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Chapter 1

Introduction

The electrical grid is essential to modern society distributing power from power plants
to consumers. Blackouts and also local failures in the grid are hurtful to the economy
and cause discomfort to affected people. To avoid this, grid operators are to a certain
degree enabled to actively influence the conditions of the power grid. They may activate
capacitors or ask power plants to increase or decrease their power generation. The grid
operators aim to keep the characteristics of the grid, such as frequency and voltage at
a relatively steady level. Furthermore, they also have to try and avoid an abundance of
electrical power flowing through transmission lines, which could cause an overload.

Due to the emergence of renewable energy sources the power supply has become far
less predictable. Sudden surges in generated energy will more often occur as a result of
weather phenomena. Increased solar power or strong winds will be the main cause of
this. Where the steady power supply of fossil fuel or nuclear power plants leads to more
constant conditions within the grid, the highly volatile nature of renewable energy sources
leads to more rapidly changing conditions. As a consequence, the grid operators have to
be able to anticipate faster to the challenge that changing conditions in the power grid
bring. Their means of control over the power grid vary with different sources of energy.

In order to avoid unfavourable operating conditions, it becomes more and more nec-
essary to not only react to changing conditions in the grid but also to predict them and
act proactively. In this thesis, we will use the tools of rare event analysis to determine
how small the probability of some specific unfavourable operating conditions occurring in
a certain time period will be. That way the grid operator will be made aware of the risk
and be enabled to prevent any undesired scenario.

Naturally, it is desirable for this probability to be extremely small. We will also
see what happens when we consider the limiting case where this probability becomes
infinitesimally small. This will lead us to some concepts seen in large deviations theory.

1.1 Structure of the power grid

The power grid connects power stations to industrial, commercial and domestic consumers
via a large network of transmission and distribution lines. In general, the power grid is
considered to consist of two main components, the transmission grid and the distribution
grid, see Figure 1.1.

Generator stations are connected to the aluminium alloy transmission lines at trans-
former stations (or substations). At this transformer station, the voltage is increased and
the current is decreased. This is done to reduce power losses during transport, as the
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Figure 1.1: A schematic representation of the transmission and the distribution grid and
their connected components. At some of the substations a rough indication of the power
being transformed is also given, either in megawatts (MW) or kilowatts (kW).
Source: https://upload.wikimedia.org/wikipedia/commons/9/90/Electricity_

Grid_Schematic_English.svg.

power loss is directly related to the square of the current. The transmission lines carry
high voltage electricity, typically 110 kilovolts or higher. In 2015 the transmission line
losses in different European countries varied from 0.89% to 2.77% of the total power [1].
The transmission lines can be either overhead lines, well known by the supporting elec-
tricity pylons decorating many a landscape, or underground power cables. Transmission
lines transporting different voltages may be interconnected at other substations. As an
example of a transmission grid, the grid of the Netherlands is included as Figure 1.2.

Transmission lines then transport the high-voltage electricity (typically 110 kilovolts
and higher) over long distances to other transformer stations that scale the voltage down
to connect to the distribution grid.

Due to the lower voltages, the losses in the distribution network are higher. In 2015
the distribution line losses in different European countries varied from 2.24% to 10.44%
of the total power [1]. The distribution network consists of the power lines that connect
the transformers to factories, businesses and homes. Small local power plants may also
be connected to the distribution network. Often there are several transformers in the
distribution network to bring the voltage down to the level used in households.

It is good to note that while in geographical regions there essentially is one single
interconnected transmission grid, there may be many distribution grids with each city
having its own individual grid. These distribution grids also generally have fewer inter-
connections.
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Figure 1.2: A schematic map of the Dutch transmission grid including the locations of
power plants and substations. Source: adapted from the publicly accessible map on
https://www.tennet.eu/company/news-and-press/press-room/grid-maps/.
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1.2 Operating the grid

The main task of grid operators is to match the electric power generation to the demand
within a certain control area. Currently, there are 43 grid operators active within the
European Network of Transmission System Operators, each controlling a different part
of the grid. There are still many more distribution grid operators. The grid operators
have the authority to instruct power plant operators to increase or decrease their power
generation as required. When the demand increases, the grid operators will generally
prefer to start or increase generation at the plants where the associated costs are lowest.
They may divert from this strategy to ensure the reliability of the grid.

Frequency regulation [2] is used to adjust the power generated to changes in power
demand within a matter of minutes. This additional power is generated by spinning-
reserve power plants, which are power plants that do operate, but not at full capacity,
such that they may rapidly adjust their power output. When the spinning-reserves are
addressed, the grid operator may also activate replacement reserve generators, which
require a longer start-up time. This will allow the spinning-reserve operators to return to
their previous level of power generation.

Grid operators also have to maintain a certain level of reserve capacity to match
forecasts in demand. For example, on a daily base power generators are kept in reserve to
activate when the workday commences in order to match the sudden demand of factories
starting production. Furthermore, most generators have an automatic response to deal
with sudden losses of supply in the network, also known as frequency-response. When a
sudden loss of power in the system occurs, the remaining power being generated is less
than the power being demanded. This would slow the generators down, lowering their
operating frequency, were it not that the generators have an inbuilt system that governs
their frequency. This response also results in increasing the power generated at these
power stations.

In some cases, grid operators may, instead of increasing the power demand, request a
major consumer to decrease their power consumption based on mutual agreements.

Grid operators have limited control over power originating from renewable energy
sources such as wind and solar, since it is dependent on the current weather conditions.
There exist means to deal with part of the fluctuations of renewable energy by integrating
battery energy storage systems into the network [3]. Preferably, these storage systems
are closely located to the renewable energy power plants. However, generally, renewable
energy is simply used as it becomes available, since the operating costs of renewable energy
generators are very low.

1.3 Thesis overview

Chapters 2 and 3 form the theoretical framework of this thesis. They are a review of
existing literature and scientific articles.

First, in Chapter 2 we will introduce a mathematical model of the power grid. This
chapter aims to show how mathematical equations governing the power grid naturally
arise as a result of the physical laws of electrodynamics governing the flow of power.
Furthermore, we will also give a frequently applied approximation (DC-approximation) of
the model, which allows for the linearization of the equations governing the flow of power
within the model. In the last part of this chapter, we will discuss how grid operating
conditions relate to restrictions we can put on the mathematical model.
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In Chapter 3 we will introduce the theory of importance sampling. We will later on use
simulation to determine the probability of ending up in unfavourable operating conditions.
This probability is typically very small and classified as a rare event. Ordinary sampling
techniques such as Monte Carlo simulation are not well equipped to deal with rare events,
but importance sampling is.

Subsequently, in Chapter 4 we will apply the techniques of importance sampling to
the model of the power grid using the DC-approximation. A stochastic model will be used
that models the power generation and demand at all of the generators and consumers as a
single multivariate Gaussian distribution. In the development of this model we will prove
two new theorems, 4.2.2 and 4.3.1. The results of these simulations will be discussed.

In Chapter 5 we will present the equations governing the power grid in the specific
case of line networks. These form an alternative version of Distflow equations [4, 5]. They
can be used to recursively determine the state of the power grid. This will allow us to
present a novel method to determine whether voltages at certain connections along a line
network will be within the desired range.

In Chapter 6 we will study the most elementary power grid: a single power generator
connected to a single consumer. In this system, we can investigate an aspect of the power
grid that is usually ignored. In determining the state of the power grid after a certain
time interval, there are usually no restrictions based on the state within this interval. A
Wiener process will be used to model the power generation and demand. The results
will be compared to the situation of a Gaussian distribution modelling the power at the
substations.
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Chapter 2

A Mathematical Model of the Power
Grid

This chapter is addressed to mathematicians wishing to familiarise themselves with the
power grid. We model the power grid by a graph G = (V,A), where the n nodes represent
the buses and the m arbitrarily directed edges represent the power lines. A bus can be a
site generating power, e.g. a power plant, or demanding power, e.g. a substation connected
to a city’s distribution network. In this chapter, we will build up this graph model as
well as describe solution methods for a system of equations describing the behaviour of
electricity within the power grid.

Although the power grid is in actuality an AC (Alternating Current) network, it is
common practice to approach it as if it is a DC (Direct Current) network. This is be-
cause in an AC network the power flowing through the transmission lines is described
by differential equations, while in a DC network it is described by linear equations mak-
ing for easier and faster calculation. We will introduce both models and highlight the
mathematical differences.

2.1 AC circuits

Most modern-day generators generate electrical energy by conversion of mechanical en-
ergy. This is done by rotating a magnetic field next to a field coil wounded around a metal
core to induce a current, see Figure 2.1. This type of generator is appropriately named

Figure 2.1: A representation of a three-phase generator. A source power rotates the
central magnet inducing alternating currents in the three surrounding field coils.
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an alternator. Many other power sources that, unlike turbines, are not directly connected
to mechanical energy, also use alternators to generate electrical energy. For example, in
fossil fuel power plants, chemical energy is first converted into mechanical energy via a
combustion engine, after which an alternator is used.

As a consequence of their rotating nature, these alternators induce currents and volt-
ages that are not time-independent, but instead of a sinusoidal nature.

A notable exception of a power source that does not use alternators, is solar energy.
Solar panels provide far steadier currents. However, using a power inverter, the outgoing
current can be transformed into a sinusoidal signal too. This is done to be able to connect
to the power grid.

2.1.1 Single-phase AC power supply

Let us consider an alternating power source that supplies a voltage V (t) and a current
I(t) with angular frequency ω = 2πf in radians per second and a phase difference between
them of π. Here f is the frequency in Hertz, describing the number of cycles per second.
The utility frequency in Europe is 50 Hz and in the United States, it is 60 Hz. The
amplitudes of the voltage and the current are Vmax and Imax respectively,

V (t) = Vmax sin(ωt), (2.1)

I(t) = Imax sin(ωt− θ). (2.2)

An overview of all relevant physical quantities with their accompanying standard units
can be found in Table 2.1. This kind of generator is called a single-phase generator, the
reason for which will become apparent later on, when we will consider the three-phase
generator.
In the power grid, the transmission of electrical energy is continual. For this reason, we
are more interested in the power P (t), i.e. the rate at which energy is generated, sent and
consumed, than in the total energy E(t) produced, sent and consumed,

P (t) =
dE(t)

dt
.

Additional motivation for considering power rather than energy comes from the fact that
physical limitations on the transfer of energy in an electrical circuit are also mostly based
on the rate at which energy travels throughout a circuit.

Quantity Symbol Standard unit
Voltage V V (Volt)
Electric current I A (Ampère)
Electrical resistance R Ω (Ohm)
Energy E J (Joule)
Power P W (Watt)
Angular frequency ω rad s−1 (radians per second)
Magnetic flux Φ F (Farad)
Electric charge Q C (Coulomb)

Table 2.1: Physical quantities and their standard units.
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The instantaneous power at any point in a circuit is the product of voltage and current,

P (t) = V (t) · I(t). (2.3)

This means, that the power supplied by the alternating power source is,

P (t) = VmaxImax sin(ωt) sin(ωt− θ)

=
1

2
VmaxImax (cos(θ)− cos(2ωt− θ)) .

At this point, we introduce the effective or root-mean-square value of the voltage and
current,

|V | =

√
f

∫ 1/f

0

V (t)2dt =
1

2

√
2Vmax,

|I| =

√
f

∫ 1/f

0

I(t)2dt =
1

2

√
2Imax.

This allows us to rewrite the power in the following form,

P (t) = |V ||I| cos(θ)− |V ||I| cos(2ωt− θ)
= |V ||I| cos(θ)(1− cos(2ωt))− |V ||I| sin(θ) sin(2ωt).

By introducing two new variables,

P = |V ||I| cos(θ), (2.4)

and
Q = |V ||I| sin(θ), (2.5)

we can put the instantaneous power in a more compact form,

P (t) = P (1− cos(2ωt))−Q sin(2ωt).

Now we have accomplished splitting the instantaneous power into two distinct oscillating
parts,

P (1− cos(2ωt)), and −Q sin(2ωt).

The instantaneous power P (t) fluctuates around the average power, P , also called the
active power. Conversely, Q is called the reactive power, since on average it does not
contribute to the power transfer. Both P and Q are measured in standard units in Watts.
However, to emphasise the distinction between the active and reactive power, it is the
convention in electrical circuit engineering, to express the reactive power in Volt-Ampère-
reactive (VAr), which is the same unit as a Watt (W), only by an other name.

The practical use of the newly defined variables P and Q will readily become apparent
when we, later on, introduce the notion of complex power.

Instead of using the standard units, see Table 2.1, it is common practice in electrical
engineering to introduce a unit system specifically based on the network of interest. Some
unit values for complex power, Sbase, and voltage, Vbase, can be chosen freely. This then
defines the unit value of the current via Equation 2.3 as

Ibase = Sbase/Vbase . (2.6)
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This new unit system is also known as the per-unit system. In a suitable per-unit system,
quantities are the same on both ends of a transformer. This simplifies calculations. It is
important to be aware of the chosen base-values in the per-unit system, since in electrical
engineering they are usually omitted from equations. The unit value for power, Sbase, is
referred to as the base MVA of the system, as it is typically expressed in MVA (mega-
volt-ampère).

2.1.2 Electrical components

To create an electrical circuit, a closed loop of conductors has to be formed containing
the power source. There are three main components in electrical circuits that do gen-
erally appear: ideal resistors, inductors, and capacitors ; their graphical representations
can be seen in Figure 2.2. Most loads are formed by combinations of these three main
components. An ideal resistor R follows Ohm’s law,

V (t) = R · I(t). (2.7)

This ensures that the voltage and current are in phase, i.e. θ = 0, and the power is purely
active. The effective voltage and current are related by,

|V | = R · |I|.

Physically, resistance is related to how freely electrons may move within a material.

An ideal inductor operates on the following principle. By Ampère’s circuital law, when
a current runs through a conductor, it generates a magnetic field surrounding this wire.
The total strength of this magnetic field surrounding the wire is called the magnetic flux,
Φ(t). The magnetic flux is directly related to the current by a constant specific to the
inductor L,

L · I(t) = Φ(t).

The current I(t), however, is sinusoidally alternating, and therefore the magnetic flux
follows the same pattern. Now Faraday’s law of induction states, that a changing magnetic
field, in turn, induces a voltage difference,

V (t) =
dΦ(t)

dt
= L

dI(t)

dt
.

Combining Faraday’s law of induction with the equations for the voltage and current
profile in Equations 2.1 and 2.2, we find,

|V | sin(ωt) = L · |I| · ω cos(ωt− θ).

V (t) R

(a) Resistor

V (t) L

(b) Inductor

V (t) C

(c) Capacitor

Figure 2.2: Closed electrical circuits containing an alternating voltage source and one of
the three main circuit elements.
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This causes the current to lag a phase of θ = π
2

behind the voltage in case of a purely
inductive load. The effective voltage and current are related by,

|V | = |I|Lω. (2.8)

An ideal capacitor can be regarded as the dual of an inductor. Physically, a capacitor
corresponds to two conducting plates separated by a dielectric medium. The current I(t)
at any point in the circuit is defined as the rate of flow of an electric charge Q(t) passing
through it,

I(t) =
dQ(t)

dt
.

However, charge-carrying electrons cannot actually freely traverse the dielectric medium
between the conducting plates of the capacitor. For each electron that accumulates on
one plate, a different electron disperses from the opposite plate. This results in a surplus
of electrons on one plate and a deficit on the other. Respectively, we now have a relatively
positive charge on one plate and a negative charge on the other. The potential electric
field between the two plates is directly related to the number of built-up electrons over
time on the plates, i.e. the voltage is related to the integral of the current by some
constant C specific to the capacitor,

V (t)− V (0) =

∫ t

0

I(s)ds.

Plugging the equations for the sinusoidal voltage and current profile into Equations 2.1
and 2.2, we find,

|V | sin(ωt) = − |I|
Cω

cos(ωt− θ).

This causes the current to lead the voltage by a phase of −θ = π
2

in case of a purely
capacitive load. The effective voltage and current are related by,

|V | = |I|
Cω

.

We may conclude that the active- and reactive power, P and Q, attain the following
values in the case of a simple AC circuit with only one component, either an ideal resistor
(R), an ideal inductor (L), or an ideal capacitor (C):

PR = |V |2/R,
QR = 0,

PL = 0,

QL = |V |2/(Lω),

PC = 0,

QC = −|V |2 · Cω.

2.1.3 Complex power

Ideal resistors only influence the active power, and conversely ideal inductors and capac-
itors only influence reactive power. Therefore, when studying transmission lines we wish
to be able to clearly describe the separate influence on the active and reactive power. It is
possible to write the active and the reactive power respectively as the real and imaginary
part of some complex power S,

S = P + jQ.

We choose j as the notation for the imaginary unit to fall in line with the notation most
commonly used in electrical engineering.
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First, we introduce the notion of complex form for the voltage and current profiles,
Ṽ (t) and Ĩ(t) respectively. These are consistent with Equations 2.1 and 2.2 via the relation

Im
[
Ṽ (t)

]
= V (t) and Im

[
Ĩ(t)

]
= I(t),

Ṽ (t) = |V | exp(jωt),

Ĩ(t) = |I| exp(j(ωt− θ)).

Now we find that we can simply write

S(t) = Ṽ (t) · Ĩ∗(t), (2.9)

where Ĩ∗(t) denotes the complex conjugate of Ĩ(t). For notational convenience we will
from now on dispense with writing down the time dependency of the complex voltage and
current, i.e. S := S(t), Ṽ := Ṽ (t), and Ĩ := Ĩ(t).

Next, we also wish to introduce some notation that encompasses the influence on the
complex power by the electrical components. This is called the impedance of the (not
ideal) resistor,

Z = R + jX,

with R the resistance and X the reactance.
For an ideal resistor with resistance (R), an ideal inductor with inductance (L), and

an ideal capacitor with capacitance C, we respectively define the following impedances
ZR = R, ZL = jωL, and ZC = −j 1

ωC
. In this way, we ensure that the complex version of

Ohm’s law, Equation 2.7, is also valid,

Ṽ = Z · Ĩ . (2.10)

Note that we forego on writing the dependence of the impedance of a resistor on the
angular frequency ω, as we will study systems where it is constant.

The per-unit system, see Equation 2.6, can alternatively be based on unit values
for power, voltage, and impedance. By combining Equations 2.9 and 2.10, we find the
relation,

Zbase = Sbase/V
2

base.

When there are multiple resistors connected in series, see Figure 2.3a, each with
impedance Zi, i = 1, . . . , n we can treat them as a single resistor with impedance

Zseries =
n∑
i=1

Zi.

This is because the effective currents |Ii|, i = 1, . . . , n passing through the resistors are
all equal, and so the total complex power lost is,

S =
n∑
i=1

Ṽi · Ĩi
∗

= |I|2
n∑
i=1

Zi.

We arrive at a similar result for resistors connected in parallel, see Figure 2.3b. The
voltage differences Ṽi, i = 1, . . . , n over all resistors are equal. Thus the total complex
power lost is,

S =
n∑
i=1

Ṽi · Ĩi
∗

= |V |2
n∑
i=1

(
1

Zi

)∗
.

14



Z1

Z2

(a) Two resistors in series

Z1 Z2

(b) Two resistors in parallel

Figure 2.3: Closed electrical circuits containing an alternating voltage source and one or
more resistors.

Thus, we can treat parallel resistors as a single resistor with impedance,

Zparallel =
1∑n
i

1
Zi

.

As an alternative to working with the impedance Z, we will sometimes prefer to use
its inverse,

Y = Z−1 =
R− jX
R2 +X2

= G+ jB, (2.11)

which is called the admittance. Its real part G is called the conductance and its imaginary
part B is called the susceptance.

2.1.4 Three-phase AC power supply

A big shortcoming of the single-phase generator is, that the delivered power is not constant
over time. A machine connected to the power source will receive power in pulses, reducing
its operating efficiency. This can be avoided by supplying power onto three separate
parallel lines, each with a phase difference of 2π/3, see Figure 2.4,

Ṽa = |V | exp(jωt),

Ṽb = |V | exp(j(ωt− 2π/3)),

Ṽc = |V | exp(j(ωt− 4π/3)),

where |V | is the effective voltage supplied to each of the three lines.
If the applied load on each of the three parallel lines is equal, then it follows from

symmetry that the currents will be symmetrical too, i.e. for some θ we have,

Ĩa = |I| exp(j(ωt− θ)),
Ĩb = |I| exp(j(ωt− θ − 2π/3)),

Ĩc = |I| exp(j(ωt− θ − 4π/3)),

where |I| is the effective current on each of the three transmission lines.
Now the combined instantaneous power supplied to the load is Pa(t) +Pb(t) +Pc(t) =

3|V ||I| cos(θ). Note that this is constant. Thanks to the symmetry between the three
phases it suffices to determine the power, voltage and current via the relations Ṽ = Z · Ĩ
and Ṽ · Ĩ∗ for a single phase to solve the entire system.
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Va(t)

Generator

Vb(t)

Vc(t)

Z
Load

ZLoad

Z
ZLoad

Z ZLoad

Figure 2.4: A three-phase generator connected to a load through transmission lines, each
with equal impedance Z.

2.1.5 Load-flow equations

We are allowed to treat each interconnecting 3-phase transmission line between two buses
i and k as a single one with admittance, say yik. Furthermore, at each bus i, power may
not only be produced or consumed, but also be lost. This occurs due to losses in the
transformer stations, mainly the inductive leakage. This loss is captured in the shunt
impedance yi of the bus. Combining Ohm’s law Ṽ = Z · Ĩ with Kirchhoff’s circuit laws
yields a system of equations relating the voltages and currents at the junctions in an
n−bus system.

Theorem 2.1.1 (Kirchhoff’s Current Law). For any bus i in the circuit, the sum of the
currents Ĩik of the lines flowing out of that bus is equal to the current injection Ĩi at that
particular bus, ∑

k 6=i

Ĩik = Ĩi.

Current injection is the result of the supply or demand of power at a certain bus. The
injected current is further also related to the voltage via Equation 2.3.

Theorem 2.1.2 (Kirchhoff’s Voltage Law). For any directed loop in the circuit the sum
of the potential differences Ṽk between every two sequentially connected buses is zero,∑

k

Ṽk = 0.

Combining both of Kirchhoff’s circuit laws we thus find for any single bus i,

Ĩi = yi(Ṽi − 0) +
∑
k 6=i

yik(Ṽi − Ṽk).

For all buses combined this can compactly be written in matrix form,
Ĩ1

Ĩ2
...

Ĩn

 =


Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n
...

...
. . .

...
Yn1 Yn2 . . . Ynn




Ṽ1

Ṽ2
...

Ṽn

 , (2.12)
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where (Yik) is the nodal admittance matrix,

Yik =

{
yi +

∑
k 6=i yik, if i = k,

−yik, if i 6= k.

Instead of considering the voltages provided at the buses, it turns out to be useful to
consider the contribution of each bus to the power of the network. We speak of the
injection of real and reactive power into the system at each bus. A negative real power
injection corresponds to consuming power and a positive (resp. negative) reactive power
injection corresponds to a backward (resp. forward) time phase shift of the current relative
to the voltage.

For all i, k let |Yik| be the magnitude of Yik and let αik be its argument, such that we
can write Yik = |Yik| exp(jαik). Now by combining Equation 2.12 with Ohm’s law, we
find for any bus i,

Si = Vi exp(jθi)

(
n∑
k=1

|Yik|Vk exp(j(θk + αik))

)∗
. (2.13)

We can split this into the real and the reactive parts

Pi =
n∑
k=1

ViVk|Yik| cos(θi − θk − αik), (2.14)

Qi =
n∑
k=1

ViVk|Yik| sin(θi − θk − αik). (2.15)

These equations are known as the basic Load-flow equations. The power required at a
substation or lost in transmission lines is sometimes referred to as a load. For an n-bus
system there are 2n basic Load-flow equations with 4n variables: Pi, Qi, Vi and θi. To
solve the equations, we need to specify 2n variables. We classify each of the buses in the
system to one of three categories.

PQ bus At these buses, loads are connected and therefore these buses are also called load
buses. Generally, the values of both real and reactive loads connected at these buses
are known. Therefore for a PQ bus i the values Pi and Qi are specified and Vi and
θi need to be calculated.

PV Bus Physically, these buses are generators. In general, the real power supplied by the
generator is known and also, the magnitude of the voltage of the generator is main-
tained constant at a specified value. Therefore for a PV bus i the values Pi and Vi
are specified and Qi and θi need to be calculated.

Slack Bus To calculate the angles θi, a reference angle θi = 0 is needed. Furthermore, physi-
cally, the total power supplied by all the generators must be equal to the sum of all
loads in the system plus the system power loss. However, the system loss cannot be
computed before the Load-flow equations are solved. Thus the real power output
of all the generators in the system cannot be pre-specified. There should be at least
one generator in the system that supplies the loss (plus its share of the loads). Thus,
for this generator, the real power output cant be pre-specified. However, the voltage
magnitude V can still be maintained at a constant specified level. Therefore for a
slack bus i the values Vi and θi are specified and Pi and Qi need to be calculated.
Usually, the largest generator in the system is designated as the slack bus.
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There are some iterative numerical methods to find solutions to the basic Load-flow
equations. The most notable among these is the Newton-Raphson method [6]. However,
solving these equations does in general not ensure a unique solution [7]. Omitting the time
dependence of the system has led to this. For a time-dependent model, it is necessary to
study the network as a system of interconnected mutually influencing oscillators. This can
be encapsulated by a Kuramoto-like model known as the synchronous machine model [8].
The solutions to the Load-flow equations coincide with those of the synchronous machine
model, though not all of them are stable. However, most solutions are very distinct and
the simulation software packet MATPOWER [9] which we will use, has a strong prefer-
ence to converge to the stable solution of interest.

Unfortunately, the required computing power for solving the Load-flow equations using
the Newton-Raphson method grows extensively large as the grid size increases. Alterna-
tively, a widely deployed method in practice is to approximate the Load-flow equations
by a linearised version: the DC-approximation.

2.2 DC-approximation

Instead of using numerical methods to solve the basic Load-flow equations, we can also try
to make some approximations that will result in a closed form solution. In this section,
we will describe the popular DC-approximation scheme. It derives its name from the
fact that the resulting system of equations looks very similar to that of direct current
networks. The DC-approximation is based on the observation that for all transmission
lines in the network the resistance is small compared to the reactance, R < X. Now, we
approximate Equation 2.11 by,

yik ≈ bikj,

where bik = Im(yik) is the susceptance of the transmission line between buses i and k,
and bi = Im(yi) is the shunt susceptance at bus i. This means that the nodal admittance
matrix can be approximated by the nodal susceptance matrix,

Bik =

{
bi +

∑
k 6=i bik, if i = k,

−bik, if i 6= k.

Next, we can approximate the real Load-flow Equations 2.14 to

Pi =
n∑
k=1

ViVkBik sin(θi − θk).

The reactive Load-flow Equations are ignored for the time being. Due to some of the
assumptions we will make, the reactive power injections are completely determined by
the real power injections.

Another observation that can be made, is that the angular difference between the
voltage phasors of two connected buses is reasonably small. Typically, the difference is
less than 15 degrees. Therefore, we approximate the sine to linear order, i.e. sin(x) ≈ x.
This transforms the Load-flow Equations into a linear system of equations in the voltage
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angles θ,

Pi =
n∑
k=1

ViVkBik(θi − θk)

=
∑
k 6=i

ViVkBik(θi − θk).

We make one last observation: the voltage magnitudes throughout the system only
vary slightly. Typically, the relative largest difference between any two buses in the system
is less than 10 per cent. We therefore consider the voltage magnitude to be constant among
all the buses. This allows us to set all the voltages to 1 in the per-unit system yielding,

Pi =
∑
k 6=i

Bik(θi − θk).

If the real power injections Pi are known, then we can find values for θ, that satisfy these
equations. We notice that this system has the same solutions as

Pi = −
∑
k 6=i

bik(θi − θk).

In matrix form this becomes
P = B′θ,

where

B′ik =

{
−
∑

k 6=i bik, if i = k,

bik, if i 6= k.

This matrix B′ is the Laplacian of a weighted graph. In a connected network a Laplacian
matrix has only 1 zero-eigenvalue [10]. We choose a reference angle which we set to zero,
θ1 = 0. We remove θ1 from θ yielding θ′, we remove P1 from P yielding P ′, and we remove
the first column and row from B′ yielding B′′. This matrix B′′ is invertible. Thus we find,

θ′ = (B′′)−1P ′.

Let A be the node-arc incidence matrix and let D be the diagonal matrix of the suscep-
tances of each line, then the line flow of power is given by,

Pflow = −DAθ.

Using the identities θ = (0, θ′)> and P = (0, P ′)>, these last steps can also be combined to
find a single matrix V , the Power Transmission Distribution Factor (PTDF), that maps
the power injections to the line flow of power,

Pflow = V P.

This method of approximating the Load-flow equations has the major advantage of
resulting in a linear system of equations, which is easily solved.

There have been several analyses of the resulting differences between using the true
alternating current model and the DC-approximation, see for example [11].
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2.3 Feasible Power Flows and Power Injections

In our analysis of the power grid, we are mainly interested in whether or not the state of
the network satisfies certain operating conditions. If the power flowing through transmis-
sion lines gets too high, they might overheat and burn through. If the voltage becomes
too high or too low at a certain point in the network, then consumer devices may over-
clock or underclock inadvertently. In a worse scenario, they could stop working or break
down. Similar problems arise when the frequency in the network gets too high or low.
An interesting related news fact: At the beginning of 2018 the frequency in southeastern
Europe got too low, leading people to notice how their digital clocks started running
behind, as their speed is designed to follow the frequency of the network [12]. Another
problem that may occur is when a bus demands or generates too much power for itself
to cope with, though this requires less focus on network analysis and more on the local bus.

In the DC-approximation the constraints are mainly based on the maximum amount
of power flow through the power lines. Let n be the number of buses and m the number
of transmission lines. Then we can use the Power Transmission Distribution Factor, an
m× n matrix, to write

Pl = V Pb,

where Pl is the vector of power flowing through the lines, Pb is the vector of power injected
into the buses, and V is the PTDF. This gives constraints Pmax ≥ |Pl| for feasible line
flows. This is equivalent to restrictions on the injected power |V Pb| ≤ Pmax.

Now, we have 2m linear restrictions on the injected power based on the maximum
permissible power flow,

Vi,•Pb ≤ (Pmax)i, i = 1, . . . ,m,
−Vi−m,•Pb,≤ (Pmax)i−m i = m+ 1, . . . , 2m.

(2.16)

Here Vi,• denotes the ith row of V . In Chapter 4 we will not treat the power injections
as given values, but instead as Gaussian random variables, reflecting the uncertainty and
fluctuations in consumer demand and power generation. These restrictions will then relate
to the problem of determining the probability of a multivariate Gaussian sample lying in
the exterior of some polyhedron {x ∈ Rn−1 : x>ai ≤ bi, i = 1, . . . , 2m}, where

ai = Vi,•, bi = (Pmax)i, i = 1, . . . ,m
ai = −Vi−m,•, bi = (Pmax)i−m, i = m+ 1, . . . , 2m.

(2.17)

It is of course also possible to put direct limits on the maximum power consumption or
generation at any of the buses. This would lead to additional linear constraints. By
the assumption in the DC-approximation that all voltage magnitudes are equal, it is
impossible to apply any restrictions based on the voltage heights. Similarly, restrictions
based on frequency are impossible to apply, since direct current does not have a frequency.

Restrictions in alternating current networks will not translate into as nice linear re-
strictions on the power injections. In Chapter 5 we will mainly focus on restrictions based
on the voltage magnitude. Restrictions based on the frequency are again impossible.
Those can only be applied to the synchronous machine model.
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Chapter 3

Monte Carlo Simulation and
Importance Sampling

For most models, it is impossible to analytically evaluate the exact probability of specific
events. Therefore, we are directed towards simulation methods. In this chapter, we will
discuss the theory for the most widespread simulation method: Monte Carlo simulation.
Furthermore, we will describe an adaptation of Monte Carlo integration called importance
sampling. Importance sampling is specifically well suited to the simulation of rare events,
whereas traditional Monte Carlo integration typically falls short. Application of the theory
will be left to Chapter 4.

3.1 Monte Carlo simulation

Monte Carlo simulation [13] is a widely used tool to approximate the expectation of a
function with respect to a probability distribution. In this section we will sketch the
outlines of this method. Let p = Ep[f(X)] be the expectation of the function f : Rd → R
with respect to a probability distribution with density function p : Rd → R. If both f
and p are Riemann-integrable then,

p =

∫
Rd
f(x)p(x)dx.

For more complicated functions f or probability densities p, this integral can sometimes
not be analytically evaluated. In that case, we try to approximate it via numerical
methods. An estimator p̂ for p can be found by averaging over a large number of samples
Xi, i = 1, . . . , N independently drawn from the distribution with density function p,

p̂ =
1

N

N∑
i=1

f(Xi), Xi ∼ p.

By a slight abuse of conventional notation, we write Xi ∼ p to indicate that Xi is a
random variable drawn from a probability distribution with density function p.
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This estimator p̂ is an unbiased estimator, since

Ep[p̂] = Ep

[
1

N

N∑
i=1

f(Xi))

]

=
1

N

N∑
i=1

Ep[f(Xi)]

=
1

N

N∑
i=1

p

= p.

(3.1)

We would also like to know the variance of the estimator, since that would provide us
with knowledge on the accuracy of the estimator. A lower variance corresponds to a more
accurate estimator. The variance of the estimator p̂ is given by,

Varp[p̂] = Varp

[
1

N

N∑
i=1

f(Xi)

]

=
1

N2

N∑
i=1

Varp[f(Xi)]

=
1

N
Varp[f(X1)]

=
1

N

(∫
Rd
f(x)2p(x)dx− p2

)
.

(3.2)

When we have trouble evaluating p = Ep[f(X)], it seems highly unlikely that we will
be able to properly evaluate Ep[f(X)2]. Therefore, we again look for an estimator, this
time for the estimator variance σ2 := Varp[f(X1)]. The sample variance,

S2
N =

1

N − 1

N∑
i=1

(f(Xi)− p̂)2, Xi ∼ p,

is a natural estimator for the estimator variance σ2, since it is unbiased, as we derive next,

Ep(S2
N) =

1

N − 1
Ep

[
N∑
i=1

(f(Xi)− p̂)2

]

=
1

N − 1
Ep

[
N∑
i=1

(f(Xi)
2 − 2p̂f(Xi) + p̂2)

]

=
1

N − 1

N∑
i=1

(
Ep[f(Xi)

2]− Ep[p̂2]
)

=
N

N − 1

(
Varp[f(X1)] + p2 − (

1

N
Varp[f(X1)] + p2)

)
= Varp[f(X1)].

At this point, we wish to concretise the semantics of the sentence: ‘A lower variance
corresponds to a more accurate estimator.’ We introduce some new notation in order to
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use the previous results for constructing an asymptotic confidence interval for p. Let ξα
denote the upper α-quantile of the standard normal distribution N (0, 1) i.e.∫ ∞

ξα

1√
2π

exp(−1

2
x2)dx = 1− α.

Theorem 3.1.1. An asymptotic confidence interval of significance level α for p is given
by, [

p̂− SN√
N
ξα/2, p̂ +

SN√
N
ξα/2

]
. (3.3)

Proof. This proof is taken from [14].
By the weak law of large numbers

S2
N

Prob.−−−→ Varp[f(X)], as N →∞,

where
Prob.−−−→ denotes convergence in probability. Consequently, we find by the continuous

mapping theorem that,

SN
Prob.−−−→

√
Varp[f(X)], as N →∞,

where
Dist.−−→ denotes convergence in distribution. The central limit theorem states that,

√
N(p̂− p)

Dist.−−→ N (0,Varp[f(X)]), as N →∞.

By Slutsky’s lemma we now find

√
N
p̂− p

SN

Dist.−−→ N (0, 1), as N →∞.

Thus
√
N(p− p̂)/SN is asymptotically standard normally distributed and we find that,

P
[
−ξα/2 ≤

√
N
p̂− p

SN
≤ ξα/2

]
→ 1− α, as N →∞.

From this theorem we can finally see what we meant by ‘A lower variance corresponds
to a more accurate estimator.’ Namely, as the sample variance decreases, so does the
confidence interval of the estimator become narrower. This will give us a good grip on
how useful (or useless) Monte Carlo integration will be in different situations. In the next
section, we will see how, even when Monte Carlo simulation seemingly falls short, it can
still be adapted to be useful.

3.2 Importance sampling

In our study of the power grid, we are essentially performing a form of risk analysis in
which we are interested in a specific type of function f . Namely, an indicator function
that has the value 1 when something dramatic happens, e.g. a power line failure, and 0
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when there are no problems at all. For some Borel-measurable set A ⊆ Rd, the indicator
function 1A is,

1A(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

For this function f , the expectation of f with respect to a probability density p essentially
translates into the probability of an event A occurring, Ep [1A(X)] = Pp(X ∈ A).

When studying rare events, a good criterion for the accuracy of the estimator p̂ found
by Monte Carlo integration is to consider the relative standard deviation (RSD) rather
than the variance,

RSDp[p] =

√
Varp[f(X)]

p
.

Note that by twice applying the weak law of large numbers and by thereafter using the
continuous mapping theorem, we find that SN/p̂ is an asymptotically consistent estimator

for RSDp[p], i.e. SN/p̂
Prob.−−−→ RSDp[p].

We consider the relative standard deviation, because the asymptotic confidence inter-
val given in Theorem 3.1.1 may have a nonsensical lower bound, p̂ − ξα/2SN/

√
N < 0.

Since p is a probability, it has to be positive. Requiring this bound to be positive, roughly
corresponds to requiring that RSDp[p] ≤

√
N/ξα/2. Furthermore, we would like for the

orders of magnitude between which p could vary, to be as small as possible, or equivalently
for the relative standard deviation to be as small as possible.

The estimator variance σ2 = Varp [f(X)] reduces in the case f = 1A to

Varp [f(X)] = Varp[1A(X)]

= Ep[1A(X)2]− Ep[1A(X)]2

= Ep[1A(X)]− Ep[1A(X)]2

= p− p2.

If we would use this form of Monte Carlo Integration to approximate the probability
of a transmission line failure due to fluctuations in local supply and demand of power,
then we would need a huge amount of computational resources. The probability of a
transmission line failure in a certain time interval is very small p << 1 and it is classified
as a rare event. To find a single combination of power injections at the nodes we on average
have to draw p−1 samples. Specifically, the requirement on the lower bound forces us to
take an enormous amount of samples, namely

√
N ≥ ξα/2RSDp[p] = ξα/2

√
1− 1/p ≈ ξα/2p

−1/2.

Therefore, the amount of samples needed for a reliable result is approximately linearly
related to the inverse of the probability of a failure, N ∝ p−1. To draw this many
samples for rare events and solve the power-flow equations for each one of them is simply
impracticable without the resource of an astonishingly large amount of processing power.

To tackle this hindrance we use Importance Sampling, a form of Variance Reduction
[15]. Henceforth, we will refer to Monte Carlo simulation without the use of additional
techniques by calling it crude Monte Carlo simulation. Importance sampling is typically
applied in situations where f(x) is approximately zero for x in the exterior of some
important region A ⊂ Rd for which P(X ∈ A : X ∼ p) is very small. This corresponds
well to our model of the power grid, where f(x) = 0 when the power injection configuration
x does not lead to any problems in the power grid, and f(x) = 1 when it does.
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In Importance Sampling, instead of drawing samples Xi according to the probability
density function p, we draw them according to some auxiliary probability density function
q, the importance sampling distribution. It is required that q(x) > 0, whenever f(x)p(x) 6=
0. The importance sampling distribution is chosen such, that many samples are found
in the important region, for which f(x) 6≈ 0. We have to adjust the overemphasis of q
on the important region by adding weights w(x) = p(x)/q(x) to the importance sampling
estimator,

p̂q =
1

N

N∑
i=1

w(Xi)f(Xi), Xi ∼ q.

This estimator, p̂q, is also an unbiased estimator for p, since

Eq[p̂q] = Eq

[
1

N

N∑
i=1

w(Xi)f(Xi)

]

=
1

N

N∑
i=1

Eq [w(X)f(X)]

=

∫
Rd\{x∈Rd:q(x)=0}

f(x) · p(x)

q(x)
· q(x)dx

=

∫
Rd\{x∈Rd:q(x)=0}

f(x)p(x)dx

=

∫
Rd
f(x)p(x)dx

= Ep[f(X)]

= p.

The estimator variance σ2
q := Varq [w(X)f(X)] of p̂q does differ from that of p̂ and is given

by,
σ2
q = NVarq [p̂q]

= NVarq

[
1

N

N∑
i=1

w(Xi)f(Xi)

]

=
1

N

N∑
i=1

Varq [w(X)f(X)]

=

∫
Rd\{q=0}

(w(x)f(x))2 · q(x)dx− Eq [w(X)f(X)]2

=

∫
Rd\{q=0}

(f(x)p(x))2

q(x)
dx− p2.

(3.4)

For an appropriate choice of importance sampling distribution, this becomes significantly
lower than crude Monte Carlo integration. For a positive function f , the optimal choice
of q is,

q(x) =
f(x)p(x)∫

Rd
f(y)p(y)dy

= p−1f(x)p(x).
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This yields zero estimator variance,

σ2
q = p

∫
Rd\{q=0}

(f(x)p(x))2

f(x)p(x)
dx− p2 = 0.

If we would be able to sample from this particular distribution, then we would already
know the value of p, namely p = f(x)p(x)/q(x) for all x ∈ Rd\{p = 0}. This would render
importance sampling redundant. So in every situation, where we wish to apply importance
sampling, this optimal distribution will, unfortunately, be out of reach. However, it does
still provide us with a goal to strive for. If we are able to find a q for a positive function
f such that q(x) ≈ f(x)p(x)/p, then we expect a low sample variance. For instance,
suppose that c · q(x) ≥ f(x)p(x) for all x ∈ Rd and some c ≥ p, then the estimator
variance is upper bounded by σ2

q ≤ c2− p2. In the next section we will discuss techniques
for finding useful importance sampling distributions.

3.3 Exponential tilting

It is sometimes difficult to think of what distribution to use for importance sampling. An
often applied choice is exponential tilting. In exponential tilting, we restrict ourselves to
a certain family of possible importance sampling distributions and try to minimise the
variance over this family.

Definition 3.3.1. Given a random variable X in a sample space χ with probability mea-
sure P and moment generating function MX(θ) = E[eθ

>X ] < ∞, the exponentially tilted
measure Pθ is,

Pθ(X ∈ dx) =
E
[
eθ
>X

1[X ∈ dx]
]

MX(θ)
= exp

(
θ>x− Λ(θ)

)
P(X ∈ dx).

Here Λ is the cumulant generating function Λ(θ) = logE[eθ
>X ].

As a consequence of this method, the density function of the exponentially tilted dis-
tribution fθ closely resembles the density function of the original distribution f ,
fθ(x) = exp(θ>x − Λ(θ))f(x). This can be utilised in certain circumstances to allow for
well manageable importance sampling distributions.

One of the simplest examples to illustrate exponential tilting is by using the exponen-
tial distribution. Consider an exponential random variable X with rate parameter λ > 0.
The moment generating function is,

E
[
eθX
]

= λ

∫ ∞
0

eθxe−λxdx =

[
λ

θ − λ
e(θ−λ)x

]∞
0

=
λ

λ− θ
, for −∞ < θ < λ.

The exponentially tilted measure is,

Pθ(X ∈ dx) =

{
eθx λ−θ

λ
· λe−λx = (λ− θ)e−(λ−θ)x, if x ≥ 0,

0, if x < 0.

We recognise this as simply being again an exponential distribution, but this time with
rate parameter λ− θ.
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This nice relation between the original distribution and the exponentially tilted mea-
sure is something that is typical to distributions that belong to the exponential family.
Exponential tilting is also possible for any other distribution family with a finite moment
generating function, but it does become more complicated.

Definition 3.3.2. Let Θ ⊂ Rk be a parameter space and let M = {Pθ : θ ∈ Θ} be a
family of probability distributions on a sample space χ. M is an exponential family if
there exist some functions η : Θ → Rk, T : χ → Rk, A : χ → R and B : Θ → R such
that the probability density function can be expressed as

p(x, θ) = exp
(
η(θ)>T (x)− A(x)−B(θ)

)
, θ ∈ Θ.

Arguably, the most famous example of this family is the Gaussian distribution. In
this case θ = (µ, σ) ∈ Θ = R× R>0 and there are functions η, T, A and B,

η : Θ→ R2 : (µ, σ)→ (
µ

σ2
,− 1

2σ2
)>,

T : R→ R2 : x→ (x, x2)>,

A : R→ R : x→ 1

2
ln(2π),

B : Θ→ R : (µ, σ)→ ln(σ) +
µ2

2σ2
,

that yield p(x, (µ, σ)) = 1√
2πσ2

exp(− (x−µ)2

2σ2 ).

In Section 4.2 we will apply exponential tilting to the multivariate Gaussian distribu-
tion to find a useful importance sampling distribution.

3.4 Estimator efficiency and large deviations theory

An unfortunate side-effect that may occur in importance sampling, when the sampling
distribution is chosen without due deliberation, is that the variance of the estimator with
respect to the importance sampling distribution can become very large, or even infinite.
On the other hand, a desirable quality in choosing the importance sampling distribution
is that the relative standard deviation of the importance sampling estimator is small.
This is more difficult for rare events. For example, as we saw in Section 3.2, when we use
crude Monte Carlo simulation for determining the probability p of an event occurring,
then the estimator variance will be σ2 = p− p2 per sample. This will converge to zero as
the probability p tends to zero. However, the relative error will tend towards infinity as
the probability tends to zero,

σ

p
=

√
1

p
− 1 ∼ 1

√
p
→∞, as p ↓ 0.

Thus, as discussed earlier, we would need increasingly many samples for smaller prob-
abilities to achieve the same relative error of the estimator. However, for the right choice
of importance sampling estimator, this increase in the need for many samples as the prob-
ability decreases, may be very slow. In an ideal case, it can even be non-existent. We can
speak of the increase of relative error for a series of estimators for different probabilities
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to have bounded relative error or to be logarithmic efficient [16].

Let {Pn}n∈N be a family of probability measures on a single measurable space (Ω,A)
and let {An}n∈N be a family of events on this space, where n ∈ N is the rarity parameter
such that pn := Pn (An)→ 0 as n→∞. For each n ∈ N let p̂n be an unbiased estimator
of pn with estimator variance σ2

n, that tends to zero as n tends to infinity. The family of
estimators {p̂n}n∈N is said to posses bounded relative error if,

lim sup
n→∞

σ2
n

p2
n

<∞.

The family of estimators {p̂n}n∈N is called logarithmically efficient if,

∀ε > 0 lim sup
n→∞

σ2
n

p2−ε
n

= 0,

or equivalently,

lim inf
n→∞

log σ2
n

log p2
n

≥ 1. (3.5)

While bounded relative error is a slightly stronger property than logarithmic efficiency,
it is more common to work with logarithmically efficient estimators.

Practically, the increase in number of samples needed for smaller probabilities with
logarithmically efficient estimators grows slowly enough to not result in an insurmount-
able amount of simulation effort. We do not have to take increasingly many samples
for decreasing variations in the power injections to reach a similar relative level of confi-
dence in the accuracy of the estimator. Furthermore, in some situations, estimators with
bounded relative error do not exist [17] or have not been discovered. In Chapter 4 we will
construct several logarithmically efficient estimators. Other examples can be found in [16].

For now, let us consider the example of determining the probabilities pn = P (Xn > 1),
whereXn is an exponential random variable with rate n, using the exponential distribution
with rate 1 as the importance sampling distribution. Clearly, we have pn = e−n. Using
Equation 3.4, we find for all n ∈ N the estimator variance,

σ2
n =

∫ ∞
1

n2e−2nx

e−x
dx− p2

n =
n2

2n− 1
e−2n+1 − e−2n.

Thus, the set of estimators p̂n does not have bounded relative error,

lim sup
n→∞

σ2
n

p2
n

= lim sup
n→∞

n2

2n− 1
e− 1 =∞,

but it is logarithmically efficient,

∀ε > 0, lim sup
n→∞

σ2
n

p2−ε
n

= lim sup
n→∞

e−nε
(

n2

2n− 1
e− 1

)
= 0.

The probabilities pn are needed to determine whether a family of estimators has
bounded relative error or is logarithmically efficient. These are unknown in the example,
otherwise sampling would be unnecessary. It is, however, possible to know the behaviour
of pn as n→∞, i.e. the rate at which pn converges to 0. In Large Deviations Theory this
is studied by using the rate function. We use the definition of a rate function as given in
[18].
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Definition 3.4.1. A rate function I is a lower semi-continuous mapping I : Ω→ [0,∞]
such that for all α ∈ [0,∞), the level set ΨI(α) = {x ∈ Ω : I(x) ≤ α} is a closed subset of
Ω. A good rate function is a rate function for which all the level sets ΨI(α) are compact
subsets of Ω.

Definition 3.4.2. A family of probability measures {Pα}α>0 on (Ω,B(Ω)) satisfies the
large deviations principle with rate function I : Ω→ [0,∞] if, for all A ∈ B(Ω),

− inf
x∈A◦

I(x) ≤ lim inf
α→∞

1

α
logPα(A) ≤ lim sup

α→∞

1

α
logPα(A) ≤ − inf

x∈A
I(x).

The notation B(Ω) is used to represent the Borel sigma-algebra on the set Ω.
Thanks to the lower semi-continuity of the rate function, these inequalities can be

turned into equalities in some cases. If a family of probability measures {Pα}α>0 on
(Ω,B(Ω)) satisfies the large deviations principle with a rate function I : Ω→ [0,∞], then
for all regular open or regular closed sets A ∈ B(Ω) we find infx∈A◦ I(x) = infx∈A I(x),
and

− inf
x∈A

I(x) = lim
α→∞

1

α
logPα(A).

Definition 3.4.3. A set A ∈ B(Ω) is called regular open if it is the interior of its own
closure,

A = int (cl (A)).

A set A ∈ B(Ω) is called regular closed if its the closure of its own interior,

A = cl (int (A)).

There is a famous theorem that stood at the inception of large deviations theory known
as Cramér’s theorem. This theorem yields the rate function for a family of probability
measures that satisfies the large deviations principle.

Theorem 3.4.1 (Cramér’s theorem). Let (Xn)n∈N be a sequence of i.i.d. random variables
on (Rd,B(Rd)) with bounded cumulant generating function

Λ(λ) = logE
[
exp(λ>X)

]
, for all λ ∈ Rd.

Let Λ∗ be the Legendre-transform of Λ,

Λ∗(x) = sup
λ∈Rd
{λ>x− Λ(λ)}, x ∈ Rd.

Then the family of probability measures {Pn}n∈N, where Pn is the probability measure of
the random variable 1

n

∑n
i=1Xi for all n ∈ N, satisfies the large deviations principle with

good rate function
I(x) = Λ∗(x), x ∈ Rd.

Proof. A proof for probability measures on R can be found in any book on large deviation
theory. A proof specifically for probability measures on the multidimensional Rd can be
found in [18].

We can utilise Cramérs theorem when the studied family of probability measures
{Pn}n∈N can somehow be related to the averaged sum of i.i.d. variables. In Section 4.2
we will do this for probability measures of the Gaussian distribution.
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Chapter 4

The DC-Approximation with
Stochastic Power Injections

In Chapter 2, we introduced the DC-approximation as an approximate model for the
power flow in the power grid given the power injections. However, while power demand
and generation are to a certain degree predictable, they are by no means deterministic.
In general, power generation and demand are higher in the daytime and lower at night.
Deviations in power generation arise due to the influence of atmospheric conditions on
renewable energy sources. Similarly, the demand for power fluctuates as a consequence of
the weather and simply due to fickleness in human behaviour. In Figure 4.1 the predicted
and the realised production and load in the Dutch power grid over a period of two weeks
are shown.

The actual distribution of the power generation and demand is very difficult to state,
especially in general terms. In fact, it appears that there is no standard probabilistic
distribution that fully describes the power injections. It is common to use a Gaussian
distribution, e.g. [19], [20], or [21]. Several analyses have been performed in specific
grids. For example, in [22] the distribution of solar and wind power was studied for short
time scales, seconds up to minutes. In [23] a similar analysis was performed on a longer
timescale, hours up to a day. Both found that the distributions of forecast errors have
kurtosis and skewness that slightly differ from the Gaussian distribution, but they were
unimodal.

Despite these differences, we do choose to employ the Gaussian distribution to model
the power injections as others did before us. An added benefit of the Gaussian distribution
is that it is very easy to include correlation between the power injections at different buses.

For the Gaussian distribution of power injections, we will subsequently determine the
probability of violating the power flow constraints as introduced in Section 2.3 using the
theory of importance sampling introduced in Chapter 3.
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(a) Generation (b) Load

Figure 4.1: The planned and the realised production and load in the Dutch power grid
over a two week period in 2018. This data is imported from the publicly accessible web-
site of the Dutch grid manager Tennet, https://www.tennet.eu/electricity-market/
data-dashboard/. Differences between generation and demand are dealt with in import
or export of power with Germany and Belgium via land, and with Great Britain and
Norway via undersea high voltage direct current cables [24].

4.1 Preliminaries

In mathematical terms, our goal is to use simulation to evaluate the probability that a
random variable X drawn from a d-dimensional multivariate Gaussian distribution with
mean µ and covariance matrix Σ lies in the exterior of some polyhedron

{x ∈ Rd : Ax ≥ b}, A ∈ Rm×d,b ∈ Rm.

This is directly related to the restrictions for feasible power injections in the DC-
approximation discussed in Section 2.3. A polyhedron is defined as the intersection of
multiple half-spaces. Therefore, by taking the complement we find that the exterior of a
polyhedron is the union of half-spaces. A logical first step towards evaluating this problem
is to evaluate the probability that a randomly drawn sample lies in a single half-space.

This can be done both by simulation and by analytic means. In this section, we will
focus on the analytic approach. We will also relate the multivariate Gaussian distribu-
tion to the chi-squared distribution. This will be useful in studying the probability of a
Gaussian random variable lying in some more general set than the exterior of a polyhe-
dron. First, we need to define the Gaussian distribution. We give the probability density
function and the cumulative distribution.

Definition 4.1.1. The probability density function p of the d-dimensional multivariate
Gaussian distribution Nd(µ,Σ), with µ ∈ R and Σ a d × d positive definite matrix, is
given by,

p(x) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, x ∈ µ+ span(Σ).

We will continue the use of notation in this definition. When we say that a ran-
dom variable X is Nd(µ,Σ) distributed, it is to be read as a random variable X that
is distributed as a d-dimensional multivariate Gaussian distribution with mean µ and
covariance matrix Σ. In formulae, we will write even more concisely, X ∼ Nd(µ,Σ).
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Definition 4.1.2. The cumulative distribution function Φ of the 1-dimensional standard
normal distribution N1(0, 1) is,

Φ(x) :=
1√
2π

∫ x

−∞
exp(−t

2

2
)dt, x ∈ R.

Instead of Φ(x) we will usually prefer to consider its complement ΦC(x) = 1 − Φ(x)
instead.

A particularly nice property of the Gaussian distribution is that its conditional distri-
bution is again a Gaussian distribution.

Theorem 4.1.1. Let X ∼ Nd(µ,Σ) be partitioned as,

X =

(
X1

X2

)
,

where X1 consist of the first k < d elements of X. Let the mean and covariance matrix
be correspondingly partitioned,

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ>12 Σ22

)
.

The conditional distribution X1|X2 is a Gaussian distribution with,

E(X1|X2 = x2) = µ1 + Σ12Σ†22(x2 − µ2), and,

Var(X1|X2 = x2) = Σ11 − Σ12Σ†22Σ>12,

where Σ†22 is the generalized inverse of Σ22.

Proof. A proof can be found in [25].

The covariance matrix Σ of a non-degenerate distribution is positive definite. This is
of importance as it both ensures the existence of the inverse as well as that of a unique
positive-definite square root.

Definition 4.1.3. Let A be a square matrix. If there exists a matrix B such that B2 = A,
then B is called a square root of A.

Lemma 4.1.1. The principal (square) root of a positive definite matrix
Σ = U>DU , with U an orthogonal and D a diagonal matrix, is uniquely defined as the
positive definite matrix

√
Σ := U> ◦

√
DU , where ◦

√
D is the matrix with the elementwise

positive square roots of D,

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,
◦
√
D =


√
λ1 0 . . . 0

0
√
λ2

. . .
...

...
. . . . . . 0

0 . . . 0
√
λn

 .

Proof. The proof of this lemma is based on [26]. Clearly,
√

Σ is a square root of Σ, as

√
Σ

2
= U>

◦
√
DUU>

◦
√
DU = U>

◦
√
D
◦
√
DU = U>DU = Σ.
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Since Σ is positive definite, λi, i = 1, . . . , n are all strictly positive. Thus
√
λi, i = 1, . . . , n

are all strictly positive too, and hence
√

Σ = U> ◦
√
DU is positive definite. This concludes

the proof of the existence of the principal root. What remains, is to prove the uniqueness.
Let A be a positive definite matrix such that A2 = Σ. Let P be the interpolating

polynomial such that P (λi) =
√
λi for all i = 1, . . . , n. For this polynomial it holds that

P (Σ) = P (U>DU) = U>P (D)U = U>
◦
√
DU =

√
Σ.

Now we use this to find that A and
√

Σ commute,

A
√

Σ = AP (Σ) = AP (A2) = P (A2)A = P (Σ)A =
√

ΣA.

Thus A and
√

Σ are simultaneously diagonalizable, i.e. there esists a basis that is an
eigenbasis for both A and

√
Σ. Thus, there is some diagonal matrix D̃ such that A =

U>D̃U . Since taking the element-wise positive square root of positive numbers is a unique

operation and D2 = U
√

Σ
2
U> = UA2U> = D̃2, we find that D̃ = D and consequently

A =
√

Σ.

Note that as a corollary of this lemma, we find that for a positive definite matrix
Σ = U>DU the (generalized) inverse of the principal root is equal to the principal root
of the (generalized) inverse,

√
Σ
−1

= U>
◦
√
D
−1
U = U>

◦
√
D−1U =

√
Σ−1.

With the above lemma, we now have all the tools we need to analytically determine
the probability of sampling a random Gaussian variable in a half-space.

Theorem 4.1.2. Let X = (x1, x2, . . . , xd) be Nd(µ,Σ) distributed and let a ∈ Rd, b ∈ R,
then

P(X>a ≥ b) = ΦC

(
b− µ>a

‖
√

Σa‖2

)
.

Proof. We define the half-space H := {x ∈ Rd : x>a ≥ b} in order to be able to compactly
write,

P(X>a ≥ b) =
1

(2π)d/2
√

det Σ

∫
H

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
dx.

We apply a change of variables,

x′ =
√

Σ
−1

(x− µ), a′ =
√

Σa, H ′ = {x′ ∈ Rd : x′
>
a′ + µ>a ≥ b}.

The Jacobian matrix of this transformation is
√

Σ
−1

, so its determinant is |
√

Σ
−1| and we

find dx′ = 1√
det Σ

dx. Thus, we can write,

P(X>a ≥ b) =
1

(2π)d/2

∫
H′

exp

(
−1

2
x′
>
x′
)

dx′.

Next we find an orthogonal matrix B such that Ba′ = ‖a′‖2 · e1, where e1 denotes the
first standard unit vector, and use it to apply a second change of variables,

x∗ = Bx′, a∗ = Ba′, H∗ = {x∗ : x∗>a∗ + µ>a ≥ b}.
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Since the matrix B is orthogonal, its determinant is |B| = 1 and we find dx∗ = dx′.
Now we finally arrive at the stated result of the theorem,

P(X>a ≥ b) =
1

(2π)d/2

∫
H∗

exp

(
−1

2
x∗>x∗

)
dx∗

=
1

(2π)d/2

∫ ∞
b−µ>a
‖a∗‖2

exp

(
−1

2
x∗21

)
dx∗1

d∏
i=2

(∫ ∞
−∞

exp

(
−1

2
x∗2i

)
dx∗i

)
=

1√
2π

∫ ∞
b−µ>a
‖a∗‖2

exp

(
−1

2
x∗21

)
dx∗1

= ΦC

(
b− µ>a

‖
√

Σa‖2

)
.

We should note that a nice property of the Gaussian distribution has slipped into the

proof of the above theorem. If X is Nd(µ,Σ) distributed, then
√

Σ
−1

(X− µ) is Nd(0, In)
distributed. The converse also holds. If X is Nd(0, In) distributed, then

√
ΣX + µ is

Nd(µ,Σ) distributed.
Later on in this chapter, we will encounter expressions containing products and frac-

tions of the cumulative uni-variate Gaussian distribution. In order to arrive at a better
intuitive grasp of how these expressions behave, we provide bounds.

Lemma 4.1.2. For x ∈ (0,∞) upper and lower bounds for ΦC(x) are given by

ΦC(x) ≤ 1√
2π

1

x
exp

(
−1

2
x2

)
,

ΦC(x) ≥ 1√
2π

x

1 + x2
exp

(
−1

2
x2

)
.

Proof. First, we prove the upper bound. Note that for all t ∈ [x,∞) we have t
x
≥ 1.

Thus,

ΦC(x) ≤ 1√
2π

∫ ∞
x

t

x
exp

(
−t

2

2

)
dt,

=
1√
2π

[
−1

x
exp

(
−t

2

2

)]∞
t=x

,

=
1√
2π

1

x
exp

(
−1

2
x2

)
.

Next we prove the lower bound. We define the auxiliary function,

Ψ(x) = ΦC(x)− 1√
2π

x

1 + x2
exp

(
−1

2
x2

)
.

The derivative of Ψ is strictly negative for x > 0,

Ψ′(x) = − 1√
2π

2

(1 + x2)2
exp

(
−x

2

2

)
,

and in the limit towards infinity we have limx→∞Ψ(x) = 0. Thus Ψ is non-negative and
the lower bound follows.

34



As a nice corollary of this lemma we now have a good grasp of how ΦC(x) evolves
as x becomes large. For any t > 0 the complement of the cumulative uni-variate Gaus-
sian distribution ΦC

t (x) : (t,∞] → R : x → ΦC(x) restricted to the interval [t,∞) is
asymptotically bounded from above and below by a constant times 1

x
exp(−1

2
x2). In

Landau-notation this is written as ΦC
t (x) = Θ

(
1
x

exp(−1
2
x2)
)
.

A secondary interesting bound can be derived from this lemma. Since the natural
logarithm is a strictly increasing function, we find

− log ΦC(x) ≥ 1

2
log 2π + log x+

x2

2
.

Thus, for x ≥ 1/
√

2π, we have the following bound on x in terms of ΦC(x),

x ≤
√
−2 log ΦC(x). (4.1)

4.2 Shifted mean

In this section, we will apply the theory of Chapter 3. First, we will determine the expo-
nentially tilted version of the Gaussian distribution. After that, we will discuss the effi-
ciency of estimators obtained from importance sampling using the exponentially tilted dis-
tribution. Under the right circumstances, the exponentially tilted distribution will provide
a logarithmically efficient set of estimators for determining P (X ∈ A : X ∼ Nd(µ,Σ)),
where A ∈ Rd Borel-measurable. Less convenient situations will be dealt with by intro-
ducing mixed importance sampling.

In Section 3.3 we saw that the univariate Gaussian distribution belongs to the expo-
nential family. The same holds true in the multivariate case. Thus, we expect to be able
to find the exponentially tilted distribution without too much inconvenience. The mo-
ment generating function of a d-dimensional multivariate Gaussian distribution Nd(µ,Σ)
is,

MX(θ) =
1√
|2πΣ|

∫
Rd

exp(θ>x) exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
dx

=
1√
|2πΣ|

∫
Rd

exp

(
−1

2
(x− µ− Σθ)>Σ−1(x− µ− Σθ)

)
exp

(
µ>θ +

1

2
θ>Σθ

)
dx

= exp

(
µ>θ +

1

2
θ>Σθ

)
.

This leads to the exponentially tilted measure,

Pθ(X ∈ dx) = exp

(
θ>x− µ>θ − 1

2
θ>Σθ

)
P(X ∈ dx).

The density function of this exponentially tilted measure is,

pθ(x) = exp

(
θ>x− µ>θ − 1

2
θ>Σθ

)
1√
|2πΣ|

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
=

1√
|2πΣ|

exp

(
−1

2
(x− µ− Σθ)>Σ−1(x− µ− Σθ)

)
.
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Thus, the exponentially tilted measure of the multivariate Gaussian distribution simply
entails a shift of the mean over Σθ. This is therefore also called the shifted mean distri-
bution. We will refer to the importance sampling estimator obtained by using the shifted
mean distribution as the shifted mean estimator. The benefits of the shifted mean distri-
bution are that it both resembles the original distribution and it is quite easy to sample
from.

At this point, we introduce a distance function, that is particularly useful in describing
the multivariate Gaussian distribution.

Definition 4.2.1. Let DΣ(x,y) denote the Mahalanobis distance [27] specific to the
Nd(µ,Σ) distribution with covariance matrix Σ between two point x and y in Rd,

DΣ(x,y) :=
√

(x− y)>Σ−1(x− y).

When Nd(µ,Σ) is degenerate, the Mahalanobis distance uses the generalized inverse Σ†

and is only defined on the support of Nd(µ,Σ),

DΣ(x,y) :=
√

(x− y)>Σ†(x− y), x,y ∈ supp(Nd(µ,Σ)).

The density p(x) of a Nd(µ,Σ) distributed random variable can now be written as,

p(x) =
1√
|2πΣ|

exp

(
−1

2
DΣ(x, µ)2

)
.

Next, we will determine the variance of the shifted mean estimator, but first we need a
short lemma that is a slightly more general version of Apollonius’ theorem.

Lemma 4.2.1. Let x,y, z ∈ Rd and let Σ be a d× d positive definite matrix, then

DΣ(x,y)2 +DΣ(x, z)2 = 2DΣ(x,
y + z

2
)2 +

1

2
DΣ(y, z)2.

Proof.

DΣ(x,y)2 +DΣ(x, z)2 = (x− y)>Σ−1(x− y) + (x− z)>Σ−1(x− z)

= 2(x− y + z

2
)>Σ−1(x− y + z

2
) +

1

2
(y − z)>Σ−1(y − z)

= 2DΣ(x,
y + z

2
)2 +

1

2
DΣ(y, z)2.

Theorem 4.2.1. Let p and q be respectively distributed as Nd(µ,Σ) and Nd(ν,Σ), and
let p(x) and q(x) denote their density functions. Let A ∈ Rd be Borel-measurable and let
p = Pp(X ∈ A). The estimator variance σ2 using q as importance sampling distribution
is given by,

σ2 = −p2 + exp
(
DΣ(µ, ν)2

)
Pr(X ∈ A), (4.2)

where r is distributed as Nd(2µ− ν,Σ).
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Proof. By Equation 3.4 we find,

σ2 = −p2 +

∫
Rd

(1A(x)p(x))2

q(x)
dx

= −p2 +

∫
A

p(x)2

q(x)
dx

= −p2 +
1√
|2πΣ|

∫
A

exp (−DΣ(x, µ)2)

exp
(
−1

2
DΣ(x, ν)2

)dx.
By Lemma 4.2.1, we now find,

σ2 = −p2 + exp
(
DΣ(µ, ν)2

) 1√
|2πΣ|

∫
A

exp

(
−1

2
DΣ(x, 2µ− ν)2

)
dx,

and the stated theorem follows.

A natural question that arises following the introduction of the shifted mean is: for
which choice of shifted mean ν, will the estimator variance be small? More precisely, we
want to know whether it is possible to choose ν such, as to obtain a set of logarithmically
efficient estimators. To answer that question, we also need to have knowledge of the
asymptotic behaviour of P (Xn ∈ A), where Xn is a random variable that is somehow
dependent on a rarity parameter n ∈ N.

We consider a family of probability measures {Pn}n∈N that are distributed acoording
to Nd (µ,Σ/n) and depend on a rarity parameter n ∈ N. For a Borel-measurable set
A ∈ Rd , we ensure the condition that pn = Pn (A) → 0 as n → ∞, by assuming that
infx∈A◦ ‖x−µ‖2 > 0. This is a very mild assumption, since without it, we would for large
n no longer be speaking about rare events.

For each n ∈ N, the probability measure Pn follows the law of the averaged sum of n
i.i.d. Nd (µ,Σ) distributed random variables. Thus, we can use Cramérs theorem 3.4.1 to
find the rate function.

The cumulant generating function of an Nd(µ,Σ) distributed random variable X is
given by Λ(λ) = µ> + 1

2
λ>Σλ. Its Legendre-transform is

Λ∗(x) = sup
λ∈Rd
{λ>x− Λ(λ)}.

By taking the derivative with respect to λ,

∂

∂λ

(
λ>x− Λ(λ)

)
= x− µ− Σλ,

we see that Λ∗(x) = 1
2
(x− µ)>Σ−1(x− µ) for λ = Σ−1(x− µ). Thus, the family {Pn}n∈N

of Nd(µ,Σ/n) distributed probability measures satisfies the large deviation principle with
good rate function I(x) = 1

2
DΣ(x, µ)2.

By Definition 3.4.2 this yields,

lim
n→∞

1

n
logPn(A) = lim

n→∞

1

n
logPn(A◦) = − inf

x∈A◦
1

2
DΣ(µ,x)2 := −1

2
DΣ(x, A◦)2. (4.3)

Remark. We consider the probability of the interior A◦, since this is regular open. There-
fore, the inequalities in Definition 3.4.2 will become equalities.
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Let σ2
n denote the estimator variance of the shifted mean estimator of pn using mean

ν ∈ Rd for all n ∈ N . Similarly, we find by virtue of Theorem 4.2.1,

lim
n→∞

1

n
log σ2

n = −1

2
DΣ(2µ− ν,A◦)2 +DΣ(µ, ν)2.

By our assumption that infx∈A◦ ‖x−µ‖2 > 0, we also have DΣ(µ,A◦)2 > 0. Furthermore,
we restrict ourselves to consider only those values of ν ∈ Rd, for which it holds that
−1

2
DΣ(2µ − ν,A◦)2 + DΣ(µ, ν)2 ≤ 0. Otherwise, the estimator variance would tend

towards infinity as the rarity parameter increases, i.e. limn→∞ σ
2
n =∞.

Thus, logarithmic efficiency, see Equation 3.5, will be attained when

1 ≤ lim inf
n→∞

log σ2
n

logP2
n

=
limn→∞

1
n

log σ2
n

limn→∞
1
n

log p2
n

=
1
2
DΣ(2µ− ν,A◦)2 −DΣ(µ, ν)2

DΣ(µ,A◦)2
,

or equivalently,

DΣ(µ,A◦)2 ≤ 1

2
DΣ(2µ− ν,A◦)2 −DΣ(µ, ν)2. (4.4)

Since DΣ is a distance function, we may invoke the triangle inequality,

DΣ(2µ− ν,A◦) ≤ DΣ(2µ− ν, µ) +DΣ(µ,A◦) = DΣ(µ, ν) +DΣ(µ,A◦).

Hence we find,
DΣ(2µ− ν,A◦)2 ≤ (DΣ(µ, ν) +DΣ(µ,A◦))2 .

Combined with Equation 4.4 this yields,

0 ≤ 2DΣ(µ, ν)DΣ(µ,A◦)−DΣ(µ, ν)2 −DΣ(µ,A◦)2.

Thus strict inequality in Equation 4.4 can never be achieved, and equality can only
be achieved, when

1

2
DΣ(2µ− ν,A◦) = DΣ(µ, ν) = DΣ(µ,A◦). (4.5)

The only candidate for ν ∈ Rd to satisfy this is,

ν = arg inf
y∈A◦

DΣ(µ,y). (4.6)

When this value of ν does not satisfy Equation 4.5, it is sometimes still possible to end up
with a logarithmically efficient set of estimators by extending the shifted mean importance
sampling distribution to incorporate mixed importance sampling [28].

Instead of using a single shifted mean distribution, we may combine several different
shifted mean distributions into a single mixture distribution.

Definition 4.2.2. Let q1(x), q2(x), . . . , qm(x) be probability density functions on Rd and
let w1, w2, . . . , wm be weights such that

∑m
i=1wi = 1 and wi > 0 for all i = 1, . . . ,m. Then

the mixture distribution is the distribution with density function,

q(x) =
m∑
i=1

wiqi(x).
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If the original density function p is included in this mixture it is also sometimes
referred to as a defensive distribution. We present newly found necessary and sufficient
conditions for a mixture distribution of multiple shifted mean distributions to lead to a
logarithmically efficient set of estimators.

Theorem 4.2.2. Let p(n) and q
(n)
1 , . . . , q

(n)
m for n ∈ N be respectively distributed as

Nd(µ,Σ/n) and Nd(ν1,Σ/n), . . . ,Nd(νm,Σ/n), and let p(n)(x) and q
(n)
1 (x), . . . , q

(n)
m (x) de-

note their density functions. Let A ∈ B(Rd) be Borel-measurable and let pn = Pp(n)(X ∈
A). Let A1, . . . , Am be the regular closed sets,

Ai = {x ∈ Rd : DΣ(µ,A◦)2 ≤ 1

2
DΣ(2µ− νi,x)2 −DΣ(µ, νi)

2}, i = 1, . . . ,m.

Let p̂n be the estimators of pn obtained via importance sampling with a mixture of shifted
mean distributions with density function q(n)(x) =

∑m
i=1wiq

(n)
i (x), where the weights wi

satisfy
∑m

i=1 wi = 1 and wi > 0 for all i = 1, . . . ,m. Then the family of estimators
{p̂n}n∈N is logarithmically efficient if and only if the sets Ai, i = 1, . . . ,m form a cover of
A◦,

A◦ ⊂
m⋃
i=1

Ai.

Proof. ⇐: Suppose that the sets Ai, i = 1, . . . ,m form a cover of A◦. Let σ2
n denote the

estimator variance of p̂n. By Equation 3.4 we find,

σ2
n = −p2

n +

∫
A◦

p(n)(x)2

q(n)(x)
dx

≤ −p2
n +

m∑
i=1

∫
Ai

p(n)(x)2

q(n)(x)
dx

≤ −p2
n +

m∑
i=1

1

wi

∫
Ai

p(n)(x)2

q
(n)
i (x)

dx.

By virtue of the proof of Theorem 4.2.1, we see that,

σ2
n ≤ −p2

n +
m∑
i=1

1

wi
exp

(
nDΣ(µ, νi)

2
)
P
r
(n)
i

(X ∈ Ai),

where r
(n)
i is distributed as Nd(2µ− νi,Σ/n). Thus, we find by Equation 4.3,

lim
n→∞

1

n
log σ2

n ≤ max
i=1,...,m

{
DΣ(µ, νi)

2 − 1

2
DΣ(2µ− νi, Ai)2

}
≤ −DΣ(µ,A◦)2,

and, as limn→∞
1
n

log pn = −1
2
DΣ(µ,A◦)2 by Equation 4.3, logarithmic efficiency is at-

tained,

lim inf
n→∞

log σ2
n

log p2
n

≥ 1.

⇒: Suppose that the sets Ai, i = 1, . . . ,m do not form a cover of A◦. Then, since
A◦ \ ∪mi=1Ai is open, there is some open set A′ ⊂ A◦ \ ∪mi=1Ai such that for some δ > 0,

DΣ(µ,A◦)2 ≥ 1

2
DΣ(2µ− νi,x)2 −DΣ(µ, νi)

2 + δ, for all x ∈ A′, i = 1, . . . ,m.

39



By Equation 3.4, we find,

σ2
n = −p2

n +

∫
A◦

p(n)(x)2

q(n)(x)
dx

≥ −p2
n +

∫
A′

p(n)(x)2

q(n)(x)
dx

≥ −p2
n +

∫
A′

1√
|2πΣ/n|

min
i=1,...,m

exp
(
−nDΣ(x, µ)2 +

n

2
DΣ(x, νi)

2
)
dx.

Lemma 4.2.1 now yields,

σ2
n ≥ −p2

n +

∫
A′

1√
|2πΣ/n|

min
i=1,...,m

exp
(
nDΣ(µ, νi)

2 − n

2
DΣ(x, 2µ− νi)2

)
dx

≥ −p2
n +

∫
A′

1√
|2πΣ/n|

exp
(
−nDΣ(µ,A◦)2 + nδ

)
dx

= −p2
n + λd(A

′)
1√
|2πΣ/n|

exp
(
−nDΣ(µ,A◦)2 + nδ

)
,

where λd(A
′) > 0 is the d-dimensional Lebesgue-measure of the set A′. Thus, we find,

lim
n→∞

1

n
log σ2

n ≥ −DΣ(µ,A◦)2 + δ,

and logarithmic efficiency is not attained,

lim inf
n→∞

log σ2
n

log p2
n

=
limn→∞

1
n

log σ2
n

limn→∞
1
n

log p2
n

=
−DΣ(µ,A◦)2 + δ

−DΣ(µ,A◦)2
< 1.

There exist events A ∈ B(Rd) in combination with distributions Nd(µ,Σ) for which
there is no finite set {ν1, . . . , νm} ⊂ Rd, such that A◦ is covered by the sets,

Ai = {x ∈ Rd : DΣ(µ,A◦)2 ≤ 1

2
DΣ(2µ− νi,x)2 −DΣ(µ, νi)

2}, i = 1, . . . ,m.

However, a logarithmically efficient set of estimators can still be obtained via impor-
tance sampling with a mixture of an infinite amount of shifted mean distributions. In
[29], it is shown, that this can be done by sampling from a mixed shifted mean distribu-
tion, where the shifted mean is chosen uniformly at random on the surface of the ellipsoid
{x ∈ Rd : DΣ(µ,x) = DΣ(µ,A◦)}.

It should be noted, that despite our focus on logarithmic efficiency in this section, it
should not be viewed as the only indicator of the quality of a set of estimators. In the
next section, we will use Theorem 4.2.2 to find a logarithmically efficient set of estimators
when the event A ∈ B(Rd) is the exterior of a polyhedron. Furthermore, we will also
provide bounds on the relative standard deviation.

4.3 Gaussian in the exterior of a polyhedron

In the previous section, we discovered conditions that will ensure logarithmically effi-
cient estimators for shifted mean distributions and mixtures thereof for the Gaussian
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distribution and some general event A ∈ B(Rd). In this section, we will construct these
logarithmically efficient estimators for the model of the DC-approximation with stochastic
power injections.

In Section 2.3, we relate the power injections to feasibility constraints within the
network. We consider a network with d load-buses and generator-buses and one reference
bus. The real power injections of the d non-reference buses are modeled with a Gaussian
random vector X ∼ Nd(µ,Σ/n). Its probability measure is given by Pn. A configuration
of power injections X satisfies the feasibility constraints if and only if it lies inside some
polyhedron AC = {x ∈ Rd : a>i x ≤ bi, i = 1, . . . ,m}, where ai ∈ Rd and bi ∈ R.

The exterior of this polyhedron, A, is a union of half-spaces,

Hi = {x ∈ Rd : a>i x > b}, i = 1, . . . ,m.

First, we will we find a logarithmically efficient set of shifted mean estimators for the
probabilities pn := Pn(X ∈ H) of a Gaussian random variable X ∼ Nd(µ,Σ/n) lying in a
single half-space H = {x ∈ Rd : a>x > b}, a ∈ Rd, b ∈ R. After that, we will make the
extension to the union of half-spaces using a mixture of shifted mean distributions.

By virtue of Theorem 4.1.2 we are able to give an explicit expression for pn in terms
of the complement of the univariate Gaussian cumulative distribution ΦC ,

pn = ΦC

(√
n
b− µ>a

‖
√

Σa‖2

)
.

In spite of this, we also wish to find an importance sampling distribution, that we can
use to determine this probability.

We choose to use shifted mean importance sampling with as mean the unique point
satisfying Equation 4.6,

ν = arg inf
y∈H

DΣ(µ,y).

This will lead to a logarithmically efficient set of estimators {p̂n}n∈N for {Pn(H)}n∈N.
We have to find which value of ν satisfies this. We will show, that the constant

β :=
b− µ>a

‖
√

Σa‖2

,

equals the Mahalanobis distance DΣ(µ,H), and that,

ν = DΣ(µ,H) = µ+
β

‖
√

Σa‖2

Σa.

To show this, we use an affine transformation L : Rd → Rd : x →
√

Σ
−1

(x − µ) on
the probability space and on H. This gives us the equivalent problem of determining
the point in the half-space L(H) = {x ∈ Rd : x>

√
Σa + µ>a ≥ b} that has the highest

probability density for the distribution Nd(0, In). Thanks to the radial property of the
density function of the standard normal distribution, this is the closest point in L(H) to

the origin, namely b−µ>a
‖
√

Σa‖22

√
Σa = β

‖
√

Σa‖2

√
Σa. Using the inverse transformation, we then

find

ν = L−1

(
β

‖
√

Σa‖2

√
Σa

)
= µ+

β

‖
√

Σa‖2

Σa. (4.7)
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This demonstrates that β is simply the Mahalanobis distance between the mean µ of the
distribution and the half-space H,

DΣ(µ,H) = DΣ(µ, ν) =

√
(µ− (µ+

β

‖
√

Σa‖2

Σa))>Σ−1(µ− (µ+
β

‖
√

Σa‖2

Σa)) = β.

We take a closer look at the estimator variance and the relative standard variation. For
all n ∈ N we find by Theorem 4.1.2 that pn = Pn(H) = ΦC(

√
nβ). Inserting ν into

Theorem 4.2.1, we find for all n ∈ N the estimator variance,

σ2
n = −p2

n + exp
(
nβ2

)
ΦC
(
2
√
nβ
)
.

To present a clearer picture of the evolution of σ2
n as n increases, we apply the bounds

of Lemma 4.1.2. First, applying the upper bound on ΦC we find,

σ2
n ≤ −p2

n +
1√
2π

1

2
√
nβ

exp(−nβ2).

The lower bound on pn = ΦC(
√
nβ) can be used to give an upper bound on exp(−n

2
β2),

exp(−n
2
β2) ≤

√
2π

1 + nβ2

√
nβ

pn.

Combining these expressions, we find a single bound on the estimator variance in terms
of the probability pn,

σ2
n ≤ −p2

n + p2
n

√
2π

(1 + nβ2)2

2n
√
nβ3

. (4.8)

Likewise, for all n ∈ N we get the bound on the relative standard deviation,

RSD[p̂n] ≤

√
√

2π
(1 + nβ2)2

2n
√
nβ3

− 1.

For
√
nβ ≥ 1, we can apply the inequality in Equation 4.1,

√
nβ ≤

√
−2 log ΦC(

√
nβ),

to express the relative standard deviation in terms of the probability pn = ΦC(
√
nβ),

RSD[p̂n] ≤
√

2
√

2π
√
nβ2 − 1 ≤

√
4
√
π
√
− log pn − 1.

For arbitrarily large n ∈ N, this bound can be tightened to,

RSD[p̂n] ≤
√

1

2

√
2π
√
nβ2 − 1 ≤

√√
π
√
− log pn − 1.

Now, we move our attention to A, the exterior of a polyhedron. As mentioned earlier,
we consider the set A to be the union of half-spaces Hi = {x ∈ Rd : x>ai > bi}, where
ai ∈ Rd, bi ∈ R, i = 1, . . . ,m. Let for all n ∈ N pn be the density function of Nd(µ,Σ/n),
where µ 6∈ A. For convenience, we define as before the constant,

βi :=
bi − µ>ai

‖
√

Σai‖2

, (4.9)
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which is the Mahalanobis distance DΣ(µ,Hi) between µ and the half-space Hi for each
i = 1, . . . ,m. Now the probability of sampling in any of the half-spaces Hi is pn,i =
Ppn(Hi) = ΦC(

√
nβi). We consider as possible mean νi the most likely point on each of

the half-spaces, similarly to Equation 4.7, namely,

νi = µ+
βi

‖
√

Σai‖2

Σai, (4.10)

for all i = 1, . . . ,m.
Now for any choice of weights wi, i = 1, . . . ,m, we find by Theorem 4.2.2 the following

bound on the estimator variance obtained by means of importance sampling for all n ∈ N,

σ2
n ≤ −p2

n +
m∑
i=1

1

wi
exp(nβ2

i )Φ
C(2
√
nβi). (4.11)

Similarly to the case of a single half-space H, we find for all i = 1, . . . ,m,

exp
(
−n

2
β2
i

)
≤
√

2π
1 + nβ2

i√
nβi

Pn(Hi) ≤
√

2π
1 + nβ2

i√
nβi

pn.

Thus, we find the bound,

RSD [p̂n] ≤

√√√√√2π
m∑
i=1

1

wi

(1 + nβ2
i )

2

2n
√
nβ3

i

− 1.

When
√
nβi ≥ 1 for all i = 1, . . . ,m, this reduces to,

RSD [p̂n] ≤

√√√√2
√

2π
m∑
i=1

1

wi

√
nβi − 1.

To keep the bound on the relative standard deviation low, it is necessary to choose weights
wi, i = 1, . . . ,m such that they keep

∑m
i=1

1
wi

√
nβi small. What constitutes a good choice

for the weights, depends on the rarity parameter n.
Instead of fixing the weights wi, we can also let them depend on the rarity parameter

n ∈ N. We use the notation wi(n) for this. This requires a slightly different version of
Theorem 4.2.2 to prove logarithmic efficiency.

Theorem 4.3.1. Let, for n ∈ N, p(n) and q
(n)
1 , . . . , q

(n)
m be respectively distributed as

Nd(µ,Σ/n) and Nd(ν1,Σ/n), . . . ,Nd(νm,Σ/n), and let p(n)(x) and q
(n)
1 (x), . . . , q

(n)
m (x) de-

note their density functions. Let, for n ∈ N, wi(n), i = 1, . . . ,m be weights such that
wi(n) > 0,

∑m
i=1 wi(n) = 1, and the limits limn→∞

1
n

logwi(n) = Wi exist. Let A ∈ B(Rd)
be Borel-measurable and let pn = Pp(n)(X ∈ A). Let A1, . . . , Am be the regular closed sets,

Ai = {x ∈ Rd : DΣ(µ,A◦)2 ≤ 1

2
DΣ(2µ− νi,x)2 −DΣ(µ, νi)

2 +Wi}, i = 1, . . . ,m.

The estimators p̂n of pn obtained via importance sampling with a mixture of shifted mean
distributions with density function q(n)(x) =

∑m
i=1 wi(n)q

(n)
i (x) is logarithmically efficient

if and only if the sets Ai, i = 1, . . . ,m form a cover of A◦,

A◦ ⊂
m⋃
i=1

Ai.
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Proof. The proof follows along the same lines as the proof of Theorem 4.2.2.

The weights wi(n) that minimize the sum in Equation 4.11 can be found by introducing
a Lagrange multiplier λ and studying the Lagrange function,

L =
m∑
i=1

1

wi(n)
exp(nβ2

i )Φ
C(2
√
nβi)− λ

(
m∑
i=1

wi(n)− 1

)
.

We find the derivatives,

∂L
∂wi(n)

= − 1

wi(n)2
exp(nβ2

i )Φ
C(2
√
nβi)− λ, i = 1, . . . ,m,

∂L
∂λ

= 1−
m∑
i=1

wi(n).

Setting both derivatives to zero, we find the weights that minimize the bound on the
estimator variance,

wi(n) =
exp

(
1
2
nβ2

i

)√
ΦC(2

√
nβi)∑m

j=1 exp
(

1
2
nβ2

j

)√
ΦC(2

√
nβj)

, i = 1, . . . ,m. (4.12)

We check to see, that logarithmic efficiency will be attained. For the weights we find,

lim
n→∞

1

n
logwi(n) = −1

2
DΣ(µ, νi)

2 +
1

2
DΣ(µ,A◦)2.

Thus, for i = 1, . . . ,m, the sets Ai are given by,

Ai = {x ∈ Rd : DΣ(µ,A◦)2 ≤ DΣ(2µ− νi,x)2 − 3DΣ(µ, νi)
2},

while for all x ∈ Hi,

DΣ(2µ− νi,x)2 ≥ DΣ(2µ− νi, νi)2

= 4DΣ(µ, νi)
2

≥ 3DΣ(µ, νi)
2 + min

j=1,...,m
DΣ(µ, νj)

2

= 3DΣ(µ, νi)
2 +DΣ(µ,A◦)2.

Thus, Hi ⊂ Ai for all i = 1, . . . ,m and the obtained set of estimators {p̂n}n∈N are
logarithmically efficient by Theorem 4.3.1.

We again provide a bound on the estimator variance. Inserting the weights from
Equation 4.12 into Equation 4.11 yields,

σ2
n ≤ −p2

n +

(
m∑
i=1

exp

(
1

2
nβ2

i

)√
ΦC
(
2
√
nβi
))2

.

We can now find a bound on the estimator variance in terms of the probabilities pn,i
by applying the bounds of Lemma 4.1.2,

σ2
n ≤ −p2

n +

√
π

2

(
m∑
i=1

pn,i
1 + nβ2

i

n3/4β
3/2
i

)2

.
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If mini=1,...,m ΦC(
√
nβi) = mini=1,...,m pn,i ≤ pn ≤ ΦC(1) ≈ .1587, then

√
nβi ≥ 1 for

all i = 1, . . . ,m and we can apply the inequality in Equation 4.1 to find,

σ2
n ≤ −p2

n + 4
√
π

(
m∑
i=1

pn,i
4
√
− log pn,i

)2

.

Let pn =
∑m

i=1 pn,i be the union bound, then the estimator variance and relative standard
deviation satisfy,

σ2
n ≤ −p2

n + 4p2
n

√
π
√
− log pn,

RSD[p̂N ] ≤ 4
p2
n

p2
n

√
π
√
− log pn − 1.

For arbitrarily large values of the rarity parameter n ∈ N, this can be tightened to,

RSD[p̂n] ≤ p2
n

p2
n

√
π
√
− log pn − 1.

In the next section, we will run simulations to find the probability of infeasible con-
figurations of power injections. We will use the data on power grids of several IEEE
test-systems.

4.4 Simulation

Thus far in this chapter, we have constructed a method for finding a logarithmically effi-
cient set of estimators for the probability of an infeasible configuration of power injections
in the power grid. In this section, we will use this method to perform several simulations.

First, we extract data on the power grids present in the IEEE test system using the
MATPOWER software package [9] and use it to find a realistic Gaussian distribution
to model the power injections. The data does not include the distribution of the power
injections, but instead only a single configuration of power injections at a specific moment
of observation.

4.4.1 Model

Caution is required when constructing the probability distribution. In the DC-approximation
the transmission lines are assumed to be lossless. Therefore, it becomes necessary to im-
pose the condition that the total power injection in the network is zero.

We initially choose the mean power injections in a d + 1-bus system, µ ∈ Rd+1, to
be the power injections at the moment of observation of the data. We choose the power
injection to be independent and we let the standard deviation be proportional to the mean
power injection. This leads to an initial covariance matrix Σ = diag (µ)2.

Next, we impose the condition that the total power injection is zero. We wish to study
the distribution of X|1>d+1X = 0, where X ∼ Nd+1(µ,Σ) and 1 = (1, 1, . . . , 1)>︸ ︷︷ ︸

d+1-times

.
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By virtue of Theorem 4.1.1, this is a Gaussian distribution whose mean and the co-
variance matrix are given by,

E(X|1>X = 0) = µ− Σ11>µ

1>Σ1
, and,

Var(X|1>X = 0) = Σ− Σ11>Σ

1>Σ1
.

This distribution is degenerate. However, this forms no problem. We remove one element
from X, which we now call X′, and construct the Power Transmission Distribution Factor
V , see Section 2.3, such that the column corresponding to the removed element is a
zero-column. We remove this column too and call the resulting matrix V ′.

X′ is a non-degenerate Gaussian distribution. By letting bi be the maximum power
allowed to flow through branch i for all i = 1, . . . ,m branches, we find the infeasible
half-spaces Hi = {x ∈ Rd : a>i x > bi} and Hm+i = {x ∈ Rd : a>i x < −bi}, where
ai = am+i = V ′i,•.

We now summarize our method developed throughout this chapter in a step-by-step
plan for a given Gaussian distribution Nd(µ,Σ) with density function p and an infeasible
set of configurations A = ∪mi=1Hi, that is a union of half-spaces.

� First, we find the Mahalanobis distance of the mean of the power injections µ to
each of the half-spaces Hi,

βi = inf
x∈Hi
{DΣ(µ,x)}.

� Second, we find the most likely point νi on each of the half-spaces Hi,

νi = µ+
βi

‖
√

Σai‖2

Σai.

� Next, for some selection of rarity parameters n ∈ N, we do the following:

– we determine the weights,

wi(n) =
exp

(
1
2
nβ2

i

)√
ΦC(2

√
nβi)∑m

j=1 exp
(

1
2
nβ2

j

)√
ΦC(2

√
nβj)

, i = 1, . . . ,m,

– we draw samples X1, . . . ,XN from the mixed shifted mean distribution with
density function,

q(x) =
nd/2

|
√

2πΣ|

m∑
i=1

wi(n) exp
(
−n

2
(x− νi)>Σ−1(x− νi)

)
,

– and we calculate the estimators,

p̂n =
1

N

N∑
i=1

p(Xi)

q(Xi)
1A(Xi),

and sample variances,

S2
N =

1

N − 1

N∑
i=1

(
p(Xi)

q(Xi)
1A(Xi)− p̂n

)2

.

In Appendix A the Matlab code is presented, that performs simulations based on
this method. We use the MATPOWER software package [9] to extract data on the power
grids present in the IEEE test systems. We also use MATPOWER to solve the power
flow equations.
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4.4.2 Results

We applied the methods to both the 3-bus network ‘case3bus P6 6’ and the 30-bus network
‘case30bus’ in Matpower. We notice, that the probability seems to follow the exponential
trend quite quickly for both networks. Both in Figure 4.2a and Figure 4.3a the logarithm
of the probability seems almost a linear function of the rarity parameter once it drops
below 10−2.

Furthermore, the relative standard deviation remains low for rare events. With a
little effort one can spot the bounds on the relative standard deviation in terms of the
probability in Figures 4.2c and 4.3c.
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(c) Plot of the relative standard deviation versus the probability.

Figure 4.2: Plots of the probability and the relative standard deviation for a 3-bus system,
‘case3bus P6 6’ in Matpower. We used N = 106 samples.
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Figure 4.3: Plots of the probability and the relative standard deviation for a 30-bus
system, ‘case30bus’ in Matpower. We used N = 106 samples.
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Chapter 5

Distflow

The DC-approximation provides a fast method to approximate the power flowing through
the transmission lines. Unfortunately, this approximation can be quite rough, especially
when viewed from a rare event point of view. A small difference in allowable power
injections could potentially lead to orders of magnitude difference in the probability of
the rare event occurring.

A second drawback of the DC-approximation lies in the assumption that all voltage
magnitudes are equal. This makes it impossible to analyse which power injections lead
to too low or too high a voltage.

In a random network, there are no practical alternatives to using numerical methods.
However, there are certain conditions under which radial networks can be exactly studied
without employing numerical methods. In this chapter, we will specifically look whether
the voltages at buses along a single line will be within a specified range.

5.1 Distflow

In [4] the concept of Distflow was first introduced. Shortly after that, it was expanded
upon by the same authors in [5]. The main idea centres around the fact, that the power
flows and voltages in the system can be determined recursively when the voltage and
power injection at one of the ends of a series of sequentially connected buses are known.

We will derive the Distflow equations in an alternative way to how they were first
introduced, leading to a slightly different, but still equivalent set of equations. In the
original Distflow papers a first order recurrence relation in three real variables was derived:
the active power flow between two subsequent buses, the reactive power flow between two
subsequent buses, and the square of the voltage magnitude at each bus. We will find a
second order recurrence relation in a single complex variable: the complex voltage at each
bus.

We consider a system of n+ 1 sequentially connected buses without shunt impedances
along a transmission line, see Figure 5.1 for a schematic representation. The first n buses
are consumers. The final bus is a reference bus.
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1 2 3 n n+ 1
z1,2 z2,3 zn,n+1

Ĩ1,2 Ĩ2,3 Ĩn,n+1

Figure 5.1: A schematic representation of n + 1 sequentially connected buses with
impedances and currents. There are no shunt impedances.

By Kirchhoff’s current law, see Theorem 2.1.1 the injected current at each bus is
equal to the sum of outward flowing current from that bus. By the complex power
formula, Equation 2.3, the injected current at bus i is Ĩi = S∗i /Ṽ

∗
i , while by Ohm’s law,

Equation 2.10, the current flowing from bus i to bus i+ 1 is Ĩi,i+1 = Ṽi−Ṽi+1

zi,i+1
, where zi,i+1

is the impedance of the transmission line between buses i and i + 1. This results in a
system of equations governing the power flow in this network,

S∗i
Ṽ ∗i

=
Ṽi − Ṽi+1

zi,i+1

− Ṽi−1 − Ṽi
zi−1,i

, i = 2, . . . , n,

S∗1
Ṽ ∗1

=
Ṽ1 − Ṽ2

z1,2

,

S∗n+1

Ṽ ∗n+1

=
Ṽn+1 − Ṽn
zn,n+1

.

Rearranging these terms yields a second order recursive relation,

Ṽi+1 =

(
1 +

zi,i+1

zi−1,i

)
Ṽi −

zi,i+1

zi−1,i

Ṽi−1 − zi,i+1
S∗i
Ṽ ∗i

, i = 2, . . . , n

Ṽ2 = Ṽ1 − z1,2
S∗1
Ṽ ∗1

.

In the hypothetical situation where V1 is known, this is extremely helpful. When V1

is unknown, it might still prove useful. We will study the situation where the ratio of
reactance to resistance in the transmission line equals the ratio of the reactive to the real
power demand of consumers.

5.2 Telescoping series

We notice that the injected currents form a telescoping series,

k∑
i=1

S∗i
Ṽ ∗i

=
Ṽk − Ṽk+1

zk,k+1

, k = 1, . . . , n.

This telescoping series in turn provides a second telescoping series. We define z′i,j to be
impedance of the transmission line between buses i and j. For i, j ∈ {1, 2, . . . , n+1} with
i < j, we thus have

z′i,j =

j−i−1∑
k=0

zi+k,i+k+1.
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Now, we find,

l∑
i=1

z′i,l+1

S∗i
Ṽ ∗i

=
l∑

k=1

zk,k+1

k∑
i=1

S∗i
Ṽ ∗i

= Ṽ1 − Ṽl+1, l = 1, . . . , n. (5.1)

Typically, transmission lines have positive resistance and reactance, in which case zi,i+1

lies in the first quadrant of the complex plane. Consumers do usually indeed consume
both active and reactive power. Therefore, the complex power injection lies in the third
quadrant of the complex plane. We make the assumptions, that the argument of the
impedance in all transmission lines is the same and that the argument of the power
injections is exactly opposite to this, so

zi,i+1S
∗
j ∈ R≤0, i, j = 1, . . . , n.

Although we mainly make this assumption for simplifying the mathematical model, it is
not out of the realm of physical possibility.

Under this assumption, we clearly see, that if we choose our reference angle such that
the voltage at bus 1 is real and positive, then all the voltages will be real and increasing
along the transmission line. Since all voltages are real we will drop the complex notation
for the rest of this chapter, meaning that we write Vi instead of Ṽi and Ṽ ∗i .

We wish to determine the probability of the rare event, that the magnitude of the
voltage at any consumer falls below a certain threshold or that a stable solution does not
even exist at all. We will show how this rare event relates to a system where the voltage
at the final consumer is exactly at the threshold. First, we need the following lemma.

Lemma 5.2.1. Let V1 > 0 be given. If Vn+1 ≤ 2V1, then

0 ≤ dVk
dV1

≤ 1,

for all k = 1, . . . , n+ 1.

Proof. Clearly, this is true for k = 1, since dV1
dV1

= 1.

Suppose that there is some 1 ≤ K ≤ n such that 0 ≤ dVk
dV1
≤ 1 for all 1 ≤ k ≤ K, then

dVK+1

dV1

= 1 +
K∑
i=1

z′i,K+1

S∗i
V 2
i

dVi
dV1

≥ 1 +
1

V1

K∑
i=1

z′i,K+1

S∗i
Vi

dVi
dV1

≥ 1 +
1

V1

K∑
i=1

z′i,K+1

S∗i
Vi

= 1− 1

V1

(VK+1 − V1)

≥ 0,

and
dVK+1

dV1

= 1 +
K∑
i=1

z′i,K+1

S∗i
V 2
i

dVi
dV1

≤ 1.
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Thanks to this lemma it becomes much easier to find whether a particular rare event
we are interested in occurs, namely if the voltage at any bus falls too far below the nominal
voltage. Given Vn+1 = 1, is there no solution for V1 with V1 ≥ 1−α, where 0 ≤ α ≤ 1/2?
This is because we find an equivalence with a system where not the voltage at bus n+ 1,
but the voltage at bus 1 is known instead. This allows for recursively determining the
voltage at the reference bus via the recursive relations.

Theorem 5.2.1. Let the impedances zi,i+1 and the power injections Si, i = 1, . . . , n be
fixed. Let Vn+1(V1) express the voltage at bus n+ 1 as a function of the voltage at bus 1.
The following equivalence holds, for 0 ≤ α ≤ 1/2, for the voltages at bus 1 and bus n+ 1,

(∃x ≥ 1− α s.t. V1 = x and Vn+1(V1) = 1) if and only if (V1 = 1− α and Vn+1(V1) ≤ 1) .

Proof. ⇒: Vn+1(V1) is through composition of continuous recursive functions itself a con-
tinuous function of V1, when V1 > 0. At V1 = 1 we have Vn+1(1) ≥ V1 = 1. So, if
Vn+1(1 − α) ≤ 1, then we find by the intermediate value theorem that, there exists an
1− α ≤ x ≤ 1 such that Vn+1(x) = 1.

⇒: If Vn+1(1−α) > 1, then the function Vn+1 is by lemma 5.2.1 increasing or strictly
larger than 2 · (1 − α) ≥ 1 for all x ≥ 1 − α. Thus there exists no x ≥ 1 − α such that
Vn+1(x) = 1.

5.3 Simulation results

We consider a system of 20 buses connected on a single line. We work in a per-unit system.
The voltage at the reference bus is 1. The resistance between any two subsequent buses is
.001. The power demand of all buses is purely real. The demand at each bus is modeled
as a half-normal distribution with mean 1/4. The voltage at the last bus is not allowed
to drop below .9.

In a simulation with 107 samples this lead to 294 cases where the voltage at the
end bus was too low, a probability of 2.94 · 10−5 and relative standard deviation of√

1/(2.94 · 10−5)− 1 ≈ 184.
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Chapter 6

A Continuous-Time Approach to the
2-Bus System

In this chapter, we will study the most basic network consisting of a single load-bus and
a single generator: a 2-bus system. Note that a load-bus could be a substation, that in
turn is connected to many different consumers. This situation may thus still be used to
model more complex situations than that of a single consumer. Up until now, we have
considered the power demand at a load-bus at a certain point in time and investigated
whether that would lead to an undesirable situation in the system. With this approach,
we can conclude that, if no undesirable situation exists at a certain time T , then there
was no undesirable situation at any moment before time T . Though this is a reasonable
rule of thumb, it is not necessarily true. We avoid this fallacious reasoning by considering
the power demand as a continuous-time stochastic process.

We choose to model the demand of power by a Wiener process, because it is a well
tractable continuous-time process, that has Gaussian increments. Therefore, this model
of the power injections in the 2-bus system concurs with our earlier model of Gaussian
power injections in Chapter 4. We will make a comparison between the continuous-time
and discrete-time model for the 2-bus system.

6.1 Wiener processes and the Heat equation

In a general d+1-bus AC-powerflow system, where bus d+1 is the reference bus, we model
the vector of real and reactive power injections (P1, Q1, P2, Q2, . . . , Pd, Qd)

> by an affine
transformation of a R2d standard Wiener process.

Definition 6.1.1. [30] A filtration on a measurable space (Ω,F) is a collection {Ft}t≥0

of σ-algebras Ft ⊂ F such that

0 ≤ s < t⇒ Fs ⊂ Ft.

A stochastic process (Xt)t≥0 on a probability space (Ω,F , P ) is called adapted if for every
t ≥ 0 the random variable Xt is Ft-measurable.

Definition 6.1.2. [30] Let (Ω,F , P ) be a probability space with a filtration {Ft}t≥0 and an
Rd-valued adapted stochastic process W = (Wt)t≥0. Then W is called an Rd-valued stan-
dard Wiener process with respect to the filtration {Ft}t≥0 if the following conditions
hold:
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1. W0 = 0 almost surely.

2. (independence of increments) Wt −Ws is independent of Fs for all s ≤ t.

3. (stationarity of increments) Wt −Ws
Dist.
= Nd(0, (t− s)Id) in distribution.

4. W almost surely has continuous sample paths.

An affine transformation of a standard Wiener process is referred to as a Wiener
process. If W = (Wt)t≥0 is an Rd-valued standard Wiener process, then W ′ =

√
ΣW + µ,

where Σ is a d× d positive definite matrix and µ ∈ Rd, is a Wiener process. Let {F ′t}t≥0

be its filtration. The process W ′ satisfies the following conditions:

1. W ′
0 = µ almost surely.

2. (independence of increments) W ′
t −W ′

s is independent of Fs for all s ≤ t.

3. (stationarity of increments) W ′
t −W ′

s
Dist.
= Nd(0, (t− s)Σ) in distribution.

4. W ′ almost surely has continuous sample paths.

The third property (stationarity of increments) holds, because

Var(W ′
t −W ′

s) = Var(
√

Σ(Wt −Ws)) =
√

ΣVar(Wt −Ws)
√

Σ
>

=
√

Σ(t− s)Id
√

Σ
>

= (t− s)Σ.

Based on restrictions in the network of required voltages at the buses and maximal power
flows through the transmission lines, we can define a domain D of feasible power injections.
Let the Wiener process W = (Wt)t≥0 describe the power injections, then the network is
considered to be in an infeasible state at a time t if and only if Wt 6∈ D. We want to know
the probability that the network reaches an infeasible state within a given time t > 0.

We make the assumptions that D is open and that W0 ∈ D. The first time we exit
the region D is given by the first exit time,

τ = inf{t > 0 : Wt 6∈ D}. (6.1)

Definition 6.1.3. Let (Ω,F , P ) be a probability space with a filtration {Ft}t≥0. A random
variable τ : Ω → [0,∞] is called a stopping time with respect to the filtration {Ft}t≥0

if,
{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, for all t ≥ 0.

In loose terms, this definition means, that τ is a stopping time when it only depends
on the past of a stochastic process and not on its future.

Lemma 6.1.1. For a stochastic process Xt with right-continuous paths and an open set
D, the first exit time τ = inf{t > 0 : Xt 6∈ D} is a stopping time.

Proof. A proof can be found in [31].

Next, we show that the first exit time of a Wiener process from a bounded open set
is almost surely finite.
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Lemma 6.1.2. Let W = (Wt)t≥0 be an Rd-valued Wiener process on the probability space
(Ω, {Ft}t≥0,P), whose increments Wt −Ws, for t > s, are distributed as Nd(0, (t− s)Σ),
where Σ is a d × d positive definite matrix. Let D be a bounded open set. The first exit
time τ = inf{t > 0 : Wt 6∈ D} is almost surely finite.

Proof. The events {ω ∈ Ω : τ ≤ t}t≥0 are increasing, thus P(limt→∞{ω ∈ Ω : τ ≤ t}) =
limt→∞ P({ω ∈ Ω : τ ≤ t}). Furthermore, for all t ≥ 0, we have {ω ∈ Ω : Wt 6∈ D} ⊂
{ω ∈ Ω : τ ≤ t}. Thus, we conclude,

P( lim
t→∞
{ω ∈ Ω : τ ≤ t}) = lim

t→∞
P({ω ∈ Ω : τ ≤ t})

≥ lim
t→∞

P({ω ∈ Ω : Wt 6∈ D})

= lim
t→∞

[
1−

∫
D

1√
|2πtΣ|

exp

(
− 1

2t
DΣ(x,W0)2

)
dx

]
≥ 1− lim

t→∞

∫
D

1√
|2πtΣ|

dx

= 1.

Next, we introduce a theorem that directly links the transition probability on the
stopped stochastic process,

Wt∧τ =

{
Wt, if t ≤ τ,
Wτ , if t > τ,

to the solution of a partial differential equation with boundary values and an initial
condition. This is more commonly referred to as a Cauchy problem. This translates the
stochastic process into a deterministic problem.

Theorem 6.1.1. Let W = (Wt)t≥0 be an Rd-valued standard Wiener process. Let D ⊂ Rd

be a bounded open set, and let x ∈ D. The solution to the Cauchy problem,

∂tu(y, t) =
1

2
∆yu(y, t), for t > 0, y ∈ D,

with initial condition,
lim
t↓0

u(y, t) = δ(x− y), y ∈ D,

and Dirichlet boundary conditions,

u(y, t) = 0, for y ∈ ∂D,

is equal to the transition density of hitting a point y ∈ D at time t for the Wiener process
Wt + x, i.e.

pD(x,y, t) = u(y, t).

Proof. The first exit time τx = inf{t > 0 : Bt + x 6∈ D} from D is an almost surely finite
stopping time by Lemma 6.1.2. Therefore, the stopped stochastic process,

Xt =

{
Wt + x, if t ≤ τx,
Wτx + x, if t > τx,
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possesses the strong Markov property [32], and consequently it is a Feller-process. From
the fact that the generator of the standard Wiener process is a half times the Laplacian
and by [33], the generator A of this process is given, for suitable functions f : Rd → R,
by

Af(y) =

{
1
2
∆yf(y), y ∈ D,

0, y ∈ ∂D.

The Kolmogorov forward equation now yields that pD(x,y, t) = u(y, t), for x,y ∈ D,
where u(y, t) satisfies,

∂tu(y, t) =

{
1
2
∆yu(y, t), t > 0, y ∈ D,

0, t > 0, y ∈ ∂D.
lim
t↓0

u(y, t) = δ(x− y).

This is equivalent to the posed Cauchy problem.

The described partial differential equation is better known as the Heat Equation with
diffusion constant 1. We note that the transition probability on D is sub-stochastic for
t > 0 i.e. pD(x,D, t) < 1. This is due to the killing of some of the paths on the boundary
∂D within any given time t > 0. In fact, we have,

P(τ ≤ t) = 1− pD(x,D, t).

Similarly to the model where the power injections were normally distributed, we wish to
study the asymptotic behaviour of P(τ ≤ t) as t tends to zero.

Large deviations theory and Cramérs theorem 3.4.1 provided us with the result, that
for an open set D and random variables Yn ∼ Nd(µ,Σ/n), n ∈ N, Equation 4.3 holds,

lim
n→∞

1

n
logP(Yn 6∈ D) = −1

2
inf

x∈DC
(x− µ)>Σ−1(x− µ).

In large deviations theory, Schilder’s theorem [18, 34] provides a similar result for P(τ ≤ t).

Theorem 6.1.2 (Schilder). Let W = (Wt)t≥0 be an Rd-valued standard Wiener process.
Let, for ε > 0, νε be the probability measure induced by Wεt, t ∈ [0, T ], on the space
C0([0, T ],Rd) of continuous functions φ : [0, T ] → Rd such that φ(0) = 0, equipped with
the supremum norm topology.

The family of probability measures {νε−1}ε−1>0 satisfies, in C0([0, T ],Rd), the large
deviations principle with good rate function,

IW (φ) =

{
1
2

∫ T
0
|φ̇(t)|2dt, if φ is absolutely continuous,

∞, otherwise.

Proof. A proof can be found in [18].

As a corollary of Schilder’s theorem, we see that for an Rd-valued standard Wiener process
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W = (Wt)t≥0, a bounded regular open set D, and some time T > 0,

lim
ε↓0

ε logP(τ ≤ εT ) = lim
ε↓0

ε logP(∃t ∈ [0, T ] such that Wεt ∈ DC)

= − inf{IW (φ) : φ ∈ C0([0, T ],Rd),∃t ∈ [0, T ] such that φ(t) ∈ DC}

= −IW
(
t→ t

T
· arg inf

x∈DC
{‖x‖2}

)
= −1

2

∫ T

0

‖ 1

T
arg inf

x∈DC
{‖x‖2}‖2

2dt

= − 1

2T
inf

x∈DC
‖x‖2

2.

Setting ε = t and T = 1 yields

lim
t↓0

t logP(τ ≤ t) = −1

2
inf

x∈DC
‖x‖2

2.

More generally, we find for the Wiener process W ′ =
√

ΣW + µ, where Σ is a d × d
positive definite matrix and µ ∈ Rd,

lim
t↓0

t logP(τ ≤ t) = −1

2
inf

x∈DC
(x− µ)>Σ−1(x− µ) = −1

2
DΣ(µ,DC)2, (6.2)

since, for t ≥ 0,
(
Wt ∈ DC

)
⇔
(
W ′
t ∈
√

Σ
−1DC − µ

)
. Thus, we have the remarkable

result, that the rate function of the probability of having exited D at some time before t
is equal to the rate function of the probability of being outside D at time t,

lim
t↓0

t logP(inf{s > 0 : W ′
s ∈ DC} ≤ t) = lim

t↓0
t logP(W ′ ∈ DC).

6.2 Wiener process exiting an interval

We first study the Wiener-process in a single dimension. Consider a 2-bus system of a
reference bus, that operates at a given constant voltage, and a load bus, where the reactive
power demand is a function of the real power demand. Through composition of functions,
the voltage at the load bus is a function of the real power demand. An allowable interval
of real power demand can now be derived from bounds on the allowed range of operating
voltage at the load bus.

Similarly, an interval for the real power demand may be based on restrictions on the
power losses in the transmission line between the two buses, see [35].

Let us consider a standard Wiener process Wt to model the power demand and an
allowable interval [−a, b], where 0 < a, b.

We are interested in the distribution of the stopping time,

τ = inf{t > 0 : Wt 6∈ [−a, b]}.

We introduce auxiliary stopping times,

τa = inf{t > 0 : Wt ≤ −a},
τb = inf{t > 0 : Wt ≥ b}.
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The distribution of this stopping times is relatively easy to find compared to the dis-
tribution of τ . By Theorem 6.1.1, the transition density of a stopped standard Wiener
process,

Wt∧τb =

{
Wt, if t ≤ τb,
b, if t > τb,

is given by the solution to the Cauchy problem,

∂u

∂t
= uxx, t > 0, x ≤ b,

u(b, t) = 0, t > 0,

lim
t↓0

u(x, t) = δ(x), x ≤ b.

It can be verified, that this equation is solved by the function

u(x, t) =
1√
2πt

(
exp

(
−x

2

2t

)
− exp

(
−(x− 2b)2

2t

))
, x < b, t > 0.

Consequently, we find,

P(τb ≤ t) = 1−
∫ b

−∞

1√
2πt

(
exp

(
−x

2

2t

)
− exp

(
−(x− 2b)2

2t

))
dx

= 1− Φ(
b√
t
) + Φ(

−b√
t
)

= 2− 2Φ(
b√
t
),

(6.3)

and,
P(τb ∈ dt)

dt
=

b√
2πt3

exp

(
−b

2

2t

)
. (6.4)

The distribution of τb can alternatively be derived by considering the reflection principle.
By virtue of the strong Markov property, the process

W b
t =

{
Wt, if t ≤ τb,
b−Wt, if t > τb,

we obtain by reflecting the standard Wiener process W = (Wt)t≥0 at the random time τb,
is again a standard Wiener process, whose paths are equally likely as those of the original
process W . Therefore, we find,

P(Wt ≥ b|t ≥ τb) = P(W b
t ≥ b|t ≥ τb) = P(Wt ≤ b|t ≥ τb),

and,

P(τb ≤ t) =
P(τb ≤ t,Wt ≥ b)

P(Wt ≥ b|τb ≤ t)
=

P(Wt ≥ b)

1/2
= 2− 2Φ

(
b√
t

)
.

We return to the problem of determining the distribution of τ . By Theorem 6.1.1, the
transition density on (−a, b) of the stopped standard Wiener process,

Wt∧τ =

{
Wt, if t ≤ τ,
Wτ , if t > τ,
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is given by the solution to the Cauchy problem,

∂u

∂t
=

1

2
uxx, t > 0, −a ≤ x ≤ b,

u(−a, t) = u(b, t) = 0, t > 0,

lim
t↓0

u(x, t) = δ(x), −a ≤ x ≤ b.

This Cauchy problem is often solved using Fourier analysis, e.g. see [36],

u(x, t) =
2

a+ b

∞∑
n=1

sin

(
nπ(x+ a)

a+ b

)
sin

(
nπa

a+ b

)
exp

(
− t

2

(
nπ

a+ b

)2
)
.

This expression does not prove particularly helpful when considering rare events, since
for small t > 0,

P(τ ≤ t) = 1−
∫ b

−a
u(x, t)dx

= 1 +
∞∑
n=1

2

nπ
(cos(nπ)− 1) sin

(
nπa

a+ b

)
exp

(
− t

2

(
nπ

a+ b

)2
)

= 1−
∞∑
n=1

4

(2n− 1)π
sin

(
(2n− 1)πa

a+ b

)
exp

(
− t

2

(
(2n− 1)π

a+ b

)2
)
,

(6.5)

is rather difficult to evaluate. As t decreases, the sum converges more slowly. Using this
expression, it seems impossible to find the asymptotic behaviour of P(τ ≤ t) as t tends to
zero, limt↓0 t logP(τ ≤ t).

By Equation 6.2, we know that limt↓0 t logP(τ ≤ t) = −1
2

min{a2, b2}. We opt for a
different method to obtain an expression for P(τ ≤ t), that will show this more clearly.

Applying the inclusion-exclusion principle, we find,

P(τ ≤ t) = P((τa ∧ τb) ≤ t) = P(τa ≤ t) + P(τb ≤ t)− P((τa ∨ τb) ≤ t).

where ‘∧’ denotes the minimum of two elements and ‘∨’ denotes the maximum. The term
P((τa ∨ τb) ≤ t) corresponds to the probability of crossing the boundary of the interval
within time t.

We recursively define more auxiliary stopping times,

τ (0)
a = inf{t > 0 : Wt ≤ −a},
τ

(0)
b = inf{t > 0 : Wt ≥ b},

τ (n+1)
a =

{
inf{t > τ

(n)
a : Wt ≥ b}, if n ∈ N0 is even,

inf{t > τ
(n)
a : Wt ≤ −a}, if n ∈ N0 is odd,

τ
(n+1)
b =

{
inf{t > τ

(n)
b : Wt ≤ −a}, if n ∈ N0 is even,

inf{t > τ
(n)
b : Wt ≥ b}, if n ∈ N0 is odd.

Thanks to the repeated application of the strong Markov property, these are all indeed
stopping times. The stopping time τ

(n)
a is the first time, that alternatingly the upper and
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lower bounds are crossed n times after the lower bound has been crossed for the first time.
A useful equivalence relation for these stopping times is,(

(τ (n)
a ∨ τ

(n)
b ) ≤ t

)
⇔
(

(τ (n+1)
a ∧ τ (n+1)

b ) ≤ t
)
, n ∈ N0.

The implication to the left follows from the fact that τ
(n)
a , τ

(n)
b ≤ (τ

(n+1)
a ∧ τ (n+1)

b ).

For the implication to the right, we consider two separate cases. If (τ
(n)
a ∧ τ (n)

b ) ≤ t

and τ
(0)
a ≤ τ

(0)
b , then we have τ

(n+1)
a = τ

(n)
b ≤ t. Alternatively, if (τ

(n)
a ∧ τ (n)

b ) ≤ t and

τ
(0)
b ≤ τ

(0)
a , then we have τ

(n+1)
b = τ

(n)
a ≤ t.

By repeatedly applying both this equivalence and the inclusion-exclusion principle,

P((τ (n)
a ∧ τ

(n)
b ) ≤ t) = P(τ (n)

a ≤ t) + P(τ
(n)
b ≤ t)− P((τ (n)

a ∨ τ
(n)
b ) ≤ t), n ∈ N0,

we find,

P((τa ∧ τb) ≤ t) =
∑
n∈N0

(−1)n
[
P(τ (n)

a ≤ t) + P(τ
(n)
b ≤ t)

]
. (6.6)

We find the probabilities P(τ
(n)
a ≤ t) and P(τ

(n)
b ≤ t) by relating τ

(n)
a and τ

(n)
b to some

other stopping times,

τ̃ (n)
a = inf{t > 0 : Wt ≥ a+ n(a+ b)}, n ∈ N0,

τ̃
(n)
b = inf{t > 0 : Wt ≥ b+ n(a+ b)}, n ∈ N0.

It can be shown by induction on n ∈ N0, that

P(τ̃ (n)
a ≤ t) = P(τ (n)

a ≤ t), n ∈ N0,

P(τ̃
(n)
b ≤ t) = P(τ

(n)
b ≤ t), n ∈ N0.

For n = 0, this is trivially true, since τ
(0)
a = τ̃

(0)
a and τ

(0)
b = τ̃

(0)
b .

Suppose that for some N ∈ N0 the induction hypothesis holds for all n ≤ N , then for N
even,

P
(
τ (N+1)
a ≤ t

)
= P

(
τ (N+1)
a , τ (N)

a ≤ t
)

=

∫ t

u=0

P
(
inf{s > τ (N)

a : Ws ≥ b} ≤ t|τ (N)
a ∈ du

)
P
(
τ (N)
a ∈ du

)
=

∫ t

u=0

P
(
inf{s > τ̃ (N)

a : Ws ≥ b+ (N + 1)(a+ b)} ≤ t|τ̃ (N)
a ∈ du

)
× P

(
τ̃ (N)
a ∈ du

)
=

∫ t

u=0

P
(
τ̃ (N+1)
a ≤ t|τ̃ (N)

a ∈ du
)
P
(
τ̃ (N)
a ∈ du

)
= P

(
τ̃ (N+1)
a , τ̃ (N)

a ≤ t
)

= P
(
τ̃ (N+1)
a ≤ t

)
.

Similar relations hold when N is odd and for τ
(N)
b .

Combining Equation 6.6 with Equations 6.3 and 6.4, we now find,

P(τ ≤ t) = 2
∑
n∈N0

(−1)n
[
Φc

(
a+ n(a+ b)√

t

)
+ Φc

(
b+ n(a+ b)√

t

)]
, (6.7)
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and,

P((τa ∧ τb) ∈ dt)
dt

=
2√
2πt3

∑
n∈N0

(−1)n
[
(a+ n(a+ b)) exp

(
−(a+ n(a+ b))2

2t

)
+(b+ n(a+ b)) exp

(
−(b+ n(a+ b))2

2t

)]
.

Equation 6.7 is significantly easier to evaluate as t tends to zero than Equation 6.5. Using
the bounds provided in Lemma 4.1.2, we find the same result as in Equation 6.2,

lim
t↓0

t logP(τ ≤ t) = −1

2
min{a2, b2}.

6.3 Wiener process exiting an elliptical domain

In the previous section, we studied the distribution of the exit time of a Wiener process
from an interval. This corresponds to a 2-bus system in which the reactive power demand
is fully dependent on the real power demand. In this section we will study a 2-bus system
where the reactive power demand is not fully dependent on the real power demand.

We consider the 2-bus AC-powerflow system. We have a reference bus, this will be a
generator, at which the voltage magnitude is controlled at a constant value of |Vgen|. We
impose restrictions on the real and reactive power loads, P and Q, at the load-bus based
on the voltage magnitude |Vload| at this bus. When power is required at the load-bus, the
power injection is negative. We consider the power load tuple (P,Q) to follow an affine
transformation of a 2-dimensional standard Wiener process.

The buses are connected by a transmission line with conductance G, susceptance B,
and admittance Y . The magnitude of the admittance is |Y | =

√
G2 +B2. We assume,

that there are no shunt impedances.
There are three possible undesirable situations related to the voltage magnitude: the

system has no stable solution, |Vload| is too low, or |Vload| is too high. We denote the
lower and upper bounds on |Vload| by |Vmin| and |Vmax| respectively. We will focus on
the violation of the lower bound |Vmin|, since it is the most probable one under typical
operating conditions.

By the complex power formula, Equation 2.9, the injected current at the load bus is
Ĩload = S∗load/Ṽ

∗
load, where Ṽload and S are the complex voltage and power injection at the

load-bus respectively. Combining this with Equation 2.12, we find the relation,

S∗load

Ṽ ∗load

= Y
(
Ṽload − Ṽgen

)
,

or equivalently,

S∗load − Y |Vload|2 = −Y ṼgenṼ
∗

load .

Now we see, that the steady state solution for the voltage at the generator is related to
the other given variables via the implicit relation,(

P − |Vload|2G
)2

+
(
Q+ |Vload|2B

)2
= |Y |2|Vgen|2|Vload|2.
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If there is no value for |Vload| that solves this equation, then there is no steady-state
solution. This occurs when,

(2PG− 2QB + |Vgen|2|Y |2)2

4|Y |2
< P 2 +Q2.

For each pair of values of real and reactive power demand (P,Q) at the load-bus with,

(2PG− 2QB + |Vgen|2|Y |2)2

4|Y |2
> P 2 +Q2,

there are two distinct solutions. We discern between a high voltage branch,

|Vload| =
1

2
|Vgen|2 +

PG−QB
|Y |2

+

√
(2PG− 2QB + |Vgen|2|Y |2)2 − 4|Y |2(P 2 +Q2)

2|Y |2
,

(6.8)

and a low voltage branch,

|Vload| =
1

2
|Vgen|2 +

PG−QB
|Y |2

−
√

(2PG− 2QB + |Vgen|2|Y |2)2 − 4|Y |2(P 2 +Q2)

2|Y |2
.

(6.9)

The power losses in the transmission line scale inversely with the difference of the squares
of the voltage magnitudes at the buses. Therefore, it is desirable to be operating within
the high voltage branch.

At this point, it is important to note that, when the real and reactive power change
continuously over time, it is impossible to change from a high voltage branch solution to
a low voltage branch solution without having ever had values for P and Q such that there
is only one solution. These pairs of (P,Q) lie on the parabola, for which

(2PG− 2QB + |Vgen|2|Y |2)2

4|Y |2
= P 2 +Q2.

Now the open domain, within which the safe and desirable operating conditions are met,
is inscribed within the curves given by the following three implicit curves,

|Vmin|2 =
1

2
|Vgen|2 +

PG−QB
|Y |2

+

√
(2PG− 2QB + |Vgen|2|Y |2)2 − 4|Y |21(P 2 +Q2)

2|Y |2
,

(6.10)

|Vmax|2 =
1

2
|Vgen|2 +

PG−QB
|Y |2

−
√

(2PG− 2QB + |Vgen|2|Y |2)2 − 4|Y |21(P 2 +Q2)

2|Y |2
,

(6.11)

P 2 +Q2 =
(2PG− 2QB + |Vgen|2|Y |2)2

4|Y |2
. (6.12)
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P

Q

Figure 6.1: A graphical representation of the feasible region in blue. The small circle
corresponds to all solutions for |Vmin|, Equation 6.10, and the large circle corresponds
to all solutions for |Vmax|, Equation 6.11. The parabola, Equation 6.12, is the set of
points with exactly one solution. The solid red lines represent the high-voltage branches,
Equation 6.8, and the dashed red lines represent the low voltage branches, Equation 6.9.
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A graphical representation of this region is given in Figure 6.1.
As mentioned earlier, we will mainly focus on violation of the lower bound on the

voltage at the load-bus. The region of power injections at the load-bus, for which this
bound is not violated, is

D := {(P,Q)> ∈ R2 :
(
P −G|Vmin|2

)2
+
(
Q+B|Vmin|2

)2
< |Y |2|Vgen|2|Vmin|2}. (6.13)

This corresponds to the region enclosed by the small circle in Figure 6.1 with boundary
equation 6.10.

We wish to know for how long we will stay within this region given the following model
for the real and reactive power injection at the load-bus. Let Σ be a positive definite 2×2
matrix and let W = (Wt)t≥0 be an R2-valued standard Wiener process, then the real and
reactive power load at the load-bus at time t are given by Xt = (Pt, Qt)

>, where

Xt =
√

ΣWt + (P0, Q0)>,

and (P0, Q0)> is the initial state. Now the first time we exit the region D is given by the
first exit time, τ = inf{t > 0 : Xt 6∈ D}. This first exit time corresponds to the first time
the network reaches an undesirable state.

Our goal is be to find the distribution of τ , such that we can find the probability of
violating the lower bound on the operating voltage at the load-bus P(τ ≤ T ) within any
given time T .

We can write the covariance-matrix Σ as Σ = U>DU , with U a unitary matrix and
D = diag(λ1, λ2) a diagonal matrix with 0 < λ1 ≤ λ2. When λ1 = λ2 we are just studying
the exit problem from a sphere, which is less general and already well described in [37].
So, we assume λ1 < λ2. We define the affine operation,

A : R2 → R2 : (P,Q)> →
√
D
−1
U(P −G|Vmin|2, Q+B|Vmin|2)>,

and apply it to the Wiener process X =
√

ΣW + (P0, Q0)>. We find,

A(X) = UW +
√
D
−1
U(P0 −G|Vmin|2, Q0 +B|Vmin|2)>.

Since U is a unitary matrix, the process A(X) is equal in distribution to Y := W + x,

where x =
√
D
−1
U(P0 −G|Vmin|2, Q0 +B|Vmin|2)>.

Next, we alternatively to τ define τ ′,

τ ′ := inf{t > 0 : Yt 6∈ D′},

where D′ = A(D). Since the process A(X) is equal in distribution to Y , the distributions
of τ and τ ′ are also equal.

The domain D′ describes an ellipse with foci (−K, 0) and (K, 0), where the focal

distance is K =
√
λ−1

1 − λ−1
2 |Y ||Vgen||Vload|. Therefore, we do decide to introduce the

elliptical coordinate system (ξ, η). For ξ ≥ 0 and 0 ≤ η < 2π, the relation to the
Cartesian coordinate system is given by,

x1 = K cosh ξ cos η,

x2 = K sinh ξ sin η.
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The infinitesimal surface element is,

1

2
K2 (cosh 2ξ − cos 2η) .

Thus, the domain D′ can be defined in elliptical coordinates,

D′ = {(ξ, η) ∈ R≥0 × 2πS1 : ξ ≤ ξ∗},

where ξ∗ = arctanh(
√
λ1/λ2).

This transforms the heat equation into the following form,

∂u

∂t
=

uξξ + uηη
K2(cosh 2ξ − cos 2η)

, t > 0, 0 ≤ ξ ≤ ξ∗

u(ξ, η, t) = 0, ξ = ξ∗,

lim
t↓0

u(ξ, η, t) =
2δKξ0(ξ)δKη0(η)

K2(cosh(2ξ)− 2 cos(η))
,

u(ξ, η, t) = u(ξ, η + 2π, t),

uξ(ξ, η, t) = uξ(ξ, η + 2π, t),

uη(ξ, η, t) = uη(ξ, η + 2π, t).

This partial differential equation can be solved by separation of variables. We can write,

u(ξ, η, t) = Ξ(ξ)H(η)T (t).

This leads to an ordinary differential equation,

1

T (t)

dT

dt
=

1

K2(cosh 2ξ − cos 2η)

(
1

Ξ(ξ)

d2Ξ

dξ2
+

1

H(η)

d2H

dη2

)
.

We introduce separation constants λ > 0 and a, and we set h = 1
2
Kλ to match the notation

used in existing problems. This yields three separate ordinary differential equations,

dT

dt
= −1

2
λ2T (t), (6.14)

d2H

dη2
= −(ρ− 2h2 cos(2η))H(η), (6.15)

d2Ξ

dξ2
= (ρ− 2h2 cosh(2ξ))Ξ(ξ). (6.16)

Equation 6.14 allows for solutions of the form,

T (t) = exp

(
−1

2
λ2t

)
.

The closely related differential equations 6.15 and 6.16 are known as Mathieu’s differential
equation and Mathieu’s modified differential equation respectively. Sometimes, they are
also referred to as the angular and the radial Mathieu equation respectively. Note that
Equation 6.16 can be obtained by substitution of ξ = iη into Equation 6.15. In [38], it is
shown that the solutions are given by the (modified) Mathieu cosine and sine functions
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of integral order, also called the (modified) cosine elliptic and (modified) sine elliptic
functions,

H(η) = cem(η, h), m ≥ 0,

H(η) = sem(η, h), m ≥ 1,

Ξ(ξ) = Cem(ξ, h), m ≥ 0,

Ξ(ξ) = Sem(ξ, h), m ≥ 1.

The dependency of the elliptic functions on the separation constant ρ has disappeared as
a result of the requirement that ρ is such, that the solution is periodic in η with period 2π.
In fact, by Sturm-Liouville theory, for fixed values of h = 1

2
Kλ2 the separation constant ρ

takes different values for each value m and for both the Mathieu sine and Mathieu cosine
function. Therefore, we find the following form for the solutions of Ξ(ξ)H(η),

Ξ(ξ)H(η) = Cem(ξ, h)cem(η, h), m ≥ 0,

Ξ(ξ)H(η) = Sem(ξ, h)sem(η, h), m ≥ 1.

The boundary condition u(ξ, η, t) = 0 at ξ = ξ∗ leads to nontrivial solutions when
Cem(ξ∗, h) = 0 or Sem(ξ∗, h) = 0. Call the positive roots of these equations hm,n and
km,n, n = 1, 2, . . . , respectively. The general solution to the heat equation inside the
ellipse with zero boundary condition is given by,

u(ξ, η, t) =
∞∑
n=1

∞∑
m=0

Am,nCem(ξ, hm,n)cem(η, hm,n) exp

(
−

2h2
m,n

K2
t

)
+
∞∑
n=1

∞∑
m=1

Bm,nSem(ξ, km,n)sem(η, km,n) exp

(
−

2k2
m,n

K2
t

)
.

All the different solutions are orthogonal. The coefficients Am,n and Bm,n can be deter-
mined as is common in Fourier-series analysis,

Am,n =

∫ ξ∗
0

∫ 2π

0
Cem(ξ, hm,n)cem(η, hm,n)δKξ0(ξ)δKη0(η)dηdξ∫ ξ∗

0

∫ 2π

0
Ce2

m(ξ, hm,n)ce2
m(η, hm,n)K

2

2
(cosh(2ξ)− cos(2η))dηdξ

=
2

K2

Cem(ξ0, hm,n)cem(η0, hm,n)∫ ξ∗
0

∫ 2π

0
Ce2

m(ξ, hm,n)ce2
m(η, hm,n)(cosh(2ξ)− cos(2η))dηdξ

,

Bm,n =

∫ ξ∗
0

∫ 2π

0
Sem(ξ, hm,n)sem(η, hm,n)δKξ0(ξ)δKη0(η)dηdξ∫ ξ∗

0

∫ 2π

0
Se2

m(ξ, hm,n)se2
m(η, hm,n)K

2

2
(cosh(2ξ)− cos(2η))dηdξ

=
2

K2

Sem(ξ0, hm,n)sem(η0, hm,n)∫ ξ∗
0

∫ 2π

0
Se2

m(ξ, hm,n)se2
m(η, hm,n)(cosh(2ξ)− cos(2η))dηdξ

.

Since
∫ 2π

0
cem(η, hm,n)dη =

∫ 2π

0
cem(η, hm,n)dη = 0 for m ≥ 1, see [38], we find

P(τ ≥ t) =
∞∑
n=1

A′0,n exp

(
−

2h2
0,n

K2
t

)
, (6.17)

where

A′0,n = A0,n

∫ ξ∗

0

Ce0(ξ, h0,n)dξ

∫ 2π

0

ce0(η, h0,n)dη, for n ∈ N.
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6.4 An example

We consider a specific example of a 2-bus network to illustrate the results of this chapter.
For this example, we will also compare the situation, where the power injection at the
load-bus follows the law of a Wiener process, to the situation, where the power injection
is Gaussian distributed.

All of the following variables are expressed in the per-unit system. Let the power
demand at the load-bus in a 2-bus system {(Pt, Qt)

>}t≥0 follow the law of an R2-valued
Wiener process W = (Wt)t≥0, with W0 = (0, 0)> and whose increments Wt − Ws, for
t > s, are distributed as N2(0, (t− s)Σ), where

Σ =

(
9 2
2 6

)
.

The transmission line has conductance 10 and susceptance -10. The nominal voltage is 1
and the minimum voltage is 0.9.

We wish to find the distribution of the first time the voltage at the load-bus drops
below 0.9. This is given by the first exit time, τ = inf{t > 0 : Wt 6∈ D}, where following
Equation 6.13,

D = {(P,Q)> ∈ R2 : (P − 10 · 0.92)2 + (Q− 10 · 0.92)2 < 200 · 0.92}.

We rewrite Σ as Σ = U>DU , where

U = U> =
1√
5

(
−1 2
2 1

)
, and D =

(
5 0
0 10

)
.

The distribution of τ is equal to that of τ ′ = inf{t > 0 : W ′
t 6∈ D′}, where W ′ = (W ′

t)t≥0

is an R2-valued Wiener process, with W ′
0 =

√
D
−1
U(P0 − 10 · 0.92, Q0 − 10 · 0.92)> =

(−1.62;−2.43
√

2)> in Cartesian coordinates and whose increments Wt −Ws, for t > s,
are distributed as N2(0, (t− s)I2), and

D′ =
√
D
−1
U
(
D − 10 · 0.92(1, 1)>

)
.

In elliptical coordinates with focal distance K =
√

1/5− 1/10 ·10
√

2 ·0.9 ·1 = 9
√

5/5,
the set D′ corresponds to

{(ξ, η) ∈ R≥0 × 2πS1 : ξ ≤ ξ∗},

where ξ∗ = arctanh(1/
√

2).
The function h→ Ce0(ξ∗, h) is plotted in Figure 6.2. The first 10 roots of this function

can be found in Table 6.1.
In Figure 6.3, plots are given of the functions ξ → Ce0(ξ, h0n), n = 1, 2, 3, where

h01, h02, and h03 are the first three roots of this function.

The relation of a point (x1, x2) in Cartesian coordinates to the same point in elliptic
coordinates (ξ, η) can be described in a single complex equation, x1 +jx2 = K cos(jξ+η),
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Figure 6.2: A plot of Ce0(ξ∗, h) as a
function of h. The roots of this function
are called h01, h02, h03, . . . .
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Figure 6.3: A plot of the functions
Ce0(ξ, h0n) in ξ, for n = 1, 2, 3. Note
that all functions have a shared root at
ξ = ξ∗.

where j denotes the imaginary unit. For x2 < 0, this is equivalent to,

η = 2π −< [arccos((x1 + jx2)/K)]

= 2π − arccos((x1 + jx2)/K) + arccos((x1 − jx2)/K)

2
, and,

ξ = = [arccos((x1 + jx2)/K)]

=
arccos((x1 + jx2)/K)− arccos((x1 − jx2)/K)

2j
.

Thus, after some computation, we find, that W ′
0 corresponds in elliptical coordinates to

(ξ0, η0) = (0.80516; 4.4078).
These coordinates can be used to determine the coefficients A0,n and A0,n, for n ∈ N,

see Table 6.1 for the first ten values.
Subsequently, we can find the probability of violating the lower voltage bound within

some time t, by using Equation 6.17. Notice the terms exp
(
−2h20,n

K2 t
)

in this equation.

To accurately approximate this probability for times t on different time scales, we should

include all terms n for which
2(h20,n−h20,1)

K2 t < C, for some precision constant C > 0. A
higher precision constant leads to a more accurate approximation.
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n h0,n A0,n A′0,n
1 1.0807 2.1490× 10−2 1.8864× 10−2

2 6.5889 −1.5084 8.3767× 10−3

3 17.071 5.7865× 101 9.9985× 10−3

4 32.490 −1.6544× 103 9.0812× 10−3

5 52.845 3.8713× 104 7.7751× 10−3

6 78.135 −7.6337× 105 6.1108× 10−3

7 108.36 1.2710× 107 4.3175× 10−3

8 143.52 −1.7265× 108 2.6092× 10−3

9 183.62 1.6306× 109 1.1378× 10−3

10 228.65 5.1211× 108 −1.6998× 10−5

Table 6.1: Eigenvalues and coefficient used for determining P(τ < t) in Equation 6.17.
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[22] M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heinemann, M. R. R.
Tabar, and J. Peinke, “Short term fluctuations of wind and solar power systems,”
New Journal of Physics, vol. 18, no. 6, p. 063027, 2016.

[23] J. Zhang, B.-M. Hodge, and A. Florita, “Joint probability distribution and correlation
analysis of wind and solar power forecast errors in the western interconnection,”
Journal of Energy Engineering, vol. 141, no. 1, p. B4014008, 2014.

[24] J.-E. Skog, K. Koreman, B. Pääjärvi, T. Worzyk, and T. Andersröd, “The norned
hvdc cable link–a power transmission highway between norway and the netherlands,”
Proceedings of Energex 2006, 2006.

[25] J. Gordesch, “Introduction to multivariate analysis-chatfield, ch.; collins, aj,”
Metrika, vol. 29, pp. 142–142, 1982.

[26] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, 1990.

[27] P. C. Mahalanobis, “On the generalized distance in statistics,” National Institute of
Science of India, 1936.

[28] T. Hesterberg, “Weighted average importance sampling and defensive mixture dis-
tributions,” Technometrics, vol. 37, no. 2, pp. 185–194, 1995.

[29] J. Bucklew, Introduction to rare event simulation. Springer Science & Business Media,
2013.

72



[30] P. Mörters and Y. Peres, Brownian motion, vol. 30. Cambridge University Press,
2010.

[31] R. L. Schilling and L. Partzsch, Brownian motion: an introduction to stochastic
processes. Walter de Gruyter GmbH & Co KG, 2014.

[32] B. Øksendal, Stochastic differential equations. Springer, 2003.

[33] F. Spieksma, “Lecture notes: An introduction to stochastic processes in continuous
time,” May 2016.

[34] M. Schilder, “Some asymptotic formulas for wiener integrals,” Transactions of the
American Mathematical Society, vol. 125, no. 1, pp. 63–85, 1966.

[35] B. Zhang and D. Tse, “Geometry of injection regions of power networks,” IEEE
Transactions on Power Systems, vol. 28, no. 2, pp. 788–797, 2013.

[36] D. L. Powers, Boundary value problems: and partial differential equations. Academic
Press, 2009.

[37] J. Wendel, “Hitting spheres with brownian motion,” The annals of probability,
pp. 164–169, 1980.

[38] N. W. McLachlan, “Theory and application of mathieu functions,” 1951.

73



Appendix A

Matlab code

A.1 Matlab code used in Section 4.4

1 %% INITIALIZATION
2 % Load data and call on functions present in Matpower
3 mpc = loadcase('...');
4

5 % define named indices into bus, gen, branch matrices
6 [PQ, PV, REF, NONE, BUS I, BUS TYPE, PD, QD, GS, BS, BUS AREA, ...
7 VM, VA, BASE KV, ZONE, VMAX, VMIN, LAM P, LAM Q, MU VMAX, ...
8 MU VMIN] = idx bus;
9 [F BUS, T BUS, BR R, BR X, BR B, RATE A, RATE B, RATE C, ...

10 TAP, SHIFT, BR STATUS, PF, QF, PT, QT, MU SF, MU ST, ...
11 ANGMIN, ANGMAX, MU ANGMIN, MU ANGMAX] = idx brch;
12 [GEN BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN STATUS, PMAX, ...
13 PMIN, MU PMAX, MU PMIN, MU QMAX, MU QMIN, PC1, PC2, QC1MIN, ...
14 QC1MAX, QC2MIN, QC2MAX, RAMP AGC, RAMP 10, RAMP 30, RAMP Q, ...
15 APF] = idx gen;
16

17 % convert to internal indexing
18 mpc = ext2int(mpc);
19 [baseMVA, bus, gen, branch] = deal(mpc.baseMVA, mpc.bus, ...
20 mpc.gen, mpc.branch);
21

22 % get bus index lists of each type of bus
23 [ref, pv, pq] = bustypes(bus, gen);
24

25 % compute power injections (generation - load)
26 % adjusted for phase shifters and real shunts
27 [B, Bf, Pbusinj, Pfinj] = makeBdc(baseMVA, bus, branch);
28 Pbus = real(makeSbus(baseMVA, bus, gen)) - Pbusinj - ...
29 bus(:, GS) / baseMVA;
30

31 %% DISTRIBUTION OF THE POWER INJECTIONS
32 % original distribution
33 mu = Pbus;
34 Sigma = diag(mu.ˆ2);
35

36 % condition on power injections summing to zero
37 nbus = size(bus,1); % number of buses
38 mucond = mu - Sigma * ones(nbus) * mu / sum(Sigma,'all');
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39 Sigmacond = Sigma - Sigma * ones(nbus) * Sigma / sum(Sigma,'all');
40

41 % remove reference bus
42 mu2 = mucond;
43 mu2(ref) = [];
44 Sigma2 = Sigmacond;
45 Sigma2(ref, :) = [];
46 Sigma2(:, ref) = [];
47

48 %% HALF-SPACES
49 % find the Power Transmission Distribution Factor
50 PTDF = makePTDF(mpc);
51

52 % find the maximum power flow through transmission lines
53 maxflow = branch(:, RATE A) / baseMVA;
54 % this data is not present in all cases
55 % in absence of data a reasonable choice has to be made
56

57 % define half-spaces
58 a = PTDF;
59 a(:,ref) = [];
60 a = [a;-a];
61 b = [maxflow;maxflow];
62

63 % Mahalanobis distance
64 mdist = (b - a * mu2) ./ vecnorm(a * sqrtm(Sigma2), 2, 2);
65

66 % most likely point per half-space
67 nu = mu2' + (mdist ./ vecnorm(a * sqrtm(Sigma2), 2, 2)) .* a * ...
68 Sigma2;
69

70 %% SIMULATION
71 rarity = ...; % a vector of rarity parameters
72 prob = zeros([length(rarity) 1]);
73 svar = zeros([length(rarity) 1]);
74

75 N = ...; % number of samples
76 for i = 1:length(rarity)
77 mix = exp(mdist.ˆ2 * rarity(i) / 2) .* ...
78 sqrt(normcdf(2*sqrt(rarity(i)) * mdist,'upper'));
79 dist = gmdistribution(nu(mix > 0, :), Sigma2 / rarity(i), ...
80 mix(mix > 0));
81 X = random(dist, N);
82 p = mvnpdf(X, mu2', Sigma2 / rarity(i));
83 q = pdf(dist, X);
84 w = p ./ q;
85 ind = any(a * X' > b);
86 % indicator function for lying outside the polyhedron
87 prob(i) = sum(w' .* ind)/N;
88 svar(i) = sum((w' .* ind - prob(i)).ˆ2)/N;
89 end
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