of Theorem 3.28. Let D be an ultrafilter on a set of regular cardinals
a such that |a| < min(a), λ = cf(

∏
a/D), µ = limD a and λ′ regular such that µ < λ′ < λ. Since

limD a = µ < λ = cf(
∏
a/D), we must have that D is non-principal, and µ is a limit cardinal.

We will construct an increasing sequence 〈fα/D : α < λ′〉 in
∏
a/D which has a least upper bound

g/D, and {cf(g(α)) : α ∈ a} is cofinal in µ, and cf(
∏
α∈a cf(g(α))/D) = λ′.

Let 〈Cβ : β < λ′〉 be a silly square λ′-sequence. For α < λ′ recursively define fα as follows:
1. f0/D ∈

∏
a/D arbitrary.

2. Given fγ/D for γ < β, the set {fγ/D : γ < β} is not cofinal in
∏
a/D since cf(

∏
a/D) = λ >

λ′ > β. So let hβ/D ∈
∏
a/D be such that hβ 6<D fγ , hence fγ ≤D hβ , for all γ < β. Then

fγ/D ≤ hβ/D for all γ < β. By adding 1 to hβ , we can arrange without loss of generality
fγ/D < hβ/D for all γ < β. For α ∈ a and E ∈ Cβ define

gβE(α) :=
{
hβ(α), if α ≤ ot(E),
max(hβ(α), supγ∈E fγ(α)), if α > ot(E).

If α > ot(E), then α > ot(E) ≥ |E|, and fγ(α) ∈ α for all γ, and α is regular, hence
supγ∈E fγ(α) < α. So gβE ∈

∏
a. Again {gβE/D : E ∈ Cβ} is not cofinal in

∏
a/D, since

|Cβ | ≤ λ′ < λ. So let fβ/D ∈
∏
a/D such that gβE/D < fβ/D for all E ∈ Cβ .

Lemma 3.34. There are no subsets Sα ⊆ α for α ∈ a and µ′ < µ such that |Sα| ≤ µ′ and∏
α∈a Sα/D cofinally cuts 〈fγ/D : γ < λ′〉.

Proof. For α ∈ a, let Sα ⊆ α such that
∏
α∈a Sα/D cofinally cuts 〈fγ/D : γ < λ′〉, and let µ′ be a

cardinal such that |a| < µ′ < µ (note that |a| < min(a) < µ). We will show that for at least one α
we have |Sα| > µ.
For i < λ′ recursively define βi < λ′ by

1. β0 arbitrary,
2. βi+1 such that βi+1 ≥ i+ 1 and fβi ≤D k ≤D fβi+1 for some k ∈

∏
α∈a Sα,

3. βi = supj<i βj if i is limit.
Then B := {βi : i < λ′} is λ′-club and if i < j then fβi <D k <D fβj for some k ∈

∏
α∈a Sα. Let

β := β(µ′)+ (note that (µ′)+ < µ since µ is a limit cardinal). Then cf(β) = (µ′)+. Let E ∈ Cβ such
that ot(E) = cf(β). Then E ∩B is β-club and we enumerate E ∩B as 〈γi : i < cf(β)〉 increasingly.
Fix i < cf(β). Let ki ∈

∏
α∈a Sα be such that fγi ≤D ki ≤D fγi+1 . Now
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1. gγiE∩γi <D fγi since fγi is an <D-upper bound for {gγiF : F ∈ Cγi},
2. gγiE∩γi(α) ≥ fγj (α) for all α such that α > ot(E ∩ γi) and j < i.

Since ot(E) = cf(β) < µ and limD a = µ, let αi ∈ a be such that αi > ot(E) and fγi(αi) ≤ ki(αi) ≤
fγi+1(αi) and fγi(αi) > gγiE∩γi(αi).
Do this for all i < cf(β), to obtain a map cf(β) → a given by i 7→ αi. Note that |a| < cf(β), so let
I ⊆ cf(β) of size cf(β) consist of limit ordinals and let α ∈ a be such that αi = α for all i ∈ I. Then
for all i, j ∈ I such that i < j we have

ki(α) ≤ fγi+1(α) ≤ gγjE∩γj (α) < fγj (α) ≤ kj(α).

So {ki(α) : i ∈ I} ⊆ Sα has size cf(β) = (µ′)+ > µ′. So not for all α ∈ a we have |Sα| ≤ µ′.

Clearly 〈fα : α < λ′〉 is <D-increasing: fα <D hβ ≤ gβE <D fβ for α < β (and any E ∈ Cβ). Now
D is an ultrafilter on a; it transposes to an ultrafilter D̃ on |a| via a bijection i : a ↔ |a|. Any
f ∈ ONa transposes to an f̃ ∈ ON|a| by f̃(x) := f(i−1(x)). Then 〈f̃α : α < λ′〉 is <D̃-increasing
in ON|α|. Also λ′ > µ > min a > |a|, so λ′ > |a|+. Hence Lemma 3.32 yields that 〈f̃α/D̃ : α < λ′〉
has a least upper bound in ON|a|/D̃ or there exist sets Sδ for δ < |a| such that |Sδ| ≤ |a| and∏
δ<|a| Sδ/D̃ cofinally cuts 〈f̃α/D̃ : α < λ′〉.

Suppose the second. Consider Tα := Si(α) ∩ α ⊆ α and
∏
α∈a Tα. We will show that

∏
α∈a Tα

cofinally cuts 〈fγ/D : γ < λ′〉, which contradicts Lemma 3.34. Let α < λ′. Let h ∈
∏
δ<|a| Sδ such

that f̃α <D̃ h and h/D̃ cuts 〈f̃γ/D̃ : γ < λ′〉. Then h <D̃ fα′ for some α′ < λ′. So [h < fα′ ] ∈ D̃. So
without loss of generality we assume that h < f̃α′ everywhere. Let h′(x) := h(i(x)) < f̃α′(i(x)) =
fα′(x) < x, so h ∈

∏
α∈a Tα. So

∏
α∈a Tα cofinally cuts 〈fγ/D : γ < λ′〉.

Thus 〈fγ/D : γ < λ′〉 has a least upper bound g/D in ON|a|/D. Since cf(
∏
a/D) = λ > λ′,

we may assume g(α) < α and g/D ∈
∏
a/D. Also, {α ∈ a : g(α) is limit} ∈ D: If not, then

g′(α) + 1 = g(α) for some g′ ∈
∏
a/D, for all α ∈ A, for some A ∈ D. Then g′ <D g and g′ is also

an upper bound for 〈fγ/D : γ < λ′〉, since this sequence in increasing. So we assume without loss
of generality that g(α) is a limit ordinal for all α ∈ a.
For α ∈ a, let Sα ⊆ g(α) be club in g(α) and of order type cf(g(α)). Enumerate Sα = 〈Sα(i) : i <
cf(g(α))〉. Since g(α) is always a limit ordinal, it is easy to show that

∏
α∈a Sα/D cofinally cuts

〈fα/D : α < λ′〉.
Define a′ := {cf(g(α)) : α ∈ a} and D′ = {{cf(g(α)) : α ∈ A} : A ∈ D}. Then D is an ultrafilter on
a′.
Lemma 3.35. We have limD′ a

′ = µ.

Proof. Let µ′ := limD′ a
′. Since cf(g(α)) ≤ g(α) < α for all α ∈ a, we have µ′ ≤ µ. We have

cf(g(α)) ≤ µ′ for all α ∈ d for some d ∈ D. Define Tα := Sα if α ∈ d and Tα := {0} if α ∈ a \ d.
Then

∏
α∈a Tα/D

∼=
∏
α∈a Sα/D, which cofinally cuts 〈fα/D : α < λ′〉. But |Tα| ≤ µ′, so Lemma

3.34 yields µ′ ≥ µ.

Lemma 3.36. We have cf(
∏
a′/D′) = λ′.

Proof. Let β < λ′. We have fβ <D g. So for D-almost all α ∈ a we have fβ(α) < g(α). For
these α, let i < cf(g(α)) be minimal such that fβ(α) < Sα(i) and define f̄β(α) := Sα(i). Then
f̄β/D ∈

∏
α∈a Sα/D is defined. Observe the following:
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1. 〈f̄β/D : β < λ′〉 is cofinal in
∏
Sα/D: Given f ∈

∏
Sα, we have f <D g. Since g is a least

upper bound, f is not an upper bound for 〈fγ : γ < λ′〉. So fγ 6<D f for some γ, hence

f ≤D fγ <D fγ+1 ≤D f̄γ+1.

2. Any S ⊆
∏
Sα/D with |S| < λ′ is not cofinal in

∏
Sα/D: Given f ∈ S, let βf < λ′ such that

f ≤D f̄βf . Given β < λ′ we have f̄β <D g, so let ξ(β) < λ′ such that f̄β <D fξ(β) (this exists
by the same reasoning as in 1.). Let β1 := supf∈S ξ(βf ) < λ′. Then for all f ,

f ≤D f̄βf <D fξ(βf ) ≤D fβ1 ≤D f̄β1 .

So S is bounded by f̄β1 ∈
∏
Sα/D.

We conclude that cf(
∏
Sα/D) = λ′. For β < λ′ and α′ ∈ a′, define

f̄ ′β(α′) := sup(i < α′ : Sα(i) = f̄β(α) for some α ∈ a with cf(g(α)) = α′).

This is a supremum of ≤ |a|-many elements. Since µ′ < µ, since limD′ a
′ = µ, D′-almost all α′ ∈ a′

satisfy α′ ≥ µ′. Note that |a| < min a ≤ µ. Thus D′-almost all α′ ∈ a′ satisfy α′ > |a|. Thus
f̄ ′β(α′) < α′ for D′-almost every α′ ∈ a′. So f̄ ′β/D′ ∈

∏
a′/D′.

To an f ∈
∏
a′ we associate an f̂ ∈

∏
Sα by defining f̂(α) := Sα(f(cf(g(α))). Given f ∈

∏
a′, let

β < λ′ such that f̂ <D f̄β . Then f <D′ f̄
′
β :

If α ∈ a is such that f̂(α) < f̄β(α), then f̂(α) = Sα(F (cf(g(α)))), so f(cf(g(α))) is the i such
that Sα(i) = f̂(α). On the other hand, f̄β(α) = Sα(j) for some j and thus Sα(j) > Sα(i) thus
j > i. And we have f̄ ′β(cf(g(α))) = sup(k : Sα(k) = f̄β(cf(g(γ))) and cf(g(γ)) = cf(g(α))) ≥ j. So
f(cf(g(α))) < f̄ ′β(α). So

{α′ ∈ a′ : f(α′) < f̄ ′β(α′)} ⊇ {cf(g(α)) : α ∈ [f̂ < f̄β ]} ∈ D.

So {f̄ ′β : β < λ′} is cofinal in
∏
a′/D′. Any S′ ⊆

∏
a′/D′ with |S′| < λ′ is not cofinal in

∏
a′/D′:

S := {f̄ : f ∈ S′} satisfies S ⊆
∏
a/D and |S| < λ′, so S is not cofinal in

∏
a/D. So S is bounded

by some f̄β , thus S′ is bounded by some f̄ ′β . So indeed cf(
∏
a′/D′) = λ′.

Noting |a′| ≤ |a| and combining with the two lemmas above, we have proved Theorem 3.28.

3.2 Generating J<λ+ over J<λ
3.2.1 Universal sequences

In paragraph 3.2.2 we will need the notion of and some results on universal sequences, which we
will describe here.

Definition 3.37. Let a be an infinite set of regular cardinals, let λ ∈ pcf(a) and let f = 〈fξ : ξ < λ〉
be an <J<λ-increasing sequence in

∏
a. Then f is called λ-universal iff f is cofinal in

∏
a/D for

all ultrafilters D on a such that cf(
∏
a/D) = λ.

Theorem 3.38. Let a be an infinite set of regular cardinals such that |a|+ < min(a), let λ ∈ pcf(a).
Then there exists a λ-universal sequence.
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Proof. If λ = min(a), define f = 〈fξ : ξ < λ〉 by fξ(a) = ξ. Then f is <-increasing. If cf(
∏
a/D) =

λ = min(a), then D 3 {min(a)} and f is cofinal in
∏
a/D.

So assume |a|+ < min(a) < λ. Assume that no sequence is λ-universal. We will construct sequences
of functions fα = 〈fαξ : ξ < λ〉 in

∏
a for α < |a|+ and ultrafilters Dα on a for α < |a|+ such that:

1. cf(
∏
a/Dα) = λ for each α < |a|+,

2. fα is <J<λ -increasing and <Dα-bounded by fα+1
0 for each α < |a|+,

3. fα+1 is cofinal in
∏
a/Dα for each α < |a|+,

4. 〈fαξ : α < |a|+〉 is ≤-increasing for each ξ < λ.
This is visualized in the following figure:

|a|+

λ

α
α+ 1

fα+1
0 is <Dα -bound for fα

fα

fα+1 is cofinal in
∏
a/Dα

fαξ

ξ

≤-increasing in α

<J<λ-increasing in ξ

Figure 2: Visualization of (fαξ )α<|a|+,ξ<λ.

The construction is of course by recursion, and we always assume that the functions we have
constructed satisfy 1.-4.:

i. Base case: Define f0
0 (x) = 0 for all x ∈ a. Given 〈f0

ξ : ξ < ξ0〉 for some ξ0 < λ, let f0
ξ0

be
an <J<λ-upper bound of 〈f0

ξ : ξ < ξ0〉, which exists since
∏
a/J<λ is λ-directed by Theorem

3.20.
ii. Successor case: Suppose we have defined fα for some α < |a|+. Let Dα be an ultrafilter

such that cf(
∏
a/Dα) = λ and that fα is not cofinal in

∏
a/Dα. Let fα+1

0 be an <Dα-upper
bound for fα. Let 〈f̄α+1

ξ : ξ < λ〉 be cofinal in
∏
a/Dα. Suppose we have defined fα+1

ξ for all
ξ < ξ0 for some 0 < ξ0 < λ. Let fα+1

ξ0
be an <J<λ-upper bound of {fα+1

ξ : ξ < ξ0} ∪ {f̄α+1
ξ :

ξ < ξ0} ∪ {fαξ0} and modify fα+1
ξ0

on a set in J<λ such that fα+1
ξ0
≥ fαξ0 .

iii. Limit case: Suppose we have defined fα for all α < α0 for some α0 < |a|+. Suppose we have
defined fα0

ξ for all ξ < ξ0 for some ξ0 < λ. Then let fα0
ξ be an <J<λ -upper bound for {fα0

ξ :
ξ < ξ0} ∪ {sup(fαξ0 : α < α0)} and modify fα0

ξ0
on an J<λ-set so that fα0

ξ0
≥ sup(fαξ0 : α < α0).

Then define h := sup(fα0 : α < |a|+) ∈
∏
a. For α < |a|+ let ξα < λ such that h <Dα fα+1

ξα
, which

exists by 3. Then ξ̄ := sup+
α<|a|+ ξα < λ. For eacht α, since ξα < ξ̄ we have fα+1

ξα
<J<λ f

α+1
ξ̄

by 2,
thus fα+1

ξα
≤Dα fα+1

ξ̄
, thus h <Dα fα+1

ξ̄
as well. For each α < |a|+ define Aα := [h ≤ fα

ξ̄
]. Then
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〈Aα : α < |a|+〉 is ⊆-increasing by 4. We have
1. fα

ξ̄
<Dα f

α+1
0 ≤ h by 2., so h 6≤Dα fαξ̄ , so Aα /∈ Dα,

2. h <Dα fα+1
ξ̄

so Aα+1 ∈ Dα.
So 〈Aα : α < |a|+〉 is even ⊂-increasing. This is a contradiction since Aα ⊆ a for all α < |a|+.

Lemma 3.39. Let a be an infinite set of regular cardinals such that |a| < min(a), let λ ∈ pcf(a)
and let µ be minimal such that a ∩ µ /∈ J<λ(a) (indeed, a /∈ J<λ(a) and ∅ ∈ J<λ(a) so there exists
such a µ). Then there exists a λ-universal sequence which satisfies ∗κ with respect to J<λ, for all
regular κ < µ. We can take κ = |a|+.

Proof. Let D be such that cf(
∏
a/D) = λ. Then {α ∈ a : α > λ} /∈ D, so a ∩ (λ + 1) ∈ D, so

a ∩ (λ+ 1) /∈ J<λ, so µ ≤ λ+ 1. µ = λ is impossible: λ is regular and |a| < min(a) ≤ λ, so a ∩ λ is
bounded by some µ′ < λ; this contradicts the minimality of µ.
If µ = λ+ 1, then λ ∈ a, a∩λ ∈ J<λ and even J<λ = P (a∩λ), since for any A ⊆ a with A 6⊆ a∩λ,
there is some λ′ > λ such that λ′ ∈ A, and thus the ultrafilter D′ concentrated on λ′ satisfies
A ∈ D′ and cf(

∏
a/D′) = λ′, thus A /∈ J<λ. Take f = 〈fi : i < λ〉 to be any λ-universal sequence.

Then ∗λ holds, since f is strongly increasing by the simple nature of J<λ. Thus ∗κ holds for any
κ < µ = λ+ 1.
So we are left with the case µ < λ and a ∩ µ is unbounded in µ. Thus µ is a limit cardinal. Let
〈gi : i < λ〉 be any λ-universal sequence. By the theorem below, for I = J<λ, there exists an
<J<λ -increasing sequence f = 〈fi : i < λ〉 such that gi <J<λ fi+1, so f is λ-universal, and such
that f satisfies ∗κ if κ is a regular cardinal such that κ++ < λ and {α ∈ a : α ≤ κ++} ∈ J<λ. If
κ < µ, then κ++ < µ < λ and {α ∈ a : α ≤ κ++} ∈ J<λ. So ∗κ holds for all κ < µ. We have
a ∩ |a|+ ⊆ min(a), so a ∩ |a|+ = ∅, thus |a|+ < µ. So we can take κ = |a|+.

Theorem 3.40. Let a be an infinite set of regular cardinals, let λ be a regular cardinal, let I be
a proper ideal on a and suppose that

∏
a/I is λ-directed. Let 〈gi : i < λ〉 be a sequence in

∏
a.

Then there exists an <I -increasing sequence 〈fi : i < λ〉 in
∏
a such that gi <I fi+1 for all i and

that satisfies ∗κ if κ is a regular cardinal such that κ++ < λ and {α ∈ a : α ≤ κ++} ∈ I.

Proof. We do this by recursion:
1. f0 is arbitrary.
2. fi+1 is such that gi, fi <I fi+1.
3. If i is limit, then we have the following cases:

(a) cf(i) = κ++ for some regular κ and {α ∈ a : α ≤ κ++} ∈ I, then let Ei ⊆ i be i-club
and such that ot(Ei) = κ++. Define fi(α) = sup(fj(α) : j ∈ Ei) for α > κ++, then
fi(α) < α for α > κ++. Thus fi ∈

∏
A/I is well-defined.

(b) We are not in the above situation. Then take fi to be an ≤I -upper bound for {fj : j < i}.
Then 〈fi : i < λ〉 is clearly <I -increasing, gi <I fi+1 for all i and it satisfies ∗κ for all regular
cardinals κ such that κ++ < λ and {α ∈ a : α ≤ κ++} ∈ I, by the following lemma.

Lemma 3.41. Let a be an infinite set of regular cardinals, let I be an ideal on a, let κ and λ be
regular such that κ++ < λ, let f = 〈fi : i < λ〉 be an <I -increasing sequence in ONa such that the
following holds: If cf(i) = κ++, then there exists Ei ⊆ i which is i-club and sup(fj : j ∈ Ei) <I fi′
for some i′ ≥ i. Then ∗κ holds for f .
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Proof. Suppose κ > ℵ0 and let S := S(κ++, κ) (recall Lemma 2.25). By Theorem 2.27, there exists
a club-guessing sequence 〈Cα : α ∈ S〉 for S. Let U be any unbounded set of λ. We have to find an
U0 ⊆ U of order type κ such that 〈fξ : ξ ∈ U0〉 is strongly increasing. For i < κ++ define ξi < λ by

1. ξ0 arbitrary,
2. ξi = supj<i ξj if i is limit,
3. Given ξj for all j ≤ i, define hα := sup(fξj : j ≤ i, j ∈ Cα} for all α ∈ S. If hα <I fη for some
η < λ, let ηα be minimal with this property. If hα 6< fη for all η < λ, then let ηα := ξi + 1.
Let ξi+1 > sup(ηα : α ∈ S) and such that ξi+1 ∈ U .

Then {ξi : i < κ++} is club in ξ := supi<κ++ ξi and cf(ξ) = κ++. By assumption there exists
Eξ ⊆ ξ which is ξ-club and sup(fη : η ∈ Eξ) <I fξ′ for some ξ′ ≥ ξ. Then {ξi : i < κ++} ∩ Eξ is
ξ-club, and thus C := {i < κ++ : ξi ∈ Eξ} is κ++-club. So there is an α ∈ S such that Cα ⊆ C,
and thus sup(fη : η ∈ Cα) <I fξ′ . Let Nα := {i ∈ Cα : sup(Cα ∩ i) < i} = {i ∈ Cα : (∃j ∈
Cα : (j, i) ∩ Cα = ∅)}. For i ∈ Nα, let ji ∈ Nα be such that (ji, i) ∩ Cα = ∅. In defining ξji+1,
we had hα := sup(fξj : j ≤ ji, j ∈ Cα) ≤ sup(fξj : j ∈ Cα} <I fξ′ . So there is some η such
that hα < fη. Thus sup(fξj : j ≤ ji, j ∈ Cα) <I fξji+1 ≤I fξi , since f is <I -increasing. Let
Zi = [sup(fξj : j ≤ ji, j ∈ Cα) 6< fξi ]. Then 〈Zi : i ∈ Nα〉 is a sequence in I, and if i, j ∈ Nα and
i < j and α ∈ Zi ∩ Zj , then fξi(α) < fξj (α). Thus 〈fξi : i ∈ Nα〉 is strongly increasing. Since
fξi <I fξi+1 ≤I fξi+ , where i+ = min(Cα \ (i + 1)), Lemma 3.12 yields that {fξi+1 : i ∈ Nα} is
strongly increasing as well, and this is a subsequence of 〈fξ : ξ ∈ U〉 of order type κ.

3.2.2 Existence of generators

Definition 3.42. Let a be a set, let I, J be ideals on a and let b ⊆ a. We say that b generates J
over I when one of the following equivalent requirements holds:

1. the ideal generated by I∪{b} is exactly J , i.e. J =
⋂
{K : K is an ideal on a and I∪{b} ⊆ K}.

2. J = {X ⊆ a : (∃Y ∈ I : X ⊆ Y ∪ b}.
3. J = {X ⊆ a : X \ b ∈ I}.

The ideal generated by I∪{b} is sometimes denoted as I+b, and thus a fourth equivalent requirement
is

4. I + b = J .

In this paragraph we will show that there always exist generators for J<λ+ over J<λ. We have a
simple test for checking whether b is a generator:

Lemma 3.43. Let a be a set of regular cardinals, let b ⊆ a and let λ ∈ pcf(a). Then

b generates J<λ+ over J<λ ⇔ b ∈ J<λ+ and [λ = cf(
∏

a/D)⇒ b ∈ D].

Proof. (⇒) Clearly b ∈ J<λ+ . Suppose λ = cf(
∏
a/D). Then D ∩ J<λ+ 6= ∅, so let X ∈ D ∩ J<λ+ .

Then X \ b ∈ J<λ. But D ∩ J<λ = ∅, so X \ b /∈ D, so b ⊇ X ∩ b ∈ D.
(⇐) Since J<λ ⊆ J<λ+ and b ∈ J<λ+ , we have J<λ + b ⊆ J<λ+ automatically. Now let X ∈ J<λ+

be arbitrary, we will show that X ∈ J<λ+ b by showing X \ b ∈ J<λ. Let D be such that X \ b ∈ D.
Then X ∈ D, so cf(

∏
a/D) < λ+. We have b /∈ D, so cf(

∏
a/D) 6= λ (by the assumption

[λ = cf(
∏
a/D) ⇒ b ∈ D]). Hence cf(

∏
a/D) < λ. Since D was arbitrary, we have X \ b ∈ J<λ.

Since X was arbitrary, we have that J<λ + b ⊇ J<λ+ . Thus b generates J<λ+ over J<λ.
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Theorem 3.44. Let a be a set of regular cardinals such that |a| < min(a) and let λ ∈ pcf(a).
Then there exists a b which generates J<λ+ over J<λ.

Proof. If λ = min(a), then J<λ+ = {{min(a)}, ∅} and J<λ = {∅}, so bλ = {min(a)} works. So
suppose λ > min(a) > |a|. By Lemma 3.39, let 〈fξ : ξ < λ〉 be a λ-universal sequence satisfying
∗|a|+ with respect to J<λ. By Theorem 3.11, 〈fξ : ξ < λ〉 has an <J<λ-exact upper bound h. Since
fξ ∈

∏
a for all ξ, the identity function id : a → a, α 7→ α is an upper bound for 〈fξ : ξ < λ〉. So

h ≤J<λ id, so we may assume h(α) ≤ α for all α ∈ a. We define b := {α ∈ a : h(α) = α} and prove
that b satisfies the conditions of Lemma 3.43.
Suppose D is an ultrafilter on a such that b ∈ D. If D∩J<λ 6= ∅ then cf(

∏
a/D) < λ. If D∩J<λ = ∅

then 〈fξ/D : ξ < λ〉 is <D-increasing and h/D is still its exact upper bound. So 〈fξ/D : ξ < λ〉
is <D-increasing and cofinal in

∏
{h(α) : α ∈ a}/D. But h =D id, so in fact 〈fξ/D : ξ < λ〉 is

<D-increasing and cofinal in
∏
a/D as well, and cf(

∏
a/D) = λ. Since D was arbitrary, we have

shown b ∈ J<λ+ .
Now suppose cf(

∏
a/D) = λ and assume b /∈ D. Then {α ∈ a : h(α) < α} ∈ D so h/D ∈

∏
a/D.

We have D ∩ J<λ = ∅, so fξ <D h for all ξ, so 〈fξ/D : ξ < λ〉 is not cofinal in
∏
a/D. This

contradicts the universality of 〈fξ : ξ < λ〉. So we have shown [λ = cf(
∏
a/D)⇒ b ∈ D].

3.2.3 Properties of generators

Now that we know the existence of generators, we can look without hesitation for properties and
extra assumptions on the generators.
In fact, the first two results are provable and interesting without knowing that generators always
exist. However, we present them here among the other properties on generators.
In this paragraph, a always denotes an infinite set of regular cardinals such that |a| < min(a) and
〈bλ : λ ∈ pcf(a)〉 is a sequence of generators.

Lemma 3.45. If J<λ+(a) = J<λ(a) + b and c ⊆ a, then J<λ+(c) = J<λ(c) + (b∩ c). So ‘generators
restrict’.

Proof. By Lemma 3.43, we need to show b ∩ c ∈ J<λ+(c) and [λ = cf(
∏
c/D) ⇒ b ∩ c ∈ D]. If

b ∩ c ∈ D, extend D to an ultrafilter D̂ on a, then b ∈ D̂ so cf(
∏
c/D) = cf(

∏
a/D̂) < λ+. So

indeed b ∩ c ∈ J<λ+(c). If cf(
∏
c/D) = λ, then again extend D to an ultrafilter D̂ on a. Then

λ = cf(
∏
c/D) = cf(

∏
a/D̂), so b ∈ D̂. Hence b ∩ c ∈ D. So [λ = cf(

∏
c/D)⇒ b ∩ c ∈ D].

Lemma 3.46. If J<λ+ = J<λ + b = J<λ + c, then b =J<λ c.

Proof. We need to show that b∆c = b \ c ∪ c \ b ∈ J<λ. Let D such that b∆c ∈ D. Then b ∪ c ∈ D.
Note that b, c ∈ J<λ+ , so b ∪ c ∈ J<λ+ . Hence cf(

∏
a/D) < λ+. If cf(

∏
a/D) = λ, then b, c ∈ D

by Lemma 3.43. Hence b ∩ c ∈ D, but since b∆c ∈ D we get ∅ ∈ D, a contradiction. Hence
cf(
∏
a/D) < λ, and b∆c ∈ J<λ.

We now give a nice characterization of cf(
∏
a/D) using generators. Remember that bλ generates

J<λ+ over J<λ.
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Lemma 3.47. We have

cf(
∏

a/D) = min({λ : bλ ∈ D}).

Proof. Let cf(
∏
a/D) = λ. Then D ∩ J<λ+ 6= ∅, so let b ∈ D ∩ J<λ+ . Since bλ generates J<λ+ over

J<λ, we have b \ bλ ∈ J<λ. Since D ∩ J<λ = ∅, we must have b \ bλ /∈ D, so bλ ⊇ b ∩ bλ ∈ D. If
µ < λ, then bµ ∈ D implies cf(

∏
a/D) < µ+ ≤ λ, which is not true. So bµ /∈ D.

Lemma 3.48. When c ⊆ a, there are λ1, ..., λn ∈ pcf(c) such that c ⊆ bλ1 ∪ ... ∪ bλn .

Proof. Define I := {b ⊆ c : there exist λ1, ..., λn ∈ pcf(c) such that b ⊆ bλ1 ∪ ... ∪ bλn}. Then I is
an ideal on c. If c ∈ I, then we are done. If c /∈ I, then extend the dual filter of I to an ultrafilter
disjoint from I, and extend this to an ultrafilter D on a. Then c ∈ D and λ := cf(

∏
a/D). Also

bλ ∈ D by Lemma 3.47. Hence c ∩ bλ ∈ D. Therefore we have λ ∈ pcf(c ∩ bλ). Since c ∩ bλ ⊆ bλ,
we have bλ ∈ I. But this contradicts D ∩ I = ∅.

We prove a simple extension lemma for ideals, which will be used in the proof of the next theorem,
but which will be useful later on as well.

Lemma 3.49. Let X be a set, let I be an ideal on X, let κ be an infinite cardinal and let
〈cα : α < κ〉 be an ⊆I -decreasing sequence such that cα /∈ I for all α. Then there is an ultrafilter
D on X such that D ⊇ {cα : α < κ} and D ∩ I = ∅.

Proof. We need to show that {X \ A : A ∈ I} ∪ {cα : α < κ} has the finite intersection property.
Then it extends to a filter and to an ultrafilter with the desired properties. Clearly (X \A)∩cα 6= ∅
for any A ∈ I and α < κ. Since I is an ideal, the intersection of finitely many elements of
{X \A : A ∈ I} is again in {X \A : A ∈ I}. So it remains to check that (X \A)∩

⋂n
i=1 cαi 6= ∅ for

any A ∈ I and αi < κ. Let α = maxαi. Then
n⋂
i=1

cαi = cα \ [(cα \ cα1) ∪ ... ∪ (cα \ cαn)] /∈ I,

since cα \ cαi ∈ I for all i and cα /∈ I. Thus (X \A) ∩
⋂n
i=1 cαi 6= ∅.

Theorem 3.50. Let a be an infinite set of regular cardinals such that |a| < min(a), let λ ∈ pcf(a).
Then tcf(

∏
bλ/J<λ(bλ)) = λ.

Note. We use J<λ(bλ) be ensure that we have an ideal on bλ. However, J<λ(bλ) = J<λ(a) ∩ P (bλ)
and there is no real difference between

∏
bλ/J<λ(bλ) and

∏
bλ/J<λ(a).

Proof. Let b := bλ. Let 〈fξ : ξ < λ〉 be λ-universal. Then 〈fξ : ξ < λ〉 is <J<λ(a)-increasing. Recall
that J<λ(bλ) = J<λ(a) ∩ P (bλ), so that we have

fξ <J<λ(a) fχ ⇒ [fξ 6< fχ] ∈ J<λ(a) ⇒ [fξ � b 6< fχ � b] = [fξ 6< fχ] ∩ b ∈ J<λ(b)
⇒ fξ � b <J<λ(b) fχ � b.

Thus the sequence 〈fξ � b : ξ < λ〉 is <J<λ(b)-increasing. We will show that it is also cofinal in∏
b/J<λ(b).
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Let h ∈
∏
b. Suppose h 6<J<λ(b) fξ � b for all ξ. Then [h 6< fξ � b] /∈ J<λ(b) for all ξ. Furthermore

〈[h 6< fξ � b] : ξ < λ〉 is ⊆J<λ -decreasing: If ξ < χ, then

[h 6< fχ � b] \ [h 6< fξ � b] = {α ∈ b : fξ(α) > h(α) ≥ fχ(α)}
⊆ {α ∈ a : fχ(α) < fξ(α)} ∩ b
⊆ [fξ 6< fχ] ∩ b ∈ J<λ(b).

So Lemma 3.49 applies and we obtain an ultrafilter on b disjoint from J<λ(b) and containing
[h 6< fξ � b] for each ξ. Extend it an ultrafilter D on a. Then D ∩ J<λ(a) = ∅ and b ∈ D, so
cf(
∏
a/D) = λ. Since D 3 [h 6< fξ � b], any extension ĥ of h to a function on a satisfies h ≥D fξ,

for all ξ. So 〈fξ/D : ξ < λ〉 is not cofinal in
∏
a/D, which contradicts the universality of the

sequence 〈fξ : ξ < λ〉.

3.2.4 Another proof

We now present a more direct approach to show the existence of a generator for J<λ+ over J<λ. It
is more basic and shorter than the one above, but the final step of the proof relies on the assumption
that 2|A| < minA.
Let A be a set of regular cardinals such that |A|+ < minA.

Lemma 3.51. Let I be an ideal on A, let λ be a regular cardinal and let 〈fi : i < λ〉 be a sequence
in
∏
A such that it is <I -increasing and ≤I -unbounded in

∏
A/I. Then there exists a sequence

〈bγ : γ < λ〉 in P (A) and a function g ∈
∏
A such that

1. b0 /∈ I,
2. bγ ⊆J<λ bγ′ for γ < γ′,
3. 〈fi � bγ : i < λ〉 is increasing and cofinal in

∏
bγ/I, for all γ,

4. 〈fi : i < λ〉 is bounded by g in
∏
A/(I + {bγ : γ < λ}). I + {bγ : γ < λ} is the ideal generated

by I ∪ {bγ : γ < λ}.

We postpone the proof of this lemma to the end of this section.

Corollary 3.52. Let I be an ideal on A such that
∏
A/I is λ-directed, let D be an ultrafilter

on A such that I ∩ D = ∅ and assume λ = cf(
∏
A/D). Then there exists a b ∈ D such that

tcf(
∏
b/(I � b)) = λ.

Proof. Let 〈fi : i < λ〉 be increasing and cofinal in
∏
A/D. Recursively define f ′i ∈

∏
A for i < λ

by
1. f ′0 = f0,
2. f ′i is an upper bound in

∏
A/I for {f ′j : j < i} ∪ {fi}, which exists by the λ-directedness of∏

A/I.
Then 〈f ′i : i < λ〉 is <I -increasing and <D-increasing. Since fi ≤I f ′i , thus fi ≤D f ′i , the sequence
is still cofinal in

∏
A/D, hence can not have an upper bound. Thus the sequence is unbounded in∏

A/I as well, since any bound in
∏
A/I would also be a bound in

∏
A/D. So let 〈bγ : γ < λ〉 and

g be as in Lemma 3.51. If D∩(I+{bγ : γ < λ}) = ∅, then g would be an upper bound for 〈fi : i < λ〉
in
∏
A/D. So there exists a d ∈ D, x ∈ I and γ1, ..., γn < λ such that d ⊆ x ∪ bγ1 ∪ ... ∪ bγn . Since

〈bγ : γ < λ〉 is ⊆J<λ -increasing, this reduces to d ⊆ x′ ∪ bγ for some x′ ∈ I and some γ < λ. Since

39



D ∩ I = ∅, it follows that bγ ∈ D. Since 〈fi � bγ : i < λ〉 is increasing and cofinal in
∏
bγ/I, we

have tcf(
∏
bγ/I) = λ.

Corollary 3.53. Let I be a proper ideal on A such that if D is an ultrafilter on A and D ∩ I = ∅,
then cf(

∏
A/D) = λ. Then tcf(

∏
A/I) = λ.

Proof. We have J<λ ⊆ I: If b ∈ J<λ \ I, let D be an ultrafilter on A such that b ∈ D and D∩ I = ∅,
then cf(

∏
A/D) < λ, which contradicts the assumption that cf(

∏
A/D) = λ. It follows that

∏
A/I

is λ-directed, since
∏
A/J<λ is λ-directed. Let I ′ := {B ⊆ A : B ∈ I or [B /∈ I and tcf(

∏
B/(I �

B)) = λ]}. Then I ′ is an ideal:
1. I ′ ⊆ P (A), ∅ ∈ I ′,
2. If X,Y ∈ I ′, then

(a) If X,Y ∈ I, then X ∪ Y ∈ I, so X ∪ Y ∈ I ′,
(b) X,Y /∈ I and tcf(

∏
X/(I � X)) = tcf(

∏
Y/(I � Y )) = λ, so tcf(

∏
(Y ∪ X)/(I � (Y ∪

X))) = λ and X ∪ Y /∈ I, hence X ∪ Y ∈ I ′,
(c) without loss of generality X ∈ I, Y /∈ I and tcf(

∏
Y/(I � Y )) = λ, so tcf(

∏
(X ∪Y )/(I �

(X ∪ Y ))) = λ and X ∪ Y /∈ I, so X ∪ Y ∈ I ′,
3. If X ∈ I ′ and Y ⊆ X, then

(a) X ∈ I, so Y ∈ I, so Y ∈ I ′,
(b) tcf(

∏
X/(I � X) = λ, so

i. Y ∈ I, so Y ∈ I ′,
ii. Y /∈ I, so tcf(

∏
Y/(I � Y )) = tcf(

∏
X/(I � X)) = λ, so Y ∈ I ′.

Only cases 2.(b), 2.(c) and 3.(b)ii. are non-trivial, and require a bit of thought about how we could
manipulate the true cofinal sequences.
If I ′ 6= P (A), then any ultrafilter D on A such that D∩I ′ = ∅ satisfies D∩I = ∅ so cf(

∏
A/D) = λ.

Therefore there exists a b ∈ D such that tcf(
∏
b/I) = λ by Corollary 3.52. So D ∩ I ′ 6= ∅, a

contradiction. So I ′ = P (A) and thus tcf(
∏
A/I) = λ.

Corollary 3.54. Suppose b ∈ J<λ+(a) \ J<λ(a). Then tcf(
∏
b/J<λ(b)) = λ.

Proof. Consider I := J<λ + (A \ b). For any ultrafiler D on A such that D ∩ I = ∅, we have
D ∩ J<λ = ∅, thus cf(

∏
A/D) 6< λ. Furhermore, D 63 (A \ b), hence D 3 b, so cf(

∏
A/D) < λ+. So

cf(
∏
A/D) = λ. By Corollary 3.53 tcf(

∏
A/I) = λ. But

∏
b/J<λ(b) ∼=

∏
A/I, so we are done.

Theorem 3.55. If 2|A| < minA, then J<λ+ is generated over J<λ by a single set, for any λ.

Proof. The proof completely relies on the assumption and Lemma 3.56 below. We have J<λ+ ⊆
J<λ+ and |J<λ+ | ≤ |P (A)| = 2|A| < minA ≤ λ, so by lemma 3.56 there exists a b ∈ J<λ+ such that
c ⊆J<λ b for all c ∈ J<λ+ . Thus J<λ + b = J<λ+ .

Lemma 3.56. Let µ < λ be cardinals and let {bα : α < µ} ⊆ J<λ+ . Then there exists a b ∈ J<λ+

such that bα ⊆J<λ b for all α.

Proof. Without loss of generality {bα : α < µ} ⊆ J<λ+ \J<λ. By Corollary 3.54 tcf(
∏
bα/J<λ) = λ

for all α. Let 〈fαi : i < λ〉 in
∏
A such that 〈fαi � bα : i < λ〉 is increasing and cofinal in

∏
bα/J<λ.

Let 〈f∗i : i < λ〉 such that {fαi : α < µ} ∪ {f∗j : j < i} is bounded by f∗i in
∏
A/J<λ (use the

λ-directedness of
∏
A/J<λ). Since 〈fαi � bα : i < λ〉 is not bounded in

∏
bα/J<λ, it follows that
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〈fαi : i < λ〉 is not bounded in
∏
A/J<λ. Thus 〈f∗i : i < λ〉 is not bounded in

∏
A/Jλ. Thus let

〈cγ : γ < λ〉 and g be as in Lemma 3.51.
Assume for now the following claim: For all α < µ exists γα < λ such that bα ⊆J<λ cγα . Since
µ < λ, let γ < λ such that γα ≤ γ for all α. Then bα ⊆J<λ cγ for all α.
We have cγ ∈ J<λ+ : Let D be an ultrafilter on A such that cγ ∈ D. If D ∩ J<λ 6= ∅ then
cf(
∏
A/D) < λ; if D ∩ J<λ = ∅, then tcf(

∏
cγ/J<λ) = cf(

∏
cγ/D). But by definition of cγ ,

〈f∗i � cγ : i < λ〉 is increasing and cofinal in
∏
cγ/J<λ. So λ = tcf(

∏
cγ/J<λ) = cf(

∏
cγ/D). Thus

in both cases cf(
∏
A/D) ≤ λ hence cγ ∈ J<λ+ .

It remains to show that for all α < µ exists γα < λ such that bα ⊆J<λ cγα . Suppose not. Let α be
such that bα \ cγ /∈ J<λ for all γ. By Lemma 3.49, let D be an ultrafilter such that D 3 (bα \ cγ)
for all γ and D ∩ J<λ = ∅. Then cf(

∏
A/D) 6< λ. Since 〈fαi � bα : i < λ〉 is cofinal in

∏
bα/J<λ,

so is 〈f∗i � bα : i < λ〉. Since bα ∈ D and D ∩ J<λ = ∅, 〈f∗i : i < λ〉 is cofinal in
∏
A/D. But this

contradicts that 〈f∗i : i < λ〉 is bounded by g in
∏
A/(J<λ + {cγ : γ < λ}).

Proof of Lemma 3.51. First note that we must have λ ≥ minA otherwise α 7→ supi<λ fi(α) would
be an upper bound in

∏
A for 〈fi : i < λ〉. Assume the theorem is false. Recursively define

gα ∈
∏
A for α < |A|+ as follows:

1. Let g0 ∈
∏
A be arbitrary.

2. Let gα(x) := supβ<α gβ(x) when α is limit, for all x ∈ A.
3. Given gα, define bαi := [gα < fi] for all i < λ. For some minimal iα, bαiα /∈ I since 〈fi : i < λ〉

is unbounded in
∏
A/I. For i < λ, let

bi,α :=
{
bαi , if i ≥ iα,
bαiα , if i ≤ iα.

Then 〈bi,α : i < λ〉 is a sequence in P (A) such that b0,α /∈ I, bi,α ⊆I bj,α when i < j since
〈fi : i < λ〉 is increasing in

∏
A/I and 〈fi : i < λ〉 is bounded by gα in

∏
A/(I+{bi,α : i < λ}).

Since we assumed the lemma is false, there exists a γα ≥ iα such that 〈fi � bγα,α : i < λ〉 is
not cofinal in

∏
bγα,α/I. So let hα ∈

∏
A be such that hα � bγα,α 6≤I fi � bγα,α for all i. So

[hα > fi] ∩ bγα,α /∈ I. Let gα+1 := max(gα, hα).
Now we have the map |A|+ → λ given by α 7→ γα and λ ≥ minA > |A|+, so let γ < λ be such that
γα ≤ γ for all α and consider 〈bαγ : α < |A|+〉. We have

bαγ = [gα < fγ ] ⊇ [gα+1 < fγ ] = bα+1
γ

for all α. We have [hα > fi]∩ bγ,α /∈ I for all i, in particular for i = γ; let x ∈ bγ,α = bαγ = [gα < fγ ]
be such that hα(x) > fγ(x). Then x ∈ bαγ but x /∈ bα+1

γ . So bαγ ⊃ bα+1
γ . So 〈bαγ : α < |A|+〉 is a

strictly decreasing sequence of subsets of A of length |A|+, which is impossible.
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4 Model theory

Model theory is a field of study in mathematics and logic. The first model theoretic work was done
in the first half of the twentieth century, by Skolem, Löwenheim, Gödel and Tarski. Model Theory
formalizes the idea that by assuming some basic rules (the axioms) we can look for a universe (a
model) where the axioms are satisfied. To formulate the axioms we need a language, and it is
standard to assume that every language contains a symbol = for is equal to. The language of set
theory also contains a symbol ∈ for is element of . An example of an axiom of set theory is that if
two sets contain exactly the same elements, then they are equal. To check whether a model satisfies
an axiom we need an interpretation of the language in the model. By the theorems of Skolem and
Löwenheim it turns out that the cardinality of a model is not determined by the axioms: As soon
as there is an infinite model satisfying the axioms, there are models of every infinite cardinality
larger than or equal to the cardinality of the language.

4.1 Basic definitions

We now rigorously build up the definitions of model theory.

Definition 4.1. A language consists of a set of constants, of a set of function symbol and of a
set of relation symbols. Each function symbol and each relation symbol is equipped with an arity,
which is a natural number. The cardinality of a language is the sum of the cardinalities of the set
of constants, set of function symbols and set of relation symbols. The language of set theory has
no constant, no function symbols and one binary relation symbol ∈.

We denote a language as L = (CL, FL, RL) and its cardinality as |L| = |CL|+ |FL|+ |RL|, and the
language of set theory is LSet = (∅, ∅, {∈}).
From a language we can form terms and formulas. We can perform substitutions in both terms
and formulas, and terms and formulas may be closed.
To form terms and formulas we need auxiliary symbols:

1. Variables: Once and for all we fix a countable set V of variables.
2. Logical symbols: =, ∨, ¬ and ∃.
3. Symbols for notation: (, ) and ,.

Terms and formulas will be certain finite sequences in S := CL ∪ FL ∪RL ∪ V ∪ {=,∨,¬,∃, (, ), , }.
Let S∗ denote the set of finite sequences of S. An element of S∗ is a function f : n → S for some
natural number n, but form now on we will denote such a sequence simply by writing its image
elements from left to right: f(0)f(1)f(2)...f(n− 1).

Definition 4.2. The set of L-terms is the smallest subset of S∗ that satisfies the following:
1. If c is a constant, then c is a term.
2. If x is a variable, then x is a term.
3. If t1, ..., tn are terms and f is a function symbol of arity n, then f(t1, ..., tn) is a term.

Note that in Definition 4.2.1. we first mean c as a constant, and then c as the sequence f : 1→ S
given by f(0) = c. Something similar holds in 4.2.2. Furthermore, any intersection of a collection
of sets satisfying 1.-3. again satisfies 1.-3., so there indeed exists a smallest subset.
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Definition 4.3. The set of L-formulas is the smallest subset of S∗ that satisfies the following:
1. If t1 and t2 are terms, then t1 = t2 is a formula.
2. If t1, ..., tn are terms and R is a relation symbol of arity n, then R(t1, ..., tn) is a formula.
3. If φ is a formula, then ¬(φ) is a formula.
4. If φ1 and φ2 are formulas, then (φ1) ∨ (φ2) is a formula.
5. If φ is a formula and x is a variable, then ∃x(φ) is a formula.

Now that we have defined terms and formulas, we define substitution.

Definition 4.4. Let t and s be terms and let x be a variable. We recursively define the substitution
of x by s in t, and denote this as t[s/x], as follows:

1. If t = c, then t[s/x] = t.
2. If t = x, then t[s/x] = s. If t = y and y 6= x, then t[s/x] = t.
3. If t = f(t1, ..., tn) then t[s/x] = f(t1[s/x], ..., tn[s/x]).

Informally then a substitution of x by s in a term t is just replacing every x in t by s.

Definition 4.5. Let φ be a formula, let t be a term and let x be a variable. Define recursively the
substitution of x by t in φ, denoted as φ[t/x], as follows:

1. If φ = {t1 = t2}, then φ[t/x] = {t1[t/x] = t2[t/x]}. (The { and } are only used to express the
beginning and end of the formula.)

2. If φ = R(t1, ..., tn), then φ[t/x] = R(t1[t/x], ..., tn[t/x]).
3. If φ = ¬(ψ), then φ[t/x] = ¬(ψ[t/x]).
4. If φ = φ1 ∨ φ2, then φ[t/x] = φ1[t/x] ∨ φ2[t/x].
5. If φ = ∃x(ψ), then φ[t/x] = ∃x(ψ).

If φ = ∃y(ψ) and y 6= x, then φ[t/x] = ∃y(ψ[t/x]).

Definition 4.6. A term t is closed iff t[y/x] = t for all variables y and x. A formula φ is closed iff
φ[y/x] = φ for all variables y and x. Closed formulas are also called sentences.

Let x and y be distinct variables and let φ be a formula. Then φ[y/x] equals φ except that some,
but maybe not all, x’s are replaces by y’s. Any occurrence of x in φ that is still x in φ[y/x] is called
bound; if it changes to y then the occurrence is called free. A variable is called free in φ if there is
a free occurrence of this variable in φ. When φ is a formula, we denote by φ(x1, ..., xn) the same
formula, but indicate that its free variables are among x1, ..., xn. When c1, .., cn are constants and
φ(x1, ..., xn) is a formula, then φ(c1, ..., cn) := φ[c1/x1]...[cn/xn], that is for every i we replace all
free occurrences of xi by the constant ci. Clearly a closed formula is precisely a formula which has
no free variables and clearly φ(c1, ..., cn) is a closed formula.

Definition 4.7. Let L be a language. A structure for L is a set M together with interpretations
for the constants, functions symbols and relation symbols of L. An interpretation of a constant is
an element of M , an interpretation of a function symbol of arity n is a function Mn → M and an
interpretation of a relation symbol of arity n is a subset of Mn. The cardinality of a structure is
just the cardinality of the set M .

For a constant c, function symbol f and relation symbol R we now denote their respective interpre-
tations in M as cM , fM , RM . Later on, we no longer indicate the difference between a symbol and
its interpretation. When M is a structure for L, we denote by LM the language which is L together
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with a new constant symbol for each element of M . By interpreting such a constant symbol in LM
as itself, we get that M is also a structure for the language LM .
When there are only ‘few’ language symbols, we may write (M, c, d, ..., f, g, ..., R, S, ...) instead of
just M to stipulate that M is a structure in this language, and not an other language. For instance
we will encounter the language of set theory with one additional function symbol h. A structure
for this language is denoted as (M,h,∈), whereas a structure for just the language of set theory is
simply denoted by M .
We extend the interpretation of constants, function symbols and relation symbols to all closed
terms, by recursion:

1. If t = c, then t is closed and tM := cM .
2. If t = x, then t is not closed.
3. If t = f(t1, ..., tn) and t is closed, then ti is closed for all i, and their interpretation has already

been defined by the induction hypothesis, so we may define tM := fM (tM1 , ..., tMn ).
Now we define what it means for a structure to satisfy a sentence. This is done in two stages, first
for LM -sentences.

Definition 4.8. Let M be a structure for L. Now consider M as an LM -structure. We recursively
define when an LM -sentence φ is satisfied in M , and write M � φ:

1. M � t1 = t2 iff tM1 = tM2 .
2. M � R(t1, ..., tn) iff (tM1 , ..., tMn ) ∈ RM .
3. M � φ ∨ ψ iff M � φ or M � ψ.
4. M � ¬(φ) iff not M � φ, this is also denoted as M 6� φ.
5. M � ∃x(φ) iff there is some m ∈M such that M � φ[m/x].

Note that if ∃x(φ) is closed, then φ[m/x] is closed as well. Note that m ∈ M is just an element
of M , whereas the m in φ[m/x] is in fact the sequence consisting of the constant m. When φ is
satisfied in M , we also say that M models φ.

Definition 4.9. Let M be a structure for L. We recursively define when an L-sentence is satisfied
in M , and write M � φ:

1. M � t1 = t2 iff tM1 = tM2 .
2. M � R(t1, ..., tn) iff (tM1 , ..., tMn ) ∈ RM .
3. M � φ ∨ ψ iff M � φ or M � ψ.
4. M � ¬(φ) iff not M � φ, this is also denoted as M 6� φ.
5. M � ∃x(φ) iff there is some m ∈M such that M � φ[m/x].

Now in item 5., φ[m/x] may not be an L-sentence any more. So for M � φ[m/x] to make sense
we must use Definition 4.8, and indeed here we mean M as an LM -structure and φ[m/x] as an
LM -sentence. Again when φ is satisfied in M we say M models φ and write M � φ.

Since any L-sentence φ is also an LM -sentence, the expression M � φ is defined in two ways, namely
M as an LM -structure and φ as an LM -sentence, or just M as an L-structure and φ as an L-sentence.
Fortunately the definitions are equivalent; we can never have M � φ in one interpretation of this
notation and M 6� φ is the other.
We have the following abbreviations for formulas:

1. If t1 and t2 are terms, t1 6= t2 := ¬(t1 = t2).
2. If φ is a formula and x is a variable, then ∀x(φ) := ¬(∃x(¬(φ))).
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3. If φ and ψ are formulas, then
(a) (φ) ∧ (ψ) := ¬((¬(φ)) ∨ ((¬(ψ))).
(b) (φ)→ (ψ) := (¬(φ)) ∨ (ψ).
(c) (φ)↔ (ψ) := ((φ)→ (ψ)) ∧ ((φ)→ (ψ)).

4. If φ is a formula and x is a variable then ∃!x(φ) := ∃x((φ) ∧ (∀y((φ[y/x])→ (y = x))).
Specifically in the language of set theory we have the abbreviations: When t1 and t2 are terms,
then

1. t1 ∈ t2 := ∈(t1, t2),
2. t1 ⊆ t2 := ∀x((x ∈ t1)→ (x ∈ t2)),
3. t1 ⊂ t2 := (t1 ⊆ t2) ∧ (t1 6= t2).

A theory is a set of sentences. A structure M satisfies a theory T or M is a model of T , denoted
as M � T , iff M � φ for all φ ∈ T . Given a structure M , we write Th(M) for the set of a sentences
satisfied in M . Obviously M � Th(M) for any L-structure M .

Definition 4.10. Let L be a language and let M be a structure for L. Let X ⊆ M . Then X is
called definable iff there is a formula φ(x) such that

M � φ(m)⇔ m ∈ X,

and we say φ defines X. An element m ∈M is definable iff {m} is definable, and if φ defines {m}
then we also say φ defines m.

4.2 Elementary embeddings

As often when one defines mathematical objects, one can ask how two of these objects relate to
each other. It turs out that in model theory, not isomorphism (identical up to names of elements),
but elementary equivalence (satisfying the same sentences) is the best notion of sameness. We have
the following definitions:

Definition 4.11. Let L be a language and let M and N be structures for L. Let A : M → N be
a map. Then A is called a morphism iff

1. A(cM ) = cN for all constants c,
2. A(fM (m1, ...,mn)) = fN (A(m1), ..., A(mn)), for all (m1, ...,mn) ∈Mn and all function sym-

bols f ,
3. if (m1, ...,mn) ∈ RM then (A(m1), ..., A(mn)) ∈ RN , for all (m1, ...,mn) ∈Mn and all relation

symbols R.

Definition 4.12. Let L be a language, let M and N be structures for L and let A : M → N be a
morphism. Then A is called an embedding iff

1. A is injective,
2. if (A(m1), ..., A(mn)) ∈ RN then (m1, ...,mn) ∈ RM , for all (m1, ...,mn) ∈Mn and all relation

symbols R.

When M ⊆ N and the inclusion i : M → N is an embedding, we say that M is a substructure of N
and N is an extension of M . Note that by a renaming of elements, any embedding can be regarded
as an inclusion.
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Definition 4.13. Let L be a language, let M and N be structures for L and let A : M → N be an
embedding. Then A is called elementary iff for all L-formulas φ(x1, ..., xn) and all m1, ..,mn ∈M ,

M � φ(m1, ...,mn)⇔ N � φ(A(m1), ..., A(mn)).

When an inclusion i : M → N is elementary, we denote this as M ≺ N and say that M is an
elementary substructure of N .
When a morphism A : M → N is bijective and its inverse A−1 is also a morphism, then A is called
an isomorphism and M and N are called isomorphic. An isomorphism is always an elementary
embedding, but not every elementary embedding is an isomorphism. As mentioned, isomorphisms
are relatively unimportant compared to elementary embeddings.
Note that if M ≺ N , then M contains all definable elements of N : For if φ(x) defines some n ∈ N ,
then N � ∃x(φ(x) ∧ (∀y(φ[y/x] → y = x))), hence M � ∃x(φ(x) ∧ (∀y(φ[y/x] → y = x))), hence
M � φ(m) ∧ (∀y(φ[y/x] → y = m)) for some m ∈ M , hence N � φ(m) ∧ (∀y(φ[y/x] → y = m)),
but N � φ(n), so m = n thus n ∈M .

4.3 The theorems of Skolem and Löwenheim

The theorems of Skolem an Löwenheim express that every infinite structure M has elementary
extensions of any cardinality larger than the cardinality of M and M has elementary substructures
of any cardinality larger than or equal to the cardinality of the language. We state the theorems
without proof. See for instance [10] for a thorough proof.
Theorem 4.14 (Upwards Skolem-Löwenheim). Let L be a language and let M be an infinite
structure for L. Let κ > max(|M |, |L|). Then there exists a structure N for L such that M ≺ N
and |N | = κ.
Theorem 4.15 (Downwards Skolem-Löwenheim). Let L be a language and let M be an infinite
structure for L. Let X ⊆M . Then there exists a structure N for L such that X ⊆ N , N ≺M and
|N | ≤ max(|X|, |L|,ℵ0).

So if M is a structure for L and κ is a cardinal such that max(ℵ0, |L|) ≤ κ ≤ |M |, let X ⊆M be of
size κ. Then there is an structure N for L such than X ⊆ N , N ≺M and |N | ≤ max(|X|, |L|,ℵ0) =
κ. So |N | = κ and M has a substructure of size κ.
In fact a proof of the upwards theorem uses the downward theorem. A proof of the downwards
theorem uses the Tarski-Vaught test for determining whether an embedding is elementary: When
an existential sentence is true in N , it is already witnessed by an element in M .
Lemma 4.16 (Tarski-Vaught test). Let L be a language, let M and N be models in L and let
A : M → N be an embedding. Then A is elementary if and only if the following holds: For every
LM formula φ(x) such that N � ∃x(φ), we have N � φ(m) for some m ∈M .

Note that in this definition we interpret the embedding A : M → N as an inclusion i : M → N , so
that the LM -formulas ∃x(φ) and φ(m) are also LN -formulas.
Using the Tarski-Vaught test, we can also prove the following lemma.
Lemma 4.17. Let L be a language, let M be a structure for L, let i be an ordinal let 〈Nj : j < i〉
be a ⊆-chain of elementary substructures of M . Then N :=

⋃
j<iNj with natural interpretations

is an L-structure and N ≺M as well.
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This lemma may also be seen al a consequence of the elementary system lemma, which we will not
show here. This lemma will be used implicitly in for instance Section 6 and in the proof of Theorem
8.21.

4.4 H(κ)

Recall that a set x is transitive iff y ∈ x implies y ⊆ x. Given x, recursively define x0 = x,
xn+1 =

⋃
xn. Then trcl(x) :=

⋃
n<ω xn, the transitive closure of x is the smallest transitive set

containing x.

Definition 4.18. Let κ be a cardinal. We define H(κ) := {x : |trcl(x)| < κ} and consider H(κ) as
a model in the language of set theory.

If |trcl(x)| < κ then x is hereditarily of cardinality less than κ. H(κ) is the set of sets hereditaliy of
cardinality less then κ.

Example 4.19.

Vω = H(ℵ0) � ZFC− Inf,
H(θ) � ZFC− P for θ > ℵ0,

Vκ = H(κ) � ZFC for inaccessible κ.

In the language of set theory, we can express many properties of sets by a formula. For example
we can express that

1. x is a subset of y,
2. x is transitive,
3. x is well-ordered by ∈,
4. x is an ordinal,
5. x is a successor ordinal,
6. x is a limit ordinal,
7. f is a function from a to b,
8. f is a injection (surjection, bijection) from a to b,
9. x is a cardinal number,

10. x is a successor cardinal number,
11. x is a limit cardinal number.

Furthermore, all natural numbers are definable.
As an example of the strength and elegance of H(κ) and model theory, we will prove the Pressing
Down Lemma by using Downwards Skolem-Löwenheim.

Theorem 4.20. Let f : ω1 → ω1 such that f(α) < α for all 0 < α < ω1. Then there exists a
stationary S ⊆ ω1 such that f � S is constant.

Proof. Note that |trcl(f)| < ℵ2 so f ∈ H(ℵ2). By Downwards Skolem-Löwenheim there exists an
M ≺ H(ℵ2) such that f ∈ M and |M | = ℵ0. Since ω and ω1 are definable in H(ℵ2), they belong
to M as well. Furthermore every n < ω is definable in H(ℵ2), so we have ω ⊆ M . If α ∈ M ∩ ω1,
the H(ℵ2) contains a surjection ω � α, hence so does M . Since ω ⊆ M , we obtain α ⊆ H(ℵ2).
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Thus M ∩ω1 is an initial segment of ω1. Since |M | = ℵ0, we have δ := M ∩ω1 < ω1. Let ε := f(δ).
Then ε < δ hence ε ∈M . Then S := {α : f(α) = ε} ∈M .7 We will show that S is stationary.
Let club(x, y) be the following formula:(

∀α ∈ y ∃β ∈ x (α ∈ β)
)
∧
(
∀α ∈ y

(
(∀β ∈ α ∃γ ∈ x (β ∈ γ ∧ γ ∈ α))→ α ∈ x

))
The enlargement of the parentheses is just to ease the readability of the formula. Now club(x, ω1)
expresses that x is club in ω1. Suppose C ∈ M is such that M � club(C,ω1). Then H(ℵ2) �
club(C,ω1) hence C is club in ω1. Now for all α ∈ (ω1 ∩M) exists β ∈ C ∩M such that α ∈ β.
But ω1 ∩M = δ and C ∩M = C ∩ δ. So δ is a limit point of C. Since C is closed, we obtain
δ ∈ C. Therefore H(ℵ2) � C ∩ S 6= ∅, so M � C ∩ S 6= ∅ as well. We have shown that for C ∈ M ,
if M � club(C,ω1) then M � C ∩ S 6= ∅. Therefore M � ∀C(club(C,ω1) → C ∩ S 6= ∅), hence
H(ℵ2) � ∀C(club(C,ω1)→ C ∩ S 6= ∅). This exactly says that S is stationary.

7This is a standard result: We have H(ℵ2) � ∃!y(α ∈ y ↔ (α, ε) ∈ f), namely y = S. Since f, ε ∈ M , we
must have M � ∃!y(α ∈ y ↔ (α, ε) ∈ f), so there is a T ∈ M such that M � (α ∈ T ↔ (α, ε) ∈ f). Then
H(θ) � (α ∈ T ↔ (α, ε) ∈ f), and thus T = S and S ∈M .
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5 Jónsson algebras

In this section we use model theory and H(κ) to investigate the existence of Jónsson algebras.
Jónsson algebras are algebras which do not permit strict subalgebras of the same cardinality. In
the proof of Theorem 5.10 we will use Theorem 3.28, a result on pcf-theory.

5.1 Definition and characterization

Definition 5.1. Let A be a set. An algebra on A is a sequence 〈fn : n < ω〉, where each fn is
a function Aa(n) → A for some a(n) < ω. An algebra (fn)n<ω on A is called Jónsson iff there is
no B ⊂ A with |B| = |A| such that (fn � B)n<ω is an algebra on B, or equivalently iff there is no
proper subalgebra of the same cardinality. A cardinal κ is called Jónsson iff there is a Jónsson algebra
(fn)n<ω on some set A with |A| = κ, or equivalently iff there is a Jónsson algebra 〈fn : n < ω〉 on
κ.

It is more common to say that the tuple (A, (fn)n<ω), or even (A, f0, f1, ..., ), is a (Jónsson) algebra.
We slightly deviate so that we can use the fact that ‘(fn)n<ω is a (Jónsson) algebra on κ’ is
expressable in the language of set theory, when κ is definable.
When we say that (A, f0, f1, ..., fk) is a (Jónsson) algebra we mean that, when choosing fl for each
l ∈ (k, ω) arbitrary, (A, (fn)n<ω) is a (Jónsson) algebra.
Note that there is a Jónsson algebra on ℵ0: Define f0(n) = n+ 1 and f1(n+ 1) = n and f1(0) = 0.
Then (ℵ0, f0, f1) has no proper subalgebra of size ℵ0.
We now turn to a model theoretic characterization of Jónsson algebras.

Theorem 5.2. Let κ be a cardinal. Then the following are equivalent:
1. κ is Jónsson.
2. For all regular θ ≥ κ+ and all M ≺ H(θ) we have: (κ ∈M and |M ∩ κ| = κ) implies κ ⊆M .
3. For all M ≺ H(κ+) we have: |M ∩ κ| = κ implies κ ⊆M .
4. For some regular θ ≥ κ+ and all M ≺ H(θ) we have: (κ ∈ M and |M ∩ κ| = κ) implies
κ ⊆M .

Recall that H(κ) is the set of sets hereditarily of cardinality less than κ.

Proof. (1. ⇒ 2.) Let θ ≥ κ+ be regular, let M ≺ H(θ), assume κ ∈ M and |M ∩ κ| = κ.
Let (κ, (fn)n<ω) be a Jónsson algebra. Then (fn)n<ω ∈ H(θ). Being a Jónsson algebra on κ is
expressable in the language of set theory, so there is a Jónsson algebra (gn)n<ω on κ in M as well.
Then (κ ∩M, (gn : (κ ∩M)a(n) → (κ ∩M))n<ω) is a subalgebra of (κ, (gn : κa(n) → κ)n<ω). But
(κ, (gn)n<ω) is a Jónsson algebra and |κ ∩M | = κ, so we have κ ∩M = κ, thus κ ⊆M .
(2. ⇒ 3.) Take θ = κ+. Then κ is definable in H(κ+), so we have κ ∈M .
(3. ⇒ 4.) Automatic.
(4. ⇒ 1.) Let θ ≥ κ+ be regular such that for all M ≺ H(θ) we have (κ ∈ M and |M ∩ κ| = κ)
implies κ ⊆M . Using Downwards Skolem-Löwenheim, let M ≺ H(θ) with κ ∈M , κ ⊆M and with
|M | = κ. Add a function symbol h to the language of set theory, and let hM be such that hM � κ is
a bijection κ↔M . In fact we require that hM (0) = 0, h � (κ\{0}) is a bijection κ\{0} ↔M \{0}
and hM (a) = 0 for all a ∈M \ κ. Then (M,h,∈) has no proper substructure of size |M | = κ:
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Let (N,h,∈) ≺ (M,h,∈) with N ⊆M and |N | = κ (see Figure 3). By elementarity, hN = hM � N
and also κ ∈ N , since κ is definable in M (it is the least non-zero ordinal α such that hM (α) = 0).
We have M � ∀y ∃x(h(x) = y), so N � ∀y ∃x(h(x) = y). So κ = |(hN )−1[N \{0}]| = |(N ∩κ)\{0}|.
Since N ≺ H(θ), κ ∈ N and |N ∩ κ| = κ, we have κ ⊆ N and thus M = hM [κ] = hM [κ ∩ N ] =
hN [κ ∩N ] ⊆ N , so in fact N = M .
We will now define a Jónsson algebra on M . For any formula φ(x, x1, ..., xn) in the language
{∅, {h}, {∈}} define its Skolem-function, the function fφ : Mn →M by sending (m1, ...,mn) ∈Mn

to a witness of φ(x,m1, ...,mn) if M � ∃xφ(x,m1, ...,mn) and to 0 ∈M if M 6� ∃xφ(x,m1, ...,mn).
Then (M, (fφ)φ a formula) is a Jónsson algebra: If N ⊆ M is a subalgebra of M such that |N | =
|M |, then (N,h,∈) is a substructure of (M,h,∈), since h itself is also a Skolem-function (of the
formula x = h(y)), thus indeed hM (n) ∈ N for n ∈ N . The embedding (N,h,∈) in (M,h,∈)
passes the Tarski-Vaught test: If (M,h,∈) � ∃xφ(x, n1, ..., nn) for n1, ..., nn ∈ N , then (M,h,∈) �
φ(fφ(n1, ..., nn), n1, ..., nn) and fφ(n1, ..., nn) ∈ N . So the embedding is elementary. But (M,h,∈)
has no proper substructures of size κ. So N = M , and (M, (fφ)φ a formula) has no proper subalgebras
of size |M | = κ. So κ is Jónsson.

M

N

κ

κ

Figure 3: (M,∈, h) with substructure (N,∈, h), subset κ and element κ. If |N | = κ, then N = M .

5.2 Existence results

We use this characterization very often to investigate the existence of Jónsson algebras. For example,
the existence of a Jónsson algebra on κ implies the existence of a Jónsson algebra on κ+:

Theorem 5.3. If κ is Jónsson, then so is κ+.

Proof. Let M ≺ H(κ++) and suppose |M ∩ κ+| = κ+. Then there is some minimal α ∈ M ∩ κ+

such that |M ∩ α| = κ, and for all α′ ∈ M ∩ κ+ with α ≤ α′ we also have |M ∩ α′| = κ. For all
such α′, H(κ++) contains a bijection κ ↔ α′. Note that κ is definable in H(κ++), thus κ ∈ M as
well. So M contains a bijection κ↔ α′. The bijection κ↔ α, together with |M ∩ α| = κ, ensures
|M ∩κ| = κ. Since also κ ∈M and there is a Jónsson algebra on κ, we obtain κ ⊆M . But then the

50



bijection κ↔ α′ ensures α′ ⊆M . Since there are cofinally many such α′ < κ+, we obtain κ+ ⊆M .
Hence, κ+ has a Jónsson algebra.

Since there is a Jónsson algebra on ℵ0, by this theorem we thus have that ℵn has a Jónsson algebra
for each n < ω.
Another sufficient condition for the existence of a Jónsson algebra is the existence of a particularly
shaped stationary set.

Definition 5.4. Let κ be a cardinal, let S be stationary in κ. Then S is called
1. reflecting at α, for some α < κ, iff S ∩ α is stationary in α,
2. reflecting iff it is reflecting at α for some α < κ,
3. non-reflecting iff it is not reflecting, i.e. when for all α < κ, S∩α is not stationy in α, i.e. when

for all α < κ there exists Cα ⊆ α closed unbounded in α such that Cα∩S = Cα∩ (S∩α) = ∅.

Theorem 5.5. Let κ be a regular cardinal and suppose there is a non-reflecting stationary subset
of κ. Then there is a Jónsson algebra on κ.

Proof. As we have shown there is a Jónsson algebra on ℵ0, we assume κ is uncountable. Let
M ≺ H(κ+) and suppose |M ∩ κ| = κ. Since H(κ+) contains a non-reflecting stationary subset
of κ, so does M ; let E ∈ M be such. Let C := {α < κ : sup(M ∩ α) = α}. Then C is closed
unbounded in κ:

1. Let β < κ and suppose sup(C ∩ β) = β. We have to show that β ∈ C, i.e. sup(M ∩ sup(C ∩
β)) = sup(C∩β). Let α < sup(C∩β). Let γ ∈ C∩β such that α ≤ γ < sup(C∩β). Since γ ∈ C
we have sup(M ∩γ) = γ. So let δ ∈M such that α ≤ δ < γ. For an arbitrary α < sup(C ∩β)
we have found a δ ∈M with α < δ < sup(C ∩ β). Thus sup(M ∩ sup(C ∩ β)) ≥ sup(C ∩ β).
Also sup(M ∩ sup(C ∩ β)) ≤ sup(C ∩ β) is evident.

2. Let β < κ. Then |M ∩ β| ≤ |β| < κ, so |M ∩ (κ \ β)| = κ. For n < ω, recursively define
αn := min((M ∩(κ\β)\{a0, ..., an−1}) and α := limn→ω αn < κ; here we use that κ is regular
and uncountable. Then sup(M ∩ α) = α, so α ∈ C by definition, and β < α.

Now, C ∩ E ⊆M .
If not, let α ∈ (C∩E)\M . Since |M∩κ| = κ and |M∩α| ≤ |α| < κ, let γ ∈M be minimal with
α < γ; then γ < κ. Since H(κ+) contains a closed unbounded subset of γ disjoint from E, so
does M ; let Cγ ⊆ γ be such. Note that H(κ+) � ∀β ∈ γ ∃β′ ∈ Cγ((β = β′∨β ∈ β′)∧β′ ∈ γ).
So this holds in M as well, meaning that [β, γ) ∩ Cγ ∩M is non-empty for any β ∈ M ∩ γ.
Since γ is minimal above α, such elements are < α. So Cγ ∩ α is unbounded in α. Since Cγ
is closed, this means α ∈ Cγ . But then α ∈ Cγ ∩ E = ∅, a contradiction.

The theorem of Solovay says that E is the disjoint union of κ many stationairy subsets. So H(κ+),
and hence M , contains a sequence (Eα)α<κ with E =

⋃̇
α<κEα and Eα stationairy, and automati-

cally non-reflecting, for all α < κ. Let α < κ be arbitrary. Certainly C ∩Eα ⊆M and C ∩Eα 6= ∅,
so suppose γ ∈ M ∩ Eα. Since M � ∀δ ∈ E ∃!β(δ ∈ Eβ), we must have that α ∈ M as well. So
κ ⊆M . Hence there is a Jónsson algebra on κ.

Non-reflecting stationairy subsets exist at least on successors of regular cardinals, as we will show
in Theorem 5.6. Recall from Lemma 2.25 that for regular cardinals κ and λ such that κ ≥ λ, the
set S(κ, λ) := {α < κ : cf(α) = λ} is κ-stationary.
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Theorem 5.6. If κ is regular, κ+ has a non-reflecting stationairy subset.

Proof. Define S := {α < κ+ : cf(α) = κ}. Then S ⊆ κ+ is stationary. To prove that S is non-
reflecting, let α < κ+. Let 〈αi : i < cf(α)〉 be increasing cofinal in α and such that αi = supj<i αj
whenever i is a limit ordinal, and such that αi+1 is a successor ordinal for all i. [To obtain such
a sequence, let 〈βi : i < cf(α)〉 be increasing cofinal in α and let αi = supj<i βj when i is a limit
and let αi+1 = βi+1 + 1 for all i.]. Then Cα := {αi : i < cf(α)} is closed unbounded in α. For any
i < cf(α), we have cf(αi+1) = 1 and cf(αi) = cf(supj<i αj) ≤ cf(i) ≤ i < cf(α) = κ when i is a limit.
So αi 6∈ S for all i, so Cα∩S = ∅. Since α was arbitrary, we have shown that S is non-reflecting.

Combining the previous two theorems, we obtain the following corollary:

Corollary 5.7. If κ is regular, then κ+ is Jónsson.

Theorem 5.3 and Corollary 5.7 ensure that the successors of Jónsson or regular cardinals are Jónsson.
The following theorem has a more specific assumption.

Theorem 5.8 (Erdős, Hajnal, Rado). If 2κ = κ+ then there is a Jónsson algebra on κ+.

Proof. We have |[κ+]κ| = (κ+)κ = (2κ)κ = κ+. Enumerate [κ+]κ as 〈Sβ : κ ≤ β < κ+〉 and such
that Sβ ⊆ β. (Exercise for the reader that this is possible). Fix α ∈ (κ, κ+). Enumerate [κ, α)× α
as 〈(βi, νi) : i < κ〉. For i < κ, recursively choose δi ∈ Sβi \ {δj : j < i}. Let f(δi, α) = νi. Note
that δi ∈ Sβi ⊆ βi < α. Do this for all α ∈ (κ, κ+). Then extend this to a function f : (κ+)2 → κ+.
Then f satisfies

∀α ∈ (κ, κ+)∀β ∈ [κ, α)∀ν < α ∃δ < α(f(δ, α) = ν and δ ∈ Sβ).

Then f is a Jónsson algebra on κ+: Suppose A ⊆ κ+ is such that |A| = κ+. We will show
f [A×A] = κ+.
Let ν < κ+ be arbitrary. Let β ∈ [κ, κ+) be such that Sβ ⊆ A. Let α ∈ (κ, κ+) ∩ A such that
β, ν < α, this is possible since |A| = κ+. Then there is some δ < α with δ ∈ Sβ and f(δ, α) = ν.
So f [A×A] ⊇ f [Sβ ×A] 3 v.
Thus if A is a subalgebra of (κ+, f) with |A| = κ+, then A = κ+. So indeed (κ+, f) is a Jónsson
algebra.

Under some assumptions, we can also prove that the successor of a singular cardinal is Jónsson.
These assumptions are satisfied for the successor of the first infinite singular cardinal.

Theorem 5.9. There is a Jónsson algebra on ℵω+1.

Proof. Let µ = ℵω and let θ = (2µ)+. Then θ is regular and µ+ = ℵ+
ω ≤ 2ℵω = 2µ < (2µ)+ = θ

so µ+ ∈ H(θ). So let M ≺ H(θ) and assume µ+ ∈ M and |M ∩ µ+| = µ+. We need to show that
µ+ ⊆ M . Let a := {ℵn : n < ω}. Note that a ∈ H(θ) and ℵn ∈ H(θ) for each n < ω. Since ℵ0 is
definable and successor cardinals of definable cardinals are definable, each ℵn is definable in H(θ),
so we have a ⊆ M . Also a is definable: Every infinite cardinal below (ℵω)+ distinct from ℵω is in
a and a consists entirely of such cardinals. Note that we use that (ℵω)+ ∈ M by assumption and
thus also ℵω ∈ M . Every ultrafilter on a is an element of H(θ). There is an ultrafilter D on a
such that cf(

∏
(a/D)) = ℵ+

ω = µ+, since pcf(a) has a maximal element by Theorem 3.27 and by
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Corollary 3.29 pcf(a) is in interval of regular cardinals. So there is also such an ultrafilter D in M
and a sequence 〈fβ : β < µ+〉 ∈ M ∩

∏
a which is increasing and cofinal in

∏
a/D. We will show

that for cofinally many α ∈ a we have |M ∩ α| = α.
For suppose for all large α we have sup(M ∩α) < α. Then for these large α let g(α) = sup(M ∩α)
and extend g to an element in

∏
a. Then g/D ∈

∏
a/D, so g <D fβ for some β < µ+, and since

|M ∩ µ+| = µ+ we may assume β ∈ M . Then there is a large α ∈ a such that g(α) < fβ(α). But
fβ(α) ∈M ∩ α, contradicting g(α) = sup(M ∩ α).
So for cofinally many α ∈ a we have |M ∩ α| = α. Since for all α ∈ a there is a Jónsson algebra
on α, we have α ⊆ M for cofinally many α ∈ a. Hence µ ⊆ M . For all ξ ∈ M ∩ [µ, µ+) there is a
bijection µ↔ ξ in H(θ), hence in M . Since µ ⊆M we obtain ξ ⊆M . Since |M ∩ µ+| = µ+, there
are cofinally many such ξ, hence µ+ ⊆M . Hence there is a Jónsson algebra on ℵω+1.

As promised we can generalize this result.

Theorem 5.10. Let µ be a singular cardinal and suppose there exists a κ < µ such that every
regular ν ∈ (κ, µ) is Jónsson. Then µ+ is Jónsson.

Proof. Define

λ := min({κ : κ ≥ cf(µ) and if ν ∈ (κ, µ) is regular then v is Jónsson}.

Let θ := (2µ)+. For φ a formula in the language of set theory, let fφ be a Skolem-function for φ
in H(θ). Let F = {Fi : i < ω} be the set of all compositions of the Skolem-formulas fφ, that is F
is the smallest set such that {fφ : φ a formula} ⊆ F and if f ∈ F is of arity n, and f1, ..., fn ∈ F ,
then f(f1, ..., fn) ∈ F as well. Here f(f1, ..., fn) denotes the function

(α1,1, ..., α1,m1 , ..., αn,1, ..., αn,mn) 7→ f(f1(α1,1, ..., α1,m1), ..., fn(αn,1, ..., αn,mn)).

Let M ≺ (H(θ),∈, F0, F1, F2, ...), where the Fi’s are function symbols and their interpretation
is defined recursively, starting with the standard interpretation of the Skolem-functions. Since
µ+ ≤ 2µ < (2µ)+ = θ, we have µ ∈ H(θ). Assume µ+ ∈ M and |M ∩ µ+| = µ+. We need to
show that µ+ ⊆ M . Since µ+ ∈ M , we have µ, cf(µ) ∈ M and some increasing µ-cofinal seqeunce
〈µi : i < cf(µ)〉 ∈ M consisting of regular cardinals. Consider a = {µi : i < cf(µ)} ∈ M . Let
D ∈ M be an ultrafilter on a containing all the tails of 〈µi : i < cf(µ)〉. Then limD a = µ.
Furthermore we have cf(

∏
a/D) ≥ µi for all i < cf(µ), hence cf(

∏
a/D) ≥ µ, hence cf(

∏
a/D) > µ

since µ is singular. So either µ+ = cf(
∏
a/D) or µ < µ+ < cf(

∏
a/D). Using Theorem 3.28, let

a′ ⊆ sup(a) = µ be a set of regular cardinals such that |a′| ≤ |a| = cf(µ), let D′ be an ultrafilter on
a′ such that limD′ a

′ = µ and cf(
∏
a′/D′) = µ+. By elementarity, choose a′, D′ ∈ M . Note that

since limD′ a
′ = µ, we have |a′| = cf(µ). We arrange that |a′|, λ < min(a′):

We already have ensured that |a′| ≤ cf(µ) ≤ λ, so we only need λ < min(a′). Since limD′ a
′ = µ we

have a′′ = {α ∈ a′ : λ < α ≤ µ} ∈ D′. Since λ ∈ M , a′′ ∈ M . Let D′′ be the restriction of D′ to
a′′, then D′′ ∈ M . Then cf(

∏
a′′/D′′) = µ+ and limD′′ a

′′ = µ and |a′′|, λ < min(a′′). So without
loss of generality we could have assumed a′ and D′ to satisfy |a′|, λ < min(a′).
Let 〈fβ/D : β < µ+〉 ∈ M be increasing and cofinal in

∏
a′/D′. Define A = {α ∈ M ∩ a′ :

sup(M ∩ α) = α}.

Claim 5.11. A is cofinal in µ.
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The proof of this claim follows below. So sup(A) = µ. For any α ∈ A with α > λ we have α ∈ M
and |M ∩α| = α, and α is regular and λ < α < µ so α is Jónsson, so α ⊆M . Hence µ ⊆M . Again
there are bijections µ↔ ξ in H(θ) for all ξ ∈ [µ, µ+), thus in M for all ξ ∈ [µ, µ+)∩M . Combined
with the assumption |M ∩ µ+| = µ+, we obtain µ+ ⊆M . Thus µ+ is Jónsson.

Proof of Claim 5.11. Suppose not, let sup+(A) =: µ′ < µ, where sup+(A) is the strict supremum of
A. Let M ′ be the closure of M ∪ a′ under the Fi’s. Since the Fi’s are closed under composition, we
have M ′ =

⋃
i<ω Fi[M∪a′]. (Of course, Fi may be of arity n 6= 1, but then Fi[M∪a′] is supposed to

mean {Fi(ā) : ā ∈ (M ∪a′)n.) If α ∈ a′∩M ∩ [µ′, µ), then sup(M ∩α) < α. For any α ∈ a′ and any
finite S ⊆M , since |a′| < min(a′) ≤ α and α is regular, we have that Fi[S∪a′]∩α is bounded by some
αS,i < α and by elementarity we may assume αS,i ∈M . Also each x ∈M ′ is in Fi[S ∪ a′] for some
finite S ⊆M and some i < ω. Hence sup(M ′ ∩ α) ≤ sup(αS,i : S ⊆M finite, i < ω) ≤ sup(M ∩ α),
for any α ∈ a′. Thus if α ∈ a′ ∩M ∩ [µ′, µ), then sup(M ′ ∩ α) < α.

Claim 5.12. There is some µ′′ ∈ [µ′, µ) such that any β ∈ a′ ∩ [µ′′, µ) satisfies sup(M ′ ∩ β) < β.

Proof. Suppose not, then for any µ′′ ∈ [µ′, µ) there is a β ∈ a′ ∩ [µ′′, µ) with sup(M ′ ∩ β) = β.
Since λ < min(a′), β ∈ a′ is regular and a′ ⊆ µ, we have λ < β < µ and thus there is a Jónsson
algebra on β. Since M ′ ≺ H(θ), |M ′ ∩ β| = β and β ∈ M ′, we obtain β ⊆ M ′. So µ ⊆ M ′. Now
M ∩ a′ ⊆ µ′:
If there exists α ∈ a′ ∩M ∩ [µ′, µ), then α ⊆ µ ⊆ M ′, then sup(M ′ ∩ α) = supα = α and on the
other hand sup(M ′ ∩ α) < α as shown above. Contradiction, so M ∩ a′ ⊆ µ′.
Recall that a′ ∈ M . Since H(θ) � ∃x(x ∈ a′), we have M � ∃x(x ∈ a′), so M ∩ a′ 6= ∅. So µ′ 6= 0
and thus A 6= ∅. Let α ∈ A, i.e. α ∈ M ∩ a′ and sup(M ∩ α) = α. Notice that λ < α < µ
and α is regular, so α is Jónsson. Also |M ∩ α| = α and α ∈ M . Therefore α ⊆ M . We have
cf(µ) = |a′| < min(a′) ≤ α ⊆M . It follows that cf(µ) ⊆M . Since we have a cofinal sequence 〈µi :
i < cf(µ)〉 ∈M , we obtain that M ∩ µ is cofinal in µ. Since H(θ) � ∀β ∈ µ∃α ∈ a′(β ∈ α ∧ α ∈ µ),
by elementarity we obtain that M ∩ a′ is cofinal in µ. But since we assumed that Claim 5.12 does
not hold, A = {α ∈ M ∩ a′ : sup(M ∩ α) = α} is cofinal in M ∩ α. So sup(A) = µ, contradicting
that sup+(A) = µ′ < µ.

We conclude that for all large α ∈ a′ we have g(α) := sup(M ′ ∩α) < α. Extend g so that g ∈
∏
a′.

Then g/D′ ∈
∏
a′/D′ and for some β < µ+ we have g/D′ < fβ/D

′ and since |M ∩ µ+| = µ+ we
can choose β ∈ M ⊆ M ′. In particular, there is some large α ∈ a′ ⊆ M ′ for which g(α) < fβ(α).
But fβ(α) ∈M ′ ∩ α and g(α) = sup(M ′ ∩ α), contradiction.
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6 Pcf-theory applied to cardinal arithmetic

Recall Theorem 3.27, which says that pcf(a) has a maximal element. In this section we will find
conditions under which |

∏
a| = max pcf(a). Note that |

∏
a| may be an interesting cardinal ex-

ponentiation, for instance |
∏
a| =

∏
1<n<ω ℵn = ℵℵ0

ω for a = {ℵn : 1 < n < ω}. Also using that
|pcf(a)| ≤ 2|a|, we find non-trivial results on cardinal exponentiation.

6.1 Calculation of max(pcf(a))

In this subsection we will prove the following theorem.

Theorem 6.1. Let A = [min(A), sup(A)) be an interval of regular cardinals. Suppose that
(min(A))|A| ≤ sup(A). Then |

∏
A| = max pcf(A).

To prove this theorem, we use a weakened version of it.

Theorem 6.2. Let A = [min(A), sup(A)) be an interval of regular cardinals such that 2|A| <
min(A) and (minA)|A| ≤ supA. Then |

∏
A| = max pcf(A).

Proof of Theorem 6.1 assuming Theorem 6.2. Let

A0 := [minA, (minA)|A|] ; A1 := ((minA)|A|, supA).

Then
∏
A0 ≤ ((minA)|A|)|A0| = (minA)|A| < minA1, so |

∏
A| = |

∏
A0| · |

∏
A1| = |

∏
A1|. Also

2|A1| ≤ 2|A| ≤ (minA)|A| < min(A1) and by Hausdorff’s formula (1) we have

(min(A1))|A1| = (((minA)|A|)+)|A1| = (min(A)|A|)+ · (min(A)|A|)|A1|

= min(A1) ·min(A)|A| = min(A1) ≤ sup(A1).

So Theorem 6.2 applies and yields |
∏
A1| = max pcf(A1). So max pcf(A) ≤ |

∏
A| = |

∏
A1| =

max pcf(A1) ≤ max pcf(A).

So we focus on proving Theorem 6.2. For this we use model theory and H(κ), introduced in section
4.
Let A be an interval of regular cardinals such that 2|A| < min(A) and (minA)|A| ≤ supA. Let θ be
a large enough and regular cardinal. Recall that H(κ) is the set of sets hereditarily of cardinality
less than κ. We consider the structure H(θ)∗ = (H(θ),∈, <∗) where <∗ is a binary relation symbol
and its interpretation in H(θ) is a well-order on H(θ).

Definition 6.3. Let N ≺ H(θ)∗. Then N is called nice iff
1. |N | = min(A),
2. A ∈ N ,
3. min(A) ⊆ N ,
4. There is a sequence 〈Ni : i < |A|+〉 such that

(a) Ni ≺ H(θ)∗ for all i (the sequence is elementary),
(b) Ni ⊆ Nj whenever i < j (the sequence is a ⊆-chain),
(c) Ni =

⋃
j<iNj whenever i is a limit (the sequence is continuous),
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(d) N =
⋃
i<|A|+ Ni,

(e) 〈Nj : j < i〉 ∈ N for all i.

For any N ≺ H(θ)∗, we define its characteristic function by

χN : A→ Ord,
α 7→ χN (α) := sup(N ∩ α)

By N we denote the set of all nice elementary substructures of H(θ)∗. On N , we define the
equivalence relation ∼ given by

N ∼M ⇔ χN = χM .

We now investigate some properties of nice elementary substructures N . Since A ∈ N , we have
minA,pcf(A) ∈ N . Since minA > 2|A| ≥ |pcf(A)|, we have that H(θ)∗, and thus N , contains
a surjection minA � pcf(A). Since min(A) ⊆ N by assumption, we have pcf(A) ⊆ N . Since
A ⊆ pcf(A), we also have A ⊆ N . Since |A|+ ≤ 2|A| < min(A), we have |A|+ ⊆ N as well. Hence
also Ni ∈ Ni+1 for all i.
Since the map λ 7→ J<λ(A) is definable in H(θ)∗, it is in each nice N . Let 〈bλ : λ ≤ max pcf(A)〉 ∈
H(θ)∗ be the <∗-least element of H(θ)∗ such that bλ generates J<λ+(A) over J<λ(A) for all λ <
max pcf(A) and bmax pcf(A) = a. Then 〈bλ : λ ≤ max pcf(A)〉 ∈ N as well. It follows that for
λ ∈ pcf(A), since pcf(A) ⊆ N , we have J<λ(A), bλ ∈ N .
The following three lemmas form the proof of Theorem 6.2.

Lemma 6.4. Every x ∈ H(θ)∗ is contained in some nice N . Hence every f ∈
∏
A is contained in

some nice N .

Lemma 6.5. Given some nice N , there are at most (max pcf(A))-many f ∈
∏
A for which there

exists a nice M such that M ∼ N and f ∈M .

Lemma 6.6. There are at most (max pcf(A))-many equivalence classes in N .

Proof of Theorem 6.2. By the above lemmas, we have

|
∏

A| ≤ |N/∼| · sup(|{f : (∃M : M ∼ N and f ∈M}| : N ∈ N )

≤ max(pcf(A)) ·max(pcf(A)) = max(pcf(A)).

The other direction is trivial.

Proof of Lemma 6.4. Let x ∈ H(θ)∗. By Downwards Skolem-Löwenheim, let N0 be such that
{x,A}∪min(A) ⊆ N0 ≺ H(θ)∗ with |N0| = min(A). Given Ni, use Downwards Skolem-Löwenheim
to find Ni+1 such that Ni∪{〈Nj : j < i〉} ⊆ Ni+1 ≺ H(θ)∗ with |Ni+1| = min(A). Let Ni =

⋃
j<iNj

when i is a limit. Since |A|+ < min(A) and min(A) is regular, we find a continuous elementary ⊆-
chain 〈Ni : i < |A|+〉 and N :=

⋃
i<|A|+ is a nice elementary substructure of H(θ)∗ which contains

x.

56



Proof of Lemma 6.5. Let some nice N be given. Suppose f ∈
∏
A, M nice and f ∈M and M ∼ N .

Since f ∈ M , f : A→ supA and A ⊆ M , it follows that f ∈ (M ∩ supA)A. By the lemma below,
M ∩ supA = N ∩ supA, hence f ∈ (N ∩ supA)A. Since

|(N ∩ supA)A| = |N ∩ supA||A| ≤ |N ||A| ≤ min(A)|A| ≤ supA ≤ max pcf(A),

there are at most max pcf(A) such f ’s.

Lemma 6.7. Let M and N be nice and such that M ∼ N . Then M ∩ supA = N ∩ supA.

Proof. We will prove the lemma by proving that M ∩ λ = N ∩ λ for all cardinals λ such that
minA ≤ λ ≤ supA. We prove this by induction.

1. Base case: M ∩minA = minA = N ∩minA.
2. Successor case: Suppose M ∩ λ = N ∩ λ. We need to prove M ∩ λ+ = N ∩ λ+. We have
λ+ ∈ A ⊆M,N . Since 〈sup(Ni ∩λ+) : i < |A|+〉 is increasing and cofinal in sup(N ∩λ+), we
have cf(sup(N ∩λ+)) = |A|+ and EN := {sup(Ni∩λ+) : i < |A|+} ⊆ N . Similarly define EM .
Then E := EM ∩EN ⊆ N ∩M is cofinal in sup(N ∩λ+) = χN (λ+) = χM (λ+) = sup(M ∩λ+).
So N ∩M is cofinal in N ∩λ+ and M ∩λ+. Given α ∈ N ∩M , α < λ+, there exists f : λ� α
and the <∗-smallest such surjection is in both M and N . Since M ∩ λ = N ∩ λ, we find
N ∩ α = M ∩ α. Since α was arbitrary and N ∩M is cofinal, M ∩ λ+ = N ∩ λ+ follows.

3. Limit case: M ∩ λ =
⋃
µ<λM ∩ µ =

⋃
µ<λN ∩ µ = M ∩ λ.

We conclude that M ∩ λ = N ∩ λ for all cardinals λ such that minA ≤ λ ≤ supA.

Proof of Lemma 6.6. Let N be nice. For each λ ∈ pcf(A), let 〈fλi : i < λ〉 be the <∗-least sequence
such that
(A) 〈fλi � bλ : i < λ〉 is increasing and cofinal in

∏
bλ/J<λ,

(B) When cf(i) = |A|+, then

fλi (α) = min(sup(fλj (α) : j ∈ C) : C is i-club and |C| = cf(i))

for all α ∈ A.
Such a sequence exists by Lemma 6.8. Note that this sequence is definable in H(θ)∗ since bλ, J<λ ∈
N . We define a sequence 〈(λm, ρm, Am) : m ≤ n〉 such that

1. λm ∈ pcf(A),
2. ρm < λm,
3. Am ⊆ A,
4. Am ∈ J<λm ,
5. 〈λm : m ≤ n〉 is decreasing,

as follows, by recursion:
1. λ0 := max pcf(A), ρ0 := sup(N ∩ λ0) and A0 := [fλ0

ρ0
< χN ]. Clearly λ0 ∈ pcf(A), ρ0 < λ0,

A0 ⊆ A and A0 = A0 ∩ bλ0 ∈ J<λ0 by Lemma 6.9.
2. Given (λm, ρm, Am) and provided that Am 6= ∅ and Am 6= {minA}, define λm+1 such that
Am ∈ J<λ+

m+1
\J<λm+1 . Then λm+1 ∈ pcf(A), λm+1 6= minA and since Am ∈ J<λm but Am /∈

Jλm+1 , we have λm+1 < λm. Define ρm+1 := sup(N ∩λm+1) and Am+1 = [fλm+1
ρm+1 < χN ]∩Am.

Clearly ρm+1 < λm+1 and Am+1 ⊆ A. By Lemma 6.9, [fλm+1
ρm+1 < χN ]∩ bλm+1 ∈ J<λm+1 . Also

Am ⊆J<λm+1
bλm+1 . Therefore Am+1 ∈ J<λm+1 .
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Since 〈λm〉 is stricty decreasing, it must stop at some finite n, and there An = ∅ or An = {minA}.
By Lemma 6.9, fλmρm ≤ χN for all m ≤ n. By definition of the Am’s, we have χN � (A \ A0) =
fλ0
ρ0

� (A \ A0), χN � (A0 \ A1) = fλ1
ρ1

� (A0 \ A1), ..., χN � (An−1 \ An) = fλnρn � (An−1 \ An).
Therefore χN � (A \ An) = max(fλ0

ρ0
, fλ1
ρ1
, ..., fλnρn ) � (A \ An). Since An = ∅ or An = {minA}, and

χN (minA) = minA, we have that χN is completely determined by {fλ0
ρ0
, fλ1
ρ1
, ..., fλnρn }.

Therefore

|N/∼| = |{χN : N ∈ N}| ≤ |{finite subsets of {(ρ, λ) : ρ < λ ∈ pcf(A)}}|
= |{(ρ, λ) : ρ < λ ∈ pcf(A)}}|

≤
∑

λ∈pcf(A)

max pcf(A) ≤ 2|A| ·max pcf(A) ≤ max pcf(A).

So indeed there are at most (max pcf(A))-many equivalence classes of nice elementary substructures
of H(θ)∗.

Lemma 6.8. Let λ ∈ pcf(A). Then there exists a sequence 〈fi : i < λ〉 which satisfies (A) and (B).

Proof. By Theorem 3.50, tcf(
∏
bλ/J<λ) = λ. So let 〈gi : i < λ〉 in

∏
A such that 〈gi � bλ : i < λ〉

is increasing and cofinal in
∏
bλ/J<λ. For i < λ, recursively define fi ∈

∏
A as follows:

1. f0 = g0.
2. Given fi, let fi+1 = fi + 1. That is, fi+1(α) = fi(α) + 1 for all α ∈ A.
3. Suppose i is limit.

(a) If cf(i) 6= |A|+, consider {fj � bλ : j < i} ∪ {gi � bλ}. This set has a strict upperbound in∏
bλ/J<λ, extend this to a function fi defined on A.

(b) If cf(i) = |A|+, let

fi(α) = min(sup(fj(α) : j ∈ C) : C club in i and |C| = cf(i)).

Since |C| = cf(i) = |A|+ < minA for all C and fj(α) < α for all α, we obtain fi ∈
∏
A.

We now prove that 〈fi : i < λ〉 satisfies (A) and (B). (B) is trivial by definition of 〈fi : i < λ〉. We
have

1. Only if cf(i) = |A|+ it is not immediately clear that fj <J<λ fi for all j < i. So let cf(i) = |A|+.
For each α ∈ A, let Cα be i-club such that |C| = |A|+ and fi(α) = sup(fλj : j ∈ Cα). Then
C :=

⋂
α∈A Cα is an intersection of fewer than |i|-many i-clubsets, hence C is an i-clubset

and fi(α) = sup(fj(α) : j ∈ C). So if j ∈ C, then fj ≤ fi. Since C is cofinal in i and 〈fj �
bλ : j < i} is <J<λ -increasing (by the induction hypothesis), we obtain fj � bλ <J<λ fi � bλ
for all j < i.

2. There are cofinaly many i’s in λ such that cf(i) 6= |A|+.
So (A) is also satisfied.

Lemma 6.9. Let λ ∈ pcf(A) \min(A) and let ρ := sup(N ∩ λ). Let 〈fλi : i < λ〉 be the <∗-least
sequence satisfying (A) and (B). Then fλρ ≤ χN and [fλρ < χN ] ∩ bλ ∈ J<λ.

Proof. Since 〈sup(Ni ∩ λ) : i < |A|+〉 is increasing and cofinal in sup(N ∩ λ) = ρ, we have cf(ρ) =
|A|+. Notice that {sup(Ni ∩ λ) : i < |A|+} is ρ-club. For each α ∈ A, let Cα be ρ-club such
that |C| = |A|+ and fλρ (α) = sup(fλi : i ∈ Cα). Then C :=

⋂
α∈A Cα is an intersection of fewer
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than |ρ|-many ρ-clubsets, hence C is a ρ-clubset and fλρ (α) = sup(fλi (α) : i ∈ C) for all α. Now
C ′ := C∩{sup(Ni∩λ) : i < |A|+} is again ρ-club, lies entirely in N and fλρ (α) = sup(fλi (α) : i ∈ C ′)
for all α. Since |A|+ ≤ minA ⊆ N and 〈fλi : i < λ〉 ∈ N , we have fλi ∈ N for all i ∈ N ∩ λ and
fλi (α) ∈ N for all α and i ∈ N ∩ λ. So fλρ (α) = sup(fλi (α) : i ∈ C ′) ≤ sup(N ∩ α) = χN (α) for
all α, which shows the first assertion. Now consider c := [fλρ < χN ] ∩ bλ. We need to show that
c ∈ J<λ. For α ∈ c, let γα ∈ N ∩ α be such that fλρ (α) < γα. Then |{γα : α ∈ c}| ≤ |A| < |A|+, so
there is an i < |A|+ such that γα ∈ Ni for all α. Then fλρ � c < χNi � c and χNi � bλ <J<λ f

λ
j � bλ

for some j ∈ N , j < λ. Thus χNi � bλ <J<λ fλρ � bλ. Hence we must have c ∈ J<λ.

Note. In the above proof it would not work to simply say χN � bλ < fλi � bλ for some i < λ, since
it would not be clear whether i ∈ N . Also it is not clear whether χN is an element of N . (χNi is
definable since Ni ∈ N , but this does not work for N , since clearly N /∈ N .)

6.2 Corollaries

We now prove three corollaries of Theorem 6.1.

Corollary 6.10. ℵℵ0
ω < ℵ(2ℵ0 )+ .

Proof. Suppose 2ℵ0 ≥ ℵω. Then ℵℵ0
ω ≤ (2ℵ0)ℵ0 = 2ℵ0 < (2ℵ0)+ ≤ ℵ(2ℵ0 )+ as wanted. So suppose

2ℵ0 < ℵω. Let a = [ℵ2,ℵω). By Hausdorff’s formula (1) we have

ℵℵ0
2 = ℵ2 · ℵℵ0

1 = ℵ2 · ℵ1 · ℵℵ0
0 = ℵ2 · ℵ1 · 2ℵ0 = max(ℵ2, 2ℵ0) < ℵω.

Thus min(a)|a| = ℵℵ0
2 < ℵω = sup(a). Also |a|+ = ℵ+

0 = ℵ1 < ℵ2 = min(a). Thus Theorem 6.1
applies and yields max(pcf(a)) = |

∏
a| =

∏
1<n<ω ℵn = ℵℵ0

ω . Recall that pcf(a) is an interval of
regular cardinals, that a ⊆ pcf(a) and that |pcf(a)| ≤ 2|a|. Therefore we have

ℵℵ0
ω = max(pcf(a)) < ℵω+|pcf(a)|+ ≤ ℵω+(2ℵ0 )+ = ℵ(2ℵ0 )+ .

This result generalizes to arbitrary limit ordinals δ instead of just ω:

Corollary 6.11. Let δ be a limit ordinal. Then ℵ|δ|δ < ℵ(2|δ|)+ .

Proof. The proof is a generalization of the proof of Corollary 6.10. Suppose 2|δ| ≥ ℵδ. Then
ℵ|δ|δ ≤ (2|δ|)|δ| = 2δ < (2|δ|)+ ≤ ℵ(2|δ|)+ as wanted. So suppose 2|δ| < ℵδ. We prove the theorem
under the assumption that δ is the disjoint union of |δ| many δ-cofinal subsets. This assumption is
made without loss of generality, since for every ordinal δ there exists an ordinal δ′ := δ + |δ| > δ
which has the same cardinality as δ and is the disjoint union of |δ| many δ-cofinal subsets. Let
a = [(2|δ|)+,ℵδ). By Hausdorff’s formula (1), we have

((2|δ|)+)|δ| = (2|δ|)+ · (2|δ|)|δ| = (2|δ|)+ · 2|δ| = (2|δ|)+ < ℵδ.

Hence min(a)|a| = ((2|δ|)+)|δ| < ℵδ = sup(a). Also |a|+ ≤ |δ|+ ≤ 2|δ| < (2|δ|)+ = min(a). Thus
Theorem 6.1 applies and yields max(pcf(a)) = |

∏
a| = ℵ|δ|δ (in the last equality we use that δ is the
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disjoint union of |δ|-many δ-cofinal subsets). Recall that pcf(a) is an interval of regular cardinals,
that a ⊆ pcf(a) and that |pcf(a)| ≤ 2|a|. Therefore we have

ℵ|δ|δ = max(pcf(a)) < ℵδ+|pcf(a)|+ ≤ ℵδ+(2|a|)+ ≤ ℵ(2|δ|)+ .

Corollary 6.12. Let a = [min(a), sup(a)) be an interval of regular cardinals such that min(a)|a| <
sup(a). Then |

∏
(a)| is a regular cardinal and in particular, if 2ℵ0 < ℵω, then ℵℵ0

ω is regular.

Proof. By Theorem 6.1, |
∏
a| = max(pcf(a)) ∈ pcf(a), so |

∏
a| is a regular cardinal. As in the

proof of Corollary 6.10, ℵℵ0
ω = max(pcf(a)) where a = [ℵ2,ℵω), hence ℵℵ0

ω is regular.

It is consistent that ℵω is a strong limit cardinal and 2ℵω = ℵω+ω+2 [2, Remark 5.3]. In this
case, let a = [ℵω+1,ℵω+ω). It has been shown that max(pcf(a)) ≤ ℵω+ω+1. Furthermore, |

∏
a| =∏

0<n<ω ℵω+n ≥ ℵℵ0
ω = ℵcf(ℵω)

ω = 2ℵω = ℵω+ω+2, where the penultimate equality is (5.23) in Jech.
So max(pcf(a)) 6= |

∏
a|. Indeed, min(a)|a| = ℵℵ0

ω+1 ≥ ℵℵ0
ω = 2ℵω = ℵω+ω+2 > ℵω+ω = sup(a), so

min(a)|a| 6< sup(a). Note that 2|a| = 2ℵ0 < ℵω+1 = min(a). So the assumption min(a)|a| < sup(a)
of Theorem 6.1 cannot be replaced by 2|a| < min(a).
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7 Pcf-theory applied to cardinal arithmetic 2

7.1 Games

Let κ be a cardinal such that κℵ0 = κ. Let f : (κ+)<ω → κ be a function. For each sequence
ξ = 〈ξn : n < ω〉 ∈ κω, we define the following two-player game Gξ of full information and with
either Player I or Player II as winner: The game consists of ω rounds; for all n < ω, in round n
Player I picks a κ+-club subset Cn of κ+, and Player II responds by picking an element αn ∈ Cn.
Player II wins precisely when f(〈α0, ..., αn−1〉) = ξn for all n < ω. By Gξ(〈C0, a0, ..., Cn−1, an−1〉)
we denote the game Gξ where for all i < n, in round i, I picks Ci and II picks ai.
Let C be the set of all κ+-club subsets of κ+.
Now a winning strategy for Player I for the game Gξ would be a function σ : (κ+)<ω → C
such that any play C0, α0, C1, α1, ... of the game Gξ where Cn = σ(〈a0, ..., an−1〉) for all n < ω
is winning for Player I. A winning strategy for Player II would be a function σ : C<ω → κ+

such that σ(〈C0, ..., Cn〉) ∈ Cn for all 〈C0, ..., Cn〉 ∈ C<ω and any play C0, α0, C1, α1, ... of the
game Gξ where αn = σ(〈C0, ..., Cn〉) for all n < ω is winning for Player II. A winning strat-
egy for Player I for the game Gξ(〈C0, a0, ..., Cn−1, an−1〉) would be a function σ : (κ+)<ω → C
such that any play C0, α0, ..., Cn−1, an−1, Cn, αn, ... of the game Gξ(〈C0, a0, ..., Cn−1, an−1〉) where
Cm = σ(〈an, ..., am−1〉) for all m < ω such that n ≤ m is winning for Player I.

Lemma 7.1. Given ξ ∈ κω, n < ω and 〈C0, a0, ..., Cn−1, an−1〉 such that ai ∈ Ci for all i < n,
if there exists a Cn such that for all an ∈ Cn there is a winning strategy for Player I in the
game Gξ(〈C0, a0, ..., Cn−1, an−1, Cn, an〉), then there is a winning strategy for Player I in the game
Gξ(〈C0, a0, ..., Cn−1, an−1〉).

Proof. Let Cn be such. For an ∈ Cn, let σan be a winning strategy for Player I in the game
Gξ(〈C0, a0, ..., Cn−1, an−1, Cn, an〉). Then define

σ : (κ+)<ω → C
∅ 7→ Cn,

〈an, an+1, ..., am−1〉 7→ σan(an+1, ..., am−1) (n+ 1 ≤ m < ω)

That is, Player I picks Cn in round n and from then on follows strategy σan if Player II responds with
an in round n. Of course σ is a winning strategy for Player I in the gameGξ(〈C0, a0, ..., Cn−1, an−1〉).

Corollary 7.2. Given ξ ∈ κω, n < ω and 〈C0, a0, ..., Cn−1, an−1〉 such that ai ∈ Ci for all i < n, if
Player I has no winning strategy in the game Gξ(〈C0, a0, ..., Cn−1, an−1〉), then for all Cn ∈ C exists
an ∈ Cn such that Player I has no winning strategy in the game Gξ(〈C0, a0, ..., Cn−1, an−1, Cn, an〉).

Lemma 7.3. If Player I has no winning strategy in Gξ, then Player II has.

Proof. Recursively define a function σ : C<ω → κ+ such that if Player I has no winning strategy
in the game Gξ(〈C0, a0, ..., Cn−1, an−1〉) and ai = σ(〈C0, ..., Ci〉) for all i < n, and Player I picks
Cn in round n of that game, then σ(〈C0, ..., Cn−1, Cn〉) = an for some an such that Player I has no
winning strategy in the game Gξ(〈C0, a0, ..., Cn−1, an−1, Cn, an〉). Then σ is a winning strategy for
Player II:
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Let C0, a0, C1, a1, ... be a play of the game Gξ such that an = σ(〈C0, ..., Cn〉) for all n < ω.
We prove by induction on n < ω that for all n < ω, Player I has no winning strategy in
Gξ(〈C0, a0, ..., Cn−1, an−1〉) and thus f(〈a0, ..., an−1〉) = ξn.

1. Player I is assumed to have no winning strategy for Gξ, thus f(∅) = ξ0.
2. If f(〈a0, ..., an−1〉) = ξn for some n < ω and Player I has no winning strategy in the game
Gξ(〈C0, a0, ..., Cn−1, an−1〉), then Player I has no winning strategy in the gameGξ(〈a0, ..., an−1, Cn, an〉)
since an = σ(〈C0, ..., Cn−1〉). In particular, f(〈a0, ..., an−1, an〉) = ξn+1, otherwise Player I
would win.

So the game Gξ is determined: There is always a player with a winning strategy. Of course Lemma
7.3 has the following logical consequence.

Corollary 7.4. If Player II has no winning strategy for the game Gξ, then Player I has.

Lemma 7.5. There exists ξ ∈ κω such that Player II has a winning strategy for the game Gξ.

Proof. Suppose that for all ξ ∈ κω, Player II has no winning strategy for the game Gξ. For each
ξ ∈ κω, let σξ be a winning strategy for Player I for the game Gξ. Using Skolem-Löwenheim, let
〈Mn : n < ω〉 be a ⊆-chain of elementary substructures of H(θ) such that

1. {σξ : ξ ∈ κω} ⊆M0,
2. Mn ∈Mn+1 for all n < ω,
3. |Mn| = κ for all n < ω,
4. there is a set M of size κ such that M ⊆M0 and M ∈M0. (For instance, let {σξ : ξ ∈ κω} ∈
M0.)

Since Mn, κ
+ ∈Mn+1, we have Mn ∩κ+ ∈Mn+1. Note that Mn ∩κ+ ∈ κ+: We assumed that M0,

hence Mn, contains a set M of size κ such that M ⊆M0 ⊆Mn. If β ∈Mn ∩ κ+, then Mn contains
a surjection M � β. Since M ⊆ Mn, we obtain β ⊆ Mn. Thus Mn ∩ κ+ is an initial segment of
κ+ and it is proper since |Mn| = κ < κ+. So αn := Mn ∩ κ+ < κ+.
Now define ξ = 〈ξn : n < ω〉 ∈ κω by ξn = f(〈α0, ..., αn−1〉) for all n < ω. We will show that
C0, α0, C1, α1, ..., where Cn = σξ(〈α0, ..., αn−1〉) for all n < ω, is a play of the game Gξ. But
although Player I follows strategy σξ, this game is won by Player II, which is a contradiction.
It remains to show that C0, α0, C1, α1, ..., where Cn = σξ(〈α0, ..., αn−1〉) for all n < ω, is a play
of the game Gξ. Clearly Cn is a κ+-club subset of κ+. Since σξ, α0, ..., αn−1 ∈ Mn, we have
Cn = σξ(〈α0, ..., αn−1〉) ∈ Mn. Since H(θ) � ∀α ∈ κ+ ∃β ∈ κ+ ∩ Cn (α ∈ β), this holds in Mn as
well, yielding the following: ∀α ∈ κ+ ∩Mn ∃β ∈ κ+ ∩ Cn ∩Mn (α ∈ β). But since αn = κ+ ∩Mn,
this says exactly that αn is a limit point of Cn, and since Cn is closed, we get αn ∈ Cn. Thus
C0, α0, C1, α1, ... is a play of the game.

Lemma 7.6. There exists ξ ∈ κω and a set T ⊆ (κ+)<ω such that when t ∈ T ∩ (κ+)n, then
f(t) = ξn (thus ‘T is ξ-homogeneous’) and furthermore {α ∈ κ+ : t_{α} ∈ T} is κ+-stationary for
all t ∈ T .

Note. By t_{α} we mean a concatenation of sequences: t_{α}i = ti for 0 ≤ i < n and t_{α}n = α.
Also we require that T is not empty, because otherwise the existence of T would be trivial.
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Proof. By Lemma 7.5, let ξ ∈ κω and let σ be a winning strategy for Player II in the game Gξ. Let
T be set of finite sequences induced by σ:

T :=
⋃
n<ω

{t ∈ (κ+)n : (∃〈C0, ..., Cn−1〉 ∈ Cn : σ(〈C0, ..., Cm〉) = tm for all m < n}.

Since σ is a winning strategy for Player II, clearly T is ξ-homogeneous. Let t ∈ T and let C ⊆ κ+

be κ+-club. Let 〈C0, ..., Cn−1〉 ∈ Cn be such that σ(〈C0, ..., Cm〉) = tm for all m < n. Let
α = σ(〈C0, ..., Cn−1, C〉). Then α ∈ C and t_{α} ∈ T . Hence C ∩ {α ∈ κ+ : t_{α} ∈ T} is
non-empty, which proves that {α ∈ κ+ : t_{α} ∈ T} is κ+-stationary.

7.2 A covering lemma

Lemma 7.7. Let λ be a regular cardinal and let W be a set such that |W | < ℵλ. Then there
exists a set B(W,λ) ⊆ [W ]λ such that |B(W,λ)| ≤ |W | and for all A ∈ [W ]λ exists B ∈ B(W,λ)
such that |A ∩B| = λ.

Thus B(W,λ) is some sort of covering set for [W ]λ of limited size.

Proof. We prove this by induction on |W |.
1. If |W | < λ, then [W ]λ = ∅ and B(W,λ) := ∅ works.
2. If |W | = λ, then B(W,λ) := {W} works.
3. Suppose λ < |W | and the claim has been shown for all W ′ such that |W ′| < |W |.

(a) If |W | is regular, let W = {wi : i < |W |} be an enumeration of W . Then B({wj : j <
i}, λ) exists for all i < |W |, and B(W,λ) :=

⋃
i<|W |B({wj : j < i}, λ) works.

(b) If |W | is singular, let W =
⋃
i<cf|W |Wi where |Wi| < |W | for all i. Then B(Wi, λ) exists

for all i, and B(W,λ) :=
⋃
i<cf|W |B(Wi, λ) works:

i. |B(Wi, λ)| ≤ |Wi|, so |B(W,λ)| ≤ |W |.
ii. Let α < λ be such that |W | = ℵα. Then cf|W | = cf(ℵα) = cf(α) ≤ α < λ.

Therefore, since λ is regular, any A ∈ [W ]λ must satisfy |A ∩ Wi| = λ for some
i. Hence |A ∩ Wi ∩ B| = λ for some B ∈ B(Wi, λ), thus |A ∩ B| = λ for some
B ∈ B(W,λ).

7.3 Main theorem

The following theorem is a generalization of Corollary 6.11.

Theorem 7.8. Let δ be a limit ordinal. Then

ℵcf(δ)
δ < ℵ(|δ|cf(δ))+ .

The remainder of this section is devoted to the proof of this theorem.
Let µ := cf(δ). If 2µ ≥ ℵδ, then the theorem is easily proven:

ℵcf(δ)
δ ≤ (2µ)µ = 2µ ≤ |δ|µ ≤ ℵ|δ|µ < ℵ(|δ|cf(δ))+ .
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So assume 2µ < ℵδ. Define a := (2µ,ℵδ). Note that |a| ≤ |δ|. Define J := [a]≤µ \ {∅} and
pcfµ(a) :=

⋃
A∈J pcf(A).

Claim 7.9. 〈J<λ ∩ [a]≤µ : λ ∈ pcfµ(a)〉 is ⊂-increasing.

Proof. Of course the sequence is ⊆-increasing. If λ ∈ pcfµ(a), then λ ∈ pcf(A) for some A ∈ [a]≤µ,
so J<λ ∩ P (A) = J<λ(A) ⊂ J<λ+(A) = J<λ+ ∩ P (A), so J<λ ∩ [a]≤µ ⊂ J<λ+ ∩ [a]≤µ.

Hence |pcfµ(a)| ≤ |[a]≤µ| = |a|µ ≤ |δ|µ.

Claim 7.10. pcfµ(a) is an interval of regular cardinals.

Proof. We have a ⊆ pcfµ(a) and ℵδ is singular: cf(ℵδ) = µ < 2µ < ℵδ. So we need to show that if
λ ∈ pcfµ(a) and λ′ is regular such that ℵδ < λ′ < λ, then λ′ ∈ pcfµ(a). We have cf(

∏
A/D) = λ for

some A ∈ [a]≤µ and we must have limD A ≤ supA = ℵδ. So limD A < λ′ < λ and Theorem 3.28
yields a set of regular cardinals A′ and an ultrafilterD′ on A′ such that |A′| ≤ |A|, limD′ A

′ = limD A
and cf(

∏
A′/D′) = λ′. Since ℵδ is singular and limD′ A

′ = limD A ≤ ℵδ, we may assume that
A′ ⊆ ℵδ, and even A′ ⊆ a, because a is an interval. So λ′ ∈ pcf(A′) ⊆ pcfµ(A).

If follows directly from Definition 3.17 that for any cardinal κ we have J ⊆ J<κ ⇔ pcfµ(a) ⊆ κ.
Let κ be minimal such that it is regular and pcfµ(a) ⊆ κ. Then κ < ℵ(|δ|µ)+ by Claim 7.10. We
also have ℵδ < κ: Since cf(ℵδ) = cf(δ) = µ, there exists a set A ⊆ a which is cofinal in ℵδ and of
cardinality µ. Thus A ∈ J and pcf(A) has a maximum ≥ ℵδ. Thus κ > ℵδ. Since ℵδ is singular,
in fact there exists a cardinal > ℵδ in pcfµ(a).

Claim 7.11. ℵµδ ≤ κ · |δ|µ.

To prove this claim we need to do some hard work. The proof is therefore postponed to the next
subsection. Now since κ < ℵ(|δ|µ)+ and |δ|µ < ℵ(|δ|µ)+ , it follows that ℵcf(δ)

δ < ℵ(|δ|µ)+ . So we have
proved Theorem 7.8 assuming Claim 7.11.

7.4 Proof of Claim 7.11

Suppose Claim 7.11 does not hold, so assume ℵµδ > κ and ℵµδ > |δ|µ. We will ultimately show a
contradiction. We have |δ|µ < ℵδ < κ. So λ := (|δ|µ)++ < ℵδ < κ. We have λµ = ((|δ|µ)++)µ =
(|δ|µ)++ · (|δ|µ)µ = (|δ|µ)++ = λ by Hausdorff’s formula (1).

Claim 7.12. For A ∈ J and ν a cardinal, A ∈ J<ν if and only if there is a subset FA ⊆
∏
A which

is <-cofinal in
∏
A and of size < ν.

Proof. (⇐) Suppose such FA exists and D is an ultrafilter on A. Then {f/D : f ∈ FA} is clearly
cofinal in

∏
A/D. (⇒) We prove this by induction on ν. If A ∈ J<ν , then min(A) < ν.

1. If ν = (min(A))+, then A = {min(A)} and |
∏
A| = |minA| < ν so FA =

∏
A works.

2. Suppose for every B ∈ J<ν exists such FB . Let A ∈ J<ν+ . We may assume A /∈ J<ν ,
so A ∈ J<ν+ \ J<ν and thus tcf(

∏
A/J<ν) = ν by Corollary 3.54, so let 〈fi : i < ν〉 be

<J<ν -increasing and cofinal. Let

FA := {fi � (A \B) ∪ g : i < ν, ∅ 6= B ∈ P (A) ∩ J<ν , g ∈ FB}.
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Then |FA| ≤ |ν| · |P (A) ∩ J<ν | · supB∈P (A)∩J<ν |FB | = ν < ν+, since |P (A) ∩ J<ν | ≤ 2|A| ≤
2µ < min(A) < ν+. Also FA is cofinal in

∏
A: Let f ∈

∏
A, then f <J<ν fi for some i, so

f � (A \ B) < fi � (A \ B) for some B ∈ J<ν ∩ P (A) and f � B < g for some g ∈ FB . So
f < fi � (A \B) ∪ g ∈ FA.

3. If ν is a limit cardinal, then J<ν =
⋃
ν′<ν J<ν′ and the claim holds by the induction hypothesis.

Since J ⊆ J<κ, for each A ∈ J , let FA ⊆
∏
A be cofinal such that |FA| < κ, which exist by Claim

7.12. For each A ∈ J , |FA| < κ < ℵ(|δ|µ)+ < ℵλ and λ is regular. So Lemma 7.7 applies and we
obtain sets B(FA, λ).
For all ordinals α and β, let I(αβ) be the set of increasing sequences in αβ , and similarly I(α<β)
the set of increasing sequences in α<β . For a increasing sequence η, let oran(η) be the least ordinal
α such that ran(η) ⊆ α. Note that dom(η) is a limit ordinal precisely if oran(η) is a limit ordinal.
Let θ be a large enough regular cardinal and let H(θ)∗ = (H(θ),∈, <∗) where <∗ is a well-order on
H(θ).
Let 〈Si : i < κ〉 ∈ ([ℵδ]µ)κ be a κ-sequence of distinct elements in [ℵδ]µ. We will ultimately show
that for almost all i, Si ⊆ S for some S such that |P (S)| < κ (in case µ > ℵ0), or Si ⊆ N
for some N such that |[N ]µ| < κ (in case µ = ℵ0). This is of course a contradiction. Define
J>λ := {A ∈ J : A ∩ λ = ∅}. Note that J 63 ∅, so no A ∈ J>λ is empty. For i < κ, recursively
define, for α < λ:

1. M i
η for all η ∈ I(λ<µ) which satisfy oran(η) = α,

2. f iα,
3. f iα,A for all A ∈ J>λ,

such that the following holds:
1. For all θ ∈ I(λµ), the sequence 〈M i

η : η ⊂ θ〉 is a continuous ⊆-chain of elementary substruc-
tures. To be precise:
(a) M i

η ≺ H(θ)∗ for all η ∈ I(λ<µ).
(b) M i

η =
⋃
ζ⊂ηM

i
ζ =

⋃
β<dom(η)M

i
η�β for all η ∈ I(λ<µ) such that dom(η) is a limit ordinal.

(Of course, by ζ ⊂ η we mean ζ ⊂ η and ζ ∈ λ<µ.)
(c) If η, η_〈β〉 ∈ I(λ<µ), then M i

η ⊆M i
η_〈β〉.

2. |M i
η| = µ for all η ∈ I(λ<µ).

3. {a, λ} ∪ Si ∪ µ ⊆M i
∅ (note that |Si| ≤ µ).

4. ran(η) ⊆M i
η for all η ∈ I(λ<µ) (note that |ran(η)| < µ).

5. 〈M i
ζ : ζ ⊂ η〉 = 〈M i

η�β : β < dom(η)〉, 〈f iβ : β < α〉, 〈f iβ,A : β < α,A ∈ J>λ〉 ∈ M i
η for all

η ∈ I(λ<µ) such that oran(η) = α and α is a successor.
6. f iα ∈

∏
(a\λ) and for all ρ ∈ a\λ we have f iα(ρ) = sup(

⋃
{M i

η∩ρ : η ∈ I(λ<µ) and oran(η) ≤
α}). Since |M i

η| ≤ µ and ρ > λ > |δ|µ ≥ 2µ > µ and ρ > λ = λµ = |λ<µ|, we indeed have
f iα(ρ) < ρ.

7. For each A ∈ J>λ we have f iα,A ∈ FA such that f iα � A < f iα,A and f iβ,A < f iα,A for all β < α.
Indeed, for A ∈ J>λ and ρ ∈ A, sup({f iα(ρ)} ∪ {f iβ,A(ρ) : β < α} < ρ, since α < λ < ρ. So
FA contains a function > sup({f iα � A} ∪ {f iβ,A : β < α}).

For i < κ and θ ∈ I(λµ), define M i
θ =

⋃
η⊂θM

i
η =

⋃
β<µM

i
θ�β . This is again an elementary

substructure of H(θ)∗. Note that we use the symbol θ for an element in I(λµ) and for a cardinal.
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It will be clear from the context which one we mean.
For A ∈ J>λ, 〈f iα,A : α < λ〉 is <-increasing. Hence {f iα,A : α < λ} has size λ. So let tiA ∈ B(FA, λ)
be such that tiA ∩ {f iα,A : α < λ} has size λ. Enumerate each tiA as {giα,A : α < λ} such that if
tiA = tjA, then tiA and tjA have equal enumeration. Define

CiA :={β < λ : [∀α < β ∃ξ, ζ ∈ (α, β) : (f iξ,A = giζ,A)]}
∩{β < λ : [∀α < β : (∃ξ < λ(giα,A < f iξ,A))⇒ (∃ξ < β(giα,A < f iξ,A))]}.

Claim 7.13. For all i < κ and A ∈ J>λ, CiA is λ-club.

Proof. Let i < κ and A ∈ J>λ. We will show that both X := {β < λ : [∀α < β ∃ξ, ζ ∈ (α, β) :
(f iξ,A = giζ,A)]} and Y := {β < λ : [∀α < β : (∃ξ < λ(giα,A < f iξ,A)) ⇒ (∃ξ < β(giα,A < f iξ,A))]} are
λ-club.
X is λ-unbounded: Let γ0 < λ be arbitrary. We define γn < λ for n < ω: Given γn, let ξn, ζn ∈
(γn, λ) be such that f iξn,A = giζn,A. This is possible since there are tiA ∩ {f iα,A : α < λ} has size λ.
Given ξn, ζn < λ, let γn+1 := max(ξn, γn). Let β := supn<ω γn. Since λ is uncountable regular, we
have β < λ, and clearly γ < β. Also it is easy to see that β ∈ X.
X is λ-closed: Let β < λ be arbitrary and suppose sup(X ∩ β) = β. Let α < β be arbitrary.
Then α < β′ for some β′ ∈ X ∩ β. So there exist ξ, ζ ∈ (α, β′) such that f iξ,A = giζ,A. But then
ξ, ζ ∈ (α, β). So β ∈ X.
Y is λ-unbounded: Let γ0 < λ. Define the map λ→ λ by α 7→ ξα, where ξα is the minimal ξ such
that giα,A < f iξ,A. Of course such ξ does not necessarily exists, in which case we take ξα = 0. We
define γn < λ for n < ω: Given γn, let Mn := {ξα : α < γn}. Given Mn, let γn+1 := supMn. Since
λ is regular and |Mn| < λ, we have γn+1 < λ. Let β := supn<ω γn. Since λ is uncountable and
regular, we have β < λ. Clearly γ0 < β. It is easy to verify that β ∈ X.
Y is λ-closed: Let β < λ be arbitrary and suppose sup(Y ∩ β) = β. Let α < β be arbitrary. Then
α < β′ for some β′ ∈ Y ∩ β. So if giα,A < f iξ,A for some ξ < λ, then it is possible to choose ξ < β′.
But then ξ < β. Thus β ∈ Y . Hence CiA = X ∩ Y is λ-club.

For i < κ, define Ci :=
⋂
A∈J>λ C

i
A. Since λ > |δ|µ = |J | ≥ |J>λ|, Ci is λ-club as well.

We now have to consider two cases: We have µ > ℵ0 or µ = ℵ0. These will be considered in the
following two paragraphs.

7.4.1 The case µ > ℵ0

Assume µ > ℵ0. Since µ < λ, for each i < κ, let βi ∈ Ci be such that cf(βi) = µ. Consider the
following maps, for any A ∈ J>λ, β < λ and θ ∈ I(λµ):

κ → λ
i 7→ βi

; κ → J>λ
i 7→ (M i

θ ∩ a) \ λ ; κ → B(FA, λ)
i 7→ tiA

; κ → FA
i 7→ f iβ,A

; κ → J
i 7→ M i

θ ∩ λ

Note that each domain has cardinality less than κ: λ < κ, |J>λ| ≤ |J | ≤ |δ|µ < λ, |B(FA, λ)| ≤
|PA| < κ. So we let I ⊆ κ, β < λ, A ∈ J>λ, θ ∈ I(λµ) such that oran(θ) = β, t ∈ B(FA, λ) and
f ∈ FA such that |I| = κ, and βi = β, (M i

θ ∩ a) \ λ = A, tiA = t and f iβ,A = f for all i ∈ I, and
M i
θ ∩ λ is independent of i ∈ I. Define tα := {giβ,A : β < α}; this is independent of i ∈ I since

tiA = t for all i, thus each tiA has the same enumeration.
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Claim 7.14. f iβ � A is independent of i ∈ I.

Proof. Let ρ ∈ A be arbitrary. We have the following equalities, which will be justified below:

f iβ(ρ) 1.= sup(
⋃
{M i

η ∩ ρ : η ∈ I(λ<µ) and oran(η) ≤ β})
2.= sup(sup(

⋃
{M i

η ∩ ρ : η ∈ I(λ<µ) and oran(η) ≤ α}) : α < β)
3.= sup(f iα(ρ) : α < β)
4.= sup(f iα,A(ρ) : α < β)
5.= sup(g(ρ) : g ∈ tβ , g < f iα,A for some α < β)
6.= sup(g(ρ) : g ∈ tβ , g < f).

1. By definition.
2. Since cf(β) = µ, any η ∈ I(λ<µ) does not have oran(η) = β.
3. By definition.
4. (≤) f iα � A < f iα,A for all α < β. (≥) Consider f iα,A(ρ) for some α < β. Recall that

oran(θ) = β, and that ρ ∈ A ⊆ M i
θ =

⋃
η⊂θM

i
η. Thus let ξ < µ be such that α < θ(ξ) and

ρ ∈M i
θ�ξ+1. Then 〈f iα′,A′ : α′ < oran(θ � ξ+1) = θ(ξ)+1, A′ ∈ J>J 〉 ∈M i

θ�ξ+1 by definition.
Therefore

f iα,A(ρ) < sup(f iα′,A′(ρ) : α′ < θ(ξ) + 1, A′ ∈ J>J ) < sup(M i
θ�ξ+1 ∩ ρ) ≤ f iθ(ξ)+1(ρ).

5. (≥) g < f iα,A for some α < β. (≤) Let α < β. We have β ∈ Ci thus β ∈ CiA, thus let
ξ, ζ ∈ (α, β) be such that f iξ,A = giζ,A. Then g := giζ,A satisfies g < f iα′,A for some α′ < β (for
instance α′ = ξ + 1), and f iα,A(ρ) < f iξ,A(ρ) = g(ρ).

6. (≥) If g < f iα,A, then g < f iβ,A = f . (≤) As g ∈ tβ , we have g = giα,A for some α < β. Since
β ∈ CiA and g = giα,A < f = f iβ,A let ξ < β such that g = giα,A < f iξ,A.

The last expression is independent of i ∈ I.

Claim 7.15. For ρ ∈ A we have f iβ(ρ) = sup(M i
θ ∩ ρ).

Proof. Let ρ ∈ A be arbitrary. We have

f iβ(ρ) 1.= sup(
⋃
{M i

η ∩ ρ : η ∈ I(λ<µ) and oran(η) ≤ β})
2.= sup(

⋃
{M i

θ�ξ ∩ ρ : ξ < µ})
3.= sup(M i

θ ∩ ρ),

since
1. By definition of f iβ(ρ).
2. (≥) Clear. (≤) Let η ∈ I(λ<µ) such that oran(η) ≤ β. Since cf(β) = µ, we have oran(η) < β.

So let ξ < µ be such that ρ ∈ M i
θ�ξ+1 and oran(η) < θ(ξ). Since also 〈f iα : α < oran(θ �

ξ + 1) = θ(ξ) + 1〉, θ(ξ) ∈M i
θ�ξ+1, we have sup(M i

η ∩ ρ) ≤ f iθ(ξ)(ρ) ∈M i
θ�ξ+1 ∩ ρ by definition

of f iθ(ξ)(ρ),
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3. By definition of M i
θ.

Claim 7.16. For ρ ≤ ℵδ, M i
θ ∩ ρ is independent of i ∈ I.

Proof. We prove this by induction on ρ. We already have M i
θ ∩ λ is independent of i ∈ I. Thus for

ρ ≤ λ there is nothing to be done. If ρ is limit and for all ρ′ < ρ, M i
θ ∩ ρ′ is independent of i ∈ I,

then M i
θ ∩ ρ =

⋃
ρ′<ρM

i
θ ∩ ρ is independent of i ∈ I. Suppose ρ > λ and M i

θ ∩ ρ is independent of
ρ. If for all i0, i ∈ I, M i0

θ ∩ ρ+ = M i
θ ∩ ρ+, then we are done. So let i0 ∈ I and α ∈ M i0

θ ∩ ρ+ \ ρ.
Then |α| = ρ, so ρ, ρ+ ∈ M i0

θ . For all i ∈ I, (M i
θ ∩ a) \ λ = A, so any i ∈ I has ρ+ ∈ M i

θ, hence
ρ ∈ M i

θ. For any i ∈ I, 〈sup(M i
θ�α ∩ ρ+) : α < µ〉 is continuous and cofinal in sup(M i

θ ∩ ρ+). So
for all i ∈ I, {sup(M i

θ�α ∩ ρ+) : α < µ} ⊆M i
θ ∩ ρ+ is club in sup(M i

θ ∩ ρ+) = f iβ(ρ+) (Claim 7.15),
and thus cf(f iβ(ρ+)) = µ. Note that sup(M i

θ ∩ ρ+) = f iβ(ρ) is independent of i ∈ I by Claim 7.14.
So K := {sup(M i0

θ�α ∩ ρ+) : α < µ} ∩ {sup(M i
θ�α ∩ ρ+) : α < µ} ⊆ M i0

θ ∩M i
θ ∩ ρ+ is cofinal in

M i0
θ ∩ ρ+ and in M i

θ ∩ ρ+. For α ∈ K, let h be the <∗-least bijection ρ ↔ α in H(θ)∗. Then
M i
θ ∩ α = h[M i

θ ∩ ρ] = h[M i0
θ ∩ ρ] = M i0

η ∩ α for all i. Since K is cofinal in both M i0
θ ∩ ρ+ and

M i
θ ∩ ρ+, we obtain M i0

θ ∩ ρ+ = M i
θ ∩ ρ+.

So define S := M i
θ ∩ ℵδ. For each i ∈ I, Si ⊆ M i

∅ ⊆ M i
θ and Si ⊆ ℵδ, so Si ⊆ S. So {Si : i ∈

I} ⊆ P (S). But this contradicts |P (S)| ≤ 2µ < ℵδ < κ. So Claim 7.11 is now shown under the
assumption that µ > ℵ0.

7.4.2 Case µ = ℵ0

Assume µ = ℵ0. Since (|δ|µ)+ < λ, for each i < κ, let βi ∈ Ci be such that cf(βi) = (|δ|µ)+.
Consider the map κ → λ given by i 7→ βi; let I ⊆ κ and β < λ be such that |I| = κ and βi = β
for all i ∈ I. Let C ⊆ β be β-club and such that |C| = (|δ|µ)+. Note that (|δ|µ)µ = |δ|µ and
|[a]≤µ| = |a|µ ≤ |δ|µ. For i ∈ I, let f i : C<ω → [a]≤µ be given by η 7→ (M i

η ∩ a) \λ if η is increasing
and η 7→ ∅ if η is not increasing. Then Lemma 7.6 applies and yields a nonempty T i ⊆ C<ω and a
sequence 〈Ain : n < ω〉 in [a]≤µ such that f i(η) = Ain for all η ∈ T i ∩βn and {α ∈ C : η_{α} ∈ T i}
is C-stationary for all η ∈ T i. Since there must be increasing sequences of every length in T i, we in
fact have that Ain = f(η) = (M i

η ∩ a) \λ for such sequences. Since (M i
η ∩ a) \λ 6= ∅, we in fact have

that every sequence in T i is increasing. Consider the map I → ([a]≤µ)ℵ0 given by i 7→ 〈Ain : n < ω〉.
Since |I| = κ and |([a]≤µ)ℵ0 | = (|a|µ)ℵ0 = |a|µ ≤ δµ < λ < κ, thin out8 I an let 〈An : n < ω〉 such
that 〈Ain : n < ω〉 = 〈An : n < ω〉 for all i ∈ I.
Let Ā :=

⋃
n<ω An ∈ [a]≤µ \ {∅}. Consider the maps

I → B(FA, λ)
i 7→ ti

A

;
I → FA
i 7→ f i

β,A

.

Since |B(FA)| ≤ |FA| < κ = |I|, thin out I again and let t ∈ B(FA) and f ∈ FA be such that
f i
β,A

= f and ti
A

= t for all i ∈ I. Recall that we enumerated t = ti
A

= {gi
β,A

: β < λ}; let
tα := {gi

β,A
: β < α}.

8This means that we take a J ⊆ I with the desired property and such that |J | = |I| = κ, and we rename I = J .
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Claim 7.17. f iβ � A is independent of i.

Proof. Given i ∈ I, let θ ∈ βω be such that θ � n ∈ T i ∩ βn for all n < ω. This is possible since
{α : η_{α} ∈ T i} is stationary for all η ∈ T i. The proof is now the same as the proof of Claim
7.14.

Let f = f iβ � A. For all ρ ∈ Ā, we have f(ρ) = f iβ(ρ) = supα<β f iα(ρ).

Claim 7.18. For any i, for ρ ∈ Ā, 〈f iα(ρ) : α < β〉 is eventually increasing. Hence cf(f iβ(ρ)) = cf(β).

Proof. Fix some i. Let n < ω be such that ρ ∈ An. There is an η ∈ T i∩βn, and An = (M i
η ∩a)\λ.

We will show that 〈f iα(ρ) : η(n− 1) < α < β〉 is increasing.
Let η(n− 1) < α1 < α2 < β. We have 〈M i

η_{α1}�k : k ≤ n〉 ∈M i
η_{α1}, n ∈M

i
η_{α1} (since n < ω

is definable), so M i
η ∈ M i

η_{α1}, and a, λ ∈ M i
η_{α1}, so An = (M i

η ∩ a) \ λ ∈ M i
η_{α1}. Also

ran(η_{α1}) ⊆ M i
η_{α1}, so α1 ∈ M i

η_{α1}. And 〈f iα,A : α < α1 + 1, A ∈ J>λ〉 ∈ M i
η_{α1}. So

f iα1,An
∈ M i

η_{α1}. Since ρ ∈ An = (M i
η ∩ a) \ λ ⊆ M i

η_{α1}, we obtain f iα1,An
(ρ) ∈ M i

η_{α1}. So
we have

f iα1
(ρ) < f iα1,An(ρ) ≤ sup(M i

η_{α1} ∩ ρ) ≤ f iα1+1(ρ) ≤ f iα2
(ρ).

For ρ ∈ Ā, let Cρ ⊆ f(ρ) be f(ρ)-club and such that |Cρ| = cf(β). By Downwards Skolem-
Löwenheim, let N be such that |N | = λ and

A ∪ λ ∪
⋃
ρ∈Ā

Cρ ⊆ N ≺ H(θ)∗.

Since |A| ≤ µ = ℵ0 and |Cρ| = cf(β) ≤ β < λ, this is possible.
Fix i ∈ I. We will show that Si ⊆ N .

Claim 7.19. For all η ∈ T i ∩ βn and ρ ∈ An exists α < β such that ρ \ sup(M i
η ∩ ρ)∩N ∩M i

η_{α}
is non-empty.

Proof. Since {f iα(ρ) : α < β} and Cρ are club in f iβ(ρ), and cf(f iβ(ρ)) = cf(β) = (|δ|µ)+, we have
{f iα(ρ) : α < β}∩Cρ is club in f iβ(ρ), and {α < β : f iα(ρ) ∈ Cρ} is β-club. Also sup(M i

η∩ρ) < β, since
|M i

η| = µ. So there exists an α < β such that f iα(ρ) ∈ Cρ, sup(M i
η ∩ ρ) < f iα(ρ) and η_{α} ∈ T i.

Then clearly f iα(ρ) ∈ ρ \ sup(M i
η ∩ ρ) ∩ N . Since 〈f iγ : γ < oran(η_{α}) = α + 1〉 ∈ M i

η_{α},
ρ ∈ An = (M i

η ∩ a) \ λ ⊆M i
η_{α} and α ∈ ran(η_{α}) ⊆M i

η_{α}, we have f iα(ρ) ∈M i
η_{α}.

Observe that if ρ \ sup(M i
η ∩ ρ) ∩ N ∩M i

η_{α} is non-empty and ζ ⊆ η and η_{α} ⊆ ζ ′, then
ρ \ sup(M i

ζ ∩ ρ) ∩N ∩M i
ζ′ is non-empty as well.

Let ζ ∈ T i ∩ βn and η ∈ T i ∩ βm such that ζ ⊆ η. Then An = (M i
ζ ∩ a) \ λ ⊆ (M i

η ∩ a) \ λ = Am.
So 〈An : n < ω〉 is ⊆-increasing.
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From these two observations and Claim 7.19 it follows that there is a sequence 〈ηn : n < ω〉 such
that if n ≤ m then ηn ⊆ ηm, for all n we have ηn ∈ T i ∩ βn and if ρ ∈ An, then there exists m > n
such that ρ \ sup(M i

ηn ∩ ρ)) ∩M i
ηm ∩N is non-empty.

Let θ =
⋃
n<ω ηn ∈ βω, then M i

θ =
⋃
n<ωM

i
ηn and A = (M i

θ ∩ a) \ λ.

Claim 7.20. For all ρ ∈ A we have that M i
θ ∩N ∩ ρ is cofinal in M i

θ ∩ ρ.

Proof. Let ρ ∈ Ak. Let σ ∈ M i
θ ∩ ρ, then σ ∈ M i

ηn ∩ ρ for some n. Then ρ ∈ Amax(k,n) and
σ ∈M i

ηmax(k,n)
. For some m > max(k, n) we have ρ \ sup(M i

ηmax(k,n)
∩ ρ) ∩M i

ηm ∩N is non-empty.
So there exists a τ > σ, τ ∈M i

θ ∩N ∩ ρ.

Claim 7.21. We have M i
θ ∩ ℵδ ⊆ N ∩ ℵδ.

Proof. We prove this by induction on all cardinals ρ ≤ ℵδ. For ρ ≤ λ this is trivial since λ ⊆ N , so
M i
θ ∩ λ ⊆ λ = N ∩ λ. If ρ is a limit cardinal, this follows easily from the induction hypothesis. So

suppose ℵδ > ρ > λ and M i
θ∩ρ ⊆ N∩ρ. We will show M i

θ∩ρ+ ⊆ N∩ρ+. Suppose α ∈M i
θ∩(ρ+\ρ).

Then |α| = ρ ∈ M i
θ, so ρ+ ∈ (M i

θ ∩ a) \ λ = A. By Claim 7.20, let β ∈ M i
θ ∩ N ∩ ρ+ be such

that α < β. Then |β| = ρ ∈ M i
θ ∩ N . So the <∗-least bijection h : ρ ↔ β is in M i

θ and in N by
elementarity. So M i

η ∩ β = h[M i
θ ∩ ρ] ⊆ h[N ∩ ρ] = N ∩ β. So M i

η ∩ α ⊆ N ∩ β ⊆ N ∩ ρ+. Since α
was arbitrary, we have M i

η ∩ ρ+ ⊆ N ∩ ρ+.

Since Si ⊆M i
∅ ⊆M

i
θ and Si ⊆ ℵδ, we have Si ⊆M i

θ ∩ ℵδ ⊆ N ∩ ℵδ, so Si ⊆ N .
Now |[N ]µ| = λµ = λ < κ = |{Si : i ∈ I}|. This contradicts Si ⊆ N for all i ∈ I.
So Claim 7.11 is now shown under the assumption that µ = ℵ0.
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8 Shelah’s bound on ℵℵ0
ω

In this section we will prove Shelah’s renowned and surprising bound ℵℵ0
ω < ℵω4 , assuming 2ℵ0 < ℵω.

8.1 First essential lemma

In this subsection we let λ be a singular cardinal of uncountable cofinality, i.e. λ > cf(λ) > ω.

Lemma 8.1. There exists a λ-cofinal closed set C ⊆ [cf(λ), λ) of order type cf(λ) consisting of
singular cardinals.

Proof. Let 〈λi : i < cf(λ)〉 be increasing and cofinal in λ. For i < cf(λ) define µi < λ by
1. µ0 = cf(λ),
2. µi+1 = limn<ω µ

+n where µ := max(µi, λi),
3. µi = limj<i µj if i is limit.

Then 〈µi : i < cf(λ)〉 is increasing, cofinal in λ, and λi is singular for all i.

For any set of cardinals A and any natural number n, let A+n := {λ+n : λ ∈ A} and let A−n :=
{λ : λ+n ∈ A}.
Let C be a λ-cofinal closed subset of [cf(λ), λ) consisting of singular cardinals as in Lemma 8.1.
Define c :=

⋃
1≤k<ω C

+k. Then c is an infinite set of regular cardinals, so pcf-theory comes into
play. For all cardinals µ, we have a generator bµ(c) of J<µ+(c) over J<µ(c). If µ /∈ pcf(c), then
bµ(c) = ∅. In particular, we have generators bλ+k(c) for all 1 ≤ k < ω.
The remainder of this subsection will be the proof of the following theorem.

Theorem 8.2. For any 1 ≤ n < ω we have that {ρ ∈ C : ρ+n ∈
⋃

1≤k≤n bλ+k(c)} has a subset
which is λ-club.

Assume the theorem is false and let n be minimal such that {ρ ∈ C : ρ+n ∈ B} contains no λ-club
subset, where B :=

⋃
1≤k≤n bλ+k(c). Define a = C+n and

I : = {A ⊆ a : {ρ(∈ C) : ρ+n ∈ A} is not stationary in λ}
= {A ⊆ a : A−n(∩C) is not stationary in λ}.

‘∈ C’ and ‘∩C’ are in brackets because they are automatically satisfied.
Then I is easily shown to be a proper ideal on a. By assumption, {ρ ∈ C : ρ+n ∈ B} = {ρ ∈ C :
ρ+n ∈ (B ∩ a)} contains no λ-club subset. So any λ-club subset D of λ satisfies D+n ∩ a \ B 6= ∅,
so a \B 6∈ I. On the other hand, subsets of a which are bounded below λ are in I. If A ∈ J<λ(a),
then pcf(A) ⊆ λ. Since pcf(A) has a maximum, we have in fact that pcf(A), and thus A itself, is
bounded below λ. Thus J<λ(a) ⊆ I.
Note that B generates J<λ+n+1(c) over J<λ+(c) = J<λ(c) and that B∩a generates J<λ+n+1(a) over
J<λ+(a) = J<λ(a). (For instance, use the third characterization in Definition 3.42).
Let I∗ = I + (B ∩ a), then I∗ is still proper (since a \B /∈ I, so a /∈ I∗). Since I ⊇ J<λ(a), we have
I∗ ⊇ J<λ+n+1(a). By Theorem 3.20 we therefore have that

∏
a/I∗ is λ+n+1-directed.

As in Definition 3.33 let 〈Cβ : β < λ+n〉 be a silly square sequence, i.e.

71



1. Cβ ⊆ P (β),
2. |Cβ | ≤ λ+n,
3. Cβ contains a closed β-unbounded set of order type cf(β),
4. E ∈ Cβ , γ < β implies E ∩ γ ∈ Cγ .

We will define an <I∗ -increasing sequence 〈fα : α < λ+n〉 in
∏
a. Let f0 ∈

∏
a be arbitrary. Given

〈fγ : γ < β〉 for some β < λ+n, let h ∈
∏
a be such that fγ <I∗ h for all γ < β, this is possible

since
∏
a/I∗ is λ+n+1-directed. For E ∈ Cβ and α ∈ a, let

gβE(α) :=
{
h(α), if α ≤ ot(E),
max(h(α), supγ∈E fγ(α)), if α > ot(E).

Then gβE(α) < α, hence gβE ∈
∏
a. Since |Cβ | ≤ λ+n and

∏
a/I∗ is λ+n+1-directed, let fβ ∈

∏
a

be an <I∗ -upper bound for {gβE : E ∈ Cβ}.

Lemma 8.3. Let D be any ultrafilter such that D ∩ I∗ = ∅. Then there are no µ < λ and Sα ⊆ α
for each α ∈ a such that |Sα| ≤ µ and

∏
α∈a Sα/D cofinally cuts 〈fα/D : α < λ+n〉.

Proof. Suppose not, let Sα ⊆ α be such that
∏
α∈a Sα/D cofinally cuts 〈fα/D : α < λ+n〉 and

such that |Sα| ≤ µ for some µ < λ. Assume that µ ≤ |a|, this is without loss of generality
since |a| = cf(λ) < λ. Given any β < λ+n, there is a k ∈

∏
α∈a Sα and β′ < λ+n such that

fβ <D k <D fβ′ . So there exists a λ+n-club set B ⊆ λ+n such that for all β, β′ ∈ B such that
β < β′, there exists k ∈

∏
α∈a Sα such that fβ <D k <D fβ′ . Note that |B| ≥ cf(λ+n) = λ+n.

Let β be the supremum of the smallest µ+ elements of B, then cf(β) = µ+ and µ+ < λ since λ
is singular. Let E ∈ Cβ be a closed β-unbounded set of order type cf(β). Then B ∩ β and E are
β-club, so B ∩ β ∩ E = E ∩ B is β-club and ot(E ∩ B) = cf(β), so let E ∩ B = {βi : i < cf(β)} be
an increasing enumeration. For each i, choose ki ∈

∏
α∈a Sα such that fβi <D ki <D fβi+1. We

already have fβi >D gβiE∩βi for all i, and gβiE∩βi(α) ≥ fβj (α) for all α > ot(E ∩ βi), in particular for
α > ot(E), and all j < i. Since D ∩ I∗ = ∅, D contains no bounded sets, hence for each i < cf(β),
there is an αi > ot(E) such that fβi(αi) < ki(αi) < fβi+1(αi) and fβi(αi) > gβiE∩βi(αi). Let `(cf(β))
be the set of limit ordinals in cf(β). Then consider the map `(cf(β)) → a given by i 7→ αi. Since
|`(cf(β))| = |cf(β)| = µ+ > µ, there must be a set I ⊆ `(cf(β)) such that |I| = cf(β) and there is an
α ∈ a such that αi = α for all i ∈ I. Then we have

ki(α) ≤ fβi+1(α) ≤ gβjE∩βj (α) < fβj (α) ≤ kj(α)

for i, j ∈ I such that i < j. Thus 〈ki(α) : i ∈ I〉 is increasing, which contradicts |Sα| ≤ µ < µ+ =
cf(β).

Let D be an ultrafilter on a such that D ∩ I∗ = ∅. Then 〈fα : α < λ+n〉 is <D-increasing. Now
D is an ultrafilter on a; it transposes to an ultrafilter D̃ on |a| via a bijection i : a ↔ |a|. Any
f ∈ ONa transposes to an f̃ ∈ ON|a| by f̃(x) := f(i−1(x)). Then 〈f̃α : α < λ+n〉 is <D̃-increasing
in ON|α|. Also λ+n ≥ λ+ > cf(λ)+ = |a|+, and λ+n and |a| are regular. Hence Lemma 3.32 yields
that 〈f̃α/D̃ : α < λ+n〉 has a least upper bound in ON|a|/D̃ or there exist sets Sδ for δ < |a| such
that |Sδ| ≤ |a| and

∏
δ<|a| Sδ/D̃ cofinally cuts 〈f̃α/D̃ : α < λ+n〉.

Suppose the second. Consider Tα := Si(α) ∩ α ⊆ α and
∏
α∈a Tα. We will show that

∏
α∈a Tα

cofinally cuts 〈fγ/D : γ < λ+n〉, which contradicts Lemma 3.34. Let α < λ+n. Let h ∈
∏
δ<|a| Sδ
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such that f̃α <D̃ h and h/D̃ cuts 〈f̃γ/D̃ : γ < λ+n〉. Then h <D̃ fα′ for some α′ < λ+n. So
[h < fα′ ] ∈ D̃. So without loss of generality we assume that h < f̃α′ everywhere. Let h′(x) :=
h(i(x)) < f̃α′(i(x)) = fα′(x) < x, so h ∈

∏
α∈a Tα. So

∏
α∈a Tα cofinally cuts 〈fγ/D : γ < λ+n〉.

Thus 〈f̃γ/D̃ : γ < λ+n〉 has a least upper bound ON|a|/D̃, and thus also 〈fγ/D : γ < λ+n〉 has a
least upper bound g/D in ONa/D. Now

∏
a/I∗ is λ+n+1-directed, hence there is an upper bound

h/I∗ ∈
∏
a/I∗. Thus g ≤D h and thus g ≤ h everywhere and g ∈

∏
a without loss of generality,

i.e. g(α) < α for all α ∈ a. If {α ∈ a : cf(g(α)) ≤ |a|} ∈ D, then this would violate Lemma 8.3:
For these α, we let Sα be cofinal in g(α) of size cf(g(α)) and for all other α let Sα = {0}. Then
|Sα| ≤ |a|. Then for any α < λ+n there exists an h ∈

∏
α∈a Sα such that fα <D h. But h <D g

so there exists β < λ+n such that h <D fβ . Thus
∏
α∈a Sα cofinally cuts 〈fα/D : α < λ+n〉, a

contradiction.
We thus must have {α ∈ a : cf(g(α)) > |a|} ∈ D and thus cf(g(α)) > |a| for all α without loss of
generality.
Consider {cf(g(α)) : α ∈ a} = {cf(g(ρ+n)) : ρ ∈ C}. Define S0 := {ρ ∈ C : cf(g(ρ+n)) < ρ}
and for 1 ≤ k < n, define Sk := {ρ ∈ C : cf(g(ρ+n)) = ρ+k}. Then C = S0 ∪̇

⋃̇n−1
k=1Sk and

a = S+n
0 ∪̇

⋃̇n−1
k=1S

+n
k . Exactly one S+n

k (0 ≤ k < n) must be in D.
Lemma 8.4. We have S+n

0 ∈ D.

Proof. If not, let 1 ≤ k < n such that S+n
k ∈ D. Since k < n, we have {ρ ∈ C : ρ+k ∈⋃k

m=1 bλ+m(c)} has a λ-club subset; let K ⊆ C be λ-club such that K+k ⊆
⋃k
m=1 bλ+m(c). Let

a′ := C+k and

D′ := {A ⊆ a′ : {ρ+n : ρ ∈ C, ρ+k ∈ A} ∈ D} = {A−(n−k) : A ∈ D},

i.e. we shift D so that it becomes an ultrafilter on a′. For any f ∈
∏
a, we define f ′(ρ+k) = f(ρ+n)

for ρ ∈ C. Then f ′ : a′ →
⋃
a, but f ′ /∈

∏
a′ is possible. For f ∈

∏
a′ we define f̂(ρ+n) := f(ρ+k)

for ρ ∈ C, then always f̂ ∈
∏
a. Clearly (.)′ and (̂.) are each others inverses. Also f <D g if and

only if f ′ <D′ g′. We have the sequence 〈fα/D : α < λ+n〉 in
∏
a/D, which is increasing and has

least upper bound g/D. Another fact is that we assumed that {ρ+n : ρ ∈ C, g(ρ+n) = ρ+k} ∈ D,
so {ρ+k : ρ ∈ C, g′(ρ+k) = ρ+k} ∈ D′. Since fα <D g for all α, we have f ′α <D′ g′ =D ida′ for all
α. Thus f ′α ∈

∏
a′. Hence 〈f ′α/D : α < λ+〉 is an increasing sequence in

∏
a′/D′. Now suppose

there is some h such that f ′α <D′ h for all α. Then fα <D ĥ for all α, so g ≤D ĥ, so h /∈
∏
a′.

Therefore 〈f ′α/D : α < λ+〉 is increasing and cofinal (since D′ is an ultrafilter) in
∏
a′/D′ thus

cf(
∏
a′/D′) = λ+n. Consider A ∈ D. Then A /∈ I, thus A−n is stationary in λ, hence intersects

K. Thus K+n intersects A. Thus K+n intersects each element of D. By the finite intersection
property and the fact that D is maximal, we must have K+n ∈ D as well. Hence K+k ∈ D′.
Hence

⋃k
m=1 bλ+m(c) ∩ a′ ∈ D′, by which bλ+m(a′) = bλ+m(c) ∩ a′ ∈ D′ for some 1 ≤ m ≤ k, hence

cf(
∏
a′/D′) < λ+m+1 ≤ λ+n. This contradicts cf(

∏
a′/D′) = λ+n.

Definition 8.5. Let b ⊆ a. Then we call 〈fβ : β < λ+n〉 cofinal in
∏
b/I∗ below g iff for any

k ∈
∏
b such that k <I∗ g � b, we have k ≤I∗ fβ � b for some β < λ+n.

Lemma 8.6. We have 〈fβ : β < λ+n〉 cofinal in
∏
b/I∗ below g for some b ∈ D.

Proof. Suppose not. We recursively define a sequence 〈hβ : β < |a|+〉 in
∏
a and a sequence

〈iβ : β < |a|+〉 in λ+ such that
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1. 〈hβ : β < |a|+〉 is ≤-increasing,
2. hβ < g for all β,
3. For all β and α ∈ (iβ , λ+n) we have [fα > hβ+1] ⊂ [fα > hβ ].

We do this as follows:
1. Base case: h0(γ) = 0 for all γ.
2. Successor case: Suppose 〈hβ′ : β′ ≤ β〉 and 〈iβ′ : β′ < β〉 have been defined. If [fα > hβ ] /∈ D

for all α, then fα ≤D hβ , hence fα <D hβ for all α. But hβ < g, contradicting the minimality
of g. So let iβ < λ+n such that bβiβ := [fiβ > hβ ] ∈ D. By assumption 〈fγ : γ < λ+n〉 is not
cofinal in

∏
bβiβ/I

∗ below g. Let h ∈
∏
bβiβ such that h <I∗ g � bβiβ but h 6≤I∗ fγ � bβiβ for all

γ < λ+n and assume without loss of generality that h < g � bβiβ everywhere. Now extend h to∏
a by h(γ) = 0 for γ ∈ a \ bβiβ . Then let hβ+1 = max(hβ , h). Then hβ+1 ∈

∏
a, hβ+1 ≥ hβ

and hβ+1 < g. Let α ∈ (iβ , λ+n) be arbitrary. We have h 6≤I∗ fα � bβiβ so [h > fα] ∩ bβiβ /∈ I
∗.

But fα >I∗ fiβ . So there is some γ ∈ [fα > hβ ] such that h(γ) > fα(γ). Since hβ+1 ≥ h we
obtain [fα > hβ+1] ⊂ [fα > hβ ].

3. Limit case: Suppose 〈hβ′ : β′ < β〉 and 〈iβ′ : β′ < β〉 have been defined for some limit
ordinal β < |a|+. Let hβ(γ) := sup({hβ′(γ) : β′ < β}). Since β < |a|+ ≤ cf(g(γ)), we have
hβ(γ) < g(γ) < γ. So hβ ∈

∏
a and hβ < g.

Let i := supβ<|a|+ iβ . Since iβ < λ+n for all β, |a|+ = cf(λ)+ < λ < λ+n and λ+n is regular, we
have i < λ+n. Then for any α ∈ (i, λ+n) we have that 〈[fα > hβ ]〉β<|a|+ is a ⊂-decreasing sequence
of subsets of a, which is a contradiction.

So let b ∈ D such that 〈fβ : β < λ+n〉 is cofinal in
∏
b/I∗ below g. For α < λ+n let

dα := {γ ∈ b : fα(γ) < g(γ)} = {γ ∈ a : fα(γ) < g(γ)} ∩ b ∈ D.

Since S+n
0 ∈ D we also have d′α := dα ∩ S+n

0 ∈ D, thus d′α /∈ I∗ so d′α \ B /∈ I. Hence Sα :=
(d′α\B)−n = {ρ ∈ S0 : ρ+n ∈ dα\B} is stationary in λ. Since Sα ⊆ S0 we have cf(g(ρ+n)) < ρ for all
ρ ∈ Sα, thus the function Sα → λ given by ρ 7→ cf(g(ρ+n)) is regressive. By Lemma 2.24 let ηα < λ
such that {ρ ∈ Sα : cf(g(ρ+n)) ≤ ηα} is λ-stationary. Then {γ ∈ (d′α \B) : cf(g(γ)) ≤ ηα} /∈ I, thus
{γ ∈ d′α : cf(g(γ)) ≤ ηα} /∈ I∗ and {γ ∈ b : fα(γ) < g(γ) and cf(g(γ)) ≤ ηα} /∈ I∗. Since ηα < λ for
all α < λ+n, let η < λ such that {α < λ+n : ηα = η} has cardinality λ+n.
Suppose ηα = η and β < α. Then X := {γ ∈ b : fα(γ) < g(γ) and cf(g(γ)) ≤ η} /∈ I∗ and
[fβ 6< fα] ∈ I∗, hence I∗ 63 X ∩ [fβ < fα] ⊆ {γ ∈ b : fβ(γ) < g(γ) and cf(g(γ)) ≤ η}. Hence we
could have chosen ηβ = η as well.
Thus we can assume that cα := {γ ∈ b : fα(γ) < g(γ) and cf(g(γ)) ≤ η} /∈ I∗, for all α < λ+n.
Note that 〈cα : α < λ+n〉 is ⊆I∗ -decreasing. Hence Lemma 3.49 applies and there is an ultrafilter
D∗ on a disjoint from I∗ which contains all the cα, and thus contains b since b ⊇ c0. Then fα <D∗ g
for all α < λ+n. So g is an <D∗ -upper bound for 〈fα : α < λ+n〉. It is also a least upper bound:
If h/D∗ < g/D∗, then without loss of generality h < g everywhere and h ∈

∏
a. Then h � b ≤I∗

fα � b for some α. Since b ∈ D∗, we have h/D∗ ≤ fα/D
∗ < fα+1/D

∗, hence h is not an upper
bound for 〈fα/D∗ : α < λ+n〉.
Now let e := {γ ∈ b : cf(g(γ)) ≤ η} ∈ D∗. For γ ∈ e, let Sγ ⊆ g(γ) be cofinal in g(γ) and such that
|Sγ | ≤ |η| < λ. For γ ∈ (a \ c), let Sγ = {0}. Note that g ∈

∏
a, hence Sγ ⊆ γ. On the one hand,∏

γ∈a Sγ/D
∗ cannot cofinally cut 〈fα/D∗ : α < λ+n〉 by Lemma 8.3. On the other hand, it does
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cofinally cut: Let α < λ+n. For γ ∈ c, let k(γ) ∈ Sγ such that {γ ∈ c : fα(γ) < k(γ)} ∈ D∗, this
is possible since fα <D∗ g and e ∈ D∗. Extend k to a function in

∏
γ∈a Sγ by taking k(γ) = 0 for

γ ∈ (a \ e). Then fα <D∗ k and k <D∗ g. Since g is a least upper bound, we must have k <D∗ fβ
for some β < λ+n. But now we have shown that

∏
γ∈a Sγ cofinally cuts 〈fα/D∗ : α < λ+n〉. Thus

our first assumption, that Theorem 8.2 is false, is false. This proves Theorem 8.2.

8.2 An extra assumption on generators

Most of this subsection will be concerned with proving the following lemma.

Lemma 8.7. Let a be an infinite set of regular cardinals such that 2|a| < min(a). Then we can
choose the generators 〈bλ : λ ∈ pcf(a)〉 such that µ ∈ pcf(bλ) implies bµ ⊆ bλ

So this lemma states that we can choose the generators in such a way that the relation µ ≺ λ
defined by µ ∈ bλ is transitive: If µ ∈ bλ and λ ∈ bν , then bλ ⊆ bν , so µ ∈ bν hence µ ≺ ν.
Before starting on the proof, we first note that by using this lemma, we can even make an extra
assumption on the generators:

Lemma 8.8. Let a be an infinite set of regular cardinals such that 2|a| < min(a) and suppose we
have a sequence of generators 〈bλ : λ ∈ pcf(a)〉 be such that µ ∈ pcf(bλ) implies bµ ⊆ bλ. Then we
may arrange that pcf(bλ) = bλ for all λ.

Proof. From 〈bλ : λ ∈ pcf(a)〉 we will define a sequence 〈b∗λ : λ ∈ pcf(a)〉 such that µ ∈ pcf(b∗λ)
implies b∗µ ⊆ b∗λ and pcf(b∗λ) = b∗λ.

1. If λ = min(a), then b∗λ := bλ = {λ}. Clearly pcf(b∗λ) = b∗λ and ρ ∈ b∗λ ⇒ b∗ρ ⊆ b∗λ.
2. Suppose b∗θ has been defined for all θ < λ. Since pcf(pcf(bλ)) = pcf(bλ) ⊆ λ+, by Lemma

3.48, there exist θ1, ..., θn ∈ pcf(bλ) ∩ λ such that pcf(bλ) ⊆ b∗θ1 ∪ ... ∪ b
∗
θn
∪ bλ =: b∗λ. Since

bλ ⊆ b∗λ ∈ J<λ+ , we have that b∗λ is indeed a generator. Now

pcf(b∗λ) =
n⋃
i=1

pcf(b∗θ1) ∪ pcf(bλ) =
n⋃
i=1

b∗θi ∪ pcf(bλ) = b∗λ.

If ρ ∈ b∗λ and for all η ∈ b∗λ with η < ρ we have b∗η ⊆ b∗λ, then
(a) ρ ∈ b∗θi , so b∗ρ ⊆ b∗θi ⊆ b

∗
λ, or

(b) ρ ∈ bλ, so bρ ⊆ bλ ⊆ b∗λ and b∗ρ = b∗η1
∪...∪b∗ηn∪bρ for η1, ..., ηn ∈ pcf(bρ)∩ρ ⊆ pcf(bλ) ⊆ b∗λ,

so b∗η1
, ..., b∗ηn ⊆ b

∗
λ, thus b∗ρ ⊆ b∗λ.

So by induction, if ρ ∈ pcf(b∗λ) = b∗λ then b∗ρ ⊆ b∗λ.
So 〈b∗λ : λ ∈ pcf(a)〉 is as desired: For all λ ∈ pcf(a), bλ generates J<λ+ over J<λ, ρ ∈ pcf(b∗λ)
implies b∗ρ ⊆ b∗λ and pcf(b∗λ) = b∗λ.

We now start with the proof of Lemma 8.7. Let a be an infinite set of regular cardinals such that
2|a| < min(a).
Let θ be a large enough regular cardinal and consider again H(θ)∗ = (H(θ),∈, < ∗). For any
M ≺ H(θ)∗ let χM denote its characteristic function defined by χM (µ) := sup(M ∩ µ) for any
regular cardinal µ. Similar to section 6, we have a notion of a nice elementary substructure.

Definition 8.9. An structure N ≺ H(θ)∗ is called nice iff
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1. |N | = 2|a|,
2. there exists a sequence 〈Ni : i < 2|a|〉 such that

(a) Ni ≺ H(θ)∗ for all i,
(b) Ni ⊆ Ni+1 for all i,
(c) Ni =

⋃
j<iNj for all limit i,

(d) N =
⋃
i<2|a| Ni,

(e) 〈Nj : j ≤ i〉 ∈ Ni+1 for all i,
(f) 2|a| ⊆ N0,
(g) a ∈ N0.

Of course, similar to Lemma 6.4, for any x ∈ H(θ)∗ there exists a nice structure N ≺ H(θ)∗ such
that x ∈ N0.
Lemma 8.10. Let λ ∈ pcf(a). Suppose f = 〈fi : i < λ〉 is persistently cofinal, i.e. for all h ∈

∏
a

there exists i < λ such that h � bλ <J<λ fj � bλ for all j ≥ i, where bλ is any generator of J<λ+ over
J<λ (note that this is independent of the chosen generator, since two generators only differ on a set
in J<λ). Let N ≺ H(θ)∗ be a nice structure such that f ∈ N0. Then [χN � a ≤ fχN (λ)] generates
J<λ+ over J<λ.

Proof. Let i∗ = χN (λ). Since a ∈ N0, we have pcf(a) ∈ N0. Bu |pcf(a)| ≤ 2|a| and 2|a| ⊆ N0. So
pcf(a) ⊆ N0, and λ ∈ N0. So J<λ+ , J<λ ∈ N0 and there is some generator bλ ∈ N0. For any α ∈ a,
if fi∗(α) < χN (α), let iα < 2|a| be such that fi∗(α) < χNiα (α). Since |a| < 2|a|, there is some ῑ
such that iα < ῑ for all α, and hence

[fi∗ < χN � a] = [fi∗ < χNῑ � a].

Note that χNῑ � a ∈
∏
a ∩ N , since χNi � a is definable in Ni+1 for all i. So (χNῑ � a) �

bλ <J<λ fj � bλ for some j ∈ N ∩ λ, and thus χNῑ � bλ <J<λ fi∗ � bλ, since j < i∗. So
[fi∗ � bλ < χN � bλ] = [fi∗ � bλ < χNῑ � bλ] ∈ J<λ.
Note that λ /∈ pcf(a \ bλ): If cf(

∏
(a \ bλ)/D) = λ, then cf(

∏
a/D̂) = λ for some D̂ which does not

contain bλ. But this contradicts cf(
∏
a/D̂) = min(λ : bλ ∈ D̂).

So J<λ(a \ bλ) = J<λ+(a \ bλ) and
∏

(a \ bλ)/J<λ =
∏

(a \ bλ)/J<λ+ is λ+-directed. So we have the
following

H(θ)∗ � ∃h∀i < λ (fi � (a \ bλ) <J<λ h)
N � ∃h∀i < λ (fi � (a \ bλ) <J<λ h)

There is an h ∈ N such that N � ∀i < λ (fi � (a \ bλ) <J<λ h)
There is an h ∈ N such that H(θ)∗ � ∀i < λ (fi � (a \ bλ) <J<λ h)

Let h ∈
∏

(a \ bλ)∩N be such, then in particular fi∗ � (a \ bλ) <J<λ h. So [χN ≤ fi∗ ] \ bλ ⊆ [fi∗ ≥
h] ∩ (a \ bλ) ∈ J<λ. Combining this with [χN � bλ > fi∗ � bλ] ∈ J<λ, we get [χN � a ≤ fi∗ ] =J<λ bλ
and indeed this set is generating.

For any M ≺ H(θ)∗, let

M = {γ ∈ ON : sup(M ∩ γ) = γ or γ ∈M} = {sup(M ∩ γ) : γ ∈ ON} ∪ {γ ∈ ON : γ ∈M},

i.e. M is the ordinal closure of M . If N ≺ H(θ)∗ is nice, then
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1. since Ni ∈ Ni+1 and the ordinal closure is definable, we have Ni ∈ Ni+1.
2. since Ni ∈ Ni+1 and Ni ⊆ Ni+1, we have Ni ⊆ Ni+1: Let γ ∈ Ni, then γ ∈ Ni ⊆ Ni+1

or sup(Ni ∩ γ) = γ. In the second case, if δ ∈ Ni is minimal above (or equal to) γ, then
γ = sup(Ni∩γ) = sup(Ni∩ δ) ∈ Ni+1. If Ni \γ = ∅, then γ = sup(Ni∩γ) = sup(Ni∩ON) ∈
Ni+1. So γ ∈ Ni+1 in all cases.

Definition 8.11. Let λ and µ be cardinals and let a be any set. A sequence 〈fi : i < λ〉 of functions
with domain a is called µ-minimally obedient iff for all i < λ such that cf(i) = µ, we have

fi(α) = min(sup(fj(α) : j ∈ C) : C is an i-clubset of order type µ)

for all α ∈ a.

Suppose 〈fi : i < λ〉 is µ-minimally obedient. Suppose i < λ satisfies cf(i) = µ, and for α ∈ a
choose Cα i-club of order type µ such that fi(α) = sup(fj(α) : j ∈ Cα). Consider C :=

⋂
α∈a Cα.

If |a|, ω < µ, then C is also an i-club set of order type µ and we have

fi(α) = sup(fj(α) : j ∈ C)

for all α ∈ a.

Lemma 8.12. Let λ ∈ pcf(a). Suppose f = 〈fi : i < λ〉 is 2|a|-minimally obedient. Let N ≺ H(θ)∗
be nice and such that f ∈ N0. If γ ∈ (N \ N) ∩ λ, then there exists a γ-clubset D of order type
2|a| such that fγ = sup(fj : j ∈ D) and D ⊆ N . In particular fγ(α) ∈ N for all α ∈ a, and thus
fγ ≤ χN � a.

Proof. We have γ = sup(N∩γ) and thus 〈sup(Ni∩γ) : i < 2|a|〉 is cofinal in γ. This sequence is also
increasing: sup(Ni ∩ γ) ∈ Ni ⊆ Ni+1 and sup(Ni ∩ γ) < γ, so sup(Ni ∩ γ) < sup(Ni+1 ∩ γ). Thus
cf(γ) = 2|a|. Since |a|, ω < 2|a|, there exists an i-club C of order type 2|a| such that fγ = sup(fi :
i ∈ C). Then D := C∩{sup(Ni∩γ) : i < 2|a|} suffices: D ⊆ N and D ⊆ C, so fγ = sup(fi : i ∈ D).
Since f ∈ N , D ⊆ N and a ⊆ N , fγ(α) is a supremum of elements in N , so an element of N , for
all α ∈ a.

Remark 8.13. In particular, if γ = χN (λ), then γ ∈ (N \ N) ∩ λ and the lemma applies, so
fχN (λ) ≤ χN .

Now for each λ ∈ pcf(a), let fλ = 〈fλi : i < λ〉 be λ-universal and 2|a|-minimally obedient. This is
possible: Start with a λ-universal sequence 〈gi : i < λ〉 and define fλ0 = g0, fλi+1 > max(fi, gi) for all
i, if cf(i) = 2|a| of course take fλi (α) = min(sup(fλj (α) : j ∈ C) : C is an i-clubset of order type 2|a|)
and if i is limit but cf(i) 6= 2|a|, let fλi be a <J<λ -upper bound for {fλj : j < i}, which exists since∏
a/J<λ is λ-directed. Then clearly 〈fλi : i < λ〉 is <J<λ-increasing, cofinal in

∏
a/D for all D

such that cf(
∏
a/D) = λ, and 2|a|-minimally obedient.

Now for λ ∈ pcf(a) and γ < λ, we will define functions Fλγ ∈
∏
a. First, for λ ∈ pcf(a) and α ∈ a,

define

Fλ,α : = {finite decreasing sequences in a from λ to α}
= {〈λ0, ..., λn〉 : 0 < n < ω, λ0 = λ, λn = α, λi+1 ∈ a ∩ λi for all i < n}.
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For each sequence 〈λ0, ..., λn〉 ∈ Fλ,α and each γ < λ, define γ0 = γ and γi+1 = fλiγi (λi+1) for i < n,
and set El〈λ0,...,λn〉(γ) := γn. Define

Mγ
λ,α := {El〈λ0,...,λn〉(γ) : 〈λ0, ..., λn〉 ∈ Fλ,α}.

Now define Fλγ (α) := maxMγ
λ,α if this maximum exists, and otherwise Fλγ (α) = fλγ (α).

Then we have fλγ ≤ Fλγ : If α < λ, then 〈λ, α〉 ∈ Fλ,α, so El〈λ,α〉(γ) = fλγ (α) ∈Mγ
λ,α. If α ≥ λ, then

Mγ
λ,α = ∅. In both cases Fλγ (α) ≥ fλγ (α).

Now let N be nice and such that 〈fλ : λ ∈ pcf(a)〉 ∈ N0. Since pcf(a) ⊆ N0, each fλ ∈ N0. We
have FλχN (λ) ≤ χN � a:
Let γ = χN (λ). If α ≥ λ, then Fλγ (α) = fλγ (α) ≤ χN (α), where the last inequality follows from
Lemma 8.12 or Remark 8.13. If α < λ, then for each 〈λ0, ..., λn〉 ∈ Fλ,α, again by Lemma 8.12,
fλγ (λ1) ∈ N , and by induction and the definition of Fλγ , Fλγ (α) ∈ N . So Fλγ ≤ χN � a.
Since Fλγ is definable from fλγ , and each fλγ is an element of N , we have that N is nice and
〈Fλi : i < λ〉 ∈ N0. Also, since fλγ ≤ Fλγ , the sequence 〈Fλi : i < λ〉 is still persistently cofinal. Thus
Lemma 8.10 applies to 〈Fλi : i < λ〉 as well, and we obtain that [χN � a ≤ FλχN (λ)] generates J<λ+

over J<λ. Combining this with Fλγ ≤ χN � a, we get

Bλ := [χN � a = FλχN (λ)] generates J<λ+ over J<λ.

It remains to show that if λ1 ∈ Bλ0 , then Bλ1 ⊆ Bλ0 .
So let λ1 ∈ Bλ0 and α ∈ Bλ1 . The cases λ1 = λ0 or α = λ1 is trivial, so assume α < λ1 < λ0. Then

1. since λ1 ∈ Bλ0 we have Fλ0
χN (λ0)(λ1) = χN (λ1). We proved that no sequence reaches a

higher value than χN (λ1), and also fλ0
χN (λ0)(λ1) ≤ χN (λ1). If fλ0

χN (λ0)(λ1) = χN (λ1), then
the sequence 〈λ0, λ1〉 reaches the highest possible value, otherwise, there must be some other
sequence reaching it. Thus there is a sequence s ∈ Fλ0,λ1 such that Els(χN (λ0)) = χN (λ1);

2. by the same reasoning, there is a sequence t ∈ Fλ1,α such that Elt(χN (λ1)) = χN (α).
But then the concatenation of these sequences is a sequence u in Fλ0,α and Elu(χN (λ0)) = χN (α).
But no seqeunce can reach a higher value, so Fλ0

χN (λ0)(α) = χN (α) and α ∈ Bλ0 . So we have proved
Lemma 8.7.

8.3 Second essential lemma

We have the following setting: Let a be a set of regular cardinals such that min(a) > 2|a|, define
c := pcf(a), let d ⊆ c and suppose µ ∈ pcf(d). Let 〈bλ : λ ∈ pcf(c)〉 be as in Lemma 8.7, i.e. bλ
generates J<λ+(c) over J<λ(c), ρ ∈ bλ implies bρ ⊆ bλ and pcf(bλ) = bλ.
By Theorem 3.15 we have pcf(pcf(a)) = pcf(a). If e ⊆ pcf(a), then min(e) ≥ min(a) > 2|a| ≥ 2|e|, so
again Theorem 3.15 applies and we have pcf(pcf(e)) = pcf(e). Also note that bλ = pcf(bλ) ⊆ λ+ 1.

Lemma 8.14. There exists d̃ ⊆ d such that pcf(d̃) ⊆ bµ and µ ∈ pcf(d̃).

Proof. Since µ ∈ pcf(d), let D be an ultrafilter on d such that µ = cf(
∏
d/D). Extend D to an

ulrafilter D̂ on c, then we know µ = cf(
∏
c/D̂) = min({λ : bλ ∈ D̂} by Lemma 3.47, hence bµ ∈ D̂,

78



hence d̃ := d∩ bµ ∈ D. Then µ ∈ pcf(d̃) since we can restrict D̂ to d̃. Hence µ ∈ pcf(d̃) ⊆ pcf(bµ) =
bµ.

Lemma 8.15. As in Lemma 8.14, let d̃ ⊆ d be such that µ ∈ pcf(d̃) ⊆ bµ. There exists d̂ ⊆ d̃ such
that µ ∈ cf(d̂) and pcf(d̂) ∩ µ has no maximum.

Proof. Suppose pcf(d) ∩ µ has a maximal element µ1. Let d1 := d̃ \ bµ1 . We will show that
µ1 /∈ pcf(d1):
Let D be any ultrafilter on d1. Extend D to an ultrafilter D̂ on c, then cf(

∏
d1/D) = cf(

∏
c/D̂) =

min{λ : bλ ∈ D̂}, where the last equality is Lemma 3.47. We have bµ1 /∈ D̂, otherwise D̂ 3 d1∩bµ1 =
∅; hence cf(

∏
d1/D) 6= µ1.

Since µ ∈ pcf(d̃), let D be an ultrafilter on d̃ such that cf(
∏
d̃/D) = µ. Extend D to an ultrafilter

D̂ on c, then bµ1 /∈ D̂ since µ1 < µ, hence d1 ∈ D̂ thus µ ∈ pcf(d1). Since pcf(d1) ⊆ pcf(d), it
follows that pcf(d1) ∩ µ ⊆ µ1. If also pcf(d1) ∩ µ has a maximum µ2, find in the same manner a
d2 ⊆ d1 such that µ ∈ pcf(d2) and pcf(d2) ∩ µ ⊆ µ2. Repeat this until there is a dk ⊆ d such that
µ ∈ pcf(dk) but pcf(dk) ∩ µ has no maximum. Then d̂ = dk is as desired.

Lemma 8.16. There exists d′ ⊆ d such that |d′| ≤ |a| and µ ∈ pcf(d′).

Proof. We will prove this by induction on the cardinality µ, so assume that for all ν < µ the
theorem has been shown. As in Lemma 8.14, let d̃ ⊆ d be such that µ ∈ pcf(d̃) ⊆ bµ. As in
Lemma 8.15, let d̂ ⊆ d̃ be such that µ ∈ pcf(d̂) and pcf(d̂) ∩ µ has no maximum. Note that still
pcf(d̂) ⊆ bµ. Note that pcf(d̂)∩µ is infinite. Let 〈µi : i < κ〉 be a cofinal subset of pcf(d̂)∩µ, where
κ = cf(pcf(d̂) ∩ µ) ≥ ℵ0. Then µ ∈ pcf({µi : i < κ}):
Let D be an ultrafilter on {µi : i < κ} which contains all the tails. We have

cf(
∏
{µi : i < κ}/D) ∈ pcf({µi : i < κ}) ⊆ pcf(pcf(d̂)) = pcf(d̂) ⊆ bµ = pcf(bµ) ⊆ µ+ 1

so cf(
∏
{µi : i < κ}) < µ+. On the other hand, µj < cf(

∏
{µi : i < κ}/D) for all j and {µi : i < κ}

is cofinal in pcf(d̂) ∩ µ. Thus we must have cf(
∏
{µi : i < κ}/D) = µ.

We will define an e ⊆ {µi : i < κ} such that |e| ≤ |a| and µ ∈ pcf(e), and construct a d′ from
this e. Assume that κ > |a|, otherwise e = {µ1 : i < κ} works. Let S ⊆ κ such that |S| = |a|
and a ∩

⋃
i<κ bµi ⊆

⋃
i∈S bµi and let e = {µi : i ∈ S}. Clearly |e| ≤ |a|; it remains to show that

µ ∈ pcf(e). By Lemma 3.48, e ⊆ bδ1 ∪ ... ∪ bδk for some δ1, ..., δk ∈ pcf(e).
If δi 6= µ for all i, then δi < µ for all i, since δi ∈ pcf(e) ⊆ pcf({µi : i < κ}) ⊆ µ + 1. We will
derive a contradiction. Since |S| = |a| < κ, let j < κ be such that µj > δi for all i and define
A := a∩ (bµj \ (bδ1 ∪ ...∪ bδk)). Since µj ∈ pcf(a), let µj = cf(

∏
a/U) for some ultrafilter U . Extend

U to an ultrafilter Û on c. Since µj = cf(
∏
c/Û) = min{λ : bλ ∈ Û}, we have bµj ∈ Û . Clearly

bδ1 , ..., bδk /∈ U , so bδ1 ∪ ... ∪ bδk /∈ U . Since Û is concentrated on a, we obtain A ∈ U . In particular
A 6= ∅. On the other hand, µi ∈ e ⊆ bδ1 ∪ ... ∪ bδk for all i ∈ S, so

⋃
i∈S bµi ⊆ bδ1 ∪ ... ∪ bδk (since

ρ ∈ bλ implies bρ ⊆ bλ). So a ∩ bµj ⊆
⋃
i∈S bµi ⊆ bδ1 ∪ ... ∪ bδk , which implies A = ∅, contradiction.

So δi = µ for some i. So we have e ⊆ {µi : i < κ} such that |e| ≤ |a| and µ ∈ pcf(e). Now for any
δ ∈ e we have δ ∈ pcf(d̂) ∩ µ, so in particular δ < µ, so by the induction hypothesis let dδ ⊆ d such
that |dδ| ≤ |a| and δ ∈ pcf(dδ). Let d′ :=

⋃
δ∈e dδ ⊆ d. Then |d′| = |e| · |a| ≤ |a| · |a| = |a|. For any

δ ∈ e we have δ ∈ pcf(dδ) ⊆ pcf(d′), hence e ⊆ pcf(d′). So µ ∈ pcf(e) ⊆ pcf(pcf(d′)) = pcf(d′).
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8.4 Proof of the bound

In this subsection we will prove that |pcf(a)| ≤ |a|+3 when a is an interval of regular cardinals such
that min(a) > 2|a|. We start with the definition of a specific closure operation. In general, a closure
operation on a set A is a map (.) : P (A)→ P (A) such that ∅ = ∅ and X ⊆ X, X ⊆ Y ⇒ X ⊆ Y ,
X ∪ Y = X ∪ Y and X = X for all X,Y ∈ P (A).

Definition 8.17. Let a be an interval of regular cardinals such that min(a) > 2|a| and such that
min(a) is a successor cardinal. Let min(a) = ℵδ+1. Since |pcf(a)| ≤ 2|a| by Corollary 3.25 and pcf(a)
is an interval of regular cardinals by Corollary 3.29, we have pcf(a) ⊆ {ℵδ+α : 1 ≤ α <

(
2|a|
)+}. By

Theorem 3.27, pcf(a) contains a maximal element, and by Lemma 3.30 pcf(a) consists of successor
cardinals. Hence pcf(a) = {ℵδ+α+1 : 0 ≤ α ≤ ρ} for some ρ <

(
2|a|
)+ and we have a bijection

pcf(a)↔ {α : 0 ≤ α ≤ ρ} which will be frequently used. We define the map

(.) : P (ρ+ 1)→ P (ρ+ 1)
X 7→ X := {γ : ℵδ+γ+1 ∈ pcf({ℵδ+α+1 : α ∈ X})}.

Note that pcf(pcf(a)) = pcf(a) by Theorem 3.15, hence indeed X̄ ⊆ ρ+ 1 for all X.

Definition 8.18. Let ρ be an ordinal and κ be a cardinal. Then a map (.) : P (ρ+ 1)→ P (ρ+ 1)
may have the following properties:

(i) ∅ = ∅ and X ⊆ X, X ⊆ Y ⇒ X ⊆ Y , X ∪ Y = X ∪ Y , X = X for all X,Y ∈ P (ρ + 1), i.e.
(.) is indeed a closure operation.

(ii) For all X ∈ P (ρ+ 1), if γ ∈ X there exists some X ′ ⊆ X such that |X ′| < κ and γ ∈ X ′ .
(iii) X has a maximal element for all X ∈ P (ρ+ 1).
(iv) If γ ≤ ρ and cf(γ) > ω there exists a γ-club C ⊆ γ such that C ⊆ γ + 1.
(v) [κ+4, ρ] = [κ+4, ρ].

Note that it may be the case that κ+4 > ρ, then we have the convention that [κ+4, ρ] = ∅. In this
case (v) is already implied by (i).

Proposition 8.19. The map (.) : P (ρ + 1) → P (ρ + 1) from Definition 8.17 satisfies properties
(i)-(v) from Definition 8.18 for κ = |a|.

Proof. (i) ∅ = ∅, X ⊆ X, X ⊆ Y ⇒X ⊆ Y , X ∪ Y = X∪Y follow from the facts that pcf(∅) = ∅,
a ⊆ pcf(a), a ⊆ b⇒ pcf(a) ⊆ pcf(b) and pcf(a∪b) = pcf(a)∪pcf(b). It remains to showX = X.
Denote X̃ := {ℵδ+α+1 : α ∈ X}. Then X̃ ⊆ pcf(a), so pcf(X̃) ⊆ pcf(pcf(a)) = pcf(a).
Therefore |pcf(X̃)| ≤ |pcf(a)| ≤ 2|a| < min(a) ≤ min(X̃). Again by Theorem 3.15 using
min(X̃) > |pcf(X̃)| we obtain pcf(pcf(X̃)) = pcf(X̃). It follows that X = X.

(ii) If γ ∈ X there there exists some X ′ ⊆ X such that |X ′| < κ and γ ∈ X ′ by Lemma 8.16.
(iii) X has a maximal element: Since pcf({ℵδ+η+1 : η ∈ X}) ⊆ pcf({ℵδ+η+1 : η ∈ ρ + 1}) =

pcf(pcf(a)) = pcf(a), and pcf({ℵδ+η+1 : η ∈ X}) has a maximum, this maximum is ℵδ+η0+1
for some η0 ≤ ρ, and η0 is the maximum of X.

(iv) Suppose γ ≤ ρ and cf(γ) > ω. Let λ := ℵδ+γ . Since λ is a limit cardinal, the proof of Lemma
3.30 shows that λ is singular. Also cf(λ) = cf(ℵδ+γ) = cf(δ + γ) = cf(γ) > ω. Thus we have
λ > cf(λ) > ω. Let Γ ⊆ γ be γ-cofinal, be consisting of non-zero limit ordinals and such that
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ot(Γ) = cf(γ). Define E := {ℵδ+α : α ∈ Γ}. Then, again by the proof of Lemma 3.30, E
consists of singular cardinals; also E ⊆ [cf(λ), λ) [since min(E) ≥ ℵδ+1 ≥ (2|a|)+ > ρ ≥ γ ≥
cf(γ) = cf(λ)] and ot(E) = cf(γ) = cf(λ). As in subsection 8.1, let c :=

⋃
1≤k<ω E

+k and let
bµ(c) generate J<µ+(c) over J<µ(c). Note that c ⊆ a and pcf(c) ⊆ pcf(a) = a. By Theorem
8.2 for n = 1, let D ⊆ {ρ ∈ E : ρ+1 ∈ bλ+(c)} be λ-club. Then C := {α : ℵδ+α ∈ D} is γ-club.
Now d := D+ = {ℵδ+α+1 : α ∈ C} ⊆ bλ+ , so pcf(d) ⊆ [ℵδ+1, (λ+)+) = [ℵδ+1,ℵδ+γ+1], so
C ⊆ [0, γ] = γ + 1. So we have shown the existence of a C ⊆ γ such that C is γ-club and
C ⊆ γ + 1.

(v) Since min(b) = min(pcf(b)) for all b ⊆ a, we have [α, ρ] = [α, ρ] for all α.

Proposition 8.20. Suppose ρ > κ+4 and (.) : P (ρ+ 1)→ P (ρ+ 1) satisfies properties (i)-(v) from
Definition 8.18 for κ. Define

Cl : P (κ+4 + 1)→ P (κ+4 + 1)

X 7→ Cl(X) :=
{
X, if X ⊆ κ+4 + 1,
(X ∩ κ+4) ∪ {κ+4}, if X 6⊆ κ+4 + 1.

Then Cl satisfies properties (i)-(v) from Definition 8.18 (where ρ = κ+4) for κ.

Proof. We do a simple and elaborate check of the properties.
(i) Cl(∅) = ∅, X ⊆ Cl(X), X ⊆ Y ⇒ Cl(X) ⊆ Cl(Y ), Cl(X ∪ Y ) = Cl(X) ∪ Cl(Y ) are easy to

prove. It remains to show that Cl(Cl(X)) = Cl(X). IfX ⊆ κ+4+1 then alsoX = X ⊆ κ+4+1,
hence Cl(Cl(X)) = Cl(X) = X = X = Cl(X). IfX 6⊆ κ+4+1, then Cl(X) = (X∩κ+4)∪{κ+4}
and

Cl(X) = (X ∩ κ+4) ∪ {κ+4} = X ∩ κ+4 ∪ {κ+4} ⊆ X ∪ [κ+4, ρ] = X ∪ [κ+4, ρ].

If Cl(X) ⊆ κ+4 + 1, then Cl(X) ⊆ (X ∩ κ+4) ∪ {κ+4} = Cl(X), so Cl(X) = Cl(X) and
Cl(Cl(X)) = Cl(X) = Cl(X). If Cl(X) 6⊆ κ+4 + 1, then

Cl(Cl(X)) = (Cl(X) ∩ κ+4) ∪ {κ+4}
⊆ ((X ∪ [κ+4, ρ]) ∩ κ+4) ∪ {κ+4} = (X ∩ κ+4) ∪ {κ+4} = Cl(X),

hence Cl(Cl(X)) = Cl(X).
(ii) Suppose γ ∈ Cl(X).

(a) Suppose X ⊆ κ+4 + 1. Then γ ∈ Cl(X) = X, so there exists X ′ ⊆ X such that |X ′| ≤ κ
and γ ∈ X ′ ⊆ X ⊆ κ+4 + 1, thus γ ∈ X ′ = Cl(X ′).

(b) Suppose X 6⊆ κ+4 + 1. Then γ ∈ (X ∩ κ+4) ∪ {κ+4}.
i. Assume γ ∈ X ∩κ+4. Let X ′ ⊆ X such that |X ′| ≤ κ and γ ∈ X. Then γ ∈ Cl(X ′).
ii. Assume γ = κ+4. Let δ ∈ X such that δ /∈ κ+4 + 1. Let X ′ ⊆ X such that
|X ′| ≤ κ and δ ∈ X ′. Then X ′ 6⊆ κ+4 + 1, hence Cl(X ′) = (X ′∩κ+4)∪{κ+4}. Thus
γ = κ+4 ∈ Cl(X ′).

(iii) It is obvious that Cl(X) has a maximal element.
(iv) If γ ≤ κ+4 and cf(γ) > ω, then γ ≤ ρ, so let C ⊆ γ be γ-club and such that C ⊆ γ + 1. Then

C ⊆ κ+4 + 1 so Cl(C) = C ⊆ γ + 1.
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(v) We have {κ+4} ⊆ [κ+4, ρ] = [κ+4, ρ].
(a) Suppose {κ+4} ⊆ κ+4 + 1. Then {κ+4} = {κ+4}, hence Cl({κ+4}) = {κ+4} = {κ+4}.
(b) Suppose {κ+4} 6⊆ κ+4 + 1, then Cl({κ+4}) = ({κ+4} ∩ κ+4) ∪ {κ+4} = {κ+4}.

So Cl[κ+4, κ+4] = [κ+4, κ+4].

Theorem 8.21. Let a be an interval of regular cardinals such that min(a) > 2|a|. Then |pcf(a)| ≤
|a|+3.

Proof. Define ρ and (.) : P (ρ+ 1)→ P (ρ+ 1) as in Definition 8.17. We are done once we show that
ρ < |a|+4. So assume the contrary, i.e. ρ ≥ |a|+4. By Proposition 8.19 we know that (.) satisfies
properties (i)-(v) of Definition 8.18 for ρ and κ := |a|. If ρ > |a|+4, then Proposition 8.20 yields
a map Cl : P (κ+4 + 1) → P (κ+4 + 1) also satisfying (i)-(v). Thus in any case, there is a map
(.) : P (κ+4 + 1) → P (κ+4 + 1) that satisfies properties (i)-(v). Note that |a|+1, |a|+3 are regular
uncountable cardinals and (|a|+1)+ < |a|+3. Let S = S(|a|+3, |a|+) = {β < |a|+3 : cf(β) = |a|+}.
By Corolarry 2.28, let 〈Sα : α ∈ S〉 be a �club(|a|+3, |a|+1)-sequence, i.e.:

1. For all α ∈ S we have Sα ⊆ α and Sα is α-club.
2. For all |a|+3-club C we have {α ∈ S : Sα ⊆ C} is |a|+3-stationary.

Now let θ be regular and large enough and let 〈Mβ : β ≤ |a|+3〉 such that
1. Mβ ≺ H(θ) for all β < |a|+3, i.e. Mβ is an elementary substructure of H(θ),
2. β′ < β ⇒ Mβ′ ⊆Mβ for all β′, β < |a|+3, i.e. the sequence is ⊆-increasing,
3. Mβ =

⋃
β′<βMβ′ for all limits β ≤ |a|+3, i.e. the sequence is continuous,

4. |Mβ | = |a|+3 for all β < |a|+3.
5. |a|+3 ⊆M0, {〈X,X〉 : X ⊆ |a|+4 + 1} ∈M0 and 〈Sα : α ∈ S〉 ∈M0,
6. 〈Mβ′ : β′ ≤ β〉 ∈Mβ+1 for all β < |a|+3.

For β ≤ |a|+3, let γβ := sup(Mβ ∩ |a|+4). Since |Mβ | = |a|+3, we have γβ ∈ |a|+4 for all β ≤ |a|+3.
We have 〈γδ : δ < β〉 ∈Mβ+1 for all β < |a|+3:
Let β < |a|+3. Since |a|+3 ⊆ Mβ+1 and 〈Mβ′ : β′ ≤ β〉 ∈ Mβ+1, we have Mβ′ ∈ Mβ+1 for all
β′ ≤ β. Since |a|+4 ∈ Mβ+1, we must have γβ′ = sup(Mβ′ ∩ |a|+4) ∈ Mβ+1 for all β′ ≤ β by
elementarity. Then 〈γδ : δ < β〉 ∈Mβ+1.

For α ∈ S, let Eβα := {γδ : δ < β, δ ∈ Sα}, then Eβα ∈ Mβ+1, thus Eβα ∈ Mβ+1. Note that if
Eβα ∈Mβ+1 is bounded below |a|+4, then Eβα ⊆ γβ+1 by elementarity.
Let C ⊆ γ|a|+3 be γ|a|+3-club and such that C ⊆ γ|a|+3 + 1. Both C and {γβ : β < |a|+3} are closed
unbounded in the ordinal γ|a|+3 , and cf(γ|a|+3) = |a|+3 > ω. So their intersection is γ|a|+3 -club, thus
{β < |a|+3 : γβ ∈ C} is |a|+3-club. Since {α ∈ S : Sα ⊆ {β < |a|+3 : γβ ∈ C}} is |a|+3-stationary,
there is at least one α ∈ S such that Sα ⊆ {β < |a|+3 : γβ ∈ C}. Define S∗α := {γβ : β ∈ Sα} and
note that S∗α ⊆ C. Since Sα is α-club, S∗α is γα-club (note that α is a limit ordinal). Then S∗α has
a maximum x, and x ≥ γα. Now there is some X ′ ⊆ S∗α such that |X ′| ≤ |a| and x ∈ X ′.
Since X ′ ⊆ S∗α = {γβ : β ∈ Sα} ⊆ {γβ : β < α} ⊆ γα, |X ′| ≤ |a| and cf(α) = |a|+, there is some
β < α such that X ′ ⊆ S∗α ∩ γβ . Therefore

x ∈ X ′ ⊆ S∗α ∩ γβ = Eβα ⊆ S∗α ⊆ C ⊆ γ|a|+3 + 1.
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So Eβα is bounded below |a|+4, so

x ∈ Eβα ⊆ γβ+1 < γα.

This contradicts x ≥ γα.

So we have now shown that |pcf(a)| < |a|+4 under some reasonable assumptions on a. We can of
course use this fact to prove some non-trivial bounds on cardinal exponentiation.

Theorem 8.22. Let δ be a limit ordinal. If 2|δ| < ℵδ, then

ℵ|δ|δ < ℵ|δ|+4 .

In particular, if 2ℵ0 < ℵω, then

ℵℵ0
ω < ℵω+4 .

Proof. We prove the theorem under the assumption that δ is the disjoint union of |δ| many δ-cofinal
subsets. This assumption is made without loss of generality, since for every ordinal δ there exists an
ordinal δ′ := δ+ |δ| > δ which has the same cardinality as δ and is the disjoint union of |δ| many δ-
cofinal subsets. The proof in essentially the same as the proof of Corollary 6.11. Let a = [(2δ)+,ℵδ).
Then min(a)|a| = ((2|δ|)+)|δ| < ℵδ = sup(a), and |a|+ ≤ |δ|+ ≤ 2δ < (2|δ|)+ = min(a). Thus
Theorem 6.1 applies and yields max(pcf(a)) = |

∏
a| = ℵ|δ|δ (in the last equality we use that δ is the

disjoint union of |δ|-many δ-cofinal subsets). Recall that pcf(a) is an interval of regular cardinals by
Corollary 3.29, and that a ⊆ pcf(a). This lies a bound on how far pcf(a) can reach. In particular,

ℵ|δ|δ = max(pcf(a)) < ℵδ+|pcf(a)|+ ≤ ℵδ+|a|+4 ≤ ℵ|δ|+4 .
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Index
algebra, 49

Jónsson, 49
subalgebra, 49

almost everywhere, 12
arity, 42
axiom, 42

binary relation, see relation
bounded, 8, 14
bounded below, 14

cardinal
exponentiation, 5

computation, 5
regular, 10

interval of, 28
cardinality

of a language, 42
of a structure, 43

chain, 7, 12, 46, 55, 56, 62, 65
characteristic function, 56, 75
class, 29

proper, 29
closed, 13
closed unbounded, 14
club, 14
cofinality

≺-cofinal, 8
≺-cofinality, 8
≺-true cofinal, 8
≺-true cofinality, 8
cofinal, 8
cofinal below, 73
cofinality, 8
persistentently cofinal, 76
sequence, 10
true cofinal, 8
true cofinality, 8

cofinally cutting, 30–32, 72–75
constant, 42

interpretation, 43
Continuum Hypothesis, 5

Generalized, 5
cutting, 30, 32, 73

definability, 45
diagonal intersection, 15
directed, 8, 26, 34, 39, 40, 71–73

elementary equivalence, 45
equality, 42
equivalence relation, 7

filter, 11
concentrated, 12
dual, 12
maximal, 12
modulo, 17
non-principal, 12
prime, 12
principal, 12
proper, 12
ultra, 12

finite intersection property, 12, 13, 38, 73
forces, 25
forcing, 5, 6
formula, 42

closed, 42
substitution, 43

Gödel, 42
game, 61
generator, 36

Hausdorff’s formula, 5, 55, 59, 64
hereditary, 47, 49, 55

ideal, 11
dual, 12
extension lemma, 38

interpretation, 42, 43
isomorphism, 23

of structures, 45

Jónsson algebra, 49
model-theoretic characterization, 49

Löwenheim, 42
language, 42

of set theory, 42
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Lemma
Fodor, 14, 47

generalization, 15
Pressing Down, 14, 16, 47
ultrafilter, 12

limit, 28
lower bound, 8

greatest, 8
maximal, 8

model, 42, 44, 45

order
linear order, 7
partial order, 7
quasi order, 7
strict linear order, 7
strict partial order, 7
well-order, 6, 7, 10, 14, 18, 47, 55, 65

ordinal
regular, 10
sequence, 10
≺-cofinal, 10
≺-true cofinal, 10
cofinal, 10
decreasing, 10
increasing, 10
non-decreasing, 10
true cofinal, 10

singular, 10

pcf, 23
definition of, 23
properties, 23

pcf-theory, 3, 6, 7, 18, 49, 71
property

� (diamond), 15, 16, 36, 82
* (star), 19–21, 35, 37
bpp (bounding projection property), 19–21

relation, 7
anti-symmetric, 7
element, 42
equivalence relation, 7
irreflexive, 7
reflexive, 7
symbol, 42

symmetric, 7
total, 7
transitive, 7
trichotomic, 7

satisfaction, 44, 45
sentence, 43
sequence

club-guessing, 15, 16, 36
concatenation, 62
silly square, 31, 71
strongly increasing, 19, 20, 22, 23
universal, 33–35, 37–39

Skolem, 42
function, 50, 53

stationary, 14
non-reflecting, 51, 52
reflecting, 51

structure, 43
elementary embedding, 46
elementary equivalence, 45
embedding, 45
extension, 45
isomorphism, 45, 46
morphism, 45
satisfaction, 45
substructure, 45

elementary, 46
substitution, 43
symbol

auxiliary, 42
function, 42

interpretation, 43
logical, 42
notational, 42
relation

interpretation, 43

Tarski, 42
Tarski-Vaught test, 46, 50
term, 42

substitution, 43
Theorem

Bukovský-Hechler, 5
Easton, 6
Erdős, Hajnal, Rado, 52
Galvin-Hajnal, 6
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Silver, 6
Skolem-Löwenheim, 42, 46, 47, 49, 56, 62,

69
Tarski, 12

theory, 45
thinning out, 68
transitive, 47
transitive closure, 47

ultrafilter, 12
unbounded, 13
upper bound, 7

exact, 9
least, 8
minimal, 8

variable, 42
bound, 43
free, 43

Zermelo-Fraenkel Choice (ZFC), 5
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[1] L. Bukovský. The continuum problem and the powers of alephs. Commentationes Mathemat-
icae Universitatis Carolinae volume 6 issue 2 pp. 181-197, 1965.

[2] M. Burke and M. Magidor. Shelah’s pcf-theory and its applications. Annals of Pure and
Applied Logic 50, pp. 207-254, 1990.

[3] P. Cohen. The independence of the continuum hypothesis. Proceedings of the National Academy
of Sciences of the United States of America volume 50 number 6 pp. 1143-1148, 1963.

[4] P. Cohen. The independence of the continuum hypothesis ii. Proceedings of the National
Academy of Sciences of the United States of America volume 51 number 1 pp. 105-110, 1964.

[5] W. Easton. Powers of regular cardinals. Annals of Mathematical Logic volume 1 number 2 pp.
139-178, 1970.

[6] F. Galvin and A. Hajnal. Inequalities for cardinal powers. Annals of Mathematics, Second
Series volume 101 number 3 pp. 491-498, 1975.

[7] T. Ishiu. Club guessing sequences and filters. 2003. University of California, Irvine. Disserta-
tion.

[8] T. Jech. Set Theory. Springer, 1978. Third Millennium edition.

[9] J. Silver. On the singular cardinals problem. Proceedings of the International Congress of
Mathematicians volume 1 pp. 265-268, 1975.

[10] B. van den Berg. Syllabus model theory. 2016. staff.fnwi.uva.nl/b.vandenberg3/
Onderwijs/Model%20Theory%202017/syllabus_model_theory.pdf.

87


