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Abstract

If m denotes the number of digits in the regular continued fraction expansion that can
be determined from n digits in the decimal expansion, then Lochs’ Theorem states
that the fraction 7> converges Lebesgue almost surely to a fraction of two entropies as
n — oo. These are the entropies of the interval maps that generate these expansions.
Lochs’ Theorem has been generalized to pairs of interval maps that both belong to a
class of piecewise monotonic transformations that generate expansions and that admit
an invariant density with suitable ergodic properties. The first aim of this thesis is to
review sufficient conditions on interval maps to belong to this class. For this, we first
of all recover the famous existence result for invariant densities by Lasota and Yorke
for expanding piecewise monotonic interval maps. As an example of a nonexpanding
piecewise monotonic interval map, we also consider the Liverani-Saussol-Vaienti (LSV)
map and provide a new proof of the already known result that such a map admits an
invariant probability density if and only the corresponding parameter lies in (0, 1).
Motivated by the practical use of beta encoders, one of the main goals in this thesis
is to extend Lochs’ Theorem to expansions generated by a class of random piecewise
monotonic interval maps. We review sufficient conditions on random interval maps to
belong to this class. For two random interval maps 7" and S in this class, we show that,
if m denotes the number of digits in the S-expansion that can be determined from n
digits in the T-expansion, then, roughly speaking, the fraction * converges Lebesgue
almost surely to a fraction of two fiber entropies as n — oco. As a second important
goal, we prove that the skew product of an LSV map with parameter in (0,1) and
another LSV map with parameter in [1, 00) and with underlying Bernoulli shift admits
an invariant probability density.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Lochs’ Theorem

It is a common known fact that each real number z € [0,1) has a decimal expansion

v=D_ Tov A = dy(x) €{0,1,...,9} for k€N, (1.1)
k=1

which is denoted as x = 0.dyds . .. usually. Such a representation of x is unique, except
for some real numbers for which the tail of the sequence can be expressed either with
trailing 0’s or 9’s. We can generate the decimal expansions by iterating the decimal
map 7 :[0,1) — [0,1) given by

Tr =10z — dy(z), (1.2)
where
0 ifzxe [O, %0)

1 ifeeli, ),
dl(I): : : [10 10) (13)

9 ifze (1)

102

. o . . di(x T .
(see Figure 1.1). Indeed, rewriting (1.2) gives x = 11(0) + T2 and setting d, = d,(z) =

dy(T" ') for each n > 1 gives after n iterations

d1 d2 d Tx

S T ) 1.4
S TR TR TV T (14)
Since 0 < Tz < 1, we obtain
“~ d
2 1_(;ch —x as n — 0o, (1.5)
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Figure 1.1: The decimal map T Figure 1.2: The Gauss map S

which is the decimal expansion of z in (1.1).1

Besides decimal expansions there are many more possible representations of real num-
bers in terms of a sequence of integers. As a second example, it is known (see e.g.
[18]) that each irrational = € (0, 1) can be represented in a unique way as

T = , ar = ai(x) € N for each k € N, (1.6)

az + ———
as + B
which is referred to as the reqular continued fraction (RCF) expansion of z. These

expansions can be generated from iterating the Gauss map S :[0,1) — [0,1) given by

S0 =0 and for x # 0
1 1
Sr=—mod 1= oo ar(z), (1.7)

X

where

n ifxe(%ﬂ,%] and n > 2

al(x):{ 1 ifze(1,1), 18)

(see Figure 1.2). Namely, setting a, = a,(z) = a1(S" 'z) for each n > 1, we obtain
from (1.7) that

= . (1.9)

1

as + '-+m

'The map T does not generate expansions with trailing 9’s. Instead, defining d; in (1.3) as di(z) = i if
x € (5, 5] with 7 € {0,...,9} yields expansions with no trailing 0’s.
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From this it can be shown (see e.g. Section 1.3 in [18]), writing

1
0;aq,...,a,] = N , (1.10)
a; +

1 . 1

az+ -+ —

an

that

0;a1,...,a,] = x as n — 0o, (1.11)

which is the RCF expansion of z in (1.6).2

It is natural to ask which of the two previous expansions is more efficient at representing
real numbers. In other words, which of the two sequences in (1.5) and (1.11) converges
faster to x as n — oo? The following question is related to this problem: Suppose
we know only the first n decimal digits of an unknown irrational number z € (0,1).
How many digits in the RCF expansion of = does this determine? In 1964, Lochs [46]
proved a surprising and elegant result answering this question for the limit n — oo.

di ()
10%

yn + 107™. Then the interval A,(x) = [yn, 2,) consists of x and all other real numbers

and z, =

More precisely, for each irrational z € (0,1) and n € N, let v, = > }7_;

of which the decimal expansion starts with the string dy(z),...,d,(x). Similarly, for
each m € N, let 7, = [0;a1(x),...,am(x)] and s, = [0;a1(z), ..., am-1(x), am(z) + 1].
Then, for m even (resp. m odd), one can derive that the interval B,,(z) = [rm, Sm)
(resp. Bp(x) = (Sm,Tm]) consists of z and all other real numbers of which the RCF
expansion starts with the string ai(x),. .., an,(x). Putting

m(n,z) =sup{m € N: A,(z) C Bp(x)}, (1.12)

Lochs proved [46] that, for Lebesgue almost every irrational x € (0, 1),

lim m(n, ) _ Glog 2;0g 10

n—o00 n s
Therefore, roughly 97 RCF digits are determined by 100 decimal digits. This indicates
that the RCF expansion is slightly more efficient compared to the decimal expansion
at representing irrational numbers.

= 0.97027- - . (1.13)

1.1.2 Extension to expansions generated by other interval maps

Naturally, one can ask how the result by Lochs in (1.13) can be generalized to any two
known expansions of numbers. For this, let us analyse Lochs’ result in more detail.
It appears that the right-hand side of (1.13) is the fraction of two entropies. As we
review in Section 2.8, the entropy of a map is a nonnegative constant that measures

2The RCF expansion in (1.6) holds for irrational = € [0,1) and consists of infinitely many digits ax. In
Section 4 of [31] it is shown that each rational z € (0,1) has a finite RCF expansion of the form in (1.10). So
a real number is rational if and only if it has an RCF expansion that is finite.
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the average uncertainty about where the map moves the points in the system. The
entropy h(T) of the decimal map T satisfies
1
h(T) = lim ——log A\(A,(z)) = log 10, A-a.e., (1.14)

n—oo 1

where A denotes the Lebesgue measure on [0,1). As we shall see, this is because (i) A
is invariant with respect to T in the sense that for each subinterval [a,b) C [0,1) we
have A(T~'[a,b)) = A([a,b)),* which we see from

9 : : 9 : :
+1 b4t a+1 b+
71 — ATt 2Ty - AT 2T g 1.1

AT [e,0) A(U()[ 10 ' 10 )) Z;Aq 10 ' 10 ))=b-a (13
and (ii) A is ergodic with respect to T, meaning that T7'A = A implies A\(A4) € {0,1}
for each Borel set A C [0,1). (For a proof of (ii), see e.g. [18]) On the other hand, it is
easy to see that A is not invariant with respect to the Gauss map S. However, it can
be shown (see e.g. [18]) that the Gauss measure pg on [0,1) given by

1 1
Y= 4 A€ [0,1) Borel 1.1
Hal4) /Alog21+x T, C [0,1) Bore (1.16)

is invariant with respect to S, and moreover that ug is ergodic with respect to S. As
a consequence, one can derive (see e.g. [18]) that the entropy h(S) of S satisfies

1
= lim —~1 By(x)) = -a.e. 1.1
h(S) = lim —loguc(Ba(z) = giog.  Hoae (1.17)

In [16], Dajani and Fieldsteel generalize Lochs’ Theorem to expansions which are
generated by surjective interval maps R : [0,1) — [0,1) that satisfy the following
conditions:

1. There exists a finite or countable partition of [0,1) into intervals such that R
restricted to each interval is strictly monotonic and continuous,

2. There exists a Borel probability measure p on [0,1) that is invariant and ergodic
w.r.t. R and is absolutely continuous w.r.t. A such that

1 dp
aM P — < — < M. 1.1
0 s s (1.18)
Then, if Ry and Rs are any two such maps, it is shown in [16] that the number of digits

Mg, r,(n,x) in the Ro-expansion of x that can be determined from knowing the first
n digits in the R;-expansion of z satisfies
lim MR1,Ry (n,x) h‘<R1)

Jim " = h(F)’ A-a.e., (1.19)

where h(R;) (resp. h(Rz)) denotes the entropy of Ry (resp. Rs). It is clear that the
decimal expansions generated by 7" and the RCF expansions generated by S belong

3 As we shall see in Section 2.1, this is equivalent to how T-invariance of X is defined in Definition 2.1.
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to this class, and it appears (see e.g. [16]) that almost all known expansions on [0,1)
generated by an interval map are members of this class.

1.1.3 Extension to expansions generated by random interval maps

So far we considered expansions generated by iterating points under a single interval
map. Instead, let us now consider a family of interval maps {7} : [0,1) — [0,1)},er
where E is some index set. For given w = (wy,ws,...) € EY and z € [0,1), we then
consider the orbit

= Ty o T,Thx— Ty,T,, T, x— . ... (1.20)

In other words, at time n we apply the transformation 7T, determined by the choice
of w € BN, and if we put a non-trivial probability measure P on EN we can interpret
(1.20) as iterating points under a random system of interval maps.

Let us consider an example for which orbits as in (1.20) generate expansions of points
for each w € EN. For that, let E C (1, 00) such that v = inf £ > 1, and define for each
g € E the map T : [0,1) — [0,1) as

Tpx = Bz mod 1 = Bz — b(S, z), (1.21)

where

b(ﬁ,x):{i if:re[%,?) and i € {0,1...,(8] —1}, 1.22)

18] ifxe [,
Fix (81,82,...) € EN. For each z € [0,1), define by(x) = b(B1,7) and by(z) =

b(Bi, Ts,_, - Tpx). Then (1.21) gives v = & + 2% Similarly, Tp,o = & 4 22727
and after n iterations we see that
bl bg bn Tﬁ tee Tﬁlx
= b + 1.23
Br o Bif2 Pr-Bn  Brbn (1.23)
We have % < %n — 0 as n — o0, so for each = € [0,1) we obtain the expansion
— b
x:Zﬁ, b = bi(x) €{0,1,...,|Bk]} for each k € N. (1.24)
Pl | k

As a motivation to generalize Lochs’ Theorem to expansions such as (1.24) that are
generated by a system of interval maps, let us consider a practical example. It is well
known that each real number z € [0,1) has a binary expansion

> a
r = Z 2—2, ap = ai(x) € {0,1} for k € N. (1.25)
k=1

Just like the decimal expansion, such a representation is for each = essentially unique
and can be generated by iterating the map Tx = 2x mod 1. On the other hand, for
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S > 1 non-integer, it is known (see [14, 24, 62]) that Lebesgue almost every z € [0,1)
has a continuum number of §-expansions of the form

@7

Two well-known transformations that generate such representations are the so-called

= L bp = br(z) € {0,1,..., 3]} for each k € N. (1.26)
k=1

greedy [-transformation in (1.21) and the lazy S-transformation (see e.g. [17]), and
a way to obtain other representations in a dynamical way is by superimposing these
two transformations (see e.g. [17] for details). So-called beta encoders exploit the
redundancy of the representations of the form (1.26) to encode information in analog-
to-digital conversion more robustly compared to using binary expansions [67]. In
practice, however, due to noise the value of § tends to vary while iterating. So if, for
example, points are iterated under the greedy S-transformation from (1.21), we get
in practice expansions of the form in (1.24) instead of (1.26). It is therefore relevant
to ask how much information (e.g. in terms of the binary digits in (1.25)) can be
determined once we know n digits of the expansion in (1.24). An extension of Lochs’
Theorem to expansions generated by random interval maps would be helpful to address
this problem.

1.2 Thesis Overview

In the next chapter we discuss the concepts and results in Ergodic Theory that will be
relevant for the rest of this thesis. Prior knowledge of Ergodic Theory is not required,
but we assume the reader has a basic understanding of Measure Theory.

Motivated by the extension of Lochs Theorem in [16] discussed in Subsection 1.1.2,
we review in Chapter 3 results on the existence of invariant densities for piecewise
monotonic transformations on the unit interval I: For a measurable transformation
T:1—1I,wesayh e L'(\) (with X the Lebesgue measure on I) is an invariant density
for T if

/ hd\ = / hd, for all A C I Borel. (1.27)
A T-1A

We also say that in this case the measure y on I given by pu(A) = [, hd) is an absolutely
continuous invariant measure (acim for short, or acipm if u is a probability measure)
for T. We review in Section 3.3 the famous result by Lasota and Yorke [43] that a
transformation 7' : I — I which is piecewise C? and monotonic with respect to some
finite partition and is ezpanding (i.e. inf,cr |T'(z)| > 1) admits an invariant probability
density. Moreover, we discuss in Section 3.4 among other results that an expanding
piecewise monotonic interval map 7" admits nonzero but finitely many ergodic acipm’s
(originally proven in [44]). We shall see in Section 3.5, if we furthermore assume that T
admits a suitable covering property as for example in the so-called Folklore Theorem,
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that 7' in that case admits a unique acipm p that moreover satisfies (1.18) and is
ergodic.

As an example of a nonexpanding piecewise monotonic interval map, we consider in
Section 3.6 the Liverani-Saussol-Vaienti (LSV) map T, : I — I with parameter o €
(0,00), defined as

Tolz) = {;(61:2%&) iigo’ﬂ’ (1.28)

(see Figure 3.4). It is well-known that T, admits an acipm if o € (0,1) (see [45]) and
an infinite o-finite acim if a > 1 (see e.g. [55]). We provide a new proof of these results
by considering the expanding piecewise monotonic transformation obtained from 7,
by inducing w.r.t. the first passage time in the interval (3, 1]. This method is based on
Section 3 in [35].

As opposed to the deterministic setting in Chapter 3, we consider in Chapter 4 the
setting in which points are iterated under a random piecewise monotonic interval map.
Such a system is given by a family T of piecewise (sufficiently smooth) monotonic
transformations on I and a probability law that describes which of these maps is
chosen at each time step. In Sections 4.1-4.3, we take T'= {1} : I — I};cg with E a
Polish space (i.e. complete, separable metric space) which we assume to be countable
most of the time, and we put a non-trivial probability measure P on the Borel sets in
EN. We then consider the skew product

Fop:ENxT—ENxI (w2)— (0w T,x), (1.29)

where w = (w1, ws,...) and o : EN — EY is the left shift on EY, i.e. ow = (wo,ws,...).
Then iterating points (w,z) under F, r yields (after projecting on I) random orbits of
the form in (1.20). Similar as in Chapter 3, we review results on the existence of an
invariant density h € L'(P ® M) for F,, meaning in this case that

/ hdP @ X = / hdP @ X, for all A C EYN x I measurable. (1.30)
A F 1A

In Section 4.2 we discuss this for the setting that P = 7#®Y with 7 a probability measure
on E. In this case, the map T;,, applied at time n € N is randomly chosen from {7} };cr
independently from the maps that are applied at the other time points, and according
to the same distribution 7 for all time points. This i.i.d. setting was first studied
by Morita [47, 49] and Pelikan [53], who independently showed that there exists an
invariant density for F, r if £ is at most countable and the system is ezpanding on
average in the sense that

3 ) (1.31)

J€E infacé] ‘T’]/<x)|

We review this in Section 4.2 as well as some ergodic properties of these invariant
densities similar to the deterministic setting. Moreover, we consider in Section 4.4 an
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extension of these results to the case that P is described by a Markov chain and review
results from [40] and [28]. For both the i.i.d. case and Markov case, we shall see that if
{T;};cE satisfies a suitable random covering property, then an invariant density h for
F,r, if it exists, is (up to normalization) unique and satisfies

1
aM i — < h< M. 1.32
>0 1 Sh< (1.32)

In Section 4.3 we consider the random i.i.d. compositions of two LSV maps T, and T
given by (1.28), where o € (0,1) and g > 1. Letting p € (0,1) and setting £ = {«, 5}
with () = p and #(8) = 1 — p, note that (1.31) is not satisfied because T/.(0) =
T5(0) = 1. However, unlike the p = 0 case we can still show that there exists an
invariant density for the skew product F, r in this case by generalizing the proof for
the deterministic case (i.e. p = 1) discussed in [45]. Moreover, we propose a second
way to prove this for p € (0,1] by extending the method of inducing w.r.t. the first
passage time from Section 3.6.

In the last section of Chapter 4, we consider the setting where (2, F,P) is some abstract
probability space and T'= {7}, : I — [},eq is a family of piecewise monotonic interval
maps. Furthermore, we let ¢ : Q@ — Q be measurable and invertible (as opposed to the
left shift ¢ on EY) and consider the skew product

For:QxI—QxI, (w,z)— (pw, T,z). (1.33)

We review the result by Buzzi [12] that if the system is in a certain way expanding on
average (w.r.t. P), then (under some additional assumptions on ¢ and T') there exists
an invariant density h € L*(P ® \) for F,,r (in the sense of (1.30), replacing F, 7 and
EN with F, 7 and Q, respectively). Furthermore, we discuss the result in [13] that this
is (up to normalization) the only invariant density for F, p if T in addition satisfies a
suitable covering property.

For skew products of the form in (1.33), Abramov and Rokhlin [1] introduced the
notion of fiber entropy. For this, they assume there exists a Borel probability measure
p on (in this case) I that for P-a.a. w € Q is invariant w.r.t. T, i.e. p(T.;1A) = p(A) for
all A C I Borel. In Chapter 5 we generalize this to the weaker assumption that there
exists a family of finite Borel measures {p, }weq on I that is equivariant w.r.t. (T, ),
meaning that

pu(T M A) = pywy(A) for all A C I Borel (1.34)

for P-a.a. w € ). In Sections 5.1 we give conditions under which such a family {p, }weq
exists. In particular, we shall see that for each invariant density h € L'(P® \) for F, r
the family {p,}weq given by p,(A) = [, h(w,z)dA(x) is equivariant w.r.t. (T, ¢) if ¢
is invertible. We define the fiber entropy in Section 5.2 whose construction is similar
to the construction of the “ordinary” (Kolmogorov-Sinai) entropy that we review in
Section 2.8. Moreover, we give in Sections 5.3 and 5.4 the analogous theorems for
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fiber entropy of the classical Kolmogorov-Sinai Theorem and the Shannon-McMillan-
Breiman Theorem that we review in Section 2.8 as well.

In Sections 6.2 and 6.3 we provide the proof from [16] that shows the extension (1.19)
of Lochs’ Theorem to the piecewise monotonic interval maps considered in Subsec-
tion 1.1.2. We shall see that this proof is based on the Shannon-McMillan-Breiman
Theorem, a result from which e.g. (1.14) and (1.17) (concerning the original Lochs
Theorem) follow. Also, we discuss that any two piecewise monotonic interval maps
studied in Section 3.5 satisfy (1.19), and we consider a central limit result from [32]
associated with (1.19).

Finally, in Section 6.4 we formulate and prove a generalization of Lochs’ Theorem to a
class of random piecewise monotonic interval maps being of the form as in Chapter 4.
We suppose that a member of this class has an invariant density A for the corresponding
skew product (either of the form (1.29) or (1.33)) such that h satisfies (1.32). We shall
see that this makes the class a natural generalization of the class of deterministic
interval maps considered in Subsection 1.1.2. For two random interval maps 7T and
S in this class, we show that, if m denotes the number of digits in the S-expansion
that can be determined from n digits in the T-expansion, then, roughly speaking, the
m

fraction 7' converges with probability 1 to a fraction of fiber entropies as n — oc.
Furthermore, we shall consider a corresponding central limit result.



Chapter 2
Preliminaries from Ergodic Theory

In this chapter we give a short introduction to Ergodic Theory and discuss the concepts
that will be relevant for the rest of this thesis. Included are some proofs for convenience
of the reader and some common examples. However, we refer to [10, 15] and Chapter
3 of [9] for a detailed and more complete introduction to Ergodic Theory.

In short, Ergodic Theory studies the long-term average behavior of systems over time.
The states of the system under consideration form a space X, which we assume to be
a probability space (X, B, u), and the evolution is given by a measurable tranforma-
tion T : X — X. Furthermore, we usually suppose that the evolution T is measure
preserving, which is the topic of the next section.

2.1 Measure Preserving Transformations

Definition 2.1. Let (X, B, u) be a probability space and let T : X — X be measurable.
The map T is called measure preserving with respect to p if p(T1A) = u(A) for all
A € B. In this case we also say that p is invariant with respect to T.

The following proposition is very useful for verifying if a transformation is measure
preserving.

Proposition 2.2. (see e.g. Theorem 2.1.2 in [9]) Let T be a measurable transformation
on a probability space (X, B, u). Let A C B be a w-system that generates B. If u(T—1A) =
wu(A) for all A € A, then T is measure preserving with respect to p.

Example 2.3. Since the collection of all subintervals [a,b) C [0,1) forms a 7-system
that generates the Borel o-algebra on [0, 1), we see from (1.15) that the decimal map
Tz = 10z mod 1 is measure preserving with respect to the Lebesgue measure A on [0, 1).
In the same way one can show that for every N > 2 integer the N-adic transformation
T:[0,1) = [0,1) given by Tz = Nz mod 1 is measure preserving with respect to .

10



Chapter 2. Preliminaries from Ergodic Theory 11

Example 2.4. The Gauss map S from (1.7) is measure preserving with respect to the
Gauss measure pg from (1.16) (see e.g. [18]).

Example 2.5. (Bernoulli shifts) Let £ C N, and let Qg = EY (or Qg = EZ) be the
space of one-sided (or two-sided) sequences in E. Furthermore, let F be the o-algebra
on Qp generated by all cylinder sets {w € Qp : w; = zj,wWit1 = Zit1,. -, Witn = Zign )
where i € N (or Z) and z;, ..., zi4n, € E. We consider a probability vector p = (p;);eE,
ie.pj>0forallje FEand ), pp; =1. By Carathéodory’s Extension Theorem, we
obtain a measure P on F by specifying P on the cylinders as

PH{w e Qp 1w = 2, ... ,Witn = Zign}) = Dz Darrn- (2.1)

Let 0 : Qp — Qg be the left-shift on Qp, i.e. ow = @ where ©, = w,1. It is easy
to verify that o is measure preserving w.r.t. P by applying Proposition 2.2 to the
collection of all cylinder sets, which is a m-system on Q.

Example 2.6. (Markov shifts) Let (g, F,0) be as in the previous example. We
assume FE is finite, say E = {1,...,r}. Let W = (WW,;) be a stochastic r x r matrix,
and ¢ = (q1,...,q-) a probability vector such that ¢/W = ¢. Again by Carathéodory’s
Extension Theorem, we obtain a measure P on F by specifying P on the cylinders as

]P)({w €Qp:w = Ziy ooy Witn = Zz—i—n}) = quWZZ‘ZH_l W

Zi4+n—1%i4+n "

(2.2)

Again, one can derive that the left-shift o on Qg is measure preserving w.r.t. P by
applying Proposition 2.2 to the w-system consisting of all cylinder sets.

The following theorem gives an equivalent formulation of Definition 2.1.

Theorem 2.7. (see e.g. Theorem 3.1.2 in [9]) Let (X, B, 1) be a probability space and let
T : X — X measurable. Then T is measure preserving with respect to p if and only if

/deM:/XfOTd“ (2.3)

for any f € LY(p).

2.2 Ergodicity

Let (X,B,u) be a probability space and let T : X — X be measurable. Suppose
T7'B = B for some B € B. Then T7}(X\B) = X\B, so the behavior of T splits into
T'|p and T'|x\p. In the following definition, T" is indecomposable p-a.e.

Definition 2.8. Let T' be a measurable transformation on a probability space (X, B, u).
Then T is said to be ergodic w.r.t. pu if for every A € B such that T'A = A we have
wu(A) € {0,1}. In this case, we also say that the pair (T, u) is ergodic.

It can be shown (see e.g. [15]) that the N-adic transformations from Example 2.3 are
ergodic w.r.t. A and that the Gauss map from Example 2.4 is ergodic w.r.t. the Gauss
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measure. Moreover, the left shift o from Example 2.5 is ergodic w.r.t. the probability
measure given by (2.1) and o is ergodic w.r.t. the probability measure given by (2.2)
if and only if the Markov chain defined by the stochastic matrix W is irreducible (see
e.g. Theorem 7.2.8 in [65]).

In general, it is difficult to determine ergodicity from Definition 2.8. In some cases,
the following theorem may be useful.

Theorem 2.9. (see e.g. Theorem 3.2.3 in [9]) Let (X, F,u) be a probability space, and
T : X — X be measure preserving w.r.t. . The following statements are equivalent:

(i) (T, ) is ergodic,
(ii) If f : X — C is measurable and (f o T)(xz) = f(x) for u-a.e. x, then f is constant
-a.e.,

(iii) If f € L*(p) with (f o T)(z) = f(x) for p-a.e. z, then f is constant p-a.e.

Theorem 2.10. Let 11 and ps be probability measures on a measurable space (X, B), and
let T : X — X be measure preserving with respect to 1 and pio.

1. If (T, u1) is ergodic and po is absolutely continuous w.r.t. py, then py = .

2. If (T, 1) and (T, pa) are ergodic, then either py = ps or py and pe are mutually
singular.

Proof: For the proof of the first part we refer to Lemma 3.2.5 in [9] and for the proof
of the second part we refer to Theorem 3.2.5 in [9]. O

2.3 Birkhoff’s Ergodic Theorem

Let T be a measurable transformation on a probability space (X, B, ). For a nontrivial
A € B, we can ask with what frequency the points of an orbit {x, Tz, T?z, ...} occur in
A. Birkhoff’s (Pointwise) Ergodic Theorem indicates the asymptotic behavior of the
relative frequency %E?:_OI 14(T'x) of points of {x, Tx,T?z,...} in A.

Theorem 2.11. (Birkhoft’s Ergodic Theorem) Let T be a measure preserving transfor-
mation on a probability space (X, B, ). Then for any f € L*(p),

lim 23" f(T) = £(a) (2.4)

n—oo 1, 4

exists ji-a.e. and satisfies f*o'l' = f* p-a.e., and fX frdu = fX fdu. If furthermore (T 1)
is ergodic, then f* = [, fdu is constant p-a.e.
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Birkhoft’s Ergodic Theorem is widely used and there are different proofs of this very
important theorem (see Section 3.3 in [9] and references therein). The last statement
of Theorem 2.11 follows from Theorem 2.9.

From Birkhoft’s Ergodic Theorem, one can derive (see e.g. [15]) another characteriza-
tion of ergodicity:

Corollary 2.12. Let T be a measure preserving transformation on a probability space
(X, B, ). Then (T, p) is ergodic if and only if for all A, B € B one has

n—1

lim > wTANB) = u(A)u(B). (2.5)

=0
Remark 2.13. To prove ergodicity it suffices to show (2.5) for sets A and B that
belong to a semi-algebra A C B that generates B. We refer to [15] for a proof.

Let X be a compact space and B the Borel sigma-algebra on X. Then the Banach
space C(X) of all continuous functions on X (under the supremum norm) is separable,
i.e. C(X) has a countable dense subset. In this case, we get the following strengthening
of Birkhoft’s Ergodic Theorem.

Theorem 2.14. Let (X,B, ) be a probability space and let T : X — X be measure
preserving and ergodic w.r.t. pu. Furthermore, suppose that X is compact and that B is the
Borel o-algebra on X. Then there exists Y € B such that p(Y') =1 and

ggmzyTz = [ 1@intz) (2.6

forallz €Y and f € C(X).

Proof: Let {fi}ren be a countable dense subset C'(X). We obtain for each k£ € N from
Birkhoff’s Ergodic Theorem a set X € B such that u(Xy) =1 and

JgnZhW - [ A@inta) 27)

for all © € Xj;. Taking Y = (72, Xk, we have pu(Y) =1 and (2.7) holds for all z € Y
and £ € N. Now, let f € C(X) and € > 0. Then there exists k: € N such that
1f = fillo < §. Let x € Y, and take N € N such that |+ 37 o Jia(TP2) — [ frdu <g
for each n > N. Then for all n > N we have

n—1

1”71 7 7

s [w| < [ - s
+’%;fk(Tix)—/kadﬂ‘+‘/ka—fd/i’
e
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2.4 Mixing and Exactness

We see from Corollary 2.12 that ergodicity means average independence in the long-
term. This motivates the following stronger notions of asymptotic independence.

Definition 2.15. Let T be a measure preserving transformation on a probability space
(X, B, u). Then

1. (T, ) is called weakly mixing if for all A, B € B one has

lim — Z (T AN B) — w(A)u(B)| = 0. (2.8)

n—o00 N,

2. (T, p) is called strongly mixing if for all A, B € B one has
lim u(T™"AN B) = p(A)u(B). (2.9)

n—oo
Remark 2.16. Note that strongly mixing implies weakly mixing and that weakly
mixing implies ergodicity. The converses are not true in general.

Remark 2.17. Again, to prove weak mixing (resp. mixing) it suffices (see e.g. [54]) to
show (2.8) (resp. (2.9)) for sets A and B that belong to a semi-algebra A C B that
generates B.

Example 2.18. Consider (g, F, o) from Example 2.5. For P given by (2.1), A =
{weQp w =2,...,Wi4n = 2zign} and B ={w € Qp 1 wj = Wj, ..., Wjtm = Wjtm} it
is clear that P(c7"A N B) = P(A)P(B) for all n > |i| + j + m. Since the cylinder sets
form a semi-algebra that generates F, we conclude that the Bernoulli shift is strongly
mixing. Furthermore, if E is finite, then one can show (see e.g. Theorem 5.6 in [54])
that the Markov shift (P,o) with P given by (2.2) is mixing if and only the Markov
chain defined by the stochastic matrix W is irreducible and aperiodic.

The following notion is even stronger than mixing and is introduced by Rokhlin [58].

Definition 2.19. Let (X,B,u) be a probability space and let T : X — X be measure
preserving w.r.t. p. We say (T, p) is exact if (\,—, T~ "B consists of sets B € B such that

u(B) € {0,1}.
Proposition 2.20. Let T be a measure preserving transformation on a probability space
(X,B, ). Then (T, u) is exact if and only if for any A € B such that u(A) > 0 and
T"A € B for any n > 0 we have

lim u(T"A) = 1. (2.10)

n—oo

Proof: We refer to Theorem 3.4.3 in [9] for the proof that this condition is necessary.
Let us show that it is sufficient. Suppose that A € (),—,7 "B, i.e. for each n > 0 there
exists A, € B such that A = T7"A,,. Then T"A C A,,, which gives T""(T"A) C A.
Also, it holds for all B C X that B C T "(T"B), so A =T""(T"A) and thus p(A) =
u(T~™(T"A)) = p(T™A). So pu(A) > 0 implies u(A) = lim, oo u(7T7A) = 1. O
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Remark 2.21. One can show that exactness implies strongly mixing. However, the
converse is not true in general.

Remark 2.22. A measurable transformation 7" on a probability measure (X, B, i) that
is invertible (i.e. T is one-to-one and 7! is measurable) cannot be exact. Indeed, in
this case for all A € B with u(A4) < 1 we have u(T"A) = p(T""T"A) = p(A) < 1 for
all n e N.

Example 2.23. The one-sided Bernoulli shift from Example 2.5 is exact. Also, the
one-sided Markov shift from Example 2.6 is exact if and only if the Markov chain
defined by the stochastic matrix W is irreducible and aperiodic. (For a proof, see the
solution of Exercise 9.5.5 in [65].)

2.5 The Koopman Operator

Let (X,B,u) be a probability space. Recall that the space L?(u) of complex-valued
square-integrable functions is a Hilbert space w.r.t. the inner product

(f.9) = /Xfédu- (2.11)

A measurable transformation T': X — X induces an operator Ur,, : L*(n) — L?*(p)
defined by

Urpf = foT, (2.12)

which is called the Koopman operator for T. We now give some results regarding the
relation between the spectrum of Uz, and the ergodic properties of 7" w.r.t. p.

Recall that A € C is an eigenvalue for Uy, if there exists a nonzero f € Uz, such that
Ur,f = Af. Note that A =1 is always an eigenvalue for any constant function.

Proposition 2.24. Let T : X — X be measure preserving w.r.t. . Then an eigenvalue
A of Ur,, satisfies |A\| = 1. Furthermore, if X # 1 is an eigenvalue for Ur,, corresponding
to an eigenfunction f € Ur,, then fX fdu = 0.

Proof: Let A € C and f € Ur, nonzero such that Ur,f = Af. Then the first claim
follows from

(1) = Uz, Urpf) = ALY = AP ) (2.13)

The second statement follows from

A /X fdp = /X Ur, fdp = /X fdu. (2.14)
0

We recall that an eigenvalue is called simple if the corresponding eigenspace is 1-
dimensional. Hence, we can reformulate the equivalence (i) < (iii) in Theorem 2.9 as
follows:
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Theorem 2.25. Let T : X — X be measure preserving w.r.t. p. Then T is ergodic
w.r.t. pif and only if 1 is a simple eigenvalue for Ur,,.

We can characterize weak mixing as follows.

Theorem 2.26. (see e.g. Theorem 3.5.2 in [9]) Let T : X — X be measure preserving
w.r.t. p. Then the following statements are equivalent:

(i) T is weakly mizing w.r.t. u,
(it) T is ergodic w.r.t. p and 1 is the only eigenvalue of Ur,,

(t1it) Every eigenfunction of Ur,, is constant.

2.6 The Transfer Operator

Let (X, B, ) be a probability space, and T : X — X be measurable. The transfer
operator (or Ruelle-Perron-Frobenius operator) was first introduced in [41, 42] and
describes how functions in L!(1) transform under 7. We shall see in Chapter 3 that this
operator serves as a powerful tool for determining the invariant densities for piecewise
monotonic transformations on the unit interval. In this section we define the transfer
operator and state its basic properties, and in Section 3.2 we give an explicit formula
for the transfer operator for piecewise monotonic interval maps.

Definition 2.27. Let T : X — X measurable. We say that T is nonsingular w.r.t. p if
and only if for any A € B with u(A) = 0 we have u(T—1A) = 0.

Remark 2.28. Note that if T : X — X is measure preserving w.r.t. u, then T is
nonsingular w.r.t. u.

Definition 2.29. Let T : X — X be nonsingular w.r.t. u. For any f € L'(u), write
Pr,.f for the unique element in L' () such that, for each A € B,

[ Pratin= [ san (2.15)
A T-1A
We call Pr,, : L*(u) — L*(p) the transfer operator for T'.

Remark 2.30. The existence and uniqueness of Pr,f as in the above definition is
justified as follows: Consider the measure v given by

V(A) = /T | fdn Aeb (2.16)

Using the nonsingularity of 7', u(A) = 0 implies u(7T-*A) = 0, which in turn implies
v(A) = 0. This gives v < u, so by the Radon-Nikodym Theorem, there exists a unique
element in L*(p) denoted as Pr, f such that

V(A) = /A Profdu,  AcB. (2.17)
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Because the Radon-Nikodym Theorem applies as well if v is a positive o-finite measure,
note that we can extend the definition of Py, to measurable functions f : X — [0, oo]
for which p given by p(A) = [, fdu is o-finite (in that case, v given by (2.16) is also
o-finite). This will be relevant in Section 3.6.

The following basic properties of the transfer operator in the next two propositions
are easy to show. We refer to Section 4.2 in [9] for the proofs.

Proposition 2.31. Let T : X — X be nonsingular w.r.t. p. Then
(a) Pr,, is linear,

(b) The integral is preserved by Pr,,, i.e.
[ Progau= [ fin. 7eri, (2.18)
X X
(¢) Pr, is a positive operator: if f € L'(u) is such that f >0, then Pr,f >0,

(d) Pr, is a contraction on L*(p), i.e.

IPryfllie < Ifllws  f €L (). (2.19)

Proposition 2.32. Let T : X — X and S : X — X be nonsingular w.r.t. . Then
Pros, = Pr, o Ps,. In particular, Prn, = Pﬁu for each n € N.

For a nonsingular transformation 7': X — X w.r.t. u, the following proposition gives
a one-to-one correspondence between the fixed points of Pr, and the measures that
are T-invariant and absolutely continuous w.r.t. u.

Proposition 2.33. Let T : X — X be nonsingular w.r.t. u and h € L*(u). Then
Pr,h = h if and only if T is measure preserving with respect to the measure v given by

V(A) = / hdu,  AeB. (2.20)
A
Proof: This follows immediately from
V(T“J/D::L/‘ hdu::L/}P&Mhdy. (2.21)
T-14 A
O

Proposition 2.34. Let T : X — X be nonsingular w.r.t. i and v be the measure given
by (2.20) for some h € L*(u). Then T is nonsingular w.r.t. v and

PT,u(f ) h)
h )

where Pr,, f can be taken as a version in L'(v) such that Pr, f(x) = 0 whenever h(z) = 0.

Pr,f = ferl(v) (2.22)
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Proof: Let A€ B and f € £'(u). We have

Pru(f-h) _ _ ,
/A“Tdy_/APT,M(f h)du—/T_lAfd. (2.23)

Taking f = 1, we see that 7' is nonsingular w.r.t. v, and (2.22) follows from (2.23). O

Recall that a sequence {f,}nen in L' (1) converges weakly to a function f € L'(u) if
[x fagdp = [ fgdp as n — oo for each g € L>(p), which we denote as f, = f. On

. Lt . .
the other hand, we write f, ¢ f for convergence w.r.t. the L'(;)-norm. Using this
we can formulate the concepts of ergodicity, (weak) mixing and exactness in terms of
the transfer operator as in the following theorem.

Theorem 2.35. Let T : X — X be measure preserving w.r.t. . Then T is nonsingular
w.r.t. p, and

1. T is ergodic w.r.t. u if and only if for all f € L'(u),

1 n—1 "
- > Ppf / fdp, n— oo, (2.24)
k=0 X
2. T is weakly mizing w.r.t. p if and only if for all f € L*(p),
1 n—1
—Z’Pj’iﬂf—/ fd,u‘ %0, n— oo, (2.25)
"= X

3. T is strongly mixing w.r.t. u if and only if for all f € L*(n),
P f = / fdu, n— oo, (2.26)
X
4. T is exact w.r.t. u if and only if for all f € L'(u),

Py Ll&‘)/xfdu, n — 0o, (2.27)

We refer to Propositions 4.2.10 and 4.2.11 in [9] for a proof of Theorem 2.35.

In case T': X — X is measure preserving w.r.t. u, we have the following strengthening
of part (d) in Proposition 2.31 (see Corollary 4.2.1 in [9]).

Proposition 2.36. Let T : X — X be measure preserving w.r.t. . For each p € [1,00],
Pr,, is a contraction on LP(u), i.e.

1 Prf o < N fllpous felP(u). (2.28)

In the rest of this section we suppose that p is T-invariant and consider the restriction
of Pr,, to L?(u), which is possible by the previous proposition.

Proposition 2.37. Let T : X — X be measure preserving w.r.t. . Then the adjoint of
Pr,, : L*(pn) — L*(u) is the Koopman operator Ur,,.
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Proof: Let f € L?(u) and set g =14, A € B. Then

et = |

T—l

fin = [ 7140 T)dn = (f.Ura). (2.29)
A X

Since the linear combinations of indicator functions are dense in L?(u1), one can derive
the statement (Prf, g) = (f,Ur,g) for all f,g € L?(u). H

Lemma 2.38. Let T : X — X be measure preserving w.r.t. . Then Pr,Ur,f = f for
all f € L*(u).

Proof: For all f,g € L?(u) we have

<PT,MUT,uf7 g> = <UT,ufa UT,ug> = <f7 g>' (230>

Proposition 2.39. Let T : X — X be measure preserving w.r.t. . Then
Uruf =AM & Pr,f =M and |\ =1 (2.31)

for f € L*(p) and X\ € C. In particular, the set of eigenvalues of Ur,. equals the set of
eigenvalues of Pr, with modulus 1.

Proof: Suppose Ur,f = Af. Then |A\| =1 and Ur,f = Ur,f = Af, so A™t = X and
ANUr,.f = f. This gives Pr,f = Pr,(\Ur,.f) = Af. Conversely, suppose Pr,f = \f
with |A] = 1. Then

AUz = MUz f = 1) = N Urpuf . Uruf) = MUz S ) = MF Uz f) + (7. F)
=2(f, F) = MPruf, f) = MPruf. )

=2(f. ) = 2]A(f. f) = 0.
Hence, /\UTJJ = f, or equivalently Uru,f = Af. O

2.7 Measure Preserving Isomorphisms and Lebesgue Spaces

Let (X, B, i) be a probability space and let T': X — X be measure preserving. We call
the quadruple (X, B, pu,T) a dynamical system. Such a system is characterized by its
measure structure given by (X, B, 1) modulo sets of measure zero, and by its dynamical
structure given by T'. For this reason, we have the following definition that classifies
two dynamical systems as identical.

Definition 2.40. Two dynamical systems (X, B, u,T) and (Y,C,v,S) are isomorphic if
there exist N € B with u(N) = 0 and T(X\N) C X\N, M € C with v(M) = 0 and
S(Y\M) C Y\M, and a measurable and invertible transformation ¢ : X\N — Y\M
such that ¢ oT = Sot on X\N and p(p=tA) = v(A) for all measurable A C Y\M. The
map v is called an isomorphism.
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Example 2.41. Let ([0,1),8,)) be the unit interval with associated Borel o-algebra
B and Lebesgue measure A. Let N € N, and let 7" : [0,1) — [0,1) be given by
Tx = Nxmod 1. Then, similar as the decimal map considered in Subsection 1.1.1, T
generates N-adic expansions so that each z € [0,1) can be written as z = Y 77, &
with a; € {0,1,..., N — 1}. Furthermore, let (g, F,P,0) be the one-sided Bernoulli
shift from Example 2.5 with £ = {0,1,..., N —1} and a probability vector p = (p;) er

given by p; = + for each j € E. Let
N={weQg:Fk>1:w;,=N—1forall i > k}. (2.32)

Then one can show that ([0,1),B8,\,T) and (Qg, F,P,0) are isomorphic with an iso-
morphism ¢ : Qg\N — [0,1) given by

£

P(w) = i —_y (2.33)

The following proposition is obvious.

Proposition 2.42. Suppose (X,B,u,T) and (Y,C,v,S) are two isomorphic dynamical
systems. Then (T, ) is ergodic (resp. weakly mizing, mizing, exact) if and only if (S, v)
is ergodic (resp. weakly mixing, mizing, exact).

In this thesis, we mostly work on probability spaces that are Lebesgue spaces. These
non-pathological probability spaces are introduced by [59] and can be thought of as
the union of an interval and an at most countable number of atoms. This is made
more precise in the next definition. First, recall that a set A € B in a probability
space (X, B, ) is called an atom if u(A) > 0 and if for each B € B with B C A and
wu(B) < p(A) we have u(B) = 0.

Definition 2.43. (Definition 4.5 in [54]) We call a probability space (X, B, i) a Lebesgue
space if there exists an at most countable union Xo = U;A; of atoms A; € B such that,
writing X = X\Xo, B = BN X and ji(-) = %, the dynamical system (X, B, [i, idg)
is isomorphic to ([0,1),B([0,1)), X, idjo1y). Here, B([0,1)) is the Lebesgue o-algebra on

[0,1) and X the Lebesgue measure.

Theorem 2.44. (Theorem 4.6 in [54]) Let X be a Polish space and B the corresponding
Borel o-algebra on X. Let pu be a probability measure on (X,B). Suppose (X,B,pn) is
complete, i.e. if A € B such that u(A) =0, then B € B for all B C A. Then (X, B, 1) is
a Lebesgue space.

Example 2.45. Let E be a Polish space. Then one can show that Qp = EY (or
Qg = EZ) is a Polish space as well. Let F be the Borel o-algebra on g, which in case
E is countable corresponds to the o-algebra generated by the cylinder sets. Let P be
a Borel probability measure on (g, F), and write Fp for the completion of F w.r.t.
P. Then (g, Fp,P) is a Lebesgue space.



Chapter 2. Preliminaries from Ergodic Theory 21

2.8 Entropy

The notion of entropy in information theory was introduced by Shannon [61] to quantify
the amount of randomness produced by an information source. In [38], Kolmogorov
introduced entropy in dynamical systems, which was made rigorous by Sinai [63].
In this section we briefly review this very important concept of (Kolmogorov-Sinai)
entropy in Ergodic Theory. Let us fix a dynamical system (X, B, u, T).

We say a = {4; : i € I} is a partition of X if X is the disjoint union (up to sets of
p-measure zero) of the sets A;, where A; € B for each i € I and where [ is a finite or
countable index set. For a partition « of X, we define the entropy of the partition « as

Hy(a) =Y u(A)log p(A). (2.34)
Aca
Also, we define
T'a:={T""'A: Aca}, (2.35)

which is a partition of X as well.

Furthermore, for two partitions o and 8 of X, we define the conditional entropy of «
given [3 as

Huo]p) =~ 32 3 log (* AQB)) (AN B). (2.36)

Aea Bep

Also, we define
aVvVpB:={ANB:A€aq,BEepj} (2.37)

which is a partition of X as well and is called the common refinement of o and £.
The following properties are easy to show and will be needed in Chapter 5.
Proposition 2.46. Let a, B and v be partitions of X. Then
(a) Hy(T™ o) = Hy(a),

B) = Hu(a) + Hyu(Bla),
(¢) Hy(Bla) < Hu(B),
B) < Hy(a) + Hu(B).

il
(b) H,(aV
u(
(d) Hy(aV

Let a be a partition of X, and define for each n € N the partition

n—1

\/T a—{ﬂTkAk AkEak—O,l,...,n—l}. (2.38)

In order to define the entropy of T with respect to the partition «, we need the following
analytic lemma.
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Lemma 2.47. (Fekete’s Subadditive Lemma) Suppose a sequence {an tnen of real num-
bers is subadditive, i.e. apyim < Gn + am for all n,m € N. Then lim,, ‘%" exists and s
equal to inf,cn .

Proposition 2.48. Let o be a partition of X such that H,(a) < oco. Then the sequence
{H, () }nen is subadditive.

Proof: For all n,m € N we have

n+m—1
Hy(anm) < Hylow) + Hy(\/ T7%a) < Hylow) + Hulom),  (2.39)
k=n
where we applied parts (d) and (a) of Proposition 2.46, respectively. ]

Definition 2.49. Let a be a partition of X such that H,(a) < co. Then the entropy of
T w.rt. a given by

B, T) = lim ~H,(an) (2.40)

n—so00 N,

exists and is finite by the previous two results. Finally, the entropy of T is defined as

h,(T) = sup{h,(a,T)| a partition of X such that H,(«) < co}. (2.41)

The following theorem shows that entropy is an isomorphism invariant. We refer to
Theorem 5.2.2 in [15] for a proof.

Theorem 2.50. Suppose (X,B,u,T) and (Y,C,v,S) are two isomorphic dynamical sys-
tems. Then h,(T) = h,(S).

In general, it does not seem possible to calculate the entropy straight from its definition.
The next theorem is an important tool for calculating the entropy. First, let us define
that a partition « of X is a generator with respect to a non-invertible transformation
T if

0( \/ T_ia) =B up to sets of p-measure zero. (2.42)
i=0

If T is invertible, then « is called a generator w.r.t. T if o(\/2___ T ‘a) = B up to sets

1=—00
of p-measure zero.

Theorem 2.51. (Kolmogorov-Sinai) Let « be a partition of X such that H,(a) < co. If
a is a generator w.r.t. T, then h,(T) = h,(T, «).

Example 2.52. Let (g, F,P, o) be the Bernoulli shift from Example 2.5. By definition
of F, note that the partition @« = {A4; : j € E} given by A; = {w € Qg 1w =j} isa
generator w.r.t. o. Furthermore, since P is a product measure on 2z, we can derive

n—1

Hp(a,) = Z Hp(o™'a) = nHp(a) = —anj log p;. (2.43)
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It follows from Theorem 2.51 that

1
hp(o) = lim —Hp(ay,) = ijlogp] (2.44)

n—o00 1,
JEE

Moreover, combining this with Example 2.41 and Theorem 2.50 yields that 7": [0,1) —
[0,1) given by Tx = N2z mod 1 (N € N) has entropy hy(7) = log N w.r.t. the Lebesgue
measure \ on [0,1).

Finally, we state the classical Shannon-McMillan-Breiman Theorem. For this, we
define the information function associated to a partition a of X as

= = 1a(z)log u(A). (2.45)

Aca

Note that H,(a) = [y I, . Denoting a(z) for the atom of a containing x, we
can also wrlte

I,(z) = —log pu(a(z)). (2.46)
Theorem 2.53. (Shannon-McMillan-Breiman) Let o be a partition of X s.t. H,(a) <
00. Suppose that T is ergodic w.r.t. . Then

Io
llm _ n (I)
n—oo n

= h,(T, ), p-a.e. (2.47)



Chapter 3

Invariant Densities for Piecewise

Monotonic Interval Maps

3.1 Introduction

In this and the next chapter, we work on the probability space (I, B, ), where I = [0, 1]
is the unit interval, B the Borel o-algebra on I and A the Lebesgue measure restricted
to I.

Let T : I — I be measure preserving and ergodic with respect to some probability
measure £ on I. We know from Theorem 2.14 that there exists B € B with u(B) =1
such that

1
lim —
n—oo N

n—1
Zf(Tkx) = /fdu for all x € B and f € C(I). (3.1)
k=0 !

In case p is absolutely continuous with respect to A we have A(B) > 0. Hence, the
existence of an ergodic absolutely continuous invariant probability measure (acipm) for
T implies in weak sense a characterization of the long-term average behavior of points
in a set of at least positive Lebesgue measure. This raises the question under what
conditions T" admits an ergodic acipm.

We address this question in this chapter for transformations 7' : I — I that are finitely
or countably piecewise C*-monotonic (k > 1), i.e. there exists a finite or countable
partition {I;} of I such that each I; is an interval and the restriction of T to I; is
C*, monotone and injective (see Figure 3.1). Note that such a transformation 7' is
nonsingular w.r.t. A, so 7" admits a corresponding transfer operator Pr, : L'(\) —
L*()\) that we simply denote as Pr.

We know from Proposition 2.33 that h € L'()) is a fixed point of Pr (i.e. h is an
invariant density for T in the sense of (1.27)) if and only if the (complex) measure p

24
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Figure 3.1: Example of a piecewise monotonic transformation on I

given by p(A) = [, hdX (A € B) is T-invariant (i.e. p is an acim for 7). Hence, we are
interested in the fixed points of Pr.

We derive in Section 3.2 for a piecewise monotonic transformation 7" : I — I that

Prf(z) = Z Jw) A-a.e. (3.2)

/
e )

for all f € L'(\). Furthermore, we discuss in Section 3.3 the celebrated theorem by
Lasota and Yorke that any finitely piecewise C?-monotonic map T : I — I that is
expanding (i.e. infyer |T'(x)| > 1) admits an acipm. The main technical step in the
proof is to obtain the Lasota-Yorke inequality: There exists k € N, p € (0,1) and
L € (0,00) such that

Var;(Prf) < pVar(f) + L|| flh for all f € BV(I). (3.3)

In (3.3), Vars(-) denotes the wariation of a function on I and BV(I) is the space of
functions of bounded variation on I. We recall these definitions in Appendix A. We
shall see in Section 3.4 that (3.3) implies that Pr is quasi-compact (see Appendix B.3)
on BV(I) as a consequence of the famous Ionescu-Tulcea and Marinescu Theorem,
from which several ergodic properties of T' can be derived. If we in addition assume
that 7" admits a suitable covering property such as in the so-called Folklore Theorem,
we shall see in Section 3.5 that T admits a unique acipm p, that T is exact with respect
to this p and that p satisfies

1 dp
M — < — < M. 4
Ui s s (34)
Finally, we recover in Section 3.6 by a method based on Section 3 in [35] that the LSV
map from (1.28) admits a unique acipm if o € (0,1) and an infinite o-finite acim if

a>1.
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3.2 Representation of the Transfer Operator

Let T': I — I be piecewise monotonic. We derive (3.2) by following Section 4.3 in [9].
For simplicity, let us assume 7' is finitely piecewise monotonic, i.e. there exists a finite
partition of I, 0 = ag < a; < --- < a, = 1 such that

(1) T; :=T|(as_,.ar) is C* (k > 1) and has a C* extension to [a;—1,a;], i =1,...,n,
(2) 0(T) := ing |T'(x)| > 0 (where we take the one-sided derivates at the points
Tre

where 7' is not differentiable).

Let A € B and f € L'(\). By definition, we have

/APde)\ = /T_lA fdx = EZ;/TA fFdx. (3.5)

Recall the change of variable formula for (Riemann) integration: If g is differentiable
over [a,b] such that ¢’ is integrable over [a,b] and if h is integrable over ¢([a,b]), then

9(b) b ,
[, ez = [ (ot W (3:6)
g(a a
For each i = 1,...,n, this formula with h(x) = w and ¢(y) = T;(y) gives
Ti(y)
fax= [ LT ) iy d
/T;IA ai-1 AT )Ti/(y)

:/“W>Lu>ﬂn*@»d

Ti(ai—1) ( )

(T )
B S dA
/AmT(ai—l,ai) |T’(T._13;)| (36)7

()

X

where in the last step we account for the fact that 7T; is either increasing or decreasing.
Combining this with (3.5) yields

| prian= [ z uff,T oy (@) (2). (37)

Since (3.7) holds for each A € B, we obtain

PTf Z ’T/ 1T(ai—1:ai) (I’) )"a-e- (38)

for all f € L'(X\). Note that we can rewrite this to

Prf(r) = Z ) M-a.e. (3.9)

/
o 1T W)

for all f € L'(\). Observe that if 7' is piecewise monotonic with respect to a countable
partition, we can derive (3.9) using the same arguments (in addition, we need to apply
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the Monotone Convergence Theorem to interchange integral and series).

3.3 The Lasota-Yorke Inequality

We say that a piecewise monotonic transformation 7 : [ — I is ezpanding if 0(T) =
inf,e; |7(x)| > 1. We have the following famous result due to Lasota and Yorke [43].

Theorem 3.1. (Lasota-Yorke) Let T : I — I be finitely piecewise C?-monotonic and
expanding. Then T admits an acipm whose density is of bounded variation.

In order to prove Theorem 3.1, we follow Section 10 of [10]. The key to this proof is the
Lasota-Yorke Inequality (3.3) that we shall obtain with the following technical lemma.
We refer the reader to Appendix A for a review on functions of bounded variation.

Lemma 3.2. Let T : I — I be finitely piecewise C%-monotonic. Then

Var;(Prf) < ——Var;(f) + L(T)||f|, ~ for all f € BV(I), (3.10)

2
o(T)
where O(T) = inf,c; |T(2)| and L(T) is a finite positive constant depending only on T
Proof: Write 0 = a9 < a; < -++ < a, = 1 for the (minimal) partition on which 7T is
finitely piecewise C2-monotonic. We have |T"”| < K for some K > 0, so

‘_ ‘ _ )| K
de T'(x)| — (T'(x))2 ~ 62
where § = 0(T) > 0. Now, let f € BV(I). Then from (3.8) it follows that

for all x € I, (3.11)

Prf(z Z |T, T(las 10 (T)  Aae., (3.12)
where we changed the right-hand side on a finite number of points x and now write
T; for its C*-extension to [a;_1,a;]. For each i = 1,...,n, Yorke’s Inequality (Theorem
A.17) gives

foT ! f _
VaI‘[ <W1 [al 1%})) S 2V&I‘T([ai_l,ai])<|T/’ oT‘i 1)
. [ M,
T(ai) = T(ai-1) Jr(a; ) IT’(TZ ()]
f 7l
< 2Vary, . <—> + )|dy,
ol \7) ey =Tl o, O

where the last step follows from (A.7) and the change of variable formula (3.6). More-
over, for each i = 1,...,n it follows from Proposition A.14 that

Fy 1 / d 1
Vata o) (7)< gVortosad(D + | W0 s |

. K[ )y,

a;—1
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where the last step follows from (3.11). We conclude

Vary (Prf) < Z\/ar[a s )+Z§(§+;) / F(s)ds.  (3.13)
i=1 Ai—1

a; — Q;—1

Using that 7", Vary, ,q,)(f) < Vari(f) (see Lemma A.5), we obtain (3.10) with
L(T) = 2(5 + max; ]

Proof (Theorem 3.1): Note that, for each k € N, T* is also finitely piecewise C?-
monotonic. Moreover, we have §(T*) > 6% with § = 6(T), because (T*)'(x) =
[1:=) T'(T'z) for each x € I by the chain rule. Let us fix a k € N such that 6% > 2.
Then from Lemma 3.2 we obtain the Lasota-Yorke inequality

Var;(Prf) < pVar(f) + L|| flh for all f € BV(I), (3.14)

where p := e(r_%—k) € (0,1) and L := L(T*) € (0, 0).
We now construct a fixed point of Pr with (3.14). Let f € BV(I). Iterating (3.14), it
follows that, for each n € N,

n—1

Var,(Pf"f) < p"Var f + L] fl1 Yo" (3.15)

=0

Because Var(+) is a seminorm, we thus obtain that the sequence {f,} given by
Lo i
== > Pt (3.16)
i=1

satisfies Vary(f,) < M for each n € N, where M := Var;(f) + L]L‘lT]cJ.Jl. We also have
| fulli < Ifll1 for each n € N, so Lemma A.4 gives sup,cy || fnlloo < M + ||f|li. From
Helly’s First Theorem (Theorem A.18) we now obtain a subsequence { f,,} that con-
verges pointwise to some f* € BV (I) that satisfies (using Lemma A.2 and (3.15))

||f i
—p ’

n;—1

Var(f*) < hmlnfi Z Var;(PF f) < limsup Var;(PE" f) <
J

]ZO n—oo

(3.17)

Combining this with sup,cy || fn, | < 00 yields with the Dominated Convergence The-
orem that

|Prf*— fll < [|Prf* — Prfolli + || Prfa;, — fnj||1 + anj -l

!

n;—1

* 1 J ) 7

< 2y = F+ || = D2 PR ZPM
J =0

i 1 i
<2 fu, = S+ NPT =
J
oy 2 .
J

The result now follows from Proposition 2.33. (Note that f* is a probability density if
we take for instance f =1.) O
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Remark 3.3. The proof of Lemma 3.2 does not directly carry over to the case that T’
is piecewise monotonic with respect to a countable partition {I;}, because in that case
L(T) would be infinite. This can be solved by assuming as in [43] that sup |T”| < oo
and that T;(1;) = I for all but finitely many . Indeed, 1 := max(53 7 st Tl L) #1)
is then finite, so that we can estimate the problematic term

ZA /‘f )ldy < max (1, 1) - 1. (3.19)

Another sufficient assumption besides sup |T”| < oo is to require as in [10] that there
exists v > 0 such that A\(T;(;)) > ~ for all i. Indeed, in this case the left-hand side of
(3.19) is bounded by v~ 1|| f]]1-

Remark 3.4. In [60], Rychlik found that the Lasota-Yorke inequality and therefore
the conclusion of Theorem 3.1 also holds for piecewise monotonic and expanding maps
of the following form: Let T': I — I be piecewise monotonic and expanding w.r.t. a
finite or countable interval partition {I;}. Write U = J, Int(/;) where Int(/;) denotes
the interior of I;. It is shown in [60] (see also [9]) that if g : I — R given by

—— ifzxel,
g(z) = { |77 ()] (3.20)

0 it v € I\U
satisfies Vary(g) < oo, then the Lasota-Yorke inequality (3.14) holds for some k € N,

€ (0,1) and L € (0,00). Other generalizations of Theorem 3.1 can be found in e.g.
Section 6 of [9].

Remark 3.5. Note that the proof of Theorem 3.1 only shows there exists an acipm
and does not show how to construct it. Explicit formula’s of the acipm’s are derived
in e.g. [29, 39| for the case that T is piecewise linear and expanding,.

Remark 3.6. The assumption in Theorem 3.1 that 7' is expanding can be weakened
to some extent (see e.g. Theorem 3 in [43]), but it is certainly not possible to omit it
completely. An example is considered in Section 3.6. As an example of a countably
piecewise monotonic transformation, consider the Rényi map R : I — I given by

0 if e =1,
Rle) = { L mod1 otherwise, (3.21)
which can be obtained by reflecting the Gauss map in Figure 1.2 over the vertical line
through % (see Figure 3.2). Clearly, R is not expanding because x = 0 is a neutral fixed
point of R, i.e. |R'(0)] = 1. It was proved by Rényi in [56] that R has no acipm, but
does have a o-finite acim with density h(z) = % It appears that a piecewise monotonic
transformation 7" with a neutral fixed point and |7’| > 1 elsewhere typically has an
invariant density of the type L (see Remark 5.3.2 in [9]) and we shall consider another
example of such a 7" in Section 3.6.
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Figure 3.2: The Rényi map R
3.4 Quasi-compactness of the Transfer Operator

In this section we let T : I — I be a finitely piecewise C?>-monotonic and expanding
map.! Moreover, we fix k& € N such that Pp satisfies the Lasota-Yorke inequality

Var;(Prf) < pVar;(f) + L|| flh for all f € BV(I). (3.22)

for some p € (0,1) and L € (0,00). Let us prove that each fixed point of Pr is
of bounded variation. For this, we need the following lemma. The proof below is
essentially the one from [43].

Lemma 3.7. For each f € LY()\), the sequence {f,} given by
1= i
n=—) P 3.23
s 3oer 523

converges in L'(\)-norm to some f € L'(\).

Proof: In the proof of Theorem 3.1 we showed that for each f € BV(I) the sequence
{fn} contains a subsequence {f,;} that converges pointwise to some fe BV (I) and
satisfies sup; ey || fn; lloo < 00, in which case we obtain from the Dominated Convergence
Theorem that

Jj—o0

lim [ f,,9d\ = / fgd\ for each g € L>®()). (3.24)
I I

Since BV (I) is dense in (L*(\), ] -]|1) (see Corollary A.16), the result now follows from
the Kakutani-Yosida Theorem (Theorem B.1). O

!The results in this section also hold for the piecewise monotonic expanding maps in Remarks 3.3 and 3.4
with countably many branches.
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As in [43], let us define the bounded linear operator

Q:L'N)—= L',  Qf=F (3.25)
with f as in Lemma 3.7. Since Pr is a contraction on (L'(\), | - [l1) (see part (d) of
Proposition 2.31), it follows that also @ is a contraction on (L*(\), | - ||1).
Proposition 3.8. Fach fized point of Pr is an element of BV (I).
Proof: Let f € LY(\) be s.t. Prf = f. Since BV(I) is dense in (L'(\),] - ||1), there
exists a sequence {g,,} C BV (I) such that g, L f. So M :=sup,,cy ||gmll1 < oo and

Qim Q=1 m—x. (3.26)

For each m € N we know from the proof of Theorem 3.1 that {17 | Prig,}en
contains a subsequence that converges pointwise and in L' to some g, € BV (I) that
satisfies Varr(gf,) < LH%’;"I. Obviously, we have g = Qg,, for each m € N, so

LM
sup Vary(Qgm) < T (3.27)
meN - p

From Lemma A.4 it now follows that sup,,cy [|Qgmllcc < M+ %, which together with

(3.27) and Helly’s First Theorem (Theorem A.18) yields
Jdg* € BV(I) Vz € I : Qgm(z) — g"(2), m — o0. (3.28)

Combining (3.26) and (3.28) yields f = g* M-a.e. O

Corollary 3.9. (Theorem 1(vi) in [33]) The probability measure fi on (I,B) given by

ﬁ(A)z/AQld)\, AcB (3.29)

15 the biggest acipm of T' in the following sense: If p is an acipm of T', then u is absolutely
continuous w.r.t. [i.

Proof: Let f € L'()\) be such that Prf = f. Then f € BV(I) by the previous
proposition, so |f| is bounded by some constant M > 0. This gives

1 | i 1~ s
fl== 1Pl <M= P (3.30)
i=1 i=1
and therefore |f| < MQ1, from which the result follows. O

Motivated by the result of Proposition 3.8, let us consider the restriction of Pr to
BV (I), which we denote as Prpy. We see from Lemma 3.2 that BV (I) is preserved
by Pr,so Prpy : BV(I) — BV(I). The next well-known theorem shows that Pr gy is
a quasi-compact operator. In Appendix B.3 we briefly recall the definition of a quasi-
compact operator on a general complex Banach space and state the Ionescu-Tulcea
and Marinescu Theorem on which the proof below is based. Recall from Proposition
A.13 that BV (I) is a complex Banach space with respect to the norm

Ifllpv = Varrf + |fll,  f€BV(). (3.31)
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Theorem 3.10. The operator Prpy : BV(I) — BV (I) is quasi-compact and the set of
eigenvalues of Pr gy with modulus 1 has only a finite number of elements, say A1, ..., Ap.
That is, there are bounded linear operators Qu, ..., Qum and S on BV (I) such that

m

Prpy = Z)\?Qz + 5" for alln € N,
i=1

QiQ; =0 if i # j,

QF = Qi foralli=1,...,m,

QiS =5Q; =0 foralli=1,...,m,

Q;BV(I)=E(\) foralli=1,...,m,

p(S) <1,

where E(\;) = {f € BV(I): Prpyf = \f} is the eigenspace of Prpy associated to \;,
and p(S) = lim,,_, ||S”Hg(} is the spectral radius of S. Moreover, for eachi=1,...,m
the eigenspace E(N\;) associated to \; is finite-dimensional.

Proof: It suffices to check the conditions in the Ionescu-Tulcea and Marinescu Theorem
(Theorem B.5). Note that the second condition in Theorem B.5 follows from the fact
that Prpy is a contraction on (BV(I),] - ||1) and that the third condition follows
directly from the Lasota-Yorke inequality (3.22). The first and fourth condition do
not depend on 7" and for their proof we refer the reader to Proposition 7.2.1in [9]. O

We can now prove the following result.

Theorem 3.11. The set Myo(I,T) of acim’s of T is a non-empty finite-dimensional vector
space generated by the ergodic acipm’s of T'.

Proof: First of all, non-emptiness of M,.(I,T) follows from Theorem 3.1. Moreover, it
is clear that M,.(I,T) is a finite-dimensional vector space, because E(1) in Theorem
3.10 is finite-dimensional. So there exists n € N such that dim M,.(I,T) = dim E(1) =
n. Let i be the measure from Corollary 3.9 given by (3.29). We now show the following
claim for each k = 1,...,n: There exists a partition of I into sets Aq,..., Ar € B such
that T71A; = A; and ji(4;) > 0 for each i =1,... k.

e For k =1, just take Ay = I.

e Suppose the claim holds for some k € {1,...,n—1} with corresponding partition
{A1,..., Ax}. Let us show the claim for £+ 1. Assume that for each i =1,...k
and each A € B such that T71A = A we have “(AQA") € {0,1}. Then the measures

fi(A:)
" (BN A;) :
a4, (B) = ————— B e B, 1=1,...,k 3.32
(B) fi(A;) ( )
are ergodic acipm’s of T. Note that for each acim p of T"and each ¢t = 1,...,k

the measure % is also an acipm of 7" and absolutely continuous w.r.t. fi,

(because of Coroilary 3.9), which combined with the first part of Theorem 2.10

yields that % = f1a,(-). This gives the contradiction dim M,.(I,T) = k < n.
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So there exist i € {1,...,k} and A € B such that T7'4 = A and [‘E{éggi) € (0,1).

We obtain the claim for k+ 1 with the partition {A,..., ANA;, APNA;, ..., A}

The measures in (3.32) are mutually singular and therefore linearly independent, so
the claim does not hold for k£ > n. It follows that for k = n the measures in (3.32) are
ergodic acipm’s of T. O]

Remark 3.12. The result in Theorem 3.11 for finitely piecewise C?-monotonic maps
T : I — I has first been derived in [44] (and without any arguments involving the
quasi-compactness of Prpy). In particular, it is shown in [44] that the dimension of
M,.(I,T) is bounded by the number of discontinuities of 7'

Using the quasi-compactness of Prpy it is possible to obtain a number of ergodic
properties of T' (see e.g. Section 7.2 in [9]). As an example, we show that if (7, )
is weak mixing (with g given by (3.29)), then (7, ) is exact. Let us first prove the
following lemma.

Lemma 3.13. Suppose f € BV(I) and X € C satisfy Prpvf = \f and |\| = 1. Then
Rf := % can be taken as a version in L1(i) s.t. Rf(z) = 0 whenever Q1(x) = 0, in
which case Ur(Rf) = ARf. In particular, the set of eigenvalues of Pr gy with modulus
1 is contained in the set of eigenvalues of Ur .

Proof: Suppose Prpyf = Af and |\| = 1. We have f € BV(I), so |f] is bounded by
some constant M > 0. This gives |f| = + > | |PFf| < M- 23" | PF1 and therefore

|f| < MQ1. This indeed gives Rf € £'(j1). From Proposition 2.34 it now follows that
Pri(Rf) = ARf, which together with Proposition 2.39 gives UrRf = ARf. O

Proposition 3.14. Suppose (T, i) is weakly mizing. Then for each n € N we have

Prpyg = ( / gdA)Ql + 8", g€ BV() (3.33)
I
where for some q € (0,1) and M > 0 we have for each n € N that ||S™||gy < Mq™.

Proof: First of all, since (T, i) is weakly mixing, we know from Theorem 2.26 that 1 is
the only eigenvalue of Ur ;. Combining this with Theorem 3.10 and Lemma 3.13 gives

Prpvg=Qig+5S"g, g€ BV(I), neN, (3.34)

where Q1 and S are bounded linear operators on BV (I) such that Q1(BV(I)) = E(1)
and p(S) € (0,1). The latter implies that, for some ¢ € (0,1) and M > 0, ||S"||pv <
Mgq" for each n € N. Furthermore, since (7T, f1) is ergodic, it follows from Theorem 2.25
and Lemma 3.13 that E(1) is 1-dimensional. So Q19 = ¢(g)Q1 for each g € BV (I),
where ¢ : BV(I) — C is a bounded linear map. By the Hahn-Banach Theorem, we
can extend ¢ to a bounded linear map ¢ : L'(\) — C. Since (L'()))* is isomorphic to
L>°(\) via the correspondence 6(g) = [, ghdA, h € L()), it follows that there exists
h € L>°(X) such that 1(g) = [, ghd\. We conclude

019 = </Ighd)\>Q1, g€ BV(I). (3.35)
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It remains to show that h is A-a.e. equal to 1. Indeed, for each A € B we have

/hd)\:/(/hlAdA)QldA:/(QllA)d)\: lim /Pz’i‘Bled)\:/ 1dA.
A 1 NJr I n—oo Jr ' A

L]
Corollary 3.15. Suppose (T, ) is weakly mizing. Then (T, i) is exact.
Proof: From Proposition 3.14 it follows that, for each n € N,
|Pro = ( [oar)au|, < Malglav. g€ BV, (3.36)
I

where ¢ € (0,1) and M > 0. First, let ¢ € BV(I). Then Q1-g¢g € BV(I). Applying
(3.36) to Q1 - g gives

HP:’F,;Lg— /1 gdfi

o |Pr@1-g) - (/IQl-gd/\>Q1H1 0, n—oo.  (3.37)

Now let g € L*(f) and {g,,} € BV(I) s.t. gm v g. Then

|Prag— [odil| | <llo=omlla + |Praom— [ gmdi|  +] [ g~ [ g
I a1 I a1 I I

where we used part (d) of Proposition 2.31. Since the right-hand side converges to
zero by first taking n — oo and then m — oo, the result now follows from Theorem
2.35. 0

Y

3.5 Covering Property and Folklore Theorem

In this section we give some conditions for which a piecewise monotonic expanding
transformation 7' : I — I admits a unique acipm pu, (7, @) is exact and %’f is bounded
and bounded away from zero. The proof of the next proposition uses a standard
technique that can be found in e.g. [4, 36].

Proposition 3.16. Let T : I — I be finitely piecewise C?-monotonic and expanding.
Furthermore, suppose that T satisfies the following covering property: For each non-
trivial subinterval J C I there exist n € N and a finite set Iy C I such that T"J = I\Ij.
Then i from Corollary 3.9 is the only acipm of T and satisfies

M >0: L <

P — < M. .
i < (3.38)

&|&
> =

Moreover, (T, i) is ergodic.

Proof: Let f € BV(I) nonzero and real valued such that f > 0 and Prf = f. First
of all, since f is of bounded variation it follows that f is bounded. Moreover, by
Corollary A.11, we may assume that f is lower semicontinuous. Then there exist
a > 0 and a nontrivial interval J C I such that f > «al;. Now take n € N and Iy C I



Chapter 3. Invariant densities for piecewise monotonic interval maps 35

finite such that T"J = I\Iy. Since T™ is finitely piecewise C2-monotonic, we have
K :=sup,;|(T")'(x)] < co. Hence, for all x € I\I, we obtain

1;(y)
[(T) (y)]

because for each o € I\ I there exists y € J such that 7"y = x. It follows from (A.10)
that f(z) > & for all z € Iy as well. We conclude that f is bounded away from zero.
Therefore, every acipm of T has full support, which together with the second part of
Theorem 2.10 yields that the space My.(I,T') from Theorem 3.11 has dimension 1. [

f(&) = Ppf(a) > aPrlya) =a 3

yeT "z

> (3.39)

«
Ka

Remark 3.17. In fact, one can show with the second part of Theorem 7.2.1 in [9] that
(T, 1) is exact under the assumptions of Proposition 3.16.

Example 3.18. Let 8 > 1 and consider T : I — I given by Tz = 2 mod 1. Defining

Ay =15, fori € {0,1,...,[B] — 1} and A = [%, 1], we can as well write

Bx if x € Ay,

Bx—1 if x € Ay,

ﬁ$—LﬁJ 1f$€ALBJ
Now let J C I be a nontrivial subinterval. For each m € N, we have that Tg”_lJ C A;
for some i € {0,1..., 3]} implies \(T§"J) = 3 - )\(Tg‘*lj). From this it follows that
there exists k € N such that T}.J contains an endpoint in (0,1) of one of the intervals
Ay,...,Alg). Then there exists a € (0,1) such that [0,a) C Tg“J, from which we
conclude TjJ = [0,1) for n > k + 1 sufficiently large. We conclude that T meets the
assumptions of Proposition 3.16.

In 1957, Rényi [57] proved the first important result on the existence of an acipm for
piecewise onto transformations. This result is now considered to be a folklore theorem.
Below we state a version of this theorem that is based on Theorem 2.2 in Chapter 5
of [19]. We need the following definition.

Definition 3.19. Let T : I — I be piecewise C*-monotonic and expanding w.r.t. a finite
or countable interval partition {I;}. We say that T' is Markov if k > 2 and the following
conditions are met:

(i) There exist C' >0 andl € {1,...,k — 1} such that for each i and x,y € I; we have
T'(x)
T'(y)

(ii) There exists v > 0 such that \(T'(1;)) > ~ for each i,

- 1\ < C|T(x) - T, (3.41)

(i) If ; N T(I;) # 0, then I; C T(I;).

Remark 3.20. Condition (iii) implies that for each j there exists a collection A C {I;}
such that T'(I;) = U;c4 /. In other words, an interval cannot be mapped only partly
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o I, I I I, 1

Figure 3.3: Example of a Markov transformation on

to some other interval, which is why we call 7" Markov. See Figure 3.3 for a typical
example of a Markov transformation.

Theorem 3.21. (Folklore Theorem) Let T : I — I be a Markov transformation w.r.t. a
finite or countable interval partition {I;}. Furthermore, suppose that for every i and j
there exists n € N such that I; C T™(1;). Then T admits a unique acipm p. Furthermore,

W satisfies
1 du
c— < < .
M >0: <K< (3.42)
and (T, ) is exact.
Proof: See e.g. Theorem 2.2 in Chapter 5 of [19]. O

Remark 3.22. The conclusion of Theorem 3.21 remains true under the conditions (i’),
(ii") and (iii), where

T// (.77)

T'(y)?

20
(i) supy, sup, yer, < 00,

(ii") The set {T'(I;)} is finite,

and where (iii) is as in Definition 3.19. This result can be found in e.g. [2, 3, 7, 8.
Condition (i’) is known as Adler’s condition. Moreover, conditions (i) and (i’) are each
sometimes referred to as T having bounded distortion. In fact, there are many variations
in the literature on the definition of bounded distortion of a transformation (see e.g.
Section 2.2 in [19] for an overview), each with a corresponding version of the Folklore
Theorem. Finally, note that (i’), (ii) and (ii’) are always satisfied if {I;} consists of
finitely many intervals.
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3.6 The invariant density for the LSV map

For each o € (0,00), let T, : I — I be given by

B z(1+2%*) z €0, %},
Tala) = { 92z — 1 ve (1] (343)

(see Figure 3.4). Note that T, is nonexpanding and has a neutral fixed point at
zero. Members of this family are called Liverani-Saussol-Vaienti (LSV) maps because
they were first studied in [45]. In this paper, Liverani, Saussol and Vaienti showed
(among other results) that T, admits an acipm if o € (0, 1) with corresponding density
he = O(z~ ) for z near zero. (In particular, h, is not of bounded variation. Compare
with Proposition 3.8 for the expanding case.) Moreover, this is the only acipm for T,
(see Theorem 1 in [50]). On the other hand, for the case that a € [1,00) it follows
from e.g. [55] that T, admits an infinite o-finite acim with again corresponding density
he = O(z~ =) for x near zero.

In this section we recover the above results (except the asymptotic behavior of A, near
zero) using a method based on Section 3 in [35]. More precisely, let H denote the set of
measurable functions f : I — [0, o] (modulo being Lebesgue almost equal everywhere)
for which the measure p given by p(A) = [, fdX is o-finite. Recall from Remark 2.30
that Pr, : H — H is well defined. We shall prove the following theorem.

Theorem 3.23. For each a € (0,00), there exists ho € H such that
{feH:Prf=[f}={ahs:a>0}. (3.44)
Moreover, hy, € LY(\) if and only if o € (0,1).

a=1/2 \

a=4
a=15

0 1/2 1

Figure 3.4: The LSV map T, for several values of a (adapted from [11])
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Write L, and R for the left and right branch of T, respectively. That is,

{ Lo(w) = 2(1+2°2%) z€0,4], (3.45)

R(z) =2z -1 z € (3,1].

We view R as the nice expanding branch and L, as the complex nonexpanding branch.
In order to obtain an invariant density for T, the idea is now to construct an expanding
transformation S, by properly composing iterations of L, with R. Applying the theory
of the previous sections to S,, it then remains to find a one-to-one correspondence
between the invariant densities of T,, and those of S,.

More precisely, let {I%},>1 be the countable interval partition of I given by I{ = I, =

(3,1] and I = (L™ 5, Ly" 2] for n > 2 (see Figure 3.5). Putting I§ = (0, 1], then

obviously T, (I2) = I¢_, for all n > 1. The first passage time T : I — N in I is given by
7(z) =14+ min{n > 0: T2 (x) € I}. (3.46)

Note that I[¢ = {z € I : 7(z) = n} for all n > 1. Now define S, : I — I as S,(0) =0,
Sa(l) =1 and

So(z) =T7T@(z) = Ro L *(z) forzeI® andn>1 (3.47)
(see Figure 3.6). We have the following lemma.
Lemma 3.24. For each o € (0,00), there exists f, € L*(\) such that

{feH :Ps, f=f}={afa:a>0}. (3.48)

Moreover, f, is bounded and bounded away from zero.

0 14818 1§ I, 1 0 1941 IS I, 1

Figure 3.5: Sketch of the Figure 3.6: Sketch of the map
partition {I%},>1 S, given in (3.47)
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Proof: First of all, we can extend the proof of Proposition 3.8 to conclude that every
fixed point of Ps, in H is of bounded variation, so in particular is an element of L'()\).
Hence, it would be sufficient if we could apply the Folklore Theorem to S,. Note that
the only difficult task is to show that S, has bounded distortion in the sense of (3.41).
This has been shown in the proof of Proposition 3.3 in [45] (see regime (2)) for the
case that o € (0,1). Here it is used that the points y,, = L™ (1) with n > 1 satisfy
Yo < Cn~a for some C' > 0 (see Lemma 3.2 in [45]). In fact, this bound for , can be
derived for all « € (0, 00) using that y,, = 2(om)1 e —I—O(nlffl’}a) (see the proof of Theorem
31 in [10]), so (3.41) can be derived for a € [1, 00) as well using the method in the proof
of Proposition 3.3 in [45]. The result now follows from the Folklore Theorem. O

We define the operators B,, A: H — H by

h(L;'z) h(R™'z)

Boh(z) = L) Ah(x) = TR (3.49)
Then we have
Pr. = A+ B,. (3.50)
We have the following two lemmata.
Lemma 3.25. For each o € (0,00), the transfer operator Ps, of S, satisfies
Ps, f = iABgf, A-a.e. (3.51)

for each f € H. Moreover, each f € H satisfies Y poq BEf(x) < 0o for M\-a.e. v € 1.

Proof: Note that Stz = {L;*R™'z : kK > 0} for each z € I. Let f € H. For \-a.e.
x € I we have

_ fly) _ N~ SR )
Ps,fx)=)_ 1S'(y)| Zo [(RLE) (LZ*R=1x)|

yeS—1z

&1 f(Lg*R )
" L RE)] )

-3 Rt = L ABN@

OM

Because Ps,f € H, we see from this that Y po,BXf(R7'z) < oo for M-ae. z € I,
ie. >0 BEf(x) < oo for Md-a.e. x € I;. Suppose now that for some n € N we have
S BEf(z) < oo for M-a.e. x € I,,. Then

Z |L, L 136 ZB’“ (3.52)

for A-a.e. x € I,,, which gives > 70, BX f(x) < 0o for M-a.e. z € I,41. O

Lemma 3.26. Let a € (0,00), and let f, be as in Lemma 5.24. Then ho := Y e B fa
is an element of H. Moreover, ho, € L*(X) if and only if a € (0,1).
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Proof: Define yo = 1 and y, = Ly""!(3) for n > 1 (for convenience, we omit in the
notation that y, depends on « for n > 2). Then I = [y, yn—1) for each n > 1. From
the proof of Theorem 31 in [10] it follows that

1 logn
I = g+ O(—rs ). (3.53)
from which we can derive
1 l
Ty =1+¢—+0(=21), (3.54)
n n

where £ = O‘ail Furthermore, since L, is convex, we have

Li(yn) < Ly(2) < Ly(Yn-1), 2 € 17 = [Yn,Yn1) (3.55)
for each n > 1. Now let M, > 0 such that
1
— < < M,. .
S fa S M (3.50)
Combining (3.55) and (3.56) yields
M,

B f.(z) forr € I® n>1and k> 1. (3.57)

<
N |Lfy(yn+1>| T |L/a<yn+k>|

Moreover, there exists ng € N such that for all n > ng and k£ > 1 it follows that

k

1'1:[1 m _ o Xitilog (1+e:2; +o (et )) (using (3.54))
< Ce X (using log(1 + z) = z + O(2?))
< (e~ 8log(n+ (k1)) —log(n+1)) (using zk: . - > /kH dz)
o 1 n+wx

R n—+1 3

= (n + (k+ 1))
for suitable constants C,C” € (0,00). This gives together with (3.57) and the fact that
¢ > 1 for each z € I and n > ng that

00 0 1
) = 37 B0 € 04 0, 053
k=0 k

n

— ]

< My + MaC'(n + 1)5((n 1)+ 0+ 1)—f+1) < C'"n (3.58)
and for each z € [$ and n=1,...,n9 — 1 that
no—n—1 k
Ma C”ﬂ()
ha(z) < + 3.59
@< (X Mg " momrgeey 6%

for a suitable constant C” € (0,00). In particular, it follows that [}, had)\ < oo for
eachn>1, so h, € H.
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Furthermore, because

1 1 1t 1
Ve T i Ue —/ g~ gy < Zp~(H1/e) (3.60)
nt/e n « a f,

(07

we get M1p,) = Yn — Ynt1 = O(;ﬂ%). Together with (3.58) and (3.59) we obtain that
there exist M > 0 and n; € N such that for all n > n; we have f[a hod) < M%, SO

/had)\ < Z/ had) < 00 (3.61)
I n=1 IR

for @ € (0,1). On the other hand, using the lower bounds in (3.55) and (3.56) we can
in the same way derive that there exists a constant M’ > 0 such that for sufficiently
large n we have [}, hodX > M’IOF/Z, and thus, for o > 1,

n

/hadA > Z/ hod) = co. (3.62)
I n=1 IR

[]

We can now complete the proof of Theorem 3.23:

Proof (Theorem 3.23): Let a € (0,00). First of all, it follows from the previous
lemmata that h, is a fixed point of Py :

Prho = (A+ Ba)ha = A(iBf;fa> + Ba(iBgfa)
k=0 k=0

= (Y ABE) fut Yo BEfa = fat D Bhifa = ha.
k=0 k=1 k=1

Now let g € H be any fixed point of Pr,. Then Ag = g — B,g € H is a fixed point of
Ps_, because

Ps,(Ag) = Ps,(9) — Ps,(Bag) = Y ABLg—> ABEg=Ag,  Mae  (3.63)
k=0 k=1

Lemma 3.24 yields Ag = af, for a certain a > 0, so with Lemma 3.25 we get
g=>_ Blg—> Big=> Bk(g— Bag)
=Y BfAg=a) Blfa=dh.,  Mae.
k=0 k=0

Combining this with Lemma 3.26 yields the result. m

Remark 3.27. It is shown in Section 2 of [50] that for « € (0,1) the acipm of T,, with
(normalized) density h, is ergodic. Moreover, the result in Theorem 3.23 is proven in
[50] for a more general class 7, (0 < o < 1) of transformations on I by generalizing
the method of Liverani, Saussol and Vaienti in [45]. Each transformation T, : [ — I
in this class consists of two branches, both increasing, convex, C' and onto I, with
T,(0) =0 and T/ (z) = 1 + Ca* + o(x*) for x close to zero.



Chapter 4

Invariant Densities for Random

Piecewise Monotonic Interval Maps

4.1 Introduction

Let us now consider a random dynamical system on (7, B, \). For that, let (€2, F,P) be
a probability space (the base) and let ¢ :  — Q (the base map) be measure preserving
and ergodic w.r.t. P. For each w € €2 we consider a piecewise monotonic interval map
T, : I — I and we suppose throughout this chapter that the map 7 : Q2 x I — [ given
by T(w,z) = T,z is measurable. We are then considering orbits of the form

x> Tox— To,Tux — Ty TpuTor — ... (4.1)

As in the deterministic situation, we are interested in the long-term average behavior
of these random orbits. However, in general there is no measure on I that is simulta-
neously invariant under all the maps {7}, : w € Q}. As an analogue of (3.1), we instead
consider S.R.B. measures (Sinai-Ruelle-Bowen measures) as in [12]:

A probability measure v on I is S.R.B. for the random dynamical system (2, F,P, ¢, T)
if for P-a.a. w € Q the set B, (v) of points x € I such that

1
lim —
n—o00 M

n—1
S F(Tprg oo Tur) = / fdv for all f € C(I) (4.2)
k=0 I

satisfies A(B,(v)) > 0.
To obtain such measures, we consider the skew product
F=F,p:QxI—-QxI, (w,z)— (pw, T,). (4.3)

Note that F' is measurable because T' is measurable. Iterating (w,z) under F, observe
that we obtain the random orbit in (4.1) by projecting on I. The following theorem is
proven by Buzzi [12].

42
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Theorem 4.1. (Proposition 4.1 in [12]) Suppose 2 is a compact space and F is the
Borel o-algebra on 2.5 Furthermore, suppose ji is a probability measure on  x I that is
mvartant and ergodic w.r.t. I and absolutely continuous w.r.t. P& X. Then the projection
of w on I given by v(A) = u(Q2 x A) for A € B is an S.R.B. measure for (Q, F,P, ¢, T).

This motivates the question under what conditions there exists a probability measure
poon € x I that is invariant w.r.t. F' and absolutely continuous w.r.t. P® A. Similar as
in Chapter 3, we say in this case that u is an acipm for F' (or acim if p is a complex
measure). We need the following proposition:

Proposition 4.2. The skew product F' is nonsingular w.r.t. P ® \.
Proof: Let A C Q2 x I Borel. Put

A, ={xel:(wx)e A}, w e Q. (4.4)

Note that A, € B for each w € 2. Then A =J_.o{w} x A, and

weN
P& A(A) = /Q /I 1w, 2)d\(2)dP(w) = /Q A dP(w). (4.5)
Furthermore, we have

FlA=JF ' ({wyx4) = ( U (@) x T;Aw) = [ J{w} x T, 4pu, (4.6)

we we)  oep~lw we

which gives

PoA(FA) = / MTT AL AP (). (4.7)
Q

Now suppose P@ A(A) = 0. Then combining (4.5) with Theorem 2.7 yields A(Ay,) =0

for P-a.a. w € Q. Since each T,, is nonsingular w.r.t. A, this gives \(7;*A4,,) = 0 for

P-a.a. w € Q. Together with (4.7) it follows that P& A\(F~1A) = 0. O

Hence, F' admits a corresponding transfer operator Prpgy : L'(P® A) — LY (P ® \)
that we simply denote as Pr. In view of Proposition 2.33 we are thus interested in the
fixed points of Pr, which are the invariant densities for F' in the sense of (1.30).

In Sections 4.2-4.4 we consider the setting that the base () is equal to the product
space Qp = EN with E a Polish space. Moreover, writing w = (wy,ws, ...) for w € Qg,
we assume that T, = T,,, for each w € Qg , and that the base map ¢ is equal to the
left shift o on Qp, i.e. ow = & where @, = wy,y1.

We consider in Section 4.2 the case that (2, F,P, o) is a Bernoulli shift and discuss
results from Morita [47, 49] and Pelikan [53] that generalize the results in Sections 3.3
and 3.4 to random i.i.d. compositions of piecewise monotonic maps that are expanding
in mean. Moreover, we give the random covering property from [4] that implies that an

'For the proof of Theorem 4.1 we apply the result of Theorem 2.14 to the pair (u, F). It is in this step
that we need the compactness of (2.
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invariant density h for F, p, if it exists, is (up to normalization) unique and is bounded
and bounded away from zero.

As an example of a random system that is not expanding in mean, we consider in
Section 4.3 the random i.i.d. compositions of two LSV maps T, and T given by (3.43),
where o € (0,1) and 8 > 1. Here, at each time point T, is applied with probability
p € (0,1) and Tp is applied with probability 1 — p. We prove that there exists an
invariant density for the corresponding skew product by generalizing the proof for the
deterministic case (i.e. p = 1) discussed in [45]. Moreover, we propose a second way to
prove this with the method of inducing w.r.t. the first passage time from Section 3.6.

In Section 4.4 we generalize the results from Section 4.2 to the case that (Q, F,P,0)
is a Markov shift. Part of these results are from Kowalski [40] and Froyland [28].

Finally, in Section 4.5 we consider the setting where the base (2, F,P) is an abstract
probability space and the base map ¢ is invertible. We review conditions from Buzzi
[12] under which F,  admits an invariant density and an additional covering property
from Buzzi [13] under which this is the only invariant density for F, 1

4.2 One-sided Bernoulli Shift as Base

Let E be a Polish space and £ the Borel o-algebra on E. Foreach z € E, let T, : [ — |
be a piecewise monotonic interval map. We define the skew product

F:QepxI—=QgxI, (wx)— (ow,T,1). (4.8)

where o is the left shift on Qp = EN. We assume that the map E x I 3 (z,2) + T,z
is measurable (which always holds if E is countable), so that T': Q2 x I — I given by
T(w,z) = T,z is measurable. Also, let m be a probability measure on (E, ), and take
P = 7®N as a probability measure on (Qg, F), where F is the Borel o-algebra on EV.

We first recover the result from Morita [49] (see also Lemma 3.2 in [28]) that each
acim of F' has the form P ® v, where v is absolutely continuous w.r.t. A with density
9 that is a fixed point of the operator Pr: L'(I) — L*(I) given by

Prf(z) = [E Prf(x)dn(z),  Mae. (4.9)

for each f € L'(I). In (4.9), Pr, is the transfer operator that is associated to T,. In
this case, we see from (4.9) with f = % together with Fubini’s Theorem that such a v
satisfies

V(A) = /E WT ' A)dr(z),  A€B, (4.10)

which is a natural generalization of the definition of invariance of a measure w.r.t. a
single transformation. We first need two lemmata.



Chapter 4. Invariant densities for random piecewise monotonic interval maps 45

For k > 1, let Z;, be the linear span of characteristic functions of sets A € ¥, i.e.

T = {iaﬂ&. ca,€C A€ i=1,.  nn> 1}. (4.11)

i=1

Furthermore, we define Ay C L*(P® \) as

Ay = U{QE x I3 (w,x) =YW, .. wp)éx): €Ty, ¢ LY} (4.12)

k>1
Lemma 4.3. Ay is dense in L'(P® \).
Proof: We know that the linear span of characteristic functions of Z C F ® B with

I:{(Alx---xAkxExEx---)xB:BGB,AZ-ES,izl,...,k,kZ1}

is dense in L'(P ® \) because of e.g. Theorem 4.12 in [20]. (Note that Z is a semiring
that generates F @ B.) Now observe that A4, contains the linear span of characteristic
functions of 7. ]

Lemma 4.4. (Lemma 4.1 in [49]) Let ® € Ay be given by ®(w,z) = (w1, ..., wk)d(x)
for some k > 1, ¢ € Ij, and ¢ € L*(N\). Then for all n > k we have

- Pr. ¢)(x)dr" (21, . . s 2n), P® A-a.e.

Zn

PR (w,z) = . (21, ..., 2) - (Pr

So if n >k, then the value of Pp®(w,x) does not depend on w for P-a.a. w.

Proof: For allm >k, A€ F and B € B we have

/ P;@dP®A:/ OdP @ A
AxB F—"(AxB)

_ /QE /Igb(x)w(zl, (0" (T, - T 2)dA(2)dP(2)

= P(A) /Enflqb(x)w(zl,...,Zk)1B(TZn...Thx)dA(x)dﬂn(zh___7%)
— P(A) Enw(zl,...,zk)(/B(me -+ Pr.,6)(@)dN(@) )" (zn, . 2)
- /AxB ( o U(z1sm) - (P, - P, d)()dn” (21, .,zn))dIP’@; A

O

Theorem 4.5. Let h € LY(P® )\). Then Pph = h if and only if there exists h € L*(I)
such that h(w,z) = h(z) for P ® A-a.e. (w,z) and h is fired under the operator Pp :
LY(I) = LY(I) given by (4.9).

Proof: Suppose h(w,z) = h(z) for P® M-a.e. (w,z) and h is fixed under Pr. Then from
Lemma 4.4 it follows that

Prh(w,z) = /E Ppi(2)dn(2) = Prh(z) = h(z) = hw,2), P& Mac.
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Conversely, suppose Prh = h. From Lemma 4.3 it follows that there exist a sequence
{®,,} in Ay that converges in L'(P ® ) to h. For each m € N, take k,, such that
B (w, ) := PEm®,,(w,z) does not depend on w for P-a.a. w. Then

lim / h — hy,|d\)dP = lim Pkmp — Pknd, 1dP @ A
/QE m—00 ( I ’ | > m—o0 QpxI | F F ’
< lim |h— ®,,[dP @ X\ = 0,

m— o0 QpxI

so for P-a.a. w € Qp we obtain hy,(w,) converges in L'()\) to h(w,-) as m — oo.
Combining that this limit is A-a.e. unique with the fact that, for each m € N, h,, (w, z)
does not depend on w for P-a.a. w yields that h(w,z) = h(z) P ® M-a.e. for some
h e L'(I). In particular, h € Ay and we obtain from Lemma 4.4 that

W(2) = h(w, z) = Prh(w,z) = /E Pr(x)dr(z) = Prh(z), P® \ac.

]

So according to Theorem 4.5 there is a one-to-one relation between the acim’s for F
and the fixed points of Pr in (4.9). By deriving a Lasota-Yorke inequality for Pr, we
shall obtain similar results as in Sections 3.3 and 3.4.

For simplicity, let us from now on assume that E is countable and write p; := 7(j)
for each j € E. Furthermore, we assume that each T; (j € E) is finitely piecewise
C%-monotonic. We say that T is ezpanding on average w.r.t. (p;)jep if

. Pj
Ap = Z T < 1 (4.13)
JjER

where 0(T;) = inf,¢; [T} ()| > 0.

Theorem 4.6. (Proposition 2.3 in [4]) Suppose T is expanding on average w.r.t. (p;)jcp-
Then there exist k € N, p € (0,1) and L € (0,00) such that

Var;(Prf) < pVarr(f) + LI fllh ~ for all f € BV(I). (4.14)
Consequently, F' admits an acipm whose density is of bounded variation.

Proof: From (4.9) it follows that, for each k € N,

Pi= > P PuPr, o oPr = Y P puPreorn,. (4.15)

(W1eesi ) EEF (Wi, i) EEF

Using the subadditivity of Var;(-) we thus find for each k € Nand f € BV(I), applying
Lemma 3.2 to each T,,, o--- 0T,

Vary(Pff) < prVary(f) + Lil| fl| (4.16)

: 2puwy -+ Pw
with Pk = Z(wl,...,wk)eEk m and Ly = Z(UJl,...,UJk)GEk Puy - 'pka(ka ©--+0 Twl)'

It follows by the chain rule that 6(T,, o-- 0T, ) > 0(T,,) - 0(T.,), so pr < 2Ak.
Therefore, we can take k large enough so that p := pi, < 1. In exactly the same way as
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in the proof of Theorem 3.1 we can construct from (4.14) a fixed point of Pr in BV (I),
which yields the result. O

Remark 4.7. Note that (4.13) is satisfied if each Tj is expanding (i.e. 0(7;) > 1).
Moreover, it is possible that T' is expanding on average if there exists j € F such that
9(T;) < 1 by choosing a suitable probability vector (p;);cg.

Remark 4.8. Pelikan [53] showed for the case that E is finite that the Lasota-Yorke
inequality (4.14) still holds if

Dj
sup < 1. 4.17

Note that this is a weaker condition than requiring that 7" is expanding on average.
An extension of this result is given in [30] to the setting where E is finite and each 7}
is allowed to be piecewise monotonic on a countable partition {I; ;} such that

A if e U Int(Ly),
gj<as>:{ Ll j

i (4.18)
0 if z € I\ Y, Int(Z; ;)

is of bounded variation (compare with Remark 3.4).2

Remark 4.9. The case that F is a general Polish space was first considered by Morita
[49], who showed that for a probability measure w on (FE, £) the result in Theorem 4.6
is still valid if £ 3 z — 6(T,)"! is an element of L'(7) that satisfies

/E rgfz)dw(z) <1 (4.19)

This result is further generalized in [48] to the case that each T, is allowed to have
countably many branches under some additional technical assumptions. (For instance,
the distortion of random i.i.d. compositions of {7} should be integrable w.r.t. r.)

Remark 4.10. Finally, the result in Remark 4.8 is further extended by Inoue [34] to
the setting where (E,&,7) is a general probability space and where each T, (z € F)
is allowed to be piecewise monotonic on a countable partition {I;,}.> For this, it is
assumed that there exists a constant M > 0 such that

e if Int(Z; .
g:(x) = ¢ =@ e U t(L.). (4.20)
0 if € I\, Int(Z; »)
satisfies Vary(g.) < M for m-a.a. z € E, and such that
sup / g.(2)dn () < 1. (4.21)
zel JE

*The result by Bahsoun and Géra in [30] is even more general, because p;(z) is allowed to change as a
function of z. That is, it is assumed that {p;(z)};cr is a set of position dependent measurable probabilities.

It is furthermore allowed in [34] that 7 is position dependent being a measure on E x I such that
dr(z,z) = p(z,x)dv(z) for some probability density function p : E x I — [0,00) and some measure v on
(E,&). We only consider the simplified version that p(z,z) = 1.



Chapter 4. Invariant densities for random piecewise monotonic interval maps 48

Example 4.11. Let T : I — I denote the Gauss map from (1.7) (see Figure 1.2).
We learned in Subsection 1.1.2 that T admits an invariant probability density hy =
@1%@' Furthermore, let 71 : I — I denote the Rényi map from (3.21) (see Figure 3.2).
We know from Remark 3.6 that T} does not admit an invariant probability density but
does admit a o-finite acim with density hi(z) = 2. Now let E = {0,1}, po =p € (0,1)
and py = 1 — p. It is shown in Proposition 3.1 of [36] that {To, 71, po,p1} satisfies
the conditions in Remark 4.8. (Note that Tj and T} are not expanding and that 7T is
not expanding on average, but that (4.17) is satisfied.) Hence, if p € [0,1), then the
corresponding skew product F' as given in (4.8) admits an invariant probability density

hy,, which is not the case if p = 1.

Most of the results in Section 3.4 carry over to the setting of Theorem 4.6, as the next
theorem states.

Theorem 4.12. Suppose that E is countable, and let (p;)jecr be a probability vector. Fur-
thermore, assume that {T;}jcr is a collection of finitely piecewise C%-monotonic interval
maps and that T is expanding on average w.r.t. (p;)jcp. Then

1. the fized points of Pr are elements of BV (I),

2. there exists a biggest acipm i1 =P @ v of F in the sense that if u is an acipm of F,
then p is absolutely continuous w.r.t. [i.

3. the restriction Pppy of Pr to BV(I) satisfies Prpy : BV(I) — BV(I) and is
quasi-compact,

4. the set Mooe(Qp X I, F) of acim’s of F' is a non-empty finite-dimensional vector space
generated by the ergodic acipm’s of F.

Proof: Using the Lasota-Yorke inequality (4.14), the above statements follow in ex-
actly the same way as the proofs of Proposition 3.8, Corollary 3.9, Theorem 3.10 and
Theorem 3.11, respectively. O

Remark 4.13. Under the assumptions of Theorem 4.12, it follows both from Lemma
5.4 in [53] and Corollary 7 in [49] that if there exists a T; that is expanding, then the
dimension of M,.(Q2g x I, F) is bounded by the number of discontinuities of T;.

As in the deterministic setting, we can from the quasi-compactness of Pr gy deduce a
number of ergodic properties of F. As an example, we show that if (F,f) is weakly
mixing, then (F, 1) is mixing.

Proposition 4.14. In addition to the assumptions in Theorem 4.12, assume that (F, i)
1s weakly mixing. Then for each n € N we have

dA
where for some ¢ € (0,1) and M > 0 we have for each n € N that ||S™||gy < Mq™.

dv
Prpyg = (/Igd)\)— + S"g, g € BV(I) (4.22)

Proof: This can be shown similarly as done in the proof of Proposition 3.14. O
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Corollary 4.15. Under the assumptions of Proposition 4.14, (F, 1) is mizing.
Proof: We use the following notation for cylinders of the form
Ui gn] ={w € Qp w1 =j1,...,wn = jiu}. (4.23)

Furthermore, let us write h = %. Then for all cylinders [j1 -+ n), [l1,. .., lm] € F and
A, B € B we have for all N > m that (with k = N —m)

(P (U al % A) Ol L] x B)

i1

=Pl u)P(l - bnl) > pa / R e P LY
110

Moreover, from Proposition 4.14 it follows that
fim [ 37 e pi P Pa (P Pu(LsF))

k—o00
i1--ig

= lim [ PE(P,, - P,(15h))d\

k—o00 A

:A(/jﬂm--.ﬂl(lBﬁ)dA)ﬁdA

= v(A)p(B),
so we obtain
ngloo,z(F*N([jl g X A) O[] X B) = [+ ] X A) - [l ] X B).
]

Finally, the next proposition is a generalization of Proposition 3.16. The proof remains
similar in spirit.

Proposition 4.16. In addition to the assumptions in Theorem 4.12, assume that p; > 0
for each j € E. Furthermore, suppose that the following random covering property
holds: For each non-trivial subinterval J C I there exist n € N and a finite set Iy C I and
(wWi,...,wy) € E™ such that T,,, o---oT,, (J) = I\Iy. Then [ is the only acipm of F and
satisfies

1

IM>0: — <
RV

&|&
> =

< M. (4.24)

Moreover, (F, 1) is ergodic.

Remark 4.17. In fact, because the Bernoulli shift (o, P) is exact (see Example 2.23),
one can show with the fourth part of Theorem 2.1 in [47] that (F, ) is exact under
the assumptions of Proposition 4.16.

Example 4.18. Any countable family {7} : I — I},cg given by Tjz = 5z mod 1 and
with inf,eg 5; > 1, together with any probability vector {p;};cr such that p; > 0 for



Chapter 4. Invariant densities for random piecewise monotonic interval maps 50

each j € F satisfies the assumptions of Proposition 4.16. This can be shown in a
similar way as the deterministic case in Example 3.18.

4.3 Random i.i.d. Compositions of Two LSV Maps

Let us return to the LSV maps discussed in Section 3.6. We now consider two LSV
maps {T,,Ts3} with o € (0,1) and g > 1. At each time step we apply 7, with
probability p and T with probability 1 — p, independently from the maps that are
applied at the other time steps. That is, we consider iterations of the skew product
F:{a, BN x I = {a, B} x I given by F(w,z) = (ow,T,,x) and we put on {a, B}
the Bernoulli measure P with corresponding probability vector (p, 1 — p). Recall from
Section 3.6 that T,, admits an invariant probability density (the p = 1 case) and that
T does not (the p =0 case). We want to know if in the intermediate region p € (0,1)
the skew product F' admits an invariant probability density, or equivalently if the
operator Pr := pPr, 4+ (1 — p)Pr, has a fixed point in L*(I). As opposed to the case
in Example 4.11, note that we now cannot apply the result in Remark 4.8 because
|T,,(0)] = |T4(0)] = 1. Still, we have the following result:

Theorem 4.19. Let o € (0,1), 8 > 1 andp € (0,1). Then there exists a locally Lipschitz
function f* € LM(I) s.t. Prf* = f* and f*(x) < ax~® with a > 2°p~1(a + 2).

Remark 4.20. As explained in Remark 4.2 in [6], a fixed point of Pr can also be
obtained using the techniques in [5, 6] (that is, using Young towers) when a linearized
version of the LSV maps T;, and Tj is considered.

We prove Theorem 4.19 by closely following Section 2 in [45] where the result is shown
for p = 1. In the following, we set T, 'z = {ya, yo} With y, < yo and Tﬁ_lx = {ys, W},
and &, = (2y,)* and &5 = (2yp)®. Writing L, Ls and R as in (3.45), we then have

_ - f(ya) oy Sls) | f(w)

i) =r gy TP T T ww)
B f(Ya) f(yp) f(wo)
_p1+(04+1)€a +(1_p)1+(6—i1)§5 Ty

Let us define the set Co = {f € C°((0,1]) : f > 0, f decreasing}. Since x — yo(z),
z — ys(z) and = — & (x) are increasing for each s € {a, 3}, it follows that Cy is
preserved by Pr, i.e. PrCy C Cy. As in [45], we need the following two lemmata.

Lemma 4.21. The set C; = {f € Cy : x — 2P f(z) increasing} is preserved by Pr.
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Proof: We have

B+1 - Loya\PH1 yg“f(%) B Lgyg\A+1 yg“f(%)
e’ Prf(r) = p( Ya ) 1+(a+1)§a+(1 )< Y > 1+ (B+1)&s
Ryo\#+1yg ' f(yo)
+< yo ) : 2

B B
— e )+ (- )

1 L\AH 54
+§<2—%> Yo f(wo)-

The result follows by noting that also £ — Sfflfflf, £ 1}:{% and y — (2 — i)ﬂﬂ

are increasing functions. O]

Lemma 4.22. The set Co = {f € C; N LY(I) : f(x) < az™®, [; fd\ = 1} is preserved by
Pr, provided a is chosen large enough.

Proof: Let f € Cy. First of all, we have [, Prfd\ = [, fd\ = 1 by part (b) of
Proposition 2.31. Since z — 2+ f(z) is increasing and f is decreasing, we have

P f(x / fdx=1. (4.25)
Combining this with f(z) < az™® yields

f(ya) flys) | flw)
P TP T T R )

— — 1
a‘ya ayﬁ “ y() -
P ' (v

_'_
Lig(ys) ~ R'(wo)
rye 1 e 1 1 x®
<pl—) ——+ 1 —-p)(— + - ax~*. 4.26
{ () 7 000 Tt e (1.26)
We need to find a such that the term in curly brackets is bounded by 1. First of all,
we know for each £ > —1 that (1 +¢£)* <1+ o€ (using that o € (0,1)), so

(ﬁ)a 1L (+&)* _  1+ag
ys/ Ly(ys) 1+ (B+1)& ~ 1+ (B+1)¢s

Moreover, we have yg > 3 and &, <1, so

z* (ya)a(l +€a)a
B+1 < 2-6-1.9
Yo 1 (yo) '

Prf(x) = +(1-

)+(1_p>

<1. (4.27)

< 2%(ya) 2% = 2%¢,. (4.28)

It follows from (4.28) that

zhe 1 1 a2 (14 &)
p<ya> L, (Ya) ” ay€+1R/(yo) = pl + (a+ 1)
1+ aa + Z&a(1+ (a + 1)6a) 1+( + Lt ye,
<p ;
1+ (a+1)¢a + (a+1)é

_ga

<p (4.29)
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where in the last step we use 1 + (@ + 1), < a + 2. Combining (4.26), (4.27) and

(4.29), we obtain for a > 2(a42) tpat Prf(z) < ax~®, which yields the result. O
P

Remark 4.23. For (4.27) and the second bound in (4.29) we use that (1+&)* < 1+as&,
(

)
which for positive « is the case if and only if a € (0,1]. For this reason, we cannot
0,1

1]

extend this result to the case that o > 1 for any p €

Proof of Theorem 4.19: Let us define S C C%([0,1]) as follows:
S ={[0,1] 3z 2P f(z): f € Ca}. (4.30)

Let ¢ € S be given by ¢(z) = 2! T8 f(z) with f € Co. Then for z > y we get

0< 6(e) — 0ly) < (¢ — ) (@) < a1+ 9) [ P

< a(l+pB)|z -yl (4.31)

From this we see that S is bounded and equicontinuous, so from the Arzela-Ascoli
Theorem (Theorem B.6) it follows that S is compact in C°([0, 1]) w.r.t. the supremum
norm. Using that Pr preserves C; and that a weighted average of elements in Co
is also an element of Cy, we therefore obtain that the sequence {¢,} C S given by
Gn(x) = 'O f,(z) with f, = 237" Pif has a subsequence {¢,,} that converges
uniformly to some ¢* € C°([0,1]). Now define f* € C°((0,1]) as f*(z) = 27 P¢*(z).
Then {f,,} converges pointwise to f*, and since

1
sup o (o)) < ax* and [ o~de < oc, (4.32)
keN 0

it follows that f*(z) < axz™® and that

/0 ()i = lim / fo(@)da = 1 (4.33)

using the Dominated Convergence Theorem. We conclude that f* € Cy. In exactly the
same way as in (3.18) it can now be shown that Pr(f*) = f*, and that f* is locally
Lipschitz follows from the fact that for x > y we have

0< f(y) — f*(z) <a PP — ) f*(y) < a7 Pa(l + B)|x —y, (4.34)

where we used that f* is decreasing, that x +— 2'*#f*(z) is increasing and (4.31),
respectively. O]

Remark 4.24. We already observed in Remark 4.23 that the above proof does not
work for @ > 1. It follows from (4.32) that the same is true for a = 1, because
fol v dr = co.

Remark 4.25. The proof of Theorem 4.19 is almost the same as the one in Section
2 of [45]. Compared to this p = 1 case, the new idea in the proof of Theorem 4.19 is
how the expression in curly brackets in (4.26) is bounded. Namely, consider the p =0
case: If p = 0, then the first term in (4.26) is zero, and bounding the second term by
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1 as in (4.27) requires that the third term is zero, or equivalently, that a = co. On
the other hand, if p € (0,1), we can bound the second term by 1 — p and we don’t
need to require that the third term is zero. This allows us to bound the third term
together with the first term by p, from which Lemma 4.22 follows. It is worthwhile
to investigate if this idea can be used for proving the same result with two maps on
I from the class considered in [50] (see Remark 3.27, where we take one map from 7,
and one map from 73, with 0 < o <1 < 8 < 00). The main motivation for this is that
the p = 1 case in [45] has been extended in [50] to maps in 7, using essentially the
same ideas as in [45].

Proposition 4.26. Let a € (0,1), 3> 1 and p € (0,1). Then f* € L*(I) from Theorem
4.19 is the unique fized point of Pr in L*(I) and the corresponding acipm pu on {0, 1} x I
18 ergodic w.r.t. the skew product F'.

Proof: Since f* has full support on I (because f* € Cy), note from the first part of
Theorem 2.10 that the result follows if we show that u is F-ergodic. So suppose that
F~'A = A for some A € F® B, where F is the o-algebra generated by the cylinders in
Qg = {a, B}, Then it is easy to see that Pr(14f*) = 14f*, so it follows from Theorem
4.5 that there exists C' € B such that

14 = 1QE><C, P ® Ma.e. (435)
Then also
1F*1A = 1F71(QE><C)7 P X )\—a.e. (436)

Using that F~'A = A and that F~'(Qp x C) = [a] x T,'C U [8] x T;'C (using the
notation from (4.23)), (4.35) and (4.36) together yield

10 = 1T_;1Cv A-a.e. (437)

for both s € {a, }. From Remark 3.27 we know that T, admits an ergodic acipm with
full support, so it follows from e.g. Theorem 1.6.1 in [15] that A\(C) € {0,1}. Together
with (4.35) we conclude that u(A) € {0, 1}. O

We now state some ideas how to generalize the method in Section 3.6 to obtain in a
second way the existence of the fixed point f* € L!(I) for Pr as in Theorem 4.19. Set
E = {a,B} and Qp = EN. For each w € Qp, we define the sequence {y,, ., }n>1 given by
Yiw =3 and Yni1,0 = L5 (ynw) for n > 1. Also, for each w € Qg we let {I, 4 }n>1 be
the countable interval partition of I given by I, = I} = (%, 1] and I, = (Ynw, Yn—1.0]

for n > 2.

Let S : Qg x I — I be given by S(w,z) = S,z, where each S, : [ — [ is piecewise
monotonic and given by

So(r) =Ro Ly, 0oL, ,(x) forx € I, and n > 1. (4.38)
Note that 2z is a Polish space. Now consider the skew product

F:Qp)NxI— Qe)VNxI, (0,z) (60,5z), (4.39)
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where & denotes the left shift on (Qz)Y. We take P = P®N as a probability measure

n ((Qg)N, F), where F is the Borel g-algebra on (Q5)N. From Theorem 4.5 we know
that each acim of F has the form P® v, where v is absolutely continuous w.r.t. A with
density % that is a fixed point of the operator Ps : L'(I) — L'(I) given by

Psf(z) = /Q Py f(2)dP(w),  Aac. (4.40)

Now, let us write A and B, for the operators as given in (3.49). We define B :=
pBs + (1 — p)Bs. Then we have

Pr=A+B. (4.41)
Let us set p, := p and pg := 1 — p. We have the following lemma.

Lemma 4.27. The operator Ps sastisfies

Psf =Y AB*f,  Xae. (4.42)
k=0

for each f € L*(I). Also, each f € L'(I) satisfies > peo B¥f(x) < o0 for A-a.e. x € I.
Proof: Let f € LY(I). For Ma.e. z € I we have

Pofw) = [ pos@are) = [ Py \5/ (@)

> L—l...L—lR—
e ““’_)1 o TP)
ap i |(RLw, -+ L) (LG -+ LG R )

_Z Z Puwn - pwk t wkf ZABk

k=0 w1 wg

where the interchange of integral and series is justified by applying the Monotone
Convergence Theorem to the positive and negative part of the real and imaginary part
of the integrand. The second statement can be shown similarly as done in the proof
of Lemma 3.25. O

Using Theorem 4.19 we have the following two results about the operator Ps.

Proposition 4.28. There exists a real and nonnegative f € L'(I) such that Psf = f.

Proof: Let f* be as in Theorem 4.19. Then f := Af* = f* — Bf* € LY(I) is a fixed
point of Ps, because

Ps(f) = Ps(f*) — Ps(Bf") ZAB’“ ZAka =Af",  Mae  (4.43)

]
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Proposition 4.29. There ezists f € L'(I) for which Psf = f such that h = ro, B*f
is an element of L*(I) and such that h is a fived point of Pr.

Proof: Take as in (4.43) the fixed point f = Af* of Ps. Then with Lemma 4.27 we get

fr=> "B =Y B =) BFAf => Bf. (4.44)
k=0 k=1 k=0 k=0
This gives h = f* € L'(I). O

Let us now state some ideas how to prove the above two propositions in a similar way
as the proofs of Lemma 3.24 and Lemma 3.26 (so without making use of the result of
Theorem 4.19), thus indicating an alternative proof of Theorem 4.19.

First of all, it is clear that S is expanding on average in the sense of (4.19) (taking
Qp for E and P for 7). As we know from Remark 4.9, the result of Proposition 4.28
now follows if S has suitable distortion bounds such as in [48]. If true, this can be
viewed as a natural generalization of the proof of Lemma 3.24. Alternatively, in view
of Remark 4.10, one can check if the function g,(x) from (4.20) associated to S has
bounded variation uniformly on P-a.a. w € Qg. It is not clear either if this is true.

Secondly, suppose that f is as in Proposition 4.28. Then if h := Y32 B*f satisfies
h € L'(I), then it follows from Lemma 4.27 that h is a fixed point of Pr:

Prh = (A+B)h:A<inf) +B(i3kf>

= (X aB )+ > B =y + Y B = (4.45)
k=0 k=1 k=1

Hence, Proposition 4.29 follows if we show that h € L'(I). Suppose that there exists
M > 0 such that f < M. This is for instance the case if S satisfies the conditions in
Remark 4.9 or Remark 4.10 (taking (Qg, F,P) for (E,&,n)), because similar as in the
first part of Theorem 4.12 it then follows that f has bounded variation. Then

/I hd\ = iB’“fdA: /] /Q iBwl---Bwk fdP(w)dA(x)

I'k=0 E =0
=y / / > B, - By fd\P(w)
n=1788 JInw —
<MY en, (4.46)
n=1

where we used Fubini’s Theorem, and where

ad 1
¢, = S ANP(w
// (Lo Lo (Lo L) D)

nw k=0

> 1
< /Q EA(IW){g TR TR (e )}dIF’(w). (4.47)

1 Ynw
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We know from Theorem 1.1 in [6] that y, . ~ 1(apn)~V/* for P-a.a w € Q, ie.

lim M =1, P-a.a. w € Q.

n—o0o Yn,w
Therefore, as for the p = 1 case in Section 3.6, it seems reasonable to expect that
MIpw) = O(nllofﬁ?a). Moreover, in a similar way as in the proof of Lemma 3.26 we
can argue that the expression in curly brackets in (4.47) is O(n) for each w € §2. This
together with (4.46) and the assumption that A\(7,.) = O( 1f§17a) suggests that indeed
fI hd\ < co. However, we don’t even have a bound on A(/,,,) uniform in P-a.a. w € Qp,

so the proof seems to be more delicate.

4.4 One-sided Markov Shift as Base

Let us now assume that F is finite, say F = {1,...,r}, and that (Qg, F,0,P) with
Qrp = EY is a one-sided Markov shift (see Example 2.6) given by an irreducible,
aperiodic stochastic matrix W and a probability vector ¢ = (q1,...,¢.) such that
¢W = q. Furthermore, as in [28] we write W}, = % (which are the entries of the
transition matrix of the time-reversed Markov chain). For each z € E,let T, : I — I be
a piecewise monotonic interval map. For simplicity, we assume that each T, is finitely
piecewise C%-monotonic. Again, the skew product F : Qg x I — Qg x I is given by

F(w,z) = (ow, T, x).

We first recover the result from Kowalski [40] (see also Lemma 4.2 in [28]) that each
acim p of F' has the form

H(A) = /Q fo (AdP(w), A€ FaB, (4.48)

where A, = {z € I : (w,z) € A} and where each p; (j € E) is absolutely continuous
w.r.t. A with density h; such that (hq,...,h,) is a fixed point of the operator Pr :

[T L' (N) = [Tj=; L' () given by
Pr(fi,....f) = (ZWIkPkak7ZW2kPkaku“ Z ok Prf ) (4.49)

We first need two lemmata.

Again, for k > 1, let Z;, denote the linear span of characteristic functions of sets A € £F,
where £ = 2% is the power set of E. We define A; C L}(P® \) as

A = U{QE x I3 (w,x) =YW, .. wk)ow(z): Y €Tk ¢, € L'(N\),z € E}. (4.50)

k>1
Lemma 4.30. A; is dense in L'(P® \).
Proof: This follows from Lemma 4.3 combined with the fact that Ay C Aj;. O
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Lemma 4.31. Let & € Ay be given by ®(w,z) = Y(wy,...,wk)dw, (x) for some k > 1,
Y € Iy and ¢, € L'(N\) for each z € E. Then for all n > k we have

Ppd(w,x) Z V(2 )W Wi We S Pry - Pry ¢, (1), P® A-ae.
,]1 ]n

So if n >k, then the value of PR®(w,x) does not depend on (we,ws, -+ ) for P-a.a. w.

Proof: First of all, we have (using the notation from (4.23))

P([jr - dnli -+ lm]) = 6. Wiijo -+ Wi 0 Wiats Wity -+ Wi, i,
_ dj, VVj1j2 quWijZS . an—len—ljn QJerrLl1
dj, djs3 dj, qi

Jeg1 "’ jaje Jnin—1 M/lj]n ’ ]P)([ll T Zm])

: qllmllQ e I/‘[/l’mfll'm

From this it follows that for alln >k, A=[l;---1,,] € F and B € B we have

/ PEOAP & A
AxB
:/ AP © A
A><B
/Q / (@ 0n )by (2)1a(0") L (T, - - - Ty, 2)dA () dP ()
/[ / G- )05, (2)La(0"0) 1 (T, -+ Ty, ) (2)dP(w)
g 1]
= ]P’([Jl"'Jnll"'lm])/%ﬁ(jz’--~>jk)¢j1(1?)1B(Tjn"'7}‘133)61)\(117)
g1 Jn
= Z VV‘[‘;] ]*2]1 / ¢ j27"'7]k PTJ1¢J1([E)dA([E)
g1 Jn
/A 5 Z ¢ ]27---7]k w1] Wj*zjlijn PTJ1¢]1(SC)d)\(£E)dP(w)

Jign

]

Theorem 4.32. Let h € L'(P®M). Then Prh = h if and only if there exists (hy, ..., h,) €
;= L'(A) such that h(w,x) = he, (z) for P@ A-a.e. (w,z) and (ha,. .., hy) is fived under
the operator Pr given by (4.49).

Proof: Suppose h(w,z) = hy, (z) for P@ \-a.e. (w,z) and (hy, ..., h,) is fixed under Pp.
Then from Lemma 4.31 it follows that
Pph(w,z) = Z WonP hj, (2) = hy, (2) = h(w, z) P® M-a.e.

The converse can be proven in the same way as in Theorem 4.5, where we now use
Lemma 4.30 and Lemma 4.31. O
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So according to Theorem 4.32 there is a one-to-one relation between the acim’s for F
and the fixed points of Py in (4.49). We now define BV = [[;=, BV(I) and endow
it with the norm ||(fi,...,f)llsv = max;—1__,||f;jllpv. Similarly, we endow L =
[T;—, L*(I) with the norm ||(fi,..., fr)[1 = max;=1__[|fj]:. Furthermore, we define

.....
r

. Wi
o= max ¢ with o= Lk

I=1,...,r 1 H(Tk)

where again 0(T;) = inf,er |[Tj(z)| > 0.

Theorem 4.33. (sce Remark 4.4(i) in [28]) Suppose that o < 1. Then there exist k € N,
€ (0,1) and L € (0,00) such that

IPE(fry s f)llBv < pll(frs s f)llay + LN (frs- s £o)ln (4.51)

for all (f1,...,fr) € BV. As a consequence, Pr admits a fixed point in BV.

Proof: For each n € N and (f1,...,f,) € BV, the i-th coordinate of Pr(fi, s fr)
denoted by {P}(f1,..., fr)}i equals

{ij(flv-“?fr }z— Z Z]n ]n]n 1 W;;ﬁPTjn'”Plefjl' (452)
J1Jn
Applying Lemma 3.2 to each Pr, o..or;, and using that 6(7Tj,o0---oT},) > 0(Tj,) --- 0(T},)
gives

Varr({P}(f1,- - ., fr)}i)

i Wk
<2 Ze T g VA )+ S0 Wi Wiy LTy, 0o T

J1-dn Jl Jign

§2'an||(f17--~7 ”BV+ Z ’Un 3231L(TjnO"'Oj}l)|’(f17"'7fr)||1'

]1 ]n

Therefore, the first statement follows with p := 2 - o™ for n sufficiently large such that
p<1 and with L=1+>_. Wi Wr o L(T;, 0---0Tj,).

Ji+jn Un J2J1

We can now construct a fixed point of Pp with (4.51). Let (f1,..., f,) € BV. Iterating
(4.51), it follows that, for each n € N,

n—1
IPE (fry oo folllsy < PN folllsy + LI )l Dt < M, (4.53)
=0
where M = ||(f1,.-., fr)llBv + M Now for each n € N, define

(ggn)”gﬁn) Z:‘P’_Zliz fb'"af?" (454)

Combining (4.53) with Lemma A.4 and Helly’s First Theorem (Theorem A.18) yields
that {ggn)} contains a subsequence {g%nl)} that converges pointwise to some ¢; €
BV (I). In the same way we obtain that {gy'} contains a further subsequence that
converges pointwise to some g, € BV(I). Continuing in this manner, we conclude
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that {(ggn), e gr )} contains a subsequence that converges pointwise to some g =
(91,---,0r) € BV. The rest of the proof is analogous to that of Theorem 3.1. m

We have the following analogue of Theorem 4.12.
Theorem 4.34. Suppose that o < 1. Then
1. the fized points of Pr are elements of BV,

2. there exists a biggest acipm i of F' in the sense that if v is an acipm of F', then p is
absolutely continuous w.r.t. [i.

3. the restriction Pr gy of Pr to BV satisfies Pr gy : BV — BV and is quasi-compact,

4. the set Mooe(Qp X I, F) of acim’s of F' is a non-empty finite-dimensional vector space
generated by the ergodic acipm’s of F.

Proof: The first two statements can be shown by mimicking the proof of Lemma 3.7,
Proposition 3.8 and Corollary 3.9 (Note that we need to apply the Kakutani-Yosida
Theorem (Theorem B.1) with X = L, P = Py and A = BV.) The quasi-compactness
of Prpy can be shown with the Ionescu-Tulcea and Marinescu Theorem (Theorem
B.5) with V = L and W = BV. (The first and fourth condition can be shown in a
similar way as has been done in the proof of Proposition 7.2.1 in [9] by r applications
of Helly’s First Theorem as in the proof of Theorem 4.32.) Finally, the last statement
follows in exactly the same way as the proof of Theorem 3.11. n

As in Section 4 2, we now show that if (F 1) is weakly mixing, then (F, ) is mixing.
We write i(A) = [, fiw (Ay)dP(w) and h = (hi,...,h,) € BV where each ji; (j €
{1,...,r}) is absolutely continuous w.r.t. A with density Bj.

Proposition 4.35. Suppose that o < 1 and that (F, 1) is weakly mizing. Then for each

n € N we have
Prpyg = (Z(h /gid)\)il + S"g, g€ BV, (4.55)
i=1 I

where for some q € (0,1) and M > 0 we have for each n € N that ||S™|| 5, < Mq™.

Proof: One can check that the dual of L consists of all bounded linear functionals
¢ : L — C such that

where f; € L>(I) for each i € {1,...,r}. Hence, using the same reasoning as in the
proof of Proposition 3.14 one can show that

Pppyg = (Z/Ifigid)\>ﬁ +S", geBV (4.57)
=1

where f; € L>(I) for each ¢ € {1,...,r} and where S is a bounded linear operator on
BV (I) such that, for each n € N, ||S"|| 5, < M¢" for some ¢ € (0,1) and M > 0. We
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now prove that each f; must be equal to ¢; M-a.e. Fixi e {1,...,r}, let A € B and take
gi =14 and g, = 0 for all I # i. From (4.57) it follows that

{ lim Py (0,0, 1,470,...,0)}1 = </Ifi1AdA>ﬁl, (4.58)

n—oo

where we have in the left-hand side of (4.58) convergence in L and 1,4 is on the i-th
coordinate. Hence, combining (4.52) and (4.58), we have for each [ € {1,...,r} that

/A fid\ = /I / filAd)\ Bld)\

= ,}1_,”;0/ Z VVlJn Jan 1 WJZzPT -+ Pry, Pr;14dA

J2jn

= lim > Lw, . w5 Wi /1d)\— lim W7 /ldA /qzd)\
a a "—>O<>

n—oo “—
J2Jn

We have defined Wg_l =2 yeju Wiga - Wi, 13, Wi, which is the probability to go

from state i to [ in n — 1 steps, and we know that this converges to ¢ as n — co. [

Corollary 4.36. Under the assumptions of Proposition 4.35, (F, 1) is mizing.

Proof: For all cylinders [j1 -+ ju],[l1 -+ lm] € F and A, B € B we have for all N > m
that (with & = N — m)

ﬁ(F‘N([jl---jn] x A) [l L] X B)

=i Ul biningae- Gl > (0, T, T A) 0 B) )

110

= Z A ijljn])/lh«Tll_lTl,_anz:1T;1A>mB)v

B1Tg
where in the last step we use i(C) = [, fiw, (Co)dP(w). We have
I/I/lm,il

i1

Moreover, from Proposition 4.35 it follows that

. . Wi,.i =
hm/ Z Jllk lmkl W1221P "'Pil( : 1le"'Pll(1Bhl1)>d)‘

k—o0 qiq

D1

i - Wi, -
= lim [ {PE(=2ER, B (gl ) o =2, - Py(1sin,) ) | dA
A

k—o0 ¢ qr J
= /A (;q/l V[;l;"iz%m - Py (Ll )dA) By,
= 1, (A) - fu, (B),
so we obtain

tim i (F ([ ga] % A) O b] % B) = [y -+ jul % A) - il -+ bn] % B).

N—o0

]
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Finally, the next proposition is the analogue of Proposition 4.16.

Proposition 4.37. Suppose that o < 1 and that the entries of W are strictly positive.
Furthermore, suppose that the following random covering property holds: For each non-
trivial subinterval J C I and wy € {1,...,r} there exist n € N, Iy C I finite and
(wa, ... wn) € {1,...,7}" L such that T, o---oT, (J) = I\Ip. Then fi is the only
acipm for F' and satisfies

1
dM>0:—= <
> e

&|&
> =

< M. (4.59)

Moreover, (F, 1) is ergodic.

Proof: This follows using similar arguments as in the proof of Proposition 3.16 for
each of the r coordinates (that is why we require the above random covering property
to hold for each w; € {1,...,7}). O

Remark 4.38. In fact, because the Markov shift (o,PP) is exact (see Example 2.23),
one can show with the fourth part of Theorem 2.1 in [47] that (F, ) is exact under
the assumptions of Proposition 4.37.

4.5 Automorphism as Base

Let (€2, F,P) be a probability space. Let ¢ : Q2 — Q be an automorphism, which means
that ¢ is measure preserving and invertible (i.e. ¢ is one-to-one and ¢! is measurable).
Furthermore, suppose that (p,P) is ergodic. For each w € Q, let T,, : I — I be a
finitely piecewise monotonic interval map w.r.t. a partition {/; .}, and suppose that
T:QxI— I given by T(w,z) = T,x is measurable. For each w € Q, we write N(w)
for the minimal possible number of elements in {I; .} and we set 0(w) = inf,¢; |7/ ().
We consider the skew product

F:QxI—=QxI, (wz)— (pw,T,x). (4.60)
The following result is proven in [12] by Buzzi.
Theorem 4.39. (Theorem 0.3 in [12]) Suppose that the following conditions are satisfied:

I. Q3w (Q(w), N(w), Vary (ﬁ)) is measurable,

2. lim /Qlog (min (8(w), K))dP(w) > 0,

K—o0

N(w) .
. Q log™ LY(P
3 5> w +— log 700) is in L' (P),

1
4. Q> wrslogt Varg (W> is in L*(P).
Then the set M,.(2 x I, F') of acim’s of F is a non-empty finite-dimensional vector space
generated by the ergodic acipm’s of F. Moreover, each invariant density h of F satisfies
Var(hy,) < oo for P-a.a. w € 2, where each hy, : I — C is given by h,(x) = h(w,x).
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Note that condition 2 in Theorem 4.39 implies that T" expands distances on average
w.r.t. P. Also, under the above conditions, Pr is not even bounded in L>®(P ® \)
(see Remark 0.6 in [12]). For this reason, the Ionescu-Tulcea and Marinescu Theorem
(Theorem B.5) cannot be applied to obtain the result in Theorem 4.39. Instead, the
result is obtained in [12] using fiberwise Lasota-Yorke type inequalities (see Proposition
1.4 in [12]).

Remark 4.40. As is remarked in [13], in this setting h € L'(P ® \) is an invariant
density for F'if and only if Pr, h, = hy () for P-a.a. w € Q, where again hy,(z) = h(w, z).
We can deduce this also from Proposition 5.6.

Like for the deterministic, Bernoulli and Markov case, we have the following strength-
ening if we assume a suitable covering property for 7"

Theorem 4.41. (Part 1 of Main Theorem in [13]) In addition to the assumptions of
Theorem 4.39, suppose that sup,c; |T,,(z)| < oo for P-a.a. w € Q and that T satisfies the
following covering property: For each non-trivial subinterval J C I and for P-a.a. w €
there exist n € N and a finite set Iy C I such that Tyn-1(y 0 - 0 T,(J) = I\Iy. Then

there exists a unique acipm for F.

Furthermore, the following result can be viewed as an analogue of the results in Re-
marks 4.17 and 4.38.

Proposition 4.42. (Comment 0.2.4 in [13]) Under the assumptions of Theorem 4.41, if
(p,P) is mizing, then the unique acipm is mizing w.r.t. F.

Example 4.43. Let ©Q C (1,00) with corresponding Borel o-algebra F, and let P be
a probability measure on (2, F). Also, let ¢ : 2 — Q be an automorphism such that
(p,P) is ergodic. Furthermore, let T': Qx I — I be given by T'(w, ) = T,z = wx mod 1.
Then according to Example 0.4 in [12] the conditions in Theorem 4.39 are satisfied.
Now suppose that inf 2 > 1. In a similar way as in Example 3.18 it can be shown that
the assumptions in Theorem 4.41 are also satisfied. So F' admits a unique invariant
probability density h € L*(P® )). Let us show that for P-a.a. w € Q we have

1
IM,>0:— < h, < M, 4.61
>0: 5 < (4.61)

w

where again h,(z) = h(w,z). First of all, it is clear that A = {w € Q : h, # 0}
satisfies P(A) > 0. Take w € A. By Theorem 4.39, we may assume Var(h,) < co.
Hence, by Corollary A.11, we may assume that h, is lower semicontinuous. Then
there exist « > 0 and a nontrivial interval J C I such that h, > al;. Now take
n € N and I C I finite such that Tn-1( 0 --- 0 T,(J) = I\I. For convenience, write
T8 = Tyn(wy o ---oT,. It is clear that K, := sup,c;[(T}}) (z)| < co. Hence, for all
x € I\Ip we obtain (using Remark 4.40)

1
hapnw(l') = PT(f}hw(x) > OZPT:)LL](J}) = Z # > i’ (462)
ye(Tn) 'z ’(Tw) (31)‘ K,
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because for each = € I\ there exists y € J such that 7"y = z. Since for each m > n
we have that Ly, := sup,c; [(Tn,")'(7)| < oo and that the map T m-1(, is surjective
modulo a finite set, we obtain with

hw"w(y)
hwmw(l") = PTvm_lwoWoTwnwheo"w = Z m (4-63)
ye(T)n,") ' e

that for each m > n there exists a finite set I,, C I such that hym((z) > 7o - for
each z € I\I,. Again, by Theorem 4.39 (and using that P is p-invariant), we may
assume that Var(hym () < oo holds for all m > n. Hence, it follows from (A.10) that

hom(w) 18 bounded away from zero for each m > n. We conclude that the set
B={JN {w € Qs inf hyn((2) > 0} (4.64)
neNm>n

satisfies A C B and therefore P(B) > 0. Now suppose that the set
C= {w eQ: irelg he(z) = 0} (4.65)

satisfies P(C') > 0. Since (¢, P) is ergodic, we then know that P-almost all points in {2
visit the set C' infinitely often under iterations of ¢ (see e.g. Remark 1.6.1.3 in [15]).
This is in contradiction with P(B) > 0. We conclude that P(C') = 0, and together with
Theorem 4.39 we conclude that (4.61) holds for P-a.a. w € 2.



Chapter 5
Fiber Entropy

Let (€2, F) and (X, B) be measurable spaces. In [1], Abramov and Rokhlin introduced
the notion of fiber entropy for skew products of the form

F:OxX—=Qx X (wz)— (ow, T,z). (5.1)

For this, they assume there exist probability measures P and p on €2 and X, respectively,
such that ¢ : Q — Q is an automorphism on (2, 7,P) and such that T, : X — X is
measure preserving w.r.t. p for P-a.a. w € . In that case, F' is measure preserving
w.r.t. P® p.

Over the years the definition of fiber entropy has been extended to more general settings
such as in Section 2.6 of [22]. A special case of the setting in [22] is considered in Section
2.4 of [64], where instead of the product measure P®p a general F-invariant probability
measure p on 2 x X is considered. One can then associate a fiber entropy to F' if u
disintegrates into an equivariant system of conditional measures, which is the topic of
the next section.

5.1 Equivariant System of Conditional Measures

Let (©2,F) and (X, B) be measurable spaces. Let p be a probability measure on (£ x
X, F ® B) and let P be a probability measure on (2, F).

Definition 5.1. A system of conditional measures for pu over P is a family of measures
{pw}wea such that

1. py is a positive finite measure on (X, B) for P-a.a. w € €,

2. Forany f € L*(u), the map Q 5 w — [ f(w, z)dp.(x) is measurable and [,  fdp =
fQ(fX fdpy,)dP.

In this case, we say that p disintegrates over P on the fibers {w} x X as p = [ p,dP.

64
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Remark 5.2. In particular, for any A € F®B, the map Q2 3 w — p,(A,) is measurable
and p(A) = [, pu(As)dP(w), where A, ={z € I : (w,x) € A}.

The next theorem is a simplified version of an important result due to Rokhlin [59].

Theorem 5.3. (Rokhlin) Suppose that Q2 and X are compact metric spaces, and that F
and B are the corresponding Borel o-algebra’s, respectively. Let w : €2 x X — € be the
projection on €, i.e. (w,r) = w, and suppose that P is the pushforward measure of p

1

under w, i.e. P = pon~*. Then there exists a system of conditional measures {py,}weca

for w over P. Also, p,, is a probability measure for P-a.a. w € 2. Moreover, if {py}weq is
another system of conditional measures for p over P, then p, = py for P-a.a. w € €.

The following result is an easy consequence of Fubini’s Theorem.

Proposition 5.4. Let p be a probability measure on (X,B), and suppose that u is abso-
lutely continuous w.r.t. P® p with correspondmg density denoted by h € L*(P® p). Then
the family {pwy}weq given by p,(A fA w,x)dp(x) is a system of conditional measures
for u over P.

Let T: Qx X = X, T(w,z) = T,z be measurable, and let ¢ : Q@ — Q be measure
preserving w.r.t. P. Then the skew product F' given by

F:OxX—=>OQxX, (w,z)~ (ow,T,x) (5.2)
is measurable.

Definition 5.5. We say that a system of conditional measures {p,}weq for p over P is
equivariant w.r.t. (T, ) if for each B € B there exists C € F with P(C') = 1 such that
pu(T; B) = py(u)(B) holds for allw € C.

Proposition 5.6. Let {p, }weq be a system of conditional measures for p over P.

1. If {pu}weq is equivariant w.r.t. (T, p), then u is F-invariant.

2. If u is F-invariant and @ 1is invertible, then {py, tweq is equivariant w.r.t. (T, ).

Proof: Let A € F and B € B. First of all, because P is p-invariant, we have

WA B) = [ p(BYPW) = [ ooy (B)aP() (5.3)
Moreover, we have
F Y AxB)= |J {w}xT,'B (5.4)
wep~lA

and so

W AxB) = [ (T B)aR(). (5.5
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Hence, the first part follows from (5.3) and (5.5) combined with the fact that {p, }weq
is equivariant w.r.t. (7, ¢). For the second part, we obtain from the F-invariance of
combined with (5.3) and (5.5) that

[ nm i@ = [ oo (B)RE). (5.6)
p 1A p 1A

Since ¢ is invertible we have p~'F = F, so this indeed yields that {p,}weq is equiv-
ariant w.r.t. (T, ¢). O

Example 5.7. Consider the case that X = I = [0, 1], B the Borel o-algebra on I and A
the Lebesgue measure restricted to I. Furthermore, suppose that ¢ is an automorphism

n (2, F,P). Then under the assumptions of Theorem 4.39, there exists an acipm pu of
F with density, say, h € L'(P®\). From Proposition 5.4 together with the second part
of Proposition 5.6 it follows that the family {p. }weq given by pu(A4) = [, h(w, z)d\(z)
is an equivariant system of conditional measures for y over P.

5.2 Definition of Fiber Entropy

Let (©, F,P) and (X,B,p) be Lebesgue spaces. Furthermore, let 7' : 2 x X — X,
T(w,z) = T,z be measurable, and let ¢ : Q@ — Q be measure preserving w.r.t. P.
Suppose that p is a probability measure on (£2x X, F®B) that is absolutely continuous
w.r.t. P® p with density, say, h € Ll(IP’ ® p). We know from Proposition 5.4 that the
family {p.}weq given by p,(A) = [, h(w,z)dp(x) is a system of conditional measures
for p over P, and we furthermore suppose that {p, }weq is equivariant w.r.t. (T, ). For
this setting we shall define the fiber entropy of (T, ¢).

Remark 5.8. The next construction resembles the construction of fiber entropy in Sec-
tion 2.4 of [64] (and the references therein). However, in [64] one works with the system
of conditional measures for p over the pushforward measure o' as in Theorem 5.3.
Moreover, it is assumed in [64] that u is F-invariant and ¢ is an automorphism, which
is in general stronger than our assumption that {p,},cq is equivariant w.r.t. (T, ¢)
(see Proposition 5.6).

Let £ be a (finite or countable) partition of {2 x X. For each n € N we write &, for the
partition of €2 x X given by

n—1
=\/ e (5.7)
k=0
Also, for each w € Q, we write &, = {Z, : Z € ¢} for the partition of X where

Zy,={x € X : (w,x) € Z}. Furthermore, for each w € Q and n € N we define the
partition &, ,, of X given by

_ —1p—1 -1
gw,n - gw \% \/ Tw Tgp(w) o ka—l(w)&pk(w)' (58)
k=1
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Note that (&), = & for each w € Q and n € N.

We define the fiber entropy of the partition £ by

H,({¢}) /H (&)dP(w /Qpr ) log pu(A)dP(w), (5.9)

A€y,

which is well defined by noting that H,,(§w) = - zc¢ pu(Zu) 10g pu(Z,) from which it
together with Remark 5.2 follows that the map Q 3> w — H,_ (&,) is measurable.

Proposition 5.9. Let £ be a partition of Q x X s.t. H,({&}) < oo. Then the fiber
entropy of (T, ) w.r.t. £ given by

Be(e,T) = lim ~ [ (G P, (5.10)

n—oo N,

exists and is finite.

Proof: We are done if we show that the sequence {a,} given by a, = [, Hp, (&u,n)dP(w)
is subadditive, i.e. @y 1m < antan, for alln,m € N, because then lim,, o %2 = inf,,cn 22
(see Lemma 2.47). Indeed, we have

An+m = /QH w(&u,n—l—m)d]}p(w)
m+n—1
< [ Hlg) + B (150 Tohy NV Tl Tt ) P
k=n
g+ /)%W&WWWWW)
= ap + G,

where the last two steps follow from the equivariance of {p, },ecq w.r.t. (T, ) and from
the invariance of P w.r.t. ¢, respectively. ]

Definition 5.10. The fiber entropy of (7', ¢) is defined as

h?(T) = sup{h¥(&,T)| & partition of Q@ x X s.t. H,({&}) < oo} (5.11)

Lemma 5.11. Let £ and ¢ each be a partition of 2 x X. Then the sequence {a,} given
by an = [o Hp, (Ewn|Con)dP(w) is subadditive.

Proof: This follows in a similar way as the proof of Proposition 5.9. m

Let a be a partition of X. We define @ = {2 x A : A € a} as the extension of «
to a partition of €2 x X.

Lemma 5.12. If a1 < ag < --- is an increasing sequence of finite partitions on X such
that o(\/,, an) = B up to sets of p-measure zero, then h?(T) = limy_,oc h? (o, T).
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Proof: 1t is sufficient to show that for any partition ¢ such that H,({(.}) < oo we have
h?((,T) < limyo0 h¥(ay, T). For each w € Q and n, k € N we have

Hp, (o) < Hp, ((ak)wn) + Hpo (Conl (@)un)- (5.12)

By Lemma 5.11 and Lemma 2.47, we know for each k£ € N that

lim ~ [ H, (Conl(@)en)dP(w /H (Gl AP(w), (5.13)
Q

n—oo n

and combined with (5.12) this gives

B(C,T) < h#(Gg, T /H (Colan)dP(w). (5.14)

It follows from the Dominated Convergence Theorem and the Martingale Convergence
Theorem that, for P-a.a. w € €,

lim A, (Colag) = / lim log B, (Le, oo () (2)dp. (2)

- /X log B, (1) |B)(x)dp () = 0. (5.15)

Note that we use here that p, < p for P-a.a. w € ). Moreover, combining the
Dominated Convergence Theorem with H, ((,|ax) < H,, () for each k¥ € N and
H,({¢}) < oo, we obtain

lim [ H,, (o) dP(w) = / lim H,, (Colag) dP(). (5.16)
k—o0 Q 0 k—o0
From (5.14), (5.15) and (5.16) the desired result follows. O

Corollary 5.13. We have

h¥(T) = sup{h¥(a,T)| o partition of X s.t. H,({aw}) < oo}. (5.17)

Proof: Because (X, B, p) is a standard Lebesgue space, we know there exists a sequence
of partitions {«,} as in Lemma 5.12. [

Proposition 5.14. We have
hu(F) = he () + h#(T). (5.18)

Proof: Using Corollary 5.13, this follows in an analogous manner as the proof of
Proposition 1.3 in Chapter 6 of [54]. Note that in the second part of the proof of this
proposition an increasing sequence of partitions 5; < B < --- on {2 is chosen such
that o(\/,, 8,) = F up to sets of P-measure zero. The existence of such a sequence
of partitions f31, B2, ... is guaranteed by the assumption that (£, F,P) is a Lebesgue
space. L]
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5.3 Analogue of the Kolmogorov-Sinai Theorem

Let us remain in the setting of the previous section. We need the following definition.

Definition 5.15. Let £ be a partition of 2 x X. Forw € €0, we say that £ is w-generating
w.r.t. (o, T) if

o(6V VT - ToL o) = B (5.19)
k=1
up to sets of p-measure zero.

We have the following analogue of the Kolmogorov-Sinai Theorem (Theorem 2.51).

Theorem 5.16. Let & be a partition of 2 x X such that H,({{,}) < co. Suppose that &
is w-generating w.r.t. (¢, T) for P-a.a. w € Q. Then h?(T) = h?(E,T).

Proof: This follows in a similar way as the proof of Lemma 5.12, replacing a; with
ok and noting that

lim = H, ((ntr)dP(w) = lim ntk lim

n—oon Jo n—00 n n—oo N +

/Hw fwn-&-k)dp( ) Lp(éaT>'
O

5.4 Analogue of the Shannon-McMillan-Breiman Theorem

Again, we remain in the setting of Section 5.3. The next theorem is an analogue
of the Shannon-McMillan-Breiman Theorem (Theorem 2.53). For this, we define the
information function

==Y 1a(z)log pu(A), (5.20)

A€a

where « is a partition of X. Note that H, (a) = [y Io(w,z)dp,(z). Furthermore, for
two partitions o and § of X, we define the condztzonal information function

pu(AN B)
Loys(w, z) B%A% Lang(z)log ( e ) (5.21)
Then H,, («|f) = [y Inop(w, x)dp,(x). Also, note that
Tovp(w, z) = Ig(w, ) + Iys(w, z). (5.22)
Denoting «(z) for the atom of a containing z, we can also write
Iow,) = —log pu(a(z)),
Lojp(w, ) = —log Ep, (Laa)|o(5))-
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Theorem 5.17. Let & be a partition of Q@ x X such that H,({£,}) < co. Suppose F is
ergodic w.r.t. p. Then

lim —
n—oo

I
LnloD _peer). pae ) e@xx (5:23)

Proof: We follow the idea of the proof of the Shannon-McMillan-Breiman Theorem
in Section 6;2 of [54]. Write &,, = T Vi, TS;(}U) : --T&},l(w)@k(w) for n > 2. Then
Cwn = & V &un. Furthermore, define f,(w,z) = I§w|§~wn(w,x) for n > 2 and fi(w,x) =
It (w,z). Then, using (5.22),
Ie, (w,z) = Iéwyn(wgp)—}-fgw‘éw’n(w,w)

=l (F(w,2)) + fulw, z)

= Ié,,(w),nfl(FW’ x))+ Igtp(w)‘gtp(w),n71<F(w7 z)) + fo(w, )

= Ig(pQ(w),niQ(FQ(w,x)) + foo1(Flw,z)) + fo(w, )

= AF" Nw, )+ + fo1(F(w,2)) + folw, ). (5.24)

First of all, this gives

n—1
S [ o Pan= [ Ie. (o, 2)dute. )
k=0

= [ ([ 1o w.a)tp (@) P
_ /Q Hy () dP(w).

Using that p is F-invariant (see Proposition 5.6), we obtain

n—oo n,

lim L Zn: / Fodpt = h¥ (€, T). (5.25)
k=1

Furthermore, note that the sequence {H, w(§w|§w7n)}n>1 is bounded from below and is
non-increasing for each w € , so lim, - Hp, (ﬁw\éw,n_) exists for each w € ). Hence,
from the Dominated Convergence Theorem follows that lim,,_,, [ fn.dp exists. Because
the Cesaro means {% Y p—1 Tk }nen Of a convergent sequence {x,},en converge to the

same limit as the sequence itself, we obtain from (5.25) that
lim | fodp = h(€,T). (5.26)
n—oo

By the Martingale Convergence Theorem we know for each w € Q that lim,, s fn(w,-)
exists py-a.e., so f = lim,_,o f, exists p-a.e. Furthermore, this is an element of L!(u),
because (5.26) together with the Dominated Convergence Theorem yield [ fdu =
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h#(€,T). Also, from (5.24) we see that

I n—1 n—1
ﬁw_,n;w’x) _ %Zf(Fk (w, ) +%Z (fa—i = [ (F*(w, 2)). (5.27)
k=0 k=0

By Birkhoff’s Ergodic Theorem (Theorem 2.11),

lim — Zf (F¥(w, ) /fdy = h?(E,T),  p-ae. (5.28)

n—o00 N

Hence, it remains to prove that

n—1

Tim % S (k= HF*w,2) =0, prae. (5.29)
k=0

We refer the reader to Section 6.2 in [54] for a proof of (5.29), where the same limit
as in (5.29) is shown for the proof of the Shannon-McMillan-Breiman Theorem. [



Chapter 6

Lochs’ Theorem and Extensions

6.1 Introduction

Let us reformulate Lochs’ Theorem from Subsection 1.1.1.

We put A; = [5,55) for each i € {1,...,9}. The decimal map T : [0,1) — [0,1) is

given by Tz = 10z — dy(x), where dy(z) =i if € A;. Recall that, for each x € [0, 1),
_ N d(@)

where di(z) = di(T*'x) for each k > 1. For each n € N, the cylinders of order n
w.r.t. T are

n—1

Ao, = ﬂ T*4;, (io,... in1) €{0,1,...,9}", (6.2)
k=0

which are 10" equally sized disjoint intervals and cover [0,1). Note that

x € Ajyiy, , & dp(z) =ip—g forallk=1,... n. (6.3)

Similarly, we put By = (3,1) and B; = (5, 3] for i > 2. The Gauss map S : [0,1) —
0,1) is given by SO = 0 and Sz = 1 — a;(z), where a;(z) = i if z € B;. Recall that,

for each = € (0, 1) irrational,

r = : (6.4)

72
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where ag(z) = a;(S* 'z) for each k > 1. Again, for each n € N, the cylinders of order
n w.r.t. S are

n—1

Biyin, = [ S7"Bi,,  (io,- .. in-1) €N", (6.5)
k=0

which are countably many disjoint intervals and cover (0,1). Again, note that

T € Bio---in_l =4 ak(x) = lp_1 for all k = 1,...,n. (66)

Define the partitions a = {A4; : i € {0,...,9}} and f = {B; : i € N}, and write
an(z) (resp. By(z)) for the decimal cylinder of order n (resp. RCF cylinder of order n)
containing . Now, put

m(n,z) =sup{m € N : a,(x) C f(x)}. (6.7)

As we see from (6.3) and (6.6), m(n,z) is the number of digits in the RCF expansion
(6.4) of = that are determined by knowing n digits of the decimal expansion (6.1) of
z. In [46], Lochs proved the following law of large numbers result for m(n, ).

Theorem 6.1. (Lochs) For A-a.e. x € [0,1)

lim m(n, x) _ Glog 2;0g 10
n—r00 n ™

= 0.97027- - . (6.8)

Furthermore, setting zg = %gfr#, Faivre [26] obtained a corresponding central limit
theorem:

Theorem 6.2. (Faivre) There exists o > 0 such that for all u € R we have
: m(n, ) — nzy 1 Y e
hm/\({welz—<u}>:—/ e /2qt, 6.9
n—o00 a\/ﬁ - 2 oo ( )

Also, Faivre [25] obtained a large deviation result associated with (6.8), which is ex-
tended in [27] to the case that T": [0,1) — [0,1) is given by Tz = Sx mod 1 for any
B > 1. Moreover, as explained in Subsection 1.1.2, the result by Lochs in Theorem 6.1
has been generalized by Dajani and Fieldsteel in [16] to a wide class of interval maps
that generate expansions. Members of this class are so-called number-theoretic fibered
maps (NTFM) and we give a precise definition of such interval maps in Section 6.3. In
[32], Herczegh proved a central limit theorem associated with the extension of Lochs’
Theorem to any pair of NTFM’s.

In the next two sections we provide the proof from [16] that shows the extension of
Lochs’” Theorem to any pair of NTFM’s. Specifically, we review in Section 6.2 that
Lochs’ Theorem holds for any two sequences of interval partitions on [0,1) that both
satisfy the conclusion of the Shannon-McMillan-Breiman Theorem. Using this, we
shall see for any two NTFM’s T and S that the number of digits mzs(n,z) in the
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S-expansion of x that can be determined from knowing the first n digits in the 7-
expansion of = satisfies

11111 mT7S(n7 37) — h‘llT(T’>7
oo n hyus (S)

In (6.10), h,, (T') (resp. h,s(T)) denotes the entropy of T' (resp. S) with respect to the
measure ur (resp. pg) that (as we shall see in Section 6.3) is the unique acipm of T'

A-a.e. (6.10)

(resp. S). Moreover, we formulate in Section 6.3 the central limit theorem obtained
by Herczegh in [32] that is associated with the law of large numbers result in (6.10).

Finally, in Section 6.4 we generalize the concept of an NTFM to so-called random
number-theoretic fibered systems (RNTFS), which form a class of random piecewise
monotonic interval maps being of the form as in Chapter 4. For each RNTFS given
by (Q,F,P,,T), we shall see that iterations of F,r(w,-) generate (after projecting
on [0,1)) expansions of points in [0,1) for P-a.a. w € €, where F, 1 denotes the skew
product as given in (4.3). We shall prove for any two RNTFS’s given by (Q, F,P, ¢, T)
and (Q, F.Py,S ) where each of the two underlying bases is a one-sided Bernoulli shift,
a one-sided Markov shift or an automorphism, that for P ® P-a.a. (w,&) € Q x

i mrs(n,w,w,x) _ hyr (Fpr) — hp(p)
nvo0 n hus (Fs) — hp ()
In (6.11), mrg(n,w,,x) is the number of digits in the Fy ¢(®,-)-expansion of z that
can be determined from knowing the first n digits in the F,r(w,-)-expansion of z.
Moreover, h,, (F,r) (resp. hus(Fys)) denotes the entropy of F,r (resp. Fyg) with
respect to the measure pur (resp. pg) that (as we shall see in Section 6.4) is the unique

A-a.e. (6.11)

acipm of F,r (resp. Fy g). Furthermore, we derive from the results in [32] a central
limit theorem associated with (6.11).

6.2 Equipartition of Interval Partitions

Like in [16], we introduce the following definitions.

Definition 6.3. We say that P is an interval partition if it consists of finitely or countably
many subintervals of [0, 1) that together form a partition of [0,1). For an interval partition
P and x € [0,1), we write P(xz) for the interval in P that contains x.

Definition 6.4. Let P = {P,}5°, be a sequence of interval partitions. Let ¢ > 0. We say
that P has entropy ¢ A-a.e. if

L logA(Pu(a))

n—+00 n

Remark 6.5. Note that in Definition 6.4 we do not assume that each P, is refined by
P,+1. In other words, we do not assume that for every interval A € P, there exists

=c, A-a.e. (6.12)

an interval B € P, such that A C B (up to sets of Lebesgue measure zero).
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The next theorem will be essential for the rest of this chapter.

Theorem 6.6. (Theorem 4 in [16]) Let P = {P,}52, and Q = {Q,}22, be two sequences
of interval partitions. For each n € N and z € [0,1), put

mp o(n,z) =sup{m € N: P,(z) C Qn(x)}. (6.13)

Suppose that for some constants ¢ > 0 and d > 0, P has entropy ¢ A-a.e. and Q has
entropy d A-a.e. Then

lim 7RI €y (6.14)

For completeness, we include the proof of Theorem 6.6. We follow the proof in [16],
which is based on general measure-theoretic covering arguments and not on the dy-
namics of specific maps.

Proof: Let us first show that

lim sup WQ—(n’x) < E, A-a.e. (6.15)
n—00 n d
By assumption, for M-a.e. z € I we have
1 P, 1
lim —OEAME@) _ oy, LoEM@u(@) _ (6.16)
n—00 n n—00 n

We take such an z € I. Let € > 0, and take > 0 such that C+’7 < 1+e¢. It follows
from (6.16) that there exists N € N such that for all n > N we have

AMPpu(z)) > 277 \(Qn(z)) < 2774, (6.17)

Choose n > N such that min{n, Sn} > N, and let m’ be any integer greater than
(14 ¢)Sn. Then

APy (2)) > 27n0Fe)(e=am ~ 9=m'(d=n) 5 \(Q, (2)), (6.18)

from which it follows that P, (x) is not contained in @, (x). For this reason, we obtain

mp o(n,z) < (14 g)gn (6.19)
and therefore
lim sup 72200 (14 )€ (6.20)
n—o0 n d
Since (6.20) holds for each € > 0, (6.15) follows.
We now show that
liminf 722 S € (6.21)
n—00 n d

'"Equation (6.17) holds since the logarithm function in Definition 6.4 (as well as in Section 2.8 and Chapter
5) is by convention with respect to base 2. This is because information is usually measured in bits.
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Let € > 0, and take n > 0 such that ¢ :=ec—7n(1+ (1 —-¢)§) > 0. For each n € N, we
define m(n) = [(1 —¢)5n] and

Da(n) = {a: A(Pu()) < 27 XN @Qmm) () > 27D Py (2) € Q) (2) -

The number of intervals A € Qg for which A(A) > 2-m(n)(d+1) s hounded by
2m(n)(d+n) - Moreover, for each such A € Qm(n), there exists 2 € D,,(n) " AN B only for
those B € P, that contain a boundary point of A (of which there are 2) and satisfy
AMB) < 27 We conclude that

MDyp(n) <2- g—me=n) . gm(n)(d+n) < 9. 9=nC (6.22)
which gives "7, A(D,,(n)) < oo. From the Borel-Cantelli Lemma it follows that
A({z €1[0,1) : 2 € Dy(n) for infinitely many n € N}) =0, (6.23)
and therefore
A{z €[0,1)] IN eNs.t. Vn> N : x ¢ Dy(n)}) = 1. (6.24)

Combining this with (6.16) (and using that m(n) — oo as n — oo) yields that for
A-a.e. x € [0, 1) there exists an N € N such that mp g(n,z) > m(n) for all n > N. This
gives

mP,Q(nﬂx) > (1—¢)

. c
hgxl}lorolf - 7 A-a.e. (6.25)
Since ¢ > 0 was arbitrary, this concludes the proof. m

The next theorem is a central limit result associated with the law of large numbers
result in (6.14). It is proven in [32] for the case that P and Q are both sequences of
interval partitions consisting of cylinders of all orders w.r.t. some NTFM. We state
this result in the next section, but the proof of this result (namely Corollary 2.1 in
[32]) immediately carries over to all pairs of sequences of interval partitions P and Q
that have the following properties:

Definition 6.7. Let P = {P,}2, be a sequence of interval partitions and suppose that
for some constant ¢ > 0, P has entropy ¢ A-a.e. We say that P satisfies the O-property if

“log A(Pa(z)) —
i —10BATR@) e (6.26)

n—00 \/ﬁ

Definition 6.8. Let Q = {Q,}22, be a sequence of interval partitions and suppose that
for some constant d > 0, Q has entropy d X-a.e. For each x € [0,1) and m € N we put
W 2(0) =0 and

Wm,x(i) _ ZlogM@uw) —d (1,....m}, (6.27)

ov/m ’
for some o > 0, and we extend this linearly on the subintervals {[%, %] 1<l <m} so
that Wi, € C[0,1). We say that Q satisfies the weak invariance principle with variance
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0? and w.r.t. some (Borel) probability measure v on [0,1) if the process t + W, (1)

converges in law w.r.t. v to the Brownian motion on [0,1) as m — oo.

Theorem 6.9. (cf. Corollary 2.1 in [32]) Let P = {P,}22, and Q = {Q,}5°, be se-
quences of interval partitions. Suppose that for some constants ¢ > 0 and d > 0, P
has entropy ¢ A-a.e. and Q has entropy d A-a.e. Furthermore, suppose that P satisfies

2

the O-property and that Q satisfies the weak invariance principle with variance o® and

w.r.t. some probability measure v on [0,1). Then for all u € R

1) = nS 1 e
lim »({ze0,1): mp’gg\j% Ma - u}) = \/_27/ et 1241, (6.28)

n—oo

where 01 = /0.

6.3 Extension to Number-Theoretic Fibered Maps

In [16], Dajani and Fieldsteel introduce the following class of interval maps:

Definition 6.10. A surjective map T : [0,1) — [0,1) is said to be a number-theoretic
fibered map (NTFM) if it satisfies the following conditions:

1. There exists a finite or countable partition « of [0,1) into intervals such that T
restricted to each interval is strictly monotonic and continuous. Furthermore, o is a
generator w.r.t. T in the sense of (2.42).

2. There exists a Borel probability measure pr on [0,1) that is invariant and ergodic
w.r.t. T and is absolutely continuous w.r.t. A such that

1 dur
T — < — < M. .
M >0 M_dA_M (629)

Remark 6.11. Note that in Definition 6.10 a sufficient condition for « to be a generator
w.r.t. T'is when T is expanding.

Remark 6.12. From the first part of Theorem 2.10 it follows that an NTFM admits
a unique invariant probability measure ur that satisfies (6.29).

Remark 6.13. Let us write a = {A; : i € D} for the partition in Definition 6.10, where
D is a finite or countable index set. The requirement that « is a generator w.r.t. T
implies that for A-a.e. pair of different points z,y € [0, 1) there exists n € N such that
x and y are contained in different cylinders of order n w.r.t. T. Hence, knowing all
the digits {ir € D : k = 0,1,...} for which T*x € A;,_ determines x € [0,1) uniquely
A-a.e. For this reason, if T is not too complex, iterations of T' generate representations
of points in terms of a sequence of digits in D. It appears (see [16]) that almost all
known expansions on [0, 1) are generated by an NTFM.
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Example 6.14. Let 7': [0,1) — [0,1) be such that it (has an extension to [0, 1] that)
satisfies the conditions in Proposition 3.16. (For example, Tz = fx mod 1 with g > 1
as in Example 3.18.) Then T is an NTFM with corresponding partition « that is
equal to the partition on which 7' is piecewise monotonic. Note that « is a generator
w.r.t. T because T is expanding. It follows in a similar way from the Folklore Theorem
(Theorem 3.21) that each interval map 7 : [0,1) — [0,1) that can be extended to a
Markov transformation on [0,1] is an NTFM.

Let T be an NTFM with corresponding partition o and measure . For each n € N
we define the interval partition

n—1
an =\ T e, (6.30)
=0

which consists of the cylinders of order n w.r.t. T. Suppose that the entropy of the par-
tition o w.r.t. pp is finite, i.e. H,, (o) < co. It follows from the Kolmogorov-Sinai The-
orem (Theorem 2.51) and the Shannon-McMillan-Breiman Theorem (Theorem 2.53)
that

lim — log i (an<x))

n—00 n

= hy (T), pr-a.e. (6.31)
Because of (6.29), we can replace ur in (6.31) by A so that we get

_— log Ao, ()

n—+00 n

= hyu, (T), A-a.e. (6.32)

In other words, the sequence of interval partitions {e,}5; has entropy h,,(T) M-a.e.
Hence, Theorem 6.6 applies, which proves the following theorem:

Theorem 6.15. (Theorem 5 in [16]) Let T and S be two NTFM’s with corresponding
partitions o and (3, respectively, and measures pp and pg, respectively. For each n € N

and x € [0,1), put
mrs(n,z) =sup{m € N : ap(z) C B(z)}. (6.33)
Suppose that hy,, (T), h,s(S) € (0,00). Then

lim T28(2)

n—oo n

_ hMT(T)
= (S) A-a.e. (6.34)

Remark 6.16. Recall from Subsection 1.1.2 that A is invariant and ergodic w.r.t. the
decimal map T, and that hy(T) = log10. Morover, we discussed that the Gauss
measure ug on [0, 1) given by

1 1
A) = — A C[0,1) Borel .
is invariant and ergodic w.r.t. the Gauss map S, and that h,,(S) = —617(;2. From

Theorem 6.15 we now obtain Lochs’ result in Theorem 6.1.
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Let us now state the central limit result in Theorem 6.9 for NTFM’s.
Definition 6.17. Let T" be an NTFM with corresponding partition o and measure pip.

o We say that T satisfies the O-property if {a, }°2 satisfies the O-property in the sense
of Definition 6.7, with ¢ = h,, (T).

e We say that T satisfies the weak invariance principle with variance 02 and w.r.t. some
probability measure v on [0,1) if {a,}5°, satisfies the weak invariance principle
with variance o® and w.r.t. v in the sense of Definition 6.8, with d = hy,(T).

Remark 6.18. Because of (6.29), we can replace A by ur in both (6.26) and (6.27)
applied to {a,}2,.

The following theorem is now an easy consequence of Theorem 6.9:

Theorem 6.19. (Corollary 2.1 in [32]) Let T be an NTFM that satisfies the 0-property
and S be an NTFM that satisfies the weak invariance principle with variance o and

w.r.t. to some probability measure v on [0,1). Then for all u € R

g (T)

mrs(n,z) —n 1 u ,
lim v{ <z €[0,1): s (9) <up )= —/ e V2qt, (6.36)
n—00 Ul\/ﬁ \/% —0o0
where o1 = :“T((ST))ga.
rs

Example 6.20. (from Section 3.2 in [32]) As an example of an NTFM that satisfies
the O-property, consider Tx = mx mod 1 with m > 2 integer. It is clear that T
together with the partition a = {[£ %)k = 0,1,...,m — 1} and A defines an
NTFM. Furthermore, for each n € N and « € I we have A(ay,(x)) = m™". Hence, from
the Kolmogorov-Sinai Theorem and the Shannon-McMillan-Breiman Theorem we get
hyu, (T) = logm. It is now easy to see that T satisfies the O-property. Another example
of an NTFM that satisfies the O-property is Tz = Sz mod 1 with § the golden mean,

ie. f =185 which is shown in [32].

6.4 Extension to Random Number-Theoretic Fibered Systems

Analogous to the definition of an NTFM, we define the following class of random
interval maps:

Definition 6.21. Let (2, F,P) be a Lebesque space, and let ¢ : 0 — € be measure
preserving w.r.t. P. A measurable map T : Q2 x [0,1) — [0,1) given by T'(w,z) = T,z is
a random number-theoretical fibered system (RNTFS) w.r.t. (2, F,P, ¢) if
1. There exists a finite or countable partition & of 2 x [0,1) such that, for each w € Q
and Z € &, Z, :={x €[0,1) : (w,z) € Z} is an interval and T,, restricted to Z,, is
strictly monotonic and continuous. Furthermore, for P-a.a. w € §Q, £ is w-generating
w.r.t. (p,T) in the sense of (5.19).
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2. Letting F,r(w,z) = (¢w, T,x), there exists an F, p-invariant and F,, p-ergodic prob-
ability measure pp on 0 x [0,1) that is absolutely continuous w.r.t. P ® X such that

1 < d,uT
M~ dP® A

M >0 <M. (6.37)

Remark 6.22. Note that in Definition 6.21 a sufficient condition for £ to be w-
generating w.r.t. (¢, T') for each w € €2 is when each T, is surjective and T is expanding,
i.e. each T, is piecewise C! and inf, . [T/ (2)] > 1.

Remark 6.23. Again, from the first part of Theorem 2.10 it follows that F,r in
Definition 6.21 admits a unique invariant probability measure pp that satisfies (6.37).

Remark 6.24. Note that ¢ in Definition 6.21 is ergodic w.r.t. P. Indeed, suppose that
A € F satisfies 9 7'A = A. Then F_ (A x [0,1)) = ¢~ A x [0,1) = A x [0,1), which
implies (A x [0,1)) € {0,1}. From (6.37) it follows that P(A) € {0,1}.

For an RNTFS given by (2, F,P,p,T) with corresponding partition &, we define for
each w € Q and n € N the interval partition as in (5.8) by

n—1

&‘J,n =&,V \/ TLU_ITL;(}U) oo T@k—l(w)€¢k(w), (638)
k=1

where ¢, ={Z,: Z €&} and Z, = {z € [ : (w,x) € Z}. Similar as for NTFM’s, the
elements of &, , are called the cylinders of order n with respect to F,r(w, ).

Example 6.25. Let E be countable, and for each j € E, let T; : [0,1) — [0,1) be
surjective and finitely piecewise C?-monotonic on some interval partition a;. Assume
that inf(; .y [T;(x)| > 1 and that the random covering property from Proposition 4.16
holds for {T}};cp. Furthermore, let (p;)jcr be a probability vector such that p; > 0
holds for each j € E. Then Proposition 4.16 yields a probability measure pp on Qg x I
with Qr = EY that meets the conditions in the second property of Definition 6.21,
where P is in this case the Bernoulli measure on Qp associated with (p;),eg. Therefore,
T:Qpx[0,1) = [0,1) given by T'(w,z) = T,,,x is an RNTFS w.r.t. the Bernoulli shift
(Qp, Fp,P,0) with corresponding partition £ given by

=l xA:Aeq}, (6.39)
jEE
where we use the notation from (4.23). Note, for each w € Qp, that &, = a,, and that

n—1

Com =0, V \ T - T o, (6.40)
k=1

In a similar way, we can with Proposition 4.37 obtain an RNTFS with corresponding

partition as in (6.39) if the underlying base is a Markov shift.

Example 6.26. An explicit example for a family {7}},cr as in Example 6.25 is given in
Example 4.18, where T; = ;2 mod 1 and inf;cg f; > 1. As we have seen in Subsection
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1.1.3, such a family {T}};cr generates for each w € Qg expansions of the form

T = Z M, b(wg,z) € {0,1,..., B, ]} for each k € N. (6.41)
= By By

Remark 6.27. Let us write &, = {A,; : ¢ € D, } for each w € 2, where ¢ is the partition
from Definition 6.21 and each D, is a finite or countable index set. The requirement
that £ is w-generating w.r.t. (¢, T) implies that for A-a.e. pair of different points z,y €
[0,1) there exists n € N such that z and y are contained in different cylinders of order
n w.r.t. F,r(w,-). Hence, knowing all the digits {ix € Dyr(,) : k= 0,1,...} for which
x € Ao and Tpio1(yy - Tow € Agk(yy, (B> 1) determines z € [0,1) uniquely A-a.e.
For this reason, if (like in the previous example) T is not too complex, iterations of
F,r(w,-) generate (after projecting on [0, 1)) expansions of points in [0, 1) where the
nth digit is in Dgn ().

In order to apply Theorem 6.6 to any pair of RNTFS’s that are of the form such as in
Example 6.25, we need the following proposition:

Proposition 6.28. Let E be countable, Qp = EY, F the Borel o-algebra on Qg and
P a probability measure on (g, F) that is invariant w.r.t. the left shift o on Qp. Let
T:Qp x I — 1 gwen by T(w,z) = Ty, (x) be an RNTFS w.r.t. (g, F,P,0) such that
the corresponding partition & is of the form

=l xA:Aca;} (6.42)
JEE
with «; an interval partition for each j € E. Then
log A w,n
i 128 Een (@) hy(For) — hp(0),  A-a.e. (6.43)

n—oo n

for P-a.a. w € Qg. In other words, for P-a.a. w € Qg, the sequence of interval partitions
{Eontniy has entropy hy, (For) — he(o) A-a.e.

Proof: 1t is clear that {[j] : j € E} is a generator w.r.t. 0. Combining this with
the fact that ¢ is w-generating w.r.t. (o,7) for P-a.a. w € Qp, note that for P ® A-
a.e. pair of different points (w,z), (©,y) € Qg x I there exists n € N such that (w, z)
and (@,y) are in different elements of the partition \/?;()1 F,. 1€, Tt follows (see e.g. the
remark in Section 7.5 of [66]) that £ is a generating partition for F, r. Hence, from the
Shannon-McMillan-Breiman Theorem (Theorem 2.53) we obtain that

L Jognr (Vi Frpé(, )

n—00 n

= h“T (FU?T), HT-a.€. (644)
Because of (6.37), we can interchange pp for P® A, i.e.

L lorP@ (VI Fi(e. )

n—00 n

= hyp(For),  P®Xac. (6.45)
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Note that

V Frble.0) = [67] % €unle) = [o7] % (00 V \/T LT, ) (@), (6.46)

so that inserting this in (6.45) yields (6.43) (using Remark 6.24 and Theorem 2.53). [

Remark 6.29. For a general RNTFS given by (Q,F,P,,T), note from (4.6) that
Vi F Tf consists of sets of the form

Ut} x ((Zo)on ( ﬂ TOTL)  Tob (2 rw) ) ) (6.47)
weN
where Zy, ..., Z,—1 € & In particular, the set in (6.47) is not of the form A x B with
A € F and B € B Borel like in (6.46). Hence, with the line of reasoning in the proof
of Proposition 6.28 we cannot extend the result in (6.43) to a general RNTF'S.

Example 6.30. Let us again consider the setting of Example 6.26. We take £ = {0,1}
and let Tp, T3y : [0,1) — [0,1) be given by Toz = Nz mod 1 and Tz = Mz mod 1 with
M, N > 2 integers. Furthermore, let p € (0,1). Writing (Qg, F,P, o) for the one-sided
Bernoulli shift with corresponding probability vector (pg,p1) = (p, 1 — p), it is easy to
see that the skew product F, r(w,z) = (ow,T,,x) is measure preserving w.r.t P @ .
Moreover, from Example 4.18 it follows that (F, 7, P ® A) is ergodic. We know from
(6.41) that F, r(w,-) generates for each w € Qp expansions of the form

Wk,
_Z e MCk 5 (6.48)

where b(0,z) € {0,1,...,N =1}, b(1,z) € {0,1,..., M — 1} and cx(w) = 3.7 w;. Now
let (Qp, F',”’,0’) denote the Bernoulli shift with £/ = {0,1,...,N + M — 1} and
corresponding probability vector (p, ..., Py p—q) With pj = & fori=0,1,..., N -1
and p; = & for i = N,...,N +M — 1. In a similar way as in Example 3.1.2 of
[15] one can derive that the dynamical systems (Qg x [0,1),F @ B,P ® \, F,r) and
(Qp, F',P',0") are isomorphic with an isomorphism ¢(w,z) = {wi - N + b(wg, ) }32.
Hence, combining this with Example 2.52 and Theorem 2.50 yields that

N+M-1
o / ; Po p1
hper(For) = — Z; p; log p; = —pp log <ﬁ> — p1 log (M) (6.49)
Furthermore, Example 2.52 gives that hp(c) = —pglog(po) — p1log(p1). Defining & =
{0 x[£,5):i=0,...,N=1}U{[1] x [, 5}) : i =0,..., M — 1}, we conclude from
Proposition 6.28 that
log AM(&pm
lim _M — polog(N) +pilog(M),  Aae. (6.50)

n—oo

for P-a.a. w € Qp. Note that the right-hand side of (6.50) is the weighted sum of the
entropies of Ty and 77 w.r.t. A.
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Proposition 6.31. Let T be an RNTES w.r.t. (2, F,P, ) with corresponding partition &

and measure pp. Suppose that the family {pu,}wea given by p,(A) = [, dCIleg/\ (w, z)d\(z)
is equivariant w.r.t. (¢, T). Then
log A&, n(x
lim —w = (For) — he(e),  A-ace. (6.51)

for P-a.a. w € Q2. That is, {&un}22, has entropy hu, (Fpr) — he(p) A-a.e.

Proof: Tt follows from Proposition 5.14, Theorem 5.16 and Theorem 5.17 that

i 108 P (bon())

n—oo n

= hur (Fpr) — he(p), pr-a.e. (6.52)

Because of (6.37), we know that P® A is absolutely continuous w.r.t. up and that there
exists M > 0 such that % < ‘%‘\” < M for P-a.a. w € Q). Hence, we can in (6.52) replace
po With X and pr-a.e. with P ® A-a.e. This yields (6.51). O

Remark 6.32. Note that for the proof of Proposition 6.31 we can weaken the assump-
tion in (6.37) by merely requiring that

M, >0 o < M, (6.53)

1
M, d\
for P-a.a. w € .
Example 6.33. Let T be an RNTFS w.r.t. (2, F,P,¢) with corresponding partition
¢ and measure pr. Suppose there exists a probability measure p on [0,1) that is

absolutely continuous w.r.t. A and such that T, is invariant w.r.t. p for P-a.a. w € Q.
Then for each A € F and B € B we have

Pep(F(AxB) = [ o BJaP = [ Laew(B)P
=P® p(A x B),

so it follows from the ﬁrst part of Theorem 2.10 that up = P ® p. Then obviously
{pw}tweq given by p,(A) = fA Fox (w,z)d\(x) = p(A) is equivariant w.r.t. (p,7).
We conclude from Prop051t10n 6.31 that, for P-a.a. w € Q, {&n}ne, has entropy
by (For) — hp(p) A-ae.

Example 6.34. Let T be an RNTFS w.r.t. (Q, F,P,¢) with corresponding partition
¢ and measure pup. Suppose that ¢ : 0 — Q is invertible. Then it follows from the
second part of Proposition 5.6 that {p.}weo given by p,(4) = [, ez e (w, v)dA(2) is

equivariant w.r.t. (o, 7). We obtain from Proposition 6.31 that, for P-a.a. w € €,

{€un}32.1 has entropy by, (Far) — he(p) Mae.

Example 6.35. Let us give an explicit case of the previous example. Let v = 14¢ with
e > 0 small, and take Q = [y, c0) with corresponding Lebesgue o-algebra F. Let P be a
probability measure on (£2, F) and ¢ : Q — € be an automorphism such that (p,P) is
ergodic. Furthermore, let 7': Q% [0,1) — [0, 1) be given by T'(w,z) = T,z = wx mod 1.
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=

Figure 6.1: Representation of the partition ¢ from Example 6.35. The
fiber &, that is visualized is clearly an interval partition.

Define the partition £ ={Z; : i =0,1,...} of 2 x [0,1) as
1
= : < —
ZO {(SU,y) 0<x<177—y<x}7

1 2
A {(x7y):0<x< 1,max(fy,5> <y< E}’
i+1}
T 7

Zi:{(x,y)20<m<1,£§y< i>2
T

(see Figure 6.1). Then for each w € Q we have &, = {(Zi)w : @ = 0,1,...} with
(Zi)w=[L,2H)ifi€{0,1,..., w] =1}, (Zjy)w = [%, 1) and (Z;), = 0 for i > w. It
is therefore clear that T, is piecewise monotonic on &, for each w € 2. Furthermore, £
is w-generating w.r.t. (¢, T) for each w € 2 because inf, ;) [T),(z)| = v > 1. Moreover,
according to Example 4.43 there exists an F, r-invariant and Fi, r-ergodic probability

measure pp on {2 x I that is absolutely continuous w.r.t. P ® A such that

1 dur
M, >0 — < ST
>0 r S o

for P-a.a. w € ). Together with Remark 6.32 we conclude that, for P-a.a. w € ,

(w, ) < M, (6.54)

The following theorem is an easy consequence of Theorem 6.6.

Theorem 6.36. Let T and S be RNTFS’s w.r.t. (Q, F,P,¢) and (Q F, P, ), respectively,
each satisfying the conditions of Proposition 6.28 or Proposition 6.31 (so we distinguish
four cases), and with corresponding partitions & and ¢, respectively, and measures pr and
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is, respectively. For eachn € N, w € Q, w € Q and z € 0,1), put
mrs(n,w,@,z) =sup{m € N: &, ,(z) C (sm(z)}. (6.55)
Suppose that hp(¢) < hy (Fyr) < 0o and hp(¢) < hyg(Fys) < 0o. Then

lim mes(n,w, &, 7) = i (Fp17) — hP((’p), A-a.e. (6.56)
n-soo n hus(Fy.s) — ha(¥)

Jor P@P-a.a. (w,&) € Qx Q.

Remark 6.37. The right-hand side of (6.56) is in general hard to calculate, but in
practice it can be approximated using the convergence in (6.43) and (6.51).

For fixed (w,&) € Q x Q we can formulate a quenched central limit result associated
with Theorem 6.36, which directly follows from Theorem 6.9.

Theorem 6.38. Let T and S be RNTFS’s w.r.t. (Q, F,P,¢) and (Q, F, P, 1), respectively,
with corresponding partitz’ons & and (, respectively, and measures pr and s, respectively.
Let (w,@) € 2 x Q and suppose that {€on i, satisfies the O-property in the sense of
Definition 6.7 with ¢ = hy,, (F,1)—hp(p), and that {(yn}ooy satisfies the weak invariance
principle with variance o and w.r.t. some probability measure v on [0,1) in the sense of
Definition 6.8 with d = h,4(Fy,s) — hp(). Then for allu € R

mr.s(n,w,o, ) — nz

01\/5

h —h( hin(
where zg = —h“T( “"’z) 22 and o = \/(h F;:) d )
P, ”S

e P24t (6.57)

lim 1/({1‘ €0,1): <u

n—oo

We can as well formulate an averaged central limit result corresponding to Theorem
6.36. For this we need the following definition:

Definition 6.39. Let T' be an RNTFS w.r.t. (Q,F,P, ) with corresponding partition &
and measure pr. For each w € Q, x € [0,1) and m € N we put Wi, , »(0) =0 and

1y _ —log AMéui(@) = W (Fyr) = he(p))
Wm’”’”( ) N o/m ’

for some o > 0, and we extend this linearly on the subintervals {[%, #] 1<l <m} so

le{l,....m}  (6.58)

that Winws € C[0,1). We say that T satisfies the averaged weak invariance principle
with variance o2 and w.r.t. some probability measure v on (Q x [0,1),F ® B) if the

process t — W, (t) converges in law w.r.t. v to the Brownian motion on [0,1) as m — cc.

Example 6.40. Let us again consider the RNTFS given by (Qg, F,P,0,T) from Ex-
ample 6.30, where E = {0,1}, Tox = Nz mod 1, Tyx = Mz mod 1 (M, N > 2 integers)
and P the Bernoulli measure with corresponding probability vector (pg, p1). Since the
corresponding partition £ is equal to {[0] x [, 52) :i=0,...,N = 1}U{[1] x [57, &) :

i=0,...,M —1}, it is clear that \(&,;(2)) = N~ - e with ¢(w) = 321, w; for
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each w € Qg and = € [0,1). For each i € N, let us define the random variable X; on
Qp x[0,1) as

Xi(w,z) = (1 — w;)log(N) + w; log(M). (6.59)
Clearly, {X;}$°, is an i.i.d. sequence on (Qg x [0,1],F @ B,P® \). Also, we have
E]}n@)\(Xi> = Do 10g<N) + lOg<M) = h]}"@/\(Fa,T> - h]p(d). (660)

Setting 0? = Var(X;), X| = w and S; = Y., X/, we obtain that W,, as
defined in Definition 6.39 in this case takes the form

Win(t) = \/Lm lf; (Si1+m (1 %)Xl) Lt s (8) (6.61)

We conclude from Donsker’s Theorem (see e.g. Theorem 1.4 in [37]) that t — W,,(¢)
converges in law w.r.t. P® A to the Brownian motion on [0, 1) as m — oo, so T satisfies
the averaged weak invariance principle with variance 0% and w.r.t. P® \.

Theorem 6.41. Let T and S be RNTFS’s w.r.t. (Q,F,P,p) and (Q,]:",I?’, V), respec-
tively, with corresponding partitions & and (, respectively, and measures pur and s, re-
spectively. Let w € Q and suppose that {&,n}o2, satisfies the O-property in the sense
of Definition 6.7 with ¢ = hy.(Fy,r) — hp(p). Furthermore, suppose that S satisfies the
averaged weak invariance principle with variance o® and w.r.t. some probability measure
von (Qx[0,1),F®B). Then for all u € R
mr.s(n,w, 0, x) — nz

. ~ ~ X s ) Wy W, _ 1 “ —t2/2
Jl)rlgoy({(w,x) e x[0,1): — gu}) - ﬁ/_we dt, (6.62)

where zg = —Z“Tg “”T)): E and o1 = \/(h F:ST) hp(w)) o
s l"S

Proof: This follows in exactly the same way as the proof of Corollary 2.1 in [32].
This is because in Section 2.2 of [32] it is nowhere used that the defined processes
W, K, K', M’ and M have underlying probability space ([0,1),B,)\) and not just an
arbitrary Lebesgue space. For this reason, the proof also holds if we instead work with
(Q x [0,1), F ® B, v) as underlying probability space for the process V. H



Appendix A

Functions of Bounded Variation

In this appendix we briefly review the theory of functions of bounded variation. The
following results are well-known and we refer to e.g. [52] and [9] for a more detailed
discussion on this topic.

Definition A.1. Let [a,b] CR and [ : [a,b] — C. The variation of f is defined as

Var[a,b}(f) = SUPZ |f(2i) = f(wi1)], (A1)
i=1
where the supremum runs over all finite partitions generated by the points a = vy < x1 <
-o- <z, =0b. The space
BV ([a,b]) = {f : [a,b] = C: Varp(f) < oo} (A.2)

is called the space of functions of bounded variation on [a, b].

The variation measures the oscillation of a function. Note that Var,;(-) is a seminorm,
because it is positive, and homogeneous and subadditive in the sense that

Var, ) (t - f) = [t|Vary(f) for every t € C, (A.3)
Var, 4 (fi + f2) < Vary, y(f1) + Varpy(f2)- (A4)

It is not a norm because Vary,;(f + C) = Varj,y(f) for every constant C' € C. Also,
BV ([a,b]) is closed under taking products, because

Var, ) (f1 - f2) < || falloo Varian (f1) + || fillos Vary g (f2), (A.5)
where || fi||oo = sup|fi| is the supremum norm.

Furthermore, f : [a,b] — C is constant if and only if Vary,;(f) = 0. For f : [a,b] = R
it is easy to see that

sup f —inf f < Var[a,b](f)a (AG)
with equality if and only if f is monotone. Therefore, | f| is bounded if Vary, 4 (f) < oo.
87
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We state some more well-known properties of variation.

Lemma A.2. Let {f,} be a sequence of complex functions on [a,b] converging pointwise
to f :[a,b] = C. Then Vary(f) < liminf, Vary, ;(fn).

Lemma A.3. If f1 : [a,b] — [c,d] is monotone and fs : [c,d] — C, then

Val"[&b](fz ©) fl) S Var[qd](fg). (A?)
Lemma A.4. Let f : [a,b] = C be integrable. Then

Il < Voo (1) + 5 [ r@lare). (A8)

The following lemma is Problem 5.4.1 in [9].

Lemma A.5. Let {I;} be a finite or countable partition of [a,b] into intervals. Let f €
BV ([a,b]). Then

Z\/arji(f) < Vary, 4 (f)- (A.9)

Theorem A.6. (Jordan decomposition of BV functions) Let f : [a,b] — R. Then f is
of bounded variation if and only if it can be represented as f = u — v where u and v are
two real-valued increasing functions on |a,b].

Remark A.7. Note that this decomposition is not unique, because we can instead
take u + ¢ and v + g for any increasing function g : [a,b] — R. In particular, u and v
can be taken positive by adding a sufficiently large constant.

Remark A.8. It follows from Theorem A.6 that f : [a,b] — C is of bounded variation
if and only if it can be representated as f = (u, — v,) +i(u; — v;) where u,., v,, u;, v; are
real-valued increasing functions on [a, b].

Since a monotonic function f : [a,b] — R can only have jump discontinuities (i.e.
points x € [a,b] for which L = lim, f(y) and M = lim,, f(y) exist, but L # M) and
since each such discontinuity can be associated with a rational number, we obtain the
following corollary:

Corollary A.9. Let f € BV([a,b]). Then the set of discontinuities of f is at most

countable and consists of jump discontinuities.

Corollary A.10. Let f € BV ([a,b]). Then f is Lebesque integrable and Riemann inte-
grable. In fact, f € LP([a,b],\) holds for all p > 1.

Proof: Both statements follow from Corollary A.9 and the fact that f is bounded. [

We call a function f : [a,b] — R lower semicontinuous if for any x € [a,b] we have
f(z) <liminf, ,, f(y), i.e. if for all ¢ > 0 there exists § > 0 such that f(y) > f(z) —¢
for all y € (x — 0,2 4 6) N [a, b).
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Corollary A.11. Let f : [a,b] — R be of bounded variation. Then it can be redefined on
a countable set to become lower semicontinuous. In that case, f takes its minimum on

la, b].

Proof: From Corollary A.9 we know that the set S of points in [a,b] where f is
discontinuous is at most countable, and that f has one-sided limits at every point in
la,b]. For each x € S we redefine f as

f(x) = min (Tim f(y), lim 1@)). (A.10)

ytz

Note that in this way f becomes lower semicontinuous. The second statement is a
well-known property of lower semi-continuous functions, see e.g. Theorem 8.1.1 in
9]. O

Let f € BV ([a,b]). Then from Corollary A.10 we know that f € £([a,b], \), so we can
define

1/ llsv = Vary (f) + [1f]1- (A.11)
Recall that || - ||; defined on £([a,d],)\) as || f|l1 = f: |f|dz is a seminorm but not a
norm, because ||f|[; = 0 only implies f = 0 A-a.e. For that reason, || - ||py defined

on BV ([a,b]) as in (A.11) is also a seminorm but not a norm. This problem can be
circumvented by defining the equivalence relation f ~ ¢ if and only if f = ¢g A-a.e. and
considering the quotient space L'([a,b],\) = L ([a,b],\)/ ~.

Definition A.12. Let f € L'([a,b],\). The variation of f is defined to be
Var((f) = inf{Var(,(g) : g € £L([a,0]), 9 = f A-a.e.} (A.12)
If Varyay (f) < 0o, then we say that f is of bounded variation on [a,b] and we let
BV ([a.8) = {F € L}([a,, ) : Varay (/) < o). (A.13)
We usually just write BV ([a,b]) for the space BV (|a, b]).
Note that Var(,(-) in (A.12) is a seminorm on BV ([a,b]). On the other hand, | - ||;
induces a norm on L'([a,b], \), so || - ||sv : BV ([a,b]) — [0,00) defined as
|fllv = Vary(F) + I fll, £ € BV ([a,b]) (A14)
is a norm on BV ([a, b]).

Proposition A.13. The space BV ([a,b]) equipped with the norm || - ||y is a complex
Banach space.

Proof: See Lemma 5(ii) in [33]. O

Let us now prove that BV ([a,b]) contains all C'! functions on [a, b].
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Proposition A.14. (see (15) in [10]) Let fi € BV ([a,b]) and f2 € C'([a,b]). Then

b
Varp ) (f1.f2) < [l falloo Varas (f1) +/ | f1(5) fa(s)lds. (A.15)

Proof: From the Mean Value Theorem it follows that

Var[a,b](f1f2) = SUPZ |f1(l’z')f2(13z‘) - fl(xi71>f2($i71)‘

=1

< SUPZ | fo(wa) || fr(z) — fr(zio)| + [fr(zim) [ fa(2s) — fa(wioa)]

< Hf2Hoovar[a,b](f1) + SUPZ ’fl(%q)fé(ii)“xi — Ti1]
i=1

b
— fallooVaryuy (£1) + / Fu(3) fa(s)lds,

where the last step follows by definition of the Riemann integral. O

Corollary A.15. Let f € C'([a,b]). Then f € BV ([a,b]) and

Var, y (f / |f'(s)|ds. (A.16)

Proof: Apply Proposition A.14 with f; =1 and f; = f. O]

Corollary A.16. For any finite Borel measure jn on [a,b], the space BV ([a,b]) is dense

in (L (), 1| )

Proof: The result follows from the previous corollary combined with the fact that
C1([a,b]) is dense in L£(p). O

As a preparation for proving the existency result by Lasota and Yorke in Section
3.3, we also need the following two important theorems:

Theorem A.17. (Yorke’s Inequality) Let f € BV ([a,b]) and [c,d] C [a,b]. Then

2 d
Var, 4 (flie,q) < 2Varpq(f) + d——c/ | f(s)|ds. (A17)

Proof: For any ¢ € [c, d] we have

Varpp (fliea) < Varea/(f) + |f(c)] +[f(d)]
< Vare g (f) + [f(c) = f(OI + [f(d) = f(E)] + 2 ()]
< 2Varq(f) +2[f (€.

We can choose ¢ such that |f(€ f |f(s)|ds by the Mean Value Theorem for
integrals, which gives the result. O]
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Theorem A.18. (Helly’s First Theorem) Let C be a collection of infinitely many func-
tions f € BV ([a,b]) for which there exists M > 0 such that

[flloo < M, Varyy(f) < M, for all f €C.

Then there exists a sequence {f,} C C that converges pointwise to some f* € BV ([a,b])
that satisfies Varp, ;(f*) < M.



Appendix B

Some Results from Functional

Analysis

In this appendix we state some results from Functional Analysis that will be needed
in Chapters 3 and 4.

B.1 The Kakutani-Yosida Theorem

The next theorem can be found in e.g. Section 2.2 of [9].

Theorem B.1. (Kakutani-Yosida) Let X be a Banach space and P : X — X be a
bounded linear operator. Assume there exists ¢ > 0 such that |P"|| < ¢ for each n € N
Moreover, if for any f € A C X, the sequence {f,} given by

1 n
fo=—D P'f (B.1)
k=1
contains a subsequence { f,,} which converges weakly in X, then for any f € A,
1 « -
= P feX (B.2)
n
k=1

(convergence in norm) and P(f) = f.

B.2 Quasi-Compact Operators

Let (V,| - |lv) be a complex Banach space and P : V — V a bounded linear operator.

Definition B.2. Let B1(0) ={f € V : ||f|| < 1} denote the open unit ball in V. We say
that P is compact if the closure of P(B1(0)) is compact in V.

92
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Compact operators are an important class of bounded linear operators in Functional
Analysis. We have the following related notion of quasi-compactness of a bounded
linear operator.

Definition B.3. We say that P is quasi-compact if there exists a compact operator
R:V =V and k € N such that

|P* — Ry < 1. (B.3)
There are several equivalent definitions for the quasi-compactness of a bounded linear
operator. One of them is formulated as follows (see [9, 21, 23]).

Theorem B.4. The operator P is quasi-compact if and only if there are bounded linear
operators {Qx : A € A} and S on V' such that

P = "\"Qx+ 5", for alln € N,
AEA

Q\Qx =0 ifAF# N,

Q3 = Qx for all A € A,

Q)\S =5Q, =0 for all X € A,

Q\V = E()) for all X € A,

p(S) <1,

where A is the set of eigenvalues of P with modulus 1, E(\) = {f € V : Pf = \f} is
the eigenspace of P corresponding to A € A, and p(S) = lim,_, ||S”||%/" is the spectral
radius of S.

The next theorem gives a useful sufficient condition for a bounded linear operator to
be quasi-compact.

Theorem B.5. (Ionescu-Tulcea and Marinescu Theorem) Let (V, || |lv) and (W, || - ||w)
be two complexr Banach spaces such that V. C W. Let P:V — V be a linear operator that
is bounded with respect to both || - ||v and the restriction of || - [lw to V. Assume that

LI fu €V forneN, f €W, limy o llfu— flw =0 and [ fulv < K forn €N,
then f €V and ||f|lv < M, where M is a constant,

2. supyso 1P fllw /| fllw = [ €V, f# 0} < o0,
3. There exist k € N, p € (0,1) and L > 0 such that
1P fllv < pllfllv + LI fllw (B4)
forall f €V,

4. If U CV is bounded w.r.t. || - ||y, then the closure of P*U w.r.t. || - |w is compact
in (W, - [lw)-
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Then P : (V|| - lv) = (V,| - |lv) is quasi-compact, the set A of eigenvalues of P with
modulus 1 is finite and for each A\ € A the eigenspace E(\) associated to X is finite-
dimensional.

B.3 The Arzela-Ascoli Theorem

As usual, write C%([0, 1]) for the space of all continuous functions on [0, 1] with values
in C or R. We equip C°([0,1]) with the supremum norm || f|lec = sup,cp 1 1f(z)]. We
say that a set S C C°([0,1]) is bounded if there exists M € (0, 00) such that || f|lee < M
for all f € S. Moreover, we call S equicontinuous if for each ¢ > 0 there exists § > 0
such that for =,y € [0, 1]:

2yl < 6 = sup|f(z) - F(y)| < <. (B.5)
fes

The following famous theorem can be found in e.g. [51].

Theorem B.6. (Arzela-Ascoli) If S C C°([0,1]) is bounded and equicontinuous, then for

any sequence {f,} C S there exists a subsequence {fn,} that converges w.r.t. || - |00 to
some f* € CY([0,1]).

The Arzela-Ascoli Theorem can also be extended to general compact metric spaces
(see e.g. Section 4.6 in [23]).
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