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Abstract

In Computed Tomography, it is often standard to scan an object with the projection angles spread
equidistantly over the full rotation of the object. If the number of projection angles is relatively small (e.g.
because of radiation damage), the choice of the distribution of these angles is important. Especially if the
object has certain main directions, in which the most important features are aligned, the reconstruction can
be improved by selecting angles in these directions. In this thesis, possibilities for improving the choice of
projection angles are investigated. Three angle selection algorithms are discussed: a greedy algorithm, a
coordinate descent algorithm and an adaptation of the ensemble Kalman Filter algorithm. The algorithms
try to find the minimum of a cost function, which is based on the L2-norm. The performance of these
algorithms is shown on three computer generated phantoms and one real-world image, generated from
scanning a wooden tree stem in the FleX-Ray scanner at CWI. The results of choosing angles with the
algorithms are compared with choosing equidistant projection angles. The results show that especially the
coordinate descent method is capable of finding projection angles that lower the cost function. In real life
situations the true image is not available. Therefore, the possibility of using training data to estimate the
cost function in that case, is investigated. We assume that these training samples come from the same
probability distribution as the true image. Then, averaging over the cost function of these training samples
improves the choice of projection angles with respect to equidistantly chosen angles.
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1 Introduction

The word tomography is derived from the Greek words tomos (slice or section) and graphein (to draw or to
write). In Computed Tomography (CT) the goal is to reconstruct an image from several X-ray photos. X-rays
can be used to look inside objects that our eyes are not able to penetrate and are therefore very useful in medical
applications, where it is important to see inside a patient without having to operate. CT is therefore called a
non-invasive method.

For many people, their first association with X-rays is often a medical application. However, CT is used for
imaging in a wide range of applications. Because of the non-invasive character of CT, it is not necessary to cut
an object to look into it. In the timber industry CT is used to assess the quality of wood and to detect internal
defects [10]. Knots and branches become visible, but also rottenness can be detected [16]. For wood, X-ray
scanning has another purpose as well: dendrochronology. In dendrochronology, the age of wood is estimated
using the year rings. Because of the non-destructive character of CT, application of CT to dendrochronology
will allow more objects to be dated [5].
CT has been successfully used in other research fields such as biology, archaeology and soil science. It is moreover
used for industrial purposes, e.g. defect detection, and in aviation security, e.g. luggage inspection [16].
Another interesting application is the (art) historic research. Musea are interested in scanning some of their
objects, for research and conservation purposes [26]. Lately, mummy cases, the decorated boxed in which mum-
mified bodies were placed, have been scanned to reveal writing on the recycled paper they were made of [13]
[27]. In 2015, the British Museum scanned an enormous mummified crocodile from ancient Egypt. Thanks to
CT imaging, information on mummification procedures was obtained, as well as the crocodile’s last meal [25].
Another example is the bronze statue, called ‘The Youth of Magdalensberg’. Examination using CT revealed
that the wall thickness of the figure was much thicker than usual in Roman techniques. Thus it became clear
that the statue was not the original, but a Renaissance copy [16].

To illustrate the underlying reconstruction problem in CT, we will give an example using visible light. Imagine
shining a light on an object that is located behind a screen. So, one is able to see the shadow of the object,
but not the object itself. How can one determine what object is behind the screen? There can be several 3D
shapes that have the same 2D shadow and thus the answer is not unique. An approach for this problem can be
to rotate the object and look at its shadow from several points of view. In that way, with each different angular
position of the object, more information is gained on its 3D shape, by looking at the shadow corresponding to
that position.
In X-ray tomography a similar problem arises. When an X-ray image is taken, the rays are (partly) blocked
by the object. Certain parts are darker than others, because the X-rays can penetrate some materials more
easily than others. This gives a 2D projection image of a 3D object. In CT the projection image depends
on the attenuation coefficient of the material, which depends on the density of the material and how much
the intensity of the X-ray beam decreases, while travelling through the material. From one projection image,
there is no unique way to determine the original shapes and attenuation coefficients of the materials inside an
object. Certain features may be clear in one projection direction, but unclear in another projection direction.
It is therefore useful to create multiple projections, to combine the information of all in order to estimate the
original object with a high probability. Reconstruction of the original object from multiple X-ray projections is
the goal of Computed Tomography.

The more projections, the clearer the internal structure of the object becomes. The object often rotates on a
platform between the X-ray source and the detector. Sometimes it is not possible to take projections from all
sides, for example because the size of the object does not allow for a full rotation within the scanner. In other
cases it might be necessary to take as few projections as possible, due to the exposure to radiation. A common
way to select the distribution of rotation angles, also called projection angles, is to divide the full rotation in reg-
ular angular intervals. For example by scanning each degree (360 projection images) or each 1

3 -th degree (1080
projection images). Especially, in the case that the number of possible projections is limited, taking equidistant
projection angles can be sub-optimal. This is mainly the case, when the object has ‘main orientations’. A
simple example are the two main orientations of a rectangle, one along each side. For a quadrangle the angles
of which are not necessarily 90 degrees, a diamond, choosing the projection angles along the sides will yield a
reconstruction with clearer edges than equidistant projection angles.
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In this thesis we will explore the possibilities to choose the projection directions in such a way, that the infor-
mation gain is maximised. We will discuss a measure for the quality of the image and discuss several methods
to determine the choice of projection angles, so that the quality improves maximally with each extra projection.

The structure of the thesis is as follows. In the next section, a short history of CT is given and then the principles
behind X-rays will be explained, first the underlying physics and then the mathematics. A mathematical
description and the motivation for investigating this particular problem are given in Section 3, followed by the
underlying optimisation theory, that is used as an approach to the problem. Afterwards, we will address the
difficulties that arise with real data and how we propose to overcome these. In Section 4 the algorithms, used
to tackle the problem, will be explained. Then the simulation methods used to test the proposed algorithms,
are explained in Section 5. The results of our proposed methods on simulated data are presented in Section
6. Finally we present our conclusions, discussion and suggestions for further research in Section 7. Additional
research on noise simulation is discussed in Appendix A. All algorithms designed for this study can be found in
Appendices B-E.

7



2 Background

2.1 History

Wilhelm Conrad Röntgen was awarded the Nobel Prize for Physics for discovering X-rays in 1901. He first
discovered X-rays in 1895 (he called them X because the rays that produced the image were unknown). One of
the first X-ray images he took was one of his wife’s hand (see Figure 1(b)). In this picture her wedding ring is
clearly visible as the darkest object, as X-rays are blocked by metal [3] [12].

In 1917 the mathematical theory for reconstructing an object from multiple projections was derived by Johann
Radon. The Radon transform defines the projection of a 2D object by a series of line integrals (see Section
2.3). If for an infinite number of projection directions the transform is known, it is possible to reconstruct the
2D image using the Inverse Radon transform. Thus a solution to the inverse problem can be found. Due to the
computational complexity, however, the application of this solution to X-ray images was not implemented until
the 1950’s [3] [12].

The foundations of CT were further developed by Allen Cormack. He developed a mathematical theory around
image reconstruction in 1956 and experimentally derived the attenuation coefficients of aluminium and wood
using his technique. He provided the basis for the implementation of image reconstruction. Godfrey Hounsfield
started the development of the first medical CT scanner, as he observed that different attenuation coefficients
in the body could be used to reconstruct the internal structure. One of the first medical scanners was installed
in 1971 (see Figure 1(c)). In 1979 both Cormack and Hounsfield received the Nobel Prize for their work on
Computed Tomography [3] [12].

(a) (b) (c)

Figure 1: (a) Wilhelm Conrad Röntgen (1845-1923)1, (b) X-ray image of the hand of Röntgens wife2, (c) Early
X-ray headscanner 3

1By Nobel Foundation. [Public domain], Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
2By Wilhelm Röntgen. [Public domain], via Wikimedia Commons
3By Philip Cosson. [Public domain], via Wikimedia Commons
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2.2 X-ray physics

X-rays are electromagnetic waves with a wavelength between 10−8m and 10−13m. X-ray radiation is typically
generated, when electrons are accelerated by applying a high voltage between a cathode and a metal anode.
They hit the anode at high speed and are decelerated. During the deceleration process X-ray photons are
produced [6].
X-ray photons can interact with the material they traverse. Among other interactions, these are the most
important in CT.

� Photoelectric effect
When the energy of the X-ray photon γ is sufficiently high (higher than the binding energy of an electron),
the photon can free an electron from an inner shell of the atom (called the photo-electron). The photon
is absorbed in this process. An electron from an outer shell then fills the place of the inner electron, while
emitting a photon γ′ of characteristic radiation. This process happens because the electrons of the outer
shells have higher energy than the electrons in inner shells. When an electron moves to a lower shell, it
loses energy [6] [12]. See Figure 2.

Figure 2: Schematic representation of the photoelectric effect.

� Compton effect
For the Compton effect, the incoming photon also has a higher energy than the binding energy of an
outer shell electron. The photon energy is however so much higher, that the photon is not absorbed, but
scatters. It continues in a different direction with lower energy, as it loses energy in the collision with the
electron (the recoil electron) and part of its energy is transferred to the freed electron [6] [12]. See Figure
3.

Figure 3: Schematic representation of the Compton effect.
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2.3 Data model

When an X-ray beam traverses an object along a line with length ∆x, the original intensity I0 of the X-ray
decreases following Lambert-Beer Law:

I = I0e
−µ∆x,

with µ the linear attenuation coefficient of the material the X-ray travels through, which depends on the
scattering interactions of the X-ray with the material. If we view an object as consisting of N slices of thickness
∆x each with their own attenuation coefficient µi, i = 1, 2 . . . , N , the intensity of the X-ray after travelling
through the material becomes

I = I0e
−

∑N
i=1 µi∆x.

Rearranging and taking the negative logarithm gives:

N∑
i=1

µi∆x = − ln(
I

I0
).

Under certain assumptions, e.g. continuity of µ(x), the sum becomes an integral when taking the limit ∆x→ 0.
This gives the measurement d over an object of length L for a single ray in CT [6], [12]:

d = − ln(
I

I0
) =

∫
L

µ(x)dx. (1)

If the image is 2D, and the source and detector move around the object, the object function containing the
values of the attenuation coefficient at each location in the object, extends to µ(x, y). The projections are
characterised by the angle θ by which the setup is rotated, see Figure 4. Each projection angle gives projection
data dθ(s) for each detector offset s ∈ R. This gives the following formula for the projection data:

dθ(s) =

∫
L(θ,s)

µ(x, y)dl, (2)

with L(θ, s) the line from the source through the object that hits detector offset s, defined by L(θ, s) = {(x, y) ∈
R× R : x cos θ + y sin θ = s}. Equation 2 is often referred to as the Radon transform.

Figure 4: Visualisation of the parameters in Equa-
tion 2. Dark grey is the object, light grey the cor-
responding measurement data.

Figure 5: Visualisation of the stripkernel model.
Grey area corresponds to the contibution of pixel
fj .
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As in real applications it is not possible to take an infinite number of projection angles or an infinite number
of infinitely small detector pixels, this equation is used in discretized form. To this end, the image of size n× n
to be reconstructed, is represented as a grid, with pixels fj and total number of pixels m = n2. The value for
detector pixel i can then be represented as the sum of the contributions of each image pixel fj to the path of
the ray from the source to detector pixel i:

di =

n∑
j=1

Aijfj . (3)

In this equation, the coefficient Aij is the weight of pixel fj . This can vary for example as the ray may have to
travel different distances through different pixels. We regard all rays that hit detector pixel i as one strip. If
the strip covers a large area of pixel fj , this pixel will contribute more than if the covered area is small. The
strip-kernel model defines the contribution of each pixel fj by the area of the intersection of that pixel with the
projection strip. This is shown in Figure 5.
The data d can, following Equation 3 and using vector representations for the images and a matrix representation
for the contributions of each pixel, be modelled as follows:

d = Af , (4)

which is called a forward projection of the true image f by the projection matrix A [3].

The data d is often represented as a sinogram, a matrix of size Nθ×Ndetector, with Nθ the number of angles and
Ndetector the number of detector pixels. Each measurement is represented by a horizontal line in the sinogram,
with the measurements for detector pixel i in column i. When rotating around an object, this means for example
that a dot in the object is represented by a sine-shaped line from the top to the bottom of the sinogram. This
can be seen in Figure 6.

(a) True image (size 256x256) with dot (b) Sinogram of 360 degrees

Figure 6: (a) A square image with a dot and (b) the sinogram of 360 equally spaced projections circling fully
around the object once.
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2.4 Projection model

The exact form of the data in CT depends on the scanner and detector properties. There are different possible
setups of source and detector, depending on beam shape and trajectory of source and detector with respect to
the object.

Figure 7: Parallel beam scanner setup.

There are two beam types:

� Parallel beam
All rays are parallel. This is the easiest case to reconstruct and will therefore be mostly used in this thesis,
see Figure 7.

� Cone/Fan beam
The source is a point source from which the rays exit in a cone shape. In 2D this becomes a fan shape.

The projection geometry also depends on the trajectory of source and detector. There are two main geometries
possible:

� Circular
The source and detector move around the object, in the same plane. This is equivalent to a fixed source
and detector with the object rotating around its own axis between them.

� Helical
The source and detector do not only move around the object, but also up and down. Here also different
configurations can constitute the same geometry, for example if the object rotates, while the source and
detector move in the vertical direction.

12



3 Theory

Reconstructing images with limited data is one of the problems within Computational Tomography. The avail-
able scanning data can be limited due to several reasons. It might, for example, not be possible to fully rotate
around an object. It can also happen, that the object is too large to fit its full projection on the detector. A
reason for obtaining limited data on purpose is the wish to expose the scanned object to a low radiation dose
or limit the scanning time by reducing the number of projections. This is especially important in medical ap-
plications as the radiation of X-ray scans increases the risk of the patient developing cancer. This risk depends
on the duration and the intensity of the scans [19]. Radiation doses and associated lifetime risks of developing
cancer as a result can vary significantly in different CT studies. Age, sex and scan type are factors that influence
the risk [23]. The radiation can harm the (biological) sample, so that its properties change and this reduces the
quality of the data [11]. This process is called beam damage. It also occurs in electron tomography and limits
the number of projections that can be taken [17].

Several methods have been proposed to deal with limited data. For reconstructing a sparse image with under
sampled data, methods using compressed sensing were successfully developed [8]. Some algorithms aim to adapt
state of the art algebraic, iterative reconstruction algorithms to cope with limited data [24]. Other methods
focus on trying to make the data more complete, by adding the missing rows to the sinogram. A method that
does this so-called inpainting using a total variation minimalisation gives promising results in improving the
reconstruction [7].

In many CT applications, the standard way to select angles is to distribute the projection angles equally
over the full rotation circle. This means that the angles are chosen equidistantly and often a high number
of projections is taken so that these angular intervals are small. An interesting question is whether the same
quality of reconstruction can be obtained, using less projections. As for a limited number of projections this
is not necessarily the approach that yields the best possible reconstruction, we will in this thesis explore other
methods of choosing projection angles.
For selecting the projection angles that give the highest quality reconstruction, one possible research direction
is a dynamical approach. The next angle to be scanned is then based on the knowledge gained from the data
obtained by previous scans [4]. For this dynamic approach, the new angle has to be calculated quickly in between
two projections and is therefore limited by computational power. In this thesis, we will explore static ways to
choose a limited number of projection angles, i.e. fixing the projection angles before the scan.

3.1 Problem description

In this thesis, we will discuss the following question: if a maximum number of projection angles is given, can
we choose these angles in a such a way, that the quality of the resulting reconstruction is maximised?
To illustrate the importance of choosing the ‘right’ angles, when facing a limited angle reconstruction problem,
we show two reconstructions of a rectangle in Figure 8. On the left is the true image. The reconstructions
are made with 100 evaluations of the SIRT algorithm (see Section 5.2). In Figure 8(b) the rectangle is not
recognisable in the reconstruction with the two chosen angles. As can be seen in Figure 8(c), it is possible to
reconstruct the rectangle from just two projections, if the angles along the sides are chosen. This illustrates the
importance of the alignment of the angles with the shape of the object, as both angle sets are equidistant.

One motivating application that we will keep in mind during the process of finding optimal projection angles,
is the scanning of wooden shipmodels from the Rijkmuseum in Amsterdam. The art historians specialised in
these models are interested in bringing the wood veins and growth rings into view. CT offers a non-destructive
method for dating wood, whereas in more conventional dendrochronology a piece of the object has to be cut
out to be able to see the rings. Thus, the application of CT to dendrochronology will allow more objects to be
dated. To see the year rings, the image resolution and intensity of the X-ray beam are important factors [5].
As the shipmodels of the Rijksmuseum often have the same alignment of wood, we expect the relevant features
to be approximately in the same direction for a collection of similar models. Therefore this seems to be an
application for which the angle selection methods may be very useful.
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(a) (b) (c)

Figure 8: (a) True image: rectangle tilted 30 degrees, (b) Reconstruction using projection angles {0, 90} and
100 iterations of SIRT, (c) Reconstruction using projection angles {30, 120} and 100 iterations of SIRT.

3.2 Optimal experimental design

Finding the ‘best’ projection angles is an optimisation problem, as we want to minimise the distance between the
reconstruction from a limited number of projection angles and the true image f . First we discuss the approach
if this true image would be known. Define the set of projection angles θ = {θ1, θ2, . . . , θNθ}.
The problem of finding the best projection angles is the following optimisation problem:

min
θ

1

2
||̂f(θ)− f ||22. (5)

For convenience we will use the notation

L(θ) =
1

2
||̂f(θ)− f ||22. (6)

We call L(θ) the cost function. This function of the L2-norm ||x||2 is often used in tomography as a measure
for the quality of the reconstruction, as it has useful properties for differentiation.
The reconstruction f̂(θ) that is based on data gained by projections along the angles in the set θ, might not
be available explicitly. It is an optimisation problem in itself, as for the reconstruction the goal is to minimise
the data misfit. Moreover the data often does not yield a unique reconstruction. The goal in CT is to find
the reconstruction, the forward projection of which matches the data best. Another option is to use a function
G(θ), which we call the reconstruction function, to give an approximation of the reconstruction f̂(θ) using the
data corresponding to the angles in θ. This can be any reconstruction method. In Section 5 we explain how we
use the SIRT method for our reconstruction.
During the process, we want to minimise the error of the reconstructed image with respect to the true image.
In simulations with self created images, the true image is available and thus we can compare it to the recon-
struction. In real life applications the true image is not available and therefore we will need some other way to
assess the quality of our reconstruction.

We will introduce theory from a Bayesian framework, which provides a method to approximate the cost function
L if the true image f is not available.

Denote p(f) the probability distribution over images that are likely to be similar to the true image. Assume that
the true image f comes from the same distribution. The cost function L in Equation 6 can then be replaced by
the expected Bayes risk, Ep(f)( 1

2 ||̂f(θ)− f ||22). This leads to the following minimization problem:

min
θ

Ep(f)(
1

2
||̂f(θ)− f ||22) = min

θ

∫
1

2
||̂f(θ)− f ||22p(f)df . (7)

We assume that we have training samples ti ∼ p(f) for i = 1, 2, . . . , Ntrain, of which the true image ti is known.
Then the cost function L (Equation 6) can be approximated by the empirical Bayes risk:

Lbayes =
1

Ntrain

Ntrain∑
i=1

1

2
||̂ti(θ)− ti||22. (8)
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The set of training samples is called the a-priori choice and Lbayes the surrogate cost function. This approach
incorporates prior knowledge that we might have of our object, in the form of its probability distribution.
Therefore we expect that choosing the projection angles based on this will be closer to the ‘best’ angles than
equidistantly chosen projections.
We would like to take one step further towards dynamical angle selection, in which the choice of the next
projection angle is based on the data from previous projections. In our simulations, we investigate the cost
function and the minimum that defines which angles should be chosen. This is done for a cost function without
prior knowledge and for a cost function in which the information from the vertical angle, i.e. the angle along
the y-axis, is taken into account as if the data from that projection were already known.
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4 Methods: Angle selection

In this section we describe algorithms designed to find an optimal set of projection angles. All algorithms have
been programmed and tested using Python and can be found in the Appendix. In this thesis, three algorithms
will be discussed: a greedy algorithm, a coordinate descent algorithm and an ensemble Kalman Filter algorithm.
Each of these are first described mathematically and subsequently we briefly discuss the implementation. In
the last part of this chapter we discuss how to adjust the algorithms, so that they can be used with either the
true image or a training set of true images.

4.1 The greedy algorithm

As a first approach to the angle selection problem, we have developed a greedy algorithm. This algorithm
iteratively adds the angle that gives lowest evaluation of the cost function L to the set of chosen angles. See
Algorithm 1.
To find the angle set, a first angle is pre-specified. If possible based on the prior knowledge of the true im-
age. This is because we have seen that choosing the first angle manually, improves the algorithm a lot, as
reconstructions from just one projection do not give enough information to let the algorithm choose the right
starting angle. It is possible to specify the first angle, as we assume that in real life the alignment of the object
in the scanner is known. Thus for a rectangular object for example, it is possible to make sure that the first
angle is along the long side. As we can choose the position of the object in the scanner, this is a simple way to
incorporate prior knowledge of the shape of the object to improve angle selection. The number of angles desired
needs to be specified as input of the algorithm.

Algorithm 1: Greedy

Input:

� θ0, the first angle, based on the alignment of the object in the scanner. If none is given, a
random first angle will be chosen;

� Nθ, the desired total number of angles in the set θ;

� L(θ), the cost function.

Result: A set θ of Nθ projection angles

Initialization; θ = {θ0}
for j ∈ 1, 2, . . . , Nθ do

θj = argminθ∗∈[0,π)L(θ ∪ θ∗)
θ = θ ∪ θj

end

4.1.1 Implementation

To find the angle θ∗ that should be added to the current angle set, we use a function that minimises L(θ ∪ θ∗)
for θ∗ (see Appendix C). The cost function L is first evaluated on a grid with step size one degree within a given
range. For cost functions with many local minima, a finer grid may be needed for the algorithm to find the
global minimum. The grid ensures that we find the global minimum at least to the precision of the grid. The
function then performs a local search near this minimum using the minimiser fmin of the Python scipy package
to improve the minimum found on the grid.
The range for the greedy algorithm is chosen to be [0, π), because in a parallel beam setup with noiseless mea-
surements the projection θ and θ+π yield the same data [3]. This is because the density of an object is the same
along a line, regardless of the direction along which the X-ray beam travels through the material. Therefore the
same fraction of the intensity of the beam is blocked.
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4.2 The coordinate descent algorithm

To improve on any chosen set of projection angles, for example the output of the greedy algorithm, we use a
coordinate descent method. The algorithm takes a set of input angles and changes one angle at a time, keeping
the others fixed. It changes the current angle to a better position between the angles to the left and right of
it. Thus it is shifted, but not further than its neighbours, see Algorithm 2. Note that with each update the
angle can only move to a position with lower cost function value, as the current angle is always in the set of
possibilities and can therefore be chosen, if it takes the minimum value on the interval. The initial set of possible
angles can for example be a set of angles that is acquired using the greedy algorithm. If no initial set of angles
is given, the function will take equidistant angles between 0 and π.

Algorithm 2: Coordinate Descent

Input:

� θ0, the initial guess for the set of angles, if none is given, the initial guess will be

equidistant angles;

� n iter, the number of iterations;

� L(θ), the cost function;

� (optional, if no initial set is given) Nθ, the desired total number of angles in the set θ,

input required to make an initial set of Nθ equidistant angles.

Result: A set θ of Nθ projection angles

Initialization; θ = θ0

for k ∈ 1, 2, . . . , n iter do
for i ∈ 1, 2, ...Nθ do

θ = θ \ θi
θi = minθ∗∈[θi−1,θi+1) L(θ ∪ θ∗)
θ = θ ∪ θi

end

end

4.2.1 Implementation

Like the greedy algorithm, the coordinate descent algorithm uses the function, described in Section 4.1.1, to
find a minimum of the cost function on an interval. The interval is between the angles left and right of the
current angle to be updated. An angle giving a lower or equal cost function value with respect to the current
angle is found and the current angle is updated to that position. This is repeated for all the angles in an initial
angle set in turn for a chosen number of iterations. The total number of angles does not change during the
coordinate descent algorithm.

4.3 The ensemble Kalman algorithm

The algorithms described above look for a local minimum of the cost function. In this section we will introduce
an algorithm that searches for the global minimum and will thus be better equipped to handle cost functions
with multiple local minima.
The ensemble Kalman method for finding a minimum updates an initial ensemble (or set) of particles [15]. This
update is based on the evaluations of the cost function that are already known. In our case the particles each
are a set of a fixed number of projection angles. For example in the case of two angles a particle could be
{30, 120}. The set of particles is called the ensemble, denoted by E = {p1,p2, . . . ,pnE}, containing a total of
nE particles. Each particle contains Nθ angles, i.e. pl = {θl1, θl2} in the case of two angles.
In each iteration of the algorithm, one or more of these particles are updated, by adding a linear combination
of the other particles. This update step is based on a Gaussian approximation. As the number of particles
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grows larger, the estimate from the ensemble Kalman filter corresponds to the best linear estimator of the mean
conditioned on the known data [22]. In practice this means, that the particles are updated in the direction of
the particles that have a lower cost function evaluation.
The updated particles stay in the span of the original particles [15]. The size of each particle stays the same
during the iterations of the algorithm. This means, that the number of projection angles to be chosen must be
specified beforehand. Like our previous methods, no derivative of the cost function is needed.
An initial ensemble of particles is given to the algorithm. In most cases this ensemble will be randomly generated.
The ensemble is stored as a matrix, the particles are columns containing the projection angles. The total number
of particles is the number of columns in the initial ensemble. After the update iterations have finished, the
algorithm evaluates the cost function for all final particles and outputs the particle (angle set) with lowest cost
function evaluation.
In each iteration the algorithm computes for the ensemble E, consisting of nE particles pl and reconstruction
function G:

� The ensemble mean (a vector with the means of all first, second, ... angles)

Ē =
1

nE − 1

nE∑
l=1

pl. (9)

� The mean of the evaluation of the cost function G

ḠE =
1

nE − 1

nE∑
l=1

G(pl). (10)

� The covariance matrix associated with ensemble mean

Cuw =
1

nE − 1
(G(E)− ḠE)× (E− Ē). (11)

� The covariance matrix associated with the evaluation mean

Cww =
1

nE − 1
(G(E)− ḠE)× (G(E)− ḠE). (12)

These formulae are used for updates of the ensemble, following [15] (see Algorithm 3).
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Algorithm 3: Ensemble Kalman

Input:

� E0, the initial ensemble, with particles size Nθ;

and total number of particles nE ;

� niter, the number of iterations of the ensemble Kalman algorithm;

� nupdate, the number of particles to be updated per iteration;

� s, an array of the stepsize in each iteration, of length niter ;

� G(θ), a function which outputs a reconstruction;

Result: A set θ of Nθ projection angles

Initialization; E = E0

for j ∈ 1, 2, . . . , niter do
Calculate:

� Ē (Equation 9)

� Cuw (Equation 11)

� ḠE (Equation 10), while storing the value G(pl) of each particle)

� Cww (Equation 12)

Sort the particles from highest to lowest cost function evaluation G(pl)
for i ∈ 1, 2 . . . , nupdate do

Update pi by
pji = pj−1

i + Cuw(Cww + Γ)−1(f −G(pj−1
i )) (13)

with Γ a diagonal matrix with the stepsize s[j] on the diagonal.
For the other particles: pji = pj−1

i

Ej =
⋃nE
i=1 pi

end

end
θ = argminpiG(pi)

4.3.1 Implementation

The first adaptation of the original filter is that the number of particles to be updated in each iteration of
the algorithm can be chosen. To choose which two particles should be updated, the particles are sorted from
high to low cost value and only the two particles with the highest cost function are updated. A difference for
implementation with respect to the greedy method and the coordinate descent method, is that the ensemble
Kalman method needs the explicit reconstruction f̂ given by G(θ), not just the cost function L. This is because
the update step assumes that the cost function is the cost function as described in Equation 6. Therefore, it
is not easy to use other cost functions within the algorithm, although the reconstruction method can still be
chosen freely.
A second adaptation is that in the update step, a step size can be incorporated. The step size determines
the difference between the original position of the particle and its next position. If this step size is large, the
particle may be updated too far and not get closer to the minimum, if it is too small, the algorithm takes long
to converge. This varies for different objects. The step size can be given as input as a vector of the length of
the number of iterations, containing the step size for each iteration. For our simulations we choose step size 1
for each iteration, which is the same as the original ensemble Kalman method.
After each iteration the angles are taken modulo π to make sure they lie in [0, π), and subsequently they are
sorted. This is necessary, as the update step may cause one of the angles of a particle to be outside the triangle

19



defined by {(θ1, θ2) : θ1, θ2 ∈ [0, π), θ1 ≤ θ2} in the case of two angles. If the algorithm has enough iterations,
all particles end up in the same (local) minimum. Whether this is also the global minimum, depends on the
initial set of particles.
In the update step (the second for-loop) of the algorithm, we need to invert Cww+Γ. As these are large matrices
which is computationally inefficient, we use the Woodbury matrix identity. [21]
The Woodbury matrix identity is given by:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (14)

We introduce the following two matrices:

Juw =
1√

nE − 1
(E − Ē)

Jww =
1√

nE − 1
(G(E)− ḠE)

It follows that:
Cuw = JuwJ

T
ww

and
Cww = JwwJ

T
ww.

We then use Equation 14, with A = Γ, C = Id, U = Jww and V = Jww
T to get

Cww + Γ = Γ−1 − Γ−1Jww(Id+ Jww
TΓ−1Jww)−1Jww

TΓ−1.

The matrix to be inverted (Id+ JTwwΓ−1Jww) now has size nE × nE and Γ is the identity times a step size, so
its inverse is the identity matrix times one over the step size. This inversion is computationally easier than the
original inversion.
For illustration purposes, the the propagation of the algorithm for a rectangle tilted 30 degrees is shown in
Figure 9. The cost function for two angles is shown in the background. The starting ensemble consists of 10
randomly drawn particles that each contain 2 angles. These are represented by a dot, for which the first angle
corresponds to the x-axis and the second to the y-axis. Per iteration a fixed number of particles is updated, in
this case 2. It can be seen that the particles that are furthest away from the minimum are updated first and
that for this simple phantom all the particles end up in the global minimum in (less than) 10 iterations. There
is no guarantee that the algorithm converges to the global minimum.

4.4 Training data

When we are using likely training images to approximate the cost function of the true image, the algorithms
will have to be slightly modified. Instead of having the true image of our object to compare the reconstruction
with, there will be several true images from the training set and corresponding reconstructions.
We define the set of true images T and the set of reconstructions T̂(θ):

T =


t1

t2

...
tNtrain

 ; T̂(θ) =


t̂1(θ)
t̂2(θ)

...
t̂Ntrain(θ)


We use these as input for our cost- and reconstruction functions. Note that using T and T̂, it is also possible
to use the same algorithms for the case where the true image is available, by defining T = f . The true image
set then consists of just one image. We have therefore implemented this in such a way, that the algorithms can
be used for both situations that the true image is available and in which we use training samples.
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(a) Starting ensemble (b) The particle updates in the first iteration

(c) The particle updates in the second iteration (d) The ensemble after 10 iterations

Figure 9: The cost function L for a rectangle tilted 30 degrees and the ensemble Kalman algorithm with 10
particles, two particles updated in each iteration with stepsize 1.
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5 Methods: Simulation

For testing the algorithms described in the previous section, simulations have been designed. These are all
programmed in Python and can be found in the Appendix. Furthermore, to compute forward projections and
reconstructions the Astra Toolbox for Python was used [1] [2].

5.1 Phantoms

A test image whose properties are known, is called a ‘phantom’. A phantom is created by defining the values of
a matrix. We have created a few simple functions that generate phantoms on which we can test our optimisation
programs. To begin with, we use 2D phantoms. A generalisation to 3D can be made in further investigations.
As the object in the scanner rotates only around its own axis and does not move in the vertical direction, the
set of possible projection angles is the same as for 2D objects. It is possible to extend the simulations to 3D
objects, using the Astra Toolbox.

The phantoms, used in this thesis, consist of a rectangle, a circle and a simple image that has a shape similar to
a horizontal slice through a ship (Figure 10). With some imagination, the boat shape and the rowing benches
can be seen. All phantoms can be resized to any square size and tilted to make sure they are not aligned with
the rows and columns of the matrix describing the phantom. See Appendix B for the exact definition of each of
these functions. In Section 6.3, we moreover explain the use of a golden standard reconstruction, gained from
data from the FleX-ray scanner at CWI, can be used as a phantom.

(a) (b) (c)

Figure 10: The three phantoms: (a) rectangle, (b) circle and (c) boat.

5.2 Reconstruction function G and cost function L

As mentioned before in Section 1, the data can be modelled as follows:

d = Af . (15)

The forward operator A depends on the configuration of the X-ray scanner (i.e. beam type and projection
geometry) and the projection angles. The forward operator is applied to the phantom image to create data.
The projection geometry used in the simulations is parallel beam. In our simulations we use noiseless data.
How to simulate noise is discussed in the section with additional material, Section A.
For our purpose, we will use the function L (see Algorithm 6) as the cost function for the optimisation problem
described in Equation 5. This uses an approximation of the reconstruction, given by G (Algorithm 5). For

G, we chose to use the SIRT algorithm (algorithm 4) to create a reconstruction f̂ . We can use a low number
of iterations, as we do not need to have a good reconstruction within the optimisation algorithm, merely a
reconstruction that is good enough to distinguish which angles are better than others. For our phantoms, we
have experimentally seen that performing 5 iterations already yields a good reconstruction. For example for the
rectangle the angles along the sides are found. For computational reasons we therefore use 5 iterations for the
SIRT algorithm, unless otherwise mentioned. More iterations would improve the methods and may be necessary
when the phantoms are more complicated. This can be changed, as the number of internal SIRT iterations is
an input parameter of the algorithms.
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The SIRT algorithm that is used within G, is an iterative algorithm that updates the reconstruction in each step
by adding a weighted back projection of the difference between the data and the forward projection of the current
reconstruction. One iteration of the SIRT algorithm is described in Algorithm 4 [3]. For the unconstrained case,
the SIRT algorithm converges to the weighted least squares solution f̂ = argminf∗∈Rn ||Af∗ − d||2R [14]. During
the algorithm, non-negativity of the reconstruction is enforced, as the density of objects is always non-negative.

Algorithm 4: SIRT iteration

1. Compute the forward projection of the current reconstruction: di = A ∗ f̂ i.

2. Compute the projection difference of this reconstruction: ri = d− di.

3. Compute R and C. The diagonal matrix R consists of the inverse row sums of A:
Rii = 1∑

j Aij
, Rij = 0 if i 6= j. C is a diagonal matrix of the inverse column sums of A:

Cii = 1∑
i Aij

, Cij = 0 if i 6= j.

4. Update the data:
di+1 = di + CATRri.

In this update step, a weighted version of the backprojection of the projection
difference is added to the current data.

5. Set all negative values of di+1 to 0 (non-negativity constraint).

Algorithm 5: The reconstruction function G

Input: Projection angles θ, n iter sirt
Result: A reconstruction based on projection angles θ

1. Do a forward projection of f using the projections corresponding to θ, to create d

2. Make a reconstruction, f̂ , of d with n iter sirt iterations of the SIRT algorithm
(Algorithm 4), imposing non-negativity.

Algorithm 6: The cost function L

Input: Projection angles θ
Result: The cost function value of a reconstruction based on projection angles θ

1. Calculate f̂ = G(θ)

2. Calculate L = 1
2 ||̂f(θ)− f ||22

In Figure 11 the cost function L for a reconstruction using SIRT for a rectangle tilted 30 degrees is shown for
adding one angle to the pre-specified first angle (in this case 30 degrees). It can be seen that there is a local
minimum around 120 degrees.
The cost function for the same tilted rectangle for two angles with the first and second angle on the x and
y axis, is shown in Figure 12. We would expect the cost function to be mirrored in the diagonal, as for the
reconstruction the order of the angles does not matter. Because of this mirror effect, the angles have to be
ordered to be able to optimise over several angles simultaneously. If both configurations are taken into account
there are two global minima, which makes finding the minimum more difficult. The values are lowest on the
diagonal, as scanning the same angle twice does not improve the reconstruction. In Figure 12 indeed a minimum
exists at (30,120) and (120,30) and the cost function is mirrored in the diagonal. As the rectangle is tilted to
the left by 30 degrees, these angles correspond to the scanning directions along the sides of the rectangle.
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(a) True image (b) Cost function L, for a reconstruction with 2 angles

Figure 11: L cost function evaluation of an image of a rectangle (image size 256) tilted 30 degrees. The picture
shows the cost function value of a reconstruction using SIRT of two angles: first (fixed) angle (30 degrees) and
the angle on the x-axis.

(a) True image (128x128 pixels) (b) Cost function for a reconstruction with 2 angles

Figure 12: A 30 degree tilted rectangle and the corresponding cost function for two angles, scaled.
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Figure 13: The axes x and y of the diamond.

5.2.1 Training samples

To test the theory on using training samples if the true image is not available, outlined in Section 3.2, a
training set and true image from the same probability distribution are needed. To simulate this, a generator of
training samples was designed. The generator produces a number of images that consist of diamond shapes (see
Appendix B.2). The center of these diamonds is always the center of the image, but the length of the horizontal
and vertical axis is variable. A variation of 10% in the vertical direction means, that vertical axis y (see Figure
13) is calculated as y = ȳ + αȳ, with ȳ the mean length of the vertical axis and α a randomly drawn number
between −0.1 and 0.1. In the same way the x-axis is modified with a randomly drawn number β: x = x̄+ βx̄.
The total density of the diamonds from one call of the generator function is the same. When the vertical
projection is taken, it is clear what the width of the diamond is. Two diamonds with variation in both directions
and two with no variation in the horizontal direction are shown in Figure 14, together with their data when
only scanning the zero angle. Because the density is the same for each diamond, the height of the diamond is
still uncertain. In this way, we can test whether the prediction of the cost function based on training samples,
is better when the additional information from the first scan is added to the prior knowledge. To test this, we
can easily create diamonds that have the same width as is measured from the first scan.
From these training samples we draw one ‘true’ image, that has the mean width and height that is used as
input of the generator. To test whether the average cost function of the samples resembles the cost function
of this image, we will compute the cost function of different sets of training samples: a set with only the prior
knowledge that the true image comes from the same distribution as the training samples, and a set where the
vertical angle has been scanned as thus the width of the true image is known.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: Two diamonds from the generator and the data the projection of the vertical angle (y-direction
produces. (a)-(d) 10% variation in vertical direction, 30% in horizontal direction. (e)-(f) 10% variation in
vertical direction, no variation in horizontal direction.
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6 Results

6.1 Angle selection algorithms

For testing the algorithms described in Section 4, three phantoms were designed. In this section we will discuss
the results of our algorithms selecting two and ten angles respectively and compare the performance to equidis-
tant angle selection. After that we will show an example using a golden standard reconstruction made from real
data, as phantom. We will again discuss the performance of the algorithms on this phantom and compare with
equidistant angle selection.

6.1.1 Reconstruction with 2 projection angles

In Figure 15 the phantoms are shown, together with the results for reconstructions with angles chosen by the
three algorithms. The results for choosing two angles with the greedy algorithm, are shown in Figures 15 (d)-(f).
The angles chosen by the algorithm are shown to the right of the reconstruction. For the greedy algorithm,
the first angle, θ0, is chosen to be aligned with the tilt of the shapes (30 degrees). Therefore, the algorithm
only chooses the second angle. The rectangular shape is reconstructed almost perfectly. The circle and the
boat cannot be reconstructed as well as the rectangle from only two angles, as more information is needed to
reconstruct a bend shape. For the boat the rectangular shapes are clearly visible in the reconstruction.
The greedy method is not an optimal way of choosing the projection angles. We will illustrate this with an
example, shown in Figure 16. Imagine scanning a uniform 2D circular object and using the greedy method to
select the three angles that give the lowest cost function (Equation 6) for a reconstruction with three projection
angles. The greedy algorithm will first select two angles perpendicular to each other and then one other angle
(Figure 16(b)). For a uniformly distributed circular 2D object, a reconstruction with a lower cost function value
can be obtained using three equidistant angles, i.e.{0, 60, 120} (Figure 16(c)). The greedy algorithm is however
easy to implement and can be useful for a quick initial guess for the angles. The performance also depends on
the choice of the first angle.

The angles found by the greedy algorithm, are used as the initial angles for the coordinate descent method. The
number of iterations of the coordinate descent algorithm to improve the angle set is 10. The results are shown
in Figure 15 (g)-(i).
As can be seen, the algorithm improves the cost function evaluation only for the circle. This can be explained by
the observation that the angles chosen by the greedy algorithm give a reconstruction that cannot be improved
unless more projections are added.

If the image is tilted by 30 degrees (the angles that give lowest cost function are then {30, 120}) and we give
the coordinate descent algorithm initial angles {0, 90}, the coordinate descent algorithm still finds the optimal
angles 30 and 120 in a few iterations. The greedy algorithm will retain the 0, because of our assumption that
the first angle is well chosen. The greedy method can thus not produce the optimal same angle set, if the first
angle is not chosen optimally. Therefore it may be useful to use the coordinate descent algorithm after the
greedy algorithm to improve on the angle set. In that way we compensate for (slight) misalignment of the first
angle of the greedy algorithm with the shape of the object.

For the results on the ensemble Kalman method, the two particles with highest L2-norm are updated in each
iteration and the number of iterations is 10. The 10 initial particles are chosen randomly, a random seed is set
to ensure the same results on repetition. The ensemble Kalman method is slightly off in finding the angles for
the rectangle, leading to a higher cost function evaluation, but this is in the same order of magnitude as the
evaluation of the reconstruction using the angles found by the other methods.
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(a) True (b) True (c) True

(d) Greedy, L(30,120) =
18.92

(e) Greedy, L(30,119) =
27.11

(f) Greedy, L(30,120) =
34.12

(g) Coordinate, L(30,120) =
18.92

(h) Coordinate, L(30,119)
=27.11

(i) Coordinate, L(30,120) =
34.12

(j) Ensemble, L(29,121) =
19.63

(k) Ensemble, L(68,156) =
27.09

(l) Ensemble, L(30,119) =
34.23

Figure 15: Results of the angle selection methods for two angles. Top: true images, below: reconstructions
using the angles found by the methods, chosen angles shown to the right of the reconstruction, corresponding
cost function value L given in the captions.
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(a) True image (b) Greedy,
L({0, 89, 160}) = 58.21

(c) Equidistant,
L({0, 60, 120}) = 52.11

Figure 16: Illustration of the sub-optimality of the greedy angle selection method. The greedy method first
chooses the 89 to add to the set of angles and afterwards 60. The set of equidistantly distributed angles reaches
lower cost function value (given in the captions).

6.1.2 Reconstruction with 10 projection angles

The results for the phantoms with 10 projection angles, are shown in Figure 17. It can be seen that the rect-
angle reconstructions improve less than the other two phantoms, due to the fact that the rectangle can be well
reconstructed from only two angles. For the other two phantoms, there is more information to be gained by
extra angles.

The coordinate descent method on the result of the greedy algorithm performs best on all phantoms with 10
projection angles. Note though that this method is slow, as in each iteration all angles are updated and many
evaluations of the cost function L are necessary.

For the ten angles, as for the two angles, the ensemble Kalman method performs the worst of our three algo-
rithms. Note that the result of the ensemble Kalman method depends on the initial random particles. Therefore
it would be good to try different random seeds, as each will give a different result. Another improvement would
be to increase the number of particles. Moreover, the ensemble Kalman method has more parameters (i.e. step
size) that may improve the angle set and should be investigated further. The ensemble Kalman method will be
useful on images that have a very irregular cost function, i.e. with multiple local minima, as it is flexible and
the iterations are fast.

6.1.3 Comparison with equidistant angle selection

To investigate whether the proposed angle selection methods indeed give lower cost function evaluation than
equidistantly distributed angles, we performed all methods on all phantoms for a range of total angle numbers.
The results are shown in Figure 18. For the calculations, again 5 iterations of SIRT have been used. For the
ensemble Kalman method the number of particles is equal to ten times the number of angles. The initial angles
for the coordinate descent method are the angles found by the greedy algorithm.

Examining Figure 18(a), it can be seen that especially the greedy and coordinate method have lower cost
function value than the equidistant method. The peak for three angles is most likely due to the fact that the
rectangle can be well reconstructed from only two angles. As the number of SIRT iterations is low, the third
angle does not improve the reconstruction.
For the circle phantom, we have previously discussed that equidistant angles give the best reconstruction. There-
fore, we did not expect the angle sets found by our algorithms to perform better than using an equidistant angle
set. From Figure 18(b), it is clear however, that the coordinate descent method performs just as well as the
equidistant angle selection. As the coordinate descent method does reach lower cost evaluation on the other
phantoms, we can conclude that it does not perform worse than the equidistant angles for our test cases. This
is a promising result. The coordinate descent method can be used on any set of initial angles, including the
equidistant set. This will never increase the cost function evaluation.
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The results for the boat phantom also show that, for this more complicated phantom, the greedy and coordinate
descent method yield a lower cost function value than the equidistant angle selection. The peak at three angles
can again be explained in the same way as for the rectangle, as the boat phantom has rectangular features that
resemble the rectangle phantom. We would expect the improvement of selecting the angles in a non-equidistant
way, to become less when the number of angles increases. For both the rectangle and boat phantom it can
be seen however, that even for 20 angles, the coordinate method reaches lower cost function evaluation than
equidistant angle selection.

(a) True (b) True (c) True

(d) Greedy, L = 17.98 (e) Greedy, L = 22.24 (f) Greedy, L = 30.05

(g) Coordinate, L = 17.66 (h) Coordinate, L = 21.95 (i) Coordinate, L = 29.83

(j) Ensemble, L = 19.46 (k) Ensemble, L = 22.48 (l) Ensemble, L = 31.18

Figure 17: Results of the angle selection methods for ten angles. Top: true images, below: reconstructions using
the angles found by the methods, chosen angles shown to the right of the reconstruction, corresponding cost
function value L given in the captions.
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(a) Rectangle

(b) Circle

(c) Boat

Figure 18: Performance of the angle selection methods and equidistant angles. On the y-axis is the resulting
cost function value for choosing the angles with either one of the three proposed methods or equidistantly. The
number of angles chosen for evaluations are shown on the x-axis. 5 iterations of SIRT within reconstruction
function G. Evaluated angles: {2,3,4,5,10,15,20}.
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6.2 Training set simulations

To test the theory in Section 3.2, a true image and training samples from the same probability distribution were
generated (see Section 5.2.1). Figure 19 shows the true image.
The training samples are randomly generated, so a random seed is set to ensure the same results for replication.
The generated diamond shapes all have the same center and differ in length, width and intensity. The total
intensity of each diamond is fixed and the same for all diamonds. In Figure 20, we show the cost functions for
the true image, an average over 10 training samples with variation in both horizontal and vertical direction and
an average with variation only in the vertical direction. Each cost function is scaled by subtracting its minimum
and by dividing by the maximum of the true cost function. Contour lines are drawn at each decimal value.
The last cost function simulates that the vertical projection is already taken into account and therefore the width
of the diamond is known. In that case the only uncertain factor is the height of the diamond. For each of the cost
functions the value is shown of collecting data with angle set θ = {0, θ1, θ2}, with θ1 on the x and θ2 on the y axis.

In Figure 20, the true cost function, the cost function for 10 training samples with variation in both directions
and the cost function with variation only in the vertical direction, are shown. The variation in the horizontal
direction is higher (30%) than the variation in vertical direction (10%). The reconstructions using the angles
corresponding to the minimum of each cost function are shown below that cost function. The results show that
using training samples the angles can be more accurately chosen than without training samples, in which case
equidistant angles would be chosen.

The angles that define the minimum in Figure 20(b) give a reconstruction (Figure 20(e)) with lower cost function
value than a reconstruction with equidistantl angles (Figure 20(g)) as the prior knowledge about the training
samples is taken into account. From Figure 20(c), we can conclude, that once one angle is scanned and this prior
knowledge can be taken into account before scanning the next angle, this gives great opportunities to improve
the surrogate cost function. The minimum of the average is closer to the real minimum. It can also be seen
that the shape of the cost function Figure 20(c) resembles that in 20(a) more closely than 20(b) and that the
cost function evaluation is lower. The cost functions illustrate the use of taking one projection to incorporate
the information of that projection into the training samples.

Figure 19: True image for training sample simulations.
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(a) True cost function. Minimum =
{72,108}

(b) Average, 30% variation in horizon-
tal direction, 10% in vertical direction.
Minimum = {75,104}

(c) Average, 30% variation in vertical
direction only. Minimum = {73,106}

(d) Reconstruction based on true cost
function minimum.
L({0, 72, 108}) = 3.76

(e) Reconstruction based of average
cost function minimum.
L({0, 75, 104}) = 7.41

(f) Reconstruction based on average
cost function minimum.
L({0, 73, 106}) = 5.11

(g) Reconstruction based on an equidis-
tant angle set.
L({0, 60, 120}) = 15.22

Figure 20: (a) Cost function for the true image. (b) Cost function average over 10 training samples from
the same distribution with 30% variation in horizontal direction, 10% in vertical direction. (c) Cost function
average over 10 training samples, variation 10% in vertical direction only. Cost function images have 10 contour
lines and use 100 iterations of SIRT within reconstruction function G. (d)-(f) Reconstructions using the angles
corresponding to the minimum of the cost functions. (g) Reconstruction using equidistant angles.
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6.3 Real data example

Ideally we would like to test the angle selection algorithms and the training sample simulations on real data. As
a first step towards this goal, we will use data from a scan using the FleX-Ray scanner at Centrum Wiskunde
& Informatica (CWI) to create a phantom that resembles a real object. The phantom is a ‘golden standard
recontruction’, created by reconstructing the high quality data from the scanner with 600 iterations of the SIRT
algorithm (Algorithm 4).
Part of this section and the corresponding programming in Python, are based on a research project for the Mas-
termath course Inverse Problems in Imaging, given between February and June 2018 by Tristan van Leeuwen
(University of Utrecht) and Christoph Brune (University of Twente). The subject of the project was the re-
construction of a tree stem in horizontal direction, i.e. such that the full year rings were visible, and exploiting
the radial symmetry of the year rings. The project was carried out in collaboration with Valesca Peereboom
and Fredrik Gustafsson. Data taken for that project also included the data presented here, of the tree stem in
vertical orientation. This data was not used for the project however.

In this section we will first discuss the background of scanning wood to see year rings, then explain our sample
and data and describe the necessary pre-processing steps of the data. Next, we discuss how the golden standard
reconstruction was made and we show the results of the angle selection methods compared to the equidistant
angle selection.

6.3.1 Background

The density of wood is an interesting characteristic, especially in industrial purposes, as it indicates the quality
of the wood. A way to obtain this knowledge of a wooden object is by a X-ray scanner. Such a scanner deter-
mines the density by the measured intensity transmitted trough the object. X-ray scanning can also be used
for internal defect detection [10]. One practical example is from modern sawmills, where logs are scanned and
reconstructed in 3D, and a high yield cut is calculated [18].

If it is possible to clearly see the year rings in a CT reconstruction, this can be be used to calculate the age of
the wood (for example of art objects). CT offers a non-destructive method for dating wood, whereas in more
conventional dendrochronology a piece of the object has to be cut out to be able to see the rings. Thus, the
application of CT to dendrochronology will allow more objects to be dated. To see the year rings, the image
resolution and intensity of the X-ray beam are important factors [5].

The year rings are also interesting to climatologists, as via these the growth of trees can be used for environ-
mental impact assessment and climate back-forecasting. Within one year, early wood is less dense than late
wood and thus the year rings are clearly visible in scans of wooden logs. Uncertainty in the slices is highest
where there are irregularities (e.g. a branch) [9].

6.3.2 Sample and data

The primal goal is to reconstruct a two dimensional internal slice of a tree stem. For that, we will use data
from the FleX-Ray scanner to reconstruct a slice of the object shown in Figure 21. The object is a 5.5x4.5x3cm
almost cylindrical wooden block.
The FleX-Ray scanner uses an X-ray source and a detector that registers the intensity transmitted through
the object. The emitted beam type is a cone beam. The object rotates on a platform between source and
detector. For our data, 1800 equally spaced projections were taken. The data consists of two dimensional
images with a high intensity at places with soft material and low intensity at places with harder material. The
three dimensional internal structure of the object can be reconstructed from these images. For our simulations
we will however use a 2D slice through the tree stem.
In the next section we will describe the data obtained by the FleX-Ray scanner and how this data should be
pre-processed before reconstruction.
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Figure 21: The scanned tree stem. Figure 22: Schematic representation of the setup.

6.3.3 Pre-processing

As previously discussed in Section 3, the intensity of the X-ray beam through an object with attenuation function
µ(x) follows the Lambert-Beer Law:

I = I0e
−

∫
L
µ(x)dx, (16)

where I is the measured intensity at the detector, I0 the intensity of the beam as it leaves the X-ray source and
L the length the ray travels through the object. The data from the FleX-Ray scanner needs to be pre-processed
to correct for the dark- and flatfield and the fact that the center of the object may not coincide exactly with the
center of rotation. Thirdly, a correction of magnification factors is needed before the data can be used within
the Astra Toolbox.

� Dark- and flatfield correction
The input of the data for reconstruction with the Astra Toolbox needs to be

∫
L
µ(x)dx, the integral over

the attenuation function. Moreover, the data needs to be corrected for the darkfield D0, the nonzero data
the detector always measures even if the source is off. This can for example be due to background radiation
or electrical current. The darkfield is measured once while the source is off. As this bias occurs on every
measurement, it needs to be subtracted from each measurement. Moreover a flatfield measurement is
taken before and after the data collection. This is the measurement of I0, in other words the intensity of
the beam without any object in its way. We correct for these fields and process the data to follow the
rewritten version of Equation 16:

d =

∫
L

µ(x)dx = log(
I0 −D0

I −D0
). (17)

� Center of rotation correction As the center of the object in the scanner will not exactly match the
center of rotation, the data needs to be realigned, so that the center of the object is in the center of
rotation. The data is represented as a sinogram, a matrix in which each horizontal line corresponds to
one measurement. We calculate the sum over each row (the sum over each detector pixel) and then find
the center of mass. This center of mass of the sinogram is then shifted using an Astra function to shift all
the measurements so that the center of mass coincides with the center of rotation.

� Magnification correction The metadata from the scanner give the Source-to-Detector-Distance (SDD),
the Source-to-Object-Distance (SOD) and the detector pixel height and width d. See Figure 22 For the
Astra input we need the Object-to-Detector-Distance (ODD), ODD = SDD− SOD. In Astra moreover,
the pixel size of the discretization of the object is automatically set to 1. Therefore, the other values have
to be scaled to match. The magnification factor is d

v = SDD
SOD . From this formula we calculate the ‘actual’

v and scale everything accordingly:

d′ =
d

v
SDD′ =

SDD

v
SOD′ =

SOD

v
ODD′ =

ODD

v
.

The rescaled values are used as input for Astra reconstruction algorithms.
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6.3.4 Golden standard reconstruction

As our algorithms have been designed for two-dimensional phantoms, we take the slice exactly in the middle
of the scan. This ensures that the beam can be treated as a fan beam in 2D. The slice then lies in the same
plane as the center of the beam, which means that the incoming rays are not tilted. The golden standard
reconstruction, that will be used as phantom, is shown in Figure 23. In order to make this reconstruction, we
used the Astra Toolbox, with fan beam projection geometry. The reconstruction is made with 600 iterations of
SIRT. This image is in the following paragraphs used to test our algorithms for lifelike wood data.

6.3.5 Angle selection

Figure 23: The golden standard reconstruc-
tion, using 600 iterations of the SIRT algo-
rithm.

The wood phantom, that was created from the real data, clearly
contains main directions because of the visible year rings. In
Figures 24 and 25, the reconstructions of the wood phantom are
shown for two and ten angles respectively. The angles are chosen
by the greedy, coordinate descent and ensemble Kalman algo-
rithms and equidistantly. Additionally, the difference |̂f − f | is
shown. For the images, the same simulation approach as for the
other phantoms has been used. This means that from the wood
phantom data was generated by using the forward projection of
the Astra Toolbox, not the real data from the scanner. The rea-
son for this, is that the algorithms have been designed to take
in a true image and simulate the data. Moreover, the algorithms
assume parallel beam geometry. The data given by the scanner
comes from a fan beam. This changes not only the geometry, but
also the range in which we search for the best angle. For parallel
beam, we have restricted the search to angles between 0 and 180
degrees. For fan beam this would not be a good strategy, all an-
gles should be taken into account. Because of time limitations,
we have chosen to investigate a true image, created from real data. We will leave the use of real data for future
research. Within the angle selection algorithms, we simulate parallel beam data from the golden standard re-
construction.

In the figures it can be seen that even for this more complicated phantom, two angles can give a reconstruction
in which the internal structure is visible. The lines corresponding to the year rings are not sufficiently clear to
count however. In Figure 25, it is interesting to see that the angles that are chosen are close and the cost function
is lower than the equidistant angle selection. As the number of angles increases and the reconstruction becomes
better, the image that shows the difference between the true image and the reconstruction, should become less
structured and eventually look like random noise. We can indeed see that for the 10 angle reconstructions the
difference contains less structure than that of the reconstructions with 2 angles.
These reconstructions show that few projection angles can suffice to be able to count the wood rings in a tree
stem. This is an interesting result for dendrochronology. Valuable and fragile objects (such as art objects) can
be subjected to less radiation, if the angles are chosen in the right way. We see that a few projections suffice
to give information on the direction of the year rings. In wood the lines are often approximately aligned, which
makes it an especially interesting material to investigate for angle selection. Different wooden logs or stems
have the same features, the year rings have the same structure. This gives opportunities to create training data
and to use prior knowledge within the selection of projection angles.
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(a) Greedy, L = 0.091 (b) Difference between reconstruction
and true image

(c) Coordinate, L = 0.074 (d) Difference between reconstruction
and true image

(e) Ensemble, L = 0.074 (f) Difference between reconstruction
and true image

(g) Equidistant, L = 0.11 (h) Difference between reconstruction
and true image

Figure 24: Reconstructions using two angles, found by the angle selection algorithms and a reconstruction
using equidistant angles. Next to that, the difference between the reconstruction and the golden standard
reconstruction is shown.
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(a) Greedy, L = 0.047 (b) Difference between reconstruction
and true image

(c) Coordinate, L = 0.047 (d) Difference between reconstruction
and true image

(e) Ensemble, L = 0.071 (f) Difference between reconstruction
and true image

(g) Equidistant, L = 0.088 (h) Difference between reconstruction
and true image

Figure 25: Reconstructions using ten angles, found by the angle selection algorithms and a reconstruction
using equidistant angles. Next to that, the difference between the reconstruction and the golden standard
reconstruction is shown.
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Figure 26: Performance of the angle selection methods
and equidistant angles. On the y-axis is the resulting
cost function value for choosing the angles with either
one of the three proposed methods or equidistantly. The
number of angles chosen for evaluations are shown on
the x-axis. 100 iterations of SIRT within reconstruction
function G. Evaluated angles: {2,3,4,5,10,15,20}.

6.3.6 Comparison with equidistant angle selection

In Figure 26 the results of the cost function evaluation for all methods and for different total number of angles,
can be seen. The methods are the same as in Section 6.1.3, with the exception that for these results 100
iterations of SIRT have been used.
These results show that, for the wood phantom, all methods perform better than the equidistant angle selection.
We expected non-equidistant projection angles to perform better than the equidistant projection angles, as the
phantom has main directions due to the year rings. The alternative angle selections give lower cost function
evaluation, also for higher total number of angles. The year rings are visible in the reconstructions with a low
number of angles. This is a promising result for dendrochronology, as we have shown that only a few projections
can suffice to be able to distinguish the year rings to determine the age of the wood.
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7 Conclusion and Discussion

In this thesis, we have discussed the optimisation of projection angle selection in Computed Tomography. Given
a maximum number of projections, the aim was to identify the projection angles that give maximal information
gain, when added to the existing set of angles. In Section 4 we have proposed three approaches: a greedy
algorithm, a coordinate descent algorithm and an adaptation of the ensemble Kalman Filter method.

The algorithms were tested on three different computer generated phantoms and one phantom generated from
data from the FleX-Ray scanner. Which algorithm is best suited to tackle the angle selection problem, may
be object dependent. The greedy method followed by the coordinate descent method gives satisfactory results,
especially on our simple phantoms. The coordinate descent method gives the lowest cost function evaluation of
the three algorithms, but is the most computationally heavy of the three as it needs many evaluations of the
cost function.
The ensemble Kalman method is a fast algorithm that may be very useful if the cost function contains several
local minima. To improve this algorithm, it is possible to also perform a coordinate descent on the resulting set
of angles. The ensemble Kalman method contains many parameters that need to be adjusted to each object.
More investigation into the choice of parameters and the connection with the object, is required to understand
how to use this algorithm most efficiently. If the settings of the parameters are better understood, the ensemble
Kalman method promises to be a useful and fast algorithm.

Next, we showed results on reconstructions of the wood phantom in Section 6.3, that was based on real data
from the FleX-Ray scanner at CWI. These results show that for data containing main features, such as year
rings in wood, the algorithms find the angles that correspond to these main directions. The reconstructions of
the data using these optimised projection angles fit the original phantom better than reconstructions using the
same number of equidistant angles.

The reconstructions based on the angle sets chosen by the algorithms, serve to show that it is possible to choose
angles in a ‘smart’ way. We have shown that for some phantoms it is possible to unravel the internal structure
of object with few angles. Moreover we have shown that the conventional way of choosing the projection angles
equally spaced, is not optimal when facing limited angle reconstructions. The greedy and coordinate descent
methods have been shown to give lower cost function evaluation than the regularly used equidistant approach.
This has been investigated for low numbers of total angles. We expect the added value of performing one of the
algorithms to choose the projection angles to become less, when the number of angles increases. Incorporating
prior knowledge on the subject, such as the alignment of the object in the scanner, can be of great use to
improve the selection.

The results on the cost function evaluation of the training data, show that if training data is available, this
can be of great help to incorporate prior knowledge of the shape of the object in the optimisation process. As
in real life applications the true image is not available, this approach gives a good starting point for further
investigation. We have shown, that the effect of taking one projection and taking the gained information into
account, can improve the training set. If this can be implemented in a fast way, it may be possible to calculate
the next angle to be chosen real-time, adjusting the cost function approximation after each projection.

The approach for projection angle selection in this thesis is relatively new, therefore there are many interesting
possibilities for continuing research on this subject. Below we list some ideas.

� Investigation into the optimal settings of the parameters of the ensemble Kalman method.

� Research into the performance of the algorithms for images with more whimsical, e.g. containing more
local minima, cost function evaluations.

� How to design or create training data. One possibility might be to take high quality scans of similar
objects and treat the reconstruction of those as true training images.

� Extension of the algorithms work on real data and 3D objects. The object rotates only around its own
axis. The relative vertical position of source, object and detector stays the same. The set of possible
projection angles does therefore not change with the extension. The optimisation problem would not
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change significantly, only the reconstructions and cost functions would become more complicated. The
Astra Toolbox supports the necessary 3D reconstructions.

� Dynamical scanning approaches: using the information of each projection to decide which projection angle
should be chosen next. Eventually the goal would be to compute the next projection angle in real time.

� Add angles iteratively untill a certain precision is reached, instead of a total number of angles fixed
beforehand.

� In Appendix A we have investigated the influence of noise in the data on the cost function. When noise
is present, the cost function becomes less smooth. This makes it more difficult to use the proposed angle
selection algorithms, as with these a local minimum instead of a global minimum may be found. The
proposed noise generation method is artificial and therefore it is necessary to investigate the influence of
noise in real data on the cost function and angle selection methods more fully.

In conclusion, the selection of projection angles in a different way than equidistant, is a promising approach to
increase the quality of reconstructions with few projection angles. There are many interesting possibilities for
further investigation of the subject.
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List of symbols and abbreviations

A Forward operator of the data model 4

d Data (see data model 4)

E The ensemble containing particles (angle sets) of the Ensemble Kalman Filter (Algorithm 3)

f True image (represented as a vector of size n2 if the visual representation is a matrix of size m = n× n)

fi One pixel from the true image

f̂ The reconstruction of data acquired using model 4, the same shape as f

f̂i One pixel from the reconstruction

G(θ) Function that gives the reconstruction f̂ based on the projections θ

I0 Intensity of the X-ray beam on leaving the source

I Intensity of the X-ray beam after passing through a material

L(θ) The cost fuction that gives the L2-norm of a reconstruction f̂ , see Equation 5

µ Attenuation coefficient of the material

θ A set of Nθ projection angles: θ = {θ1, θ2, . . . , θNθ}

Nθ The total number of projection angles, the size of set θ

Ndetector The total number of detector pixels

Ntrain The total number of training samples

nE The total number of particles (angle sets) in the Ensemble Kalman method (Algorithm 3)

pi One particle in the ensemble of the Ensemble Kalman method
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Appendices

A Additional research: Noise simulation

To be able to simulate data more realistically, it is common to add noise to the measurement data. This is done
by adding additive Gaussian (random) noise to the sinogram after applying the forward operator A. This is the
simplest way of adding independent noise. In reality the noise is not always independent, it may for example
be the case that detector pixels that are close influence each other. In this section our model for noisy data will
be described, starting with the theory behind continuous noise and showing how this noise influences the cost
function L afterwards.

A.1 Noise model

The additive noise for each pixel i is of the form

Ni(θ) =

K∑
k=1

(vik cos(
2π

180
kθ) + wik sin(

2π

180
kθ)),

where vik and wik are normally distributed random variables. This representation of the noise is chosen, because
the cosine and sine of 2π/180 ∗ n, n ∈ 1, 2, . . . form a basis for the L2[0, 180] space and thus we can extend the
evaluation of picking random noise on a grid to a continuous function by using a sum of sines and cosines. We
thus create a continuous noise function that generates noise for every possible angle θ and that is the same each
time we use the same angle. The vik and wik are normally distributed with mean 0 and standard deviation
αP√
K

, where P is the peak of the data, i.e. the highest value in the data resulting from the forward projection.

The noise for each angle is then distributed with mean 0 and standard deviation equal to a fixed percentage of
P . This can be shown by using the rules for adding normally distributed random variables and multiplying by
scalars. Firstly:

vik ∼ N (0, (
αP√
K

)2)

vik cos(
2π

180
kθ) ∼ N (0, (

αP√
K

)2 cos2(
2π

180
kθ)).

The same applies to the sine part of the sum:

wik sin(
2π

180
kθ) ∼ N (0, (

αP√
K

)2 sin2(
2π

180
kθ)).

Combining the last two distributions gives:

vik cos(
2π

180
kθ) + wik sin(

2π

180
kθ) ∼ N (0, (

αP√
K

)2(sin2(
2π

180
kθ) + cos2(

2π

180
kθ)))

∼ N (0, (
αP√
K

)2).

Furthermore:
K∑
k=1

(vik cos(
2π

180
kθ) + wik sin(

2π

180
kθ)) ∼ N (0,K(

αP√
K

)2) ∼ N (0, (αP )2).

K should be chosen > 180 to avoid a bias against integer angles, as when K = 180 the peaks of the noise are
exactly at each integer angle. We use K = 1800 as default. As the noise should be the same every time the
same angle is put into the function, the vik and wik are randomly computed once and stored in a matrix at the
start of the computations. Each time data is created, we then use the function Ni(θ) with the stored values for
vik and wik to compute the noise for those specific angles. The functions necessary for these operations can be
found in appendix C.
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(a) No noise (b) Noise 1% (c) Noise 5%

Figure 27: L2 of an image of a rectangle (image size 256) tilted 30 degrees. The picture shows the L2 of a
reconstruction of two angles: first (fixed) angle of 30 degrees and the angle on the x-axis.

A.2 The effect of noise on the cost function

In Figure 27, the effect of adding noise to the data on the cost function (See Equation 6), is shown for a tilted
rectangle. The first angle is fixed to be the tilt of 30 degrees, the picture shows the value of L for a reconstruction
with 2 angles for three different noise levels. As can be seen, adding noise makes the cost function less smooth.
There are more local minima, which makes finding the global minima more difficult.
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B Image creating functions

B.1 Phantoms

To import this Python file use import shapes.

import numpy as np

from scipy import ndimage

import pylab

import math

import printfunctions as prt

from imageio import imread

#%%

def rectangle(size, angle):

P = np.zeros([size,size])

P[round(size/5):round(4*size/5),round(size*2/5):(round(size*4/5))] = 1

Q = ndimage.interpolation.rotate(P,angle, reshape = False,order = 1)

return Q

def rectangles2(size, angle):

P = np.zeros([size,size])

P[round(size/5):round(2*size/5),round(size*2/5):(round(size*4/5))] = 1

P[round(3*size/5):round(4*size/5),round(size*2/5):(round(size*4/5))] = 1

Q = ndimage.interpolation.rotate(P,angle, reshape = False, order = 1)

return Q

def circle(size):

shape = np.array([size,size])

xx = np.arange(0, shape[0]) - shape[0] // 2

yy = np.arange(0, shape[1]) - shape[1] // 2

r0 = (size/3)**2

vol = ((xx[:, None, None])**2 + (yy[None, :, None])**2)

vol = np.array((vol < r0), dtype = 'float32')

P = np.reshape(vol,(size,size))

return P

#%%

def boat(size, angle):

"""

Creates a boat phantom

size: the size of the phantom image

angle: the tilt of the boat in the image

"""

parameters = [size/4, 0.02*size, 2]#[outer radius, wall thickness, squeeze]

shape = np.array([size,size])

xx = np.arange(0, shape[0]) - shape[0] // 2

yy = np.arange(0, shape[1]) - shape[1] // 2

r0 = (parameters[0] - parameters[1])**2

r1 = (parameters[0])**2

vol = ((xx[:, None, None]/parameters[2])**2 + (yy[None, :, None])**2)
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vol = np.array(((vol > r0) & (vol < r1)), dtype = 'float32')

P = np.reshape(vol,(size,size))

P[int(round(1/5*size)):int(round(4/5*size)),int(round(3/10*size)):

int(round(7/10*size))]= 0.6

P[int(round(3/5*size)):int(round(7/10*size)),int(round(3/10*size)):

int(round(7/10*size))]=1.5

P[int(round(3/10*size)):int(round(4/10*size)),int(round(3/10*size)):

int(round(7/10*size))]=1.5

Q = ndimage.interpolation.rotate(P,angle, reshape = False, order = 1)

return Q

def dot_256():

size = 256

P = np.zeros([size,size])

P[40:50,40:50] = 1.4

return P

def phantom2():

image_data = imread('phantom2.png')

return image_data

#%%

def bayes_true_image(size, density = 1, printyn = 0, print_angle_pic = 0):

"""

Creates the true diamond image for the bayes cost function tests.

"""

a = 0

b = 0

# mean_width = size/2

# mean_heigth = size/3

mean_width = size/1.6

mean_heigth = size/5

total_density = mean_width*mean_heigth*density/2

width = mean_width+2*a

heigth = mean_heigth+2*b

slope = heigth/width

tan = math.atan(1/slope)

right_angles = np.array([tan/np.pi*180, (np.pi-tan)/np.pi*180])

print('Theoretical right angles:', right_angles)

pix_density = total_density*2/(width*heigth)

#create a diamond

xx,yy = np.meshgrid(np.arange(-size/2, size/2), np.arange(-size/2, size/2))

F = (-yy<-slope*xx+heigth/2) & (-yy<slope*xx+heigth/2) & (-yy>-slope*xx-heigth/2) &

(-yy>slope*xx-heigth/2)↪→

F = pix_density*F

if printyn ==1:

pylab.figure()

pylab.imshow(F,vmin = 0.0, vmax = density*1.5)

pylab.colorbar()

if print_angle_pic == 1:
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prt.plot_polar_angles(right_angles, color = "r")

return F

B.2 Diamond generator

To import this Python file use import generator.

import numpy as np

import pylab

def generator(N, mean_width, mean_heigth, a_range, b_range, size = 256, density = 1, printyn

= 0):↪→

"""

Generates N dimonds from a distribution with mean width and mean_height

as specified, with the width varying between mean_width +_a_range

density is the value of the density of 1 pixel

size must be at least max(mean_width/2+a_range, mean_heigth/2+b_range)

"""

np.random.seed(10)

diamonds = []

xx,yy = np.meshgrid(np.arange(-size/2, size/2), np.arange(-size/2, size/2))

for i in range(N):

a = np.random.uniform(-a_range,a_range)

b = np.random.uniform(-b_range,b_range)

total_density = mean_width*mean_heigth*density/2

width = mean_width+2*a

heigth = mean_heigth+2*b

slope = heigth/width

pix_density = total_density*2/(width*heigth)

#create a diamond

z = (-yy<-slope*xx+heigth/2) & (-yy<slope*xx+heigth/2) & (-yy>-slope*xx-heigth/2) &

(-yy>slope*xx-heigth/2)↪→

z = pix_density*z

diamonds.append(z)

#code below is for printing the training samples

if (printyn == 1):

pylab.figure()

pylab.imshow(z,vmin = 0.0, vmax = density*1.5)

pylab.colorbar()

pylab.savefig('Images/training%i.png'%i, bbox_inches='tight')

return np.asarray(diamonds)
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B.3 Training samples

In Figures 28 and 29 the training samples generated by the generator and used in Section 6.2 are shown, both
with 30% deviation in the vertical direction and 30% and 0% respectively in the horizontal direction. For these,
random seed 10 is used.

Figure 28: Training samples with 30% variation in x
direction, 10% variation in y direction.

Figure 29: Training samples with 30% variation in the
vertical direction and no deviation in the horizontal di-
rection.
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B.4 Real data

With these functions the golden standard reconstruction is made from the data given by the FleX-Ray scanner
at CWI.

import numpy as np

import os

import glob

import skimage.io

import skimage.transform

import matplotlib.pyplot as plt

import re

import astra

from scipy.ndimage import center_of_mass

import datetime

import skimage.filters

"""

The functions below perform the preprocessing steps for real data.

They are adapted from functions by Fredrik Gustafsson, who designed them for the final

project of the Mastermath course Inverse Problems in Imaging.↪→

"""

def get_scan_image_dimension(directory):

one_scan = glob.glob(directory + '/scan*.tif')[0]

return skimage.io.imread(one_scan).shape

def load_images(directory, slice_at):

images = glob.glob(directory + '/scan*.tif')

# Make sure we process the files in the same order they where scanned.

images.sort(key=lambda f: int(re.search(r'scan_([0-9]+).tif', f).group(1)))

first_image = skimage.io.imread(images[0])

x, y = first_image.shape

sinogram = np.zeros((len(images), y))

for i, imagefile in enumerate(images):

image = skimage.io.imread(imagefile)

sinogram[i] = image[slice_at]

def load_averaged_flatfield():

flatfield_images = glob.glob(directory + 'io*.tif')

avg_flatfield = np.zeros((1, y))

for imagefile in flatfield_images:

image = skimage.io.imread(imagefile)

avg_flatfield += image[slice_at]

avg_flatfield = avg_flatfield / len(flatfield_images)

# Extract middle

return avg_flatfield

def load_darkfield():

return skimage.io.imread(os.path.join(directory, 'di000000.tif'))[slice_at]
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def preprocess_sinogram(sinogram, avg_flatfield, darkfield, verbose=False):

# Flat field corrections

sinogram = np.log((avg_flatfield - darkfield)/(sinogram - darkfield))

# Center of mass corrections

row_sum = np.sum(sinogram, axis=0)

com = center_of_mass(row_sum)[0]

x, y = sinogram.shape

true_com = y / 2.0

if verbose:

print("Sinogram shape: ", sinogram.shape)

min_delta = 10000.0

best_k = -1

# Assume we're at most 20 pixel away from centor of mass.

for k in range(1, 20):

com_k = sinogram[:,:-k].shape[1] / 2.0

calc_com_k = center_of_mass(sinogram[:,:-k])[1]

delta = np.abs(com_k - calc_com_k)

if delta < min_delta:

min_delta = delta

best_k = k

if verbose:

print("k = {}, com_k = {} calc_com_k = {}, delta = {}".format(

k, com_k, calc_com_k, delta))

sinogram = sinogram[:,:-best_k]

new_row_sum = np.sum(sinogram, axis=0)

new_com = center_of_mass(new_row_sum)[0]

if verbose:

print("True COM ", true_com)

print("Scan COM", com)

print("Corrected", new_com)

print("New True COM", sinogram.shape[1] / 2)

print("New sino shape", sinogram.shape)

return sinogram

avg_flatfield = load_averaged_flatfield()

darkfield = load_darkfield()

preprocessed_sinogram = preprocess_sinogram(sinogram[:-1], avg_flatfield, darkfield,

verbose=True)↪→

# Last scan angle == first scan angle, so we drop the last scan

return preprocessed_sinogram, images
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def load_cached_sinogram(filename):

return np.load(filename)

def reconstruct_image_sirt(proj_angles, sinogram, n_iter, show_reconstruction=False):

# Warning

# The geometry is hardcoded for the wooden sample.

# Scan geometry

SDD = 498.0

SOD = 313.001465

d = 0.149600

# Apply scaling to match Astras pixelsize v = 1

v = d * SOD / SDD

SDD_p = SDD / v

SOD_p = SOD / v

ODD_p = SDD_p - SOD_p

d_p = d / v

scan_width = sinogram.shape[1]

vol_geom = astra.create_vol_geom(scan_width, scan_width)

proj_geom = astra.create_proj_geom('fanflat', d_p, scan_width, proj_angles, SOD_p,

ODD_p)↪→

#proj_id = astra.create_projector('strip_fanflat', proj_geom, vol_geom)

proj_id = astra.create_projector('cuda', proj_geom, vol_geom)

W = astra.OpTomo(proj_id)

reconstruction = W.reconstruct('SIRT_CUDA',

sinogram,

iterations=n_iter,

extraOptions={'MinConstraint': 0.0})

if show_reconstruction:

plt.imshow(reconstruction, cmap='gray')

plt.show()

return reconstruction

if __name__ == '__main__':

now = '{date:%Y_%m_%d_%H_%M_%S}.txt'.format( date=datetime.datetime.now() )

scans_directory = '/export/scratch1/bossema/IPI_Project/wooden_block_upright/'

x, y = get_scan_image_dimension(scans_directory)

# Load sinogram from the slice in the middle

sinogram, images = load_images(scans_directory, slice_at=300)
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# Only use projection in range [0, \pi)

max_angle = np.pi

sinogram = sinogram[0:sinogram.shape[0]//2]

np.save("wooden_sinogram_vertical.npy", sinogram)

first_image = skimage.io.imread(images[0])

scanned_angles = sinogram.shape[0]

sinogram = sinogram[0:scanned_angles]

scan_width = sinogram.shape[1]

n_iter = 600

proj_angles = np.linspace(0, (scanned_angles-1)*max_angle / scanned_angles,

scanned_angles)↪→

F = reconstruct_image_sirt(proj_angles, sinogram,n_iter,show_reconstruction = True)

np.save("reconstruction_real.npy", F)
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C Main functions

To import this Python file use import FB functions.

import astra

import numpy as np

import pylab

import scipy

import matplotlib.pyplot as plt

#%%

def plot_polar_angles(angles, x, dot_size = 60, color = "b"):

"""

Angles in radians

This functions prints half of the unit circle and the angles as dots

"""

angles = (angles/np.pi*180)%180

fig = plt.figure(figsize = (5,5))

dot_size = 50

ax = fig.add_subplot(111,projection = 'polar')

ax.set_yticklabels([])

ax.set_thetamin(0)

ax.set_thetamax(180)

ax.set_theta_offset(0.5*np.pi)

angles = angles/180*np.pi

r = np.ones_like(angles)

ax.scatter(angles, r, s= dot_size, color = color)

pylab.savefig('Images/angles%d.png'%x, bbox_inches='tight')

def print_image_data(true_image, proj_angles, data, recon_image, proj_size, n_angles, x = 0,

grey = 0):↪→

"""

This function prints the true image, sinogram and reconstructed image.

grey: If 1, images are printed in black and white.

"""

size = true_image.shape[0]

if grey == 0:

pylab.figure()

pylab.imshow(true_image)

pylab.colorbar()

pylab.savefig('Images/true%x.png'%x, bbox_inches='tight')

if data is not None:

pylab.figure()

pylab.imshow(np.reshape(data, (n_angles,proj_size)))

pylab.colorbar()

pylab.figure()

pylab.imshow(np.reshape(recon_image, (size,size)))

pylab.colorbar()

pylab.savefig('Images/recon%x.png'%x, bbox_inches='tight')

plot_polar_angles(proj_angles, x)

else:
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pylab.figure()

pylab.imshow(true_image, cmap = 'gray')

pylab.colorbar()

pylab.savefig('Images/true%x.png'%x, bbox_inches='tight')

if data is not None:

pylab.figure()

pylab.imshow(np.reshape(data, (n_angles,proj_size)), cmap = 'gray')

pylab.colorbar()

pylab.figure()

pylab.imshow(np.reshape(recon_image, (size,size)), cmap = 'gray')

pylab.colorbar()

pylab.savefig('Images/recon%x.png'%x, bbox_inches='tight')

plot_polar_angles(proj_angles, x)

def equidistant_angles(fixed_angle_nr, first_angle = None):

"""

This function outputs an array of equidistant angles between 0 and pi.

fixed_angle_nr: Total number of angles in the array.

first_angle: Angle to put in the array. The other are equidistant around this

angle.↪→

"""

if first_angle is None:

first_angle = np.random.randint(0,179)/180*np.pi

angles = np.linspace(first_angle, first_angle + np.pi,

fixed_angle_nr,False)

return angles

def sinogram_noise(F, proj_size, vol_geom, noise_perc = 0.01, total_n_angles = 1800):

"""

This function creates a sinogram containing only noise.

"""

proj_angles = np.linspace(0,180,total_n_angles)/180*np.pi

proj_geom = astra.create_proj_geom('parallel', 1.0, proj_size, proj_angles)

proj_id = astra.create_projector('strip', proj_geom, vol_geom)

W = astra.OpTomo(proj_id)

sino_vector = W.FP(F.ravel())

noise = noise_perc*sino_vector.max()/(np.sqrt(total_n_angles))

data = np.zeros(proj_size*total_n_angles)

noise_sino = np.random.normal(data, noise)

noise_sino = np.reshape(noise_sino, (total_n_angles,proj_size))

astra.projector.delete(proj_id)

return noise_sino

def apply_sino_noise_c(data, proj_angles, proj_size, noise_cos, noise_sin):

"""

This function adds the noise to the data.

"""

data = np.reshape(data, (proj_angles.size,proj_size))

k_vec = np.arange(1,1800+1,1)
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cos_matrix = np.cos(np.outer(proj_angles,k_vec)*2)

cos_sum = np.dot(cos_matrix,noise_cos)

sin_matrix = np.sin(np.outer(proj_angles,k_vec)*2)

sin_sum = np.dot(sin_matrix,noise_sin)

data = data + cos_sum + sin_sum

return data.ravel()

#%%

def G_angles_bayes(T, proj_angles, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt):

"""

This function gives the reconstrucion of the images in T.

Input: list of true images T

Output: list of reconstructions of T

"""

proj_geom = astra.create_proj_geom('parallel', 1.0, proj_size, proj_angles)

proj_id = astra.create_projector('strip', proj_geom, vol_geom)

W = astra.OpTomo(proj_id)

n_train = len(T)

F = T[0]

data = W.FP(F)

data = apply_sino_noise_c(data, proj_angles, proj_size, noise_cos, noise_sin)

T_inv = W.reconstruct('SIRT_CUDA', data, iterations=n_iter_sirt,

extraOptions={'MinConstraint':0.0}).ravel()↪→

if n_train > 1:

for i in range(1,n_train):

Fi = T[i]

data = W.FP(Fi)

data = apply_sino_noise_c(data, proj_angles, proj_size, noise_cos, noise_sin)

f_inv = W.reconstruct('SIRT_CUDA', data, iterations=n_iter_sirt,

extraOptions={'MinConstraint':0.0})↪→

T_inv = np.concatenate((T_inv,f_inv.ravel()))

astra.projector.delete(proj_id)

return T_inv

def L_measure_bayes(angle, T, proj_angles, proj_size,vol_geom, noise_cos, noise_sin,

n_iter_sirt):↪→

"""

This function calculates the cost function L for an angle added to the existing set of

angles.↪→

"""

if angle is not None:

proj_angles = np.append(proj_angles, angle)

n_train = len(T)

F_train = T[0].ravel()
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#create the long vector of true images if there are more than 1 training samples

if n_train > 1:

for i in range(1,n_train):

F_train = np.concatenate((F_train,T[i].ravel()))

T_inv = G_angles_bayes(T, proj_angles, proj_size,vol_geom, noise_cos, noise_sin,

n_iter_sirt)↪→

L2 = 1/n_train*0.5*np.sqrt(((T_inv-F_train)**2).sum())

return L2

def L_measure_bayes_2angles(x,y, T, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt,

scanzero = 0):↪→

"""

Calculate the L2 value for 2 angles x,y in radians

x,y: the two angles

scanzero: if 1, the projection angles array always contains 0

"""

if scanzero == 1:

proj_angles = np.array([0,x,y])

else:

proj_angles = np.array([x,y])

n_train = len(T)

F_train = T[0].ravel()

#create the long vector of true images if there are more than 1 training samples

if n_train > 1:

for i in range(1,n_train):

F_train = np.concatenate((F_train,T[i].ravel()))

T_inv = G_angles_bayes(T, proj_angles, proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt)↪→

L2 = 1/n_train*0.5*np.sqrt(((T_inv-F_train)**2).sum())

return L2

#%%

def find_min_interval(measure, left_angle, right_angle, T, proj_angles, proj_size, vol_geom,

noise_cos, noise_sin, n_iter_sirt):↪→

"""

This function find the minimum of the cost function within the interval (left_angle,

right_angle).↪→

"""

#right and left angle in radians

if left_angle ==0.0:

left_angle_degrees = 0

else:

left_angle_degrees = round(min(left_angle, right_angle)/np.pi*180-1)

if right_angle == np.pi:

right_angle_degrees = 180
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else:

right_angle_degrees = round(max(left_angle, right_angle)/np.pi*180+1)

angle_range = np.linspace(left_angle_degrees, right_angle_degrees,

round(abs(right_angle_degrees-left_angle_degrees))+1)↪→

angle_range = angle_range/180*np.pi

#evaluate points to find a good guess for x min

x = [measure(i,T, proj_angles, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt)

for i in angle_range]↪→

x_min_guess_index = np.where(x==min(x))

x_min_guess_eval = min(x)

x_min_guess = angle_range[x_min_guess_index]

x_min_guess = float(x_min_guess[0])

#find an angle that is best with the other angles fixed,

#optimizing measure function, local optimization around the guess

interval = scipy.optimize.fminbound(measure,x_min_guess-np.pi/180,x_min_guess+np.pi/180,

args=(T,proj_angles, proj_size, vol_geom,

noise_cos, noise_sin,

n_iter_sirt),full_output=1,disp = False)

↪→

↪→

angle1 = interval[0]

eval_angle1 = interval[1]

#Check that the angle found by the optimizer has lower L2 than the angle found by

evaluating on the grid↪→

if eval_angle1 < x_min_guess_eval:

best_angle_optimizer = angle1

eval_optimizer = eval_angle1

else:

best_angle_optimizer = x_min_guess

eval_optimizer = x_min_guess_eval

# print('eval optimizer',eval_optimizer, 'ANGLE', best_angle_optimizer)

# print('eval current', x_min_guess_eval,'current angle', x_min_guess)

# print('best angle', best_angle_optimizer)

return best_angle_optimizer, eval_optimizer

C.1 Print functions

To import this Python file use import printfunctions.

import FB_functions

import numpy as np

import pylab

import matplotlib.pyplot as plt

def print_L2_2angles(T, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt = 5, scanzero

= 0, z = 0, scale_max = 1, print_each = 0):↪→

"""

This function prints the L2 cost function for two angles.
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scanzero: if 1, the projection angles always contain 0

z: the image number (for saving purposes)

scale_max: output of print_L2_2angles, with the true image, so that scaling is the same

for each image↪→

print_each: if 1, the L2 cost function image is printed for each training image

"""

picsize = 180

x = np.linspace(0,180,picsize)/180*np.pi

y = np.linspace(0,180,picsize)/180*np.pi

X,Y = pylab.meshgrid(x, y)

X = X.ravel()

Y = Y.ravel()

Z = [ (FB_functions.L_measure_bayes_2angles(X[i], Y[i], T, proj_size, vol_geom,

noise_cos,noise_sin, n_iter_sirt, scanzero) if X[i]<Y[i] else 0) for i in

range(len(X))]

↪→

↪→

Z = np.reshape(Z,(picsize,picsize))

if T.shape[0] == 1:

A = Z[Z>0]

Z = (Z-A.min())

scale_max = Z.max()

Z = Z/scale_max

if print_each == 1:

for j in range(len(T)):

F = T[j]

#Print each L2 function

pylab.figure()

image = pylab.imshow(F, vmin = 0.0, vmax = 1.5)

pylab.colorbar(image)

pylab.xlabel('x')

pylab.ylabel('y')

pylab.figure(figsize = (13,13))

im = pylab.imshow(Z,cmap=pylab.cm.RdBu, vmin = 0.0, vmax = 1.5)

plt.contour(Z, levels=np.linspace(0,1,10+1),colors='white')

pylab.colorbar(im)

pylab.xlabel('angle 1')

pylab.ylabel('angle 2')

plt.xlim(0,180)

plt.ylim(0,180)

plt.show()

min_notzero = Z[Z>Z.min()].min()

minima = np.asarray(np.where(Z==min_notzero))

minimum = [(minima[:,i] if minima[0,i] > minima[1,i] else None) for i in

range(minima.shape[1])]↪→

minimum = [x for x in minimum if x is not None][0]

print('The minimum of the L2 costfunction average is at:', minimum)

pylab.figure(figsize = (13,13))

61



im = pylab.imshow(Z,cmap=pylab.cm.RdBu, vmin = 0.0, vmax = 1.5)

plt.contour(Z, levels=np.linspace(0,1,10+1),colors='white')

pylab.colorbar(im)

plt.plot(minimum[1],minimum[0], 'yo', ms = 10)

pylab.xlabel('angle 1')

pylab.ylabel('angle 2')

pylab.title('average L2')

plt.xlim(0,180)

plt.ylim(0,180)

pylab.savefig('Images_bayes/L2_%x.png'%z, bbox_inches='tight')

plt.show()

if T.shape[0]:

return Z, scale_max

else:

return Z

#%%

def add_arrow(line, position=None, size=30, color=None):

"""

add an arrow to a line.

line: Line2D object

position: x-position of the arrow. If None, mean of xdata is taken

size: size of the arrow in fontsize points

color: if None, line color is taken.

"""

if color is None:

color = line.get_color()

xdata = line.get_xdata()

ydata = line.get_ydata()

if position is None:

xposition = xdata.mean()

yposition = ydata.mean()

start_ind = 0

line.axes.annotate('',

xytext=(xdata[start_ind], ydata[start_ind]),

xy=(xposition,yposition),

arrowprops=dict(arrowstyle="->", color=color),

size=size

)

def plot_L2_particles_2(Z,ensemble_tracker, lines = 0, only_last = 1):

"""

Plot the track of the particles of the ensemble Kalman filter
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Z: the L2 function that forms the background

ensemble_tracker: a nested matrix containing the ensemble at each iteration

lines: if 1, a line with an arrow connects the old position and the new position of

the last updated particles↪→

only_last: if 1, the function only prints the final ensemble

"""

ensemble_tracker = ensemble_tracker/np.pi*180

n_particles = len(ensemble_tracker[0][0,:])

n_iter = len(ensemble_tracker)-1

n_angles =len(ensemble_tracker[0][:,0])

colorvec = ['bo','go','ro', 'co', 'mo', 'yo', 'ko', 'wo',

'b^','g^','r^', 'c^', 'm^', 'y^', 'k^', 'w^',

'bs','gs','rs', 'cs', 'ms', 'ys', 'ks', 'ws',

'bP','gP','rP', 'cP', 'mP', 'yP', 'kP', 'wP',

'b*','g*','r*', 'c*', 'm*', 'y*', 'k*', 'w*']

colorvec2 = ['b-','g-','r-', 'c-', 'm-', 'y-', 'k-', 'w-']

fig, ax = plt.subplots(figsize=(13, 13))

im = ax.imshow(Z,cmap=pylab.cm.RdBu, vmin = 0)

plt.xlim(0,180)

plt.ylim(0,180)

plt.xlabel('angle1')

plt.ylabel('angle2')

plt.colorbar(im)

for j in range(n_particles):

particle_track = np.zeros([n_angles, n_iter+1])

for i in range(n_iter+1):

particle_track[: , i] = ensemble_tracker[i][:,j]

if only_last == 1:

ax.plot(particle_track[0,n_iter],particle_track[1,n_iter],

colorvec[j%len(colorvec)], ms = 10)

else:

ax.plot(particle_track[0,:],particle_track[1,:],

colorvec[j%len(colorvec)], ms = 10)

if lines == 1:

last_update = particle_track[:,n_iter-1:n_iter+1]

ax.plot(last_update[0,:],last_update[1,:],

colorvec[j%len(colorvec)], ms =10)

line = ax.plot(last_update[0,:],last_update[1,:],

colorvec2[j%len(colorvec2)], ms =10)[0]

add_arrow(line)

plt.show()
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D Angle selection algorithms

D.1 Greedy algorithm

To import this Python file use import bayes angle optimization greedy.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Wed Feb 14 10:41:37 2018

@author: bossema

"""

import numpy as np

import astra

import FB_functions

import printfunctions as prt

def angle_opt_greedy(T, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt,

fixed_angle_nr,↪→

first_angle = None):

"""

#In this function we try to optimize the cost function for a fixed number

#of projection angles.

T: set of real images

fixed_angle_nr: the total number of projection angles

first_angle: If given, this angle is in the initial angle set.

"""

if first_angle is None:

first_angle = np.random.randint(0,179)/180*np.pi

#If a fixed angle number is given, the program will find that number of

#angles

proj_angles = np.array(first_angle)

left_angle = 0.0

right_angle = np.pi

for j in range(fixed_angle_nr-1):

#In this for-loop we find in each iteration the best angle to add to the

#ones we have already chosen in previous iterations, based on the

#L2 norm for each angle added to the existing set

best_angle = FB_functions.find_min_interval(FB_functions.L_measure_bayes,

left_angle, right_angle, T, proj_angles, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt)[0]

↪→

↪→

proj_angles = np.append(proj_angles,best_angle)

#Print which angles were chosen

proj_angles = np.sort(proj_angles)

#print('Optimal angles greedy:', proj_angles)

return proj_angles
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D.2 Coordinate descent algorithm

To import this Python file use import bayes angle optimization cdescent.

import FB_functions

import numpy as np

def angle_update(angle_index,T, proj_angles, proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt):↪→

"""

This function updates the angle for the coordinate descent method. Angles in radians.

"""

if angle_index == 0:

left_angle = 1

else:

left_angle = proj_angles[angle_index - 1]

if angle_index == proj_angles.size - 1:

right_angle = np.pi

else:

right_angle = proj_angles[(angle_index+1)]

#delete the angle at the current index

current_angle = proj_angles[angle_index]

proj_angles = np.delete(proj_angles, angle_index)

current_angle_eval = FB_functions.L_measure_bayes(current_angle, T, proj_angles,

proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt)↪→

#Find the minimum of the cost function on the given interval

best_angle_optimizer, eval_optimizer =

FB_functions.find_min_interval(FB_functions.L_measure_bayes, left_angle,

right_angle, T, proj_angles, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt)

↪→

↪→

#Check that the newly found angle has lower evaluation than the current angle

if eval_optimizer < current_angle_eval:

best_angle = best_angle_optimizer

else:

best_angle = current_angle

#Insert the best angle at the current index

proj_angles = np.insert(proj_angles, angle_index, best_angle)

return proj_angles

def angle_opt_cdes(T, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt,

fixed_angle_nr,↪→

first_angle = None, initial_angles = None,

n_iter = None, stop = None):

"""

T: set of real images
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fixed_angle_nr: the total number of projection angles

first_angle: If given, this angle is in the initial angle set.

initial_angles: An initial guess for all initial angles, if not given

the program will take equidistant initial angles

n_iter: number of iterations of the update step

stop: stopping criterium for the difference between the old angles and the

↪→

updated ones

Either specify n_iter or stop, if none is provided, the function takes the

default stopping value.

Angles in radians.

"""

if first_angle is None:

first_angle = np.random.randint(0,179)/180*np.pi

if initial_angles is None:

proj_angles = FB_functions.equidistant_angles(fixed_angle_nr,

first_angle)

else:

proj_angles = initial_angles

proj_angles = np.sort(proj_angles%np.pi)

if n_iter is None:

if stop is None:

stop = np.pi/360 #stopping criterium is if the angles do not change

#more than a half degree

#update angles subject to a maximum number of iterations

if n_iter is not None:

for k in range(n_iter):#number of iterations of all angle update

for i in range(fixed_angle_nr):#update all the angles once

proj_angles = angle_update(i,T, proj_angles, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt)#update step↪→

#Code for using a stopping criterium instead of a fixed number of iterations

if stop != None: #update the angles subject to a stopping criterium

max_diff = stop + 1

k = 0

while max_diff > stop: #continue updating untill the max difference

#between an angle and its update is smaller than the stopping

#criterium

k = k+1

difference = np.zeros(proj_angles.size) #keep track of difference

for i in range(fixed_angle_nr):

old_angle = proj_angles[i]

proj_angles[i] = angle_update(i,proj_angles,T,noise_cos, noise_sin,

proj_size,vol_geom,first_angle,n_iter_sirt) #update step

difference[i] = abs(proj_angles[i]-old_angle)
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max_diff = max(difference)

print('Number of iterations c_des untill stopping criterium was reached:',

k)

#print('Optimized angles after coordinate descent:', proj_angles)

return proj_angles

D.3 Ensemble Kalman algorithm

To import this Python file use import bayes angle optimization ensemble.

import FB_functions

import numpy as np

def project_part(part):

"""This function makes sure that the first angle is smaller than second etc

and that if a particle is outside the upper triangle of the image, it is backprojected

to the nearest edge of the region taking off the edges.↪→

Thus, any angle between -90 and 1 is backprojected to 1 and any angle between 179 and

270 is backprojected to 179↪→

"""

for i in range(len(part)):

if (part[i]%(2*np.pi)>270/180*np.pi) or (0>part[i]%(2*np.pi)<1/180*np.pi):

part[i] = 1/180*np.pi

if np.pi-1/180*np.pi<part[i]<270/180*np.pi:

part[i] = np.pi-1/180*np.pi

part = np.sort(part)

return part

def angle_opt_ens(T,ensemble, proj_size, vol_geom, noise_cos, noise_sin, n_iter_sirt = 5,

n_iter = 10, update_nr = 0, stepsizes = None):↪→

"""

This function optimizes the set of angles starting out from a set of

angles, all angles in degrees. a list of arrays

T: set of real images

ensemble: some (randomized) number of particles to start with,

a matrix of size number of angles times number of particles, in

radians↪→

stepsizes: the stepsizes corresponding to each iteration (size n_iter)

n_iter: the number of update steps of the ensemble

update_nr: the number of particles to update in every iteration of the

algorithm↪→

"""

if stepsizes == None:

stepsizes = np.ones(n_iter)

nE = ensemble.shape[1]

for i in range(nE):
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ensemble[:,i] = np.sort(ensemble[:,i])

n_train = len(T)

m = T[0].ravel().size*n_train

F = T[0].ravel()

#create the long vector of true images if there are more than 1 training samples

if n_train > 1:

for i in range(1,n_train):

F = np.concatenate((F,T[i].ravel()))

#number of particles

nAng = ensemble.shape[0]

GE = np.zeros([m,nE])

L2_matrix = np.zeros([n_iter+1,nE])

#matrix to store the data in for different particles of size #nE times length of the

data↪→

ensemble_tracker = [None]*(n_iter+1)

ensemble_tracker[0] = ensemble

#initialize the GE matrix

for j in range(nE):

GE[:,j] = FB_functions.G_angles_bayes(T, ensemble[:,j], proj_size, vol_geom,

noise_cos, noise_sin, n_iter_sirt)↪→

L2_matrix[0,j] = ((GE[:,j]-F)**2).sum()

#update the angles n_iter times

for i in range(n_iter):

#calculate the fixed elements of the update step

E_mean = np.mean(ensemble, axis = 1)

E_mean = np.reshape(E_mean,[nAng,1])

GE_mean = np.mean(GE, axis = 1)

GE_mean = np.reshape(GE_mean,[m,1])

Juw = 1/np.sqrt(nE-1)*(ensemble-E_mean)

Jww = 1/np.sqrt(nE-1)*(GE-GE_mean)

gamma_inv = 1/stepsizes[i]

inv_term = np.linalg.inv(np.identity(nE)+gamma_inv*(Jww.T@Jww))

L2_matrix[i+1,:] = L2_matrix[i,:]

#If no number of particles to update is given (update_nr), we will update all the

particles every step.↪→

if update_nr == 0:

update_particles = range(nE)

else: #if a update_nr is given, the worst (i.e. highest diff) update_nr particles

will be updated↪→

update_particles = np.argpartition(L2_matrix[i,:],-update_nr)[-update_nr:]

update_particles = np.sort(update_particles)

for j in update_particles: #update particles
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diff = F-GE[:,j]

ensemble[:,j] = ensemble[:,j] + Juw@(Jww.T@(gamma_inv*diff -

gamma_inv*Jww@(inv_term@(Jww.T@(gamma_inv*diff)))))↪→

#Here the sort needs to be changed: if a particle gets out of range, how to

project it back into the range↪→

ensemble[:,j] = project_part(ensemble[:,j]) #make sure all angles are sorted and

within 0 and 180 degrees.↪→

GE[:,j] = FB_functions.G_angles_bayes(T, ensemble[:,j], proj_size, vol_geom,

noise_cos, noise_sin, n_iter_sirt) #update the GE evaluation↪→

L2_matrix[i+1,j] = ((GE[:,j]-F.ravel())**2).sum()

ensemble_tracker[i+1] = ensemble

particle_nr = np.argmin(L2_matrix[n_iter,:])

particle = ensemble[:,particle_nr]

# print('The optimal angles found by the EnsembleK Filter are:',particle)

# print('Number of iterations:',n_iter)

# print('Number of particles updated per iteration:',update_nr)

return (particle, ensemble_tracker, ensemble)
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E Test files

E.1 Selection algorithms

import shapes

import bayes_angle_optimization_greedy as angle_greedy

import astra

import numpy as np

import bayes_angle_optimization_cdescent as angle_cdes

import bayes_angle_optimization_ensemble as angle_ens

import FB_functions

import pylab

from generator import generator

import printfunctions as prt

import skimage

import matplotlib.pyplot as plt

#Here the different variables can be modified

tilt = 90

noise_perc = 0.0

fixed_angle_nr = 10

first_angle = tilt/180*np.pi

n_iter_cdes = 10

update_nr = 2

n_iter_sirt =100

n_iter_sirt_def = n_iter_sirt

scanzero = 0

size = 256

proj_size = (3*size)//2

np.random.seed(10)

mean_width = size/1.6

mean_heigth = size/5

density = 1

#%%

image_nr = 2

grey_on = 1

#%%#For testing with the real image define a real image F

#F = shapes.rectangle(size,tilt)

#F = shapes.circle(size)

#F = shapes.boat(size, tilt)

#F = shapes.bayes_true_image(size)

#%%For testing with the image based on real data

F = np.load("/ufs/bossema/Code python/Test2D/realdata/reconstruction_real.npy")

size = F.shape[0]

proj_size = (3*size)//2

T = np.array([F])

#%%

#For equidistant angles

#proj_angles = FB_functions.equidistant_angles(10,90/180*np.pi)
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#fixed_angle_nr = proj_angles.size

#%%

#To test a set of training samples T

#np.random.seed(10)

#T = generator(10, mean_width, mean_heigth, 0.*mean_width,mean_heigth*0.3, size = size,

density = density, printyn = 0)↪→

#F = shapes.bayes_true_image(size, density = 1, print_angle_pic = 0)

#%%

vol_geom = astra.create_vol_geom(size, size)

noise_cos = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

noise_sin = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

#%%

#To test either the greedy algorithm or the coordinate descent algorithm choose

#one of the two definitions of proj_angles below, or use both to perform

#a coordinate descent after the greedy algorithm

#proj_angles= angle_greedy.angle_opt_greedy(T, proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt, fixed_angle_nr, first_angle)↪→

#proj_angles = angle_cdes.angle_opt_cdes(T, proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt, fixed_angle_nr, initial_angles = proj_angles, n_iter = n_iter_cdes)↪→

#

#%%

#To test the Ensemble Kalman filter use the code below

#nE = 10

#n_iter_ens = 10

#np.random.seed(10)

#ensemble1 = np.random.rand(fixed_angle_nr,nE)*np.pi

#ensemble_filter = angle_ens.angle_opt_ens(T,ensemble1, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt= n_iter_sirt, n_iter = n_iter_ens, update_nr = update_nr)↪→

#proj_angles = ensemble_filter[0]

#ensemble_tracker = ensemble_filter[1]

#ensemble2 = ensemble_filter[2]

#print('Ensemble after filter method:',ensemble2)

#%%

#The code below is needed for using the L2 particles plot function (ensemble method only)

##Calculate L2

#picsize = 180

#x = np.linspace(0,179,picsize)

#y = np.linspace(0,179,picsize)

#X,Y = pylab.meshgrid(x,y)

#X = X.ravel()

#Y = Y.ravel()

#

#

#Z = [(FB_functions.L_measure_bayes_2angles(X[i], Y[i], T, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt, scanzero) if X[i]<=Y[i] else 0) for i in range(len(X))]↪→

#Z = np.reshape(Z,(picsize,picsize))

#A = Z[Z>0]
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#Z = (Z-A.min())

#scale_max = Z.max()

#Z = Z/scale_max

#fig, ax = plt.subplots(figsize=(13, 13))

#

#im = ax.imshow(Z,cmap=pylab.cm.RdBu, vmin = 0)

#plt.contour(Z, levels=np.linspace(0,1,10+1),colors='white')

#plt.xlim(0,180)

#plt.ylim(0,180)

#plt.xlabel('angle1')

#plt.ylabel('angle2')

#plt.colorbar(im)

#plt.show()

#

#%%

##To print all the particles and their movements

#prt.plot_L2_particles_2(Z,ensemble_tracker, lines = 0, only_last = 1)

#%%

f_inv = FB_functions.G_angles_bayes(T, proj_angles, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt)↪→

print('Angles:', proj_angles/np.pi*180)

data = None

FB_functions.print_image_data(F, proj_angles, data, f_inv, proj_size, fixed_angle_nr,

image_nr, grey = grey_on)↪→

angle = None

L2= FB_functions.L_measure_bayes(angle, T, proj_angles, proj_size,vol_geom, noise_cos,

noise_sin, n_iter_sirt)↪→

print('The L2 of this reconstruction:', L2)

#To print the difference between the reconstruction and the phantom

#f_inv = np.reshape(f_inv, (960,960))

#pylab.imshow(F-f_inv, cmap = 'gray', vmin = -0.0025, vmax = 0.0025)

#pylab.colorbar()

#pylab.show()

E.2 Comparison figure

import shapes

import bayes_angle_optimization_greedy as angle_greedy

import astra

import numpy as np

import bayes_angle_optimization_cdescent as angle_cdes

import bayes_angle_optimization_ensemble as angle_ens

import FB_functions

import pylab

from generator import generator
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import printfunctions as prt

import skimage

import matplotlib.pyplot as plt

#%%

def angle_experiment(X,F, first_angle, n_iter_sirt, noise_perc, method):

n_iter_cdes = 10

update_nr = 2

nE = 10*len(X)

n_iter_ens = 10

T = np.array([F])

size = F.shape[0]

proj_size = (3*size)//2

vol_geom = astra.create_vol_geom(size, size)

noise_cos = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

noise_sin = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

L2_total = np.array([])

for i in X:

fixed_angle_nr = i

if method == 'equi':

proj_angles = FB_functions.equidistant_angles(fixed_angle_nr,tilt)

if method == 'greedy' or method == 'coordinate':

proj_angles= angle_greedy.angle_opt_greedy(T, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt, fixed_angle_nr, first_angle)↪→

if method == 'coordinate':

proj_angles = angle_cdes.angle_opt_cdes(T, proj_size, vol_geom, noise_cos,

noise_sin, n_iter_sirt, fixed_angle_nr, initial_angles = proj_angles, n_iter

= n_iter_cdes)

↪→

↪→

if method == 'ensemble':

np.random.seed(10)

ensemble1 = np.random.rand(fixed_angle_nr,nE)*np.pi

ensemble_filter = angle_ens.angle_opt_ens(T,ensemble1, proj_size, vol_geom,

noise_cos, noise_sin, n_iter_sirt= n_iter_sirt, n_iter = n_iter_ens,

update_nr = update_nr)

↪→

↪→

proj_angles = ensemble_filter[0]

angle = None

L2= FB_functions.L_measure_bayes(angle, T, proj_angles, proj_size,vol_geom,

noise_cos, noise_sin, n_iter_sirt)↪→
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#print('The L2 of this reconstruction:', L2)

#print('Angles:', proj_angles)

#data = None

#FB_functions.print_image_data(F, proj_angles, data, f_inv, proj_size,

fixed_angle_nr, image_nr, grey = grey_on)↪→

# Z = F-np.reshape(f_inv, (size,size))

# Z = Z

# pylab.figure()

# pylab.imshow(Z, cmap = 'gray')

# pylab.colorbar()

# pylab.show()

L2_total = np.append(L2_total,L2)

return L2_total

#%%

size = 256

tilt = 30

Flist = [shapes.rectangle(size,tilt), shapes.circle(size), shapes.boat(size, tilt),

shapes.boat(size, tilt) + np.roll(np.roll(shapes.boat(size, 68),20, axis=0),10,axis =

1), np.load("/ufs/bossema/Code python/Test2D/realdata/reconstruction_real.npy")]

↪→

↪→

names = ['Rectangle','Circle','Boat','Doubleboat','Wood']

n_iter_sirt_list = np.array([5,5,5,5,100])

tilt_list = np.array([30,30,30,30,90])/180*np.pi

noise_perc_list = np.array([0.01, 0.05])

noise_list = np.array([1,5])

X = np.array([2,3,4,5,10,15,20])

for j in range(len(noise_perc_list)):

noise_perc = noise_perc_list[j]

for i in range(len(Flist)-1):

F = Flist[i]

n_iter_sirt = n_iter_sirt_list[i]

tilt = tilt_list[i]

L2_equi = angle_experiment(X,F,tilt,n_iter_sirt, noise_perc,'equi')

L2_ens = angle_experiment(X,F,tilt,n_iter_sirt,noise_perc,'ensemble')

L2_greedy = angle_experiment(X,F,tilt,n_iter_sirt,noise_perc,'greedy')

L2_coordinate = angle_experiment(X,F,tilt,n_iter_sirt,noise_perc,'coordinate')

plt.figure()

plt.plot(X,L2_equi, label = 'Equidistant')

plt.plot(X,L2_ens, label = 'Ensemble')

plt.plot(X,L2_greedy, label = 'Greedy')

plt.plot(X,L2_coordinate, label = 'Coordinate')

plt.legend(loc='upper right')

plt.xticks(X)

plt.ylabel('L')

plt.xlabel('Number of angles')

plt.savefig('/ufs/bossema/Dropbox/Scriptie/Grafieken/%s'%names[i] +

'_noise%x'%noise_list[j] + '.png', bbox_inches='tight')↪→

plt.show()
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E.3 Cost function for Bayesian approach

import FB_functions

import numpy as np

import astra

from generator import generator

from shapes import bayes_true_image

import printfunctions

import matplotlib.pyplot as plt

noise_perc = 0.0

size = 256

proj_size = (3*size)//2

mean_width = size/1.6

mean_heigth = size/5

density = 1

n_iter_sirt = 5

F = bayes_true_image(size)

T = np.array([F])

vol_geom = astra.create_vol_geom(size, size)

noise_cos = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

noise_sin = FB_functions.sinogram_noise(F,proj_size,vol_geom, noise_perc)

Z,scale_max = printfunctions.print_L2_2angles(T,proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt, scanzero = 1, z = 0, scale_max = 1, print_each = 0)↪→

T = generator(10, mean_width, mean_heigth, 0.0*mean_width, mean_heigth*0.1, size = size,

density = density, printyn = 1)↪→

AvL2 = printfunctions.print_L2_2angles(T,proj_size, vol_geom, noise_cos, noise_sin,

n_iter_sirt, scanzero = 1, z = 0, scale_max = scale_max, print_each = 0)↪→

T2 = generator(10, mean_width, mean_heigth, 0.3*mean_width, mean_heigth*0.1, size = size,

density = density, printyn = 1)↪→

TL20,AvL20 = printfunctions.print_L2_2angles_trainset_each(T2,proj_size, vol_geom,

noise_cos, noise_sin, n_iter_sirt, scanzero = 1, z = 3, scale_max = scale_max,

print_each = 0)

↪→

↪→
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