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1 Introduction

In high-dimensional queueing systems, optimal strategies may have a complicated structure.
Due to high-dimensionality, it is numerically intractable to compute such an optimal strategy.
Instead, it may be beneficial to use a good approximating strategy that is easily computed.
An example of such a controlled queueing system, is the K-competing queueing model, with
service control. In the case of a linear cost structure, it is well-known that the optimal strategy
has a simple structure: always serve the queue yielding the largest cost reduction per unit time
(cf. [4]).
In case the cost per unit time is not a linear function of the state, or if customers may abandon
the system before having finished service, the optimal service control strategy does not have
this simple form in general.
In the case of linear cost and abandonment, there may still be a simple optimal strategy under
extra conditions on the parameters (cf. [5]). However, if the cost is not linear, such a simple
strategy may not exist. The paper [1] suggests to use the so-called Whittle index strategy as a
relatively simply computed approximation. The Whittle index strategy assigns to every queue
a function of the number of customers in that queue. The queue with the highest function value
will be served, unless this index is negative.
In this thesis we will study the Whittle index and some of its properties as discussed in [1]. We
will clarify and elaborate on some of the proofs from [1], and provide alternative proofs in other
cases.
The structure of this thesis is as follows: first we will introduce the model we study. We will
analyse the constraints on the cost functions and the applications to specific forms of these.
Since the Whittle index is based on a single customer type, we will give a recap on the single
queue model and we will describe the concept of a threshold strategy. We analyse the stationary
distribution of the Markov chain associated with a given threshold strategy and give a closed
form formula for this distribution.
After some definitions that we need to give a meaningful definition of the Whittle index, we
introduce this index and we see that it is possible to index all queues in the model. We
will give another proof as the proof in [1]. We also discuss different possibilities to compute
the Whittle index. This is not immediately clear. In [1] a simple formula was conjectured
to hold. Unfortunately, we have not succeeded in proving its validity. In the end we will
give some examples of the Whittle index strategy and we finish with some conclusions and
recommendations for further research.
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2 Model

In the section we describe the K-competing queues model from [1] in more detail. This is a
queueing model with a single server. The server has capacity 1, and so at most one customer
can be served at any moment in time. There are K customer types, that compete for service.
Arrivals of type k customers occur according to a Poisson process with rate λk, k ∈ {1, · · · ,K}.
Each type k customer may leave impatiently after an exp(θk) distributed amount of time. When
a type k customer is being served, he may leave impatiently after an exp(θ′k) distributed amount
of time, or he finishes service after an exp(µ′k) distributed amount of time. We define µk = θ′k+µ′k
as the departure rate for a customer of type k in service. We assume that µ′k + θ′k ≥ θk, which
means that on average a customer in service leaves faster than a queued customer.
Let xk be the number of type k customers in the system. We assume that there is a cost for
having customers in the system. For each customer type we define two cost functions: Ck(xk, 0)
is the cost per unit time when there are xk customers in the system and class k is not being
served; Ck(xk, 1) is the cost per unit time when there are xk customers in the system and class
k is being served. In [1] it is assumed that both functions are convex and non-decreasing, and
satisfy

Ck(xk, 0)−Ck(max{0, xk − 1}, 0) ≤ Ck(xk + 1, 1)−Ck(xk, 1) ≤ Ck(xk + 1, 0)−Ck(xk, 0). (1)

Further, we assume that there is a lump cost dk for an impatient departure of a queued type k
customer and a lump cost d′k for an impatient departure of a type k customer in service.
It is convenient to model the combined costs as a cost per unit time. Thus, we have to remodel
the lump cost dk, d

′
k per type k customer as a cost per unit time. This can be done as follows.

Remark that a type k customer in the queue abandons the queue after an exp(θk) distributed
amount of time. Thus on average he abandons the queue after 1/θk time units. So, when there
are xk customers in queue k, the lump cost due to impatient departures from this queue can
be modelled as an average cost of xkθkdk per unit time. When the server is serving queue k,
an expression for the average cost per unit time for departing customers in service follows with
the same reasoning. Combining, yields the following cost per unit time for type k customers,

C̃k(xk, 0) = Ck(xk, 0) + dkθkxk,

and
C̃k(xk, 1) = Ck(xk, 1) + dkθk max(0, xk − 1) + d′kθ

′
k min(1, xk).

We wish to determine a service assignment strategy for this model that minimises the average
expected total cost per unit time. The form of the optimal strategy is expected to be very
complex. The idea is to use a heuristic instead. For this heuristic, we need the so called Whittle
index. This index will be determined per queue and depends only on the number of customers
per type. This motivates to study the single server model with one customer type. We will refer
to this model as the single queue model. We will do so in Section 4, but first we will elaborate
on the cost restrictions in Equation (1).
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3 Analyses of the restrictions on the cost

It is not immediately clear, that the condition in Equation (1) is very restrictive. We will analyse
several cost functions, and we will see that the leading terms in C(x, 0) and C(x, 1) have to
be equal. Remark, that since we look at the difference of two function values, any constants,
if present, will disappear. It is therefore clear, that these can take any value, independently of
the other function. So, we can add any constant we like, without destroying the condition in
Equation (1). Therefore, in the proofs we ignore these constants.

3.1 The linear case

Lemma 1. Let C(x, 0) = ax+ b, C(x, 1) = a′x+ b, with a, a′ > 0. If Equation (1) holds, then
a = a′.

Proof We may assume, that C(x, 0) = ax and C(x, 1) = a′x. Our functions have to satisfy
Equation (1). Thus, we need a, a′ ∈ R to satisfy

ax− a(x− 1) ≤ a′(x+ 1)− a′x ≤ a(x+ 1)− ax.

Remark, that this implies that
a ≤ a′ ≤ a,

and so it follows immediately that a = a′.

3.2 The quadratic case

Lemma 2. Let C(x, 0) = ax2 + bx+ c and C(x, 1) = a′x2 + b′x+ c′ be non-decreasing functions
for x ≥ 0. If Equation (1) holds, then a = a′ and b− 2a ≤ b′ ≤ b.

Proof In this case, we may assume, that C(x, 0) = ax2 + bx and C(x, 1) = a′x2 + b′x. These
functions have to be convex and non-decreasing, so a, a′ > 0. Equation (1) has to hold, so
a, a′, b, b′ have to satisfy the following inequalities

ax2+bx−(a(x−1)2+b(x−1)) ≤ a′(x+1)2+b′(x+1)−(a′x2+b′x) ≤ a(x+1)2+b(x+1)−(ax2+bx).

After rewriting, we get

b+ 2ax− a ≤ b′ + 2a′x+ a′ ≤ b+ 2ax+ a. (2)

The first inequality of Equation (2) implies that

2ax− 2a′x ≤ a′ + a+ b′ − b, x = 0, 1, ...,

and the second that
2a′x− 2ax ≤ a− a′ + b− b′, x = 0, 1, ...

Both inequalities have to be satisfied for all x ∈ N. This therefore implies, that a = a′. When
a = a′, Equation (2) becomes

b− a ≤ b′ + a ≤ b+ a.

This gives us the following condition for b′

b− 2a ≤ b′ ≤ b.
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3.3 The exponential case

Lemma 3. Let C(x, 0) = a exp(bx)+c and C(x, 1) = a′ exp(b′x)+c′ be non-decreasing functions.
If Equation (1) holds, then b = b′ and a exp(−b) ≤ a′ ≤ a.

Proof We may assume, that C(x, 0) = a exp(bx) and C(x, 1) = a′ exp(b′x). These functions
have to be convex and non-decreasing, so that a, a′, b, b′ > 0.
Our functions have to satisfy Equation (1) as well. The first inequality of this equation leads to

a(exp(bx)− exp(b(x− 1)) ≤ a′(exp(b′(x+ 1))− exp(b′x))

⇒ a(exp(bx)− exp(b(x− 1))

a′(exp(b′(x+ 1))− exp(b′x))
≤ 1

⇒ exp(bx)− exp(b(x− 1)

exp(b′(x+ 1))− exp(b′x)
≤ a′

a

⇒ exp(b′(x+ 1))− exp(b′x)

exp(bx)− exp(b(x− 1))
≥ a

a′
, x ∈ {1, 2, ...}.

The second inequality of Equation (1) leads to

a′(exp(b′(x+ 1))− exp(b′x)) ≤ a(exp(b(x+ 1))− exp(bx))

⇒ a′(exp(b′(x+ 1))− exp(b′x))

a(exp(b(x+ 1))− exp(bx))
≤ 1

⇒ exp(b′(x+ 1))− exp(b′x)

exp(b(x+ 1))− exp(bx)
≤ a

a′
, x ∈ {1, 2, ...}.

So we get

exp(b′(x+ 1))− exp(b′x)

exp(b(x+ 1))− exp(bx)
≤ a

a′
≤ exp(b′(x+ 1))− exp(b′x)

exp(bx)− exp(b(x− 1))
, x ∈ {1, 2, ...}. (3)

Note that 0 <
a

a′
< ∞. With this fact, we can deduce, that b = b′. This is easy to show.

Indeed, if b < b′ we see that

lim
n→∞

exp(b′(x+ 1))− exp(b′x)

exp(b(x+ 1))− exp(bx)
=∞,

which is impossible, because the first inequality will not hold in this case.
Similarly, if b > b′, then

lim
x→∞

exp(b′(x+ 1))− exp(b′x)

exp(bx)− exp(b(x− 1))
= 0.

This cannot be the case, because then the second inequality cannot hold. So, b′ = b. Now it is
easy to see, that we can simplify Equation (3) to

1 ≤ a

a′
≤ exp(b)− 1

1− exp(−b)
,

and we can rewrite this as the following condition on a and a′

a(1− exp(−b))
exp(b)− 1

≤ a′ ≤ a.

We can simplify the first term, so we get

a exp(−b) ≤ a′ ≤ a.
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4 Single queue model

As pointed out in Section 2, we will study the single queue model. We consider one customer
type. From now on we ignore the subscript k. This model has state space S = {0, 1, 2, ...},
where the state denotes the number of customers in the system.
Customers arrive according a Poisson process with rate λ. The server can be turned on or off.
When the server is turned on, he serves one customer at a time, if there is any. Customers may
leave impatiently after an exp(θ) distributed amount of time, when they are in the queue, and
after an exp(θ′) distributed amount of time, when they are in service. Customers finish service
after an exp(µ′) distributed amount of time. Remark, that we assume that θ ≤ θ′+µ′ = µ, just
as in Section 2.
The objective is how to optimally turn the server on or off, so as to minimize the total expected
cost per unit time. We model this as a Markov decision process with state space S = {0, 1, 2, ...},
with action space A(x) = {0, 1}, where 0 stands for the server being turned off and 1 for the
server being turned on. The corresponding transition rates are

qxy(a) =


λ, y = x+ 1
xθ1{a=0} + ((x− 1)θ + µ)1{a=1}, y = x− 1, x ≥ 1

−λ− xθ1{a=0} − ((x− 1)θ + µ)1{a=1}, y = x, x ≥ 1

−λ y = 0, x = 0.

(4)

A strategy prescribes in which states to turn the server on or off. Thus, a strategy is a function
mapping each state to an action. One special strategy is the so called threshold strategy: when
the number of customers in the system is higher than the threshold, the server is on and when
the number of customers is lower than or equal to the threshold, the server is off. So a threshold
strategy is fully characterized by a threshold φ ∈ S, such that the server is turned off in state
x ≤ φ and on in state x > φ. φ = −1 stands for the strategy where the server is never switched
off. Figure 1 shows us the Markov processes associated with threshold strategies φ and φ + 1,
with the transition rates given by Equation (4).

0 1 · · · φ φ+1 φ+2 · · ·

0 1 · · · φ φ+1 φ+2 · · ·

λ λ λ λ λ λ

λ λ λ λ λ λ

θ 2θ φθ (φ+ 1)θ (φ+ 1)θ + µ (φ+ 2)θ + µ

θ 2θ φθ φθ + µ (φ+ 1)θ + µ (φ+ 2)θ + µ

Figure 1: Markov processes that correspond to threshold strategies φ and φ+ 1 respectively.

Note that only one rate in this Markov process is different for these two strategies.
By virtue of [1, Proposition 1] there is always a threshold optimal strategy. Thus the average
expected cost gφ per unit time under threshold φ is given by

gφ =
∑
x≤φ

πφ(x)C̃(x, 0) +
∑
x>φ

πφ(x)C̃(x, 1),

with πφ the corresponding stationary distribution of the Markov process associated with thresh-
old strategy φ. The Markov process associated with φ is a birth death process, so we can
explicitly determine the stationary distribution.
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5 Stationary distribution under a threshold strategy

We will determine the stationary distribution πφ of the Markov process operating under strategy
φ. To do so, we will rewrite the transition rates as in Equation (4). Let

θφx =

{
xθ, x ≤ φ

(x− 1)θ + µ, x > φ
(5)

be the transition rate from state x to state x−1 in the case that the threshold is φ. Let P φ0 = 1

and P φx =
∏x
j=1

λ

θφj
for all φ. When we use Equation (5), we get

P φx =


λx

x!θx
, x ≤ φ

λφ

φ!θφ
·
∏x
i=φ+1

λ

(i− 1)θ + µ
x > φ.

(6)

Then,

πφ(0) =

( ∞∑
x=0

P φx

)−1
, (7)

and
πφ(x) = P φx π

φ(0).

Using Equation (6), Equation (7) becomes

(πφ(0))−1 = 1 +

φ∑
x=1

λx

x!θx
+

λφ

φ!θφ

∞∑
x=φ+1

x∏
j=φ+1

λ

(j − 1)θ + µ
.

A closed form expression for (πφ(0))−1 is provided by Lemma 4. This expression was obtained
with Wolfram Alpha, but we prove the correctness below.

Lemma 4.

(πφ(0))−1 =
exp

(
λ
θ

) [(
λ
θ

)1−µ
θ γ
(µ
θ + φ, λθ

)
+ Γ

(
φ+ 1, λθ

)]
φ!

, (8)

with Γ(s, x) as in Equation (19) and γ(s, x) as in Equation (20).

Proof We will verify the correcteness of Equation (8).

exp
(
λ
θ

) [(
λ
θ

)1−µ
θ γ
(µ
θ + φ, λθ

)
+ Γ

(
φ+ 1, λθ

)]
φ!

=

exp
(
λ
θ

) [(
λ
θ

)1−µ
θ
(
λ
θ

)φ+µ
θ exp

(
−λ
θ

)∑∞
k=0

(λθ )
k∏k

i=0(
µ
θ
+φ+i)

+ φ! exp
(
−λ
θ

)∑φ
k=0

(λθ )
k

k!

]
φ!

=
exp

(
λ
θ

) (
λ
θ

)φ+1
exp

(
−λ
θ

)∑∞
k=0

(λθ )
k∏k

i=0(
µ
θ
+φ+i)

φ!
+

exp
(
λ
θ

)
φ! exp

(
−λ
θ

)∑φ
k=0

(λθ )
k

k!

φ!

=

(
λ
θ

)φ
φ!

∞∑
k=0

(
λ
θ

)k+1∏k
i=0(

µ
θ + φ+ i)

+

φ∑
k=0

(
λ
θ

)k
k!
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= 1 +

φ∑
k=1

λk

k!θk
+

λφ

φ!θφ

∞∑
k=φ+1

(
1

θ

)k+1−φ−1 k∏
i=φ+1

λ
1
θ (µ+ θ(φ+ i− φ− 1))

= 1 +

φ∑
k=1

λk

k!θk
+

λφ

φ!θφ

∞∑
k=φ+1

k∏
i=φ+1

λ

((i− 1)θ + µ)

= (πφ(0))−1.

Remark that the first equality follows by virtue of Equations (23) and (24). Thus, the closed
expression from Wolfram Alpha is indeed correct. This provides closed form expressions for the
other values of the stationary distribution.
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6 Whittle’s index

In [2] Whittle provides us with a heuristic strategy for the model described in Section 2. For
every threshold φ we can compute the so-called Whittle index per state.
To come to this index, it is necessary that we have a reason to turn a server off. Therefore, [2]
and [1] add a subsidy for passivity, denoted by W . In other words, it depends on W and the
number of customers in the system, whether a server is on or off. States in which the server is
off, and so customers are not served, are called passive. The set of all passive states is denoted
by D(W ).
Paper [1] uses a value function approach to prove results for this model. The value function is a
solution to the optimality equation. If the cost functions are non-negative, the minimal solution
(up to a constant), is the solution we are looking for. The optimality equation is given by

(µ′ + θ′ + xθ + λ)V W (x) + gW

= λV W (x+ 1) + θ(x− 1)V W (max{0, x− 1}) + min{C̃(x, 0)−W (x) + (µ′ + θ′)V W (x)

+ θV W (max{0, x− 1}), C̃(x, 1) + (µ′ + θ′)V W (max{0, x− 1}) + θV W (x)},

where gW is the average cost incurred under an optimal strategy, with subsidy for passivity W ,
and the value function V W (x) is the minimal total expected reduced cost in state x. From [2],
it follows that the Whittle index W̃ (x) is given by the value W (x) such, that

C̃(x, 0)−W (x) + (µ′ + θ′)V W (x) + θV W (max{0, x− 1})
= C̃(x, 1) + (µ′ + θ′)V W (max{0, x− 1}) + θV W (x),

that is, in state x the controller is indifferent to turning the server on or off. We can rewrite
this, so that

W̃ (x) = C̃(x, 0)− C̃(x, 1) + (µ′ + θ′ − θ)(V W (x)− V W (max{0, x− 1})).

This is not very well-defined, because W̃ (x) is not a priori unique. To come to a well-defined
index, we need the concept of indexability (cf. [1]).

Definition 1. The single queue model is indexable if W ′ < W implies that D(W ′) ⊆ D(W ).

[1, Proposition 1] shows that the optimal solution of the given problem is a threshold strategy.
Let φ(W ) be the optimal threshold for subsidy of passivity W . Then we can rewrite Definition 1
as follows.

Definition 2. The single queue model is indexable if W ′ < W implies that φ(W ′) ≤ φ(W ).

When the single queue model is indexable, we define the Whittle index in state x as the smallest
value W such, that it is optimal to be passive in state x.

Definition 3. For an indexable single queue model, the Whittle index in state x is defined by
W (x) := inf{W : x ≤ φ(W )}.

We now have enough to give a definition of the Whittle index strategy.

Definition 4. In a K-competing queues model, the Whittle index strategy serves the non-empty
class, with the highest non-negative Whittle index at the moment.
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6.1 Indexability of all classes

[1, Proposition 2] proves, that all classes are indexable. In this subsection we will provide
another proof, using Lemma 5. We will see that this proof leads automatically to [1, Theorem
1].

Proposition 1. All classes are indexable.

The proof requires that φ→
∑φ

x=0 π
φ(x) is increasing. The advantage of our proof is, that we

can explicitly estimate the difference between
∑φ

x=0 π
φ(x) and

∑φ+1
x=0 π

φ+1(x). We will show
this first.

6.1.1 Increasingness of
∑φ

x=0 π
φ(x)

Lemma 5.
∑φ

x=0 π
φ(x) <

∑φ+1
x=0 π

φ+1(x).

Proof To prove this lemma, we will rewrite first the above inequality.

φ∑
x=0

πφ(x) <

φ+1∑
x=0

πφ+1(x)

⇔ 1

πφ+1(0)

φ∑
x=0

λx

x!θx
<

1

πφ(0)

φ+1∑
x=0

λx

x!θx

⇔
exp

(
λ
θ

) [(λ
θ

)1−µ
θ

γ

(
µ

θ
+ φ+ 1,

λ

θ

)
+ Γ

(
φ+ 2,

λ

θ

)]
(φ+ 1)!

φ∑
x=0

λx

x!θx

<

exp
(
λ
θ

) [(λ
θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

)
+ Γ

(
φ+ 1,

λ

θ

)]
φ!

φ+1∑
x=0

λx

x!θx

⇔

[(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ+ 1,

λ

θ

)
+ Γ

(
φ+ 2,

λ

θ

)]
φ+ 1

φ∑
x=0

λx

x!θx

<

[(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

)
+ Γ

(
φ+ 1,

λ

θ

)] φ+1∑
x=0

λx

x!θx
. (9)

By virtue of Equations (21) and (22), it follows that(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ+ 1,

λ

θ

)
+ Γ

(
φ+ 2,

λ

θ

)
=

(
λ

θ

)1−µ
θ

[(µ
θ

+ φ
)
γ

(
µ

θ
+ φ,

λ

θ

)
−
(
λ

θ

)µ
θ
+φ

exp

(
−λ
θ

)]
+ (φ+ 1)Γ

(
φ+ 1,

λ

θ

)

+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
=

(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ

(
µ

θ
+ φ,

λ

θ

)
+ (φ+ 1)Γ

(
φ+ 1,

λ

θ

)
−
(
λ

θ

)φ+1

exp

(
−λ
θ

)
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+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
=

(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ

(
µ

θ
+ φ,

λ

θ

)
+ (φ+ 1)Γ

(
φ+ 1,

λ

θ

)
.

Using this, we obtain that

Inequality (9)⇔

[(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ

(
µ

θ
+ φ,

λ

θ

)
+ (φ+ 1)Γ

(
φ+ 1,

λ

θ

)]
φ+ 1

φ∑
x=0

λx

x!θx

<

[(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

)
+ Γ

(
φ+ 1,

λ

θ

)] φ+1∑
x=0

λx

x!θx

⇔

(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ

(
µ

θ
+ φ,

λ

θ

)
φ+ 1

φ∑
x=0

λx

x!θx

<

(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

) φ+1∑
x=0

λx

x!θx
+

λφ+1

(φ+ 1)!θφ+1
Γ

(
φ+ 1,

λ

θ

)
. (10)

Next we use Equation (23) to obtain, that(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ

(
µ

θ
+ φ,

λ

θ

)
=
(µ
θ

+ φ
)(λ

θ

)φ+1

exp

(
−λ
θ

) ∞∑
x=0

λx

θx
∏x
i=0(

µ
θ + φ+ i)

=

(
λ

θ

)φ+1

exp

(
−λ
θ

)(µ
θ

+ φ
)( 1

µ
θ + φ

+
λ

θ(µθ + φ)(µθ + φ+ 1)

+
λ2

θ2(µθ + φ)(µθ + φ+ 1)(µθ + φ+ 2)
+ ...

)
=

(
λ

θ

)φ+1

exp

(
−λ
θ

)(
1 +

λ

θ(µθ + φ+ 1)
+

λ2

θ2(µθ + φ+ 1)(µθ + φ+ 2)
+ ...

)
<

(
λ

θ

)φ+1

exp

(
−λ
θ

)(
1 +

λ

θ(µθ + φ)
+

λ2

θ2(µθ + φ)(µθ + φ+ 1)
+ ...

)
=

(
λ

θ

)φ+1

exp

(
−λ
θ

)
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)(
λ

θ(µθ + φ)
+

λ2

θ2(µθ + φ)(µθ + φ+ 1)
+ ...

)
=

(
λ

θ

)φ+1

exp

(
−λ
θ

)
+

(
λ

θ

)φ+2

exp

(
−λ
θ

)(
1

(µθ + φ)
+

λ

θ(µθ + φ)(µθ + φ+ 1)
+ ...

)
=

(
λ

θ

)φ+1

exp

(
−λ
θ

)
+

(
λ

θ

)φ+2

exp

(
−λ
θ

) ∞∑
x=0

λx

θx
∏x
i=0(

µ
θ + φ+ i)

=

(
λ

θ

)φ+1

exp

(
−λ
θ

)
+

(
λ

θ

)2−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

)
,

where for the last equality, we applied again Equation (23). Then,
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(
λ

θ

)1−µ
θ (µ

θ
+ φ

)
γ
(µ
θ + φ, λθ

)
φ+ 1

φ∑
x=0

λx

x!φx

<

(
λ

θ

)2−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

)
φ+ 1

φ∑
x=0

λx

x!φx
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!φx

=

(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

) φ∑
x=0

λx+1

x!(φ+ 1)φx+1
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!φx

=

(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

) φ+1∑
x=1

λx

(x− 1)!(φ+ 1)φx
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!φx

<

(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

) φ+1∑
x=1

λx

x!φx
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!φx

<

(
λ

θ

)1−µ
θ

γ

(
µ

θ
+ φ,

λ

θ

) φ+1∑
x=0

λx

x!φx
+

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!φx
.

To show that Equation (10) holds, it suffices to show, that

(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!θx
≤ Γ

(
φ+ 1,

λ

θ

)
λφ+1

(φ+ 1)!θ(φ+1)
. (11)

We will rewrite the left-hand side of Equation (??) by using Equation (24). We get,(
λ

θ

)φ+1

exp

(
−λ
θ

)
φ+ 1

φ∑
x=0

λx

x!θx
=

(
λ

θ

)φ+1

φ! exp

(
−λ
θ

)
(φ+ 1)!

φ∑
x=0

λx

x!θx
=

λφ+1

(φ+ 1)!θφ+1
Γ

(
φ+ 1,

λ

θ

)
,

which is equal to the right-hand side. So we see, that Equation (11) holds, thus that completes
the proof of the lemma.

6.1.2 Proof of Proposition 1

As mentioned before, there is a threshold optimal strategy for each subsidy of passivity W .
Recall, that the average expected cost for fixed W and φ, is equal to

gφ(W ) :=

φ∑
x=0

C̃(x, 0)πφ(x) +

∞∑
x=φ+1

C̃(x, 1)πφ(x)−W
φ∑
x=0

πφ(x). (12)
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We are interested in the minimum average expected cost for given W . By threshold optimality,
we may minimise over the threshold average cost values, so that the threshold φ that minimises
gφ(W ) is the optimal threshold. Thus,

g(W ) := min
φ
gφ(W ) (13)

yields the desired minimum expected average cost. We will give an algorithm to find the Whittle
index and we will see that this implies indexability of all classes.

Algorithm 1 Algorithm to determine the Whittle index

Step 1
Determine g0(W ) as a function of W ∈ R
OptThreshold(W ) := 0 ∀W
OptCurve(W ) := g0(W )
NonDif:= ∅
n := 1
Step 2
for n = 1 to ∞ do

Determine gn(W ) as a function of W ∈ R
for all W do

if OptCurve(W ) > gn(W ) then
OptThreshold(W ) = n
OptCurve(W ) = gn(W )

end if
end for
Determine W ′ = min{W : OptCurve(W ) = gn(W )}
for W ∈NonDif do

if W > W ′ then
NonDif=NonDif\{W}

end if
end for
NonDif=NonDif∪{W ′}

end for
Step 3
for all W do

n(W ) :=OptThreshold(W )
g(W ) :=OptCurve(W )

end for

In the ith iteration of step 2, the following can happen. Since W → gn(W ) has the (strictly)
minimum gradient of the functions W → gk(W ), k ≤ n, it intersects OptCurve(W ) at some
point Wn. So,

OptCurve(W ) :=

{
OptCurve(W ), W ≤Wn

gn(W ), W ≥Wn.

Thus, iteratively, it follows that OptCurve(W ) is a piecewise linear, non-increasing function,
consisting of successive linear pieces of the functions gn1(W ), ..., gnk(W ) = gn(W ), where n1 <
... < nk = n, since the gradients are strictly decreasing in n.
The set NonDif consist of the points where OptCurve(W ) is not differentiable. These are exactly
the points Wn1 < ... < Wnk where gn1(Wn1) = gn2(Wn1), ..., gnk−1(Wnk) = gnk(Wnk) = gn(Wnk)

14



respectively. This clearly holds for the final set NonDif.
So it follows that we also have a concave function and we now can conclude that we satisfy
the requirement in Definition 2. So indeed, Algorithm 1 gives us, that each single queue is
indexable. This concludes the proof of Proposition 1.

6.1.3 Computation of the Whittle index

Algorithm 1 not only proves Proposition 1, but it also constructs the Whittle index. Remark
that the points where OptCurve(W ) is not differentiable, are exactly the points where W (x) :=
inf{W : x ≤ OptThreshold(W )}. This is the Whittle index in state x by Definition 3. The set
NonDif consist of the intersection points of two linear functions. We see that [1, Theorem 1]
calculates this points in another way. As a shorthand notation we define

η(φ) =

φ∑
x=0

πφ(x),

and

δ(φ) =

φ∑
x=0

πφ(x)C̃(x, 0) +

∞∑
x=φ+1

πφ(x)C̃(x, 1),

with δ(−1) =
∑∞

x=0 π
−1(x)C̃(x, 1). The algorithm of [1] is as follows.

Algorithm 2 Algorithm of [1] to compute the Whittle index

Step 1
Compute

W0 = inf
φ∈N∪{0}

E(δ(φ)− δ(−1))

η(φ)
,

and call φ0 the largest minimizer. Then, define W (φ) := W0 for all φ < φ0. If φ0 = ∞ define
W (φ) := W0 for all φ, otherwise go to step 2, for i = 1.

Step 2 i = 1, 2, ...

Wi = inf
φ∈N\{0,1,2,...,φi−1}

δ(φ)− δ(φi−1)
η(φ)− η(φi−1)

,

and call φi the largest minimizer. Define W (φ) := Wi for all φi−1 < φ < φi. If φi = ∞ define
W (φ) := Wi for all φ, otherwise repeat step 2 for i = i+ 1.

Theorem 1. Algorithm 2 determines the Whittle index for each state x in a single queue model.

The validity of Theorem 1 follows immediately from the construction in Algorithm 1. The
set {W0,W1, ...} is precisely the set NonDif from Algorithm 1, but now computed in increasing
order. In our opinion, Algorithm 1 is a more elegant way to prove this theorem, than the present
proof in [1]. In particular, [1] did not prove that the optimal curve g(W ) is indeed concave and
non-increasing.
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7 Other possibilities to compute the Whittle index

Remark that δ(φ) is the expected average cost of the system under threshold strategy φ.
The way to compute the Whittle index is presented in Algorithm 2. Corollary 1 of [1] implies
that the Whittle index in state φ is given by

I(φ) =
δ(φ)− δ(φ− 1)

η(φ)− η(φ− 1)
, (14)

provided I(φ) is non-decreasing in φ. Unfortunately, [1] does not prove that Equation (14) is
non-decreasing in φ. We have tried to prove that Equation (14) is non-decreasing as a function of
φ, by using our expression for the stationary distribution. We have not been able to do, in spite
of intensive effort. The numerical results below show that indeed φ→ I(φ) is a non-decreasing
function.

7.1 Abandonment rate equals service rate

In the next subsections, we will look at some special cases from [1] with I(φ) non-decreasing
in φ. It is easy to see, that for every strategy φ the Markov process has the transition rates
presented in Figure 2.

0 1 · · · φ φ+1 φ+2 · · ·
λ λ λ λ λ λ

θ 2θ φθ (φ+ 1)θ (φ+ 2)θ (φ+ 3)θ

Figure 2: Markov process for every strategy when θ = µ.

From this fact, it follows automatically that πφ(x) = πφ−1(x) for every x. So the denominator
of Equation (14) is equal to

φ∑
x=0

πφ(x)−
φ−1∑
x=0

πφ−1(x) =

φ∑
x=0

πφ(x)−
φ−1∑
x=0

πφ(x) = πφ(φ).

The numerator is equal to

δ(φ)− δ(φ− 1)

=

φ∑
x=0

πφ(x)C̃(x, 0) +
∞∑

x=φ+1

πφ(x)C̃(x, 1)−
φ−1∑
x=0

πφ−1(x)C̃(x, 0)−
∞∑
x=φ

πφ−1(x)C̃(x, 1)

=

φ∑
x=0

πφ(x)C̃(x, 0) +
∞∑

x=φ+1

πφ(x)C̃(x, 1)−
φ−1∑
x=0

πφ(x)C̃(x, 0)−
∞∑
x=φ

πφ(x)C̃(x, 1)

= πφ(φ)C̃(φ, 0)− πφ(φ)C̃(φ, 1).

We see now, that in this case Equation (14) is equal to

πφ(φ)C̃(φ, 0)− πφ(φ)C̃(φ, 1)

πφ(φ)
= C̃(φ, 0)− C̃(φ, 1). (15)
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We can rewrite the second inequality of Equation (1) to

C(φ, 0)− C(φ, 1) ≤ C(φ+ 1, 0)− C(φ+ 1, 1)

⇔ C(φ, 0)− C(φ, 1) + dθ − d′θ′ ≤ C(φ+ 1, 0)− C(φ+ 1, 1) + dθ − d′θ′

⇔ C(φ, 0)− C(φ, 1) + dθ(φ− (φ− 1))− d′θ′ ≤ C(φ+ 1, 0)− C(φ+ 1, 1) + dθ(φ+ 1− φ)− d′θ′

⇔ C̃(φ, 0)− C̃(φ, 1) ≤ C̃(φ+ 1, 0)− C̃(φ+ 1, 1).

Thus the expression in Equation (14) is non-decreasing in φ and the Whittle index is thus given
by Equation (14).

7.1.1 Example of the case that the abandonment rate equals the service rate

In this section we will provide an example of the case µ = µ′ + θ′ = θ. We choose the following
parameters:

λ = 1, µ = θ =
1

4
, θ′ =

1

16
, µ′ =

3

16
.

Let C(x, 0) = x2 + x and C(x, 1) = x2. It’s easy to check that these cost functions satisfy
Equation (1).
Take d = 5 and d′ = 10 to be the lump costs, so the combined cost becomes

C̃(x, 0) = x2 + x+ 5 · 1

4
x = x2 +

9

4
x,

and

C̃(x, 1) = x2 + 5 · 1

4
max (0, x− 1) + 10 · 1

16
min (1, x) = x2 +

5

4
max (0, x− 1) +

5

8
min (1, x).

Remark, that we can view this Markov process as an M/M/∞ queue. We can use the analysis
of [3] to calculate the stationary distribution. This distribution is independent of strategy φ as
we saw before, so we may omit de index φ in the stationary distribution. We get

π(0) =

 ∞∑
x=0

(
λ
µ

)x
x!

−1 =

 ∞∑
x=0

(
1
1
4

)x
x!


−1

= (exp(4))−1 = exp(−4).

With [3], it follows that

π(m) =

(
λ
µ

)m
m!

π(0) =
4m

m!
π(0).

This allows to calculate η(φ) and δ(φ) for every φ. The results or 0 ≤ φ ≤ 10 are given in
Figure 3. Figure 4 is a plot of I(φ), and we see that it is indeed linear in φ.
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Figure 3: Values of η(n) and δ(n) for 0 ≤ n ≤ 10.

2 4 6 8 10

0
2

4
6

8
10

12

n

I(
n)

Figure 4: Value of I(n).

7.2 Linear cost functions

In this subsection we assume that the cost functions are linear. So, let c, c′, d, d′ ∈ R, and put

C̃(x, 0) = cx+ dθx = c̃x,

and
C̃(x, 1) = c(x− 1) + c′ + θd(x− 1) + d′θ′ = c̃(x− 1) + c̃′.

We will prove that the Whittle index in this case is a constant. The idea of this proof is based
on the proof in Appendix 3 of [1].

18



The crucial argument in this proof is, that the fraction of impatient departures f plus the
fraction of departures g due to service completion is equal to one. This is because of the fact
that a customer leaves the system once and either leaves impatiently or served. Let f be the
fraction of the customers that leaves the queue impatiently and let g be the fraction of the
customers that leaves served, so

f + g = 1.

The first part of the analysis is independent of the cost functions. Let E[N ] be the average
number of customers in the system. Remark, that the total departure rate is equal to the
arrival rate λ. When we condition on the state, it follows that

λf =

φ∑
x=0

θxπφ(x) +

∞∑
x=φ+1

(θ′ + (x− 1)θ)πφ(x)

=

∞∑
x=0

θxπφ(x) +

∞∑
x=φ+1

θ′πφ(x)−
∞∑

x=φ+1

θπφ(x)

= θE[N ] +
∞∑

x=φ+1

θ′πφ(x)−
∞∑

x=φ+1

θπφ(x).

Further, we have that

λg = µ′
∞∑

x=φ+1

πφ(x).

Summing these two equations, we get

λf + λg = θE[N ] +
∞∑

x=φ+1

θ′πx(x)−
∞∑

x=φ+1

θπφ(x) +
∞∑

x=φ+1

µ′πφ(x)

⇒ λ = θE[N ] + (θ′ − θ + µ′)

∞∑
x=φ+1

πφ(x)

⇒ E[N ] =
λ

θ
− θ′ − θ + µ′

θ

∞∑
x=φ+1

πφ(x). (16)

From now on we will consider the expected average cost. We have

δ(φ) =

φ∑
x=0

c̃xπφ(x) +
∞∑

x=φ+1

(c̃(x− 1) + c̃′)πφ(x)

=
∞∑
x=0

c̃xπφ(x) +
∞∑

x=φ+1

(c̃′ − c̃)πφ(x)

= c̃E[N ] + (c̃′ − c̃)
∞∑

x=φ+1

πφ(x)

= c̃

λ
θ
− θ′ − θ + µ′

θ

∞∑
x=φ+1

πφ(x)

+ (c̃′ − c̃)
∞∑

x=φ+1

πφ(x).
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The last step follows from Equation (16).
This yields

I(φ) =

c̃

(
λ

θ
− θ′ − θ + µ′

θ

∑∞
x=φ+1 π

φ(x)

)
+ (c̃′ − c̃)

∑∞
x=φ+1 π

φ(x)∑φ
x=0 π

φ(x)−
∑φ−1

x=0 π
φ−1(x)

−
c̃

(
λ

θ
− θ′ − θ + µ′

θ

∑∞
x=φ π

φ−1(x)

)
+ (c̃′ − c̃)

∑∞
x=φ π

φ−1(x)∑φ
x=0 π

φ(x)−
∑φ−1

x=0 π
φ−1(x)

=

(
−c̃ θ

′ − θ + µ′

θ
+ c̃′ − c̃

)(∑∞
x=φ+1 π

φ(x)−
∑∞

x=φ π
φ−1(x)

)
∑φ

x=0 π
φ(x)−

∑φ−1
x=0 π

φ−1(x)

=

(
−c̃ θ

′ − θ + µ′

θ
+ c̃′ − c̃

)(
1−

∑φ
x=0 π

φ(x)− (1−
∑φ−1

x=0 π
φ−1(x))

)
∑φ

x=0 π
φ(x)−

∑φ−1
x=0 π

φ−1(x)

=

(
−c̃ θ

′ − θ + µ′

θ
+ c̃′ − c̃

)(
−
∑φ

x=0 π
φ(x) +

∑φ−1
x=0 π

φ−1(x)
)

∑φ
x=0 π

φ(x)−
∑φ−1

x=0 π
φ−1(x)

= −
(
−c̃ θ

′ − θ + µ′

θ
+ c̃′ − c̃

)
= c̃

θ′ + µ′

θ
− c̃′. (17)

We see that I(φ) is a constant function and so it is non-decreasing in φ. Hence, the Whittle
index in state φ is given by I(φ), and thus equal to a constant. In Section 8.1, we discuss a
2-competing queues model, with linear cost for both queues.

7.2.1 Example of a queue with linear cost functions

In this section we will discuss an example with linear cost functions. We choose the following
parameters:

λ = 1, θ =
1

8
, θ′ =

1

25
, µ′ =

1

2
,

we further put C(x, 0) = 5x+ 5 and C(x, 1) = 5x and lump cost d = 5 and d′ = 10. This yields

C̃(x, 0) = 5x+ 5 + 5 · 1

8
x =

45

8
x+ 5,

and

C̃(x, 1) = 5x+ 5 · 1

8
max(0, x− 1) + 10 · 1

25
min(1, x) =

45

8
x− 9

40
min(1, x).

In this case, it is very hard to calculate η(φ) and δ(φ) explicitly. Therefore, we have write a
program in R, to compute the desired results. This program can be found in the appendix,
in Section 10.2. It follows that the summation in Equation (7) converges very fast, so we will

take into account states x with P φx > 10−16. Figure 5 shows resulting values of δ(φ) and η(φ).
Figure 6 confirms that I(φ) is independent of the value φ.
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Figure 5: Values of η(n) and δ(n) for 0 ≤ n ≤ 10.
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8 Two-competing queues

In this section we will discuss some examples illustrating the Whittle index strategy, as defined
in Definition 4.

8.1 Two queues with linear cost functions

In this example both queues have linear cost functions. In Section 7.2 we have computed the
Whittle index for this case. For each queue, it is a constant independent of the state of the
queue.
Queue 1 has parameters

λ1 = 1, θ1 =
1

4
, θ′1 =

1

20
, µ′1 =

1

3
,

and the cost-functions are

C̃1(x, 0) = 5x and C̃1(x, 1) = 5x+ 3.

Queue 2 has parameters

λ2 = 1, θ2 =
3

4
, θ′2 =

1

5
, µ′2 =

4

5
,

with cost functions
C̃2(x, 0) = 0.5x and C̃2(x, 1) = 0.5x+ 2.

We can use Equation (17) to calculate the Whittle index in both queues. For queue 1 we get

I1 = 5 ·
1
20 + 1

3
1
4

− 3 =
14

3
,

and for queue 2

I2 = 0.5 ·
1
5 + 4

5
3
4

− 2 = −4

3
.

Hence, the Whittle index strategy prescribes to always serve queue 1 when type 1 customers
are present.
Remark that this case is always easy to analyse. In the case of the K-competing queues model,
with linear cost associated with each customer type, the Whittle index strategy will always
prescribe to serve the non-empty queue with the highest index, independent of the number of
customers in that queue. Queues with

c̃
θ′ + µ′

θ
< c̃′,

are never served.

8.2 One queue with linear cost functions and one queue with θ = µ

In this example, we assume that for type 1 customers a linear cost is incurred, and the service
rate of type 2 customers is equal to the impatience rate. The parameters chosen for type 1
customers are equal to the parameters for type 1 customers in Section 8.1. For type 2 customers
we use the same parameters as for customers in Section 7.1.1.
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Figure 7: The Whittle index for queue 1 and queue 2.
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Figure 8: The Whittle index strategy per state.

Figure 7 shows that the Whittle index of queue 2 is smaller than the Whittle index of queue 1,
when there are at most 4 customers in queue 2. The table in Figure 8 shows the details of the
Whittle index strategy for this case.

8.3 Two queues with θ = µ

Next we consider the case of two queues with equal service rate and abandonment rate. For
type 1 customers, we use again the parameters of Section 7.1.1. We add another queue with
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the following parameters.

λ = 1, θ =
1
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and
C̃(x, 0) = x3 + 3x and C̃(x, 1) = x3 + x+ 1.
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Figure 9: The Whittle index for queue 2.
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Figure 10: The Whittle index strategy per state.

Figure 9 shows the Whittle index for queue 2. Figure 10 provides the table with the server
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assignments per state, when the Whittle index strategy is used. It is interesting to note, that
the Whittle index strategy is characterised by a linear switching curve.
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9 Conclusions and possibilities of further research

This thesis is mostly based on [1]. This article is not always very clear or easy to understand.
So, in this thesis we have tried to clarify some of the proofs in [1].
We have further derived a closed form formula for the stationary distribution of the single
queue model operating under a threshold strategy. Using this expression for the stationary
distribution, we have provided another proof than the one in [1] to show that

φ∑
x=0

πφ(x) <

φ+1∑
x=0

πφ+1(x).

This proof can be used to bound the difference between the two expressions.
It is not yet clear how, but this stationary distribution can be the key to prove that I(φ) is
increasing in φ. This part is very interesting for further research. Unfortunately we have not
succeeded in doing so.
Another thing we tried without success, is to show using value iteration, that the threshold
increases, when W increases.
For further research, it could be interesting to relax very restrictive conditions on the cost func-
tions.
A last thing that is not completely clear for us, is how well the Whittle index strategy per-
forms compared the optimal strategy. In [1], it was proved that the Whittle index strategy is
asymptotically optimal as the number of servers grows, and in the light and heavy traffic limits.
However, nothing is known for fixed rates and a fixed number of servers.
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10 Appendix

10.1 The Gamma function and some of its properties

The Gamma function is defined as

Γ(s) =

∫ ∞
0

ts−1 exp(−t)dt. (18)

This function is an extension of the factorial function. Specially we have

Γ(s) = (s− 1)! if s ∈ N>0.

Based on the integral in Equation (18), we define the incomplete Gamma function. The upper
incomplete Gamma function is defined as

Γ(s, x) =

∫ ∞
x

ts−1 exp(−t)dt. (19)

Similarly the definition of the lower incomplete Gamma function is

γ(s, x) =

∫ x

0
ts−1 exp(−t)dt. (20)

Remark, that it automatically follows that

Γ(s) = γ(s, x) + Γ(s, x).

Using integration by parts, we get the following recurrence relations

Γ(s) = (s− 1)Γ(s− 1),

Γ(s, x) = (s− 1)Γ(s− 1, x) + xs−1 exp(−x), (21)

and
γ(s, x) = (s− 1)γ(s− 1, x)− xs−1 exp(−x). (22)

For the Gamma function, as well as for both incomplete Gamma functions a lot of other ex-
pressions exist. One of these is the power series expansion for γ(s, x), namely

γ(s, x) = xs exp(−x)
∞∑
k=0

xk∏k
i=0(s+ i)

. (23)

If s > 0 is an positive integer, then we can write

Γ(s, x) = (s− 1)! exp(−x)

s−1∑
k=0

xk

k!
. (24)

10.2 Code to determine I(φ)

This is the code to determine I(φ) relative precise for specific cases. It is based on the fact that
πφ(x) tends to zero, in the limit x→∞.
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lambda = # f i l l in lambda
theta = # f i l l in t h e t a
t h e t a . a c c = # f i l l in the ta ’
mu.acc = # f i l l in mu’
P0 <− c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

f o r (n in 1 : 11 ){
x = 1
y = 0
z=lambda ˆ(n−1)/ ( theta ˆ(n−1)∗ f a c t o r i a l (n−1))
whi l e ( x > 0 .0000000000000001 ){

i f ( y < n){
x = lambda ˆ( y ) / ( theta ˆ( y ) ∗ f a c t o r i a l ( y ) )
P0 [ n ] = P0 [ n ] + x
y = y+1

}
e l s e {

z = z∗ lambda/ ( ( y−1)∗ theta+t h e t a . a c c+mu.acc )
x = z
P0 [ n ] = P0 [ n ] + z
y = y+1

}
}
P0 [ n ] = 1/P0 [ n ]

}#computes p i (0) f o r phi=n

eta <− c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

f o r (n in 1 : 11 ){
f o r (m in 1 : n){

eta [ n ] = eta [ n]+lambda ˆ(m−1)/ ( theta ˆ(m−1)∗ f a c t o r i a l (m−1))∗P0 [ n ]
}

} #computes e ta

C0 <− f unc t i on ( a ){
# f i l l in C(0 , a )
}

C1 <− f unc t i on ( a ){
# f i l l in C(1 , a )

}

d e l t a <− c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

f o r (n in 1 : 11 ){
f o r (m in 1 : n){

d e l t a [ n ] <− d e l t a [ n]+P0 [ n ] ∗ lambda ˆ(m−1)/ ( theta ˆ(m−1)∗ f a c t o r i a l (m−1))∗C0(m−1)

28



}
t <− lambda ˆ(n−1)/ ( theta ˆ(n−1)∗ f a c t o r i a l (n−1))∗P0 [ n ]
s <− n
whi le ( t > 0 .0000000000000001 ){

t <− t ∗ lambda/ ( ( s−1)∗ theta+t h e t a . a c c+mu.acc )
d e l t a [ n ] <− d e l t a [ n]+ t ∗C1( s )
s <− s+1

} #computes d e l t a

}

I <− c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
f o r (n in 1 : 10 ){

I [ n ] <− ( d e l t a [ n+1]−d e l t a [ n ] ) / ( eta [ n+1]−eta [ n ] )
} #computes I
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