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Abstract

If 𝑚 denotes the number of digits in the regular continued fraction expansion that can

be determined from 𝑛 digits in the decimal expansion, then Lochs’ Theorem states

that the fraction 𝑚
𝑛 converges Lebesgue almost surely to a fraction of two entropies as

𝑛 → ∞. These are the entropies of the interval maps that generate these expansions.

Lochs’ Theorem has been generalized to pairs of interval maps that both belong to a

class of piecewise monotonic transformations that generate expansions and that admit

an invariant density with suitable ergodic properties. The first aim of this thesis is to

review sufficient conditions on interval maps to belong to this class. For this, we first

of all recover the famous existence result for invariant densities by Lasota and Yorke

for expanding piecewise monotonic interval maps. As an example of a nonexpanding

piecewise monotonic interval map, we also consider the Liverani-Saussol-Vaienti (LSV)

map and provide a new proof of the already known result that such a map admits an

invariant probability density if and only the corresponding parameter lies in (0, 1).

Motivated by the practical use of beta encoders, one of the main goals in this thesis

is to extend Lochs’ Theorem to expansions generated by a class of random piecewise

monotonic interval maps. We review sufficient conditions on random interval maps to

belong to this class. For two random interval maps 𝑇 and 𝑆 in this class, we show that,

if 𝑚 denotes the number of digits in the 𝑆-expansion that can be determined from 𝑛

digits in the 𝑇 -expansion, then, roughly speaking, the fraction 𝑚
𝑛 converges Lebesgue

almost surely to a fraction of two fiber entropies as 𝑛 → ∞. As a second important

goal, we prove that the skew product of an LSV map with parameter in (0, 1) and

another LSV map with parameter in [1,∞) and with underlying Bernoulli shift admits

an invariant probability density.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Lochs’ Theorem

It is a common known fact that each real number 𝑥 ∈ [0, 1) has a decimal expansion

𝑥 =
∞∑︁
𝑘=1

𝑑𝑘
10𝑘

, 𝑑𝑘 = 𝑑𝑘(𝑥) ∈ {0, 1, . . . , 9} for 𝑘 ∈ N, (1.1)

which is denoted as 𝑥 = 0.𝑑1𝑑2 . . . usually. Such a representation of 𝑥 is unique, except

for some real numbers for which the tail of the sequence can be expressed either with

trailing 0’s or 9’s. We can generate the decimal expansions by iterating the decimal

map 𝑇 : [0, 1) → [0, 1) given by

𝑇𝑥 = 10𝑥− 𝑑1(𝑥), (1.2)

where

𝑑1(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑥 ∈

[︀
0, 1

10

)︀
,

1 if 𝑥 ∈
[︀

1
10 ,

2
10

)︀
,

...
...

9 if 𝑥 ∈
[︀

9
10 , 1

)︀ (1.3)

(see Figure 1.1). Indeed, rewriting (1.2) gives 𝑥 = 𝑑1(𝑥)
10 + 𝑇𝑥

10 , and setting 𝑑𝑛 = 𝑑𝑛(𝑥) =

𝑑1(𝑇 𝑛−1𝑥) for each 𝑛 ≥ 1 gives after 𝑛 iterations

𝑥 =
𝑑1
10

+
𝑑2
102

+ · · ·+ 𝑑𝑛
10𝑛

+
𝑇 𝑛𝑥

10𝑛
. (1.4)

Since 0 ≤ 𝑇 𝑛𝑥 < 1, we obtain

𝑛∑︁
𝑘=1

𝑑𝑘
10𝑘

→ 𝑥 as 𝑛→ ∞, (1.5)

1
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Figure 1.1: The decimal map 𝑇
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Figure 1.2: The Gauss map 𝑆

which is the decimal expansion of 𝑥 in (1.1).1

Besides decimal expansions there are many more possible representations of real num-

bers in terms of a sequence of integers. As a second example, it is known (see e.g.

[18]) that each irrational 𝑥 ∈ (0, 1) can be represented in a unique way as

𝑥 =
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
.. .

, 𝑎𝑘 = 𝑎𝑘(𝑥) ∈ N for each 𝑘 ∈ N, (1.6)

which is referred to as the regular continued fraction (RCF) expansion of 𝑥. These

expansions can be generated from iterating the Gauss map 𝑆 : [0, 1) → [0, 1) given by

𝑆0 = 0 and for 𝑥 ̸= 0

𝑆𝑥 =
1

𝑥
mod 1 =

1

𝑥
− 𝑎1(𝑥), (1.7)

where

𝑎1(𝑥) =

{︃
1 if 𝑥 ∈

(︀
1
2 , 1
)︀
,

𝑛 if 𝑥 ∈
(︀

1
𝑛+1 ,

1
𝑛

]︀
and 𝑛 ≥ 2

(1.8)

(see Figure 1.2). Namely, setting 𝑎𝑛 = 𝑎𝑛(𝑥) = 𝑎1(𝑆𝑛−1𝑥) for each 𝑛 ≥ 1, we obtain

from (1.7) that

𝑥 =
1

𝑎1 + 𝑆𝑥
= · · · =

1

𝑎1 +
1

𝑎2 +
.. . +

1

𝑎𝑛 + 𝑆𝑛𝑥

. (1.9)

1The map 𝑇 does not generate expansions with trailing 9’s. Instead, defining 𝑑1 in (1.3) as 𝑑1(𝑥) = 𝑖 if
𝑥 ∈ ( 𝑖

10
, 𝑖+1

10
] with 𝑖 ∈ {0, . . . , 9} yields expansions with no trailing 0’s.
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From this it can be shown (see e.g. Section 1.3 in [18]), writing

[0; 𝑎1, . . . , 𝑎𝑛] =
1

𝑎1 +
1

𝑎2 +
.. . +

1

𝑎𝑛

, (1.10)

that

[0; 𝑎1, . . . , 𝑎𝑛] → 𝑥 as 𝑛→ ∞, (1.11)

which is the RCF expansion of 𝑥 in (1.6).2

It is natural to ask which of the two previous expansions is more efficient at representing

real numbers. In other words, which of the two sequences in (1.5) and (1.11) converges

faster to 𝑥 as 𝑛 → ∞? The following question is related to this problem: Suppose

we know only the first 𝑛 decimal digits of an unknown irrational number 𝑥 ∈ (0, 1).

How many digits in the RCF expansion of 𝑥 does this determine? In 1964, Lochs [46]

proved a surprising and elegant result answering this question for the limit 𝑛→ ∞.

More precisely, for each irrational 𝑥 ∈ (0, 1) and 𝑛 ∈ N, let 𝑦𝑛 =
∑︀𝑛

𝑘=1
𝑑𝑘(𝑥)
10𝑘

and 𝑧𝑛 =

𝑦𝑛 + 10−𝑛. Then the interval 𝐴𝑛(𝑥) = [𝑦𝑛, 𝑧𝑛) consists of 𝑥 and all other real numbers

of which the decimal expansion starts with the string 𝑑1(𝑥), . . . , 𝑑𝑛(𝑥). Similarly, for

each 𝑚 ∈ N, let 𝑟𝑚 = [0; 𝑎1(𝑥), . . . , 𝑎𝑚(𝑥)] and 𝑠𝑚 = [0; 𝑎1(𝑥), . . . , 𝑎𝑚−1(𝑥), 𝑎𝑚(𝑥) + 1].

Then, for 𝑚 even (resp. 𝑚 odd), one can derive that the interval 𝐵𝑚(𝑥) = [𝑟𝑚, 𝑠𝑚)

(resp. 𝐵𝑚(𝑥) = (𝑠𝑚, 𝑟𝑚]) consists of 𝑥 and all other real numbers of which the RCF

expansion starts with the string 𝑎1(𝑥), . . . , 𝑎𝑚(𝑥). Putting

𝑚(𝑛, 𝑥) = sup{𝑚 ∈ N : 𝐴𝑛(𝑥) ⊆ 𝐵𝑚(𝑥)}, (1.12)

Lochs proved [46] that, for Lebesgue almost every irrational 𝑥 ∈ (0, 1),

lim
𝑛→∞

𝑚(𝑛, 𝑥)

𝑛
=

6 log 2 log 10

𝜋2
= 0.97027 · · · . (1.13)

Therefore, roughly 97 RCF digits are determined by 100 decimal digits. This indicates

that the RCF expansion is slightly more efficient compared to the decimal expansion

at representing irrational numbers.

1.1.2 Extension to expansions generated by other interval maps

Naturally, one can ask how the result by Lochs in (1.13) can be generalized to any two

known expansions of numbers. For this, let us analyse Lochs’ result in more detail.

It appears that the right-hand side of (1.13) is the fraction of two entropies. As we

review in Section 2.8, the entropy of a map is a nonnegative constant that measures

2The RCF expansion in (1.6) holds for irrational 𝑥 ∈ [0, 1) and consists of infinitely many digits 𝑎𝑘. In
Section 4 of [31] it is shown that each rational 𝑥 ∈ (0, 1) has a finite RCF expansion of the form in (1.10). So
a real number is rational if and only if it has an RCF expansion that is finite.
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the average uncertainty about where the map moves the points in the system. The

entropy ℎ(𝑇 ) of the decimal map 𝑇 satisfies

ℎ(𝑇 ) = lim
𝑛→∞

−1

𝑛
log 𝜆(𝐴𝑛(𝑥)) = log 10, 𝜆-a.e., (1.14)

where 𝜆 denotes the Lebesgue measure on [0, 1). As we shall see, this is because (i) 𝜆

is invariant with respect to 𝑇 in the sense that for each subinterval [𝑎, 𝑏) ⊆ [0, 1) we

have 𝜆
(︀
𝑇−1[𝑎, 𝑏)

)︀
= 𝜆([𝑎, 𝑏)),3 which we see from

𝜆
(︀
𝑇−1[𝑎, 𝑏)

)︀
= 𝜆

(︃
9⋃︁
𝑖=0

[︁𝑎+ 𝑖

10
,
𝑏+ 𝑖

10

)︁)︃
=

9∑︁
𝑖=0

𝜆
(︁[︁𝑎+ 𝑖

10
,
𝑏+ 𝑖

10

)︁)︁
= 𝑏− 𝑎, (1.15)

and (ii) 𝜆 is ergodic with respect to 𝑇 , meaning that 𝑇−1𝐴 = 𝐴 implies 𝜆(𝐴) ∈ {0, 1}
for each Borel set 𝐴 ⊆ [0, 1). (For a proof of (ii), see e.g. [18]) On the other hand, it is

easy to see that 𝜆 is not invariant with respect to the Gauss map 𝑆. However, it can

be shown (see e.g. [18]) that the Gauss measure 𝜇𝐺 on [0, 1) given by

𝜇𝐺(𝐴) =

∫︁
𝐴

1

log 2

1

1 + 𝑥
𝑑𝑥, 𝐴 ⊆ [0, 1) Borel (1.16)

is invariant with respect to 𝑆, and moreover that 𝜇𝐺 is ergodic with respect to 𝑆. As

a consequence, one can derive (see e.g. [18]) that the entropy ℎ(𝑆) of 𝑆 satisfies

ℎ(𝑆) = lim
𝑛→∞

−1

𝑛
log 𝜇𝐺(𝐵𝑛(𝑥)) =

𝜋2

6 log 2
, 𝜇𝐺-a.e. (1.17)

In [16], Dajani and Fieldsteel generalize Lochs’ Theorem to expansions which are

generated by surjective interval maps 𝑅 : [0, 1) → [0, 1) that satisfy the following

conditions:

1. There exists a finite or countable partition of [0, 1) into intervals such that 𝑅

restricted to each interval is strictly monotonic and continuous,

2. There exists a Borel probability measure 𝜇 on [0, 1) that is invariant and ergodic

w.r.t. 𝑅 and is absolutely continuous w.r.t. 𝜆 such that

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇

𝑑𝜆
≤𝑀. (1.18)

Then, if 𝑅1 and 𝑅2 are any two such maps, it is shown in [16] that the number of digits

𝑚𝑅1,𝑅2(𝑛, 𝑥) in the 𝑅2-expansion of 𝑥 that can be determined from knowing the first

𝑛 digits in the 𝑅1-expansion of 𝑥 satisfies

lim
𝑛→∞

𝑚𝑅1,𝑅2(𝑛, 𝑥)

𝑛
=
ℎ(𝑅1)

ℎ(𝑅2)
, 𝜆-a.e., (1.19)

where ℎ(𝑅1) (resp. ℎ(𝑅2)) denotes the entropy of 𝑅1 (resp. 𝑅2). It is clear that the

decimal expansions generated by 𝑇 and the RCF expansions generated by 𝑆 belong

3As we shall see in Section 2.1, this is equivalent to how 𝑇 -invariance of 𝜆 is defined in Definition 2.1.
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to this class, and it appears (see e.g. [16]) that almost all known expansions on [0, 1)

generated by an interval map are members of this class.

1.1.3 Extension to expansions generated by random interval maps

So far we considered expansions generated by iterating points under a single interval

map. Instead, let us now consider a family of interval maps {𝑇𝑗 : [0, 1) → [0, 1)}𝑗∈𝐸
where 𝐸 is some index set. For given 𝜔 = (𝜔1, 𝜔2, . . .) ∈ 𝐸N and 𝑥 ∈ [0, 1), we then

consider the orbit

𝑥 ↦→ 𝑇𝜔1𝑥 ↦→ 𝑇𝜔2𝑇𝜔1𝑥 ↦→ 𝑇𝜔3𝑇𝜔2𝑇𝜔1𝑥 ↦→ . . . . (1.20)

In other words, at time 𝑛 we apply the transformation 𝑇𝜔𝑛 determined by the choice

of 𝜔 ∈ 𝐸N, and if we put a non-trivial probability measure P on 𝐸N we can interpret

(1.20) as iterating points under a random system of interval maps.

Let us consider an example for which orbits as in (1.20) generate expansions of points

for each 𝜔 ∈ 𝐸N. For that, let 𝐸 ⊆ (1,∞) such that 𝛾 = inf 𝐸 > 1, and define for each

𝛽 ∈ 𝐸 the map 𝑇𝛽 : [0, 1) → [0, 1) as

𝑇𝛽𝑥 = 𝛽𝑥 mod 1 = 𝛽𝑥− 𝑏(𝛽, 𝑥), (1.21)

where

𝑏(𝛽, 𝑥) =

{︃
𝑖 if 𝑥 ∈

[︀
𝑖
𝛽 ,

𝑖+1
𝛽

)︀
and 𝑖 ∈ {0, 1 . . . , ⌊𝛽⌋ − 1},

⌊𝛽⌋ if 𝑥 ∈
[︀ ⌊𝛽⌋
𝛽 , 1

)︀
.

(1.22)

Fix (𝛽1, 𝛽2, . . .) ∈ 𝐸N. For each 𝑥 ∈ [0, 1), define 𝑏1(𝑥) = 𝑏(𝛽1, 𝑥) and 𝑏𝑘(𝑥) =

𝑏(𝛽𝑘, 𝑇𝛽𝑘−1
· · ·𝑇𝛽1𝑥). Then (1.21) gives 𝑥 = 𝑏1

𝛽1
+

𝑇𝛽1𝑥

𝛽1
. Similarly, 𝑇𝛽1𝑥 = 𝑏2

𝛽2
+

𝑇𝛽2𝑇𝛽1𝑥

𝛽2

and after 𝑛 iterations we see that

𝑥 =
𝑏1
𝛽1

+
𝑏2
𝛽1𝛽2

+ · · ·+ 𝑏𝑛
𝛽1 · · · 𝛽𝑛

+
𝑇𝛽𝑛 · · ·𝑇𝛽1𝑥
𝛽1 · · · 𝛽𝑛

. (1.23)

We have
𝑇𝛽𝑛 ···𝑇𝛽1𝑥
𝛽1···𝛽𝑛 ≤ 1

𝛾𝑛 → 0 as 𝑛→ ∞, so for each 𝑥 ∈ [0, 1) we obtain the expansion

𝑥 =
∞∑︁
𝑘=1

𝑏𝑘
𝛽1 · · · 𝛽𝑘

, 𝑏𝑘 = 𝑏𝑘(𝑥) ∈ {0, 1, . . . , ⌊𝛽𝑘⌋} for each 𝑘 ∈ N. (1.24)

As a motivation to generalize Lochs’ Theorem to expansions such as (1.24) that are

generated by a system of interval maps, let us consider a practical example. It is well

known that each real number 𝑥 ∈ [0, 1) has a binary expansion

𝑥 =
∞∑︁
𝑘=1

𝑎𝑘
2𝑘
, 𝑎𝑘 = 𝑎𝑘(𝑥) ∈ {0, 1} for 𝑘 ∈ N. (1.25)

Just like the decimal expansion, such a representation is for each 𝑥 essentially unique

and can be generated by iterating the map 𝑇𝑥 = 2𝑥 mod 1. On the other hand, for



Chapter 1. Introduction 6

𝛽 > 1 non-integer, it is known (see [14, 24, 62]) that Lebesgue almost every 𝑥 ∈ [0, 1)

has a continuum number of 𝛽-expansions of the form

𝑥 =
∞∑︁
𝑘=1

𝑏𝑘
𝛽𝑘
, 𝑏𝑘 = 𝑏𝑘(𝑥) ∈ {0, 1, . . . , ⌊𝛽⌋} for each 𝑘 ∈ N. (1.26)

Two well-known transformations that generate such representations are the so-called

greedy 𝛽-transformation in (1.21) and the lazy 𝛽-transformation (see e.g. [17]), and

a way to obtain other representations in a dynamical way is by superimposing these

two transformations (see e.g. [17] for details). So-called beta encoders exploit the

redundancy of the representations of the form (1.26) to encode information in analog-

to-digital conversion more robustly compared to using binary expansions [67]. In

practice, however, due to noise the value of 𝛽 tends to vary while iterating. So if, for

example, points are iterated under the greedy 𝛽-transformation from (1.21), we get

in practice expansions of the form in (1.24) instead of (1.26). It is therefore relevant

to ask how much information (e.g. in terms of the binary digits in (1.25)) can be

determined once we know 𝑛 digits of the expansion in (1.24). An extension of Lochs’

Theorem to expansions generated by random interval maps would be helpful to address

this problem.

1.2 Thesis Overview

In the next chapter we discuss the concepts and results in Ergodic Theory that will be

relevant for the rest of this thesis. Prior knowledge of Ergodic Theory is not required,

but we assume the reader has a basic understanding of Measure Theory.

Motivated by the extension of Lochs Theorem in [16] discussed in Subsection 1.1.2,

we review in Chapter 3 results on the existence of invariant densities for piecewise

monotonic transformations on the unit interval 𝐼: For a measurable transformation

𝑇 : 𝐼 → 𝐼, we say ℎ ∈ 𝐿1(𝜆) (with 𝜆 the Lebesgue measure on 𝐼) is an invariant density

for 𝑇 if ∫︁
𝐴

ℎ𝑑𝜆 =

∫︁
𝑇−1𝐴

ℎ𝑑𝜆, for all 𝐴 ⊆ 𝐼 Borel. (1.27)

We also say that in this case the measure 𝜇 on 𝐼 given by 𝜇(𝐴) =
∫︀
𝐴 ℎ𝑑𝜆 is an absolutely

continuous invariant measure (acim for short, or acipm if 𝜇 is a probability measure)

for 𝑇 . We review in Section 3.3 the famous result by Lasota and Yorke [43] that a

transformation 𝑇 : 𝐼 → 𝐼 which is piecewise 𝐶2 and monotonic with respect to some

finite partition and is expanding (i.e. inf𝑥∈𝐼 |𝑇 ′(𝑥)| > 1) admits an invariant probability

density. Moreover, we discuss in Section 3.4 among other results that an expanding

piecewise monotonic interval map 𝑇 admits nonzero but finitely many ergodic acipm’s

(originally proven in [44]). We shall see in Section 3.5, if we furthermore assume that 𝑇

admits a suitable covering property as for example in the so-called Folklore Theorem,
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that 𝑇 in that case admits a unique acipm 𝜇 that moreover satisfies (1.18) and is

ergodic.

As an example of a nonexpanding piecewise monotonic interval map, we consider in

Section 3.6 the Liverani-Saussol-Vaienti (LSV) map 𝑇𝛼 : 𝐼 → 𝐼 with parameter 𝛼 ∈
(0,∞), defined as

𝑇𝛼(𝑥) =

{︃
𝑥(1 + 2𝛼𝑥𝛼) 𝑥 ∈ [0, 12 ],

2𝑥− 1 𝑥 ∈ (12 , 1]
(1.28)

(see Figure 3.4). It is well-known that 𝑇𝛼 admits an acipm if 𝛼 ∈ (0, 1) (see [45]) and

an infinite 𝜎-finite acim if 𝛼 ≥ 1 (see e.g. [55]). We provide a new proof of these results

by considering the expanding piecewise monotonic transformation obtained from 𝑇𝛼
by inducing w.r.t. the first passage time in the interval (12 , 1]. This method is based on

Section 3 in [35].

As opposed to the deterministic setting in Chapter 3, we consider in Chapter 4 the

setting in which points are iterated under a random piecewise monotonic interval map.

Such a system is given by a family 𝑇 of piecewise (sufficiently smooth) monotonic

transformations on 𝐼 and a probability law that describes which of these maps is

chosen at each time step. In Sections 4.1-4.3, we take 𝑇 = {𝑇𝑗 : 𝐼 → 𝐼}𝑗∈𝐸 with 𝐸 a

Polish space (i.e. complete, separable metric space) which we assume to be countable

most of the time, and we put a non-trivial probability measure P on the Borel sets in

𝐸N. We then consider the skew product

𝐹𝜎,𝑇 : 𝐸N × 𝐼 → 𝐸N × 𝐼, (𝜔, 𝑥) ↦→ (𝜎𝜔, 𝑇𝜔1𝑥), (1.29)

where 𝜔 = (𝜔1, 𝜔2, . . .) and 𝜎 : 𝐸N → 𝐸N is the left shift on 𝐸N, i.e. 𝜎𝜔 = (𝜔2, 𝜔3, . . .).

Then iterating points (𝜔, 𝑥) under 𝐹𝜎,𝑇 yields (after projecting on 𝐼) random orbits of

the form in (1.20). Similar as in Chapter 3, we review results on the existence of an

invariant density ℎ ∈ 𝐿1(P⊗ 𝜆) for 𝐹𝜎,𝑇 , meaning in this case that∫︁
𝐴

ℎ𝑑P⊗ 𝜆 =

∫︁
𝐹−1
𝜎,𝑇𝐴

ℎ𝑑P⊗ 𝜆, for all 𝐴 ⊆ 𝐸N × 𝐼 measurable. (1.30)

In Section 4.2 we discuss this for the setting that P = 𝜋⊗N with 𝜋 a probability measure

on 𝐸. In this case, the map 𝑇𝜔𝑛 applied at time 𝑛 ∈ N is randomly chosen from {𝑇𝑗}𝑗∈𝐸
independently from the maps that are applied at the other time points, and according

to the same distribution 𝜋 for all time points. This i.i.d. setting was first studied

by Morita [47, 49] and Pelikan [53], who independently showed that there exists an

invariant density for 𝐹𝜎,𝑇 if 𝐸 is at most countable and the system is expanding on

average in the sense that ∑︁
𝑗∈𝐸

𝜋(𝑗)

inf𝑥∈𝐼 |𝑇 ′
𝑗(𝑥)|

< 1. (1.31)

We review this in Section 4.2 as well as some ergodic properties of these invariant

densities similar to the deterministic setting. Moreover, we consider in Section 4.4 an
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extension of these results to the case that P is described by a Markov chain and review

results from [40] and [28]. For both the i.i.d. case and Markov case, we shall see that if

{𝑇𝑗}𝑗∈𝐸 satisfies a suitable random covering property, then an invariant density ℎ for

𝐹𝜎,𝑇 , if it exists, is (up to normalization) unique and satisfies

∃𝑀 > 0 :
1

𝑀
≤ ℎ ≤𝑀. (1.32)

In Section 4.3 we consider the random i.i.d. compositions of two LSV maps 𝑇𝛼 and 𝑇𝛽
given by (1.28), where 𝛼 ∈ (0, 1) and 𝛽 ≥ 1. Letting 𝑝 ∈ (0, 1) and setting 𝐸 = {𝛼, 𝛽}
with 𝜋(𝛼) = 𝑝 and 𝜋(𝛽) = 1 − 𝑝, note that (1.31) is not satisfied because 𝑇 ′

𝛼(0) =

𝑇 ′
𝛽(0) = 1. However, unlike the 𝑝 = 0 case we can still show that there exists an

invariant density for the skew product 𝐹𝜎,𝑇 in this case by generalizing the proof for

the deterministic case (i.e. 𝑝 = 1) discussed in [45]. Moreover, we propose a second

way to prove this for 𝑝 ∈ (0, 1] by extending the method of inducing w.r.t. the first

passage time from Section 3.6.

In the last section of Chapter 4, we consider the setting where (Ω,ℱ ,P) is some abstract

probability space and 𝑇 = {𝑇𝜔 : 𝐼 → 𝐼}𝜔∈Ω is a family of piecewise monotonic interval

maps. Furthermore, we let 𝜙 : Ω → Ω be measurable and invertible (as opposed to the

left shift 𝜎 on 𝐸N) and consider the skew product

𝐹𝜙,𝑇 : Ω× 𝐼 → Ω× 𝐼, (𝜔, 𝑥) ↦→ (𝜙𝜔, 𝑇𝜔𝑥). (1.33)

We review the result by Buzzi [12] that if the system is in a certain way expanding on

average (w.r.t. P), then (under some additional assumptions on 𝜙 and 𝑇 ) there exists

an invariant density ℎ ∈ 𝐿1(P⊗ 𝜆) for 𝐹𝜙,𝑇 (in the sense of (1.30), replacing 𝐹𝜎,𝑇 and

𝐸N with 𝐹𝜙,𝑇 and Ω, respectively). Furthermore, we discuss the result in [13] that this

is (up to normalization) the only invariant density for 𝐹𝜙,𝑇 if 𝑇 in addition satisfies a

suitable covering property.

For skew products of the form in (1.33), Abramov and Rokhlin [1] introduced the

notion of fiber entropy. For this, they assume there exists a Borel probability measure

𝜌 on (in this case) 𝐼 that for P-a.a. 𝜔 ∈ Ω is invariant w.r.t. 𝑇𝜔, i.e. 𝜌(𝑇−1
𝜔 𝐴) = 𝜌(𝐴) for

all 𝐴 ⊆ 𝐼 Borel. In Chapter 5 we generalize this to the weaker assumption that there

exists a family of finite Borel measures {𝜌𝜔}𝜔∈Ω on 𝐼 that is equivariant w.r.t. (𝑇, 𝜙),

meaning that

𝜌𝜔(𝑇
−1
𝜔 𝐴) = 𝜌𝜙(𝜔)(𝐴) for all 𝐴 ⊆ 𝐼 Borel (1.34)

for P-a.a. 𝜔 ∈ Ω. In Sections 5.1 we give conditions under which such a family {𝜌𝜔}𝜔∈Ω
exists. In particular, we shall see that for each invariant density ℎ ∈ 𝐿1(P⊗𝜆) for 𝐹𝜙,𝑇
the family {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =

∫︀
𝐴 ℎ(𝜔, 𝑥)𝑑𝜆(𝑥) is equivariant w.r.t. (𝑇, 𝜙) if 𝜙

is invertible. We define the fiber entropy in Section 5.2 whose construction is similar

to the construction of the “ordinary” (Kolmogorov-Sinai) entropy that we review in

Section 2.8. Moreover, we give in Sections 5.3 and 5.4 the analogous theorems for
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fiber entropy of the classical Kolmogorov-Sinai Theorem and the Shannon-McMillan-

Breiman Theorem that we review in Section 2.8 as well.

In Sections 6.2 and 6.3 we provide the proof from [16] that shows the extension (1.19)

of Lochs’ Theorem to the piecewise monotonic interval maps considered in Subsec-

tion 1.1.2. We shall see that this proof is based on the Shannon-McMillan-Breiman

Theorem, a result from which e.g. (1.14) and (1.17) (concerning the original Lochs

Theorem) follow. Also, we discuss that any two piecewise monotonic interval maps

studied in Section 3.5 satisfy (1.19), and we consider a central limit result from [32]

associated with (1.19).

Finally, in Section 6.4 we formulate and prove a generalization of Lochs’ Theorem to a

class of random piecewise monotonic interval maps being of the form as in Chapter 4.

We suppose that a member of this class has an invariant density ℎ for the corresponding

skew product (either of the form (1.29) or (1.33)) such that ℎ satisfies (1.32). We shall

see that this makes the class a natural generalization of the class of deterministic

interval maps considered in Subsection 1.1.2. For two random interval maps 𝑇 and

𝑆 in this class, we show that, if 𝑚 denotes the number of digits in the 𝑆-expansion

that can be determined from 𝑛 digits in the 𝑇 -expansion, then, roughly speaking, the

fraction 𝑚
𝑛 converges with probability 1 to a fraction of fiber entropies as 𝑛 → ∞.

Furthermore, we shall consider a corresponding central limit result.



Chapter 2

Preliminaries from Ergodic Theory

In this chapter we give a short introduction to Ergodic Theory and discuss the concepts

that will be relevant for the rest of this thesis. Included are some proofs for convenience

of the reader and some common examples. However, we refer to [10, 15] and Chapter

3 of [9] for a detailed and more complete introduction to Ergodic Theory.

In short, Ergodic Theory studies the long-term average behavior of systems over time.

The states of the system under consideration form a space 𝑋, which we assume to be

a probability space (𝑋,ℬ, 𝜇), and the evolution is given by a measurable tranforma-

tion 𝑇 : 𝑋 → 𝑋. Furthermore, we usually suppose that the evolution 𝑇 is measure

preserving, which is the topic of the next section.

2.1 Measure Preserving Transformations

Definition 2.1. Let (𝑋,ℬ, 𝜇) be a probability space and let 𝑇 : 𝑋 → 𝑋 be measurable.

The map 𝑇 is called measure preserving with respect to 𝜇 if 𝜇(𝑇−1𝐴) = 𝜇(𝐴) for all

𝐴 ∈ ℬ. In this case we also say that 𝜇 is invariant with respect to 𝑇 .

The following proposition is very useful for verifying if a transformation is measure

preserving.

Proposition 2.2. (see e.g. Theorem 2.1.2 in [9]) Let 𝑇 be a measurable transformation

on a probability space (𝑋,ℬ, 𝜇). Let 𝒜 ⊆ ℬ be a 𝜋-system that generates ℬ. If 𝜇(𝑇−1𝐴) =

𝜇(𝐴) for all 𝐴 ∈ 𝒜, then 𝑇 is measure preserving with respect to 𝜇.

Example 2.3. Since the collection of all subintervals [𝑎, 𝑏) ⊆ [0, 1) forms a 𝜋-system

that generates the Borel 𝜎-algebra on [0, 1), we see from (1.15) that the decimal map

𝑇𝑥 = 10𝑥 mod 1 is measure preserving with respect to the Lebesgue measure 𝜆 on [0, 1).

In the same way one can show that for every 𝑁 ≥ 2 integer the 𝑁 -adic transformation

𝑇 : [0, 1) → [0, 1) given by 𝑇𝑥 = 𝑁𝑥 mod 1 is measure preserving with respect to 𝜆.

10
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Example 2.4. The Gauss map 𝑆 from (1.7) is measure preserving with respect to the

Gauss measure 𝜇𝐺 from (1.16) (see e.g. [18]).

Example 2.5. (Bernoulli shifts) Let 𝐸 ⊆ N, and let Ω𝐸 = 𝐸N (or Ω𝐸 = 𝐸Z) be the

space of one-sided (or two-sided) sequences in 𝐸. Furthermore, let ℱ be the 𝜎-algebra

on Ω𝐸 generated by all cylinder sets {𝜔 ∈ Ω𝐸 : 𝜔𝑖 = 𝑧𝑖, 𝜔𝑖+1 = 𝑧𝑖+1, . . . , 𝜔𝑖+𝑛 = 𝑧𝑖+𝑛}
where 𝑖 ∈ N (or Z) and 𝑧𝑖, . . . , 𝑧𝑖+𝑛 ∈ 𝐸. We consider a probability vector 𝑝 = (𝑝𝑗)𝑗∈𝐸,

i.e. 𝑝𝑗 ≥ 0 for all 𝑗 ∈ 𝐸 and
∑︀

𝑗∈𝐸 𝑝𝑗 = 1. By Carathéodory’s Extension Theorem, we

obtain a measure P on ℱ by specifying P on the cylinders as

P({𝜔 ∈ Ω𝐸 : 𝜔𝑖 = 𝑧𝑖, . . . , 𝜔𝑖+𝑛 = 𝑧𝑖+𝑛}) = 𝑝𝑧𝑖 · · · 𝑝𝑧𝑖+𝑛 . (2.1)

Let 𝜎 : Ω𝐸 → Ω𝐸 be the left-shift on Ω𝐸, i.e. 𝜎𝜔 = 𝜔̃ where 𝜔̃𝑛 = 𝜔𝑛+1. It is easy

to verify that 𝜎 is measure preserving w.r.t. P by applying Proposition 2.2 to the

collection of all cylinder sets, which is a 𝜋-system on Ω𝐸.

Example 2.6. (Markov shifts) Let (Ω𝐸 ,ℱ , 𝜎) be as in the previous example. We

assume 𝐸 is finite, say 𝐸 = {1, . . . , 𝑟}. Let 𝑊 = (𝑊𝑖𝑗) be a stochastic 𝑟 × 𝑟 matrix,

and 𝑞 = (𝑞1, . . . , 𝑞𝑟) a probability vector such that 𝑞𝑊 = 𝑞. Again by Carathéodory’s

Extension Theorem, we obtain a measure P on ℱ by specifying P on the cylinders as

P({𝜔 ∈ Ω𝐸 : 𝜔𝑖 = 𝑧𝑖, . . . , 𝜔𝑖+𝑛 = 𝑧𝑖+𝑛}) = 𝑞𝑧𝑖𝑊𝑧𝑖𝑧𝑖+1 · · ·𝑊𝑧𝑖+𝑛−1𝑧𝑖+𝑛 . (2.2)

Again, one can derive that the left-shift 𝜎 on Ω𝐸 is measure preserving w.r.t. P by

applying Proposition 2.2 to the 𝜋-system consisting of all cylinder sets.

The following theorem gives an equivalent formulation of Definition 2.1.

Theorem 2.7. (see e.g. Theorem 3.1.2 in [9]) Let (𝑋,ℬ, 𝜇) be a probability space and let

𝑇 : 𝑋 → 𝑋 measurable. Then 𝑇 is measure preserving with respect to 𝜇 if and only if∫︁
𝑋

𝑓𝑑𝜇 =

∫︁
𝑋

𝑓 ∘ 𝑇𝑑𝜇 (2.3)

for any 𝑓 ∈ 𝐿1(𝜇).

2.2 Ergodicity

Let (𝑋,ℬ, 𝜇) be a probability space and let 𝑇 : 𝑋 → 𝑋 be measurable. Suppose

𝑇−1𝐵 = 𝐵 for some 𝐵 ∈ ℬ. Then 𝑇−1(𝑋∖𝐵) = 𝑋∖𝐵, so the behavior of 𝑇 splits into

𝑇 |𝐵 and 𝑇 |𝑋∖𝐵. In the following definition, 𝑇 is indecomposable 𝜇-a.e.

Definition 2.8. Let 𝑇 be a measurable transformation on a probability space (𝑋,ℬ, 𝜇).
Then 𝑇 is said to be ergodic w.r.t. 𝜇 if for every 𝐴 ∈ ℬ such that 𝑇−1𝐴 = 𝐴 we have

𝜇(𝐴) ∈ {0, 1}. In this case, we also say that the pair (𝑇, 𝜇) is ergodic.

It can be shown (see e.g. [15]) that the 𝑁 -adic transformations from Example 2.3 are

ergodic w.r.t. 𝜆 and that the Gauss map from Example 2.4 is ergodic w.r.t. the Gauss
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measure. Moreover, the left shift 𝜎 from Example 2.5 is ergodic w.r.t. the probability

measure given by (2.1) and 𝜎 is ergodic w.r.t. the probability measure given by (2.2)

if and only if the Markov chain defined by the stochastic matrix 𝑊 is irreducible (see

e.g. Theorem 7.2.8 in [65]).

In general, it is difficult to determine ergodicity from Definition 2.8. In some cases,

the following theorem may be useful.

Theorem 2.9. (see e.g. Theorem 3.2.3 in [9]) Let (𝑋,ℱ , 𝜇) be a probability space, and

𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. The following statements are equivalent:

(i) (𝑇, 𝜇) is ergodic,

(ii) If 𝑓 : 𝑋 → C is measurable and (𝑓 ∘ 𝑇 )(𝑥) = 𝑓(𝑥) for 𝜇-a.e. 𝑥, then 𝑓 is constant

𝜇-a.e.,

(iii) If 𝑓 ∈ 𝐿2(𝜇) with (𝑓 ∘ 𝑇 )(𝑥) = 𝑓(𝑥) for 𝜇-a.e. 𝑥, then 𝑓 is constant 𝜇-a.e.

Theorem 2.10. Let 𝜇1 and 𝜇2 be probability measures on a measurable space (𝑋,ℬ), and
let 𝑇 : 𝑋 → 𝑋 be measure preserving with respect to 𝜇1 and 𝜇2.

1. If (𝑇, 𝜇1) is ergodic and 𝜇2 is absolutely continuous w.r.t. 𝜇1, then 𝜇1 = 𝜇2.

2. If (𝑇, 𝜇1) and (𝑇, 𝜇2) are ergodic, then either 𝜇1 = 𝜇2 or 𝜇1 and 𝜇2 are mutually

singular.

Proof : For the proof of the first part we refer to Lemma 3.2.5 in [9] and for the proof

of the second part we refer to Theorem 3.2.5 in [9].

2.3 Birkhoff’s Ergodic Theorem

Let 𝑇 be a measurable transformation on a probability space (𝑋,ℬ, 𝜇). For a nontrivial
𝐴 ∈ ℬ, we can ask with what frequency the points of an orbit {𝑥, 𝑇𝑥, 𝑇 2𝑥, . . .} occur in

𝐴. Birkhoff’s (Pointwise) Ergodic Theorem indicates the asymptotic behavior of the

relative frequency 1
𝑛

∑︀𝑛−1
𝑖=0 1𝐴(𝑇 𝑖𝑥) of points of {𝑥, 𝑇𝑥, 𝑇 2𝑥, . . .} in 𝐴.

Theorem 2.11. (Birkhoff’s Ergodic Theorem) Let 𝑇 be a measure preserving transfor-

mation on a probability space (𝑋,ℬ, 𝜇). Then for any 𝑓 ∈ 𝐿1(𝜇),

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝑓(𝑇 𝑖𝑥) = 𝑓*(𝑥) (2.4)

exists 𝜇-a.e. and satisfies 𝑓*∘𝑇 = 𝑓* 𝜇-a.e., and
∫︀
𝑋 𝑓

*𝑑𝜇 =
∫︀
𝑋 𝑓𝑑𝜇. If furthermore (𝑇, 𝜇)

is ergodic, then 𝑓* =
∫︀
𝑋 𝑓𝑑𝜇 is constant 𝜇-a.e.
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Birkhoff’s Ergodic Theorem is widely used and there are different proofs of this very

important theorem (see Section 3.3 in [9] and references therein). The last statement

of Theorem 2.11 follows from Theorem 2.9.

From Birkhoff’s Ergodic Theorem, one can derive (see e.g. [15]) another characteriza-

tion of ergodicity:

Corollary 2.12. Let 𝑇 be a measure preserving transformation on a probability space

(𝑋,ℬ, 𝜇). Then (𝑇, 𝜇) is ergodic if and only if for all 𝐴,𝐵 ∈ ℬ one has

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝜇(𝑇−𝑖𝐴 ∩𝐵) = 𝜇(𝐴)𝜇(𝐵). (2.5)

Remark 2.13. To prove ergodicity it suffices to show (2.5) for sets 𝐴 and 𝐵 that

belong to a semi-algebra 𝒜 ⊆ ℬ that generates ℬ. We refer to [15] for a proof.

Let 𝑋 be a compact space and ℬ the Borel sigma-algebra on 𝑋. Then the Banach

space 𝐶(𝑋) of all continuous functions on 𝑋 (under the supremum norm) is separable,

i.e. 𝐶(𝑋) has a countable dense subset. In this case, we get the following strengthening

of Birkhoff’s Ergodic Theorem.

Theorem 2.14. Let (𝑋,ℬ, 𝜇) be a probability space and let 𝑇 : 𝑋 → 𝑋 be measure

preserving and ergodic w.r.t. 𝜇. Furthermore, suppose that 𝑋 is compact and that ℬ is the

Borel 𝜎-algebra on 𝑋. Then there exists 𝑌 ∈ ℬ such that 𝜇(𝑌 ) = 1 and

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝑓(𝑇 𝑖𝑥) =

∫︁
𝑋

𝑓(𝑥)𝑑𝜇(𝑥) (2.6)

for all 𝑥 ∈ 𝑌 and 𝑓 ∈ 𝐶(𝑋).

Proof : Let {𝑓𝑘}𝑘∈N be a countable dense subset 𝐶(𝑋). We obtain for each 𝑘 ∈ N from

Birkhoff’s Ergodic Theorem a set 𝑋𝑘 ∈ ℬ such that 𝜇(𝑋𝑘) = 1 and

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝑓𝑘(𝑇
𝑖𝑥) =

∫︁
𝑋

𝑓𝑘(𝑥)𝑑𝜇(𝑥) (2.7)

for all 𝑥 ∈ 𝑋𝑘. Taking 𝑌 =
⋂︀∞
𝑘=1𝑋𝑘, we have 𝜇(𝑌 ) = 1 and (2.7) holds for all 𝑥 ∈ 𝑌

and 𝑘 ∈ N. Now, let 𝑓 ∈ 𝐶(𝑋) and 𝜀 > 0. Then there exists 𝑘 ∈ N such that

‖𝑓 − 𝑓𝑘‖∞ < 𝜀
3 . Let 𝑥 ∈ 𝑌 , and take 𝑁 ∈ N such that | 1𝑛

∑︀𝑛−1
𝑖=0 𝑓𝑘𝑛(𝑇

𝑖𝑥)−
∫︀
𝑋 𝑓𝑘𝑛𝑑𝜇| <

𝜀
3

for each 𝑛 ≥ 𝑁 . Then for all 𝑛 ≥ 𝑁 we have⃒⃒⃒1
𝑛

𝑛−1∑︁
𝑖=0

𝑓(𝑇 𝑖𝑥)−
∫︁
𝑋

𝑓𝑑𝜇
⃒⃒⃒

≤
⃒⃒⃒1
𝑛

𝑛−1∑︁
𝑖=0

[︀
𝑓(𝑇 𝑖𝑥)− 𝑓𝑘(𝑇

𝑖𝑥)
]︀⃒⃒⃒

+
⃒⃒⃒1
𝑛

𝑛−1∑︁
𝑖=0

𝑓𝑘(𝑇
𝑖𝑥)−

∫︁
𝑋

𝑓𝑘𝑑𝜇
⃒⃒⃒
+
⃒⃒⃒ ∫︁

𝑋

𝑓𝑘 − 𝑓𝑑𝜇
⃒⃒⃒

< 𝜀.
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2.4 Mixing and Exactness

We see from Corollary 2.12 that ergodicity means average independence in the long-

term. This motivates the following stronger notions of asymptotic independence.

Definition 2.15. Let 𝑇 be a measure preserving transformation on a probability space

(𝑋,ℬ, 𝜇). Then

1. (𝑇, 𝜇) is called weakly mixing if for all 𝐴,𝐵 ∈ ℬ one has

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

⃒⃒
𝜇(𝑇−𝑖𝐴 ∩𝐵)− 𝜇(𝐴)𝜇(𝐵)

⃒⃒
= 0. (2.8)

2. (𝑇, 𝜇) is called strongly mixing if for all 𝐴,𝐵 ∈ ℬ one has

lim
𝑛→∞

𝜇(𝑇−𝑛𝐴 ∩𝐵) = 𝜇(𝐴)𝜇(𝐵). (2.9)

Remark 2.16. Note that strongly mixing implies weakly mixing and that weakly

mixing implies ergodicity. The converses are not true in general.

Remark 2.17. Again, to prove weak mixing (resp. mixing) it suffices (see e.g. [54]) to

show (2.8) (resp. (2.9)) for sets 𝐴 and 𝐵 that belong to a semi-algebra 𝒜 ⊆ ℬ that

generates ℬ.

Example 2.18. Consider (Ω𝐸 ,ℱ , 𝜎) from Example 2.5. For P given by (2.1), 𝐴 =

{𝜔 ∈ Ω𝐸 : 𝜔𝑖 = 𝑧𝑖, . . . , 𝜔𝑖+𝑛 = 𝑧𝑖+𝑛} and 𝐵 = {𝜔 ∈ Ω𝐸 : 𝜔𝑗 = 𝑤𝑗 , . . . , 𝜔𝑗+𝑚 = 𝑤𝑗+𝑚} it

is clear that P(𝜎−𝑛𝐴 ∩ 𝐵) = P(𝐴)P(𝐵) for all 𝑛 ≥ |𝑖|+ 𝑗 +𝑚. Since the cylinder sets

form a semi-algebra that generates ℱ , we conclude that the Bernoulli shift is strongly

mixing. Furthermore, if 𝐸 is finite, then one can show (see e.g. Theorem 5.6 in [54])

that the Markov shift (P, 𝜎) with P given by (2.2) is mixing if and only the Markov

chain defined by the stochastic matrix 𝑊 is irreducible and aperiodic.

The following notion is even stronger than mixing and is introduced by Rokhlin [58].

Definition 2.19. Let (𝑋,ℬ, 𝜇) be a probability space and let 𝑇 : 𝑋 → 𝑋 be measure

preserving w.r.t. 𝜇. We say (𝑇, 𝜇) is exact if
⋂︀∞
𝑛=0 𝑇

−𝑛ℬ consists of sets 𝐵 ∈ ℬ such that

𝜇(𝐵) ∈ {0, 1}.

Proposition 2.20. Let 𝑇 be a measure preserving transformation on a probability space

(𝑋,ℬ, 𝜇). Then (𝑇, 𝜇) is exact if and only if for any 𝐴 ∈ ℬ such that 𝜇(𝐴) > 0 and

𝑇 𝑛𝐴 ∈ ℬ for any 𝑛 ≥ 0 we have

lim
𝑛→∞

𝜇(𝑇 𝑛𝐴) = 1. (2.10)

Proof : We refer to Theorem 3.4.3 in [9] for the proof that this condition is necessary.

Let us show that it is sufficient. Suppose that 𝐴 ∈
⋂︀∞
𝑛=0 𝑇

−𝑛ℬ, i.e. for each 𝑛 ≥ 0 there

exists 𝐴𝑛 ∈ ℬ such that 𝐴 = 𝑇−𝑛𝐴𝑛. Then 𝑇 𝑛𝐴 ⊆ 𝐴𝑛, which gives 𝑇−𝑛(𝑇 𝑛𝐴) ⊆ 𝐴.

Also, it holds for all 𝐵 ⊆ 𝑋 that 𝐵 ⊆ 𝑇−𝑛(𝑇 𝑛𝐵), so 𝐴 = 𝑇−𝑛(𝑇 𝑛𝐴) and thus 𝜇(𝐴) =

𝜇(𝑇−𝑛(𝑇 𝑛𝐴)) = 𝜇(𝑇 𝑛𝐴). So 𝜇(𝐴) > 0 implies 𝜇(𝐴) = lim𝑛→∞ 𝜇(𝑇 𝑛𝐴) = 1.
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Remark 2.21. One can show that exactness implies strongly mixing. However, the

converse is not true in general.

Remark 2.22. A measurable transformation 𝑇 on a probability measure (𝑋,ℬ, 𝜇) that
is invertible (i.e. 𝑇 is one-to-one and 𝑇−1 is measurable) cannot be exact. Indeed, in

this case for all 𝐴 ∈ ℬ with 𝜇(𝐴) < 1 we have 𝜇(𝑇 𝑛𝐴) = 𝜇(𝑇−𝑛𝑇 𝑛𝐴) = 𝜇(𝐴) < 1 for

all 𝑛 ∈ N.

Example 2.23. The one-sided Bernoulli shift from Example 2.5 is exact. Also, the

one-sided Markov shift from Example 2.6 is exact if and only if the Markov chain

defined by the stochastic matrix 𝑊 is irreducible and aperiodic. (For a proof, see the

solution of Exercise 9.5.5 in [65].)

2.5 The Koopman Operator

Let (𝑋,ℬ, 𝜇) be a probability space. Recall that the space 𝐿2(𝜇) of complex-valued

square-integrable functions is a Hilbert space w.r.t. the inner product

⟨𝑓, 𝑔⟩ =
∫︁
𝑋

𝑓𝑔𝑑𝜇. (2.11)

A measurable transformation 𝑇 : 𝑋 → 𝑋 induces an operator 𝑈𝑇,𝜇 : 𝐿2(𝜇) → 𝐿2(𝜇)

defined by

𝑈𝑇,𝜇𝑓 = 𝑓 ∘ 𝑇, (2.12)

which is called the Koopman operator for 𝑇 . We now give some results regarding the

relation between the spectrum of 𝑈𝑇,𝜇 and the ergodic properties of 𝑇 w.r.t. 𝜇.

Recall that 𝜆 ∈ C is an eigenvalue for 𝑈𝑇,𝜇 if there exists a nonzero 𝑓 ∈ 𝑈𝑇,𝜇 such that

𝑈𝑇,𝜇𝑓 = 𝜆𝑓 . Note that 𝜆 = 1 is always an eigenvalue for any constant function.

Proposition 2.24. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then an eigenvalue

𝜆 of 𝑈𝑇,𝜇 satisfies |𝜆| = 1. Furthermore, if 𝜆 ̸= 1 is an eigenvalue for 𝑈𝑇,𝜇 corresponding

to an eigenfunction 𝑓 ∈ 𝑈𝑇,𝜇, then
∫︀
𝑋 𝑓𝑑𝜇 = 0.

Proof : Let 𝜆 ∈ C and 𝑓 ∈ 𝑈𝑇,𝜇 nonzero such that 𝑈𝑇,𝜇𝑓 = 𝜆𝑓 . Then the first claim

follows from

⟨𝑓, 𝑓⟩ = ⟨𝑈𝑇,𝜇𝑓, 𝑈𝑇,𝜇𝑓⟩ = ⟨𝜆𝑓, 𝜆𝑓⟩ = |𝜆|2⟨𝑓, 𝑓⟩. (2.13)

The second statement follows from

𝜆

∫︁
𝑋

𝑓𝑑𝜇 =

∫︁
𝑋

𝑈𝑇,𝜇𝑓𝑑𝜇 =

∫︁
𝑋

𝑓𝑑𝜇. (2.14)

We recall that an eigenvalue is called simple if the corresponding eigenspace is 1-

dimensional. Hence, we can reformulate the equivalence (i) ⇔ (iii) in Theorem 2.9 as

follows:
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Theorem 2.25. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then 𝑇 is ergodic

w.r.t. 𝜇 if and only if 1 is a simple eigenvalue for 𝑈𝑇,𝜇.

We can characterize weak mixing as follows.

Theorem 2.26. (see e.g. Theorem 3.5.2 in [9]) Let 𝑇 : 𝑋 → 𝑋 be measure preserving

w.r.t. 𝜇. Then the following statements are equivalent:

(i) 𝑇 is weakly mixing w.r.t. 𝜇,

(ii) 𝑇 is ergodic w.r.t. 𝜇 and 1 is the only eigenvalue of 𝑈𝑇,𝜇,

(iii) Every eigenfunction of 𝑈𝑇,𝜇 is constant.

2.6 The Transfer Operator

Let (𝑋,ℬ, 𝜇) be a probability space, and 𝑇 : 𝑋 → 𝑋 be measurable. The transfer

operator (or Ruelle-Perron-Frobenius operator) was first introduced in [41, 42] and

describes how functions in 𝐿1(𝜇) transform under 𝑇 . We shall see in Chapter 3 that this

operator serves as a powerful tool for determining the invariant densities for piecewise

monotonic transformations on the unit interval. In this section we define the transfer

operator and state its basic properties, and in Section 3.2 we give an explicit formula

for the transfer operator for piecewise monotonic interval maps.

Definition 2.27. Let 𝑇 : 𝑋 → 𝑋 measurable. We say that 𝑇 is nonsingular w.r.t. 𝜇 if

and only if for any 𝐴 ∈ ℬ with 𝜇(𝐴) = 0 we have 𝜇(𝑇−1𝐴) = 0.

Remark 2.28. Note that if 𝑇 : 𝑋 → 𝑋 is measure preserving w.r.t. 𝜇, then 𝑇 is

nonsingular w.r.t. 𝜇.

Definition 2.29. Let 𝑇 : 𝑋 → 𝑋 be nonsingular w.r.t. 𝜇. For any 𝑓 ∈ 𝐿1(𝜇), write

𝑃𝑇,𝜇𝑓 for the unique element in 𝐿1(𝜇) such that, for each 𝐴 ∈ ℬ,∫︁
𝐴

𝑃𝑇,𝜇𝑓𝑑𝜇 =

∫︁
𝑇−1𝐴

𝑓𝑑𝜇. (2.15)

We call 𝑃𝑇,𝜇 : 𝐿1(𝜇) → 𝐿1(𝜇) the transfer operator for 𝑇 .

Remark 2.30. The existence and uniqueness of 𝑃𝑇,𝜇𝑓 as in the above definition is

justified as follows: Consider the measure 𝜈 given by

𝜈(𝐴) =

∫︁
𝑇−1𝐴

𝑓𝑑𝜇, 𝐴 ∈ ℬ. (2.16)

Using the nonsingularity of 𝑇 , 𝜇(𝐴) = 0 implies 𝜇(𝑇−1𝐴) = 0, which in turn implies

𝜈(𝐴) = 0. This gives 𝜈 ≪ 𝜇, so by the Radon-Nikodym Theorem, there exists a unique

element in 𝐿1(𝜇) denoted as 𝑃𝑇,𝜇𝑓 such that

𝜈(𝐴) =

∫︁
𝐴

𝑃𝑇,𝜇𝑓𝑑𝜇, 𝐴 ∈ ℬ. (2.17)
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Because the Radon-Nikodym Theorem applies as well if 𝜈 is a positive 𝜎-finite measure,

note that we can extend the definition of 𝑃𝑇,𝜇 to measurable functions 𝑓 : 𝑋 → [0,∞]

for which 𝜌 given by 𝜌(𝐴) =
∫︀
𝐴 𝑓𝑑𝜇 is 𝜎-finite (in that case, 𝜈 given by (2.16) is also

𝜎-finite). This will be relevant in Section 3.6.

The following basic properties of the transfer operator in the next two propositions

are easy to show. We refer to Section 4.2 in [9] for the proofs.

Proposition 2.31. Let 𝑇 : 𝑋 → 𝑋 be nonsingular w.r.t. 𝜇. Then

(a) 𝑃𝑇,𝜇 is linear,

(b) The integral is preserved by 𝑃𝑇,𝜇, i.e.∫︁
𝑋

𝑃𝑇,𝜇𝑓𝑑𝜇 =

∫︁
𝑋

𝑓𝑑𝜇, 𝑓 ∈ 𝐿1(𝜇), (2.18)

(c) 𝑃𝑇,𝜇 is a positive operator: if 𝑓 ∈ 𝐿1(𝜇) is such that 𝑓 ≥ 0, then 𝑃𝑇,𝜇𝑓 ≥ 0,

(d) 𝑃𝑇,𝜇 is a contraction on 𝐿1(𝜇), i.e.

‖𝑃𝑇,𝜇𝑓‖1,𝜇 ≤ ‖𝑓‖1,𝜇, 𝑓 ∈ 𝐿1(𝜇). (2.19)

Proposition 2.32. Let 𝑇 : 𝑋 → 𝑋 and 𝑆 : 𝑋 → 𝑋 be nonsingular w.r.t. 𝜇. Then

𝑃𝑇∘𝑆,𝜇 = 𝑃𝑇,𝜇 ∘ 𝑃𝑆,𝜇. In particular, 𝑃𝑇𝑛,𝜇 = 𝑃 𝑛
𝑇,𝜇 for each 𝑛 ∈ N.

For a nonsingular transformation 𝑇 : 𝑋 → 𝑋 w.r.t. 𝜇, the following proposition gives

a one-to-one correspondence between the fixed points of 𝑃𝑇,𝜇 and the measures that

are 𝑇 -invariant and absolutely continuous w.r.t. 𝜇.

Proposition 2.33. Let 𝑇 : 𝑋 → 𝑋 be nonsingular w.r.t. 𝜇 and ℎ ∈ 𝐿1(𝜇). Then

𝑃𝑇,𝜇ℎ = ℎ if and only if 𝑇 is measure preserving with respect to the measure 𝜈 given by

𝜈(𝐴) =

∫︁
𝐴

ℎ𝑑𝜇, 𝐴 ∈ ℬ. (2.20)

Proof : This follows immediately from

𝜈(𝑇−1𝐴) =

∫︁
𝑇−1𝐴

ℎ𝑑𝜇 =

∫︁
𝐴

𝑃𝑇,𝜇ℎ𝑑𝜇. (2.21)

Proposition 2.34. Let 𝑇 : 𝑋 → 𝑋 be nonsingular w.r.t. 𝜇 and 𝜈 be the measure given

by (2.20) for some ℎ ∈ 𝐿1(𝜇). Then 𝑇 is nonsingular w.r.t. 𝜈 and

𝑃𝑇,𝜈𝑓 =
𝑃𝑇,𝜇(𝑓 · ℎ)

ℎ
, 𝑓 ∈ 𝐿1(𝜈) (2.22)

where 𝑃𝑇,𝜈𝑓 can be taken as a version in 𝐿1(𝜈) such that 𝑃𝑇,𝜈𝑓(𝑥) = 0 whenever ℎ(𝑥) = 0.
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Proof : Let 𝐴 ∈ ℬ and 𝑓 ∈ ℒ1(𝜇). We have∫︁
𝐴

𝑃𝑇,𝜇(𝑓 · ℎ)
ℎ

𝑑𝜈 =

∫︁
𝐴

𝑃𝑇,𝜇(𝑓 · ℎ)𝑑𝜇 =

∫︁
𝑇−1𝐴

𝑓𝑑𝜈. (2.23)

Taking 𝑓 ≡ 1, we see that 𝑇 is nonsingular w.r.t. 𝜈, and (2.22) follows from (2.23).

Recall that a sequence {𝑓𝑛}𝑛∈N in 𝐿1(𝜇) converges weakly to a function 𝑓 ∈ 𝐿1(𝜇) if∫︀
𝑋 𝑓𝑛𝑔𝑑𝜇 →

∫︀
𝑋 𝑓𝑔𝑑𝜇 as 𝑛 → ∞ for each 𝑔 ∈ 𝐿∞(𝜇), which we denote as 𝑓𝑛

𝑤→ 𝑓 . On

the other hand, we write 𝑓𝑛
𝐿1(𝜇)→ 𝑓 for convergence w.r.t. the 𝐿1(𝜇)-norm. Using this

we can formulate the concepts of ergodicity, (weak) mixing and exactness in terms of

the transfer operator as in the following theorem.

Theorem 2.35. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then 𝑇 is nonsingular

w.r.t. 𝜇, and

1. 𝑇 is ergodic w.r.t. 𝜇 if and only if for all 𝑓 ∈ 𝐿1(𝜇),

1

𝑛

𝑛−1∑︁
𝑘=0

𝑃 𝑘
𝑇,𝜇𝑓

𝑤→
∫︁
𝑋

𝑓𝑑𝜇, 𝑛→ ∞, (2.24)

2. 𝑇 is weakly mixing w.r.t. 𝜇 if and only if for all 𝑓 ∈ 𝐿1(𝜇),

1

𝑛

𝑛−1∑︁
𝑘=0

⃒⃒⃒
𝑃 𝑘
𝑇,𝜇𝑓 −

∫︁
𝑋

𝑓𝑑𝜇
⃒⃒⃒
𝑤→ 0, 𝑛→ ∞, (2.25)

3. 𝑇 is strongly mixing w.r.t. 𝜇 if and only if for all 𝑓 ∈ 𝐿1(𝜇),

𝑃 𝑛
𝑇,𝜇𝑓

𝑤→
∫︁
𝑋

𝑓𝑑𝜇, 𝑛→ ∞, (2.26)

4. 𝑇 is exact w.r.t. 𝜇 if and only if for all 𝑓 ∈ 𝐿1(𝜇),

𝑃 𝑛
𝑇,𝜇𝑓

𝐿1(𝜇)→
∫︁
𝑋

𝑓𝑑𝜇, 𝑛→ ∞. (2.27)

We refer to Propositions 4.2.10 and 4.2.11 in [9] for a proof of Theorem 2.35.

In case 𝑇 : 𝑋 → 𝑋 is measure preserving w.r.t. 𝜇, we have the following strengthening

of part (d) in Proposition 2.31 (see Corollary 4.2.1 in [9]).

Proposition 2.36. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. For each 𝑝 ∈ [1,∞],

𝑃𝑇,𝜇 is a contraction on 𝐿𝑝(𝜇), i.e.

‖𝑃𝑇,𝜇𝑓‖𝑝,𝜇 ≤ ‖𝑓‖𝑝,𝜇, 𝑓 ∈ 𝐿𝑝(𝜇). (2.28)

In the rest of this section we suppose that 𝜇 is 𝑇 -invariant and consider the restriction

of 𝑃𝑇,𝜇 to 𝐿2(𝜇), which is possible by the previous proposition.

Proposition 2.37. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then the adjoint of

𝑃𝑇,𝜇 : 𝐿2(𝜇) → 𝐿2(𝜇) is the Koopman operator 𝑈𝑇,𝜇.
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Proof : Let 𝑓 ∈ 𝐿2(𝜇) and set 𝑔 = 1𝐴, 𝐴 ∈ ℬ. Then

⟨𝑃𝑇 𝑓, 𝑔⟩ =
∫︁
𝑇−1𝐴

𝑓𝑑𝜇 =

∫︁
𝑋

𝑓(1𝐴 ∘ 𝑇 )𝑑𝜇 = ⟨𝑓, 𝑈𝑇,𝜇𝑔⟩. (2.29)

Since the linear combinations of indicator functions are dense in 𝐿2(𝜇), one can derive

the statement ⟨𝑃𝑇 𝑓, 𝑔⟩ = ⟨𝑓, 𝑈𝑇,𝜇𝑔⟩ for all 𝑓, 𝑔 ∈ 𝐿2(𝜇).

Lemma 2.38. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then 𝑃𝑇,𝜇𝑈𝑇,𝜇𝑓 = 𝑓 for

all 𝑓 ∈ 𝐿2(𝜇).

Proof : For all 𝑓, 𝑔 ∈ 𝐿2(𝜇) we have

⟨𝑃𝑇,𝜇𝑈𝑇,𝜇𝑓, 𝑔⟩ = ⟨𝑈𝑇,𝜇𝑓, 𝑈𝑇,𝜇𝑔⟩ = ⟨𝑓, 𝑔⟩. (2.30)

Proposition 2.39. Let 𝑇 : 𝑋 → 𝑋 be measure preserving w.r.t. 𝜇. Then

𝑈𝑇,𝜇𝑓 = 𝜆𝑓 ⇔ 𝑃𝑇,𝜇𝑓 = 𝜆𝑓 and |𝜆| = 1 (2.31)

for 𝑓 ∈ 𝐿2(𝜇) and 𝜆 ∈ C. In particular, the set of eigenvalues of 𝑈𝑇,𝜇 equals the set of

eigenvalues of 𝑃𝑇,𝜇 with modulus 1.

Proof : Suppose 𝑈𝑇,𝜇𝑓 = 𝜆𝑓 . Then |𝜆| = 1 and 𝑈𝑇,𝜇𝑓 = 𝑈𝑇,𝜇𝑓 = 𝜆𝑓 , so 𝜆−1 = 𝜆 and

𝜆𝑈𝑇,𝜇𝑓 = 𝑓 . This gives 𝑃𝑇,𝜇𝑓 = 𝑃𝑇,𝜇(𝜆𝑈𝑇,𝜇𝑓) = 𝜆𝑓 . Conversely, suppose 𝑃𝑇,𝜇𝑓 = 𝜆𝑓

with |𝜆| = 1. Then

⟨𝜆𝑈𝑇,𝜇𝑓 − 𝑓, 𝜆𝑈𝑇,𝜇𝑓 − 𝑓⟩ = |𝜆|2⟨𝑈𝑇,𝜇𝑓, 𝑈𝑇,𝜇𝑓⟩ − 𝜆⟨𝑈𝑇,𝜇𝑓, 𝑓⟩ − 𝜆⟨𝑓, 𝑈𝑇,𝜇𝑓⟩+ ⟨𝑓, 𝑓⟩

= 2⟨𝑓, 𝑓⟩ − 𝜆⟨𝑃𝑇,𝜇𝑓, 𝑓⟩ − 𝜆⟨𝑃𝑇,𝜇𝑓, 𝑓⟩
= 2⟨𝑓, 𝑓⟩ − 2|𝜆|2⟨𝑓, 𝑓⟩ = 0.

Hence, 𝜆𝑈𝑇,𝜇𝑓 = 𝑓 , or equivalently 𝑈𝑇,𝜇𝑓 = 𝜆𝑓 .

2.7 Measure Preserving Isomorphisms and Lebesgue Spaces

Let (𝑋,ℬ, 𝜇) be a probability space and let 𝑇 : 𝑋 → 𝑋 be measure preserving. We call

the quadruple (𝑋,ℬ, 𝜇, 𝑇 ) a dynamical system. Such a system is characterized by its

measure structure given by (𝑋,ℬ, 𝜇) modulo sets of measure zero, and by its dynamical

structure given by 𝑇 . For this reason, we have the following definition that classifies

two dynamical systems as identical.

Definition 2.40. Two dynamical systems (𝑋,ℬ, 𝜇, 𝑇 ) and (𝑌, 𝒞, 𝜈, 𝑆) are isomorphic if

there exist 𝑁 ∈ ℬ with 𝜇(𝑁) = 0 and 𝑇 (𝑋∖𝑁) ⊆ 𝑋∖𝑁 , 𝑀 ∈ 𝒞 with 𝜈(𝑀) = 0 and

𝑆(𝑌 ∖𝑀) ⊆ 𝑌 ∖𝑀 , and a measurable and invertible transformation 𝜓 : 𝑋∖𝑁 → 𝑌 ∖𝑀
such that 𝜓 ∘𝑇 = 𝑆 ∘𝜓 on 𝑋∖𝑁 and 𝜇(𝜓−1𝐴) = 𝜈(𝐴) for all measurable 𝐴 ⊆ 𝑌 ∖𝑀 . The

map 𝜓 is called an isomorphism.
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Example 2.41. Let ([0, 1),ℬ, 𝜆) be the unit interval with associated Borel 𝜎-algebra

ℬ and Lebesgue measure 𝜆. Let 𝑁 ∈ N, and let 𝑇 : [0, 1) → [0, 1) be given by

𝑇𝑥 = 𝑁𝑥 mod 1. Then, similar as the decimal map considered in Subsection 1.1.1, 𝑇

generates 𝑁 -adic expansions so that each 𝑥 ∈ [0, 1) can be written as 𝑥 =
∑︀∞

𝑘=1
𝑎𝑘
𝑁𝑘

with 𝑎𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Furthermore, let (Ω𝐸 ,ℱ ,P, 𝜎) be the one-sided Bernoulli

shift from Example 2.5 with 𝐸 = {0, 1, . . . , 𝑁 −1} and a probability vector 𝑝 = (𝑝𝑗)𝑗∈𝐸
given by 𝑝𝑗 =

1
𝑁 for each 𝑗 ∈ 𝐸. Let

𝑁 = {𝜔 ∈ Ω𝐸 : ∃𝑘 ≥ 1 : 𝜔𝑖 = 𝑁 − 1 for all 𝑖 ≥ 𝑘}. (2.32)

Then one can show that ([0, 1),ℬ, 𝜆, 𝑇 ) and (Ω𝐸 ,ℱ ,P, 𝜎) are isomorphic with an iso-

morphism 𝜓 : Ω𝐸∖𝑁 → [0, 1) given by

𝜓(𝜔) =
∞∑︁
𝑘=1

𝜔𝑘
𝑁𝑘

. (2.33)

The following proposition is obvious.

Proposition 2.42. Suppose (𝑋,ℬ, 𝜇, 𝑇 ) and (𝑌, 𝒞, 𝜈, 𝑆) are two isomorphic dynamical

systems. Then (𝑇, 𝜇) is ergodic (resp. weakly mixing, mixing, exact) if and only if (𝑆, 𝜈)

is ergodic (resp. weakly mixing, mixing, exact).

In this thesis, we mostly work on probability spaces that are Lebesgue spaces. These

non-pathological probability spaces are introduced by [59] and can be thought of as

the union of an interval and an at most countable number of atoms. This is made

more precise in the next definition. First, recall that a set 𝐴 ∈ ℬ in a probability

space (𝑋,ℬ, 𝜇) is called an atom if 𝜇(𝐴) > 0 and if for each 𝐵 ∈ ℬ with 𝐵 ⊆ 𝐴 and

𝜇(𝐵) < 𝜇(𝐴) we have 𝜇(𝐵) = 0.

Definition 2.43. (Definition 4.5 in [54]) We call a probability space (𝑋,ℬ, 𝜇) a Lebesgue

space if there exists an at most countable union 𝑋0 = ∪𝑖𝐴𝑖 of atoms 𝐴𝑖 ∈ ℬ such that,

writing 𝑋̃ = 𝑋∖𝑋0, ℬ̃ = ℬ ∩ 𝑋̃ and 𝜇̃(·) = 𝜇(·)
𝜇(𝑋̃)

, the dynamical system (𝑋̃, ℬ̃, 𝜇̃, id𝑋̃)
is isomorphic to ([0, 1),ℬ([0, 1)), 𝜆, id[0,1)). Here, ℬ([0, 1)) is the Lebesgue 𝜎-algebra on

[0, 1) and 𝜆 the Lebesgue measure.

Theorem 2.44. (Theorem 4.6 in [54]) Let 𝑋 be a Polish space and ℬ the corresponding

Borel 𝜎-algebra on 𝑋. Let 𝜇 be a probability measure on (𝑋,ℬ). Suppose (𝑋,ℬ, 𝜇) is

complete, i.e. if 𝐴 ∈ ℬ such that 𝜇(𝐴) = 0, then 𝐵 ∈ ℬ for all 𝐵 ⊆ 𝐴. Then (𝑋,ℬ, 𝜇) is
a Lebesgue space.

Example 2.45. Let 𝐸 be a Polish space. Then one can show that Ω𝐸 = 𝐸N (or

Ω𝐸 = 𝐸Z) is a Polish space as well. Let ℱ be the Borel 𝜎-algebra on Ω𝐸, which in case

𝐸 is countable corresponds to the 𝜎-algebra generated by the cylinder sets. Let P be

a Borel probability measure on (Ω𝐸 ,ℱ), and write ℱP for the completion of ℱ w.r.t.

P. Then (Ω𝐸 ,ℱP,P) is a Lebesgue space.
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2.8 Entropy

The notion of entropy in information theory was introduced by Shannon [61] to quantify

the amount of randomness produced by an information source. In [38], Kolmogorov

introduced entropy in dynamical systems, which was made rigorous by Sinai [63].

In this section we briefly review this very important concept of (Kolmogorov-Sinai)

entropy in Ergodic Theory. Let us fix a dynamical system (𝑋,ℬ, 𝜇, 𝑇 ).

We say 𝛼 = {𝐴𝑖 : 𝑖 ∈ 𝐼} is a partition of 𝑋 if 𝑋 is the disjoint union (up to sets of

𝜇-measure zero) of the sets 𝐴𝑖, where 𝐴𝑖 ∈ ℬ for each 𝑖 ∈ 𝐼 and where 𝐼 is a finite or

countable index set. For a partition 𝛼 of 𝑋, we define the entropy of the partition 𝛼 as

𝐻𝜇(𝛼) =
∑︁
𝐴∈𝛼

𝜇(𝐴) log 𝜇(𝐴). (2.34)

Also, we define

𝑇−1𝛼 := {𝑇−1𝐴 : 𝐴 ∈ 𝛼}, (2.35)

which is a partition of 𝑋 as well.

Furthermore, for two partitions 𝛼 and 𝛽 of 𝑋, we define the conditional entropy of 𝛼

given 𝛽 as

𝐻𝜇(𝛼|𝛽) = −
∑︁
𝐴∈𝛼

∑︁
𝐵∈𝛽

log
(︁𝜇(𝐴 ∩𝐵)

𝜇(𝐵)

)︁
𝜇(𝐴 ∩𝐵). (2.36)

Also, we define

𝛼 ∨ 𝛽 := {𝐴 ∩𝐵 : 𝐴 ∈ 𝛼,𝐵 ∈ 𝛽}, (2.37)

which is a partition of 𝑋 as well and is called the common refinement of 𝛼 and 𝛽.

The following properties are easy to show and will be needed in Chapter 5.

Proposition 2.46. Let 𝛼, 𝛽 and 𝛾 be partitions of 𝑋. Then

(a) 𝐻𝜇(𝑇−1𝛼) = 𝐻𝜇(𝛼),

(b) 𝐻𝜇(𝛼 ∨ 𝛽) = 𝐻𝜇(𝛼) +𝐻𝜇(𝛽|𝛼),

(c) 𝐻𝜇(𝛽|𝛼) ≤ 𝐻𝜇(𝛽),

(d) 𝐻𝜇(𝛼 ∨ 𝛽) ≤ 𝐻𝜇(𝛼) +𝐻𝜇(𝛽).

Let 𝛼 be a partition of 𝑋, and define for each 𝑛 ∈ N the partition

𝛼𝑛 =
𝑛−1⋁︁
𝑘=0

𝑇−𝑘𝛼 =
{︁ 𝑛−1⋂︁
𝑘=0

𝑇−𝑘𝐴𝑘 : 𝐴𝑘 ∈ 𝛼, 𝑘 = 0, 1, . . . , 𝑛− 1
}︁
. (2.38)

In order to define the entropy of 𝑇 with respect to the partition 𝛼, we need the following

analytic lemma.
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Lemma 2.47. (Fekete’s Subadditive Lemma) Suppose a sequence {𝑎𝑛}𝑛∈N of real num-

bers is subadditive, i.e. 𝑎𝑛+𝑚 ≤ 𝑎𝑛 + 𝑎𝑚 for all 𝑛,𝑚 ∈ N. Then lim𝑛→∞
𝑎𝑛
𝑛 exists and is

equal to inf𝑛∈N
𝑎𝑛
𝑛 .

Proposition 2.48. Let 𝛼 be a partition of 𝑋 such that 𝐻𝜇(𝛼) < ∞. Then the sequence

{𝐻𝜇(𝛼𝑛)}𝑛∈N is subadditive.

Proof : For all 𝑛,𝑚 ∈ N we have

𝐻𝜇(𝛼𝑛+𝑚) ≤ 𝐻𝜇(𝛼𝑛) +𝐻𝜇

(︁ 𝑛+𝑚−1⋁︁
𝑘=𝑛

𝑇−𝑘𝛼
)︁
≤ 𝐻𝜇(𝛼𝑛) +𝐻𝜇(𝛼𝑚), (2.39)

where we applied parts (d) and (a) of Proposition 2.46, respectively.

Definition 2.49. Let 𝛼 be a partition of 𝑋 such that 𝐻𝜇(𝛼) < ∞. Then the entropy of

𝑇 w.r.t. 𝛼 given by

ℎ𝜇(𝛼, 𝑇 ) = lim
𝑛→∞

1

𝑛
𝐻𝜇(𝛼𝑛) (2.40)

exists and is finite by the previous two results. Finally, the entropy of 𝑇 is defined as

ℎ𝜇(𝑇 ) = sup{ℎ𝜇(𝛼, 𝑇 )| 𝛼 partition of 𝑋 such that 𝐻𝜇(𝛼) <∞}. (2.41)

The following theorem shows that entropy is an isomorphism invariant. We refer to

Theorem 5.2.2 in [15] for a proof.

Theorem 2.50. Suppose (𝑋,ℬ, 𝜇, 𝑇 ) and (𝑌, 𝒞, 𝜈, 𝑆) are two isomorphic dynamical sys-

tems. Then ℎ𝜇(𝑇 ) = ℎ𝜈(𝑆).

In general, it does not seem possible to calculate the entropy straight from its definition.

The next theorem is an important tool for calculating the entropy. First, let us define

that a partition 𝛼 of 𝑋 is a generator with respect to a non-invertible transformation

𝑇 if

𝜎
(︁ ∞⋁︁
𝑖=0

𝑇−𝑖𝛼
)︁
= ℬ up to sets of 𝜇-measure zero. (2.42)

If 𝑇 is invertible, then 𝛼 is called a generator w.r.t. 𝑇 if 𝜎(
⋁︀∞
𝑖=−∞ 𝑇−𝑖𝛼) = ℬ up to sets

of 𝜇-measure zero.

Theorem 2.51. (Kolmogorov-Sinai) Let 𝛼 be a partition of 𝑋 such that 𝐻𝜇(𝛼) <∞. If

𝛼 is a generator w.r.t. 𝑇 , then ℎ𝜇(𝑇 ) = ℎ𝜇(𝑇, 𝛼).

Example 2.52. Let (Ω𝐸 ,ℱ ,P, 𝜎) be the Bernoulli shift from Example 2.5. By definition

of ℱ , note that the partition 𝛼 = {𝐴𝑗 : 𝑗 ∈ 𝐸} given by 𝐴𝑗 = {𝜔 ∈ Ω𝐸 : 𝜔1 = 𝑗} is a

generator w.r.t. 𝜎. Furthermore, since P is a product measure on Ω𝐸, we can derive

𝐻P(𝛼𝑛) =
𝑛−1∑︁
𝑖=0

𝐻P(𝜎
−𝑖𝛼) = 𝑛𝐻P(𝛼) = −𝑛

∑︁
𝑗∈𝐸

𝑝𝑗 log 𝑝𝑗 . (2.43)
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It follows from Theorem 2.51 that

ℎP(𝜎) = lim
𝑛→∞

1

𝑛
𝐻P(𝛼𝑛) = −

∑︁
𝑗∈𝐸

𝑝𝑗 log 𝑝𝑗 . (2.44)

Moreover, combining this with Example 2.41 and Theorem 2.50 yields that 𝑇 : [0, 1) →
[0, 1) given by 𝑇𝑥 = 𝑁𝑥 mod 1 (𝑁 ∈ N) has entropy ℎ𝜆(𝑇 ) = log𝑁 w.r.t. the Lebesgue

measure 𝜆 on [0, 1).

Finally, we state the classical Shannon-McMillan-Breiman Theorem. For this, we

define the information function associated to a partition 𝛼 of 𝑋 as

𝐼𝛼(𝑥) = −
∑︁
𝐴∈𝛼

1𝐴(𝑥) log 𝜇(𝐴). (2.45)

Note that 𝐻𝜇(𝛼) =
∫︀
𝑋 𝐼𝛼(𝑥)𝑑𝜇(𝑥). Denoting 𝛼(𝑥) for the atom of 𝛼 containing 𝑥, we

can also write

𝐼𝛼(𝑥) = − log 𝜇(𝛼(𝑥)). (2.46)

Theorem 2.53. (Shannon-McMillan-Breiman) Let 𝛼 be a partition of 𝑋 s.t. 𝐻𝜇(𝛼) <

∞. Suppose that 𝑇 is ergodic w.r.t. 𝜇. Then

lim
𝑛→∞

−𝐼𝛼𝑛(𝑥)
𝑛

= ℎ𝜇(𝑇, 𝛼), 𝜇-a.e. (2.47)



Chapter 3

Invariant Densities for Piecewise

Monotonic Interval Maps

3.1 Introduction

In this and the next chapter, we work on the probability space (𝐼,ℬ, 𝜆), where 𝐼 = [0, 1]

is the unit interval, ℬ the Borel 𝜎-algebra on 𝐼 and 𝜆 the Lebesgue measure restricted

to 𝐼.

Let 𝑇 : 𝐼 → 𝐼 be measure preserving and ergodic with respect to some probability

measure 𝜇 on 𝐼. We know from Theorem 2.14 that there exists 𝐵 ∈ ℬ with 𝜇(𝐵) = 1

such that

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥) =

∫︁
𝐼

𝑓𝑑𝜇 for all 𝑥 ∈ 𝐵 and 𝑓 ∈ 𝐶(𝐼). (3.1)

In case 𝜇 is absolutely continuous with respect to 𝜆 we have 𝜆(𝐵) > 0. Hence, the

existence of an ergodic absolutely continuous invariant probability measure (acipm) for

𝑇 implies in weak sense a characterization of the long-term average behavior of points

in a set of at least positive Lebesgue measure. This raises the question under what

conditions 𝑇 admits an ergodic acipm.

We address this question in this chapter for transformations 𝑇 : 𝐼 → 𝐼 that are finitely

or countably piecewise 𝐶𝑘-monotonic (𝑘 ≥ 1), i.e. there exists a finite or countable

partition {𝐼𝑖} of 𝐼 such that each 𝐼𝑖 is an interval and the restriction of 𝑇 to 𝐼𝑖 is

𝐶𝑘, monotone and injective (see Figure 3.1). Note that such a transformation 𝑇 is

nonsingular w.r.t. 𝜆, so 𝑇 admits a corresponding transfer operator 𝑃𝑇,𝜆 : 𝐿1(𝜆) →
𝐿1(𝜆) that we simply denote as 𝑃𝑇 .

We know from Proposition 2.33 that ℎ ∈ 𝐿1(𝜆) is a fixed point of 𝑃𝑇 (i.e. ℎ is an

invariant density for 𝑇 in the sense of (1.27)) if and only if the (complex) measure 𝜇

24
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Figure 3.1: Example of a piecewise monotonic transformation on 𝐼

given by 𝜇(𝐴) =
∫︀
𝐴 ℎ𝑑𝜆 (𝐴 ∈ ℬ) is 𝑇 -invariant (i.e. 𝜇 is an acim for 𝑇 ). Hence, we are

interested in the fixed points of 𝑃𝑇 .

We derive in Section 3.2 for a piecewise monotonic transformation 𝑇 : 𝐼 → 𝐼 that

𝑃𝑇 𝑓(𝑥) =
∑︁

𝑦∈𝑇−1𝑥

𝑓(𝑦)

|𝑇 ′(𝑦)|
𝜆-a.e. (3.2)

for all 𝑓 ∈ 𝐿1(𝜆). Furthermore, we discuss in Section 3.3 the celebrated theorem by

Lasota and Yorke that any finitely piecewise 𝐶2-monotonic map 𝑇 : 𝐼 → 𝐼 that is

expanding (i.e. inf𝑥∈𝐼 |𝑇 ′(𝑥)| > 1) admits an acipm. The main technical step in the

proof is to obtain the Lasota-Yorke inequality : There exists 𝑘 ∈ N, 𝜌 ∈ (0, 1) and

𝐿 ∈ (0,∞) such that

Var𝐼(𝑃
𝑘
𝑇 𝑓) ≤ 𝜌Var𝐼(𝑓) + 𝐿‖𝑓‖1 for all 𝑓 ∈ 𝐵𝑉 (𝐼). (3.3)

In (3.3), Var𝐼(·) denotes the variation of a function on 𝐼 and 𝐵𝑉 (𝐼) is the space of

functions of bounded variation on 𝐼. We recall these definitions in Appendix A. We

shall see in Section 3.4 that (3.3) implies that 𝑃𝑇 is quasi-compact (see Appendix B.3)

on 𝐵𝑉 (𝐼) as a consequence of the famous Ionescu-Tulcea and Marinescu Theorem,

from which several ergodic properties of 𝑇 can be derived. If we in addition assume

that 𝑇 admits a suitable covering property such as in the so-called Folklore Theorem,

we shall see in Section 3.5 that 𝑇 admits a unique acipm 𝜇, that 𝑇 is exact with respect

to this 𝜇 and that 𝜇 satisfies

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇

𝑑𝜆
≤𝑀. (3.4)

Finally, we recover in Section 3.6 by a method based on Section 3 in [35] that the LSV

map from (1.28) admits a unique acipm if 𝛼 ∈ (0, 1) and an infinite 𝜎-finite acim if

𝛼 ≥ 1.
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3.2 Representation of the Transfer Operator

Let 𝑇 : 𝐼 → 𝐼 be piecewise monotonic. We derive (3.2) by following Section 4.3 in [9].

For simplicity, let us assume 𝑇 is finitely piecewise monotonic, i.e. there exists a finite

partition of 𝐼, 0 = 𝑎0 < 𝑎1 < · · · < 𝑎𝑛 = 1 such that

(1) 𝑇𝑖 := 𝑇 |(𝑎𝑖−1,𝑎𝑖) is 𝐶
𝑘 (𝑘 ≥ 1) and has a 𝐶𝑘 extension to [𝑎𝑖−1, 𝑎𝑖], 𝑖 = 1, . . . , 𝑛,

(2) 𝜃(𝑇 ) := inf
𝑥∈𝐼

|𝑇 ′(𝑥)| > 0 (where we take the one-sided derivates at the points

where 𝑇 is not differentiable).

Let 𝐴 ∈ ℬ and 𝑓 ∈ 𝐿1(𝜆). By definition, we have∫︁
𝐴

𝑃𝑇 𝑓𝑑𝜆 =

∫︁
𝑇−1𝐴

𝑓𝑑𝜆 =
𝑛∑︁
𝑖=1

∫︁
𝑇−1
𝑖 𝐴

𝑓𝑑𝜆. (3.5)

Recall the change of variable formula for (Riemann) integration: If 𝑔 is differentiable

over [𝑎, 𝑏] such that 𝑔′ is integrable over [𝑎, 𝑏] and if ℎ is integrable over 𝑔([𝑎, 𝑏]), then∫︁ 𝑔(𝑏)

𝑔(𝑎)

ℎ(𝑥)𝑑𝑥 =

∫︁ 𝑏

𝑎

ℎ(𝑔(𝑦))𝑔′(𝑦)𝑑𝑦. (3.6)

For each 𝑖 = 1, . . . , 𝑛, this formula with ℎ(𝑥) =
1𝐴(𝑥)𝑓(𝑇

−1
𝑖 (𝑥))

𝑇 ′
𝑖 (𝑇

−1
𝑖 𝑥)

and 𝑔(𝑦) = 𝑇𝑖(𝑦) gives∫︁
𝑇−1
𝑖 𝐴

𝑓𝑑𝜆 =

∫︁ 𝑎𝑖

𝑎𝑖−1

1𝐴(𝑇𝑖𝑦)𝑓(𝑦)
𝑇 ′
𝑖 (𝑦)

𝑇 ′
𝑖 (𝑦)

𝑑𝑦

=

∫︁ 𝑇𝑖(𝑎𝑖)

𝑇𝑖(𝑎𝑖−1)

1𝐴(𝑥)𝑓(𝑇
−1
𝑖 (𝑥))

𝑇 ′
𝑖 (𝑇

−1
𝑖 𝑥)

𝑑𝑥

=

∫︁
𝐴∩𝑇 (𝑎𝑖−1,𝑎𝑖)

𝑓(𝑇−1
𝑖 𝑥)

|𝑇 ′(𝑇−1
𝑖 𝑥)|

𝑑𝜆(𝑥),

where in the last step we account for the fact that 𝑇𝑖 is either increasing or decreasing.

Combining this with (3.5) yields∫︁
𝐴

𝑃𝑇 𝑓𝑑𝜆 =

∫︁
𝐴

𝑛∑︁
𝑖=1

𝑓(𝑇−1
𝑖 𝑥)

|𝑇 ′(𝑇−1
𝑖 𝑥)|

1𝑇 (𝑎𝑖−1,𝑎𝑖)(𝑥)𝑑𝜆(𝑥). (3.7)

Since (3.7) holds for each 𝐴 ∈ ℬ, we obtain

𝑃𝑇 𝑓(𝑥) =
𝑛∑︁
𝑖=1

𝑓(𝑇−1
𝑖 𝑥)

|𝑇 ′(𝑇−1
𝑖 𝑥)|

1𝑇 (𝑎𝑖−1,𝑎𝑖)(𝑥) 𝜆-a.e. (3.8)

for all 𝑓 ∈ 𝐿1(𝜆). Note that we can rewrite this to

𝑃𝑇 𝑓(𝑥) =
∑︁

𝑦∈𝑇−1𝑥

𝑓(𝑦)

|𝑇 ′(𝑦)|
𝜆-a.e. (3.9)

for all 𝑓 ∈ 𝐿1(𝜆). Observe that if 𝑇 is piecewise monotonic with respect to a countable

partition, we can derive (3.9) using the same arguments (in addition, we need to apply
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the Monotone Convergence Theorem to interchange integral and series).

3.3 The Lasota-Yorke Inequality

We say that a piecewise monotonic transformation 𝑇 : 𝐼 → 𝐼 is expanding if 𝜃(𝑇 ) =

inf𝑥∈𝐼 |𝑇 ′(𝑥)| > 1. We have the following famous result due to Lasota and Yorke [43].

Theorem 3.1. (Lasota-Yorke) Let 𝑇 : 𝐼 → 𝐼 be finitely piecewise 𝐶2-monotonic and

expanding. Then 𝑇 admits an acipm whose density is of bounded variation.

In order to prove Theorem 3.1, we follow Section 10 of [10]. The key to this proof is the

Lasota-Yorke Inequality (3.3) that we shall obtain with the following technical lemma.

We refer the reader to Appendix A for a review on functions of bounded variation.

Lemma 3.2. Let 𝑇 : 𝐼 → 𝐼 be finitely piecewise 𝐶2-monotonic. Then

Var𝐼(𝑃𝑇 𝑓) ≤
2

𝜃(𝑇 )
Var𝐼(𝑓) + 𝐿(𝑇 )‖𝑓‖1 for all 𝑓 ∈ 𝐵𝑉 (𝐼), (3.10)

where 𝜃(𝑇 ) = inf𝑥∈𝐼 |𝑇 ′(𝑥)| and 𝐿(𝑇 ) is a finite positive constant depending only on 𝑇 .

Proof : Write 0 = 𝑎0 < 𝑎1 < · · · < 𝑎𝑛 = 1 for the (minimal) partition on which 𝑇 is

finitely piecewise 𝐶2-monotonic. We have |𝑇 ′′| ≤ 𝐾 for some 𝐾 > 0, so⃒⃒⃒ 𝑑
𝑑𝑥

1

𝑇 ′(𝑥)

⃒⃒⃒
=

|𝑇 ′′(𝑥)|
(𝑇 ′(𝑥))2

≤ 𝐾

𝜃2
for all 𝑥 ∈ 𝐼, (3.11)

where 𝜃 = 𝜃(𝑇 ) > 0. Now, let 𝑓 ∈ 𝐵𝑉 (𝐼). Then from (3.8) it follows that

𝑃𝑇 𝑓(𝑥) =
𝑛∑︁
𝑖=1

𝑓(𝑇−1
𝑖 𝑥)

|𝑇 ′(𝑇−1
𝑖 𝑥)|

1𝑇 ([𝑎𝑖−1,𝑎𝑖])(𝑥) 𝜆-a.e., (3.12)

where we changed the right-hand side on a finite number of points 𝑥 and now write

𝑇𝑖 for its 𝐶2-extension to [𝑎𝑖−1, 𝑎𝑖]. For each 𝑖 = 1, . . . , 𝑛, Yorke’s Inequality (Theorem

A.17) gives

Var𝐼
(︁ 𝑓 ∘ 𝑇−1

𝑖

|𝑇 ′ ∘ 𝑇−1
𝑖 |

1𝑇 ([𝑎𝑖−1,𝑎𝑖])

)︁
≤ 2Var𝑇 ([𝑎𝑖−1,𝑎𝑖])

(︁ 𝑓

|𝑇 ′|
∘ 𝑇−1

𝑖

)︁
+

2

𝑇 (𝑎𝑖)− 𝑇 (𝑎𝑖−1)

∫︁ 𝑇 (𝑎𝑖)

𝑇 (𝑎𝑖−1)

|𝑓(𝑇−1
𝑖 (𝑥))|

|𝑇 ′(𝑇−1
𝑖 (𝑥))|

𝑑𝑥

≤ 2Var[𝑎𝑖−1,𝑎𝑖]

(︁ 𝑓

|𝑇 ′|

)︁
+

2

|𝑇 (𝑎𝑖)− 𝑇 (𝑎𝑖−1)|

∫︁ 𝑎𝑖

𝑎𝑖−1

|𝑓(𝑦)|𝑑𝑦,

where the last step follows from (A.7) and the change of variable formula (3.6). More-

over, for each 𝑖 = 1, . . . , 𝑛 it follows from Proposition A.14 that

Var[𝑎𝑖−1,𝑎𝑖]

(︁ 𝑓

|𝑇 ′|

)︁
≤ 1

𝜃
Var[𝑎𝑖−1,𝑎𝑖](𝑓) +

∫︁ 𝑎𝑖

𝑎𝑖−1

|𝑓(𝑦)|
⃒⃒⃒ 𝑑
𝑑𝑦

1

𝑇 ′(𝑦)

⃒⃒⃒
𝑑𝑦

≤ 1

𝜃
Var[𝑎𝑖−1,𝑎𝑖](𝑓) +

𝐾

𝜃2

∫︁ 𝑎𝑖

𝑎𝑖−1

|𝑓(𝑦)|𝑑𝑦,
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where the last step follows from (3.11). We conclude

Var𝐼(𝑃𝑇 𝑓) ≤
2

𝜃

𝑛∑︁
𝑖=1

Var[𝑎𝑖−1,𝑎𝑖](𝑓) +
𝑛∑︁
𝑖=1

2

𝜃

(︁𝐾
𝜃
+

1

𝑎𝑖 − 𝑎𝑖−1

)︁∫︁ 𝑎𝑖

𝑎𝑖−1

|𝑓(𝑠)|𝑑𝑠. (3.13)

Using that
∑︀𝑛

𝑖=1Var[𝑎𝑖−1,𝑎𝑖](𝑓) ≤ Var𝐼(𝑓) (see Lemma A.5), we obtain (3.10) with

𝐿(𝑇 ) = 2
𝜃 (

𝐾
𝜃 +max𝑖

1
𝑎𝑖−𝑎𝑖−1

).

Proof (Theorem 3.1): Note that, for each 𝑘 ∈ N, 𝑇 𝑘 is also finitely piecewise 𝐶2-

monotonic. Moreover, we have 𝜃(𝑇 𝑘) ≥ 𝜃𝑘 with 𝜃 = 𝜃(𝑇 ), because (𝑇 𝑘)′(𝑥) =∏︀𝑘−1
𝑖=0 𝑇

′(𝑇 𝑖𝑥) for each 𝑥 ∈ 𝐼 by the chain rule. Let us fix a 𝑘 ∈ N such that 𝜃𝑘 > 2.

Then from Lemma 3.2 we obtain the Lasota-Yorke inequality

Var𝐼(𝑃
𝑘
𝑇 𝑓) ≤ 𝜌Var𝐼(𝑓) + 𝐿‖𝑓‖1 for all 𝑓 ∈ 𝐵𝑉 (𝐼), (3.14)

where 𝜌 := 2
𝜃(𝑇 𝑘)

∈ (0, 1) and 𝐿 := 𝐿(𝑇 𝑘) ∈ (0,∞).

We now construct a fixed point of 𝑃𝑇 with (3.14). Let 𝑓 ∈ 𝐵𝑉 (𝐼). Iterating (3.14), it

follows that, for each 𝑛 ∈ N,

Var𝐼(𝑃
𝑘𝑛
𝑇 𝑓) ≤ 𝜌𝑛Var𝐼𝑓 + 𝐿‖𝑓‖1

𝑛−1∑︁
𝑖=0

𝜌𝑖. (3.15)

Because Var𝐼(·) is a seminorm, we thus obtain that the sequence {𝑓𝑛} given by

𝑓𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑃 𝑘𝑖
𝑇 𝑓 (3.16)

satisfies Var𝐼(𝑓𝑛) ≤ 𝑀 for each 𝑛 ∈ N, where 𝑀 := Var𝐼(𝑓) +
𝐿‖𝑓‖1
1−𝜌 . We also have

‖𝑓𝑛‖1 ≤ ‖𝑓‖1 for each 𝑛 ∈ N, so Lemma A.4 gives sup𝑛∈N ‖𝑓𝑛‖∞ ≤ 𝑀 + ‖𝑓‖1. From

Helly’s First Theorem (Theorem A.18) we now obtain a subsequence {𝑓𝑛𝑗} that con-

verges pointwise to some 𝑓* ∈ 𝐵𝑉 (𝐼) that satisfies (using Lemma A.2 and (3.15))

Var𝐼(𝑓
*) ≤ lim inf

𝑗

1

𝑛𝑗

𝑛𝑗−1∑︁
𝑖=0

Var𝐼(𝑃
𝑘𝑖
𝑇 𝑓) ≤ lim sup

𝑛→∞
Var𝐼(𝑃

𝑘𝑛
𝑇 𝑓) ≤ 𝐿‖𝑓‖1

1− 𝜌
. (3.17)

Combining this with sup𝑗∈N ‖𝑓𝑛𝑗‖∞ <∞ yields with the Dominated Convergence The-

orem that

‖𝑃𝑇 𝑓* − 𝑓*‖1 ≤ ‖𝑃𝑇 𝑓* − 𝑃𝑇 𝑓𝑛𝑗‖1 + ‖𝑃𝑇 𝑓𝑛𝑗 − 𝑓𝑛𝑗‖1 + ‖𝑓𝑛𝑗 − 𝑓*‖1

≤ 2‖𝑓𝑛𝑗 − 𝑓*‖1 +
⃦⃦⃦ 1

𝑛𝑗

𝑛𝑗−1∑︁
𝑖=0

𝑃 𝑘𝑖+1
𝑇 𝑓 − 1

𝑛𝑗

𝑛𝑗−1∑︁
𝑖=0

𝑃 𝑘𝑖
𝑇 𝑓
⃦⃦⃦
1

≤ 2‖𝑓𝑛𝑗 − 𝑓*‖1 +
1

𝑛𝑗
‖𝑃 𝑘(𝑛𝑗−1)+1

𝑇 𝑓 − 𝑓‖1

≤ 2‖𝑓𝑛𝑗 − 𝑓*‖1 +
2

𝑛𝑗
‖𝑓‖1 → 0, 𝑗 → ∞. (3.18)

The result now follows from Proposition 2.33. (Note that 𝑓* is a probability density if

we take for instance 𝑓 ≡ 1.)
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Remark 3.3. The proof of Lemma 3.2 does not directly carry over to the case that 𝑇

is piecewise monotonic with respect to a countable partition {𝐼𝑖}, because in that case

𝐿(𝑇 ) would be infinite. This can be solved by assuming as in [43] that sup |𝑇 ′′| < ∞
and that 𝑇𝑖(𝐼𝑖) = 𝐼 for all but finitely many 𝑖. Indeed, 𝜂 := max( 1

𝜆(𝐼𝑖)
: 𝑖 s.t. 𝑇𝑖(𝐼𝑖) ̸= 𝐼)

is then finite, so that we can estimate the problematic term∑︁
𝑖

1

𝜆(𝑇𝑖(𝐼𝑖))

∫︁
𝐼𝑖

|𝑓(𝑦)|𝑑𝑦 ≤ max
(︁
1,
𝜂

𝜃

)︁
· ‖𝑓‖1. (3.19)

Another sufficient assumption besides sup |𝑇 ′′| < ∞ is to require as in [10] that there

exists 𝛾 > 0 such that 𝜆(𝑇𝑖(𝐼𝑖)) ≥ 𝛾 for all 𝑖. Indeed, in this case the left-hand side of

(3.19) is bounded by 𝛾−1‖𝑓‖1.

Remark 3.4. In [60], Rychlik found that the Lasota-Yorke inequality and therefore

the conclusion of Theorem 3.1 also holds for piecewise monotonic and expanding maps

of the following form: Let 𝑇 : 𝐼 → 𝐼 be piecewise monotonic and expanding w.r.t. a

finite or countable interval partition {𝐼𝑖}. Write 𝑈 =
⋃︀
𝑖 Int(𝐼𝑖) where Int(𝐼𝑖) denotes

the interior of 𝐼𝑖. It is shown in [60] (see also [9]) that if 𝑔 : 𝐼 → R given by

𝑔(𝑥) =

{︃
1

|𝑇 ′(𝑥)| if 𝑥 ∈ 𝑈,

0 if 𝑥 ∈ 𝐼∖𝑈
(3.20)

satisfies Var𝐼(𝑔) < ∞, then the Lasota-Yorke inequality (3.14) holds for some 𝑘 ∈ N,
𝜌 ∈ (0, 1) and 𝐿 ∈ (0,∞). Other generalizations of Theorem 3.1 can be found in e.g.

Section 6 of [9].

Remark 3.5. Note that the proof of Theorem 3.1 only shows there exists an acipm

and does not show how to construct it. Explicit formula’s of the acipm’s are derived

in e.g. [29, 39] for the case that 𝑇 is piecewise linear and expanding.

Remark 3.6. The assumption in Theorem 3.1 that 𝑇 is expanding can be weakened

to some extent (see e.g. Theorem 3 in [43]), but it is certainly not possible to omit it

completely. An example is considered in Section 3.6. As an example of a countably

piecewise monotonic transformation, consider the Rényi map 𝑅 : 𝐼 → 𝐼 given by

𝑅(𝑥) =

{︃
0 if 𝑥 = 1,
1

1−𝑥 mod 1 otherwise,
(3.21)

which can be obtained by reflecting the Gauss map in Figure 1.2 over the vertical line

through 1
2 (see Figure 3.2). Clearly, 𝑅 is not expanding because 𝑥 = 0 is a neutral fixed

point of 𝑅, i.e. |𝑅′(0)| = 1. It was proved by Rényi in [56] that 𝑅 has no acipm, but

does have a 𝜎-finite acim with density ℎ(𝑥) = 1
𝑥 . It appears that a piecewise monotonic

transformation 𝑇 with a neutral fixed point and |𝑇 ′| > 1 elsewhere typically has an

invariant density of the type 1
𝑥 (see Remark 5.3.2 in [9]) and we shall consider another

example of such a 𝑇 in Section 3.6.
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Figure 3.2: The Rényi map 𝑅

3.4 Quasi-compactness of the Transfer Operator

In this section we let 𝑇 : 𝐼 → 𝐼 be a finitely piecewise 𝐶2-monotonic and expanding

map.1 Moreover, we fix 𝑘 ∈ N such that 𝑃𝑇 satisfies the Lasota-Yorke inequality

Var𝐼(𝑃
𝑘
𝑇 𝑓) ≤ 𝜌Var𝐼(𝑓) + 𝐿‖𝑓‖1 for all 𝑓 ∈ 𝐵𝑉 (𝐼). (3.22)

for some 𝜌 ∈ (0, 1) and 𝐿 ∈ (0,∞). Let us prove that each fixed point of 𝑃𝑇 is

of bounded variation. For this, we need the following lemma. The proof below is

essentially the one from [43].

Lemma 3.7. For each 𝑓 ∈ 𝐿1(𝜆), the sequence {𝑓𝑛} given by

𝑓𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

𝑃 𝑘𝑖
𝑇 𝑓 (3.23)

converges in 𝐿1(𝜆)-norm to some 𝑓 ∈ 𝐿1(𝜆).

Proof : In the proof of Theorem 3.1 we showed that for each 𝑓 ∈ 𝐵𝑉 (𝐼) the sequence

{𝑓𝑛} contains a subsequence {𝑓𝑛𝑗} that converges pointwise to some 𝑓 ∈ 𝐵𝑉 (𝐼) and

satisfies sup𝑗∈N ‖𝑓𝑛𝑗‖∞ <∞, in which case we obtain from the Dominated Convergence

Theorem that

lim
𝑗→∞

∫︁
𝐼

𝑓𝑛𝑗𝑔𝑑𝜆 =

∫︁
𝐼

𝑓𝑔𝑑𝜆 for each 𝑔 ∈ 𝐿∞(𝜆). (3.24)

Since 𝐵𝑉 (𝐼) is dense in (𝐿1(𝜆), ‖ · ‖1) (see Corollary A.16), the result now follows from

the Kakutani-Yosida Theorem (Theorem B.1).

1The results in this section also hold for the piecewise monotonic expanding maps in Remarks 3.3 and 3.4
with countably many branches.
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As in [43], let us define the bounded linear operator

𝑄 : 𝐿1(𝜆) → 𝐿1(𝜆), 𝑄𝑓 = 𝑓 (3.25)

with 𝑓 as in Lemma 3.7. Since 𝑃𝑇 is a contraction on (𝐿1(𝜆), ‖ · ‖1) (see part (d) of

Proposition 2.31), it follows that also 𝑄 is a contraction on (𝐿1(𝜆), ‖ · ‖1).

Proposition 3.8. Each fixed point of 𝑃𝑇 is an element of 𝐵𝑉 (𝐼).

Proof : Let 𝑓 ∈ 𝐿1(𝜆) be s.t. 𝑃𝑇 𝑓 = 𝑓 . Since 𝐵𝑉 (𝐼) is dense in (𝐿1(𝜆), ‖ · ‖1), there
exists a sequence {𝑔𝑚} ⊆ 𝐵𝑉 (𝐼) such that 𝑔𝑚

𝐿1

→ 𝑓 . So 𝑀 := sup𝑚∈N ‖𝑔𝑚‖1 <∞ and

𝑄𝑔𝑚
𝐿1

→ 𝑄𝑓 = 𝑓, 𝑚→ ∞. (3.26)

For each 𝑚 ∈ N we know from the proof of Theorem 3.1 that { 1
𝑛

∑︀𝑛
𝑖=1 𝑃

𝑘𝑖
𝑇 𝑔𝑚}𝑛∈N

contains a subsequence that converges pointwise and in 𝐿1 to some 𝑔*𝑚 ∈ 𝐵𝑉 (𝐼) that

satisfies Var𝐼(𝑔*𝑚) ≤
𝐿‖𝑔𝑚‖1
1−𝜌 . Obviously, we have 𝑔*𝑚 = 𝑄𝑔𝑚 for each 𝑚 ∈ N, so

sup
𝑚∈N

Var𝐼(𝑄𝑔𝑚) ≤
𝐿𝑀

1− 𝜌
. (3.27)

From Lemma A.4 it now follows that sup𝑚∈N ‖𝑄𝑔𝑚‖∞ ≤𝑀+ 𝐿𝑀
1−𝜌 , which together with

(3.27) and Helly’s First Theorem (Theorem A.18) yields

∃𝑔* ∈ 𝐵𝑉 (𝐼) ∀𝑥 ∈ 𝐼 : 𝑄𝑔𝑚(𝑥) → 𝑔*(𝑥), 𝑚→ ∞. (3.28)

Combining (3.26) and (3.28) yields 𝑓 = 𝑔* 𝜆-a.e.

Corollary 3.9. (Theorem 1(vi) in [33]) The probability measure 𝜇̃ on (𝐼,ℬ) given by

𝜇̃(𝐴) =

∫︁
𝐴

𝑄1𝑑𝜆, 𝐴 ∈ ℬ (3.29)

is the biggest acipm of 𝑇 in the following sense: If 𝜇 is an acipm of 𝑇 , then 𝜇 is absolutely

continuous w.r.t. 𝜇̃.

Proof : Let 𝑓 ∈ 𝐿1(𝜆) be such that 𝑃𝑇 𝑓 = 𝑓 . Then 𝑓 ∈ 𝐵𝑉 (𝐼) by the previous

proposition, so |𝑓 | is bounded by some constant 𝑀 > 0. This gives

|𝑓 | = 1

𝑛

𝑛∑︁
𝑖=1

|𝑃 𝑘𝑖
𝑇 𝑓 | ≤𝑀 · 1

𝑛

𝑛∑︁
𝑖=1

𝑃 𝑘𝑖
𝑇 1 (3.30)

and therefore |𝑓 | ≤𝑀𝑄1, from which the result follows.

Motivated by the result of Proposition 3.8, let us consider the restriction of 𝑃𝑇 to

𝐵𝑉 (𝐼), which we denote as 𝑃𝑇,𝐵𝑉 . We see from Lemma 3.2 that 𝐵𝑉 (𝐼) is preserved

by 𝑃𝑇 , so 𝑃𝑇,𝐵𝑉 : 𝐵𝑉 (𝐼) → 𝐵𝑉 (𝐼). The next well-known theorem shows that 𝑃𝑇,𝐵𝑉 is

a quasi-compact operator. In Appendix B.3 we briefly recall the definition of a quasi-

compact operator on a general complex Banach space and state the Ionescu-Tulcea

and Marinescu Theorem on which the proof below is based. Recall from Proposition

A.13 that 𝐵𝑉 (𝐼) is a complex Banach space with respect to the norm

‖𝑓‖𝐵𝑉 = Var𝐼𝑓 + ‖𝑓‖1, 𝑓 ∈ 𝐵𝑉 (𝐼). (3.31)
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Theorem 3.10. The operator 𝑃𝑇,𝐵𝑉 : 𝐵𝑉 (𝐼) → 𝐵𝑉 (𝐼) is quasi-compact and the set of

eigenvalues of 𝑃𝑇,𝐵𝑉 with modulus 1 has only a finite number of elements, say 𝜆1, . . . , 𝜆𝑚.

That is, there are bounded linear operators 𝑄1, . . . , 𝑄𝑚 and 𝑆 on 𝐵𝑉 (𝐼) such that

𝑃 𝑛
𝑇,𝐵𝑉 =

𝑚∑︁
𝑖=1

𝜆𝑛𝑖 𝑄𝑖 + 𝑆𝑛, for all 𝑛 ∈ N,

𝑄𝑖𝑄𝑗 = 0 if 𝑖 ̸= 𝑗,

𝑄2
𝑖 = 𝑄𝑖 for all 𝑖 = 1, . . . ,𝑚,

𝑄𝑖𝑆 = 𝑆𝑄𝑖 = 0 for all 𝑖 = 1, . . . ,𝑚,

𝑄𝑖𝐵𝑉 (𝐼) = 𝐸(𝜆𝑖) for all 𝑖 = 1, . . . ,𝑚,

𝜌(𝑆) < 1,

where 𝐸(𝜆𝑖) = {𝑓 ∈ 𝐵𝑉 (𝐼) : 𝑃𝑇,𝐵𝑉 𝑓 = 𝜆𝑖𝑓} is the eigenspace of 𝑃𝑇,𝐵𝑉 associated to 𝜆𝑖,

and 𝜌(𝑆) = lim𝑛→∞ ‖𝑆𝑛‖1/𝑛𝐵𝑉 is the spectral radius of 𝑆. Moreover, for each 𝑖 = 1, . . . ,𝑚

the eigenspace 𝐸(𝜆𝑖) associated to 𝜆𝑖 is finite-dimensional.

Proof : It suffices to check the conditions in the Ionescu-Tulcea and Marinescu Theorem

(Theorem B.5). Note that the second condition in Theorem B.5 follows from the fact

that 𝑃𝑇,𝐵𝑉 is a contraction on (𝐵𝑉 (𝐼), ‖ · ‖1) and that the third condition follows

directly from the Lasota-Yorke inequality (3.22). The first and fourth condition do

not depend on 𝑇 and for their proof we refer the reader to Proposition 7.2.1 in [9].

We can now prove the following result.

Theorem 3.11. The set𝑀𝑎𝑐(𝐼, 𝑇 ) of acim’s of 𝑇 is a non-empty finite-dimensional vector

space generated by the ergodic acipm’s of 𝑇 .

Proof : First of all, non-emptiness of 𝑀𝑎𝑐(𝐼, 𝑇 ) follows from Theorem 3.1. Moreover, it

is clear that 𝑀𝑎𝑐(𝐼, 𝑇 ) is a finite-dimensional vector space, because 𝐸(1) in Theorem

3.10 is finite-dimensional. So there exists 𝑛 ∈ N such that dim𝑀𝑎𝑐(𝐼, 𝑇 ) = dim𝐸(1) =

𝑛. Let 𝜇̃ be the measure from Corollary 3.9 given by (3.29). We now show the following

claim for each 𝑘 = 1, . . . , 𝑛: There exists a partition of 𝐼 into sets 𝐴1, . . . , 𝐴𝑘 ∈ ℬ such

that 𝑇−1𝐴𝑖 = 𝐴𝑖 and 𝜇̃(𝐴𝑖) > 0 for each 𝑖 = 1, . . . , 𝑘.

� For 𝑘 = 1, just take 𝐴1 = 𝐼.

� Suppose the claim holds for some 𝑘 ∈ {1, . . . , 𝑛− 1} with corresponding partition

{𝐴1, . . . , 𝐴𝑘}. Let us show the claim for 𝑘 + 1. Assume that for each 𝑖 = 1, . . . , 𝑘

and each 𝐴 ∈ ℬ such that 𝑇−1𝐴 = 𝐴 we have 𝜇̃(𝐴∩𝐴𝑖)
𝜇̃(𝐴𝑖)

∈ {0, 1}. Then the measures

𝜇̃𝐴𝑖(𝐵) =
𝜇̃(𝐵 ∩ 𝐴𝑖)
𝜇̃(𝐴𝑖)

𝐵 ∈ ℬ, 𝑖 = 1, . . . , 𝑘 (3.32)

are ergodic acipm’s of 𝑇 . Note that for each acim 𝜇 of 𝑇 and each 𝑖 = 1, . . . , 𝑘

the measure 𝜇(·∩𝐴𝑖)
𝜇(𝐴𝑖)

is also an acipm of 𝑇 and absolutely continuous w.r.t. 𝜇̃𝐴𝑖
(because of Corollary 3.9), which combined with the first part of Theorem 2.10

yields that 𝜇(·∩𝐴𝑖)
𝜇(𝐴𝑖)

= 𝜇̃𝐴𝑖(·). This gives the contradiction dim𝑀𝑎𝑐(𝐼, 𝑇 ) = 𝑘 < 𝑛.
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So there exist 𝑖 ∈ {1, . . . , 𝑘} and 𝐴 ∈ ℬ such that 𝑇−1𝐴 = 𝐴 and 𝜇̃(𝐴∩𝐴𝑖)
𝜇̃(𝐴𝑖)

∈ (0, 1).

We obtain the claim for 𝑘+1 with the partition {𝐴1, . . . , 𝐴∩𝐴𝑖, 𝐴{∩𝐴𝑖, . . . , 𝐴𝑘}.

The measures in (3.32) are mutually singular and therefore linearly independent, so

the claim does not hold for 𝑘 > 𝑛. It follows that for 𝑘 = 𝑛 the measures in (3.32) are

ergodic acipm’s of 𝑇 .

Remark 3.12. The result in Theorem 3.11 for finitely piecewise 𝐶2-monotonic maps

𝑇 : 𝐼 → 𝐼 has first been derived in [44] (and without any arguments involving the

quasi-compactness of 𝑃𝑇,𝐵𝑉 ). In particular, it is shown in [44] that the dimension of

𝑀𝑎𝑐(𝐼, 𝑇 ) is bounded by the number of discontinuities of 𝑇 .

Using the quasi-compactness of 𝑃𝑇,𝐵𝑉 it is possible to obtain a number of ergodic

properties of 𝑇 (see e.g. Section 7.2 in [9]). As an example, we show that if (𝑇, 𝜇̃)

is weak mixing (with 𝜇̃ given by (3.29)), then (𝑇, 𝜇̃) is exact. Let us first prove the

following lemma.

Lemma 3.13. Suppose 𝑓 ∈ 𝐵𝑉 (𝐼) and 𝜆 ∈ C satisfy 𝑃𝑇,𝐵𝑉 𝑓 = 𝜆𝑓 and |𝜆| = 1. Then

𝑅𝑓 := 𝑓
𝑄1 can be taken as a version in ℒ1(𝜇̃) s.t. 𝑅𝑓(𝑥) = 0 whenever 𝑄1(𝑥) = 0, in

which case 𝑈𝑇,𝜇̃(𝑅𝑓) = 𝜆𝑅𝑓 . In particular, the set of eigenvalues of 𝑃𝑇,𝐵𝑉 with modulus

1 is contained in the set of eigenvalues of 𝑈𝑇,𝜇̃.

Proof : Suppose 𝑃𝑇,𝐵𝑉 𝑓 = 𝜆𝑓 and |𝜆| = 1. We have 𝑓 ∈ 𝐵𝑉 (𝐼), so |𝑓 | is bounded by

some constant 𝑀 > 0. This gives |𝑓 | = 1
𝑛

∑︀𝑛
𝑖=1 |𝑃 𝑘𝑖

𝑇 𝑓 | ≤𝑀 · 1
𝑛

∑︀𝑛
𝑖=1 𝑃

𝑘𝑖
𝑇 1 and therefore

|𝑓 | ≤𝑀𝑄1. This indeed gives 𝑅𝑓 ∈ ℒ1(𝜇̃). From Proposition 2.34 it now follows that

𝑃𝑇,𝜇̃(𝑅𝑓) = 𝜆𝑅𝑓 , which together with Proposition 2.39 gives 𝑈𝑇,𝜇̃𝑅𝑓 = 𝜆𝑅𝑓 .

Proposition 3.14. Suppose (𝑇, 𝜇̃) is weakly mixing. Then for each 𝑛 ∈ N we have

𝑃 𝑛
𝑇,𝐵𝑉 𝑔 =

(︁∫︁
𝐼

𝑔𝑑𝜆
)︁
𝑄1 + 𝑆𝑛𝑔, 𝑔 ∈ 𝐵𝑉 (𝐼) (3.33)

where for some 𝑞 ∈ (0, 1) and 𝑀 > 0 we have for each 𝑛 ∈ N that ‖𝑆𝑛‖𝐵𝑉 ≤𝑀𝑞𝑛.

Proof : First of all, since (𝑇, 𝜇̃) is weakly mixing, we know from Theorem 2.26 that 1 is

the only eigenvalue of 𝑈𝑇,𝜇̃. Combining this with Theorem 3.10 and Lemma 3.13 gives

𝑃 𝑛
𝑇,𝐵𝑉 𝑔 = 𝑄1𝑔 + 𝑆𝑛𝑔, 𝑔 ∈ 𝐵𝑉 (𝐼), 𝑛 ∈ N, (3.34)

where 𝑄1 and 𝑆 are bounded linear operators on 𝐵𝑉 (𝐼) such that 𝑄1(𝐵𝑉 (𝐼)) = 𝐸(1)

and 𝜌(𝑆) ∈ (0, 1). The latter implies that, for some 𝑞 ∈ (0, 1) and 𝑀 > 0, ‖𝑆𝑛‖𝐵𝑉 ≤
𝑀𝑞𝑛 for each 𝑛 ∈ N. Furthermore, since (𝑇, 𝜇̃) is ergodic, it follows from Theorem 2.25

and Lemma 3.13 that 𝐸(1) is 1-dimensional. So 𝑄1𝑔 = 𝜙(𝑔)𝑄1 for each 𝑔 ∈ 𝐵𝑉 (𝐼),

where 𝜙 : 𝐵𝑉 (𝐼) → C is a bounded linear map. By the Hahn-Banach Theorem, we

can extend 𝜙 to a bounded linear map 𝜓 : 𝐿1(𝜆) → C. Since (𝐿1(𝜆))* is isomorphic to

𝐿∞(𝜆) via the correspondence 𝜃(𝑔) =
∫︀
𝐼 𝑔ℎ𝑑𝜆, ℎ ∈ 𝐿∞(𝜆), it follows that there exists

ℎ ∈ 𝐿∞(𝜆) such that 𝜓(𝑔) =
∫︀
𝐼 𝑔ℎ𝑑𝜆. We conclude

𝑄1𝑔 =
(︁∫︁

𝐼

𝑔ℎ𝑑𝜆
)︁
𝑄1, 𝑔 ∈ 𝐵𝑉 (𝐼). (3.35)
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It remains to show that ℎ is 𝜆-a.e. equal to 1. Indeed, for each 𝐴 ∈ ℬ we have∫︁
𝐴

ℎ𝑑𝜆 =

∫︁
𝐼

(︁∫︁
𝐼

ℎ1𝐴𝑑𝜆
)︁
𝑄1𝑑𝜆 =

∫︁
𝐼

(𝑄11𝐴)𝑑𝜆 = lim
𝑛→∞

∫︁
𝐼

𝑃 𝑛
𝑇,𝐵𝑉 1𝐴𝑑𝜆 =

∫︁
𝐴

1𝑑𝜆.

Corollary 3.15. Suppose (𝑇, 𝜇̃) is weakly mixing. Then (𝑇, 𝜇̃) is exact.

Proof : From Proposition 3.14 it follows that, for each 𝑛 ∈ N,⃦⃦⃦
𝑃 𝑛
𝑇 𝑔 −

(︁∫︁
𝐼

𝑔𝑑𝜆
)︁
𝑄1
⃦⃦⃦
1
≤𝑀𝑞𝑛‖𝑔‖𝐵𝑉 , 𝑔 ∈ 𝐵𝑉 (𝐼), (3.36)

where 𝑞 ∈ (0, 1) and 𝑀 > 0. First, let 𝑔 ∈ 𝐵𝑉 (𝐼). Then 𝑄1 · 𝑔 ∈ 𝐵𝑉 (𝐼). Applying

(3.36) to 𝑄1 · 𝑔 gives⃦⃦⃦
𝑃 𝑛
𝑇,𝜇̃𝑔 −

∫︁
𝐼

𝑔𝑑𝜇̃
⃦⃦⃦
𝜇̃,1

=
⃦⃦⃦
𝑃 𝑛
𝑇 (𝑄1 · 𝑔)−

(︁∫︁
𝐼

𝑄1 · 𝑔𝑑𝜆
)︁
𝑄1
⃦⃦⃦
1
→ 0, 𝑛→ ∞. (3.37)

Now let 𝑔 ∈ 𝐿1(𝜇̃) and {𝑔𝑚} ⊆ 𝐵𝑉 (𝐼) s.t. 𝑔𝑚
𝐿1(𝜇̃)→ 𝑔. Then⃦⃦⃦

𝑃 𝑛
𝑇,𝜇̃𝑔 −

∫︁
𝐼

𝑔𝑑𝜇̃
⃦⃦⃦
𝜇̃,1

≤ ‖𝑔 − 𝑔𝑚‖𝜇̃,1 +
⃦⃦⃦
𝑃 𝑛
𝑇,𝜇̃𝑔𝑚 −

∫︁
𝐼

𝑔𝑚𝑑𝜇̃
⃦⃦⃦
𝜇̃,1

+
⃒⃒⃒ ∫︁

𝐼

𝑔𝑚𝑑𝜇̃−
∫︁
𝐼

𝑔𝑑𝜇̃
⃒⃒⃒
,

where we used part (d) of Proposition 2.31. Since the right-hand side converges to

zero by first taking 𝑛 → ∞ and then 𝑚 → ∞, the result now follows from Theorem

2.35.

3.5 Covering Property and Folklore Theorem

In this section we give some conditions for which a piecewise monotonic expanding

transformation 𝑇 : 𝐼 → 𝐼 admits a unique acipm 𝜇, (𝑇, 𝜇) is exact and 𝑑𝜇
𝑑𝜆 is bounded

and bounded away from zero. The proof of the next proposition uses a standard

technique that can be found in e.g. [4, 36].

Proposition 3.16. Let 𝑇 : 𝐼 → 𝐼 be finitely piecewise 𝐶2-monotonic and expanding.

Furthermore, suppose that 𝑇 satisfies the following covering property: For each non-

trivial subinterval 𝐽 ⊆ 𝐼 there exist 𝑛 ∈ N and a finite set 𝐼0 ⊆ 𝐼 such that 𝑇 𝑛𝐽 = 𝐼∖𝐼0.
Then 𝜇̃ from Corollary 3.9 is the only acipm of 𝑇 and satisfies

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇̃

𝑑𝜆
≤𝑀. (3.38)

Moreover, (𝑇, 𝜇̃) is ergodic.

Proof : Let 𝑓 ∈ 𝐵𝑉 (𝐼) nonzero and real valued such that 𝑓 ≥ 0 and 𝑃𝑇 𝑓 = 𝑓 . First

of all, since 𝑓 is of bounded variation it follows that 𝑓 is bounded. Moreover, by

Corollary A.11, we may assume that 𝑓 is lower semicontinuous. Then there exist

𝛼 > 0 and a nontrivial interval 𝐽 ⊆ 𝐼 such that 𝑓 ≥ 𝛼1𝐽 . Now take 𝑛 ∈ N and 𝐼0 ⊆ 𝐼
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finite such that 𝑇 𝑛𝐽 = 𝐼∖𝐼0. Since 𝑇 𝑛 is finitely piecewise 𝐶2-monotonic, we have

𝐾 := sup𝑥∈𝐼 |(𝑇 𝑛)′(𝑥)| <∞. Hence, for all 𝑥 ∈ 𝐼∖𝐼0 we obtain

𝑓(𝑥) = 𝑃 𝑛
𝑇 𝑓(𝑥) ≥ 𝛼𝑃𝑇𝑛1𝐽(𝑥) = 𝛼

∑︁
𝑦∈𝑇−𝑛𝑥

1𝐽(𝑦)

|(𝑇 𝑛)′(𝑦)|
≥ 𝛼

𝐾
, (3.39)

because for each 𝑥 ∈ 𝐼∖𝐼0 there exists 𝑦 ∈ 𝐽 such that 𝑇 𝑛𝑦 = 𝑥. It follows from (A.10)

that 𝑓(𝑥) ≥ 𝛼
𝐾 for all 𝑥 ∈ 𝐼0 as well. We conclude that 𝑓 is bounded away from zero.

Therefore, every acipm of 𝑇 has full support, which together with the second part of

Theorem 2.10 yields that the space 𝑀𝑎𝑐(𝐼, 𝑇 ) from Theorem 3.11 has dimension 1.

Remark 3.17. In fact, one can show with the second part of Theorem 7.2.1 in [9] that

(𝑇, 𝜇̃) is exact under the assumptions of Proposition 3.16.

Example 3.18. Let 𝛽 > 1 and consider 𝑇𝛽 : 𝐼 → 𝐼 given by 𝑇𝛽𝑥 = 𝛽𝑥 mod 1. Defining

𝐴𝑖 = [ 𝑖𝛽 ,
𝑖+1
𝛽 ) for 𝑖 ∈ {0, 1, . . . , ⌊𝛽⌋ − 1} and 𝐴⌊𝛽⌋ = [ ⌊𝛽⌋𝛽 , 1], we can as well write

𝑇𝛽𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛽𝑥 if 𝑥 ∈ 𝐴0,

𝛽𝑥− 1 if 𝑥 ∈ 𝐴1,
...

...

𝛽𝑥− ⌊𝛽⌋ if 𝑥 ∈ 𝐴⌊𝛽⌋.

(3.40)

Now let 𝐽 ⊆ 𝐼 be a nontrivial subinterval. For each 𝑚 ∈ N, we have that 𝑇𝑚−1
𝛽 𝐽 ⊆ 𝐴𝑖

for some 𝑖 ∈ {0, 1 . . . , ⌊𝛽⌋} implies 𝜆(𝑇𝑚𝛽 𝐽) = 𝛽 · 𝜆(𝑇𝑚−1
𝛽 𝐽). From this it follows that

there exists 𝑘 ∈ N such that 𝑇 𝑘𝛽 𝐽 contains an endpoint in (0, 1) of one of the intervals

𝐴1, . . . , 𝐴⌊𝛽⌋. Then there exists 𝑎 ∈ (0, 1) such that [0, 𝑎) ⊆ 𝑇 𝑘+1
𝛽 𝐽 , from which we

conclude 𝑇 𝑛𝛽 𝐽 = [0, 1) for 𝑛 ≥ 𝑘 + 1 sufficiently large. We conclude that 𝑇𝛽 meets the

assumptions of Proposition 3.16.

In 1957, Rényi [57] proved the first important result on the existence of an acipm for

piecewise onto transformations. This result is now considered to be a folklore theorem.

Below we state a version of this theorem that is based on Theorem 2.2 in Chapter 5

of [19]. We need the following definition.

Definition 3.19. Let 𝑇 : 𝐼 → 𝐼 be piecewise 𝐶𝑘-monotonic and expanding w.r.t. a finite

or countable interval partition {𝐼𝑖}. We say that 𝑇 is Markov if 𝑘 ≥ 2 and the following

conditions are met:

(i) There exist 𝐶 > 0 and 𝑙 ∈ {1, . . . , 𝑘 − 1} such that for each 𝑖 and 𝑥, 𝑦 ∈ 𝐼𝑖 we have⃒⃒⃒⃒
𝑇 ′(𝑥)

𝑇 ′(𝑦)
− 1

⃒⃒⃒⃒
≤ 𝐶 · |𝑇 (𝑥)− 𝑇 (𝑦)|𝑙, (3.41)

(ii) There exists 𝛾 > 0 such that 𝜆(𝑇 (𝐼𝑖)) ≥ 𝛾 for each 𝑖,

(iii) If 𝐼𝑖 ∩ 𝑇 (𝐼𝑗) ̸= ∅, then 𝐼𝑖 ⊆ 𝑇 (𝐼𝑗).

Remark 3.20. Condition (iii) implies that for each 𝑗 there exists a collection 𝒜 ⊆ {𝐼𝑖}
such that 𝑇 (𝐼𝑗) =

⋃︀
𝐼∈𝒜 𝐼. In other words, an interval cannot be mapped only partly
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Figure 3.3: Example of a Markov transformation on 𝐼

to some other interval, which is why we call 𝑇 Markov. See Figure 3.3 for a typical

example of a Markov transformation.

Theorem 3.21. (Folklore Theorem) Let 𝑇 : 𝐼 → 𝐼 be a Markov transformation w.r.t. a

finite or countable interval partition {𝐼𝑖}. Furthermore, suppose that for every 𝑖 and 𝑗

there exists 𝑛 ∈ N such that 𝐼𝑖 ⊆ 𝑇 𝑛(𝐼𝑗). Then 𝑇 admits a unique acipm 𝜇. Furthermore,

𝜇 satisfies

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇

𝑑𝜆
≤𝑀 (3.42)

and (𝑇, 𝜇) is exact.

Proof : See e.g. Theorem 2.2 in Chapter 5 of [19].

Remark 3.22. The conclusion of Theorem 3.21 remains true under the conditions (i’),

(ii’) and (iii), where

(i’) sup𝐼𝑖 sup𝑥,𝑦∈𝐼𝑖

⃒⃒⃒
𝑇 ′′(𝑥)
𝑇 ′(𝑦)2

⃒⃒⃒
<∞,

(ii’) The set {𝑇 (𝐼𝑖)} is finite,

and where (iii) is as in Definition 3.19. This result can be found in e.g. [2, 3, 7, 8].

Condition (i’) is known as Adler’s condition. Moreover, conditions (i) and (i’) are each

sometimes referred to as 𝑇 having bounded distortion. In fact, there are many variations

in the literature on the definition of bounded distortion of a transformation (see e.g.

Section 2.2 in [19] for an overview), each with a corresponding version of the Folklore

Theorem. Finally, note that (i’), (ii) and (ii’) are always satisfied if {𝐼𝑖} consists of

finitely many intervals.
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3.6 The invariant density for the LSV map

For each 𝛼 ∈ (0,∞), let 𝑇𝛼 : 𝐼 → 𝐼 be given by

𝑇𝛼(𝑥) =

{︃
𝑥(1 + 2𝛼𝑥𝛼) 𝑥 ∈ [0, 12 ],

2𝑥− 1 𝑥 ∈ (12 , 1]
(3.43)

(see Figure 3.4). Note that 𝑇𝛼 is nonexpanding and has a neutral fixed point at

zero. Members of this family are called Liverani-Saussol-Vaienti (LSV) maps because

they were first studied in [45]. In this paper, Liverani, Saussol and Vaienti showed

(among other results) that 𝑇𝛼 admits an acipm if 𝛼 ∈ (0, 1) with corresponding density

ℎ𝛼 = 𝑂(𝑥−
1
𝛼 ) for 𝑥 near zero. (In particular, ℎ𝛼 is not of bounded variation. Compare

with Proposition 3.8 for the expanding case.) Moreover, this is the only acipm for 𝑇𝛼
(see Theorem 1 in [50]). On the other hand, for the case that 𝛼 ∈ [1,∞) it follows

from e.g. [55] that 𝑇𝛼 admits an infinite 𝜎-finite acim with again corresponding density

ℎ𝛼 = 𝑂(𝑥−
1
𝛼 ) for 𝑥 near zero.

In this section we recover the above results (except the asymptotic behavior of ℎ𝛼 near

zero) using a method based on Section 3 in [35]. More precisely, let ℋ denote the set of

measurable functions 𝑓 : 𝐼 → [0,∞] (modulo being Lebesgue almost equal everywhere)

for which the measure 𝜇 given by 𝜇(𝐴) =
∫︀
𝐴 𝑓𝑑𝜆 is 𝜎-finite. Recall from Remark 2.30

that 𝑃𝑇𝛼 : ℋ → ℋ is well defined. We shall prove the following theorem.

Theorem 3.23. For each 𝛼 ∈ (0,∞), there exists ℎ𝛼 ∈ ℋ such that

{𝑓 ∈ ℋ : 𝑃𝑇𝛼𝑓 = 𝑓} = {𝑎ℎ𝛼 : 𝑎 ≥ 0}. (3.44)

Moreover, ℎ𝛼 ∈ 𝐿1(𝜆) if and only if 𝛼 ∈ (0, 1).

1 

1 

0 1/2 

𝛼 = 15 

𝛼 = 1 2  

𝛼 = 4 

Figure 3.4: The LSV map 𝑇𝛼 for several values of 𝛼 (adapted from [11])
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Write 𝐿𝛼 and 𝑅 for the left and right branch of 𝑇𝛼, respectively. That is,{︃
𝐿𝛼(𝑥) = 𝑥(1 + 2𝛼𝑥𝛼) 𝑥 ∈ [0, 12 ],

𝑅(𝑥) = 2𝑥− 1 𝑥 ∈ (12 , 1].
(3.45)

We view 𝑅 as the nice expanding branch and 𝐿𝛼 as the complex nonexpanding branch.

In order to obtain an invariant density for 𝑇𝛼, the idea is now to construct an expanding

transformation 𝑆𝛼 by properly composing iterations of 𝐿𝛼 with 𝑅. Applying the theory

of the previous sections to 𝑆𝛼, it then remains to find a one-to-one correspondence

between the invariant densities of 𝑇𝛼 and those of 𝑆𝛼.

More precisely, let {𝐼𝛼𝑛}𝑛≥1 be the countable interval partition of 𝐼 given by 𝐼𝛼1 = 𝐼1 =

(12 , 1] and 𝐼
𝛼
𝑛 = (𝐿−𝑛+1

𝛼
1
2 , 𝐿

−𝑛+2
𝛼

1
2 ] for 𝑛 ≥ 2 (see Figure 3.5). Putting 𝐼𝛼0 = (0, 1], then

obviously 𝑇𝛼(𝐼𝛼𝑛 ) = 𝐼𝛼𝑛−1 for all 𝑛 ≥ 1. The first passage time 𝜏 : 𝐼 → N in 𝐼1 is given by

𝜏(𝑥) = 1 +min{𝑛 ≥ 0 : 𝑇 𝑛𝛼 (𝑥) ∈ 𝐼𝛼1 }. (3.46)

Note that 𝐼𝛼𝑛 = {𝑥 ∈ 𝐼 : 𝜏(𝑥) = 𝑛} for all 𝑛 ≥ 1. Now define 𝑆𝛼 : 𝐼 → 𝐼 as 𝑆𝛼(0) = 0,

𝑆𝛼(1) = 1 and

𝑆𝛼(𝑥) = 𝑇 𝜏(𝑥)𝛼 (𝑥) = 𝑅 ∘ 𝐿𝑛−1
𝛼 (𝑥) for 𝑥 ∈ 𝐼𝛼𝑛 and 𝑛 ≥ 1 (3.47)

(see Figure 3.6). We have the following lemma.

Lemma 3.24. For each 𝛼 ∈ (0,∞), there exists 𝑓𝛼 ∈ 𝐿1(𝜆) such that

{𝑓 ∈ ℋ : 𝑃𝑆𝛼𝑓 = 𝑓} = {𝑎𝑓𝛼 : 𝑎 ≥ 0}. (3.48)

Moreover, 𝑓𝛼 is bounded and bounded away from zero.
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𝐼2
𝛼 𝐼3

𝛼 𝐼4
𝛼 𝐼5

𝛼 

Figure 3.5: Sketch of the
partition {𝐼𝛼𝑛 }𝑛≥1
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𝐼2
𝛼 𝐼3

𝛼 𝐼4
𝛼 𝐼5
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Figure 3.6: Sketch of the map
𝑆𝛼 given in (3.47)
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Proof : First of all, we can extend the proof of Proposition 3.8 to conclude that every

fixed point of 𝑃𝑆𝛼 in ℋ is of bounded variation, so in particular is an element of 𝐿1(𝜆).

Hence, it would be sufficient if we could apply the Folklore Theorem to 𝑆𝛼. Note that

the only difficult task is to show that 𝑆𝛼 has bounded distortion in the sense of (3.41).

This has been shown in the proof of Proposition 3.3 in [45] (see regime (2)) for the

case that 𝛼 ∈ (0, 1). Here it is used that the points 𝑦𝑛 = 𝐿−𝑛+1
𝛼 (12) with 𝑛 ≥ 1 satisfy

𝑦𝑛 ≤ 𝐶𝑛−
1
𝛼 for some 𝐶 > 0 (see Lemma 3.2 in [45]). In fact, this bound for 𝑦𝑛 can be

derived for all 𝛼 ∈ (0,∞) using that 𝑦𝑛 =
1

2(𝛼𝑛)1/𝛼
+𝑂( log𝑛

𝑛1+1/𝛼 ) (see the proof of Theorem

31 in [10]), so (3.41) can be derived for 𝛼 ∈ [1,∞) as well using the method in the proof

of Proposition 3.3 in [45]. The result now follows from the Folklore Theorem.

We define the operators 𝐵𝛼, 𝐴 : ℋ → ℋ by

𝐵𝛼ℎ(𝑥) =
ℎ(𝐿−1

𝛼 𝑥)

|𝐿′
𝛼(𝐿

−1
𝛼 𝑥)|

, 𝐴ℎ(𝑥) =
ℎ(𝑅−1𝑥)

|𝑅′(𝑅−1𝑥)|
. (3.49)

Then we have

𝑃𝑇𝛼 = 𝐴+𝐵𝛼. (3.50)

We have the following two lemmata.

Lemma 3.25. For each 𝛼 ∈ (0,∞), the transfer operator 𝑃𝑆𝛼 of 𝑆𝛼 satisfies

𝑃𝑆𝛼𝑓 =
∞∑︁
𝑘=0

𝐴𝐵𝑘
𝛼𝑓, 𝜆-a.e. (3.51)

for each 𝑓 ∈ ℋ. Moreover, each 𝑓 ∈ ℋ satisfies
∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓(𝑥) <∞ for 𝜆-a.e. 𝑥 ∈ 𝐼.

Proof : Note that 𝑆−1
𝛼 𝑥 = {𝐿−𝑘

𝛼 𝑅−1𝑥 : 𝑘 ≥ 0} for each 𝑥 ∈ 𝐼. Let 𝑓 ∈ ℋ. For 𝜆-a.e.

𝑥 ∈ 𝐼 we have

𝑃𝑆𝛼𝑓(𝑥) =
∑︁

𝑦∈𝑆−1𝑥

𝑓(𝑦)

|𝑆′(𝑦)|
=

∞∑︁
𝑘=0

𝑓(𝐿−𝑘
𝛼 𝑅−1𝑥)

|(𝑅𝐿𝑘𝛼)′(𝐿−𝑘
𝛼 𝑅−1𝑥)|

=
∞∑︁
𝑘=0

1

|𝑅′(𝑅−1𝑥)|
· 𝑓(𝐿−𝑘

𝛼 𝑅−1𝑥)

|(𝐿𝑘𝛼)′(𝐿−𝑘
𝛼 𝑅−1𝑥)|

=
∞∑︁
𝑘=0

(𝐵𝑘
𝛼𝑓)(𝑅

−1𝑥)

|𝑅′(𝑅−1𝑥)|
=

∞∑︁
𝑘=0

𝐴(𝐵𝑘
𝛼𝑓)(𝑥).

Because 𝑃𝑆𝛼𝑓 ∈ ℋ, we see from this that
∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓(𝑅

−1𝑥) < ∞ for 𝜆-a.e. 𝑥 ∈ 𝐼,

i.e.
∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓(𝑥) < ∞ for 𝜆-a.e. 𝑥 ∈ 𝐼1. Suppose now that for some 𝑛 ∈ N we have∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓(𝑥) <∞ for 𝜆-a.e. 𝑥 ∈ 𝐼𝑛. Then

∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑓(𝐿

−1
𝛼 𝑥)

|𝐿′
𝛼(𝐿

−1
𝛼 𝑥)|

=
∞∑︁
𝑘=1

𝐵𝑘
𝛼𝑓(𝑥) <∞ (3.52)

for 𝜆-a.e. 𝑥 ∈ 𝐼𝑛, which gives
∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓(𝑥) <∞ for 𝜆-a.e. 𝑥 ∈ 𝐼𝑛+1.

Lemma 3.26. Let 𝛼 ∈ (0,∞), and let 𝑓𝛼 be as in Lemma 3.24. Then ℎ𝛼 :=
∑︀∞

𝑘=0𝐵
𝑘
𝛼𝑓𝛼

is an element of ℋ. Moreover, ℎ𝛼 ∈ 𝐿1(𝜆) if and only if 𝛼 ∈ (0, 1).
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Proof : Define 𝑦0 = 1 and 𝑦𝑛 = 𝐿−𝑛+1
𝛼 (12) for 𝑛 ≥ 1 (for convenience, we omit in the

notation that 𝑦𝑛 depends on 𝛼 for 𝑛 ≥ 2). Then 𝐼𝛼𝑛 = [𝑦𝑛, 𝑦𝑛−1) for each 𝑛 ≥ 1. From

the proof of Theorem 31 in [10] it follows that

𝑦𝑛 =
1

2(𝛼𝑛)1/𝛼
+𝑂

(︁ log 𝑛

𝑛1+1/𝛼

)︁
, (3.53)

from which we can derive

𝑇 ′
𝛼𝑦𝑛 = 1 + 𝜉

1

𝑛
+𝑂

(︁ log 𝑛
𝑛

)︁
, (3.54)

where 𝜉 = 𝛼+1
𝛼 . Furthermore, since 𝐿𝛼 is convex, we have

𝐿′
𝛼(𝑦𝑛) ≤ 𝐿′

𝛼(𝑥) ≤ 𝐿′
𝛼(𝑦𝑛−1), 𝑥 ∈ 𝐼𝛼𝑛 = [𝑦𝑛, 𝑦𝑛−1) (3.55)

for each 𝑛 ≥ 1. Now let 𝑀𝛼 > 0 such that

1

𝑀𝛼
≤ 𝑓𝛼 ≤𝑀𝛼. (3.56)

Combining (3.55) and (3.56) yields

𝐵𝑘
𝛼𝑓𝛼(𝑥) ≤

𝑀𝛼

|𝐿′
𝛼(𝑦𝑛+1)| · · · |𝐿′

𝛼(𝑦𝑛+𝑘)|
for 𝑥 ∈ 𝐼𝛼𝑛 , 𝑛 ≥ 1 and 𝑘 ≥ 1. (3.57)

Moreover, there exists 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0 and 𝑘 ≥ 1 it follows that

𝑘∏︁
𝑖=1

1

|𝐿′
𝛼(𝑦𝑛+𝑖)|

= 𝑒−
∑︀𝑘
𝑖=1 log

(︀
1+𝜉 1

𝑛+𝑖
+𝑂
(︀

log(𝑛+𝑖)
𝑛+𝑖

)︀)︀ (︀
using (3.54)

)︀
≤ 𝐶𝑒−𝜉

∑︀𝑘
𝑖=1

1
𝑛+𝑖

(︀
using log(1 + 𝑥) = 𝑥+𝑂(𝑥2)

)︀
≤ 𝐶 ′𝑒−𝜉(log(𝑛+(𝑘+1))−log(𝑛+1))

(︀
using

𝑘∑︁
𝑖=1

1

𝑛+ 𝑖
≥
∫︁ 𝑘+1

1

1

𝑛+ 𝑥
𝑑𝑥
)︀

= 𝐶 ′
(︁ 𝑛+ 1

𝑛+ (𝑘 + 1)

)︁𝜉
for suitable constants 𝐶,𝐶 ′ ∈ (0,∞). This gives together with (3.57) and the fact that

𝜉 > 1 for each 𝑥 ∈ 𝐼𝛼𝑛 and 𝑛 ≥ 𝑛0 that

ℎ𝛼(𝑥) =
∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑓(𝑥) ≤𝑀𝛼 +𝑀𝛼𝐶

′(𝑛+ 1)𝜉
∞∑︁
𝑘=𝑛

1

(𝑘 + 1)𝜉

≤𝑀𝛼 +𝑀𝛼𝐶
′(𝑛+ 1)𝜉

(︁
(𝑛+ 1)−𝜉 +

1

𝜉 − 1
(𝑛+ 1)−𝜉+1

)︁
≤ 𝐶 ′′𝑛 (3.58)

and for each 𝑥 ∈ 𝐼𝛼𝑛 and 𝑛 = 1, . . . , 𝑛0 − 1 that

ℎ𝛼(𝑥) ≤
(︁ 𝑛0−𝑛−1∑︁

𝑘=1

𝑘∏︁
𝑖=1

𝑀𝛼

|𝐿′
𝛼(𝑦𝑛+𝑖)|

)︁
+

𝐶 ′′𝑛0
|𝐿′
𝛼(𝑦𝑛+1)| · · · |𝐿′

𝛼(𝑦𝑛0−1)|
(3.59)

for a suitable constant 𝐶 ′′ ∈ (0,∞). In particular, it follows that
∫︀
𝐼𝛼𝑛
ℎ𝛼𝑑𝜆 < ∞ for

each 𝑛 ≥ 1, so ℎ𝛼 ∈ ℋ.
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Furthermore, because

1

𝑛1/𝛼
− 1

(𝑛+ 1)1/𝛼
=

1

𝛼

∫︁ 𝑛+1

𝑛

𝑥−(1+1/𝛼)𝑑𝑥 ≤ 1

𝛼
𝑛−(1+1/𝛼), (3.60)

we get 𝜆(𝐼𝑛) = 𝑦𝑛 − 𝑦𝑛+1 = 𝑂( log𝑛
𝑛1+1/𝛼 ). Together with (3.58) and (3.59) we obtain that

there exist 𝑀 > 0 and 𝑛1 ∈ N such that for all 𝑛 ≥ 𝑛1 we have
∫︀
𝐼𝛼𝑛
ℎ𝛼𝑑𝜆 ≤𝑀 log𝑛

𝑛1/𝛼 , so∫︁
𝐼

ℎ𝛼𝑑𝜆 ≤
∞∑︁
𝑛=1

∫︁
𝐼𝛼𝑛

ℎ𝛼𝑑𝜆 <∞ (3.61)

for 𝛼 ∈ (0, 1). On the other hand, using the lower bounds in (3.55) and (3.56) we can

in the same way derive that there exists a constant 𝑀 ′ > 0 such that for sufficiently

large 𝑛 we have
∫︀
𝐼𝛼𝑛
ℎ𝛼𝑑𝜆 ≥𝑀 ′ log𝑛

𝑛1/𝛼 , and thus, for 𝛼 ≥ 1,∫︁
𝐼

ℎ𝛼𝑑𝜆 ≥
∞∑︁
𝑛=1

∫︁
𝐼𝛼𝑛

ℎ𝛼𝑑𝜆 = ∞. (3.62)

We can now complete the proof of Theorem 3.23:

Proof (Theorem 3.23): Let 𝛼 ∈ (0,∞). First of all, it follows from the previous

lemmata that ℎ𝛼 is a fixed point of 𝑃𝑇𝛼 :

𝑃𝑇𝛼ℎ𝛼 = (𝐴+𝐵𝛼)ℎ𝛼 = 𝐴
(︁ ∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑓𝛼

)︁
+𝐵𝛼

(︁ ∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑓𝛼

)︁
=
(︁ ∞∑︁
𝑘=0

𝐴𝐵𝑘
𝛼

)︁
𝑓𝛼 +

∞∑︁
𝑘=1

𝐵𝑘
𝛼𝑓𝛼 = 𝑓𝛼 +

∞∑︁
𝑘=1

𝐵𝑘
𝛼𝑓𝛼 = ℎ𝛼.

Now let 𝑔 ∈ ℋ be any fixed point of 𝑃𝑇𝛼 . Then 𝐴𝑔 = 𝑔 − 𝐵𝛼𝑔 ∈ ℋ is a fixed point of

𝑃𝑆𝛼 , because

𝑃𝑆𝛼(𝐴𝑔) = 𝑃𝑆𝛼(𝑔)− 𝑃𝑆𝛼(𝐵𝛼𝑔) =
∞∑︁
𝑘=0

𝐴𝐵𝑘
𝛼𝑔 −

∞∑︁
𝑘=1

𝐴𝐵𝑘
𝛼𝑔 = 𝐴𝑔, 𝜆-a.e. (3.63)

Lemma 3.24 yields 𝐴𝑔 = 𝑎𝑓𝛼 for a certain 𝑎 ≥ 0, so with Lemma 3.25 we get

𝑔 =
∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑔 −

∞∑︁
𝑘=1

𝐵𝑘
𝛼𝑔 =

∞∑︁
𝑘=0

𝐵𝑘
𝛼(𝑔 −𝐵𝛼𝑔)

=
∞∑︁
𝑘=0

𝐵𝑘
𝛼𝐴𝑔 = 𝑎

∞∑︁
𝑘=0

𝐵𝑘
𝛼𝑓𝛼 = 𝑎ℎ𝛼, 𝜆-a.e.

Combining this with Lemma 3.26 yields the result.

Remark 3.27. It is shown in Section 2 of [50] that for 𝛼 ∈ (0, 1) the acipm of 𝑇𝛼 with

(normalized) density ℎ𝛼 is ergodic. Moreover, the result in Theorem 3.23 is proven in

[50] for a more general class 𝒯𝛼 (0 < 𝛼 < 1) of transformations on 𝐼 by generalizing

the method of Liverani, Saussol and Vaienti in [45]. Each transformation 𝑇𝛼 : 𝐼 → 𝐼

in this class consists of two branches, both increasing, convex, 𝐶1 and onto 𝐼, with

𝑇𝛼(0) = 0 and 𝑇 ′
𝛼(𝑥) = 1 + 𝐶𝑥𝛼 + 𝑜(𝑥𝛼) for 𝑥 close to zero.



Chapter 4

Invariant Densities for Random

Piecewise Monotonic Interval Maps

4.1 Introduction

Let us now consider a random dynamical system on (𝐼,ℬ, 𝜆). For that, let (Ω,ℱ ,P) be
a probability space (the base) and let 𝜙 : Ω → Ω (the base map) be measure preserving

and ergodic w.r.t. P. For each 𝜔 ∈ Ω we consider a piecewise monotonic interval map

𝑇𝜔 : 𝐼 → 𝐼 and we suppose throughout this chapter that the map 𝑇 : Ω× 𝐼 → 𝐼 given

by 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 is measurable. We are then considering orbits of the form

𝑥 ↦→ 𝑇𝜔𝑥 ↦→ 𝑇𝜙𝜔𝑇𝜔𝑥 ↦→ 𝑇𝜙2𝜔𝑇𝜙𝜔𝑇𝜔𝑥 ↦→ . . . . (4.1)

As in the deterministic situation, we are interested in the long-term average behavior

of these random orbits. However, in general there is no measure on 𝐼 that is simulta-

neously invariant under all the maps {𝑇𝜔 : 𝜔 ∈ Ω}. As an analogue of (3.1), we instead

consider S.R.B. measures (Sinai-Ruelle-Bowen measures) as in [12]:

A probability measure 𝜈 on 𝐼 is S.R.B. for the random dynamical system (Ω,ℱ ,P, 𝜙, 𝑇 )
if for P-a.a. 𝜔 ∈ Ω the set 𝐵𝜔(𝜈) of points 𝑥 ∈ 𝐼 such that

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑘=0

𝑓(𝑇𝜙𝑘−1𝜔 ∘ · · · ∘ 𝑇𝜔𝑥) =
∫︁
𝐼

𝑓𝑑𝜈 for all 𝑓 ∈ 𝐶(𝐼) (4.2)

satisfies 𝜆
(︀
𝐵𝜔(𝜈)

)︀
> 0.

To obtain such measures, we consider the skew product

𝐹 = 𝐹𝜙,𝑇 : Ω× 𝐼 → Ω× 𝐼, (𝜔, 𝑥) ↦→ (𝜙𝜔, 𝑇𝜔𝑥). (4.3)

Note that 𝐹 is measurable because 𝑇 is measurable. Iterating (𝜔, 𝑥) under 𝐹 , observe

that we obtain the random orbit in (4.1) by projecting on 𝐼. The following theorem is

proven by Buzzi [12].

42
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Theorem 4.1. (Proposition 4.1 in [12]) Suppose Ω is a compact space and ℱ is the

Borel 𝜎-algebra on Ω.1 Furthermore, suppose 𝜇 is a probability measure on Ω× 𝐼 that is

invariant and ergodic w.r.t. 𝐹 and absolutely continuous w.r.t. P⊗𝜆. Then the projection

of 𝜇 on 𝐼 given by 𝜈(𝐴) = 𝜇(Ω× 𝐴) for 𝐴 ∈ ℬ is an S.R.B. measure for (Ω,ℱ ,P, 𝜙, 𝑇 ).

This motivates the question under what conditions there exists a probability measure

𝜇 on Ω× 𝐼 that is invariant w.r.t. 𝐹 and absolutely continuous w.r.t. P⊗𝜆. Similar as

in Chapter 3, we say in this case that 𝜇 is an acipm for 𝐹 (or acim if 𝜇 is a complex

measure). We need the following proposition:

Proposition 4.2. The skew product 𝐹 is nonsingular w.r.t. P⊗ 𝜆.

Proof : Let 𝐴 ⊆ Ω× 𝐼 Borel. Put

𝐴𝜔 = {𝑥 ∈ 𝐼 : (𝜔, 𝑥) ∈ 𝐴}, 𝜔 ∈ Ω. (4.4)

Note that 𝐴𝜔 ∈ ℬ for each 𝜔 ∈ Ω. Then 𝐴 =
⋃︀
𝜔∈Ω{𝜔} × 𝐴𝜔, and

P⊗ 𝜆(𝐴) =

∫︁
Ω

∫︁
𝐼

1𝐴(𝜔, 𝑥)𝑑𝜆(𝑥)𝑑P(𝜔) =
∫︁
Ω

𝜆(𝐴𝜔)𝑑P(𝜔). (4.5)

Furthermore, we have

𝐹−1𝐴 =
⋃︁
𝜔∈Ω

𝐹−1
(︀
{𝜔} × 𝐴𝜔

)︀
=
⋃︁
𝜔∈Ω

(︁ ⋃︁
𝜔̃∈𝜙−1𝜔

{𝜔̃} × 𝑇−1
𝜔̃ 𝐴𝜔

)︁
=
⋃︁
𝜔∈Ω

{𝜔} × 𝑇−1
𝜔 𝐴𝜙𝜔, (4.6)

which gives

P⊗ 𝜆(𝐹−1𝐴) =

∫︁
Ω

𝜆(𝑇−1
𝜔 𝐴𝜙𝜔)𝑑P(𝜔). (4.7)

Now suppose P⊗𝜆(𝐴) = 0. Then combining (4.5) with Theorem 2.7 yields 𝜆(𝐴𝜙𝜔) = 0

for P-a.a. 𝜔 ∈ Ω. Since each 𝑇𝜔 is nonsingular w.r.t. 𝜆, this gives 𝜆(𝑇−1
𝜔 𝐴𝜙𝜔) = 0 for

P-a.a. 𝜔 ∈ Ω. Together with (4.7) it follows that P⊗ 𝜆(𝐹−1𝐴) = 0.

Hence, 𝐹 admits a corresponding transfer operator 𝑃𝐹,P⊗𝜆 : 𝐿1(P ⊗ 𝜆) → 𝐿1(P ⊗ 𝜆)

that we simply denote as 𝑃𝐹 . In view of Proposition 2.33 we are thus interested in the

fixed points of 𝑃𝐹 , which are the invariant densities for 𝐹 in the sense of (1.30).

In Sections 4.2-4.4 we consider the setting that the base Ω is equal to the product

space Ω𝐸 = 𝐸N with 𝐸 a Polish space. Moreover, writing 𝜔 = (𝜔1, 𝜔2, . . .) for 𝜔 ∈ Ω𝐸,

we assume that 𝑇𝜔 = 𝑇𝜔1 for each 𝜔 ∈ Ω𝐸 , and that the base map 𝜙 is equal to the

left shift 𝜎 on Ω𝐸, i.e. 𝜎𝜔 = 𝜔̃ where 𝜔̃𝑛 = 𝜔𝑛+1.

We consider in Section 4.2 the case that (Ω,ℱ ,P, 𝜎) is a Bernoulli shift and discuss

results from Morita [47, 49] and Pelikan [53] that generalize the results in Sections 3.3

and 3.4 to random i.i.d. compositions of piecewise monotonic maps that are expanding

in mean. Moreover, we give the random covering property from [4] that implies that an

1For the proof of Theorem 4.1 we apply the result of Theorem 2.14 to the pair (𝜇, 𝐹 ). It is in this step
that we need the compactness of Ω.
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invariant density ℎ for 𝐹𝜎,𝑇 , if it exists, is (up to normalization) unique and is bounded

and bounded away from zero.

As an example of a random system that is not expanding in mean, we consider in

Section 4.3 the random i.i.d. compositions of two LSV maps 𝑇𝛼 and 𝑇𝛽 given by (3.43),

where 𝛼 ∈ (0, 1) and 𝛽 ≥ 1. Here, at each time point 𝑇𝛼 is applied with probability

𝑝 ∈ (0, 1) and 𝑇𝛽 is applied with probability 1 − 𝑝. We prove that there exists an

invariant density for the corresponding skew product by generalizing the proof for the

deterministic case (i.e. 𝑝 = 1) discussed in [45]. Moreover, we propose a second way to

prove this with the method of inducing w.r.t. the first passage time from Section 3.6.

In Section 4.4 we generalize the results from Section 4.2 to the case that (Ω,ℱ ,P, 𝜎)
is a Markov shift. Part of these results are from Kowalski [40] and Froyland [28].

Finally, in Section 4.5 we consider the setting where the base (Ω,ℱ ,P) is an abstract

probability space and the base map 𝜙 is invertible. We review conditions from Buzzi

[12] under which 𝐹𝜙,𝑇 admits an invariant density and an additional covering property

from Buzzi [13] under which this is the only invariant density for 𝐹𝜙,𝑇 .

4.2 One-sided Bernoulli Shift as Base

Let 𝐸 be a Polish space and ℰ the Borel 𝜎-algebra on 𝐸. For each 𝑧 ∈ 𝐸, let 𝑇𝑧 : 𝐼 → 𝐼

be a piecewise monotonic interval map. We define the skew product

𝐹 : Ω𝐸 × 𝐼 → Ω𝐸 × 𝐼, (𝜔, 𝑥) ↦→ (𝜎𝜔, 𝑇𝜔1𝑥). (4.8)

where 𝜎 is the left shift on Ω𝐸 = 𝐸N. We assume that the map 𝐸 × 𝐼 ∋ (𝑧, 𝑥) ↦→ 𝑇𝑧𝑥

is measurable (which always holds if 𝐸 is countable), so that 𝑇 : Ω × 𝐼 → 𝐼 given by

𝑇 (𝜔, 𝑥) = 𝑇𝜔1𝑥 is measurable. Also, let 𝜋 be a probability measure on (𝐸, ℰ), and take

P = 𝜋⊗N as a probability measure on (Ω𝐸 ,ℱ), where ℱ is the Borel 𝜎-algebra on 𝐸N.

We first recover the result from Morita [49] (see also Lemma 3.2 in [28]) that each

acim of 𝐹 has the form P ⊗ 𝜈, where 𝜈 is absolutely continuous w.r.t. 𝜆 with density
𝑑𝜈
𝑑𝜆 that is a fixed point of the operator 𝑃𝑇 : 𝐿1(𝐼) → 𝐿1(𝐼) given by

𝑃𝑇 𝑓(𝑥) =

∫︁
𝐸

𝑃𝑇𝑧𝑓(𝑥)𝑑𝜋(𝑧), 𝜆-a.e. (4.9)

for each 𝑓 ∈ 𝐿1(𝐼). In (4.9), 𝑃𝑇𝑧 is the transfer operator that is associated to 𝑇𝑧. In

this case, we see from (4.9) with 𝑓 = 𝑑𝜈
𝑑𝜆 together with Fubini’s Theorem that such a 𝜈

satisfies

𝜈(𝐴) =

∫︁
𝐸

𝜈(𝑇−1
𝑧 𝐴)𝑑𝜋(𝑧), 𝐴 ∈ ℬ, (4.10)

which is a natural generalization of the definition of invariance of a measure w.r.t. a

single transformation. We first need two lemmata.
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For 𝑘 ≥ 1, let ℐ𝑘 be the linear span of characteristic functions of sets 𝐴 ∈ ℰ𝑘, i.e.

ℐ𝑘 =
{︁ 𝑛∑︁
𝑖=1

𝑎𝑖1𝐴𝑖 : 𝑎𝑖 ∈ C, 𝐴𝑖 ∈ ℰ𝑘, 𝑖 = 1, . . . , 𝑛, 𝑛 ≥ 1
}︁
. (4.11)

Furthermore, we define 𝒜0 ⊆ 𝐿1(P⊗ 𝜆) as

𝒜0 =
⋃︁
𝑘≥1

{Ω𝐸 × 𝐼 ∋ (𝜔, 𝑥) ↦→ 𝜓(𝜔1, . . . , 𝜔𝑘)𝜑(𝑥) : 𝜓 ∈ ℐ𝑘, 𝜑 ∈ 𝐿1(𝜆)}. (4.12)

Lemma 4.3. 𝒜0 is dense in 𝐿1(P⊗ 𝜆).

Proof : We know that the linear span of characteristic functions of ℐ ⊆ ℱ ⊗ ℬ with

ℐ =
{︁(︀
𝐴1 × · · · × 𝐴𝑘 × 𝐸 × 𝐸 × · · ·

)︀
×𝐵 : 𝐵 ∈ ℬ, 𝐴𝑖 ∈ ℰ , 𝑖 = 1, . . . , 𝑘, 𝑘 ≥ 1

}︁
is dense in 𝐿1(P⊗ 𝜆) because of e.g. Theorem 4.12 in [20]. (Note that ℐ is a semiring

that generates ℱ ⊗ℬ.) Now observe that 𝒜0 contains the linear span of characteristic

functions of ℐ.

Lemma 4.4. (Lemma 4.1 in [49]) Let Φ ∈ 𝒜0 be given by Φ(𝜔, 𝑥) = 𝜓(𝜔1, . . . , 𝜔𝑘)𝜑(𝑥)

for some 𝑘 ≥ 1, 𝜓 ∈ ℐ𝑘 and 𝜑 ∈ 𝐿1(𝜆). Then for all 𝑛 ≥ 𝑘 we have

𝑃 𝑛
𝐹Φ(𝜔, 𝑥) =

∫︁
𝐸𝑛
𝜓(𝑧1, . . . , 𝑧𝑘) · (𝑃𝑇𝑧𝑛 · · ·𝑃𝑇𝑧1𝜑)(𝑥)𝑑𝜋

𝑛(𝑧1, . . . , 𝑧𝑛), P⊗ 𝜆-a.e.

So if 𝑛 ≥ 𝑘, then the value of 𝑃 𝑛
𝐹Φ(𝜔, 𝑥) does not depend on 𝜔 for P-a.a. 𝜔.

Proof : For all 𝑛 ≥ 𝑘, 𝐴 ∈ ℱ and 𝐵 ∈ ℬ we have∫︁
𝐴×𝐵

𝑃 𝑛
𝐹Φ𝑑P⊗ 𝜆 =

∫︁
𝐹−𝑛(𝐴×𝐵)

Φ𝑑P⊗ 𝜆

=

∫︁
Ω𝐸

∫︁
𝐼

𝜑(𝑥)𝜓(𝑧1, . . . , 𝑧𝑘)1𝐴(𝜎
𝑛𝑧)1𝐵(𝑇𝑧𝑛 · · ·𝑇𝑧1𝑥)𝑑𝜆(𝑥)𝑑P(𝑧)

= P(𝐴)
∫︁
𝐸𝑛

∫︁
𝐼

𝜑(𝑥)𝜓(𝑧1, . . . , 𝑧𝑘)1𝐵(𝑇𝑧𝑛 · · ·𝑇𝑧1𝑥)𝑑𝜆(𝑥)𝑑𝜋𝑛(𝑧1, . . . , 𝑧𝑛)

= P(𝐴)
∫︁
𝐸𝑛
𝜓(𝑧1, . . . , 𝑧𝑘)

(︁∫︁
𝐵

(𝑃𝑇𝑧𝑛 · · ·𝑃𝑇𝑧1𝜑)(𝑥)𝑑𝜆(𝑥)
)︁
𝑑𝜋𝑛(𝑧1, . . . , 𝑧𝑛)

=

∫︁
𝐴×𝐵

(︁∫︁
𝐸𝑛
𝜓(𝑧1, . . . , 𝑧𝑘) · (𝑃𝑇𝑧𝑛 · · ·𝑃𝑇𝑧1𝜑)(𝑥)𝑑𝜋

𝑛(𝑧1, . . . , 𝑧𝑛)
)︁
𝑑P⊗ 𝜆.

Theorem 4.5. Let ℎ ∈ 𝐿1(P ⊗ 𝜆). Then 𝑃𝐹ℎ = ℎ if and only if there exists ℎ̃ ∈ 𝐿1(𝐼)

such that ℎ(𝜔, 𝑥) = ℎ̃(𝑥) for P ⊗ 𝜆-a.e. (𝜔, 𝑥) and ℎ̃ is fixed under the operator 𝑃𝑇 :

𝐿1(𝐼) → 𝐿1(𝐼) given by (4.9).

Proof : Suppose ℎ(𝜔, 𝑥) = ℎ̃(𝑥) for P⊗𝜆-a.e. (𝜔, 𝑥) and ℎ̃ is fixed under 𝑃𝑇 . Then from

Lemma 4.4 it follows that

𝑃𝐹ℎ(𝜔, 𝑥) =

∫︁
𝐸

𝑃𝑇𝑧 ℎ̃(𝑥)𝑑𝜋(𝑧) = 𝑃𝑇 ℎ̃(𝑥) = ℎ̃(𝑥) = ℎ(𝜔, 𝑥), P⊗ 𝜆-a.e.
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Conversely, suppose 𝑃𝐹ℎ = ℎ. From Lemma 4.3 it follows that there exist a sequence

{Φ𝑚} in 𝒜0 that converges in 𝐿1(P ⊗ 𝜆) to ℎ. For each 𝑚 ∈ N, take 𝑘𝑚 such that

ℎ𝑚(𝜔, 𝑥) := 𝑃 𝑘𝑚
𝐹 Φ𝑚(𝜔, 𝑥) does not depend on 𝜔 for P-a.a. 𝜔. Then∫︁

Ω𝐸

lim
𝑚→∞

(︁∫︁
𝐼

|ℎ− ℎ𝑚|𝑑𝜆
)︁
𝑑P = lim

𝑚→∞

∫︁
Ω𝐸×𝐼

|𝑃 𝑘𝑚
𝐹 ℎ− 𝑃 𝑘𝑚

𝐹 Φ𝑚|𝑑P⊗ 𝜆

≤ lim
𝑚→∞

∫︁
Ω𝐸×𝐼

|ℎ− Φ𝑚|𝑑P⊗ 𝜆 = 0,

so for P-a.a. 𝜔 ∈ Ω𝐸 we obtain ℎ𝑚(𝜔, ·) converges in 𝐿1(𝜆) to ℎ(𝜔, ·) as 𝑚 → ∞.

Combining that this limit is 𝜆-a.e. unique with the fact that, for each 𝑚 ∈ N, ℎ𝑚(𝜔, 𝑥)
does not depend on 𝜔 for P-a.a. 𝜔 yields that ℎ(𝜔, 𝑥) = ℎ̃(𝑥) P ⊗ 𝜆-a.e. for some

ℎ̃ ∈ 𝐿1(𝐼). In particular, ℎ ∈ 𝒜0 and we obtain from Lemma 4.4 that

ℎ̃(𝑥) = ℎ(𝜔, 𝑥) = 𝑃𝐹ℎ(𝜔, 𝑥) =

∫︁
𝐸

𝑃𝑇𝑧 ℎ̃(𝑥)𝑑𝜋(𝑧) = 𝑃𝑇 ℎ̃(𝑥), P⊗ 𝜆-a.e.

So according to Theorem 4.5 there is a one-to-one relation between the acim’s for 𝐹

and the fixed points of 𝑃𝑇 in (4.9). By deriving a Lasota-Yorke inequality for 𝑃𝑇 , we

shall obtain similar results as in Sections 3.3 and 3.4.

For simplicity, let us from now on assume that 𝐸 is countable and write 𝑝𝑗 := 𝜋(𝑗)

for each 𝑗 ∈ 𝐸. Furthermore, we assume that each 𝑇𝑗 (𝑗 ∈ 𝐸) is finitely piecewise

𝐶2-monotonic. We say that 𝑇 is expanding on average w.r.t. (𝑝𝑗)𝑗∈𝐸 if

Λ𝑇 :=
∑︁
𝑗∈𝐸

𝑝𝑗
𝜃(𝑇𝑗)

< 1, (4.13)

where 𝜃(𝑇𝑗) = inf𝑥∈𝐼 |𝑇 ′
𝑗(𝑥)| > 0.

Theorem 4.6. (Proposition 2.3 in [4]) Suppose 𝑇 is expanding on average w.r.t. (𝑝𝑗)𝑗∈𝐸.

Then there exist 𝑘 ∈ N, 𝜌 ∈ (0, 1) and 𝐿 ∈ (0,∞) such that

Var𝐼(𝑃
𝑘
𝑇 𝑓) ≤ 𝜌Var𝐼(𝑓) + 𝐿‖𝑓‖1 for all 𝑓 ∈ 𝐵𝑉 (𝐼). (4.14)

Consequently, 𝐹 admits an acipm whose density is of bounded variation.

Proof : From (4.9) it follows that, for each 𝑘 ∈ N,

𝑃 𝑘
𝑇 =

∑︁
(𝜔1,...,𝜔𝑘)∈𝐸𝑘

𝑝𝜔1 · · · 𝑝𝜔𝑘𝑃𝑇𝜔𝑘 ∘ · · · ∘ 𝑃𝑇𝜔1 =
∑︁

(𝜔1,...,𝜔𝑘)∈𝐸𝑘
𝑝𝜔1 · · · 𝑝𝜔𝑘𝑃𝑇𝜔𝑘∘···∘𝑇𝜔1 . (4.15)

Using the subadditivity of Var𝐼(·) we thus find for each 𝑘 ∈ N and 𝑓 ∈ 𝐵𝑉 (𝐼), applying

Lemma 3.2 to each 𝑇𝜔𝑘 ∘ · · · ∘ 𝑇𝜔1 ,

Var𝐼(𝑃
𝑘
𝑇 𝑓) ≤ 𝜌𝑘Var𝐼(𝑓) + 𝐿𝑘‖𝑓‖𝐿1 (4.16)

with 𝜌𝑘 =
∑︀

(𝜔1,...,𝜔𝑘)∈𝐸𝑘
2𝑝𝜔1 ···𝑝𝜔𝑘

𝜃(𝑇𝜔𝑘∘···∘𝑇𝜔1 )
and 𝐿𝑘 =

∑︀
(𝜔1,...,𝜔𝑘)∈𝐸𝑘 𝑝𝜔1 · · · 𝑝𝜔𝑘𝐿(𝑇𝜔𝑘 ∘ · · · ∘ 𝑇𝜔1).

It follows by the chain rule that 𝜃(𝑇𝜔𝑘 ∘ · · · ∘ 𝑇𝜔1) ≥ 𝜃(𝑇𝜔1) · · · 𝜃(𝑇𝜔𝑘), so 𝜌𝑘 ≤ 2Λ𝑘𝑇 .

Therefore, we can take 𝑘 large enough so that 𝜌 := 𝜌𝑘 < 1. In exactly the same way as
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in the proof of Theorem 3.1 we can construct from (4.14) a fixed point of 𝑃𝑇 in 𝐵𝑉 (𝐼),

which yields the result.

Remark 4.7. Note that (4.13) is satisfied if each 𝑇𝑗 is expanding (i.e. 𝜃(𝑇𝑗) > 1).

Moreover, it is possible that 𝑇 is expanding on average if there exists 𝑗 ∈ 𝐸 such that

𝜃(𝑇𝑗) < 1 by choosing a suitable probability vector (𝑝𝑗)𝑗∈𝐸.

Remark 4.8. Pelikan [53] showed for the case that 𝐸 is finite that the Lasota-Yorke

inequality (4.14) still holds if

sup
𝑥∈𝐼

∑︁
𝑗∈𝐸

𝑝𝑗
|𝑇 ′
𝑗(𝑥)|

< 1. (4.17)

Note that this is a weaker condition than requiring that 𝑇 is expanding on average.

An extension of this result is given in [30] to the setting where 𝐸 is finite and each 𝑇𝑗
is allowed to be piecewise monotonic on a countable partition {𝐼𝑖,𝑗} such that

𝑔𝑗(𝑥) =

{︃
1

|𝑇 ′
𝑗(𝑥)|

if 𝑥 ∈
⋃︀
𝑖 Int(𝐼𝑖,𝑗),

0 if 𝑥 ∈ 𝐼∖
⋃︀
𝑖 Int(𝐼𝑖,𝑗)

(4.18)

is of bounded variation (compare with Remark 3.4).2

Remark 4.9. The case that 𝐸 is a general Polish space was first considered by Morita

[49], who showed that for a probability measure 𝜋 on (𝐸, ℰ) the result in Theorem 4.6

is still valid if 𝐸 ∋ 𝑧 ↦→ 𝜃(𝑇𝑧)−1 is an element of 𝐿1(𝜋) that satisfies∫︁
𝐸

1

𝜃(𝑇𝑧)
𝑑𝜋(𝑧) < 1. (4.19)

This result is further generalized in [48] to the case that each 𝑇𝑧 is allowed to have

countably many branches under some additional technical assumptions. (For instance,

the distortion of random i.i.d. compositions of {𝑇𝑧} should be integrable w.r.t. 𝜋.)

Remark 4.10. Finally, the result in Remark 4.8 is further extended by Inoue [34] to

the setting where (𝐸, ℰ , 𝜋) is a general probability space and where each 𝑇𝑧 (𝑧 ∈ 𝐸)

is allowed to be piecewise monotonic on a countable partition {𝐼𝑖,𝑧}.3 For this, it is

assumed that there exists a constant 𝑀 > 0 such that

𝑔𝑧(𝑥) =

{︃
1

|𝑇 ′
𝑧(𝑥)|

if 𝑥 ∈
⋃︀
𝑖 Int(𝐼𝑖,𝑧),

0 if 𝑥 ∈ 𝐼∖
⋃︀
𝑖 Int(𝐼𝑖,𝑧)

(4.20)

satisfies Var𝐼(𝑔𝑧) < 𝑀 for 𝜋-a.a. 𝑧 ∈ 𝐸, and such that

sup
𝑥∈𝐼

∫︁
𝐸

𝑔𝑧(𝑥)𝑑𝜋(𝑧) < 1. (4.21)

2The result by Bahsoun and Góra in [30] is even more general, because 𝑝𝑗(𝑥) is allowed to change as a
function of 𝑥. That is, it is assumed that {𝑝𝑗(𝑥)}𝑗∈𝐸 is a set of position dependent measurable probabilities.

3It is furthermore allowed in [34] that 𝜋 is position dependent being a measure on 𝐸 × 𝐼 such that
𝑑𝜋(𝑧, 𝑥) = 𝑝(𝑧, 𝑥)𝑑𝜈(𝑧) for some probability density function 𝑝 : 𝐸 × 𝐼 → [0,∞) and some measure 𝜈 on
(𝐸, ℰ). We only consider the simplified version that 𝑝(𝑧, 𝑥) = 1.
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Example 4.11. Let 𝑇0 : 𝐼 → 𝐼 denote the Gauss map from (1.7) (see Figure 1.2).

We learned in Subsection 1.1.2 that 𝑇0 admits an invariant probability density ℎ0 =
1

log 2
1

1+𝑥 . Furthermore, let 𝑇1 : 𝐼 → 𝐼 denote the Rényi map from (3.21) (see Figure 3.2).

We know from Remark 3.6 that 𝑇1 does not admit an invariant probability density but

does admit a 𝜎-finite acim with density ℎ1(𝑥) =
1
𝑥 . Now let 𝐸 = {0, 1}, 𝑝0 = 𝑝 ∈ (0, 1)

and 𝑝1 = 1 − 𝑝. It is shown in Proposition 3.1 of [36] that {𝑇0, 𝑇1, 𝑝0, 𝑝1} satisfies

the conditions in Remark 4.8. (Note that 𝑇0 and 𝑇1 are not expanding and that 𝑇 is

not expanding on average, but that (4.17) is satisfied.) Hence, if 𝑝 ∈ [0, 1), then the

corresponding skew product 𝐹 as given in (4.8) admits an invariant probability density

ℎ𝑝, which is not the case if 𝑝 = 1.

Most of the results in Section 3.4 carry over to the setting of Theorem 4.6, as the next

theorem states.

Theorem 4.12. Suppose that 𝐸 is countable, and let (𝑝𝑗)𝑗∈𝐸 be a probability vector. Fur-

thermore, assume that {𝑇𝑗}𝑗∈𝐸 is a collection of finitely piecewise 𝐶2-monotonic interval

maps and that 𝑇 is expanding on average w.r.t. (𝑝𝑗)𝑗∈𝐸. Then

1. the fixed points of 𝑃𝑇 are elements of 𝐵𝑉 (𝐼),

2. there exists a biggest acipm 𝜇̃ = P⊗ 𝜈 of 𝐹 in the sense that if 𝜇 is an acipm of 𝐹 ,

then 𝜇 is absolutely continuous w.r.t. 𝜇̃.

3. the restriction 𝑃𝑇,𝐵𝑉 of 𝑃𝑇 to 𝐵𝑉 (𝐼) satisfies 𝑃𝑇,𝐵𝑉 : 𝐵𝑉 (𝐼) → 𝐵𝑉 (𝐼) and is

quasi-compact,

4. the set 𝑀𝑎𝑐(Ω𝐸×𝐼, 𝐹 ) of acim’s of 𝐹 is a non-empty finite-dimensional vector space

generated by the ergodic acipm’s of 𝐹 .

Proof : Using the Lasota-Yorke inequality (4.14), the above statements follow in ex-

actly the same way as the proofs of Proposition 3.8, Corollary 3.9, Theorem 3.10 and

Theorem 3.11, respectively.

Remark 4.13. Under the assumptions of Theorem 4.12, it follows both from Lemma

5.4 in [53] and Corollary 7 in [49] that if there exists a 𝑇𝑗 that is expanding, then the

dimension of 𝑀𝑎𝑐(Ω𝐸 × 𝐼, 𝐹 ) is bounded by the number of discontinuities of 𝑇𝑗.

As in the deterministic setting, we can from the quasi-compactness of 𝑃𝑇,𝐵𝑉 deduce a

number of ergodic properties of 𝐹 . As an example, we show that if (𝐹, 𝜇̃) is weakly

mixing, then (𝐹, 𝜇̃) is mixing.

Proposition 4.14. In addition to the assumptions in Theorem 4.12, assume that (𝐹, 𝜇̃)

is weakly mixing. Then for each 𝑛 ∈ N we have

𝑃 𝑛
𝑇,𝐵𝑉 𝑔 =

(︁∫︁
𝐼

𝑔𝑑𝜆
)︁𝑑𝜈
𝑑𝜆

+ 𝑆𝑛𝑔, 𝑔 ∈ 𝐵𝑉 (𝐼) (4.22)

where for some 𝑞 ∈ (0, 1) and 𝑀 > 0 we have for each 𝑛 ∈ N that ‖𝑆𝑛‖𝐵𝑉 ≤𝑀𝑞𝑛.

Proof : This can be shown similarly as done in the proof of Proposition 3.14.
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Corollary 4.15. Under the assumptions of Proposition 4.14, (𝐹, 𝜇̃) is mixing.

Proof : We use the following notation for cylinders of the form

[𝑗1 · · · 𝑗𝑛] = {𝜔 ∈ Ω𝐸 : 𝜔1 = 𝑗1, . . . , 𝜔𝑛 = 𝑗𝑛}. (4.23)

Furthermore, let us write ℎ̃ = 𝑑𝜈
𝑑𝜆 . Then for all cylinders [𝑗1 · · · 𝑗𝑛], [𝑙1, . . . , 𝑙𝑚] ∈ ℱ and

𝐴,𝐵 ∈ ℬ we have for all 𝑁 > 𝑚 that (with 𝑘 = 𝑁 −𝑚)

𝜇̃
(︁
𝐹−𝑁(︀[𝑗1 · · · 𝑗𝑛]× 𝐴

)︀
∩ [𝑙1 · · · 𝑙𝑚]×𝐵

)︁
= P× 𝜈

(︁ ⋃︁
𝑖1···𝑖𝑘

[𝑙1 · · · 𝑙𝑚𝑖1 · · · 𝑖𝑘𝑗1 · · · 𝑗𝑛]×
(︀
(𝑇−1
𝑙1

· · ·𝑇−1
𝑙𝑚
𝑇−1
𝑖1

· · ·𝑇−1
𝑖𝑘
𝐴) ∩𝐵

)︀)︁
= P([𝑗1 · · · 𝑗𝑛])P([𝑙1 · · · 𝑙𝑚])

∑︁
𝑖1···𝑖𝑘

𝑝𝑖1 · · · 𝑝𝑖𝑘
∫︁
𝐼

1𝐵 · 1𝑇−1
𝑙1

···𝑇−1
𝑙𝑚
𝑇−1
𝑖1

···𝑇−1
𝑖𝑘
𝐴ℎ̃𝑑𝜆.

Moreover, from Proposition 4.14 it follows that

lim
𝑘→∞

∫︁
𝐴

∑︁
𝑖1···𝑖𝑘

𝑝𝑖1 · · · 𝑝𝑖𝑘𝑃𝑖𝑘 · · ·𝑃𝑖1
(︀
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃)

)︀
𝑑𝜆

= lim
𝑘→∞

∫︁
𝐴

𝑃 𝑘
𝑇

(︀
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃)

)︀
𝑑𝜆

=

∫︁
𝐴

(︁∫︁
𝐼

𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃)𝑑𝜆
)︁
ℎ̃𝑑𝜆

= 𝜈(𝐴)𝜈(𝐵),

so we obtain

lim
𝑁→∞

𝜇̃
(︁
𝐹−𝑁(︀[𝑗1 · · · 𝑗𝑛]× 𝐴

)︀
∩ [𝑙1 · · · 𝑙𝑚]×𝐵

)︁
= 𝜇̃([𝑗1 · · · 𝑗𝑛]× 𝐴) · 𝜇̃([𝑙1 · · · 𝑙𝑚]×𝐵).

Finally, the next proposition is a generalization of Proposition 3.16. The proof remains

similar in spirit.

Proposition 4.16. In addition to the assumptions in Theorem 4.12, assume that 𝑝𝑗 > 0

for each 𝑗 ∈ 𝐸. Furthermore, suppose that the following random covering property

holds: For each non-trivial subinterval 𝐽 ⊆ 𝐼 there exist 𝑛 ∈ N and a finite set 𝐼0 ⊆ 𝐼 and

(𝜔1, . . . , 𝜔𝑛) ∈ 𝐸𝑛 such that 𝑇𝜔𝑛 ∘ · · · ∘ 𝑇𝜔1(𝐽) = 𝐼∖𝐼0. Then 𝜇̃ is the only acipm of 𝐹 and

satisfies

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇̃

𝑑𝜆
≤𝑀. (4.24)

Moreover, (𝐹, 𝜇̃) is ergodic.

Remark 4.17. In fact, because the Bernoulli shift (𝜎,P) is exact (see Example 2.23),

one can show with the fourth part of Theorem 2.1 in [47] that (𝐹, 𝜇̃) is exact under

the assumptions of Proposition 4.16.

Example 4.18. Any countable family {𝑇𝑗 : 𝐼 → 𝐼}𝑗∈𝐸 given by 𝑇𝑗𝑥 = 𝛽𝑗𝑥 mod 1 and

with inf𝑗∈𝐸 𝛽𝑗 > 1, together with any probability vector {𝑝𝑗}𝑗∈𝐸 such that 𝑝𝑗 > 0 for
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each 𝑗 ∈ 𝐸 satisfies the assumptions of Proposition 4.16. This can be shown in a

similar way as the deterministic case in Example 3.18.

4.3 Random i.i.d. Compositions of Two LSV Maps

Let us return to the LSV maps discussed in Section 3.6. We now consider two LSV

maps {𝑇𝛼, 𝑇𝛽} with 𝛼 ∈ (0, 1) and 𝛽 ≥ 1. At each time step we apply 𝑇𝛼 with

probability 𝑝 and 𝑇𝛽 with probability 1 − 𝑝, independently from the maps that are

applied at the other time steps. That is, we consider iterations of the skew product

𝐹 : {𝛼, 𝛽}N × 𝐼 → {𝛼, 𝛽}N × 𝐼 given by 𝐹 (𝜔, 𝑥) = (𝜎𝜔, 𝑇𝜔1𝑥) and we put on {𝛼, 𝛽}N

the Bernoulli measure P with corresponding probability vector (𝑝, 1− 𝑝). Recall from

Section 3.6 that 𝑇𝛼 admits an invariant probability density (the 𝑝 = 1 case) and that

𝑇𝛽 does not (the 𝑝 = 0 case). We want to know if in the intermediate region 𝑝 ∈ (0, 1)

the skew product 𝐹 admits an invariant probability density, or equivalently if the

operator 𝑃𝑇 := 𝑝𝑃𝑇𝛼 + (1 − 𝑝)𝑃𝑇𝛽 has a fixed point in 𝐿1(𝐼). As opposed to the case

in Example 4.11, note that we now cannot apply the result in Remark 4.8 because

|𝑇 ′
𝛼(0)| = |𝑇 ′

𝛽(0)| = 1. Still, we have the following result:

Theorem 4.19. Let 𝛼 ∈ (0, 1), 𝛽 ≥ 1 and 𝑝 ∈ (0, 1). Then there exists a locally Lipschitz

function 𝑓* ∈ 𝐿1(𝐼) s.t. 𝑃𝑇 𝑓* = 𝑓* and 𝑓*(𝑥) ≤ 𝑎𝑥−𝛼 with 𝑎 ≥ 2𝛽𝑝−1(𝛼+ 2).

Remark 4.20. As explained in Remark 4.2 in [6], a fixed point of 𝑃𝑇 can also be

obtained using the techniques in [5, 6] (that is, using Young towers) when a linearized

version of the LSV maps 𝑇𝛼 and 𝑇𝛽 is considered.

We prove Theorem 4.19 by closely following Section 2 in [45] where the result is shown

for 𝑝 = 1. In the following, we set 𝑇−1
𝛼 𝑥 = {𝑦𝛼, 𝑦0} with 𝑦𝛼 ≤ 𝑦0 and 𝑇−1

𝛽 𝑥 = {𝑦𝛽, 𝑦0},
and 𝜉𝛼 = (2𝑦𝛼)𝛼 and 𝜉𝛽 = (2𝑦𝛽)𝛽. Writing 𝐿𝛼, 𝐿𝛽 and 𝑅 as in (3.45), we then have

𝑃𝑇 𝑓(𝑥) = 𝑝
𝑓(𝑦𝛼)

𝐿′
𝛼(𝑦𝛼)

+ (1− 𝑝)
𝑓(𝑦𝛽)

𝐿′
𝛽(𝑦𝛽)

+
𝑓(𝑦0)

𝑅′(𝑦0)

= 𝑝
𝑓(𝑦𝛼)

1 + (𝛼+ 1)𝜉𝛼
+ (1− 𝑝)

𝑓(𝑦𝛽)

1 + (𝛽 + 1)𝜉𝛽
+
𝑓(𝑦0)

2
.

Let us define the set 𝒞0 = {𝑓 ∈ 𝐶0((0, 1]) : 𝑓 ≥ 0, 𝑓 decreasing}. Since 𝑥 ↦→ 𝑦0(𝑥),

𝑥 ↦→ 𝑦𝑠(𝑥) and 𝑥 ↦→ 𝜉𝑠(𝑥) are increasing for each 𝑠 ∈ {𝛼, 𝛽}, it follows that 𝒞0 is

preserved by 𝑃𝑇 , i.e. 𝑃𝑇𝒞0 ⊆ 𝒞0. As in [45], we need the following two lemmata.

Lemma 4.21. The set 𝒞1 = {𝑓 ∈ 𝒞0 : 𝑥 ↦→ 𝑥𝛽+1𝑓(𝑥) increasing} is preserved by 𝑃𝑇 .



Chapter 4. Invariant densities for random piecewise monotonic interval maps 51

Proof : We have

𝑥𝛽+1𝑃𝑇 𝑓(𝑥) = 𝑝
(︁𝐿𝛼𝑦𝛼

𝑦𝛼

)︁𝛽+1 𝑦𝛽+1
𝛼 𝑓(𝑦𝛼)

1 + (𝛼+ 1)𝜉𝛼
+ (1− 𝑝)

(︁𝐿𝛽𝑦𝛽
𝑦𝛽

)︁𝛽+1 𝑦𝛽+1
𝛽 𝑓(𝑦𝛽)

1 + (𝛽 + 1)𝜉𝛽

+
(︁𝑅𝑦0
𝑦0

)︁𝛽+1 𝑦𝛽+1
0 𝑓(𝑦0)

2

= 𝑝
(1 + 𝜉𝛼)𝛽+1

1 + (𝛼+ 1)𝜉𝛼
𝑦𝛽+1
𝛼 𝑓(𝑦𝛼) + (1− 𝑝)

(1 + 𝜉𝛽)𝛽+1

1 + (𝛽 + 1)𝜉𝛽
𝑦𝛽+1
𝛽 𝑓(𝑦𝛽)

+
1

2

(︁
2− 1

𝑦0

)︁𝛽+1

𝑦𝛽+1
0 𝑓(𝑦0).

The result follows by noting that also 𝜉 ↦→ (1+𝜉)𝛽+1

1+(𝛼+1)𝜉 , 𝜉 ↦→
(1+𝜉)𝛽+1

1+(𝛽+1)𝜉 and 𝑦 ↦→ (2− 1
𝑦 )
𝛽+1

are increasing functions.

Lemma 4.22. The set 𝒞2 = {𝑓 ∈ 𝒞1 ∩ 𝐿1(𝐼) : 𝑓(𝑥) ≤ 𝑎𝑥−𝛼,
∫︀
𝐼 𝑓𝑑𝜆 = 1} is preserved by

𝑃𝑇 , provided 𝑎 is chosen large enough.

Proof : Let 𝑓 ∈ 𝒞2. First of all, we have
∫︀
𝐼 𝑃𝑇 𝑓𝑑𝜆 =

∫︀
𝐼 𝑓𝑑𝜆 = 1 by part (b) of

Proposition 2.31. Since 𝑥 ↦→ 𝑥𝛽+1𝑓(𝑥) is increasing and 𝑓 is decreasing, we have

𝑥𝛽+1𝑓(𝑥) ≤ 𝑓(1) ≤
∫︁
𝑓𝑑𝜆 = 1. (4.25)

Combining this with 𝑓(𝑥) ≤ 𝑎𝑥−𝛼 yields

𝑃𝑇 𝑓(𝑥) = 𝑝
𝑓(𝑦𝛼)

𝐿′
𝛼(𝑦𝛼)

+ (1− 𝑝)
𝑓(𝑦𝛽)

𝐿′
𝛽(𝑦𝛽)

+
𝑓(𝑦0)

𝑅′(𝑦0)

≤ 𝑝
𝑎𝑦−𝛼𝛼
𝐿′
𝛼(𝑦𝛼)

+ (1− 𝑝)
𝑎𝑦−𝛼𝛽
𝐿′
𝛽(𝑦𝛽)

+
𝑦−𝛽−1
0

𝑅′(𝑦0)

≤
{︁
𝑝
(︁ 𝑥
𝑦𝛼

)︁𝛼 1

𝐿′
𝛼(𝑦𝛼)

+ (1− 𝑝)
(︁ 𝑥
𝑦𝛽

)︁𝛼 1

𝐿′
𝛽(𝑦𝛽)

+
1

𝑎

𝑥𝛼

𝑦𝛽+1
0 𝑅′(𝑦0)

}︁
𝑎𝑥−𝛼. (4.26)

We need to find 𝑎 such that the term in curly brackets is bounded by 1. First of all,

we know for each 𝜉 ≥ −1 that (1 + 𝜉)𝛼 ≤ 1 + 𝛼𝜉 (using that 𝛼 ∈ (0, 1)), so(︁ 𝑥
𝑦𝛽

)︁𝛼 1

𝐿′
𝛽(𝑦𝛽)

=
(1 + 𝜉𝛽)𝛼

1 + (𝛽 + 1)𝜉𝛽
≤ 1 + 𝛼𝜉𝛽

1 + (𝛽 + 1)𝜉𝛽
≤ 1. (4.27)

Moreover, we have 𝑦0 ≥ 1
2 and 𝜉𝛼 ≤ 1, so

𝑥𝛼

𝑦𝛽+1
0 𝑅′(𝑦0)

≤ (𝑦𝛼)𝛼(1 + 𝜉𝛼)𝛼

2−𝛽−1 · 2
≤ 2𝛽(𝑦𝛼)

𝛼2𝛼 = 2𝛽𝜉𝛼. (4.28)

It follows from (4.28) that

𝑝
(︁ 𝑥
𝑦𝛼

)︁𝛼 1

𝐿′
𝛼(𝑦𝛼)

+
1

𝑎

𝑥𝛼

𝑦𝛽+1
0 𝑅′(𝑦0)

≤ 𝑝
(1 + 𝜉𝛼)𝛼

1 + (𝛼+ 1)𝜉𝛼
+

2𝛽

𝑎
𝜉𝛼

≤ 𝑝
1 + 𝛼𝜉𝛼 +

2𝛽

𝑎𝑝𝜉𝛼(1 + (𝛼+ 1)𝜉𝛼)

1 + (𝛼+ 1)𝜉𝛼
≤ 𝑝

1 +
(︀
𝛼+ 2𝛽(𝛼+2)

𝑎𝑝

)︀
𝜉𝛼

1 + (𝛼+ 1)𝜉𝛼
, (4.29)
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where in the last step we use 1 + (𝛼 + 1)𝜉𝛼 ≤ 𝛼 + 2. Combining (4.26), (4.27) and

(4.29), we obtain for 𝑎 ≥ 2𝛽(𝛼+2)
𝑝 that 𝑃𝑇 𝑓(𝑥) ≤ 𝑎𝑥−𝛼, which yields the result.

Remark 4.23. For (4.27) and the second bound in (4.29) we use that (1+𝜉)𝛼 ≤ 1+𝛼𝜉,

which for positive 𝛼 is the case if and only if 𝛼 ∈ (0, 1]. For this reason, we cannot

extend this result to the case that 𝛼 > 1 for any 𝑝 ∈ [0, 1].

Proof of Theorem 4.19: Let us define 𝑆 ⊆ 𝐶0([0, 1]) as follows:

𝑆 = {[0, 1] ∋ 𝑥 ↦→ 𝑥1+𝛽𝑓(𝑥) : 𝑓 ∈ 𝒞2}. (4.30)

Let 𝜑 ∈ 𝑆 be given by 𝜑(𝑥) = 𝑥1+𝛽𝑓(𝑥) with 𝑓 ∈ 𝒞2. Then for 𝑥 ≥ 𝑦 we get

0 ≤ 𝜑(𝑥)− 𝜑(𝑦) ≤ (𝑥1+𝛽 − 𝑦1+𝛽)𝑓(𝑥) ≤ 𝑎𝑥−𝛼(1 + 𝛽)

∫︁ 𝑥

𝑦

𝑡𝛽𝑑𝑡

≤ 𝑎(1 + 𝛽)|𝑥− 𝑦|. (4.31)

From this we see that 𝑆 is bounded and equicontinuous, so from the Arzelà-Ascoli

Theorem (Theorem B.6) it follows that 𝑆 is compact in 𝐶0([0, 1]) w.r.t. the supremum

norm. Using that 𝑃𝑇 preserves 𝒞2 and that a weighted average of elements in 𝒞2
is also an element of 𝒞2, we therefore obtain that the sequence {𝜑𝑛} ⊆ 𝑆 given by

𝜑𝑛(𝑥) = 𝑥1+𝛽𝑓𝑛(𝑥) with 𝑓𝑛 = 1
𝑛

∑︀𝑛−1
𝑖=0 𝑃

𝑖
𝑇 𝑓 has a subsequence {𝜑𝑛𝑘} that converges

uniformly to some 𝜑* ∈ 𝐶0([0, 1]). Now define 𝑓* ∈ 𝐶0((0, 1]) as 𝑓*(𝑥) = 𝑥−1−𝛽𝜑*(𝑥).

Then {𝑓𝑛𝑘} converges pointwise to 𝑓*, and since

sup
𝑘∈N

|𝑓𝑛𝑘(𝑥)| ≤ 𝑎𝑥−𝛼 and

∫︁ 1

0

𝑥−𝛼𝑑𝑥 <∞, (4.32)

it follows that 𝑓*(𝑥) ≤ 𝑎𝑥−𝛼 and that∫︁ 1

0

𝑓*(𝑥)𝑑𝑥 = lim
𝑘→∞

∫︁
𝑓𝑛𝑘(𝑥)𝑑𝑥 = 1 (4.33)

using the Dominated Convergence Theorem. We conclude that 𝑓* ∈ 𝒞2. In exactly the

same way as in (3.18) it can now be shown that 𝑃𝑇 (𝑓*) = 𝑓*, and that 𝑓* is locally

Lipschitz follows from the fact that for 𝑥 ≥ 𝑦 we have

0 ≤ 𝑓*(𝑦)− 𝑓*(𝑥) ≤ 𝑥−1−𝛽(𝑥1+𝛽 − 𝑦1+𝛽)𝑓*(𝑦) ≤ 𝑥−1−𝛽𝑎(1 + 𝛽)|𝑥− 𝑦|, (4.34)

where we used that 𝑓* is decreasing, that 𝑥 ↦→ 𝑥1+𝛽𝑓*(𝑥) is increasing and (4.31),

respectively.

Remark 4.24. We already observed in Remark 4.23 that the above proof does not

work for 𝛼 > 1. It follows from (4.32) that the same is true for 𝛼 = 1, because∫︀ 1

0 𝑥
−1𝑑𝑥 = ∞.

Remark 4.25. The proof of Theorem 4.19 is almost the same as the one in Section

2 of [45]. Compared to this 𝑝 = 1 case, the new idea in the proof of Theorem 4.19 is

how the expression in curly brackets in (4.26) is bounded. Namely, consider the 𝑝 = 0

case: If 𝑝 = 0, then the first term in (4.26) is zero, and bounding the second term by
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1 as in (4.27) requires that the third term is zero, or equivalently, that 𝑎 = ∞. On

the other hand, if 𝑝 ∈ (0, 1), we can bound the second term by 1 − 𝑝 and we don’t

need to require that the third term is zero. This allows us to bound the third term

together with the first term by 𝑝, from which Lemma 4.22 follows. It is worthwhile

to investigate if this idea can be used for proving the same result with two maps on

𝐼 from the class considered in [50] (see Remark 3.27, where we take one map from 𝒯𝛼
and one map from 𝒯𝛽, with 0 < 𝛼 < 1 ≤ 𝛽 <∞). The main motivation for this is that

the 𝑝 = 1 case in [45] has been extended in [50] to maps in 𝒯𝛼 using essentially the

same ideas as in [45].

Proposition 4.26. Let 𝛼 ∈ (0, 1), 𝛽 ≥ 1 and 𝑝 ∈ (0, 1). Then 𝑓* ∈ 𝐿1(𝐼) from Theorem

4.19 is the unique fixed point of 𝑃𝑇 in 𝐿1(𝐼) and the corresponding acipm 𝜇 on {0, 1}N× 𝐼
is ergodic w.r.t. the skew product 𝐹 .

Proof : Since 𝑓* has full support on 𝐼 (because 𝑓* ∈ 𝒞2), note from the first part of

Theorem 2.10 that the result follows if we show that 𝜇 is 𝐹 -ergodic. So suppose that

𝐹−1𝐴 = 𝐴 for some 𝐴 ∈ ℱ ⊗ℬ, where ℱ is the 𝜎-algebra generated by the cylinders in

Ω𝐸 = {𝛼, 𝛽}N. Then it is easy to see that 𝑃𝐹 (1𝐴𝑓*) = 1𝐴𝑓*, so it follows from Theorem

4.5 that there exists 𝐶 ∈ ℬ such that

1𝐴 = 1Ω𝐸×𝐶 , P⊗ 𝜆-a.e. (4.35)

Then also

1𝐹−1𝐴 = 1𝐹−1(Ω𝐸×𝐶), P⊗ 𝜆-a.e. (4.36)

Using that 𝐹−1𝐴 = 𝐴 and that 𝐹−1(Ω𝐸 × 𝐶) = [𝛼] × 𝑇−1
𝛼 𝐶 ∪ [𝛽] × 𝑇−1

𝛽 𝐶
(︀
using the

notation from (4.23)
)︀
, (4.35) and (4.36) together yield

1𝐶 = 1𝑇−1
𝑠 𝐶 , 𝜆-a.e. (4.37)

for both 𝑠 ∈ {𝛼, 𝛽}. From Remark 3.27 we know that 𝑇𝛼 admits an ergodic acipm with

full support, so it follows from e.g. Theorem 1.6.1 in [15] that 𝜆(𝐶) ∈ {0, 1}. Together
with (4.35) we conclude that 𝜇(𝐴) ∈ {0, 1}.

We now state some ideas how to generalize the method in Section 3.6 to obtain in a

second way the existence of the fixed point 𝑓* ∈ 𝐿1(𝐼) for 𝑃𝑇 as in Theorem 4.19. Set

𝐸 = {𝛼, 𝛽} and Ω𝐸 = 𝐸N. For each 𝜔 ∈ Ω𝐸, we define the sequence {𝑦𝑛,𝜔}𝑛≥1 given by

𝑦1,𝜔 = 1
2 and 𝑦𝑛+1,𝜔 = 𝐿−1

𝜔𝑛 (𝑦𝑛,𝜔) for 𝑛 ≥ 1. Also, for each 𝜔 ∈ Ω𝐸 we let {𝐼𝑛,𝜔}𝑛≥1 be

the countable interval partition of 𝐼 given by 𝐼1,𝜔 = 𝐼1 = (12 , 1] and 𝐼𝑛,𝜔 = (𝑦𝑛,𝜔, 𝑦𝑛−1,𝜔]

for 𝑛 ≥ 2.

Let 𝑆 : Ω𝐸 × 𝐼 → 𝐼 be given by 𝑆(𝜔, 𝑥) = 𝑆𝜔𝑥, where each 𝑆𝜔 : 𝐼 → 𝐼 is piecewise

monotonic and given by

𝑆𝜔(𝑥) = 𝑅 ∘ 𝐿𝜔1 ∘ · · · ∘ 𝐿𝜔𝑛−1(𝑥) for 𝑥 ∈ 𝐼𝑛,𝜔 and 𝑛 ≥ 1. (4.38)

Note that Ω𝐸 is a Polish space. Now consider the skew product

𝐹 : (Ω𝐸)
N × 𝐼 → (Ω𝐸)

N × 𝐼, (𝜔̃, 𝑥) ↦→ (𝜎̃𝜔̃, 𝑆𝜔̃1𝑥), (4.39)
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where 𝜎̃ denotes the left shift on (Ω𝐸)N. We take P̃ = P⊗N as a probability measure

on ((Ω𝐸)N, ℱ̃), where ℱ̃ is the Borel 𝜎-algebra on (Ω𝐸)N. From Theorem 4.5 we know

that each acim of 𝐹 has the form P̃⊗ 𝜈, where 𝜈 is absolutely continuous w.r.t. 𝜆 with

density 𝑑𝜈
𝑑𝜆 that is a fixed point of the operator 𝑃𝑆 : 𝐿1(𝐼) → 𝐿1(𝐼) given by

𝑃𝑆𝑓(𝑥) =

∫︁
Ω𝐸

𝑃𝑆𝜔𝑓(𝑥)𝑑P(𝜔), 𝜆-a.e. (4.40)

Now, let us write 𝐴 and 𝐵𝛼 for the operators as given in (3.49). We define 𝐵 :=

𝑝𝐵𝛼 + (1− 𝑝)𝐵𝛽. Then we have

𝑃𝑇 = 𝐴+𝐵. (4.41)

Let us set 𝑝𝛼 := 𝑝 and 𝑝𝛽 := 1− 𝑝. We have the following lemma.

Lemma 4.27. The operator 𝑃𝑆 sastisfies

𝑃𝑆𝑓 =
∞∑︁
𝑘=0

𝐴𝐵𝑘𝑓, 𝜆-a.e. (4.42)

for each 𝑓 ∈ 𝐿1(𝐼). Also, each 𝑓 ∈ 𝐿1(𝐼) satisfies
∑︀∞

𝑘=0𝐵
𝑘𝑓(𝑥) <∞ for 𝜆-a.e. 𝑥 ∈ 𝐼.

Proof : Let 𝑓 ∈ 𝐿1(𝐼). For 𝜆-a.e. 𝑥 ∈ 𝐼 we have

𝑃𝑆𝑓(𝑥) =

∫︁
Ω𝐸

𝑃𝑆𝜔𝑓(𝑥)𝑑P(𝜔) =
∫︁
Ω𝐸

∑︁
𝑦∈𝑆−1

𝜔 𝑥

𝑓(𝑦)

|𝑆′
𝜔(𝑦)|

𝑑P(𝜔)

=

∫︁
Ω𝐸

∞∑︁
𝑘=0

𝑓(𝐿−1
𝜔𝑘

· · ·𝐿−1
𝜔1
𝑅−1𝑥)

|(𝑅𝐿𝜔1 · · ·𝐿𝜔𝑘)′(𝐿−1
𝜔𝑘

· · ·𝐿−1
𝜔1
𝑅−1𝑥)

𝑑P(𝜔)

=
∞∑︁
𝑘=0

∫︁
Ω𝐸

𝐴(𝐵𝜔1 · · ·𝐵𝜔𝑘𝑓)(𝑥)𝑑P(𝜔)

=
∞∑︁
𝑘=0

∑︁
𝜔1···𝜔𝑘

𝑝𝜔1 · · · 𝑝𝜔𝑘𝐴(𝐵𝜔1 · · ·𝐵𝜔𝑘𝑓)(𝑥) =
∞∑︁
𝑘=0

𝐴𝐵𝑘𝑓(𝑥),

where the interchange of integral and series is justified by applying the Monotone

Convergence Theorem to the positive and negative part of the real and imaginary part

of the integrand. The second statement can be shown similarly as done in the proof

of Lemma 3.25.

Using Theorem 4.19 we have the following two results about the operator 𝑃𝑆.

Proposition 4.28. There exists a real and nonnegative 𝑓 ∈ 𝐿1(𝐼) such that 𝑃𝑆𝑓 = 𝑓 .

Proof : Let 𝑓* be as in Theorem 4.19. Then 𝑓 := 𝐴𝑓* = 𝑓* − 𝐵𝑓* ∈ 𝐿1(𝐼) is a fixed

point of 𝑃𝑆, because

𝑃𝑆(𝑓) = 𝑃𝑆(𝑓
*)− 𝑃𝑆(𝐵𝑓

*) =
∞∑︁
𝑘=0

𝐴𝐵𝑘𝑓* −
∞∑︁
𝑘=1

𝐴𝐵𝑘𝑓* = 𝐴𝑓*, 𝜆-a.e. (4.43)
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Proposition 4.29. There exists 𝑓 ∈ 𝐿1(𝐼) for which 𝑃𝑆𝑓 = 𝑓 such that ℎ :=
∑︀∞

𝑘=0𝐵
𝑘𝑓

is an element of 𝐿1(𝐼) and such that ℎ is a fixed point of 𝑃𝑇 .

Proof : Take as in (4.43) the fixed point 𝑓 = 𝐴𝑓* of 𝑃𝑆. Then with Lemma 4.27 we get

𝑓* =
∞∑︁
𝑘=0

𝐵𝑘𝑓* −
∞∑︁
𝑘=1

𝐵𝑘𝑓* =
∞∑︁
𝑘=0

𝐵𝑘𝐴𝑓* =
∞∑︁
𝑘=0

𝐵𝑘𝑓. (4.44)

This gives ℎ = 𝑓* ∈ 𝐿1(𝐼).

Let us now state some ideas how to prove the above two propositions in a similar way

as the proofs of Lemma 3.24 and Lemma 3.26 (so without making use of the result of

Theorem 4.19), thus indicating an alternative proof of Theorem 4.19.

First of all, it is clear that 𝑆 is expanding on average in the sense of (4.19) (taking

Ω𝐸 for 𝐸 and P for 𝜋). As we know from Remark 4.9, the result of Proposition 4.28

now follows if 𝑆 has suitable distortion bounds such as in [48]. If true, this can be

viewed as a natural generalization of the proof of Lemma 3.24. Alternatively, in view

of Remark 4.10, one can check if the function 𝑔𝜔(𝑥) from (4.20) associated to 𝑆 has

bounded variation uniformly on P-a.a. 𝜔 ∈ Ω𝐸. It is not clear either if this is true.

Secondly, suppose that 𝑓 is as in Proposition 4.28. Then if ℎ :=
∑︀∞

𝑘=0𝐵
𝑘𝑓 satisfies

ℎ ∈ 𝐿1(𝐼), then it follows from Lemma 4.27 that ℎ is a fixed point of 𝑃𝑇 :

𝑃𝑇ℎ = (𝐴+𝐵)ℎ = 𝐴
(︁ ∞∑︁
𝑘=0

𝐵𝑘𝑓
)︁
+𝐵

(︁ ∞∑︁
𝑘=0

𝐵𝑘𝑓
)︁

=
(︁ ∞∑︁
𝑘=0

𝐴𝐵𝑘
)︁
𝑓 +

∞∑︁
𝑘=1

𝐵𝑘𝑓 = 𝑓 +
∞∑︁
𝑘=1

𝐵𝑘𝑓 = ℎ. (4.45)

Hence, Proposition 4.29 follows if we show that ℎ ∈ 𝐿1(𝐼). Suppose that there exists

𝑀 > 0 such that 𝑓 ≤ 𝑀 . This is for instance the case if 𝑆 satisfies the conditions in

Remark 4.9 or Remark 4.10 (taking (Ω𝐸 ,ℱ ,P) for (𝐸, ℰ , 𝜋)), because similar as in the

first part of Theorem 4.12 it then follows that 𝑓 has bounded variation. Then∫︁
𝐼

ℎ𝑑𝜆 =

∫︁
𝐼

∞∑︁
𝑘=0

𝐵𝑘𝑓𝑑𝜆 =

∫︁
𝐼

∫︁
Ω𝐸

∞∑︁
𝑘=0

𝐵𝜔1 · · ·𝐵𝜔𝑘𝑓𝑑P(𝜔)𝑑𝜆(𝑥)

=
∞∑︁
𝑛=1

∫︁
Ω𝐸

∫︁
𝐼𝑛,𝜔

∞∑︁
𝑘=0

𝐵𝜔1 · · ·𝐵𝜔𝑘𝑓𝑑𝜆𝑑P(𝜔)

≤𝑀

∞∑︁
𝑛=1

𝑐𝑛, (4.46)

where we used Fubini’s Theorem, and where

𝑐𝑛 =

∫︁
Ω𝐸

∫︁
𝐼𝑛,𝜔

∞∑︁
𝑘=0

1

|(𝐿𝜔1 · · ·𝐿𝜔𝑘)′(𝐿−1
𝜔𝑘

· · ·𝐿−1
𝜔1
𝑥)|

𝑑𝜆𝑑P(𝜔)

≤
∫︁
Ω𝐸

𝜆(𝐼𝑛,𝜔)
{︁ ∞∑︁
𝑘=0

1

𝐿′
𝜔1
(𝐿−1

𝜔1
𝑦𝑛,𝜔) · · ·𝐿′

𝜔𝑘
(𝐿−1

𝜔𝑘
· · ·𝐿−1

𝜔1
𝑦𝑛,𝜔)

}︁
𝑑P(𝜔). (4.47)
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We know from Theorem 1.1 in [6] that 𝑦𝑛,𝜔 ∼ 1
2(𝛼𝑝𝑛)

−1/𝛼 for P-a.a 𝜔 ∈ Ω, i.e.

lim
𝑛→∞

1
2(𝛼𝑝𝑛)

−1/𝛼

𝑦𝑛,𝜔
= 1, P-a.a. 𝜔 ∈ Ω.

Therefore, as for the 𝑝 = 1 case in Section 3.6, it seems reasonable to expect that

𝜆(𝐼𝑛,𝜔) = 𝑂( log𝑛
𝑛1+1/𝛼 ). Moreover, in a similar way as in the proof of Lemma 3.26 we

can argue that the expression in curly brackets in (4.47) is 𝑂(𝑛) for each 𝜔 ∈ Ω. This

together with (4.46) and the assumption that 𝜆(𝐼𝑛,𝜔) = 𝑂( log𝑛
𝑛1+1/𝛼 ) suggests that indeed∫︀

𝐼 ℎ𝑑𝜆 <∞. However, we don’t even have a bound on 𝜆(𝐼𝑛,𝜔) uniform in P-a.a. 𝜔 ∈ Ω𝐸,

so the proof seems to be more delicate.

4.4 One-sided Markov Shift as Base

Let us now assume that 𝐸 is finite, say 𝐸 = {1, . . . , 𝑟}, and that (Ω𝐸 ,ℱ , 𝜎,P) with

Ω𝐸 = 𝐸N is a one-sided Markov shift (see Example 2.6) given by an irreducible,

aperiodic stochastic matrix 𝑊 and a probability vector 𝑞 = (𝑞1, . . . , 𝑞𝑟) such that

𝑞𝑊 = 𝑞. Furthermore, as in [28] we write 𝑊 *
𝑙𝑘 = 𝑊𝑘𝑙𝑞𝑘

𝑞𝑙
(which are the entries of the

transition matrix of the time-reversed Markov chain). For each 𝑧 ∈ 𝐸, let 𝑇𝑧 : 𝐼 → 𝐼 be

a piecewise monotonic interval map. For simplicity, we assume that each 𝑇𝑧 is finitely

piecewise 𝐶2-monotonic. Again, the skew product 𝐹 : Ω𝐸 × 𝐼 → Ω𝐸 × 𝐼 is given by

𝐹 (𝜔, 𝑥) = (𝜎𝜔, 𝑇𝜔1𝑥).

We first recover the result from Kowalski [40] (see also Lemma 4.2 in [28]) that each

acim 𝜇 of 𝐹 has the form

𝜇(𝐴) =

∫︁
Ω𝐸

𝜇𝜔1(𝐴𝜔)𝑑P(𝜔), 𝐴 ∈ ℱ ⊗ ℬ, (4.48)

where 𝐴𝜔 = {𝑥 ∈ 𝐼 : (𝜔, 𝑥) ∈ 𝐴} and where each 𝜇𝑗 (𝑗 ∈ 𝐸) is absolutely continuous

w.r.t. 𝜆 with density ℎ𝑗 such that (ℎ1, . . . , ℎ𝑟) is a fixed point of the operator 𝑃𝑇 :∏︀𝑟
𝑗=1 𝐿

1(𝜆) →
∏︀𝑟
𝑗=1 𝐿

1(𝜆) given by

𝑃𝑇 (𝑓1, . . . , 𝑓𝑟) =
(︁ 𝑟∑︁
𝑘=1

𝑊 *
1𝑘𝑃𝑇𝑘𝑓𝑘,

𝑟∑︁
𝑘=1

𝑊 *
2𝑘𝑃𝑇𝑘𝑓𝑘, . . . ,

𝑟∑︁
𝑘=1

𝑊 *
𝑟𝑘𝑃𝑇𝑘𝑓𝑘

)︁
. (4.49)

We first need two lemmata.

Again, for 𝑘 ≥ 1, let ℐ𝑘 denote the linear span of characteristic functions of sets 𝐴 ∈ ℰ𝑘,
where ℰ = 2𝐸 is the power set of 𝐸. We define 𝒜1 ⊆ 𝐿1(P⊗ 𝜆) as

𝒜1 =
⋃︁
𝑘≥1

{Ω𝐸 × 𝐼 ∋ (𝜔, 𝑥) ↦→ 𝜓(𝜔1, . . . , 𝜔𝑘)𝜑𝜔1(𝑥) : 𝜓 ∈ ℐ𝑘, 𝜑𝑧 ∈ 𝐿1(𝜆), 𝑧 ∈ 𝐸}. (4.50)

Lemma 4.30. 𝒜1 is dense in 𝐿1(P⊗ 𝜆).

Proof : This follows from Lemma 4.3 combined with the fact that 𝒜0 ⊆ 𝒜1.
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Lemma 4.31. Let Φ ∈ 𝒜1 be given by Φ(𝜔, 𝑥) = 𝜓(𝜔1, . . . , 𝜔𝑘)𝜑𝜔1(𝑥) for some 𝑘 ≥ 1,

𝜓 ∈ ℐ𝑘 and 𝜑𝑧 ∈ 𝐿1(𝜆) for each 𝑧 ∈ 𝐸. Then for all 𝑛 ≥ 𝑘 we have

𝑃 𝑛
𝐹Φ(𝜔, 𝑥) =

∑︁
𝑗1···𝑗𝑛

𝜓(𝑗2, . . . , 𝑗𝑘)𝑊
*
𝜔1𝑗𝑛𝑊

*
𝑗𝑛𝑗𝑛−1

· · ·𝑊 *
𝑗2𝑗1𝑃𝑇𝑗𝑛 · · ·𝑃𝑇𝑗1𝜑𝑗1(𝑥), P⊗ 𝜆-a.e.

So if 𝑛 ≥ 𝑘, then the value of 𝑃 𝑛
𝐹Φ(𝜔, 𝑥) does not depend on (𝜔2, 𝜔3, · · · ) for P-a.a. 𝜔.

Proof : First of all, we have (using the notation from (4.23))

P([𝑗1 · · · 𝑗𝑛𝑙1 · · · 𝑙𝑚]) = 𝑞𝑗1𝑊𝑗1𝑗2 · · ·𝑊𝑗𝑛−1𝑗𝑛𝑊𝑗𝑛𝑙1𝑊𝑙1𝑙2 · · ·𝑊𝑙𝑚−1𝑙𝑚

=
𝑞𝑗1𝑊𝑗1𝑗2

𝑞𝑗2

𝑞𝑗2𝑊𝑗2𝑗3

𝑞𝑗3
· · ·

𝑞𝑗𝑛−1𝑊𝑗𝑛−1𝑗𝑛

𝑞𝑗𝑛

𝑞𝑗𝑛𝑊𝑗𝑛𝑙1

𝑞𝑙1
· 𝑞𝑙1𝑊𝑙1𝑙2 · · ·𝑊𝑙𝑚−1𝑙𝑚

= 𝑊 *
𝑗2𝑗1𝑊

*
𝑗3𝑗2 · · ·𝑊

*
𝑗𝑛𝑗𝑛−1

𝑊 *
𝑙1𝑗𝑛 · P([𝑙1 · · · 𝑙𝑚]).

From this it follows that for all 𝑛 ≥ 𝑘, 𝐴 = [𝑙1 · · · 𝑙𝑚] ∈ ℱ and 𝐵 ∈ ℬ we have∫︁
𝐴×𝐵

𝑃 𝑛
𝐹Φ𝑑P⊗ 𝜆

=

∫︁
𝐹−𝑛(𝐴×𝐵)

Φ𝑑P⊗ 𝜆

=

∫︁
Ω𝐸

∫︁
𝐼

𝜓(𝜔2, . . . , 𝜔𝑘)𝜑𝜔1(𝑥)1𝐴(𝜎
𝑛𝜔)1𝐵(𝑇𝜔𝑛 · · ·𝑇𝜔1𝑥)𝑑𝜆(𝑥)𝑑P(𝜔)

=
∑︁
𝑗1···𝑗𝑛

∫︁
[𝑗1···𝑗𝑛]

∫︁
𝐼

𝜓(𝑗2, . . . , 𝑗𝑘)𝜑𝑗1(𝑥)1𝐴(𝜎
𝑛𝜔)1𝐵(𝑇𝑗𝑛 · · ·𝑇𝑗1𝑥)𝑑𝜆(𝑥)𝑑P(𝜔)

=
∑︁
𝑗1···𝑗𝑛

P([𝑗1 · · · 𝑗𝑛𝑙1 · · · 𝑙𝑚])
∫︁
𝐼

𝜓(𝑗2, . . . , 𝑗𝑘)𝜑𝑗1(𝑥)1𝐵(𝑇𝑗𝑛 · · ·𝑇𝑗1𝑥)𝑑𝜆(𝑥)

=
∑︁
𝑗1···𝑗𝑛

𝑊 *
𝑙1𝑗𝑛 · · ·𝑊

*
𝑗2𝑗1P([𝑙1 · · · 𝑙𝑛])

∫︁
𝐵

𝜓(𝑗2, . . . , 𝑗𝑘)𝑃𝑇𝑗𝑛 · · ·𝑃𝑇𝑗1𝜑𝑗1(𝑥)𝑑𝜆(𝑥)

=

∫︁
𝐴×𝐵

∑︁
𝑗1···𝑗𝑛

𝜓(𝑗2, . . . , 𝑗𝑘)𝑊
*
𝜔1𝑗𝑛 · · ·𝑊

*
𝑗2𝑗1𝑃𝑇𝑗𝑛 · · ·𝑃𝑇𝑗1𝜑𝑗1(𝑥)𝑑𝜆(𝑥)𝑑P(𝜔).

Theorem 4.32. Let ℎ ∈ 𝐿1(P⊗𝜆). Then 𝑃𝐹ℎ = ℎ if and only if there exists (ℎ̃1, . . . , ℎ̃𝑟) ∈∏︀𝑟
𝑗=1 𝐿

1(𝜆) such that ℎ(𝜔, 𝑥) = ℎ̃𝜔1(𝑥) for P⊗𝜆-a.e. (𝜔, 𝑥) and (ℎ̃1, . . . , ℎ̃𝑟) is fixed under

the operator 𝑃𝑇 given by (4.49).

Proof : Suppose ℎ(𝜔, 𝑥) = ℎ̃𝜔1(𝑥) for P⊗𝜆-a.e. (𝜔, 𝑥) and (ℎ̃1, . . . , ℎ̃𝑟) is fixed under 𝑃𝑇 .

Then from Lemma 4.31 it follows that

𝑃𝐹ℎ(𝜔, 𝑥) =
∑︁

𝑗1∈{1,...,𝑟}

𝑊 *
𝜔1𝑗1𝑃𝑇𝑗1 ℎ̃𝑗1(𝑥) = ℎ̃𝜔1(𝑥) = ℎ(𝜔, 𝑥) P⊗ 𝜆-a.e.

The converse can be proven in the same way as in Theorem 4.5, where we now use

Lemma 4.30 and Lemma 4.31.
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So according to Theorem 4.32 there is a one-to-one relation between the acim’s for 𝐹

and the fixed points of 𝑃𝑇 in (4.49). We now define 𝐵𝑉 =
∏︀𝑟
𝑗=1𝐵𝑉 (𝐼) and endow

it with the norm ‖(𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 = max𝑗=1,...,𝑟 ‖𝑓𝑗‖𝐵𝑉 . Similarly, we endow 𝐿̂ =∏︀𝑟
𝑗=1 𝐿

1(𝐼) with the norm ‖(𝑓1, . . . , 𝑓𝑟)‖1 = max𝑗=1,...,𝑟 ‖𝑓𝑗‖1. Furthermore, we define

𝛼 = max
𝑙=1,...,𝑟

𝛼𝑙 with 𝛼𝑙 =
𝑟∑︁

𝑘=1

𝑊 *
𝑙𝑘

𝜃(𝑇𝑘)
,

where again 𝜃(𝑇𝑗) = inf𝑥∈𝐼 |𝑇 ′
𝑗(𝑥)| > 0.

Theorem 4.33. (see Remark 4.4(i) in [28]) Suppose that 𝛼 < 1. Then there exist 𝑘 ∈ N,
𝜌 ∈ (0, 1) and 𝐿 ∈ (0,∞) such that

‖𝑃 𝑘
𝑇 (𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 ≤ 𝜌‖(𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 + 𝐿‖(𝑓1, . . . , 𝑓𝑟)‖1 (4.51)

for all (𝑓1, . . . , 𝑓𝑟) ∈ 𝐵𝑉 . As a consequence, 𝑃𝑇 admits a fixed point in 𝐵𝑉 .

Proof : For each 𝑛 ∈ N and (𝑓1, . . . , 𝑓𝑟) ∈ 𝐵𝑉 , the 𝑖-th coordinate of 𝑃 𝑛
𝑇 (𝑓1, . . . , 𝑓𝑟)

denoted by {𝑃 𝑛
𝑇 (𝑓1, . . . , 𝑓𝑟)}𝑖 equals

{𝑃 𝑛
𝑇 (𝑓1, . . . , 𝑓𝑟)}𝑖 =

∑︁
𝑗1···𝑗𝑛

𝑊 *
𝑖𝑗𝑛𝑊

*
𝑗𝑛𝑗𝑛−1

· · ·𝑊 *
𝑗2𝑗1𝑃𝑇𝑗𝑛 · · ·𝑃𝑇𝑗1𝑓𝑗1 . (4.52)

Applying Lemma 3.2 to each 𝑃𝑇𝑗𝑛∘···∘𝑇𝑗1 and using that 𝜃(𝑇𝑗𝑛∘· · ·∘𝑇𝑗1) ≥ 𝜃(𝑇𝑗𝑛) · · · 𝜃(𝑇𝑗1)
gives

Var𝐼({𝑃 𝑛
𝑇 (𝑓1, . . . , 𝑓𝑟)}𝑖)

≤ 2 ·
∑︁
𝑗1···𝑗𝑛

𝑊 *
𝑖𝑗𝑛

𝜃(𝑇𝑗𝑛)
· · ·

𝑊 *
𝑗2𝑗1

𝜃(𝑇𝑗1)
Var𝐼(𝑓𝑗1) +

∑︁
𝑗1···𝑗𝑛

𝑊 *
𝑖𝑗𝑛 · · ·𝑊

*
𝑗2𝑗1𝐿(𝑇𝑗𝑛 ∘ · · · ∘ 𝑇𝑗1)‖𝑓𝑗1‖1

≤ 2 · 𝛼𝑛‖(𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 +
∑︁
𝑗1···𝑗𝑛

𝑊 *
𝑖𝑗𝑛 · · ·𝑊

*
𝑗2𝑗1𝐿(𝑇𝑗𝑛 ∘ · · · ∘ 𝑇𝑗1)‖(𝑓1, . . . , 𝑓𝑟)‖1.

Therefore, the first statement follows with 𝜌 := 2 · 𝛼𝑛 for 𝑛 sufficiently large such that

𝜌 < 1, and with 𝐿 = 1 +
∑︀

𝑗1···𝑗𝑛𝑊
*
𝑖𝑗𝑛 · · ·𝑊

*
𝑗2𝑗1𝐿(𝑇𝑗𝑛 ∘ · · · ∘ 𝑇𝑗1).

We can now construct a fixed point of 𝑃𝑇 with (4.51). Let (𝑓1, . . . , 𝑓𝑟) ∈ 𝐵𝑉 . Iterating

(4.51), it follows that, for each 𝑛 ∈ N,

‖𝑃 𝑘𝑛
𝑇 (𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 ≤ 𝜌𝑛‖(𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 + 𝐿‖(𝑓1, . . . , 𝑓𝑟)‖1

𝑛−1∑︁
𝑖=0

𝜌𝑖 ≤𝑀, (4.53)

where 𝑀 = ‖(𝑓1, . . . , 𝑓𝑟)‖𝐵𝑉 + 𝐿‖(𝑓1,...,𝑓𝑟)‖1
1−𝜌 . Now for each 𝑛 ∈ N, define

(𝑔(𝑛)1 , . . . , 𝑔(𝑛)𝑟 ) =
1

𝑛

𝑛∑︁
𝑖=1

𝑃 𝑘𝑖
𝑇 (𝑓1, . . . , 𝑓𝑟). (4.54)

Combining (4.53) with Lemma A.4 and Helly’s First Theorem (Theorem A.18) yields

that {𝑔(𝑛)1 } contains a subsequence {𝑔(𝑛𝑙)1 } that converges pointwise to some 𝑔1 ∈
𝐵𝑉 (𝐼). In the same way we obtain that {𝑔𝑛𝑙2 } contains a further subsequence that

converges pointwise to some 𝑔2 ∈ 𝐵𝑉 (𝐼). Continuing in this manner, we conclude
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that {(𝑔(𝑛)1 , . . . , 𝑔
(𝑛)
𝑟 )} contains a subsequence that converges pointwise to some 𝑔 =

(𝑔1, . . . , 𝑔𝑟) ∈ 𝐵𝑉 . The rest of the proof is analogous to that of Theorem 3.1.

We have the following analogue of Theorem 4.12.

Theorem 4.34. Suppose that 𝛼 < 1. Then

1. the fixed points of 𝑃𝑇 are elements of 𝐵𝑉 ,

2. there exists a biggest acipm 𝜇̃ of 𝐹 in the sense that if 𝜇 is an acipm of 𝐹 , then 𝜇 is

absolutely continuous w.r.t. 𝜇̃.

3. the restriction 𝑃𝑇,𝐵𝑉 of 𝑃𝑇 to 𝐵𝑉 satisfies 𝑃𝑇,𝐵𝑉 : 𝐵𝑉 → 𝐵𝑉 and is quasi-compact,

4. the set 𝑀𝑎𝑐(Ω𝐸×𝐼, 𝐹 ) of acim’s of 𝐹 is a non-empty finite-dimensional vector space

generated by the ergodic acipm’s of 𝐹 .

Proof : The first two statements can be shown by mimicking the proof of Lemma 3.7,

Proposition 3.8 and Corollary 3.9 (Note that we need to apply the Kakutani-Yosida

Theorem (Theorem B.1) with 𝑋 = 𝐿̂, 𝑃 = 𝑃𝑇 and 𝐴 = 𝐵𝑉 .) The quasi-compactness

of 𝑃𝑇,𝐵𝑉 can be shown with the Ionescu-Tulcea and Marinescu Theorem (Theorem

B.5) with 𝑉 = 𝐿̂ and 𝑊 = 𝐵𝑉 . (The first and fourth condition can be shown in a

similar way as has been done in the proof of Proposition 7.2.1 in [9] by 𝑟 applications

of Helly’s First Theorem as in the proof of Theorem 4.32.) Finally, the last statement

follows in exactly the same way as the proof of Theorem 3.11.

As in Section 4.2, we now show that if (𝐹, 𝜇̃) is weakly mixing, then (𝐹, 𝜇̃) is mixing.

We write 𝜇̃(𝐴) =
∫︀
Ω𝐸
𝜇̃𝜔1(𝐴𝜔)𝑑P(𝜔) and ℎ̃ = (ℎ̃1, . . . , ℎ̃𝑟) ∈ 𝐵𝑉 where each 𝜇̃𝑗 (𝑗 ∈

{1, . . . , 𝑟}) is absolutely continuous w.r.t. 𝜆 with density ℎ̃𝑗.

Proposition 4.35. Suppose that 𝛼 < 1 and that (𝐹, 𝜇̃) is weakly mixing. Then for each

𝑛 ∈ N we have

𝑃 𝑛
𝑇,𝐵𝑉 𝑔 =

(︁ 𝑟∑︁
𝑖=1

𝑞𝑖

∫︁
𝐼

𝑔𝑖𝑑𝜆
)︁
ℎ̃+ 𝑆𝑛𝑔, 𝑔 ∈ 𝐵𝑉 , (4.55)

where for some 𝑞 ∈ (0, 1) and 𝑀 > 0 we have for each 𝑛 ∈ N that ‖𝑆𝑛‖𝐵𝑉 ≤𝑀𝑞𝑛.

Proof: One can check that the dual of 𝐿̂ consists of all bounded linear functionals

𝜓 : 𝐿̂→ C such that

𝜓(𝑔1, . . . , 𝑔𝑟) =
𝑟∑︁
𝑖=1

∫︁
𝐼

𝑓𝑖𝑔𝑖𝑑𝜆, (4.56)

where 𝑓𝑖 ∈ 𝐿∞(𝐼) for each 𝑖 ∈ {1, . . . , 𝑟}. Hence, using the same reasoning as in the

proof of Proposition 3.14 one can show that

𝑃 𝑛
𝑇,𝐵𝑉 𝑔 =

(︁ 𝑟∑︁
𝑖=1

∫︁
𝐼

𝑓𝑖𝑔𝑖𝑑𝜆
)︁
ℎ̃+ 𝑆𝑛𝑔, 𝑔 ∈ 𝐵𝑉 (4.57)

where 𝑓𝑖 ∈ 𝐿∞(𝐼) for each 𝑖 ∈ {1, . . . , 𝑟} and where 𝑆 is a bounded linear operator on

𝐵𝑉 (𝐼) such that, for each 𝑛 ∈ N, ‖𝑆𝑛‖𝐵𝑉 ≤ 𝑀𝑞𝑛 for some 𝑞 ∈ (0, 1) and 𝑀 > 0. We
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now prove that each 𝑓𝑖 must be equal to 𝑞𝑖 𝜆-a.e. Fix 𝑖 ∈ {1, . . . , 𝑟}, let 𝐴 ∈ ℬ and take

𝑔𝑖 = 1𝐴 and 𝑔𝑙 = 0 for all 𝑙 ̸= 𝑖. From (4.57) it follows that{︁
lim
𝑛→∞

𝑃 𝑛
𝑇,𝐵𝑉 (0, . . . , 0, 1𝐴, 0, . . . , 0)

}︁
𝑙
=
(︁∫︁

𝐼

𝑓𝑖1𝐴𝑑𝜆
)︁
ℎ̃𝑙, (4.58)

where we have in the left-hand side of (4.58) convergence in 𝐿̂ and 1𝐴 is on the 𝑖-th

coordinate. Hence, combining (4.52) and (4.58), we have for each 𝑙 ∈ {1, . . . , 𝑟} that∫︁
𝐴

𝑓𝑖𝑑𝜆 =

∫︁
𝐼

(︁∫︁
𝐼

𝑓𝑖1𝐴𝑑𝜆
)︁
ℎ̃𝑙𝑑𝜆

= lim
𝑛→∞

∫︁
𝐼

∑︁
𝑗2···𝑗𝑛

𝑊 *
𝑙𝑗𝑛𝑊

*
𝑗𝑛𝑗𝑛−1

· · ·𝑊 *
𝑗2𝑖𝑃𝑇𝑗𝑛 · · ·𝑃𝑇𝑗2𝑃𝑇𝑖1𝐴𝑑𝜆

= lim
𝑛→∞

∑︁
𝑗2···𝑗𝑛

𝑞𝑖
𝑞𝑙
𝑊𝑖𝑗2 · · ·𝑊𝑗𝑛−1𝑗𝑛𝑊𝑗𝑛𝑙

∫︁
𝐴

1𝑑𝜆 =
𝑞𝑖
𝑞𝑙

lim
𝑛→∞

𝑊 𝑛−1
𝑖𝑙 ·

∫︁
𝐴

1𝑑𝜆 =

∫︁
𝐴

𝑞𝑖𝑑𝜆.

We have defined 𝑊 𝑛−1
𝑖𝑗 :=

∑︀
𝑗2···𝑗𝑛𝑊𝑖𝑗2 · · ·𝑊𝑗𝑛−1𝑗𝑛𝑊𝑗𝑛𝑙, which is the probability to go

from state 𝑖 to 𝑙 in 𝑛− 1 steps, and we know that this converges to 𝑞𝑙 as 𝑛→ ∞.

Corollary 4.36. Under the assumptions of Proposition 4.35, (𝐹, 𝜇̃) is mixing.

Proof : For all cylinders [𝑗1 · · · 𝑗𝑛], [𝑙1 · · · 𝑙𝑚] ∈ ℱ and 𝐴,𝐵 ∈ ℬ we have for all 𝑁 > 𝑚

that (with 𝑘 = 𝑁 −𝑚)

𝜇̃
(︁
𝐹−𝑁(︀[𝑗1 · · · 𝑗𝑛]× 𝐴

)︀
∩ [𝑙1 · · · 𝑙𝑚]×𝐵

)︁
= 𝜇̃

(︁ ⋃︁
𝑖1···𝑖𝑘

[𝑙1 · · · 𝑙𝑚𝑖1 · · · 𝑖𝑘𝑗1 · · · 𝑗𝑛]×
(︀
(𝑇−1
𝑙1

· · ·𝑇−1
𝑙𝑚
𝑇−1
𝑖1

· · ·𝑇−1
𝑖𝑘
𝐴) ∩𝐵

)︀)︁
=
∑︁
𝑖1···𝑖𝑘

P([𝑙1 · · · 𝑙𝑚𝑖1 · · · 𝑖𝑘𝑗1 · · · 𝑗𝑛])𝜇̃𝑙1
(︀
(𝑇−1
𝑙1

· · ·𝑇−1
𝑙𝑚
𝑇−1
𝑖1

· · ·𝑇−1
𝑖𝑘
𝐴) ∩𝐵

)︀
,

where in the last step we use 𝜇̃(𝐶) =
∫︀
Ω𝐸
𝜇̃𝜔1(𝐶𝜔)𝑑P(𝜔). We have

P([𝑙1 · · · 𝑙𝑚𝑖1 · · · 𝑖𝑘𝑗1 · · · 𝑗𝑛]) = P([𝑙1 · · · 𝑙𝑚])P([𝑗1 · · · 𝑗𝑛])𝑊 *
𝑗1𝑖𝑘

𝑊 *
𝑖𝑘𝑖𝑘−1

· · ·𝑊 *
𝑖2𝑖1

𝑊𝑙𝑚𝑖1

𝑞𝑖1
.

Moreover, from Proposition 4.35 it follows that

lim
𝑘→∞

∫︁
𝐴

∑︁
𝑖1···𝑖𝑘

𝑊 *
𝑗1𝑖𝑘

𝑊 *
𝑖𝑘𝑖𝑘−1

· · ·𝑊 *
𝑖2𝑖1𝑃𝑖𝑘 · · ·𝑃𝑖1

(︁𝑊𝑙𝑚𝑖1

𝑞𝑖1
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃𝑙1)

)︁
𝑑𝜆

= lim
𝑘→∞

∫︁
𝐴

{︁
𝑃 𝑘
𝑇

(︁𝑊𝑙𝑚1

𝑞1
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃𝑙1), · · · ,

𝑊𝑙𝑚𝑟

𝑞𝑟
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃𝑙1)

)︁}︁
𝑗1
𝑑𝜆

=

∫︁
𝐴

(︁ 𝑟∑︁
𝑖=1

𝑞𝑖

∫︁
𝐼

𝑊𝑙𝑚𝑖

𝑞𝑖
𝑃𝑙𝑚 · · ·𝑃𝑙1(1𝐵ℎ̃𝑙1)𝑑𝜆

)︁
· ℎ̃𝑗1𝑑𝜆

= 𝜇̃𝑗1(𝐴) · 𝜇̃𝑙1(𝐵),

so we obtain

lim
𝑁→∞

𝜇̃
(︁
𝐹−𝑁(︀[𝑗1 · · · 𝑗𝑛]× 𝐴

)︀
∩ [𝑙1 · · · 𝑙𝑚]×𝐵

)︁
= 𝜇̃([𝑗1 · · · 𝑗𝑛]× 𝐴) · 𝜇̃([𝑙1 · · · 𝑙𝑚]×𝐵).
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Finally, the next proposition is the analogue of Proposition 4.16.

Proposition 4.37. Suppose that 𝛼 < 1 and that the entries of 𝑊 are strictly positive.

Furthermore, suppose that the following random covering property holds: For each non-

trivial subinterval 𝐽 ⊆ 𝐼 and 𝜔1 ∈ {1, . . . , 𝑟} there exist 𝑛 ∈ N, 𝐼0 ⊆ 𝐼 finite and

(𝜔2, . . . , 𝜔𝑛) ∈ {1, . . . , 𝑟}𝑛−1 such that 𝑇𝜔𝑛 ∘ · · · ∘ 𝑇𝜔1(𝐽) = 𝐼∖𝐼0. Then 𝜇̃ is the only

acipm for 𝐹 and satisfies

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇̃

𝑑𝜆
≤𝑀. (4.59)

Moreover, (𝐹, 𝜇̃) is ergodic.

Proof : This follows using similar arguments as in the proof of Proposition 3.16 for

each of the 𝑟 coordinates (that is why we require the above random covering property

to hold for each 𝜔1 ∈ {1, . . . , 𝑟}).

Remark 4.38. In fact, because the Markov shift (𝜎,P) is exact (see Example 2.23),

one can show with the fourth part of Theorem 2.1 in [47] that (𝐹, 𝜇̃) is exact under

the assumptions of Proposition 4.37.

4.5 Automorphism as Base

Let (Ω,ℱ ,P) be a probability space. Let 𝜙 : Ω → Ω be an automorphism, which means

that 𝜙 is measure preserving and invertible (i.e. 𝜙 is one-to-one and 𝜙−1 is measurable).

Furthermore, suppose that (𝜙,P) is ergodic. For each 𝜔 ∈ Ω, let 𝑇𝜔 : 𝐼 → 𝐼 be a

finitely piecewise monotonic interval map w.r.t. a partition {𝐼𝑖,𝜔}, and suppose that

𝑇 : Ω × 𝐼 → 𝐼 given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 is measurable. For each 𝜔 ∈ Ω, we write 𝑁(𝜔)

for the minimal possible number of elements in {𝐼𝑖,𝜔} and we set 𝜃(𝜔) = inf𝑥∈𝐼 |𝑇 ′
𝜔(𝑥)|.

We consider the skew product

𝐹 : Ω× 𝐼 → Ω× 𝐼, (𝜔, 𝑥) ↦→ (𝜙𝜔, 𝑇𝜔𝑥). (4.60)

The following result is proven in [12] by Buzzi.

Theorem 4.39. (Theorem 0.3 in [12]) Suppose that the following conditions are satisfied:

1. Ω ∋ 𝜔 ↦→
(︁
𝜃(𝜔), 𝑁(𝜔),Var𝐼

(︁ 1

|𝑇 ′
𝜔|

)︁)︁
is measurable,

2. lim
𝐾→∞

∫︁
Ω

log
(︀
min

(︀
𝜃(𝜔), 𝐾

)︀)︀
𝑑P(𝜔) > 0,

3. Ω ∋ 𝜔 ↦→ log+
𝑁(𝜔)

𝜃(𝜔)
is in 𝐿1(P),

4. Ω ∋ 𝜔 ↦→ log+Var𝐼
(︁ 1

|𝑇 ′
𝜔|

)︁
is in 𝐿1(P).

Then the set 𝑀𝑎𝑐(Ω× 𝐼, 𝐹 ) of acim’s of 𝐹 is a non-empty finite-dimensional vector space

generated by the ergodic acipm’s of 𝐹 . Moreover, each invariant density ℎ of 𝐹 satisfies

Var𝐼(ℎ𝜔) <∞ for P-a.a. 𝜔 ∈ Ω, where each ℎ𝜔 : 𝐼 → C is given by ℎ𝜔(𝑥) = ℎ(𝜔, 𝑥).
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Note that condition 2 in Theorem 4.39 implies that 𝑇 expands distances on average

w.r.t. P. Also, under the above conditions, 𝑃𝐹 is not even bounded in 𝐿∞(P ⊗ 𝜆)

(see Remark 0.6 in [12]). For this reason, the Ionescu-Tulcea and Marinescu Theorem

(Theorem B.5) cannot be applied to obtain the result in Theorem 4.39. Instead, the

result is obtained in [12] using fiberwise Lasota-Yorke type inequalities (see Proposition

1.4 in [12]).

Remark 4.40. As is remarked in [13], in this setting ℎ ∈ 𝐿1(P ⊗ 𝜆) is an invariant

density for 𝐹 if and only if 𝑃𝑇𝜔ℎ𝜔 = ℎ𝜙(𝜔) for P-a.a. 𝜔 ∈ Ω, where again ℎ𝜔(𝑥) = ℎ(𝜔, 𝑥).

We can deduce this also from Proposition 5.6.

Like for the deterministic, Bernoulli and Markov case, we have the following strength-

ening if we assume a suitable covering property for 𝑇 :

Theorem 4.41. (Part 1 of Main Theorem in [13]) In addition to the assumptions of

Theorem 4.39, suppose that sup𝑥∈𝐼 |𝑇 ′
𝜔(𝑥)| <∞ for P-a.a. 𝜔 ∈ Ω and that 𝑇 satisfies the

following covering property: For each non-trivial subinterval 𝐽 ⊆ 𝐼 and for P-a.a. 𝜔 ∈ Ω

there exist 𝑛 ∈ N and a finite set 𝐼0 ⊆ 𝐼 such that 𝑇𝜙𝑛−1(𝜔) ∘ · · · ∘ 𝑇𝜔(𝐽) = 𝐼∖𝐼0. Then

there exists a unique acipm for 𝐹 .

Furthermore, the following result can be viewed as an analogue of the results in Re-

marks 4.17 and 4.38.

Proposition 4.42. (Comment 0.2.4 in [13]) Under the assumptions of Theorem 4.41, if

(𝜙,P) is mixing, then the unique acipm is mixing w.r.t. 𝐹 .

Example 4.43. Let Ω ⊆ (1,∞) with corresponding Borel 𝜎-algebra ℱ , and let P be

a probability measure on (Ω,ℱ). Also, let 𝜙 : Ω → Ω be an automorphism such that

(𝜙,P) is ergodic. Furthermore, let 𝑇 : Ω×𝐼 → 𝐼 be given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 = 𝜔𝑥 mod 1.

Then according to Example 0.4 in [12] the conditions in Theorem 4.39 are satisfied.

Now suppose that inf Ω > 1. In a similar way as in Example 3.18 it can be shown that

the assumptions in Theorem 4.41 are also satisfied. So 𝐹 admits a unique invariant

probability density ℎ ∈ 𝐿1(P⊗ 𝜆). Let us show that for P-a.a. 𝜔 ∈ Ω we have

∃𝑀𝜔 > 0 :
1

𝑀𝜔
≤ ℎ𝜔 ≤𝑀𝜔, (4.61)

where again ℎ𝜔(𝑥) = ℎ(𝜔, 𝑥). First of all, it is clear that 𝐴 = {𝜔 ∈ Ω : ℎ𝜔 ̸= 0}
satisfies P(𝐴) > 0. Take 𝜔 ∈ 𝐴. By Theorem 4.39, we may assume Var𝐼(ℎ𝜔) < ∞.

Hence, by Corollary A.11, we may assume that ℎ𝜔 is lower semicontinuous. Then

there exist 𝛼 > 0 and a nontrivial interval 𝐽 ⊆ 𝐼 such that ℎ𝜔 ≥ 𝛼1𝐽 . Now take

𝑛 ∈ N and 𝐼0 ⊆ 𝐼 finite such that 𝑇𝜙𝑛−1(𝜔) ∘ · · · ∘ 𝑇𝜔(𝐽) = 𝐼∖𝐼0. For convenience, write
𝑇 𝑛𝜔 = 𝑇𝜙𝑛−1(𝜔) ∘ · · · ∘ 𝑇𝜔. It is clear that 𝐾𝜔 := sup𝑥∈𝐼 |(𝑇 𝑛𝜔 )′(𝑥)| < ∞. Hence, for all

𝑥 ∈ 𝐼∖𝐼0 we obtain (using Remark 4.40)

ℎ𝜙𝑛𝜔(𝑥) = 𝑃𝑇𝑛𝜔 ℎ𝜔(𝑥) ≥ 𝛼𝑃𝑇𝑛𝜔 1𝐽(𝑥) = 𝛼
∑︁

𝑦∈(𝑇𝑛𝜔 )−1𝑥

1𝐽(𝑦)

|(𝑇 𝑛𝜔 )′(𝑦)|
≥ 𝛼

𝐾𝜔
, (4.62)
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because for each 𝑥 ∈ 𝐼∖𝐼0 there exists 𝑦 ∈ 𝐽 such that 𝑇 𝑛𝜔 𝑦 = 𝑥. Since for each 𝑚 > 𝑛

we have that 𝐿𝑚 := sup𝑥∈𝐼 |(𝑇𝑚−𝑛
𝜙𝑛𝜔 )′(𝑥)| < ∞ and that the map 𝑇𝜙𝑚−1(𝜔) is surjective

modulo a finite set, we obtain with

ℎ𝜙𝑚𝜔(𝑥) = 𝑃𝑇𝜙𝑚−1𝜔∘···∘𝑇𝜙𝑛𝜔ℎ𝜙𝑛𝜔 =
∑︁

𝑦∈(𝑇𝑚−𝑛
𝜙𝑛𝜔 )−1𝑥

ℎ𝜙𝑛𝜔(𝑦)

|(𝑇𝑚−𝑛
𝜙𝑛𝜔 )′(𝑦)|

(4.63)

that for each 𝑚 > 𝑛 there exists a finite set 𝐼𝑚 ⊆ 𝐼 such that ℎ𝜙𝑚(𝜔)(𝑥) ≥ 𝛼
𝐾𝜔𝐿𝑚

for

each 𝑥 ∈ 𝐼∖𝐼𝑚. Again, by Theorem 4.39 (and using that P is 𝜙-invariant), we may

assume that Var𝐼(ℎ𝜙𝑚(𝜔)) <∞ holds for all 𝑚 ≥ 𝑛. Hence, it follows from (A.10) that

ℎ𝜙𝑚(𝜔) is bounded away from zero for each 𝑚 ≥ 𝑛. We conclude that the set

𝐵 =
⋃︁
𝑛∈N

⋂︁
𝑚≥𝑛

{︁
𝜔 ∈ Ω : inf

𝑥∈𝐼
ℎ𝜙𝑚(𝜔)(𝑥) > 0

}︁
(4.64)

satisfies 𝐴 ⊆ 𝐵 and therefore P(𝐵) > 0. Now suppose that the set

𝐶 =
{︁
𝜔 ∈ Ω : inf

𝑥∈𝐼
ℎ𝜔(𝑥) = 0

}︁
(4.65)

satisfies P(𝐶) > 0. Since (𝜙,P) is ergodic, we then know that P-almost all points in Ω

visit the set 𝐶 infinitely often under iterations of 𝜙 (see e.g. Remark 1.6.1.3 in [15]).

This is in contradiction with P(𝐵) > 0. We conclude that P(𝐶) = 0, and together with

Theorem 4.39 we conclude that (4.61) holds for P-a.a. 𝜔 ∈ Ω.



Chapter 5

Fiber Entropy

Let (Ω,ℱ) and (𝑋,ℬ) be measurable spaces. In [1], Abramov and Rokhlin introduced

the notion of fiber entropy for skew products of the form

𝐹 : Ω×𝑋 → Ω×𝑋, (𝜔, 𝑥) ↦→ (𝜙𝜔, 𝑇𝜔𝑥). (5.1)

For this, they assume there exist probability measures P and 𝜌 on Ω and𝑋, respectively,

such that 𝜙 : Ω → Ω is an automorphism on (Ω,ℱ ,P) and such that 𝑇𝜔 : 𝑋 → 𝑋 is

measure preserving w.r.t. 𝜌 for P-a.a. 𝜔 ∈ Ω. In that case, 𝐹 is measure preserving

w.r.t. P⊗ 𝜌.

Over the years the definition of fiber entropy has been extended to more general settings

such as in Section 2.6 of [22]. A special case of the setting in [22] is considered in Section

2.4 of [64], where instead of the product measure P⊗𝜌 a general 𝐹 -invariant probability
measure 𝜇 on Ω × 𝑋 is considered. One can then associate a fiber entropy to 𝐹 if 𝜇

disintegrates into an equivariant system of conditional measures, which is the topic of

the next section.

5.1 Equivariant System of Conditional Measures

Let (Ω,ℱ) and (𝑋,ℬ) be measurable spaces. Let 𝜇 be a probability measure on (Ω×
𝑋,ℱ ⊗ ℬ) and let P be a probability measure on (Ω,ℱ).

Definition 5.1. A system of conditional measures for 𝜇 over P is a family of measures

{𝜌𝜔}𝜔∈Ω such that

1. 𝜌𝜔 is a positive finite measure on (𝑋,ℬ) for P-a.a. 𝜔 ∈ Ω,

2. For any 𝑓 ∈ 𝐿1(𝜇), the map Ω ∋ 𝜔 ↦→
∫︀
𝑋 𝑓(𝜔, 𝑥)𝑑𝜌𝜔(𝑥) is measurable and

∫︀
Ω×𝑋 𝑓𝑑𝜇 =∫︀

Ω(
∫︀
𝑋 𝑓𝑑𝜌𝜔)𝑑P.

In this case, we say that 𝜇 disintegrates over P on the fibers {𝜔} ×𝑋 as 𝜇 =
∫︀
𝜌𝜔𝑑P.

64
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Remark 5.2. In particular, for any 𝐴 ∈ ℱ⊗ℬ, the map Ω ∋ 𝜔 ↦→ 𝜌𝜔(𝐴𝜔) is measurable

and 𝜇(𝐴) =
∫︀
Ω 𝜌𝜔(𝐴𝜔)𝑑P(𝜔), where 𝐴𝜔 = {𝑥 ∈ 𝐼 : (𝜔, 𝑥) ∈ 𝐴}.

The next theorem is a simplified version of an important result due to Rokhlin [59].

Theorem 5.3. (Rokhlin) Suppose that Ω and 𝑋 are compact metric spaces, and that ℱ
and ℬ are the corresponding Borel 𝜎-algebra’s, respectively. Let 𝜋 : Ω × 𝑋 → Ω be the

projection on Ω, i.e. 𝜋(𝜔, 𝑥) = 𝜔, and suppose that P is the pushforward measure of 𝜇

under 𝜋, i.e. P = 𝜇 ∘ 𝜋−1. Then there exists a system of conditional measures {𝜌𝜔}𝜔∈Ω
for 𝜇 over P. Also, 𝜌𝜔 is a probability measure for P-a.a. 𝜔 ∈ Ω. Moreover, if {𝜌𝜔}𝜔∈Ω is

another system of conditional measures for 𝜇 over P, then 𝜌𝜔 = 𝜌𝜔 for P-a.a. 𝜔 ∈ Ω.

The following result is an easy consequence of Fubini’s Theorem.

Proposition 5.4. Let 𝜌 be a probability measure on (𝑋,ℬ), and suppose that 𝜇 is abso-

lutely continuous w.r.t. P⊗ 𝜌 with corresponding density denoted by ℎ ∈ 𝐿1(P⊗ 𝜌). Then

the family {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴 ℎ(𝜔, 𝑥)𝑑𝜌(𝑥) is a system of conditional measures

for 𝜇 over P.

Let 𝑇 : Ω × 𝑋 → 𝑋, 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 be measurable, and let 𝜙 : Ω → Ω be measure

preserving w.r.t. P. Then the skew product 𝐹 given by

𝐹 : Ω×𝑋 → Ω×𝑋, (𝜔, 𝑥) ↦→ (𝜙𝜔, 𝑇𝜔𝑥) (5.2)

is measurable.

Definition 5.5. We say that a system of conditional measures {𝜌𝜔}𝜔∈Ω for 𝜇 over P is

equivariant w.r.t. (𝑇, 𝜙) if for each 𝐵 ∈ ℬ there exists 𝐶 ∈ ℱ with P(𝐶) = 1 such that

𝜌𝜔(𝑇−1
𝜔 𝐵) = 𝜌𝜙(𝜔)(𝐵) holds for all 𝜔 ∈ 𝐶.

Proposition 5.6. Let {𝜌𝜔}𝜔∈Ω be a system of conditional measures for 𝜇 over P.

1. If {𝜌𝜔}𝜔∈Ω is equivariant w.r.t. (𝑇, 𝜙), then 𝜇 is 𝐹 -invariant.

2. If 𝜇 is 𝐹 -invariant and 𝜙 is invertible, then {𝜌𝜔}𝜔∈Ω is equivariant w.r.t. (𝑇, 𝜙).

Proof : Let 𝐴 ∈ ℱ and 𝐵 ∈ ℬ. First of all, because P is 𝜙-invariant, we have

𝜇(𝐴×𝐵) =

∫︁
𝐴

𝜌𝜔(𝐵)𝑑P(𝜔) =
∫︁
𝜙−1𝐴

𝜌𝜙(𝜔)(𝐵)𝑑P(𝜔). (5.3)

Moreover, we have

𝐹−1(𝐴×𝐵) =
⋃︁

𝜔∈𝜙−1𝐴

{𝜔} × 𝑇−1
𝜔 𝐵 (5.4)

and so

𝜇(𝐹−1(𝐴×𝐵)) =

∫︁
𝜙−1𝐴

𝜌𝜔(𝑇
−1
𝜔 𝐵)𝑑P(𝜔). (5.5)
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Hence, the first part follows from (5.3) and (5.5) combined with the fact that {𝜌𝜔}𝜔∈Ω
is equivariant w.r.t. (𝑇, 𝜙). For the second part, we obtain from the 𝐹 -invariance of 𝜇

combined with (5.3) and (5.5) that∫︁
𝜙−1𝐴

𝜌𝜔(𝑇
−1
𝜔 𝐵)𝑑P(𝜔) =

∫︁
𝜙−1𝐴

𝜌𝜙(𝜔)(𝐵)𝑑P(𝜔). (5.6)

Since 𝜙 is invertible we have 𝜙−1ℱ = ℱ , so this indeed yields that {𝜌𝜔}𝜔∈Ω is equiv-

ariant w.r.t. (𝑇, 𝜙).

Example 5.7. Consider the case that 𝑋 = 𝐼 = [0, 1], ℬ the Borel 𝜎-algebra on 𝐼 and 𝜆

the Lebesgue measure restricted to 𝐼. Furthermore, suppose that 𝜙 is an automorphism

on (Ω,ℱ ,P). Then under the assumptions of Theorem 4.39, there exists an acipm 𝜇 of

𝐹 with density, say, ℎ ∈ 𝐿1(P⊗𝜆). From Proposition 5.4 together with the second part

of Proposition 5.6 it follows that the family {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴 ℎ(𝜔, 𝑥)𝑑𝜆(𝑥)

is an equivariant system of conditional measures for 𝜇 over P.

5.2 Definition of Fiber Entropy

Let (Ω,ℱ ,P) and (𝑋,ℬ, 𝜌) be Lebesgue spaces. Furthermore, let 𝑇 : Ω × 𝑋 → 𝑋,

𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 be measurable, and let 𝜙 : Ω → Ω be measure preserving w.r.t. P.
Suppose that 𝜇 is a probability measure on (Ω×𝑋,ℱ⊗ℬ) that is absolutely continuous

w.r.t. P ⊗ 𝜌 with density, say, ℎ ∈ 𝐿1(P ⊗ 𝜌). We know from Proposition 5.4 that the

family {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴 ℎ(𝜔, 𝑥)𝑑𝜌(𝑥) is a system of conditional measures

for 𝜇 over P, and we furthermore suppose that {𝜌𝜔}𝜔∈Ω is equivariant w.r.t. (𝑇, 𝜙). For

this setting we shall define the fiber entropy of (𝑇, 𝜙).

Remark 5.8. The next construction resembles the construction of fiber entropy in Sec-

tion 2.4 of [64] (and the references therein). However, in [64] one works with the system

of conditional measures for 𝜇 over the pushforward measure 𝜇∘𝜋−1 as in Theorem 5.3.

Moreover, it is assumed in [64] that 𝜇 is 𝐹 -invariant and 𝜙 is an automorphism, which

is in general stronger than our assumption that {𝜌𝜔}𝜔∈Ω is equivariant w.r.t. (𝑇, 𝜙)

(see Proposition 5.6).

Let 𝜉 be a (finite or countable) partition of Ω×𝑋. For each 𝑛 ∈ N we write 𝜉𝑛 for the

partition of Ω×𝑋 given by

𝜉𝑛 =
𝑛−1⋁︁
𝑘=0

𝐹−𝑘𝜉. (5.7)

Also, for each 𝜔 ∈ Ω, we write 𝜉𝜔 = {𝑍𝜔 : 𝑍 ∈ 𝜉} for the partition of 𝑋 where

𝑍𝜔 = {𝑥 ∈ 𝑋 : (𝜔, 𝑥) ∈ 𝑍}. Furthermore, for each 𝜔 ∈ Ω and 𝑛 ∈ N we define the

partition 𝜉𝜔,𝑛 of 𝑋 given by

𝜉𝜔,𝑛 = 𝜉𝜔 ∨
𝑛−1⋁︁
𝑘=1

𝑇−1
𝜔 𝑇−1

𝜙(𝜔) · · ·𝑇
−1
𝜙𝑘−1(𝜔)

𝜉𝜙𝑘(𝜔). (5.8)
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Note that (𝜉𝑛)𝜔 = 𝜉𝜔,𝑛 for each 𝜔 ∈ Ω and 𝑛 ∈ N.

We define the fiber entropy of the partition 𝜉 by

𝐻𝜇({𝜉𝜔}) =
∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔)𝑑P(𝜔) =
∫︁
Ω

∑︁
𝐴∈𝜉𝜔

𝜌𝜔(𝐴) log 𝜌𝜔(𝐴)𝑑P(𝜔), (5.9)

which is well defined by noting that 𝐻𝜌𝜔(𝜉𝜔) =
∑︀

𝑍∈𝜉 𝜌𝜔(𝑍𝜔) log 𝜌𝜔(𝑍𝜔) from which it

together with Remark 5.2 follows that the map Ω ∋ 𝜔 ↦→ 𝐻𝜌𝜔(𝜉𝜔) is measurable.

Proposition 5.9. Let 𝜉 be a partition of Ω × 𝑋 s.t. 𝐻𝜇({𝜉𝜔}) < ∞. Then the fiber

entropy of (𝑇, 𝜙) w.r.t. 𝜉 given by

ℎ𝜙(𝜉, 𝑇 ) = lim
𝑛→∞

1

𝑛

∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛)𝑑P(𝜔), (5.10)

exists and is finite.

Proof : We are done if we show that the sequence {𝑎𝑛} given by 𝑎𝑛 =
∫︀
Ω𝐻𝜌𝜔(𝜉𝜔,𝑛)𝑑P(𝜔)

is subadditive, i.e. 𝑎𝑛+𝑚 ≤ 𝑎𝑛+𝑎𝑚 for all 𝑛,𝑚 ∈ N, because then lim𝑛→∞
𝑎𝑛
𝑛 = inf𝑚∈N

𝑎𝑚
𝑚

(see Lemma 2.47). Indeed, we have

𝑎𝑛+𝑚 =

∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛+𝑚)𝑑P(𝜔)

≤
∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛) +𝐻𝜌𝜔

(︁
𝑇−1
𝜔 · · ·𝑇−1

𝜙𝑛−1(𝜔)

𝑚+𝑛−1⋁︁
𝑘=𝑛

𝑇−1
𝜙𝑛(𝜔) · · ·𝑇

−1
𝜙𝑘−1(𝜔)

𝜉𝜙𝑘(𝜔)

)︁
𝑑P(𝜔)

= 𝑎𝑛 +

∫︁
Ω

𝐻𝜌𝜙𝑛(𝜔)
(𝜉𝜙𝑛(𝜔),𝑚)𝑑P(𝜔)

= 𝑎𝑛 + 𝑎𝑚,

where the last two steps follow from the equivariance of {𝜌𝜔}𝜔∈Ω w.r.t. (𝑇, 𝜙) and from

the invariance of P w.r.t. 𝜙, respectively.

Definition 5.10. The fiber entropy of (𝑇, 𝜙) is defined as

ℎ𝜙(𝑇 ) = sup{ℎ𝜙(𝜉, 𝑇 )| 𝜉 partition of Ω×𝑋 s.t. 𝐻𝜇({𝜉𝜔}) <∞}. (5.11)

Lemma 5.11. Let 𝜉 and 𝜁 each be a partition of Ω ×𝑋. Then the sequence {𝑎𝑛} given

by 𝑎𝑛 =
∫︀
Ω𝐻𝜌𝜔(𝜉𝜔,𝑛|𝜁𝜔,𝑛)𝑑P(𝜔) is subadditive.

Proof : This follows in a similar way as the proof of Proposition 5.9.

Let 𝛼 be a partition of 𝑋. We define 𝛼̄ = {Ω × 𝐴 : 𝐴 ∈ 𝛼} as the extension of 𝛼

to a partition of Ω×𝑋.

Lemma 5.12. If 𝛼1 ≤ 𝛼2 ≤ · · · is an increasing sequence of finite partitions on 𝑋 such

that 𝜎(
⋁︀
𝑛 𝛼𝑛) = ℬ up to sets of 𝜌-measure zero, then ℎ𝜙(𝑇 ) = lim𝑘→∞ ℎ𝜙(𝛼̄𝑘, 𝑇 ).
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Proof : It is sufficient to show that for any partition 𝜁 such that 𝐻𝜇({𝜁𝜔}) <∞ we have

ℎ𝜙(𝜁, 𝑇 ) ≤ lim𝑘→∞ ℎ𝜙(𝛼̄𝑘, 𝑇 ). For each 𝜔 ∈ Ω and 𝑛, 𝑘 ∈ N we have

𝐻𝜌𝜔(𝜁𝜔,𝑛) ≤ 𝐻𝜌𝜔((𝛼̄𝑘)𝜔,𝑛) +𝐻𝜌𝜔(𝜁𝜔,𝑛|(𝛼̄𝑘)𝜔,𝑛). (5.12)

By Lemma 5.11 and Lemma 2.47, we know for each 𝑘 ∈ N that

lim
𝑛→∞

1

𝑛

∫︁
Ω

𝐻𝜌𝜔(𝜁𝜔,𝑛|(𝛼̄𝑘)𝜔,𝑛)𝑑P(𝜔) ≤
∫︁
Ω

𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘)𝑑P(𝜔), (5.13)

and combined with (5.12) this gives

ℎ𝜙(𝜁, 𝑇 ) ≤ ℎ𝜙(𝛼̄𝑘, 𝑇 ) +

∫︁
Ω

𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘)𝑑P(𝜔). (5.14)

It follows from the Dominated Convergence Theorem and the Martingale Convergence

Theorem that, for P-a.a. 𝜔 ∈ Ω,

lim
𝑘→∞

𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘) = −
∫︁
𝑋

lim
𝑘→∞

log𝐸𝜌𝜔(1𝜉𝜔(𝑥)|𝜎(𝛼𝑘))(𝑥)𝑑𝜌𝜔(𝑥)

= −
∫︁
𝑋

log𝐸𝜌𝜔(1𝜉𝜔(𝑥)|ℬ)(𝑥)𝑑𝜌𝜔(𝑥) = 0. (5.15)

Note that we use here that 𝜌𝜔 ≪ 𝜌 for P-a.a. 𝜔 ∈ Ω. Moreover, combining the

Dominated Convergence Theorem with 𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘) ≤ 𝐻𝜌𝜔(𝜁𝜔) for each 𝑘 ∈ N and

𝐻𝜇({𝜁𝜔}) <∞, we obtain

lim
𝑘→∞

∫︁
Ω

𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘)𝑑P(𝜔) =
∫︁
Ω

lim
𝑘→∞

𝐻𝜌𝜔(𝜁𝜔|𝛼𝑘)𝑑P(𝜔). (5.16)

From (5.14), (5.15) and (5.16) the desired result follows.

Corollary 5.13. We have

ℎ𝜙(𝑇 ) = sup{ℎ𝜙(𝛼̄, 𝑇 )| 𝛼 partition of 𝑋 s.t. 𝐻𝜇({𝛼̄𝜔}) <∞}. (5.17)

Proof : Because (𝑋,ℬ, 𝜌) is a standard Lebesgue space, we know there exists a sequence

of partitions {𝛼𝑛} as in Lemma 5.12.

Proposition 5.14. We have

ℎ𝜇(𝐹 ) = ℎP(𝜙) + ℎ𝜙(𝑇 ). (5.18)

Proof : Using Corollary 5.13, this follows in an analogous manner as the proof of

Proposition 1.3 in Chapter 6 of [54]. Note that in the second part of the proof of this

proposition an increasing sequence of partitions 𝛽1 ≤ 𝛽2 ≤ · · · on Ω is chosen such

that 𝜎(
⋁︀
𝑛 𝛽𝑛) = ℱ up to sets of P-measure zero. The existence of such a sequence

of partitions 𝛽1, 𝛽2, . . . is guaranteed by the assumption that (Ω,ℱ ,P) is a Lebesgue

space.
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5.3 Analogue of the Kolmogorov-Sinai Theorem

Let us remain in the setting of the previous section. We need the following definition.

Definition 5.15. Let 𝜉 be a partition of Ω×𝑋. For 𝜔 ∈ Ω, we say that 𝜉 is 𝜔-generating

w.r.t. (𝜙, 𝑇 ) if

𝜎
(︁
𝜉𝜔 ∨

∞⋁︁
𝑘=1

𝑇−1
𝜔 𝑇−1

𝜙(𝜔) · · ·𝑇
−1
𝜙𝑘−1(𝜔)

𝜉𝜙𝑘(𝜔)

)︁
= ℬ (5.19)

up to sets of 𝜌-measure zero.

We have the following analogue of the Kolmogorov-Sinai Theorem (Theorem 2.51).

Theorem 5.16. Let 𝜉 be a partition of Ω×𝑋 such that 𝐻𝜇({𝜉𝜔}) < ∞. Suppose that 𝜉

is 𝜔-generating w.r.t. (𝜙, 𝑇 ) for P-a.a. 𝜔 ∈ Ω. Then ℎ𝜙(𝑇 ) = ℎ𝜙(𝜉, 𝑇 ).

Proof : This follows in a similar way as the proof of Lemma 5.12, replacing 𝛼̄𝑘 with

𝜉𝜔,𝑘 and noting that

lim
𝑛→∞

1

𝑛

∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛+𝑘)𝑑P(𝜔) = lim
𝑛→∞

𝑛+ 𝑘

𝑛
lim
𝑛→∞

1

𝑛+ 𝑘

∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛+𝑘)𝑑P(𝜔) = ℎ𝜙(𝜉, 𝑇 ).

5.4 Analogue of the Shannon-McMillan-Breiman Theorem

Again, we remain in the setting of Section 5.3. The next theorem is an analogue

of the Shannon-McMillan-Breiman Theorem (Theorem 2.53). For this, we define the

information function

𝐼𝛼(𝜔, 𝑥) = −
∑︁
𝐴∈𝛼

1𝐴(𝑥) log 𝜌𝜔(𝐴), (5.20)

where 𝛼 is a partition of 𝑋. Note that 𝐻𝜌𝜔(𝛼) =
∫︀
𝑋 𝐼𝛼(𝜔, 𝑥)𝑑𝜌𝜔(𝑥). Furthermore, for

two partitions 𝛼 and 𝛽 of 𝑋, we define the conditional information function

𝐼𝛼|𝛽(𝜔, 𝑥) = −
∑︁
𝐵∈𝛽

∑︁
𝐴∈𝛼

1𝐴∩𝐵(𝑥) log
(︁𝜌𝜔(𝐴 ∩𝐵)

𝜌𝜔(𝐵)

)︁
. (5.21)

Then 𝐻𝜌𝜔(𝛼|𝛽) =
∫︀
𝑋 𝐼𝛼|𝛽(𝜔, 𝑥)𝑑𝜌𝜔(𝑥). Also, note that

𝐼𝛼∨𝛽(𝜔, 𝑥) = 𝐼𝛽(𝜔, 𝑥) + 𝐼𝛼|𝛽(𝜔, 𝑥). (5.22)

Denoting 𝛼(𝑥) for the atom of 𝛼 containing 𝑥, we can also write

𝐼𝛼(𝜔, 𝑥) = − log 𝜌𝜔(𝛼(𝑥)),

𝐼𝛼|𝛽(𝜔, 𝑥) = − log𝐸𝜌𝜔(1𝛼(𝑥)|𝜎(𝛽)).
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Theorem 5.17. Let 𝜉 be a partition of Ω × 𝑋 such that 𝐻𝜇({𝜉𝜔}) < ∞. Suppose 𝐹 is

ergodic w.r.t. 𝜇. Then

lim
𝑛→∞

−
𝐼𝜉𝜔,𝑛(𝜔, 𝑥)

𝑛
= ℎ𝜙(𝜉, 𝑇 ), 𝜇-a.e. (𝜔, 𝑥) ∈ Ω×𝑋. (5.23)

Proof : We follow the idea of the proof of the Shannon-McMillan-Breiman Theorem

in Section 6.2 of [54]. Write 𝜉𝜔,𝑛 = 𝑇−1
𝜔

⋁︀𝑛−1
𝑘=1 𝑇

−1
𝜙(𝜔) · · ·𝑇

−1
𝜙𝑘−1(𝜔)

𝜉𝜙𝑘(𝜔) for 𝑛 ≥ 2. Then

𝜉𝜔,𝑛 = 𝜉𝜔 ∨ 𝜉𝜔,𝑛. Furthermore, define 𝑓𝑛(𝜔, 𝑥) = 𝐼𝜉𝜔|𝜉𝜔,𝑛(𝜔, 𝑥) for 𝑛 ≥ 2 and 𝑓1(𝜔, 𝑥) =

𝐼𝜉𝜔(𝜔, 𝑥). Then, using (5.22),

𝐼𝜉𝜔,𝑛(𝜔, 𝑥) = 𝐼𝜉𝜔,𝑛(𝜔, 𝑥) + 𝐼𝜉𝜔|𝜉𝜔,𝑛(𝜔, 𝑥)

= 𝐼𝜉𝜙(𝜔),𝑛−1
(𝐹 (𝜔, 𝑥)) + 𝑓𝑛(𝜔, 𝑥)

= 𝐼𝜉𝜙(𝜔),𝑛−1
(𝐹 (𝜔, 𝑥)) + 𝐼𝜉𝜙(𝜔)|𝜉𝜙(𝜔),𝑛−1

(𝐹 (𝜔, 𝑥)) + 𝑓𝑛(𝜔, 𝑥)

= 𝐼𝜉𝜙2(𝜔),𝑛−2
(𝐹 2(𝜔, 𝑥)) + 𝑓𝑛−1(𝐹 (𝜔, 𝑥)) + 𝑓𝑛(𝜔, 𝑥)

...

= 𝑓1(𝐹
𝑛−1(𝜔, 𝑥)) + · · ·+ 𝑓𝑛−1(𝐹 (𝜔, 𝑥)) + 𝑓𝑛(𝜔, 𝑥). (5.24)

First of all, this gives

𝑛−1∑︁
𝑘=0

∫︁
𝑓𝑛−𝑘 ∘ 𝐹 𝑘𝑑𝜇 =

∫︁
𝐼𝜉𝜔,𝑛(𝜔, 𝑥)𝑑𝜇(𝜔, 𝑥)

=

∫︁
Ω

(︁∫︁
𝑋

𝐼𝜉𝜔,𝑛(𝜔, 𝑥)𝑑𝜌𝜔(𝑥)
)︁
𝑑P(𝜔)

=

∫︁
Ω

𝐻𝜌𝜔(𝜉𝜔,𝑛)𝑑P(𝜔).

Using that 𝜇 is 𝐹 -invariant (see Proposition 5.6), we obtain

lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑘=1

∫︁
𝑓𝑘𝑑𝜇 = ℎ𝜙(𝜉, 𝑇 ). (5.25)

Furthermore, note that the sequence
{︀
𝐻𝜌𝜔(𝜉𝜔|𝜉𝜔,𝑛)

}︀
𝑛≥1

is bounded from below and is

non-increasing for each 𝜔 ∈ Ω, so lim𝑛→∞𝐻𝜌𝜔(𝜉𝜔|𝜉𝜔,𝑛) exists for each 𝜔 ∈ Ω. Hence,

from the Dominated Convergence Theorem follows that lim𝑛→∞
∫︀
𝑓𝑛𝑑𝜇 exists. Because

the Cesàro means { 1
𝑛

∑︀𝑛
𝑘=1 𝑥𝑘}𝑛∈N of a convergent sequence {𝑥𝑛}𝑛∈N converge to the

same limit as the sequence itself, we obtain from (5.25) that

lim
𝑛→∞

∫︁
𝑓𝑛𝑑𝜇 = ℎ𝜙(𝜉, 𝑇 ). (5.26)

By the Martingale Convergence Theorem we know for each 𝜔 ∈ Ω that lim𝑛→∞ 𝑓𝑛(𝜔, ·)
exists 𝜌𝜔-a.e., so 𝑓 = lim𝑛→∞ 𝑓𝑛 exists 𝜇-a.e. Furthermore, this is an element of 𝐿1(𝜇),

because (5.26) together with the Dominated Convergence Theorem yield
∫︀
𝑓𝑑𝜇 =
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ℎ𝜙(𝜉, 𝑇 ). Also, from (5.24) we see that

𝐼𝜉𝜔,𝑛(𝜔, 𝑥)

𝑛
=

1

𝑛

𝑛−1∑︁
𝑘=0

𝑓(𝐹 𝑘(𝜔, 𝑥)) +
1

𝑛

𝑛−1∑︁
𝑘=0

(𝑓𝑛−𝑘 − 𝑓)(𝐹 𝑘(𝜔, 𝑥)). (5.27)

By Birkhoff’s Ergodic Theorem (Theorem 2.11),

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑘=0

𝑓(𝐹 𝑘(𝜔, 𝑥)) =

∫︁
𝑓𝑑𝜇 = ℎ𝜙(𝜉, 𝑇 ), 𝜇-a.e. (5.28)

Hence, it remains to prove that

lim
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑘=0

(𝑓𝑛−𝑘 − 𝑓)(𝐹 𝑘(𝜔, 𝑥)) = 0, 𝜇-a.e. (5.29)

We refer the reader to Section 6.2 in [54] for a proof of (5.29), where the same limit

as in (5.29) is shown for the proof of the Shannon-McMillan-Breiman Theorem.



Chapter 6

Lochs’ Theorem and Extensions

6.1 Introduction

Let us reformulate Lochs’ Theorem from Subsection 1.1.1.

We put 𝐴𝑖 = [ 𝑖10 ,
𝑖+1
10 ) for each 𝑖 ∈ {1, . . . , 9}. The decimal map 𝑇 : [0, 1) → [0, 1) is

given by 𝑇𝑥 = 10𝑥− 𝑑1(𝑥), where 𝑑1(𝑥) = 𝑖 if 𝑥 ∈ 𝐴𝑖. Recall that, for each 𝑥 ∈ [0, 1),

𝑥 =
∞∑︁
𝑘=1

𝑑𝑘(𝑥)

10𝑘
, (6.1)

where 𝑑𝑘(𝑥) = 𝑑1(𝑇 𝑘−1𝑥) for each 𝑘 ≥ 1. For each 𝑛 ∈ N, the cylinders of order 𝑛

w.r.t. 𝑇 are

𝐴𝑖0···𝑖𝑛−1 =
𝑛−1⋂︁
𝑘=0

𝑇−𝑘𝐴𝑖𝑘 , (𝑖0, . . . , 𝑖𝑛−1) ∈ {0, 1, . . . , 9}𝑛, (6.2)

which are 10𝑛 equally sized disjoint intervals and cover [0, 1). Note that

𝑥 ∈ 𝐴𝑖0···𝑖𝑛−1 ⇔ 𝑑𝑘(𝑥) = 𝑖𝑘−1 for all 𝑘 = 1, . . . , 𝑛. (6.3)

Similarly, we put 𝐵1 = (12 , 1) and 𝐵𝑖 = ( 1
𝑖+1 ,

1
𝑖 ] for 𝑖 ≥ 2. The Gauss map 𝑆 : [0, 1) →

[0, 1) is given by 𝑆0 = 0 and 𝑆𝑥 = 1
𝑥 − 𝑎1(𝑥), where 𝑎1(𝑥) = 𝑖 if 𝑥 ∈ 𝐵𝑖. Recall that,

for each 𝑥 ∈ (0, 1) irrational,

𝑥 =
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
.. .

, (6.4)

72
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where 𝑎𝑘(𝑥) = 𝑎1(𝑆𝑘−1𝑥) for each 𝑘 ≥ 1. Again, for each 𝑛 ∈ N, the cylinders of order

𝑛 w.r.t. 𝑆 are

𝐵𝑖0···𝑖𝑛−1 =
𝑛−1⋂︁
𝑘=0

𝑆−𝑘𝐵𝑖𝑘 , (𝑖0, . . . , 𝑖𝑛−1) ∈ N𝑛, (6.5)

which are countably many disjoint intervals and cover (0, 1). Again, note that

𝑥 ∈ 𝐵𝑖0···𝑖𝑛−1 ⇔ 𝑎𝑘(𝑥) = 𝑖𝑘−1 for all 𝑘 = 1, . . . , 𝑛. (6.6)

Define the partitions 𝛼 = {𝐴𝑖 : 𝑖 ∈ {0, . . . , 9}} and 𝛽 = {𝐵𝑖 : 𝑖 ∈ N}, and write

𝛼𝑛(𝑥) (resp. 𝛽𝑛(𝑥)) for the decimal cylinder of order 𝑛 (resp. RCF cylinder of order 𝑛)

containing 𝑥. Now, put

𝑚(𝑛, 𝑥) = sup{𝑚 ∈ N : 𝛼𝑛(𝑥) ⊆ 𝛽𝑚(𝑥)}. (6.7)

As we see from (6.3) and (6.6), 𝑚(𝑛, 𝑥) is the number of digits in the RCF expansion

(6.4) of 𝑥 that are determined by knowing 𝑛 digits of the decimal expansion (6.1) of

𝑥. In [46], Lochs proved the following law of large numbers result for 𝑚(𝑛, 𝑥).

Theorem 6.1. (Lochs) For 𝜆-a.e. 𝑥 ∈ [0, 1)

lim
𝑛→∞

𝑚(𝑛, 𝑥)

𝑛
=

6 log 2 log 10

𝜋2
= 0.97027 · · · . (6.8)

Furthermore, setting 𝑧0 =
6 log 2 log 10

𝜋2 , Faivre [26] obtained a corresponding central limit

theorem:

Theorem 6.2. (Faivre) There exists 𝜎 > 0 such that for all 𝑢 ∈ R we have

lim
𝑛→∞

𝜆
(︁{︁
𝑥 ∈ 𝐼 :

𝑚(𝑛, 𝑥)− 𝑛𝑧0
𝜎
√
𝑛

≤ 𝑢
}︁)︁

=
1√
2𝜋

∫︁ 𝑢

−∞
𝑒−𝑡

2/2𝑑𝑡. (6.9)

Also, Faivre [25] obtained a large deviation result associated with (6.8), which is ex-

tended in [27] to the case that 𝑇 : [0, 1) → [0, 1) is given by 𝑇𝑥 = 𝛽𝑥 mod 1 for any

𝛽 > 1. Moreover, as explained in Subsection 1.1.2, the result by Lochs in Theorem 6.1

has been generalized by Dajani and Fieldsteel in [16] to a wide class of interval maps

that generate expansions. Members of this class are so-called number-theoretic fibered

maps (NTFM) and we give a precise definition of such interval maps in Section 6.3. In

[32], Herczegh proved a central limit theorem associated with the extension of Lochs’

Theorem to any pair of NTFM’s.

In the next two sections we provide the proof from [16] that shows the extension of

Lochs’ Theorem to any pair of NTFM’s. Specifically, we review in Section 6.2 that

Lochs’ Theorem holds for any two sequences of interval partitions on [0, 1) that both

satisfy the conclusion of the Shannon-McMillan-Breiman Theorem. Using this, we

shall see for any two NTFM’s 𝑇 and 𝑆 that the number of digits 𝑚𝑇,𝑆(𝑛, 𝑥) in the
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𝑆-expansion of 𝑥 that can be determined from knowing the first 𝑛 digits in the 𝑇 -

expansion of 𝑥 satisfies

lim
𝑛→∞

𝑚𝑇,𝑆(𝑛, 𝑥)

𝑛
=
ℎ𝜇𝑇 (𝑇 )

ℎ𝜇𝑆(𝑆)
, 𝜆-a.e. (6.10)

In (6.10), ℎ𝜇𝑇 (𝑇 ) (resp. ℎ𝜇𝑆(𝑇 )) denotes the entropy of 𝑇 (resp. 𝑆) with respect to the

measure 𝜇𝑇 (resp. 𝜇𝑆) that (as we shall see in Section 6.3) is the unique acipm of 𝑇

(resp. 𝑆). Moreover, we formulate in Section 6.3 the central limit theorem obtained

by Herczegh in [32] that is associated with the law of large numbers result in (6.10).

Finally, in Section 6.4 we generalize the concept of an NTFM to so-called random

number-theoretic fibered systems (RNTFS), which form a class of random piecewise

monotonic interval maps being of the form as in Chapter 4. For each RNTFS given

by (Ω,ℱ ,P, 𝜙, 𝑇 ), we shall see that iterations of 𝐹𝜙,𝑇 (𝜔, ·) generate (after projecting

on [0, 1)) expansions of points in [0, 1) for P-a.a. 𝜔 ∈ Ω, where 𝐹𝜙,𝑇 denotes the skew

product as given in (4.3). We shall prove for any two RNTFS’s given by (Ω,ℱ ,P, 𝜙, 𝑇 )
and (Ω̃, ℱ̃ , P̃, 𝜓, 𝑆) where each of the two underlying bases is a one-sided Bernoulli shift,

a one-sided Markov shift or an automorphism, that for P⊗ P̃-a.a. (𝜔, 𝜔̃) ∈ Ω× Ω̃

lim
𝑛→∞

𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥)

𝑛
=
ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙)

ℎ𝜇𝑆(𝐹𝜓,𝑆)− ℎP̃(𝜓)
, 𝜆-a.e. (6.11)

In (6.11), 𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥) is the number of digits in the 𝐹𝜓,𝑆(𝜔̃, ·)-expansion of 𝑥 that

can be determined from knowing the first 𝑛 digits in the 𝐹𝜙,𝑇 (𝜔, ·)-expansion of 𝑥.

Moreover, ℎ𝜇𝑇 (𝐹𝜙,𝑇 ) (resp. ℎ𝜇𝑆(𝐹𝜓,𝑆)) denotes the entropy of 𝐹𝜙,𝑇 (resp. 𝐹𝜓,𝑆) with

respect to the measure 𝜇𝑇 (resp. 𝜇𝑆) that (as we shall see in Section 6.4) is the unique

acipm of 𝐹𝜙,𝑇 (resp. 𝐹𝜓,𝑆). Furthermore, we derive from the results in [32] a central

limit theorem associated with (6.11).

6.2 Equipartition of Interval Partitions

Like in [16], we introduce the following definitions.

Definition 6.3. We say that 𝑃 is an interval partition if it consists of finitely or countably

many subintervals of [0, 1) that together form a partition of [0, 1). For an interval partition

𝑃 and 𝑥 ∈ [0, 1), we write 𝑃 (𝑥) for the interval in 𝑃 that contains 𝑥.

Definition 6.4. Let 𝒫 = {𝑃𝑛}∞𝑛=1 be a sequence of interval partitions. Let 𝑐 ≥ 0. We say

that 𝒫 has entropy 𝑐 𝜆-a.e. if

lim
𝑛→∞

− log 𝜆(𝑃𝑛(𝑥))

𝑛
= 𝑐, 𝜆-a.e. (6.12)

Remark 6.5. Note that in Definition 6.4 we do not assume that each 𝑃𝑛 is refined by

𝑃𝑛+1. In other words, we do not assume that for every interval 𝐴 ∈ 𝑃𝑛+1 there exists

an interval 𝐵 ∈ 𝑃𝑛 such that 𝐴 ⊆ 𝐵 (up to sets of Lebesgue measure zero).
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The next theorem will be essential for the rest of this chapter.

Theorem 6.6. (Theorem 4 in [16]) Let 𝒫 = {𝑃𝑛}∞𝑛=1 and 𝒬 = {𝑄𝑛}∞𝑛=1 be two sequences

of interval partitions. For each 𝑛 ∈ N and 𝑥 ∈ [0, 1), put

𝑚𝒫,𝒬(𝑛, 𝑥) = sup{𝑚 ∈ N : 𝑃𝑛(𝑥) ⊆ 𝑄𝑚(𝑥)}. (6.13)

Suppose that for some constants 𝑐 > 0 and 𝑑 > 0, 𝒫 has entropy 𝑐 𝜆-a.e. and 𝒬 has

entropy 𝑑 𝜆-a.e. Then

lim
𝑛→∞

𝑚𝒫,𝒬(𝑛, 𝑥)

𝑛
=
𝑐

𝑑
, 𝜆− 𝑎.𝑒. (6.14)

For completeness, we include the proof of Theorem 6.6. We follow the proof in [16],

which is based on general measure-theoretic covering arguments and not on the dy-

namics of specific maps.

Proof : Let us first show that

lim sup
𝑛→∞

𝑚𝒫,𝒬(𝑛, 𝑥)

𝑛
≤ 𝑐

𝑑
, 𝜆-a.e. (6.15)

By assumption, for 𝜆-a.e. 𝑥 ∈ 𝐼 we have

lim
𝑛→∞

− log 𝜆(𝑃𝑛(𝑥))

𝑛
= 𝑐, lim

𝑛→∞
− log 𝜆(𝑄𝑛(𝑥))

𝑛
= 𝑑. (6.16)

We take such an 𝑥 ∈ 𝐼. Let 𝜀 > 0, and take 𝜂 > 0 such that 𝑐+𝜂
𝑐− 𝑐

𝑑
𝜂 < 1 + 𝜀. It follows

from (6.16) that there exists 𝑁 ∈ N such that for all 𝑛 ≥ 𝑁 we have1

𝜆(𝑃𝑛(𝑥)) > 2−𝑛(𝑐+𝜂), 𝜆(𝑄𝑛(𝑥)) < 2−𝑛(𝑑−𝜂). (6.17)

Choose 𝑛 ≥ 𝑁 such that min{𝑛, 𝑐𝑑𝑛} ≥ 𝑁 , and let 𝑚′ be any integer greater than

(1 + 𝜀) 𝑐𝑑𝑛. Then

𝜆(𝑃𝑛(𝑥)) > 2−𝑛(1+𝜀)(𝑐−
𝑐
𝑑
𝜂) > 2−𝑚

′(𝑑−𝜂) > 𝜆(𝑄𝑚′(𝑥)), (6.18)

from which it follows that 𝑃𝑛(𝑥) is not contained in 𝑄𝑚′(𝑥). For this reason, we obtain

𝑚𝒫,𝒬(𝑛, 𝑥) ≤ (1 + 𝜀)
𝑐

𝑑
𝑛 (6.19)

and therefore

lim sup
𝑛→∞

𝑚𝒫,𝒬(𝑛, 𝑥)

𝑛
≤ (1 + 𝜀)

𝑐

𝑑
. (6.20)

Since (6.20) holds for each 𝜀 > 0, (6.15) follows.

We now show that

lim inf
𝑛→∞

𝑚𝒫,𝒬(𝑛, 𝑥)

𝑛
≥ 𝑐

𝑑
, 𝜆-a.e. (6.21)

1Equation (6.17) holds since the logarithm function in Definition 6.4 (as well as in Section 2.8 and Chapter
5) is by convention with respect to base 2. This is because information is usually measured in bits.
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Let 𝜀 > 0, and take 𝜂 > 0 such that 𝜁 := 𝜀𝑐− 𝜂(1 + (1− 𝜀) 𝑐𝑑) > 0. For each 𝑛 ∈ N, we
define 𝑚̄(𝑛) = ⌊(1− 𝜀) 𝑐𝑑𝑛⌋ and

𝐷𝑛(𝜂) =
{︀
𝑥 : 𝜆(𝑃𝑛(𝑥)) < 2−𝑛(𝑐−𝜂), 𝜆(𝑄𝑚̄(𝑛)(𝑥)) > 2−𝑚̄(𝑛)(𝑑+𝜂), 𝑃𝑛(𝑥) ̸⊆ 𝑄𝑚̄(𝑛)(𝑥)

}︀
.

The number of intervals 𝐴 ∈ 𝑄𝑚̄(𝑛) for which 𝜆(𝐴) > 2−𝑚̄(𝑛)(𝑑+𝜂) is bounded by

2𝑚̄(𝑛)(𝑑+𝜂). Moreover, for each such 𝐴 ∈ 𝑄𝑚̄(𝑛), there exists 𝑥 ∈ 𝐷𝑛(𝜂) ∩𝐴 ∩𝐵 only for

those 𝐵 ∈ 𝑃𝑛 that contain a boundary point of 𝐴 (of which there are 2) and satisfy

𝜆(𝐵) < 2−𝑛(𝑐−𝜂). We conclude that

𝜆(𝐷𝑛(𝜂)) ≤ 2 · 2−𝑛(𝑐−𝜂) · 2𝑚̄(𝑛)(𝑑+𝜂) ≤ 2 · 2−𝑛𝜁 , (6.22)

which gives
∑︀∞

𝑛=1 𝜆(𝐷𝑛(𝜂)) <∞. From the Borel-Cantelli Lemma it follows that

𝜆
(︀
{𝑥 ∈ [0, 1) : 𝑥 ∈ 𝐷𝑛(𝜂) for infinitely many 𝑛 ∈ N}

)︀
= 0, (6.23)

and therefore

𝜆
(︀
{𝑥 ∈ [0, 1)| ∃𝑁 ∈ N s.t. ∀𝑛 ≥ 𝑁 : 𝑥 /∈ 𝐷𝑛(𝜂)}

)︀
= 1. (6.24)

Combining this with (6.16) (and using that 𝑚̄(𝑛) → ∞ as 𝑛 → ∞) yields that for

𝜆-a.e. 𝑥 ∈ [0, 1) there exists an 𝑁 ∈ N such that 𝑚𝒫,𝒬(𝑛, 𝑥) ≥ 𝑚̄(𝑛) for all 𝑛 ≥ 𝑁 . This

gives

lim inf
𝑛→∞

𝑚𝒫,𝒬(𝑛, 𝑥)

𝑛
≥ (1− 𝜀)

𝑐

𝑑
, 𝜆-a.e. (6.25)

Since 𝜀 > 0 was arbitrary, this concludes the proof.

The next theorem is a central limit result associated with the law of large numbers

result in (6.14). It is proven in [32] for the case that 𝒫 and 𝒬 are both sequences of

interval partitions consisting of cylinders of all orders w.r.t. some NTFM. We state

this result in the next section, but the proof of this result (namely Corollary 2.1 in

[32]) immediately carries over to all pairs of sequences of interval partitions 𝒫 and 𝒬
that have the following properties:

Definition 6.7. Let 𝒫 = {𝑃𝑛}∞𝑛=1 be a sequence of interval partitions and suppose that

for some constant 𝑐 > 0, 𝒫 has entropy 𝑐 𝜆-a.e. We say that 𝒫 satisfies the 0-property if

lim
𝑛→∞

− log 𝜆
(︀
𝑃𝑛(𝑥)

)︀
− 𝑛𝑐

√
𝑛

= 0, 𝜆-a.e. (6.26)

Definition 6.8. Let 𝒬 = {𝑄𝑛}∞𝑛=1 be a sequence of interval partitions and suppose that

for some constant 𝑑 > 0, 𝒬 has entropy 𝑑 𝜆-a.e. For each 𝑥 ∈ [0, 1) and 𝑚 ∈ N we put

𝑊𝑚,𝑥(0) = 0 and

𝑊𝑚,𝑥

(︁ 𝑙
𝑚

)︁
=

− log 𝜆
(︀
𝑄𝑙(𝑥)

)︀
− 𝑙𝑑

𝜎
√
𝑚

, 𝑙 ∈ {1, . . . ,𝑚}, (6.27)

for some 𝜎 > 0, and we extend this linearly on the subintervals {[ 𝑙−1
𝑚 , 𝑙𝑚 ] : 1 ≤ 𝑙 ≤ 𝑚} so

that 𝑊𝑚,𝑥 ∈ 𝐶[0, 1). We say that 𝒬 satisfies the weak invariance principle with variance
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𝜎2 and w.r.t. some (Borel) probability measure 𝜈 on [0, 1) if the process 𝑡 ↦→ 𝑊𝑚(𝑡)

converges in law w.r.t. 𝜈 to the Brownian motion on [0, 1) as 𝑚→ ∞.

Theorem 6.9. (cf. Corollary 2.1 in [32]) Let 𝒫 = {𝑃𝑛}∞𝑛=1 and 𝒬 = {𝑄𝑛}∞𝑛=1 be se-

quences of interval partitions. Suppose that for some constants 𝑐 > 0 and 𝑑 > 0, 𝒫
has entropy 𝑐 𝜆-a.e. and 𝒬 has entropy 𝑑 𝜆-a.e. Furthermore, suppose that 𝒫 satisfies

the 0-property and that 𝒬 satisfies the weak invariance principle with variance 𝜎2 and

w.r.t. some probability measure 𝜈 on [0, 1). Then for all 𝑢 ∈ R

lim
𝑛→∞

𝜈
(︁{︁
𝑥 ∈ [0, 1) :

𝑚𝒫,𝒬(𝑛, 𝑥)− 𝑛 𝑐𝑑
𝜎1
√
𝑛

≤ 𝑢
}︁)︁

=
1√
2𝜋

∫︁ 𝑢

−∞
𝑒−𝑡

2/2𝑑𝑡, (6.28)

where 𝜎1 =
√︀

𝑐
𝑑3𝜎.

6.3 Extension to Number-Theoretic Fibered Maps

In [16], Dajani and Fieldsteel introduce the following class of interval maps:

Definition 6.10. A surjective map 𝑇 : [0, 1) → [0, 1) is said to be a number-theoretic

fibered map (NTFM) if it satisfies the following conditions:

1. There exists a finite or countable partition 𝛼 of [0, 1) into intervals such that 𝑇

restricted to each interval is strictly monotonic and continuous. Furthermore, 𝛼 is a

generator w.r.t. 𝑇 in the sense of (2.42).

2. There exists a Borel probability measure 𝜇𝑇 on [0, 1) that is invariant and ergodic

w.r.t. 𝑇 and is absolutely continuous w.r.t. 𝜆 such that

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇𝑇

𝑑𝜆
≤𝑀. (6.29)

Remark 6.11. Note that in Definition 6.10 a sufficient condition for 𝛼 to be a generator

w.r.t. 𝑇 is when 𝑇 is expanding.

Remark 6.12. From the first part of Theorem 2.10 it follows that an NTFM admits

a unique invariant probability measure 𝜇𝑇 that satisfies (6.29).

Remark 6.13. Let us write 𝛼 = {𝐴𝑖 : 𝑖 ∈ 𝐷} for the partition in Definition 6.10, where

𝐷 is a finite or countable index set. The requirement that 𝛼 is a generator w.r.t. 𝑇

implies that for 𝜆-a.e. pair of different points 𝑥, 𝑦 ∈ [0, 1) there exists 𝑛 ∈ N such that

𝑥 and 𝑦 are contained in different cylinders of order 𝑛 w.r.t. 𝑇 . Hence, knowing all

the digits {𝑖𝑘 ∈ 𝐷 : 𝑘 = 0, 1, . . .} for which 𝑇 𝑘𝑥 ∈ 𝐴𝑖𝑘 determines 𝑥 ∈ [0, 1) uniquely

𝜆-a.e. For this reason, if 𝑇 is not too complex, iterations of 𝑇 generate representations

of points in terms of a sequence of digits in 𝐷. It appears (see [16]) that almost all

known expansions on [0, 1) are generated by an NTFM.
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Example 6.14. Let 𝑇 : [0, 1) → [0, 1) be such that it (has an extension to [0, 1] that)

satisfies the conditions in Proposition 3.16. (For example, 𝑇𝑥 = 𝛽𝑥 mod 1 with 𝛽 > 1

as in Example 3.18.) Then 𝑇 is an NTFM with corresponding partition 𝛼 that is

equal to the partition on which 𝑇 is piecewise monotonic. Note that 𝛼 is a generator

w.r.t. 𝑇 because 𝑇 is expanding. It follows in a similar way from the Folklore Theorem

(Theorem 3.21) that each interval map 𝑇 : [0, 1) → [0, 1) that can be extended to a

Markov transformation on [0, 1] is an NTFM.

Let 𝑇 be an NTFM with corresponding partition 𝛼 and measure 𝜇𝑇 . For each 𝑛 ∈ N
we define the interval partition

𝛼𝑛 =
𝑛−1⋁︁
𝑖=0

𝑇−𝑖𝛼, (6.30)

which consists of the cylinders of order 𝑛 w.r.t. 𝑇 . Suppose that the entropy of the par-

tition 𝛼 w.r.t. 𝜇𝑇 is finite, i.e. 𝐻𝜇𝑇 (𝛼) <∞. It follows from the Kolmogorov-Sinai The-

orem (Theorem 2.51) and the Shannon-McMillan-Breiman Theorem (Theorem 2.53)

that

lim
𝑛→∞

−
log 𝜇𝑇

(︀
𝛼𝑛(𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝑇 ), 𝜇𝑇 -a.e. (6.31)

Because of (6.29), we can replace 𝜇𝑇 in (6.31) by 𝜆 so that we get

lim
𝑛→∞

−
log 𝜆

(︀
𝛼𝑛(𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝑇 ), 𝜆-a.e. (6.32)

In other words, the sequence of interval partitions {𝛼𝑛}∞𝑛=1 has entropy ℎ𝜇𝑇 (𝑇 ) 𝜆-a.e.

Hence, Theorem 6.6 applies, which proves the following theorem:

Theorem 6.15. (Theorem 5 in [16]) Let 𝑇 and 𝑆 be two NTFM’s with corresponding

partitions 𝛼 and 𝛽, respectively, and measures 𝜇𝑇 and 𝜇𝑆, respectively. For each 𝑛 ∈ N
and 𝑥 ∈ [0, 1), put

𝑚𝑇,𝑆(𝑛, 𝑥) = sup{𝑚 ∈ N : 𝛼𝑛(𝑥) ⊆ 𝛽𝑚(𝑥)}. (6.33)

Suppose that ℎ𝜇𝑇 (𝑇 ), ℎ𝜇𝑆(𝑆) ∈ (0,∞). Then

lim
𝑛→∞

𝑚𝑇,𝑆(𝑛, 𝑥)

𝑛
=
ℎ𝜇𝑇 (𝑇 )

ℎ𝜇𝑆(𝑆)
, 𝜆-a.e. (6.34)

Remark 6.16. Recall from Subsection 1.1.2 that 𝜆 is invariant and ergodic w.r.t. the

decimal map 𝑇 , and that ℎ𝜆(𝑇 ) = log 10. Morover, we discussed that the Gauss

measure 𝜇𝐺 on [0, 1) given by

𝜇𝐺(𝐴) =

∫︁
𝐴

1

log 2

1

1 + 𝑥
𝑑𝑥, 𝐴 ⊆ [0, 1) Borel (6.35)

is invariant and ergodic w.r.t. the Gauss map 𝑆, and that ℎ𝜇𝐺(𝑆) = 𝜋2

6 log 2 . From

Theorem 6.15 we now obtain Lochs’ result in Theorem 6.1.
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Let us now state the central limit result in Theorem 6.9 for NTFM’s.

Definition 6.17. Let 𝑇 be an NTFM with corresponding partition 𝛼 and measure 𝜇𝑇 .

� We say that 𝑇 satisfies the 0-property if {𝛼𝑛}∞𝑛=1 satisfies the 0-property in the sense

of Definition 6.7, with 𝑐 = ℎ𝜇𝑇 (𝑇 ).

� We say that 𝑇 satisfies the weak invariance principle with variance 𝜎2 and w.r.t. some

probability measure 𝜈 on [0, 1) if {𝛼𝑛}∞𝑛=1 satisfies the weak invariance principle

with variance 𝜎2 and w.r.t. 𝜈 in the sense of Definition 6.8, with 𝑑 = ℎ𝜇𝑇 (𝑇 ).

Remark 6.18. Because of (6.29), we can replace 𝜆 by 𝜇𝑇 in both (6.26) and (6.27)

applied to {𝛼𝑛}∞𝑛=1.

The following theorem is now an easy consequence of Theorem 6.9:

Theorem 6.19. (Corollary 2.1 in [32]) Let 𝑇 be an NTFM that satisfies the 0-property

and 𝑆 be an NTFM that satisfies the weak invariance principle with variance 𝜎2 and

w.r.t. to some probability measure 𝜈 on [0, 1). Then for all 𝑢 ∈ R

lim
𝑛→∞

𝜈

(︂{︂
𝑥 ∈ [0, 1) :

𝑚𝑇,𝑆(𝑛, 𝑥)− 𝑛
ℎ𝜇𝑇 (𝑇 )

ℎ𝜇𝑆 (𝑆)

𝜎1
√
𝑛

≤ 𝑢

}︂)︂
=

1√
2𝜋

∫︁ 𝑢

−∞
𝑒−𝑡

2/2𝑑𝑡, (6.36)

where 𝜎1 =
√︁

ℎ𝜇𝑇 (𝑇 )

ℎ𝜇𝑆 (𝑆)
3𝜎.

Example 6.20. (from Section 3.2 in [32]) As an example of an NTFM that satisfies

the 0-property, consider 𝑇𝑥 = 𝑚𝑥 mod 1 with 𝑚 ≥ 2 integer. It is clear that 𝑇

together with the partition 𝛼 =
{︀[︀

𝑘
𝑚 ,

𝑘+1
𝑚

)︀
, 𝑘 = 0, 1, . . . ,𝑚 − 1

}︀
and 𝜆 defines an

NTFM. Furthermore, for each 𝑛 ∈ N and 𝑥 ∈ 𝐼 we have 𝜆
(︀
𝛼𝑛(𝑥)

)︀
= 𝑚−𝑛. Hence, from

the Kolmogorov-Sinai Theorem and the Shannon-McMillan-Breiman Theorem we get

ℎ𝜇𝑇 (𝑇 ) = log𝑚. It is now easy to see that 𝑇 satisfies the 0-property. Another example

of an NTFM that satisfies the 0-property is 𝑇𝑥 = 𝛽𝑥 mod 1 with 𝛽 the golden mean,

i.e. 𝛽 = 1+
√
5

2 , which is shown in [32].

6.4 Extension to Random Number-Theoretic Fibered Systems

Analogous to the definition of an NTFM, we define the following class of random

interval maps:

Definition 6.21. Let (Ω,ℱ ,P) be a Lebesgue space, and let 𝜙 : Ω → Ω be measure

preserving w.r.t. P. A measurable map 𝑇 : Ω × [0, 1) → [0, 1) given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 is

a random number-theoretical fibered system (RNTFS) w.r.t. (Ω,ℱ ,P, 𝜙) if

1. There exists a finite or countable partition 𝜉 of Ω× [0, 1) such that, for each 𝜔 ∈ Ω

and 𝑍 ∈ 𝜉, 𝑍𝜔 := {𝑥 ∈ [0, 1) : (𝜔, 𝑥) ∈ 𝑍} is an interval and 𝑇𝜔 restricted to 𝑍𝜔 is

strictly monotonic and continuous. Furthermore, for P-a.a. 𝜔 ∈ Ω, 𝜉 is 𝜔-generating

w.r.t. (𝜙, 𝑇 ) in the sense of (5.19).
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2. Letting 𝐹𝜙,𝑇 (𝜔, 𝑥) = (𝜙𝜔, 𝑇𝜔𝑥), there exists an 𝐹𝜙,𝑇 -invariant and 𝐹𝜙,𝑇 -ergodic prob-

ability measure 𝜇𝑇 on Ω× [0, 1) that is absolutely continuous w.r.t. P⊗ 𝜆 such that

∃𝑀 > 0 :
1

𝑀
≤ 𝑑𝜇𝑇
𝑑P⊗ 𝜆

≤𝑀. (6.37)

Remark 6.22. Note that in Definition 6.21 a sufficient condition for 𝜉 to be 𝜔-

generating w.r.t. (𝜙, 𝑇 ) for each 𝜔 ∈ Ω is when each 𝑇𝜔 is surjective and 𝑇 is expanding,

i.e. each 𝑇𝜔 is piecewise 𝐶1 and inf(𝜔,𝑥) |𝑇 ′
𝜔(𝑥)| > 1.

Remark 6.23. Again, from the first part of Theorem 2.10 it follows that 𝐹𝜙,𝑇 in

Definition 6.21 admits a unique invariant probability measure 𝜇𝑇 that satisfies (6.37).

Remark 6.24. Note that 𝜙 in Definition 6.21 is ergodic w.r.t. P. Indeed, suppose that
𝐴 ∈ ℱ satisfies 𝜙−1𝐴 = 𝐴. Then 𝐹−1

𝜙,𝑇 (𝐴 × [0, 1)) = 𝜙−1𝐴 × [0, 1) = 𝐴 × [0, 1), which

implies 𝜇(𝐴× [0, 1)) ∈ {0, 1}. From (6.37) it follows that P(𝐴) ∈ {0, 1}.

For an RNTFS given by (Ω,ℱ ,P, 𝜙, 𝑇 ) with corresponding partition 𝜉, we define for

each 𝜔 ∈ Ω and 𝑛 ∈ N the interval partition as in (5.8) by

𝜉𝜔,𝑛 = 𝜉𝜔 ∨
𝑛−1⋁︁
𝑘=1

𝑇−1
𝜔 𝑇−1

𝜙(𝜔) · · ·𝑇𝜙𝑘−1(𝜔)𝜉𝜙𝑘(𝜔), (6.38)

where 𝜉𝜔 = {𝑍𝜔 : 𝑍 ∈ 𝜉} and 𝑍𝜔 = {𝑥 ∈ 𝐼 : (𝜔, 𝑥) ∈ 𝑍}. Similar as for NTFM’s, the

elements of 𝜉𝜔,𝑛 are called the cylinders of order 𝑛 with respect to 𝐹𝜙,𝑇 (𝜔, ·).

Example 6.25. Let 𝐸 be countable, and for each 𝑗 ∈ 𝐸, let 𝑇𝑗 : [0, 1) → [0, 1) be

surjective and finitely piecewise 𝐶2-monotonic on some interval partition 𝛼𝑗. Assume

that inf(𝑗,𝑥) |𝑇 ′
𝑗(𝑥)| > 1 and that the random covering property from Proposition 4.16

holds for {𝑇𝑗}𝑗∈𝐸. Furthermore, let (𝑝𝑗)𝑗∈𝐸 be a probability vector such that 𝑝𝑗 > 0

holds for each 𝑗 ∈ 𝐸. Then Proposition 4.16 yields a probability measure 𝜇𝑇 on Ω𝐸×𝐼
with Ω𝐸 = 𝐸N that meets the conditions in the second property of Definition 6.21,

where P is in this case the Bernoulli measure on Ω𝐸 associated with (𝑝𝑗)𝑗∈𝐸. Therefore,

𝑇 : Ω𝐸 × [0, 1) → [0, 1) given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔1𝑥 is an RNTFS w.r.t. the Bernoulli shift

(Ω𝐸 ,ℱP,P, 𝜎) with corresponding partition 𝜉 given by

𝜉 =
⋃︁
𝑗∈𝐸

{[𝑗]× 𝐴 : 𝐴 ∈ 𝛼𝑗}, (6.39)

where we use the notation from (4.23). Note, for each 𝜔 ∈ Ω𝐸, that 𝜉𝜔 = 𝛼𝜔1 and that

𝜉𝜔,𝑛 = 𝛼𝜔1 ∨
𝑛−1⋁︁
𝑘=1

𝑇−1
𝜔1
𝑇−1
𝜔2

· · ·𝑇−1
𝜔𝑘
𝛼𝜔𝑘+1

. (6.40)

In a similar way, we can with Proposition 4.37 obtain an RNTFS with corresponding

partition as in (6.39) if the underlying base is a Markov shift.

Example 6.26. An explicit example for a family {𝑇𝑗}𝑗∈𝐸 as in Example 6.25 is given in

Example 4.18, where 𝑇𝑗 = 𝛽𝑗𝑥 mod 1 and inf𝑗∈𝐸 𝛽𝑗 > 1. As we have seen in Subsection
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1.1.3, such a family {𝑇𝑗}𝑗∈𝐸 generates for each 𝜔 ∈ Ω𝐸 expansions of the form

𝑥 =
∞∑︁
𝑘=1

𝑏(𝜔𝑘, 𝑥)

𝛽𝜔1 · · · 𝛽𝜔𝑘
, 𝑏(𝜔𝑘, 𝑥) ∈ {0, 1, . . . , ⌊𝛽𝜔𝑘⌋} for each 𝑘 ∈ N. (6.41)

Remark 6.27. Let us write 𝜉𝜔 = {𝐴𝜔,𝑖 : 𝑖 ∈ 𝐷𝜔} for each 𝜔 ∈ Ω, where 𝜉 is the partition

from Definition 6.21 and each 𝐷𝜔 is a finite or countable index set. The requirement

that 𝜉 is 𝜔-generating w.r.t. (𝜙, 𝑇 ) implies that for 𝜆-a.e. pair of different points 𝑥, 𝑦 ∈
[0, 1) there exists 𝑛 ∈ N such that 𝑥 and 𝑦 are contained in different cylinders of order

𝑛 w.r.t. 𝐹𝜙,𝑇 (𝜔, ·). Hence, knowing all the digits {𝑖𝑘 ∈ 𝐷𝜙𝑘(𝜔) : 𝑘 = 0, 1, . . .} for which

𝑥 ∈ 𝐴𝜔,𝑖0 and 𝑇𝜙𝑘−1(𝜔) · · ·𝑇𝜔𝑥 ∈ 𝐴𝜙𝑘(𝜔),𝑖𝑘 (𝑘 ≥ 1) determines 𝑥 ∈ [0, 1) uniquely 𝜆-a.e.

For this reason, if (like in the previous example) 𝑇 is not too complex, iterations of

𝐹𝜙,𝑇 (𝜔, ·) generate (after projecting on [0, 1)) expansions of points in [0, 1) where the

𝑛th digit is in 𝐷𝜙𝑛(𝜔).

In order to apply Theorem 6.6 to any pair of RNTFS’s that are of the form such as in

Example 6.25, we need the following proposition:

Proposition 6.28. Let 𝐸 be countable, Ω𝐸 = 𝐸N, ℱ the Borel 𝜎-algebra on Ω𝐸 and

P a probability measure on (Ω𝐸 ,ℱ) that is invariant w.r.t. the left shift 𝜎 on Ω𝐸. Let

𝑇 : Ω𝐸 × 𝐼 → 𝐼 given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔1(𝑥) be an RNTFS w.r.t. (Ω𝐸 ,ℱ ,P, 𝜎) such that

the corresponding partition 𝜉 is of the form

𝜉 =
⋃︁
𝑗∈𝐸

{[𝑗]× 𝐴 : 𝐴 ∈ 𝛼𝑗} (6.42)

with 𝛼𝑗 an interval partition for each 𝑗 ∈ 𝐸. Then

lim
𝑛→∞

−
log 𝜆

(︀
𝜉𝜔,𝑛(𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝐹𝜎,𝑇 )− ℎP(𝜎), 𝜆-a.e. (6.43)

for P-a.a. 𝜔 ∈ Ω𝐸. In other words, for P-a.a. 𝜔 ∈ Ω𝐸, the sequence of interval partitions

{𝜉𝜔,𝑛}∞𝑛=1 has entropy ℎ𝜇𝑇 (𝐹𝜎,𝑇 )− ℎP(𝜎) 𝜆-a.e.

Proof : It is clear that {[𝑗] : 𝑗 ∈ 𝐸} is a generator w.r.t. 𝜎. Combining this with

the fact that 𝜉 is 𝜔-generating w.r.t. (𝜎, 𝑇 ) for P-a.a. 𝜔 ∈ Ω𝐸, note that for P ⊗ 𝜆-

a.e. pair of different points (𝜔, 𝑥), (𝜔̃, 𝑦) ∈ Ω𝐸 × 𝐼 there exists 𝑛 ∈ N such that (𝜔, 𝑥)

and (𝜔̃, 𝑦) are in different elements of the partition
⋁︀𝑛−1
𝑖=0 𝐹

−𝑖
𝜎,𝑇 𝜉. It follows (see e.g. the

remark in Section 7.5 of [66]) that 𝜉 is a generating partition for 𝐹𝜎,𝑇 . Hence, from the

Shannon-McMillan-Breiman Theorem (Theorem 2.53) we obtain that

lim
𝑛→∞

−
log 𝜇𝑇

(︀⋁︀𝑛−1
𝑖=0 𝐹

−𝑖
𝜎,𝑇 𝜉(𝜔, 𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝐹𝜎,𝑇 ), 𝜇𝑇 -a.e. (6.44)

Because of (6.37), we can interchange 𝜇𝑇 for P⊗ 𝜆, i.e.

lim
𝑛→∞

−
logP⊗ 𝜆

(︀⋁︀𝑛−1
𝑖=0 𝐹

−𝑖
𝜎,𝑇 𝜉(𝜔, 𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝐹𝜎,𝑇 ), P⊗ 𝜆-a.e. (6.45)
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Note that

𝑛−1⋁︁
𝑖=0

𝐹−𝑖
𝜎,𝑇 𝜉(𝜔, 𝑥) = [𝜔𝑛1 ]× 𝜉𝜔,𝑛(𝑥) = [𝜔𝑛1 ]×

(︁
𝛼𝜔1 ∨

𝑛−1⋁︁
𝑘=1

𝑇−1
𝜔1
𝑇−1
𝜔2

· · ·𝑇−1
𝜔𝑘
𝛼𝜔𝑘+1

)︁
(𝑥), (6.46)

so that inserting this in (6.45) yields (6.43) (using Remark 6.24 and Theorem 2.53).

Remark 6.29. For a general RNTFS given by (Ω,ℱ ,P, 𝜙, 𝑇 ), note from (4.6) that⋁︀𝑛−1
𝑖=0 𝐹

−𝑘
𝜙,𝑇 𝜉 consists of sets of the form

⋃︁
𝜔∈Ω

{𝜔} ×
(︁
(𝑍0)𝜔 ∩

(︁ 𝑛−1⋂︁
𝑘=1

𝑇−1
𝜔 𝑇−1

𝜙(𝜔) · · ·𝑇
−1
𝜙𝑘−1(𝜔)

((𝑍𝑘)𝜙𝑘(𝜔))
)︁)︁

(6.47)

where 𝑍0, . . . , 𝑍𝑛−1 ∈ 𝜉. In particular, the set in (6.47) is not of the form 𝐴 × 𝐵 with

𝐴 ∈ ℱ and 𝐵 ∈ ℬ Borel like in (6.46). Hence, with the line of reasoning in the proof

of Proposition 6.28 we cannot extend the result in (6.43) to a general RNTFS.

Example 6.30. Let us again consider the setting of Example 6.26. We take 𝐸 = {0, 1}
and let 𝑇0, 𝑇1 : [0, 1) → [0, 1) be given by 𝑇0𝑥 = 𝑁𝑥 mod 1 and 𝑇1𝑥 = 𝑀𝑥 mod 1 with

𝑀,𝑁 ≥ 2 integers. Furthermore, let 𝑝 ∈ (0, 1). Writing (Ω𝐸 ,ℱ ,P, 𝜎) for the one-sided

Bernoulli shift with corresponding probability vector (𝑝0, 𝑝1) = (𝑝, 1− 𝑝), it is easy to

see that the skew product 𝐹𝜎,𝑇 (𝜔, 𝑥) = (𝜎𝜔, 𝑇𝜔1𝑥) is measure preserving w.r.t P ⊗ 𝜆.

Moreover, from Example 4.18 it follows that (𝐹𝜎,𝑇 ,P ⊗ 𝜆) is ergodic. We know from

(6.41) that 𝐹𝜎,𝑇 (𝜔, ·) generates for each 𝜔 ∈ Ω𝐸 expansions of the form

𝑥 =
∞∑︁
𝑘=1

𝑏(𝜔𝑘, 𝑥)

𝑁𝑘−𝑐𝑘(𝜔)𝑀 𝑐𝑘(𝜔)
, (6.48)

where 𝑏(0, 𝑥) ∈ {0, 1, . . . , 𝑁 − 1}, 𝑏(1, 𝑥) ∈ {0, 1, . . . ,𝑀 − 1} and 𝑐𝑘(𝜔) =
∑︀𝑘

𝑖=1 𝜔𝑖. Now

let (Ω𝐸′ ,ℱ ′,P′, 𝜎′) denote the Bernoulli shift with 𝐸′ = {0, 1, . . . , 𝑁 + 𝑀 − 1} and

corresponding probability vector (𝑝′0, . . . , 𝑝
′
𝑁+𝑀−1) with 𝑝′𝑖 =

𝑝0
𝑁 for 𝑖 = 0, 1, . . . , 𝑁 − 1

and 𝑝′𝑖 = 𝑝1
𝑀 for 𝑖 = 𝑁, . . . , 𝑁 + 𝑀 − 1. In a similar way as in Example 3.1.2 of

[15] one can derive that the dynamical systems (Ω𝐸 × [0, 1),ℱ ⊗ ℬ,P ⊗ 𝜆, 𝐹𝜎,𝑇 ) and

(Ω𝐸′ ,ℱ ′,P′, 𝜎′) are isomorphic with an isomorphism 𝜓(𝜔, 𝑥) = {𝜔𝑘 · 𝑁 + 𝑏(𝜔𝑘, 𝑥)}∞𝑘=1.

Hence, combining this with Example 2.52 and Theorem 2.50 yields that

ℎP⊗𝜆(𝐹𝜎,𝑇 ) = −
𝑁+𝑀−1∑︁
𝑖=0

𝑝′𝑖 log 𝑝
′
𝑖 = −𝑝0 log

(︁𝑝0
𝑁

)︁
− 𝑝1 log

(︁ 𝑝1
𝑀

)︁
. (6.49)

Furthermore, Example 2.52 gives that ℎP(𝜎) = −𝑝0 log(𝑝0) − 𝑝1 log(𝑝1). Defining 𝜉 =

{[0]× [ 𝑖𝑁 ,
𝑖+1
𝑁 ) : 𝑖 = 0, . . . , 𝑁 − 1}∪{[1]× [ 𝑖𝑀 ,

𝑖+1
𝑀 ) : 𝑖 = 0, . . . ,𝑀 − 1}, we conclude from

Proposition 6.28 that

lim
𝑛→∞

−
log 𝜆

(︀
𝜉𝜔,𝑛(𝑥)

)︀
𝑛

= 𝑝0 log(𝑁) + 𝑝1 log(𝑀), 𝜆-a.e. (6.50)

for P-a.a. 𝜔 ∈ Ω𝐸. Note that the right-hand side of (6.50) is the weighted sum of the

entropies of 𝑇0 and 𝑇1 w.r.t. 𝜆.
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Proposition 6.31. Let 𝑇 be an RNTFS w.r.t. (Ω,ℱ ,P, 𝜙) with corresponding partition 𝜉

and measure 𝜇𝑇 . Suppose that the family {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴

𝑑𝜇𝑇
𝑑P⊗𝜆(𝜔, 𝑥)𝑑𝜆(𝑥)

is equivariant w.r.t. (𝜙, 𝑇 ). Then

lim
𝑛→∞

−
log 𝜆

(︀
𝜉𝜔,𝑛(𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙), 𝜆-a.e. (6.51)

for P-a.a. 𝜔 ∈ Ω. That is, {𝜉𝜔,𝑛}∞𝑛=1 has entropy ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙) 𝜆-a.e.

Proof : It follows from Proposition 5.14, Theorem 5.16 and Theorem 5.17 that

lim
𝑛→∞

−
log 𝜌𝜔

(︀
𝜉𝜔,𝑛(𝑥)

)︀
𝑛

= ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙), 𝜇𝑇 -a.e. (6.52)

Because of (6.37), we know that P⊗𝜆 is absolutely continuous w.r.t. 𝜇𝑇 and that there

exists 𝑀 > 0 such that 1
𝑀 ≤ 𝑑𝜌𝜔

𝑑𝜆 ≤𝑀 for P-a.a. 𝜔 ∈ Ω. Hence, we can in (6.52) replace

𝜌𝜔 with 𝜆 and 𝜇𝑇 -a.e. with P⊗ 𝜆-a.e. This yields (6.51).

Remark 6.32. Note that for the proof of Proposition 6.31 we can weaken the assump-

tion in (6.37) by merely requiring that

∃𝑀𝜔 > 0 :
1

𝑀𝜔
≤ 𝑑𝜌𝜔

𝑑𝜆
≤𝑀𝜔 (6.53)

for P-a.a. 𝜔 ∈ Ω.

Example 6.33. Let 𝑇 be an RNTFS w.r.t. (Ω,ℱ ,P, 𝜙) with corresponding partition

𝜉 and measure 𝜇𝑇 . Suppose there exists a probability measure 𝜌 on [0, 1) that is

absolutely continuous w.r.t. 𝜆 and such that 𝑇𝜔 is invariant w.r.t. 𝜌 for P-a.a. 𝜔 ∈ Ω.

Then for each 𝐴 ∈ ℱ and 𝐵 ∈ ℬ we have

P⊗ 𝜌(𝐹−1(𝐴×𝐵)) =

∫︁
𝜙−1𝐴

𝜌(𝑇−1
𝜔 𝐵)𝑑P =

∫︁
Ω

1𝐴(𝜙𝜔)𝜌(𝐵)𝑑P

= P⊗ 𝜌(𝐴×𝐵),

so it follows from the first part of Theorem 2.10 that 𝜇𝑇 = P ⊗ 𝜌. Then obviously

{𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴

𝑑𝜇𝑇
𝑑P⊗𝜆(𝜔, 𝑥)𝑑𝜆(𝑥) = 𝜌(𝐴) is equivariant w.r.t. (𝜙, 𝑇 ).

We conclude from Proposition 6.31 that, for P-a.a. 𝜔 ∈ Ω, {𝜉𝜔,𝑛}∞𝑛=1 has entropy

ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙) 𝜆-a.e.

Example 6.34. Let 𝑇 be an RNTFS w.r.t. (Ω,ℱ ,P, 𝜙) with corresponding partition

𝜉 and measure 𝜇𝑇 . Suppose that 𝜙 : Ω → Ω is invertible. Then it follows from the

second part of Proposition 5.6 that {𝜌𝜔}𝜔∈Ω given by 𝜌𝜔(𝐴) =
∫︀
𝐴

𝑑𝜇𝑇
𝑑P⊗𝜆(𝜔, 𝑥)𝑑𝜆(𝑥) is

equivariant w.r.t. (𝜙, 𝑇 ). We obtain from Proposition 6.31 that, for P-a.a. 𝜔 ∈ Ω,

{𝜉𝜔,𝑛}∞𝑛=1 has entropy ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙) 𝜆-a.e.

Example 6.35. Let us give an explicit case of the previous example. Let 𝛾 = 1+𝜀 with

𝜀 > 0 small, and take Ω = [𝛾,∞) with corresponding Lebesgue 𝜎-algebra ℱ . Let P be a

probability measure on (Ω,ℱ) and 𝜙 : Ω → Ω be an automorphism such that (𝜙,P) is
ergodic. Furthermore, let 𝑇 : Ω× [0, 1) → [0, 1) be given by 𝑇 (𝜔, 𝑥) = 𝑇𝜔𝑥 = 𝜔𝑥 mod 1.
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Figure 6.1: Representation of the partition 𝜉 from Example 6.35. The
fiber 𝜉𝜔 that is visualized is clearly an interval partition.

Define the partition 𝜉 = {𝑍𝑖 : 𝑖 = 0, 1, . . .} of Ω× [0, 1) as

𝑍0 =
{︁
(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝛾 ≤ 𝑦 <

1

𝑥

}︁
,

𝑍1 =
{︁
(𝑥, 𝑦) : 0 < 𝑥 < 1,max

(︁
𝛾,

1

𝑥

)︁
≤ 𝑦 <

2

𝑥

}︁
,

𝑍𝑖 =
{︁
(𝑥, 𝑦) : 0 < 𝑥 < 1,

𝑖

𝑥
≤ 𝑦 <

𝑖+ 1

𝑥

}︁
, 𝑖 ≥ 2

(see Figure 6.1). Then for each 𝜔 ∈ Ω we have 𝜉𝜔 = {(𝑍𝑖)𝜔 : 𝑖 = 0, 1, . . .} with

(𝑍𝑖)𝜔 = [ 𝑖𝜔 ,
𝑖+1
𝜔 ) if 𝑖 ∈ {0, 1, . . . , ⌊𝜔⌋ − 1}, (𝑍⌊𝜔⌋)𝜔 = [ ⌊𝜔⌋𝜔 , 1) and (𝑍𝑖)𝜔 = ∅ for 𝑖 > 𝜔. It

is therefore clear that 𝑇𝜔 is piecewise monotonic on 𝜉𝜔 for each 𝜔 ∈ Ω. Furthermore, 𝜉

is 𝜔-generating w.r.t. (𝜙, 𝑇 ) for each 𝜔 ∈ Ω because inf(𝜔,𝑥) |𝑇 ′
𝜔(𝑥)| = 𝛾 > 1. Moreover,

according to Example 4.43 there exists an 𝐹𝜙,𝑇 -invariant and 𝐹𝜙,𝑇 -ergodic probability

measure 𝜇𝑇 on Ω× 𝐼 that is absolutely continuous w.r.t. P⊗ 𝜆 such that

∃𝑀𝜔 > 0 :
1

𝑀𝜔
≤ 𝑑𝜇𝑇
𝑑P⊗ 𝜆

(𝜔, ·) ≤𝑀𝜔 (6.54)

for P-a.a. 𝜔 ∈ Ω. Together with Remark 6.32 we conclude that, for P-a.a. 𝜔 ∈ Ω,

{𝜉𝜔,𝑛}∞𝑛=1 has entropy ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙) 𝜆-a.e.

The following theorem is an easy consequence of Theorem 6.6.

Theorem 6.36. Let 𝑇 and 𝑆 be RNTFS’s w.r.t. (Ω,ℱ ,P, 𝜙) and (Ω̃, ℱ̃ , P̃, 𝜓), respectively,
each satisfying the conditions of Proposition 6.28 or Proposition 6.31 (so we distinguish

four cases), and with corresponding partitions 𝜉 and 𝜁, respectively, and measures 𝜇𝑇 and
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𝜇𝑆, respectively. For each 𝑛 ∈ N, 𝜔 ∈ Ω, 𝜔̃ ∈ Ω̃ and 𝑥 ∈ [0, 1), put

𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥) = sup{𝑚 ∈ N : 𝜉𝜔,𝑛(𝑥) ⊆ 𝜁𝜔̃,𝑚(𝑥)}. (6.55)

Suppose that ℎP(𝜙) < ℎ𝜇𝑇 (𝐹𝜙,𝑇 ) <∞ and ℎP̃(𝜓) < ℎ𝜇𝑆(𝐹𝜓,𝑆) <∞. Then

lim
𝑛→∞

𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥)

𝑛
=
ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙)

ℎ𝜇𝑆(𝐹𝜓,𝑆)− ℎP̃(𝜓)
, 𝜆-a.e. (6.56)

for P⊗ P̃-a.a. (𝜔, 𝜔̃) ∈ Ω× Ω̃.

Remark 6.37. The right-hand side of (6.56) is in general hard to calculate, but in

practice it can be approximated using the convergence in (6.43) and (6.51).

For fixed (𝜔, 𝜔̃) ∈ Ω × Ω̃ we can formulate a quenched central limit result associated

with Theorem 6.36, which directly follows from Theorem 6.9.

Theorem 6.38. Let 𝑇 and 𝑆 be RNTFS’s w.r.t. (Ω,ℱ ,P, 𝜙) and (Ω̃, ℱ̃ , P̃, 𝜓), respectively,
with corresponding partitions 𝜉 and 𝜁, respectively, and measures 𝜇𝑇 and 𝜇𝑆, respectively.

Let (𝜔, 𝜔̃) ∈ Ω × Ω̃ and suppose that {𝜉𝜔,𝑛}∞𝑛=1 satisfies the 0-property in the sense of

Definition 6.7 with 𝑐 = ℎ𝜇𝑇 (𝐹𝜙,𝑇 )−ℎP(𝜙), and that {𝜁𝜔,𝑛}∞𝑛=1 satisfies the weak invariance

principle with variance 𝜎2 and w.r.t. some probability measure 𝜈 on [0, 1) in the sense of

Definition 6.8 with 𝑑 = ℎ𝜇𝑆(𝐹𝜓,𝑆)− ℎP̃(𝜓). Then for all 𝑢 ∈ R

lim
𝑛→∞

𝜈
(︁{︁
𝑥 ∈ [0, 1) :

𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥)− 𝑛𝑧0
𝜎1
√
𝑛

≤ 𝑢
}︁)︁

=
1√
2𝜋

∫︁ 𝑢

−∞
𝑒−𝑡

2/2𝑑𝑡, (6.57)

where 𝑧0 =
ℎ𝜇𝑇 (𝐹𝜙,𝑇 )−ℎP(𝜙)
ℎ𝜇𝑆 (𝐹𝜓,𝑆)−ℎP̃(𝜓)

and 𝜎1 =
√︁

ℎ𝜇𝑇 (𝐹𝜙,𝑇 )−ℎP(𝜙)
(ℎ𝜇𝑆 (𝐹𝜓,𝑆)−ℎP̃(𝜓))3

𝜎.

We can as well formulate an averaged central limit result corresponding to Theorem

6.36. For this we need the following definition:

Definition 6.39. Let 𝑇 be an RNTFS w.r.t. (Ω,ℱ ,P, 𝜙) with corresponding partition 𝜉

and measure 𝜇𝑇 . For each 𝜔 ∈ Ω, 𝑥 ∈ [0, 1) and 𝑚 ∈ N we put 𝑊𝑚,𝜔,𝑥(0) = 0 and

𝑊𝑚,𝜔,𝑥

(︁ 𝑙
𝑚

)︁
=

− log 𝜆
(︀
𝜉𝜔,𝑙(𝑥)

)︀
− 𝑙
(︀
ℎ𝜇𝑇 (𝐹𝜙,𝑇 )− ℎP(𝜙)

)︀
𝜎
√
𝑚

, 𝑙 ∈ {1, . . . ,𝑚} (6.58)

for some 𝜎 > 0, and we extend this linearly on the subintervals {[ 𝑙−1
𝑚 , 𝑙𝑚 ] : 1 ≤ 𝑙 ≤ 𝑚} so

that 𝑊𝑚,𝜔,𝑥 ∈ 𝐶[0, 1). We say that 𝑇 satisfies the averaged weak invariance principle

with variance 𝜎2 and w.r.t. some probability measure 𝜈 on (Ω × [0, 1),ℱ ⊗ ℬ) if the

process 𝑡 ↦→ 𝑊𝑚(𝑡) converges in law w.r.t. 𝜈 to the Brownian motion on [0, 1) as 𝑚→ ∞.

Example 6.40. Let us again consider the RNTFS given by (Ω𝐸 ,ℱ ,P, 𝜎, 𝑇 ) from Ex-

ample 6.30, where 𝐸 = {0, 1}, 𝑇0𝑥 = 𝑁𝑥 mod 1, 𝑇1𝑥 =𝑀𝑥 mod 1 (𝑀,𝑁 ≥ 2 integers)

and P the Bernoulli measure with corresponding probability vector (𝑝0, 𝑝1). Since the

corresponding partition 𝜉 is equal to {[0]× [ 𝑖𝑁 ,
𝑖+1
𝑁 ) : 𝑖 = 0, . . . , 𝑁 −1}∪{[1]× [ 𝑖𝑀 ,

𝑖+1
𝑀 ) :

𝑖 = 0, . . . ,𝑀 − 1}, it is clear that 𝜆(𝜉𝜔,𝑙(𝑥)) = 𝑁 𝑐𝑙(𝜔)−𝑙𝑀−𝑐𝑙(𝜔) with 𝑐𝑙(𝜔) =
∑︀𝑙

𝑖=1 𝜔𝑖 for
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each 𝜔 ∈ Ω𝐸 and 𝑥 ∈ [0, 1). For each 𝑖 ∈ N, let us define the random variable 𝑋𝑖 on

Ω𝐸 × [0, 1) as

𝑋𝑖(𝜔, 𝑥) = (1− 𝜔𝑖) log(𝑁) + 𝜔𝑖 log(𝑀). (6.59)

Clearly, {𝑋𝑖}∞𝑖=1 is an i.i.d. sequence on (Ω𝐸 × [0, 1],ℱ ⊗ ℬ,P⊗ 𝜆). Also, we have

EP⊗𝜆(𝑋𝑖) = 𝑝0 log(𝑁) + 𝑝1 log(𝑀) = ℎP⊗𝜆(𝐹𝜎,𝑇 )− ℎP(𝜎). (6.60)

Setting 𝜎2 = Var(𝑋𝑖), 𝑋 ′
𝑖 = 𝑋𝑖−EP⊗𝜆(𝑋𝑖)

𝜎 and 𝑆𝑙 =
∑︀𝑙

𝑖=1𝑋
′
𝑖, we obtain that 𝑊𝑚 as

defined in Definition 6.39 in this case takes the form

𝑊𝑚(𝑡) =
1√
𝑚

𝑚∑︁
𝑙=1

(︁
𝑆𝑙−1 +𝑚

(︁
𝑡− 𝑙 − 1

𝑚

)︁
𝑋 ′
𝑙

)︁
1[ 𝑙−1

𝑚
, 𝑙
𝑚
)(𝑡). (6.61)

We conclude from Donsker’s Theorem (see e.g. Theorem 1.4 in [37]) that 𝑡 ↦→ 𝑊𝑚(𝑡)

converges in law w.r.t. P⊗𝜆 to the Brownian motion on [0, 1) as 𝑚→ ∞, so 𝑇 satisfies

the averaged weak invariance principle with variance 𝜎2 and w.r.t. P⊗ 𝜆.

Theorem 6.41. Let 𝑇 and 𝑆 be RNTFS’s w.r.t. (Ω,ℱ ,P, 𝜙) and (Ω̃, ℱ̃ , P̃, 𝜓), respec-

tively, with corresponding partitions 𝜉 and 𝜁, respectively, and measures 𝜇𝑇 and 𝜇𝑆, re-

spectively. Let 𝜔 ∈ Ω and suppose that {𝜉𝜔,𝑛}∞𝑛=1 satisfies the 0-property in the sense

of Definition 6.7 with 𝑐 = ℎ𝜇𝑇 (𝐹𝜙,𝑇 ) − ℎP(𝜙). Furthermore, suppose that 𝑆 satisfies the

averaged weak invariance principle with variance 𝜎2 and w.r.t. some probability measure

𝜈 on (Ω̃× [0, 1), ℱ̃ ⊗ ℬ). Then for all 𝑢 ∈ R

lim
𝑛→∞

𝜈
(︁{︁

(𝜔̃, 𝑥) ∈ Ω̃× [0, 1) :
𝑚𝑇,𝑆(𝑛, 𝜔, 𝜔̃, 𝑥)− 𝑛𝑧0

𝜎1
√
𝑛

≤ 𝑢
}︁)︁

=
1√
2𝜋

∫︁ 𝑢

−∞
𝑒−𝑡

2/2𝑑𝑡, (6.62)

where 𝑧0 =
ℎ𝜇𝑇 (𝐹𝜙,𝑇 )−ℎP(𝜙)
ℎ𝜇𝑆 (𝐹𝜓,𝑆)−ℎP̃(𝜓)

and 𝜎1 =
√︁

ℎ𝜇𝑇 (𝐹𝜙,𝑇 )−ℎP(𝜙)
(ℎ𝜇𝑆 (𝐹𝜓,𝑆)−ℎP̃(𝜓))3

𝜎.

Proof : This follows in exactly the same way as the proof of Corollary 2.1 in [32].

This is because in Section 2.2 of [32] it is nowhere used that the defined processes

𝑊,𝐾,𝐾 ′,𝑀 ′ and 𝑀 have underlying probability space ([0, 1),ℬ, 𝜆) and not just an

arbitrary Lebesgue space. For this reason, the proof also holds if we instead work with

(Ω̃× [0, 1), ℱ̃ ⊗ ℬ, 𝜈) as underlying probability space for the process 𝑊 .



Appendix A

Functions of Bounded Variation

In this appendix we briefly review the theory of functions of bounded variation. The

following results are well-known and we refer to e.g. [52] and [9] for a more detailed

discussion on this topic.

Definition A.1. Let [𝑎, 𝑏] ⊆ R and 𝑓 : [𝑎, 𝑏] → C. The variation of 𝑓 is defined as

Var[𝑎,𝑏](𝑓) = sup
𝑛∑︁
𝑖=1

|𝑓(𝑥𝑖)− 𝑓(𝑥𝑖−1)|, (A.1)

where the supremum runs over all finite partitions generated by the points 𝑎 = 𝑥0 < 𝑥1 <

· · · < 𝑥𝑛 = 𝑏. The space

𝐵𝑉 ([𝑎, 𝑏]) = {𝑓 : [𝑎, 𝑏] → C : Var[𝑎,𝑏](𝑓) <∞} (A.2)

is called the space of functions of bounded variation on [𝑎, 𝑏].

The variation measures the oscillation of a function. Note that Var[𝑎,𝑏](·) is a seminorm,

because it is positive, and homogeneous and subadditive in the sense that

Var[𝑎,𝑏](𝑡 · 𝑓) = |𝑡|Var[𝑎,𝑏](𝑓) for every 𝑡 ∈ C, (A.3)

Var[𝑎,𝑏](𝑓1 + 𝑓2) ≤ Var[𝑎,𝑏](𝑓1) + Var[𝑎,𝑏](𝑓2). (A.4)

It is not a norm because Var[𝑎,𝑏](𝑓 + 𝐶) = Var[𝑎,𝑏](𝑓) for every constant 𝐶 ∈ C. Also,

𝐵𝑉 ([𝑎, 𝑏]) is closed under taking products, because

Var[𝑎,𝑏](𝑓1 · 𝑓2) ≤ ‖𝑓2‖∞Var[𝑎,𝑏](𝑓1) + ‖𝑓1‖∞Var[𝑎,𝑏](𝑓2), (A.5)

where ‖𝑓𝑖‖∞ = sup |𝑓𝑖| is the supremum norm.

Furthermore, 𝑓 : [𝑎, 𝑏] → C is constant if and only if Var[𝑎,𝑏](𝑓) = 0. For 𝑓 : [𝑎, 𝑏] → R
it is easy to see that

sup 𝑓 − inf 𝑓 ≤ Var[𝑎,𝑏](𝑓), (A.6)

with equality if and only if 𝑓 is monotone. Therefore, |𝑓 | is bounded if Var[𝑎,𝑏](𝑓) <∞.
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We state some more well-known properties of variation.

Lemma A.2. Let {𝑓𝑛} be a sequence of complex functions on [𝑎, 𝑏] converging pointwise

to 𝑓 : [𝑎, 𝑏] → C. Then Var[𝑎,𝑏](𝑓) ≤ lim inf𝑛Var[𝑎,𝑏](𝑓𝑛).

Lemma A.3. If 𝑓1 : [𝑎, 𝑏] → [𝑐, 𝑑] is monotone and 𝑓2 : [𝑐, 𝑑] → C, then

Var[𝑎,𝑏](𝑓2 ∘ 𝑓1) ≤ Var[𝑐,𝑑](𝑓2). (A.7)

Lemma A.4. Let 𝑓 : [𝑎, 𝑏] → C be integrable. Then

‖𝑓‖∞ ≤ Var[𝑎,𝑏](𝑓) +
1

𝑏− 𝑎

∫︁ 𝑏

𝑎

|𝑓(𝑥)|𝑑𝜆(𝑥). (A.8)

The following lemma is Problem 5.4.1 in [9].

Lemma A.5. Let {𝐼𝑖} be a finite or countable partition of [𝑎, 𝑏] into intervals. Let 𝑓 ∈
𝐵𝑉 ([𝑎, 𝑏]). Then ∑︁

𝑖

Var𝐼𝑖(𝑓) ≤ Var[𝑎,𝑏](𝑓). (A.9)

Theorem A.6. (Jordan decomposition of BV functions) Let 𝑓 : [𝑎, 𝑏] → R. Then 𝑓 is

of bounded variation if and only if it can be represented as 𝑓 = 𝑢 − 𝑣 where 𝑢 and 𝑣 are

two real-valued increasing functions on [𝑎, 𝑏].

Remark A.7. Note that this decomposition is not unique, because we can instead

take 𝑢+ 𝑔 and 𝑣 + 𝑔 for any increasing function 𝑔 : [𝑎, 𝑏] → R. In particular, 𝑢 and 𝑣

can be taken positive by adding a sufficiently large constant.

Remark A.8. It follows from Theorem A.6 that 𝑓 : [𝑎, 𝑏] → C is of bounded variation

if and only if it can be representated as 𝑓 = (𝑢𝑟 − 𝑣𝑟)+ 𝑖(𝑢𝑖− 𝑣𝑖) where 𝑢𝑟, 𝑣𝑟, 𝑢𝑖, 𝑣𝑖 are

real-valued increasing functions on [𝑎, 𝑏].

Since a monotonic function 𝑓 : [𝑎, 𝑏] → R can only have jump discontinuities (i.e.

points 𝑥 ∈ [𝑎, 𝑏] for which 𝐿 = lim𝑦↑𝑥 𝑓(𝑦) and 𝑀 = lim𝑦↓𝑥 𝑓(𝑦) exist, but 𝐿 ̸=𝑀) and

since each such discontinuity can be associated with a rational number, we obtain the

following corollary:

Corollary A.9. Let 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]). Then the set of discontinuities of 𝑓 is at most

countable and consists of jump discontinuities.

Corollary A.10. Let 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]). Then 𝑓 is Lebesgue integrable and Riemann inte-

grable. In fact, 𝑓 ∈ ℒ𝑝([𝑎, 𝑏], 𝜆) holds for all 𝑝 ≥ 1.

Proof : Both statements follow from Corollary A.9 and the fact that 𝑓 is bounded.

We call a function 𝑓 : [𝑎, 𝑏] → R lower semicontinuous if for any 𝑥 ∈ [𝑎, 𝑏] we have

𝑓(𝑥) ≤ lim inf𝑦→𝑥 𝑓(𝑦), i.e. if for all 𝜀 > 0 there exists 𝛿 > 0 such that 𝑓(𝑦) ≥ 𝑓(𝑥)− 𝜀

for all 𝑦 ∈ (𝑥− 𝛿, 𝑥+ 𝛿) ∩ [𝑎, 𝑏].



Appendix A. Functions of Bounded Variation 89

Corollary A.11. Let 𝑓 : [𝑎, 𝑏] → R be of bounded variation. Then it can be redefined on

a countable set to become lower semicontinuous. In that case, 𝑓 takes its minimum on

[𝑎, 𝑏].

Proof : From Corollary A.9 we know that the set 𝑆 of points in [𝑎, 𝑏] where 𝑓 is

discontinuous is at most countable, and that 𝑓 has one-sided limits at every point in

[𝑎, 𝑏]. For each 𝑥 ∈ 𝑆 we redefine 𝑓 as

𝑓(𝑥) = min
(︁
lim
𝑦↑𝑥

𝑓(𝑦), lim
𝑦↓𝑥

𝑓(𝑦)
)︁
. (A.10)

Note that in this way 𝑓 becomes lower semicontinuous. The second statement is a

well-known property of lower semi-continuous functions, see e.g. Theorem 8.1.1 in

[9].

Let 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]). Then from Corollary A.10 we know that 𝑓 ∈ ℒ1([𝑎, 𝑏], 𝜆), so we can

define

‖𝑓‖𝐵𝑉 = Var[𝑎,𝑏](𝑓) + ‖𝑓‖1. (A.11)

Recall that ‖ · ‖1 defined on ℒ1([𝑎, 𝑏], 𝜆) as ‖𝑓‖1 =
∫︀ 𝑏
𝑎 |𝑓 |𝑑𝑥 is a seminorm but not a

norm, because ‖𝑓‖1 = 0 only implies 𝑓 = 0 𝜆-a.e. For that reason, ‖ · ‖𝐵𝑉 defined

on 𝐵𝑉 ([𝑎, 𝑏]) as in (A.11) is also a seminorm but not a norm. This problem can be

circumvented by defining the equivalence relation 𝑓 ∼ 𝑔 if and only if 𝑓 = 𝑔 𝜆-a.e. and

considering the quotient space 𝐿1([𝑎, 𝑏], 𝜆) = ℒ1([𝑎, 𝑏], 𝜆)/ ∼.

Definition A.12. Let 𝑓 ∈ 𝐿1([𝑎, 𝑏], 𝜆). The variation of 𝑓 is defined to be

Var[𝑎,𝑏](𝑓) = inf{Var[𝑎,𝑏](𝑔) : 𝑔 ∈ ℒ1([𝑎, 𝑏]), 𝑔 = 𝑓 𝜆-a.e.} (A.12)

If Var[𝑎,𝑏](𝑓) <∞, then we say that 𝑓 is of bounded variation on [𝑎, 𝑏] and we let̃︂𝐵𝑉 ([𝑎, 𝑏]) = {𝑓 ∈ 𝐿1([𝑎, 𝑏], 𝜆) : Var[𝑎,𝑏](𝑓) <∞}. (A.13)

We usually just write 𝐵𝑉 ([𝑎, 𝑏]) for the space ̃︂𝐵𝑉 ([𝑎, 𝑏]).
Note that Var[𝑎,𝑏](·) in (A.12) is a seminorm on ̃︂𝐵𝑉 ([𝑎, 𝑏]). On the other hand, ‖ · ‖1
induces a norm on 𝐿1([𝑎, 𝑏], 𝜆), so ‖ · ‖𝐵𝑉 : ̃︂𝐵𝑉 ([𝑎, 𝑏]) → [0,∞) defined as

‖𝑓‖𝐵𝑉 = Var[𝑎,𝑏](𝑓) + ‖𝑓‖1, 𝑓 ∈ ̃︂𝐵𝑉 ([𝑎, 𝑏]) (A.14)

is a norm on ̃︂𝐵𝑉 ([𝑎, 𝑏]).
Proposition A.13. The space ̃︂𝐵𝑉 ([𝑎, 𝑏]) equipped with the norm ‖ · ‖𝐵𝑉 is a complex

Banach space.

Proof : See Lemma 5(ii) in [33].

Let us now prove that 𝐵𝑉 ([𝑎, 𝑏]) contains all 𝐶1 functions on [𝑎, 𝑏].
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Proposition A.14. (see (15) in [10]) Let 𝑓1 ∈ 𝐵𝑉 ([𝑎, 𝑏]) and 𝑓2 ∈ 𝐶1([𝑎, 𝑏]). Then

Var[𝑎,𝑏](𝑓1𝑓2) ≤ ‖𝑓2‖∞Var[𝑎,𝑏](𝑓1) +

∫︁ 𝑏

𝑎

|𝑓1(𝑠)𝑓 ′2(𝑠)|𝑑𝑠. (A.15)

Proof : From the Mean Value Theorem it follows that

Var[𝑎,𝑏](𝑓1𝑓2) = sup
𝑛∑︁
𝑖=1

|𝑓1(𝑥𝑖)𝑓2(𝑥𝑖)− 𝑓1(𝑥𝑖−1)𝑓2(𝑥𝑖−1)|

≤ sup
𝑛∑︁
𝑖=1

|𝑓2(𝑥𝑖)||𝑓1(𝑥𝑖)− 𝑓1(𝑥𝑖−1)|+ |𝑓1(𝑥𝑖−1)||𝑓2(𝑥𝑖)− 𝑓2(𝑥𝑖−1)|

≤ ‖𝑓2‖∞Var[𝑎,𝑏](𝑓1) + sup
𝑛∑︁
𝑖=1

|𝑓1(𝑥𝑖−1)𝑓
′
2(𝜉𝑖)||𝑥𝑖 − 𝑥𝑖−1|

= ‖𝑓2‖∞Var[𝑎,𝑏](𝑓1) +

∫︁ 𝑏

𝑎

|𝑓1(𝑠)𝑓 ′2(𝑠)|𝑑𝑠,

where the last step follows by definition of the Riemann integral.

Corollary A.15. Let 𝑓 ∈ 𝐶1([𝑎, 𝑏]). Then 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]) and

Var[𝑎,𝑏](𝑓) ≤
∫︁ 𝑏

𝑎

|𝑓 ′(𝑠)|𝑑𝑠. (A.16)

Proof : Apply Proposition A.14 with 𝑓1 ≡ 1 and 𝑓2 = 𝑓 .

Corollary A.16. For any finite Borel measure 𝜇 on [𝑎, 𝑏], the space 𝐵𝑉 ([𝑎, 𝑏]) is dense

in (𝐿1(𝜇), ‖ · ‖1,𝜇).

Proof : The result follows from the previous corollary combined with the fact that

𝐶1([𝑎, 𝑏]) is dense in ℒ1(𝜇).

As a preparation for proving the existency result by Lasota and Yorke in Section

3.3, we also need the following two important theorems:

Theorem A.17. (Yorke’s Inequality) Let 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]) and [𝑐, 𝑑] ⊆ [𝑎, 𝑏]. Then

Var[𝑎,𝑏](𝑓1[𝑐,𝑑]) ≤ 2Var[𝑐,𝑑](𝑓) +
2

𝑑− 𝑐

∫︁ 𝑑

𝑐

|𝑓(𝑠)|𝑑𝑠. (A.17)

Proof : For any 𝜉 ∈ [𝑐, 𝑑] we have

Var[𝑎,𝑏](𝑓1[𝑐,𝑑]) ≤ Var[𝑐,𝑑](𝑓) + |𝑓(𝑐)|+ |𝑓(𝑑)|
≤ Var[𝑐,𝑑](𝑓) + |𝑓(𝑐)− 𝑓(𝜉)|+ |𝑓(𝑑)− 𝑓(𝜉)|+ 2|𝑓(𝜉)|
≤ 2Var[𝑐,𝑑](𝑓) + 2|𝑓(𝜉)|.

We can choose 𝜉 such that |𝑓(𝜉)| ≤ 1
𝑑−𝑐
∫︀ 𝑑
𝑐 |𝑓(𝑠)|𝑑𝑠 by the Mean Value Theorem for

integrals, which gives the result.
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Theorem A.18. (Helly’s First Theorem) Let 𝒞 be a collection of infinitely many func-

tions 𝑓 ∈ 𝐵𝑉 ([𝑎, 𝑏]) for which there exists 𝑀 > 0 such that

‖𝑓‖∞ ≤𝑀, Var[𝑎,𝑏](𝑓) ≤𝑀, for all 𝑓 ∈ 𝒞.

Then there exists a sequence {𝑓𝑛} ⊆ 𝒞 that converges pointwise to some 𝑓* ∈ 𝐵𝑉 ([𝑎, 𝑏])

that satisfies Var[𝑎,𝑏](𝑓
*) ≤𝑀 .



Appendix B

Some Results from Functional

Analysis

In this appendix we state some results from Functional Analysis that will be needed

in Chapters 3 and 4.

B.1 The Kakutani-Yosida Theorem

The next theorem can be found in e.g. Section 2.2 of [9].

Theorem B.1. (Kakutani-Yosida) Let 𝑋 be a Banach space and 𝑃 : 𝑋 → 𝑋 be a

bounded linear operator. Assume there exists 𝑐 > 0 such that ‖𝑃 𝑛‖ ≤ 𝑐 for each 𝑛 ∈ N
Moreover, if for any 𝑓 ∈ 𝐴 ⊆ 𝑋, the sequence {𝑓𝑛} given by

𝑓𝑛 =
1

𝑛

𝑛∑︁
𝑘=1

𝑃 𝑘𝑓 (B.1)

contains a subsequence {𝑓𝑛𝑘} which converges weakly in 𝑋, then for any 𝑓 ∈ 𝐴,

1

𝑛

𝑛∑︁
𝑘=1

𝑃 𝑘𝑓 → 𝑓 ∈ 𝑋 (B.2)

(convergence in norm) and 𝑃 (𝑓) = 𝑓 .

B.2 Quasi-Compact Operators

Let (𝑉, ‖ · ‖𝑉 ) be a complex Banach space and 𝑃 : 𝑉 → 𝑉 a bounded linear operator.

Definition B.2. Let 𝐵1(0) = {𝑓 ∈ 𝑉 : ‖𝑓‖ < 1} denote the open unit ball in 𝑉 . We say

that 𝑃 is compact if the closure of 𝑃 (𝐵1(0)) is compact in 𝑉 .
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Compact operators are an important class of bounded linear operators in Functional

Analysis. We have the following related notion of quasi-compactness of a bounded

linear operator.

Definition B.3. We say that 𝑃 is quasi-compact if there exists a compact operator

𝑅 : 𝑉 → 𝑉 and 𝑘 ∈ N such that

‖𝑃 𝑘 −𝑅‖𝑉 < 1. (B.3)

There are several equivalent definitions for the quasi-compactness of a bounded linear

operator. One of them is formulated as follows (see [9, 21, 23]).

Theorem B.4. The operator 𝑃 is quasi-compact if and only if there are bounded linear

operators {𝑄𝜆 : 𝜆 ∈ Λ} and 𝑆 on 𝑉 such that

𝑃 𝑛 =
∑︁
𝜆∈Λ

𝜆𝑛𝑄𝜆 + 𝑆𝑛, for all 𝑛 ∈ N,

𝑄𝜆𝑄𝜆′ = 0 if 𝜆 ̸= 𝜆′,

𝑄2
𝜆 = 𝑄𝜆 for all 𝜆 ∈ Λ,

𝑄𝜆𝑆 = 𝑆𝑄𝜆 = 0 for all 𝜆 ∈ Λ,

𝑄𝜆𝑉 = 𝐸(𝜆) for all 𝜆 ∈ Λ,

𝜌(𝑆) < 1,

where Λ is the set of eigenvalues of 𝑃 with modulus 1, 𝐸(𝜆) = {𝑓 ∈ 𝑉 : 𝑃𝑓 = 𝜆𝑓} is

the eigenspace of 𝑃 corresponding to 𝜆 ∈ Λ, and 𝜌(𝑆) = lim𝑛→∞ ‖𝑆𝑛‖1/𝑛𝑉 is the spectral

radius of 𝑆.

The next theorem gives a useful sufficient condition for a bounded linear operator to

be quasi-compact.

Theorem B.5. (Ionescu-Tulcea and Marinescu Theorem) Let (𝑉, ‖ ·‖𝑉 ) and (𝑊, ‖ ·‖𝑊 )

be two complex Banach spaces such that 𝑉 ⊆ 𝑊 . Let 𝑃 : 𝑉 → 𝑉 be a linear operator that

is bounded with respect to both ‖ · ‖𝑉 and the restriction of ‖ · ‖𝑊 to 𝑉 . Assume that

1. If 𝑓𝑛 ∈ 𝑉 for 𝑛 ∈ N, 𝑓 ∈ 𝑊 , lim𝑛→∞ ‖𝑓𝑛 − 𝑓‖𝑊 = 0 and ‖𝑓𝑛‖𝑉 ≤ 𝐾 for 𝑛 ∈ N,
then 𝑓 ∈ 𝑉 and ‖𝑓‖𝑉 ≤𝑀 , where 𝑀 is a constant,

2. sup𝑛≥0{‖𝑃 𝑛𝑓‖𝑊/‖𝑓‖𝑊 : 𝑓 ∈ 𝑉, 𝑓 ̸= 0} <∞,

3. There exist 𝑘 ∈ N, 𝜌 ∈ (0, 1) and 𝐿 > 0 such that

‖𝑃 𝑘𝑓‖𝑉 ≤ 𝜌‖𝑓‖𝑉 + 𝐿‖𝑓‖𝑊 (B.4)

for all 𝑓 ∈ 𝑉 ,

4. If 𝑈 ⊆ 𝑉 is bounded w.r.t. ‖ · ‖𝑉 , then the closure of 𝑃 𝑘𝑈 w.r.t. ‖ · ‖𝑊 is compact

in (𝑊, ‖ · ‖𝑊 ).
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Then 𝑃 : (𝑉, ‖ · ‖𝑉 ) → (𝑉, ‖ · ‖𝑉 ) is quasi-compact, the set Λ of eigenvalues of 𝑃 with

modulus 1 is finite and for each 𝜆 ∈ Λ the eigenspace 𝐸(𝜆) associated to 𝜆 is finite-

dimensional.

B.3 The Arzelà-Ascoli Theorem

As usual, write 𝐶0([0, 1]) for the space of all continuous functions on [0, 1] with values

in C or R. We equip 𝐶0([0, 1]) with the supremum norm ‖𝑓‖∞ = sup𝑥∈[0,1] |𝑓(𝑥)|. We

say that a set 𝑆 ⊆ 𝐶0([0, 1]) is bounded if there exists 𝑀 ∈ (0,∞) such that ‖𝑓‖∞ ≤𝑀

for all 𝑓 ∈ 𝑆. Moreover, we call 𝑆 equicontinuous if for each 𝜀 > 0 there exists 𝛿 > 0

such that for 𝑥, 𝑦 ∈ [0, 1]:

|𝑥− 𝑦| < 𝛿 ⇒ sup
𝑓∈𝑆

|𝑓(𝑥)− 𝑓(𝑦)| < 𝜀. (B.5)

The following famous theorem can be found in e.g. [51].

Theorem B.6. (Arzelà-Ascoli) If 𝑆 ⊆ 𝐶0([0, 1]) is bounded and equicontinuous, then for

any sequence {𝑓𝑛} ⊆ 𝑆 there exists a subsequence {𝑓𝑛𝑘} that converges w.r.t. ‖ · ‖∞ to

some 𝑓* ∈ 𝐶0([0, 1]).

The Arzelà-Ascoli Theorem can also be extended to general compact metric spaces

(see e.g. Section 4.6 in [23]).
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