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1 Introduction

A del Pezzo surface S over a field k is a smooth, projective, geometrically integral
scheme of dimension two over k, with ample anticanonical divisor −KS . See
Definition 3.12 for the canonical class. The degree of S is defined to be the
self-intersection number d := K2

S .

In this thesis we will study del Pezzo surfaces of degree 1. Such a surface is
isomorphic to a smooth sextic hypersurface in the weighted projective space
P(2 : 3 : 1 : 1) with coordinates X,Y, Z,W , given by an equation

Y 2 + c1XY + c3Y = X3 + c2X
2 + c4X + c6 (1)

where cn =
∑n
i=0 cniZ

iWn−i is a homogeneous polynomial of degree n. Con-
versely, any smooth sextic hypersurface in this weighted projective space is a
del Pezzo surface of degree 1 [[Kol96], Theorem III.3.5]. Note that such a hyper-
surface S contains the point O = [1 : 1 : 0 : 0]. Associated to the anticanonical
divisor is a rational map S 99K P1, given by sending [X : Y : Z : W ] to [Z : W ].
Clearly this map is well-defined at all points except for O. By blowing up this
point we obtain a rational elliptic surface, that is, a smooth surface BlO(S)
with a morphism ρ : BlO(S) → P1 such that the exceptional curve above O is
a section. All but finitely many fibers of the map ρ are smooth curves of genus 1.

If S is a del Pezzo surface of degree 1 over an infinite field k, we wish to describe
the set S(k) of k-rational points. The main goal of this thesis is to state con-
ditions under which S(k) is Zariski dense in S. In [VA09] A. Várilly-Alvarado
considers del Pezzo surfaces of degree 1 over Q, given by the equation

Y 2 = X3 + aZ6 + bW 6

where a, b are nonzero integers. In [VA09], Theorem 1.1 he shows that the
rational points are Zariski dense if a finiteness conjecture on Tate-Shafarevich
groups holds, and if a and b satisfy some technical conditions. He also mentions
in [VA09], Remark 7.4 the surface S given by

Y 2 = X3 + 243Z6 + 16W 6

as an example of a surface that does not satisfy these conditions. N. Elkies
proved that the rational points are dense in this surface with a different method
in [Elk12]. He uses the fact that the morphism BlO(S)→ P1 has a fiber with a
3-torsion point to produce elliptic curves of positive rank that are not fibers of
the morphism. Elkies also mentions that there might be a similar construction
whenever some fiber has a rational torsion point other than the origin.

This was the starting point of this thesis, where we consider del Pezzo sur-
faces of degree 1 containing a k-point P that has finite order on its fiber. Our
main result is the following.

Theorem 4.8 Let S be a del Pezzo surface of degree 1 over a field k with
corresponding map ρ : BlO(S)→ P1. Let n ≥ 2 be an integer and let P ∈ S(k)
be a point. Let F0 ⊂ S be the image of the fiber of ρ containing P under the
blowup map BlO(S) → S. Assume that F0 is smooth and that the order of P
on F0 is equal to n. Let F ′0 be the strict transform of F0 in S′ = BlP (S).
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Then

(i) The Riemann-Roch space LS′(mF ′0) has dimension 1 as a k-vector space
for 0 ≤ m < n;

(ii) dimk(LS′(nF ′0)) = 2;

(iii) The vector space V := {f ∈ LS(−nKS)\{0} : µP ((f)S) ≥ n} ∪ {0} has
dimension 2.

This theorem shows that for a surface S as above, the complete linear system
associated to the divisor −nKS has a one-dimensional subsystem L consisting
of curves that contain P with multiplicity at least n. In Section 4.4 we will
show that a related system on BlP (S) is base point free, so we find a morphism
φ : BlP (S) → P1. In Section 5 we assume k = Q, and we will combine the
morphisms ρ and φ to obtain the following result on density of S(Q) in S.

Theorem 5.1 Assume S and P are as in Theorem 4.8, with k = Q, and
write φ for the obtained morphism BlP (S) → P1. If φ has a smooth fiber that
contains infinitely many rational points, then S(Q) is Zariski dense in S.

Remark 1.1. Note that Theorem 5.1 as stated in Section 5 is actually a state-
ment on density of the rational points in BlO,P (S) instead of S, but this is not
an issue, since BlO,P (S) and S have isomorphic non-empty open subspaces.
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2 Density of Rational Points

In this section we prove a sufficient condition for the rational points to be dense
on a del Pezzo surface. In fact, this condition can be proven more generally,
namely for Noetherian irreducible topological spaces of dimension two. We will
use the following lemma.

Lemma 2.1. In a Noetherian topological space X, every nonempty closed sub-
set Y can be expressed as a finite union

Y = Y1 ∪ · · · ∪ Yr

of irreducible closed subsets Yi. If we require that Yi 6⊂ Yj for i 6= j, then the
Yi are uniquely determined.

Proof. [Har77], Proposition I.1.5.

Since finite unions and subsets of Noetherian spaces are Noetherian, we can
apply this lemma to del Pezzo surfaces and all its subsets.

Proposition 2.2. Let X be a Noetherian irreducible topological space of di-
mension 2. Let T be a subset of X, and assume there are infinitely many closed
irreducible one-dimensional subsets of X, each of which contains infinitely many
points in T . Then T is dense in X.

Proof. Let E be one of the one-dimensional subsets containing infinitely many
points in T . Consider E ∩ T , where T is the topological closure of T . This is
closed in E, so using Lemma 2.1 we can write

E ∩ T = Y1 ∪ · · · ∪ Yr,

with Yi ⊂ E closed and irreducible in E. Assume dimYi = 0 for all i. Since
the Yi are irreducible, this implies that they are just singletons. Then we get a
contradiction, because E ∩ T contains infinitely many points. So without loss
of generality, we get dimY1 = 1. Since E is irreducible and dimE = 1, this
implies E = Y1, so E = E ∩ T , which implies E ⊂ T . So T must contain all
irreducible one-dimensional subspaces with infinitely many points in T . Again
by Lemma 2.1, we can write T = T1 ∪ · · · ∪ Tm with Ti irreducible and closed.
Assume dimTi ≤ 1 for all i. The equality

E =

m⋃
i=1

(E ∩ Ti)

yields that E = E ∩ Ti for some i, since E is irreducible. Since Ti is irreducible
and of dimension 1, we find E = Ti. Since we have infinitely many such sub-
spaces E, this again yields a contradiction. So without loss of generality, we
find dimT1 = 2. Because S is irreducible, this implies S = T1, so T is dense
in S.

Thus in order to conclude density of the k-points in a del Pezzo surface S
over k, it suffices to show that there are infinitely many closed irreducible one-
dimensional subspaces in S, each containing infinitely many k-points.
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3 Finding the Right Curves

In this section we start by recalling some definitions. Then we show what curves
are candidates for having infinitely many rational points, and give a way to find
such curves.

3.1 Definitions

Definition 3.1. A variety over a field k is a geometrically integral, separated
scheme of finite type over k. A surface is a variety of dimension 2. A curve is a
separated scheme of finite type over k, such that all the irreducible components
are of dimension 1.

Throughout this subsection, let X be a smooth variety over a field k.

Notation 3.2. We denote the structure sheaf of X by OX , and the function
field by k(X).

Definition 3.3. A prime divisor on X is a closed irreducible subscheme of
codimension 1. A Weil divisor is an element of the free abelian group Div(X)
generated by the prime divisors. Such a divisor is of the form D =

∑
Y nY Y ,

where Y runs over all the prime divisors and nY is an integer, called the multi-
plicity of D at Y . For all but finitely many Y we have nY = 0.

Definition 3.4. Let Y be a prime divisor on X, and let P be a point on Y . Let
f be a local equation for Y at P . This exists because X is smooth, so OP,X is a
unique factorization domain. The multiplicity of Y at P , denoted by µP (Y ), is
the largest integer r such that f ∈ mrP , where mP is the maximal ideal of OP,X .

Definition 3.5. The multiplicity of a Weil divisor D =
∑
Y nY Y at a point P

is the sum
µP (D) :=

∑
Y

nY µP (Y ).

Definition 3.6. A Weil divisor D is said to be effective if nY ≥ 0 for all Y .
We denote this by D � 0. The support of D is the union of those Y for which
nY 6= 0.

Given a prime divisor Y of X the local ring OY,X , which is the local ring of OX
at the generic point of Y , is a discrete valuation ring, since X is smooth. We
obtain a normalized valuation, which we extend to the function field

ordY : k(X)∗ → Z.

For a fixed f ∈ k(X)∗, there are only finitely many Y such that ordY (f) 6= 0
(See [Har77], Lemma II.6.1), so we can associate a divisor to f .

Definition 3.7. Let f ∈ k(X)∗.

• The divisor associated to f is given by:

(f) :=
∑
Y

ordY (f) · Y.

Such a divisor is called a principal divisor.
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• Two divisors D,D′ are said to be linearly equivalent if their difference is
principal. We write D ∼ D′.

• The Picard group PicX is the group of Weil divisors modulo linear equiv-
alence.

• For fixed D the complete linear system associated to D, denoted by |D|,
consists of all effective divisors that are linearly equivalent to D.

Definition 3.8. A Cartier divisor on X is an equivalence class of collections
of pairs (Ui, fi)i∈I satisfying the following conditions:

• The Ui’s are open sets covering X;

• The fi’s are nonzero rational functions in k(Ui);

• fif−1j ∈ OX(Ui ∩ Uj)∗ for all i, j ∈ I.

Two Cartier divisors (Ui, fi)i∈I and (Vj , gj)j∈J are equivalent if we have

fig
−1
j ∈ OX(Ui ∩ Vj)∗

for all i, j. If f ∈ k(X)∗, then {(X, f)} is a Cartier divisor. Such a divisor is
called a principal Cartier divisor.

The support of a principal Cartier divisor is the set of poles and zeros of f on X.
For a general Cartier divisor (Ui, fi)i∈I , the support is the union of the supports
of the principal divisors (Ui, fi)i∈I on Ui. A Cartier divisor is called effective if
it can be defined with fi ∈ O(Ui) for all i.

We define a group structure on the set CaDiv(X) of Cartier divisors on X by
setting (Ui, fi)i + (Vj , gj)j = (Ui ∩ Vj , figj)i,j .

Example 3.9 ([HS00], page 40). If g : Y → Z is a morphism of varieties, and
D = (Ui, fi)i is a Cartier divisor on Z, such that f(Y ) 6⊂ supp(D), then the
collection

g∗(D) := (g−1(Ui), fi ◦ g)

is a Cartier divisor on Y . Clearly, if D is principal, so is g∗(D). If D is effective,
so is g∗(D). If g is surjective, then the converse also holds: if fi /∈ OZ(Ui), then
fi has a pole somewhere on Ui, say at y. Then fi ◦ g has a pole at points in
g−1({y}), so fi ◦ g /∈ OY (g−1(Ui)).

It follows that we get a map g∗ : CaDiv(Z)→ CaDiv(Y ) if g(Y ) is not contained
in the support of any divisor, so if g(Y ) is dense in Z.

Remark 3.10. There is a map CaDiv(X)→ Div(X). See [HS00], page 38, for
this. For smooth varieties, this map is an isomorphism. See [Har77], Proposi-
tion II.6.11 for this. The map sends effective Cartier divisors to effective Weil
divisors, and principal Cartier divisors to principal Weil divisors. We can ap-
ply II.6.11 since for smooth varieties the local rings are unique factorization
domains. We will freely identify Weil and Cartier divisors when we work with
smooth varieties. If g : X → Y is a morphism between smooth varieties such that
g(X) is dense in Y , then we also obtain a map g∗ : Div(Y )→ Div(X) by com-
posing the isomorphism Div(Y )→ CaDiv(Y ), the map CaDiv(Y )→ CaDiv(X),
and the map CaDiv(X)→ Div(X).
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Remark 3.11. For effective divisors D we will often write P ∈ D instead of
P ∈ supp(D).

Definition 3.12. Set n := dimX. The canonical class KX is the divisor class
of a divisor associated to a nonzero n-form. See for example [HS00], Example
A.2.2.3. for this. Every divisor in this class is called a canonical divisor.

Definition 3.13. Let D be a Weil divisor. The Riemann-Roch space associated
to D is the vector space over k given by

LX(D) = {f ∈ k(X)∗ : (f) +D � 0} ∪ {0}.

Its dimension is denoted by `(D). There is a natural, surjective map

LX(D)\{0} → |D|,
f 7→ (f) +D.

We have (f) = (g) if and only if f = λg for some λ ∈ k, so we find that |D| is
naturally parametrized by P`(D)−1(k).

Next, we define the arithmetic and geometric genus. For this we will use the
definition of the cohomology groups.

Definition 3.14. Let Z be a topological space, and let F be a sheaf on Z.
We define the cohomology functors Hi(Z,F) to be the right derived functors of
Γ(Z,F). See [Har77], Chapter III.2, for more details.

Definition 3.15. Let Y be a projective scheme of dimension n over k The
arithmetic genus of Y is given by:

pa(Y ) := (−1)n(χ(OY )− 1),

where χ(OY ) =
∑
i(−1)i dimkH

i(Y,OY ).

This is a rather abstract definition, but we will always use the following proposi-
tion, based on intersection numbers, to compute the arithmetic genus of curves.
For the definition of the intersection number of curves or divisors we refer to
[Har77], Chapter V.1.

Proposition 3.16. Let C be a curve on a smooth, projective, geometrically
integral surface Y over a field k. Then we have:

2pa(C)− 2 = C(C +KY ),

where KY is any canonical divisor on Y , and C(C + KY ) is the intersection
number.

Definition 3.17. The geometric genus of a smooth, projective, geometrically
integral curve C over field k is given by

pg(C) := dimkH
0(C,Ω),

where Ω is the sheaf of holomorphic 1-forms on C. If C is singular and k is
perfect, we write C ′ for a normalization of C, and we define pg(C) := pg(C

′).
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For projective nonsingular curves C the values pg(C) and pa(C) agree (See
[Har77], Proposition IV.1.1), so we will often speak of the genus without spec-
ifying which one we mean. For projective, connected curves C that are not
necessarily smooth we have pg(C) ≤ pa(C). This follows for example from
Lemma 4.22, since pa(C) = dimkH

1(C,OC) by [Har77], Exercise III.5.3 , and
we have

pg(C) = pg(C
′) = pa(C ′) = dimkH

1(C ′, OC′)

for a normalization C ′ of C. A deep result known as Faltings’s theorem ([Fal86],
Theorem II.6.7) implies that any smooth algebraic curve of genus pg(C) ≥ 2
over a number field contains only finitely many rational points. So in order to
find curves that contain infinitely many rational points, our first goal should be
to find curves C with pg(C) ≤ 1.

3.2 Computations on the Blowup

Throughout this subsection, let S be a del Pezzo surface of degree 1 over a
field k, and let P ∈ S be a closed point not equal to O. Let F∞ ∈ | −KS | be
such that P /∈ F∞. This is possible since O is the unique base point of | −KS |.
Let F0 ∈ |−KS | be such that P ∈ F0. Note that F0 is unique with this property,
since its strict transform is a fiber of the morphism ρ : BlO(S)→ P1, and fibers
are disjoint.

For the definition of the blowing-up of a surface at a point we refer to [Har77],
Chapter V.3. We denote the blowing-up of S at P by S′, together with the map
π : S′ → S. The restriction of this map induces an isomorphism

S′\{π−1(P )} → S\{P},

and E := π−1({P}) is a curve, called the exceptional curve.

The map π is an isomorphism on π−1(S−{P}) = S′−E, so S and S′ are bira-
tional, and we obtain an isomorphism π∗ : k(S)→ k(S′), given by composition
with π. By [Har77], Proposition V.3.3, a canonical divisor KS′ on S′ is linearly
equivalent to π∗(KS)− E.

Proposition 3.18. The natural maps π∗ : PicS → PicS′ and Z → PicS′

defined by 1 7→ 1 ·E give rise to an isomorphism PicS′ ∼= PicS ⊕ Z. On S′ the
following rules on intersection hold:

(1) If C,D ∈ Div(S), then π∗(C) · π∗(D) = C ·D;

(2) If C ∈ Div(S), then π∗(C) · E = 0;

(3) For the self-intersection of E we have E2 = −1.

Proof. This follows from [Har77], Proposition V.3.2.

Definition 3.19. Let Y ⊂ S be an irreducible curve. The strict transform of
Y is the closure Y ′ of π−1(Y − {P}) in S′. It is an irreducible curve in S′. For
a divisor D =

∑
Y nY Y ∈ Div(S) the strict transform of D is

D′ :=
∑
Y

nY Y
′ ∈ Div(S′).
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Proposition 3.20. The map π∗ : Div(S)→ Div(S′) is given by

D 7→ D′ + µP (D) · E,

where µP (D) is the multiplicity of D at P .

Proof. [Har77], Proposition V.3.6.

Proposition 3.21. For D ∈ Div(S), the restriction of π∗ to LS(D) is an
isomorphism

LS(D)→ LS′(π∗(D)).

Proof. We will use the following commutative diagram

k(S)∗ k(S′)∗

Div(S) Div(S′)

π∗

π∗

If f ∈ LS(D) for a divisor D, then (f)S +D � 0, so

(π∗(f))S′ + π∗(D) = π∗((f)S +D)� 0.

This implies that π∗(f) ∈ LS′(π∗(D)). So π∗ : k(S)∗ → k(S′)∗ restricts to a
map

π∗ : LS(D)→ LS′(π∗(D)).

It is still injective as it is the restriction of an isomorphism. It is also surjective:
for g ∈ LS′(π∗(D)) there is an f ∈ k(S) such that π∗(f) = g. We have that

π∗((f)S +D) = (g)S′ + π∗(D)� 0,

so since π is surjective we get, using Example 3.9 that (f)S +D is effective, and
thus f ∈ LS(D).

Definition 3.22. For n,m ∈ Z≥1, we define the following vector space

Vn,m := {f ∈ LS(nF∞)\{0} : µP ((f)S) ≥ m} ∪ {0}.

We denote by Ln,m the image of Vn,m\{0} in | − nKS | under the map in Defi-
nition 3.13, so

Ln,m = {D ∈ | − nKS | : µp(D) ≥ m}.

The map sends f to D = (f)s + n · F∞. Because µP (f) = µP ((f)S) and
µP (F∞) = 0, we get µP (D) ≥ m, so the set mentioned above is indeed the
image of Vn,m. We will link Vn,m to a Riemann-Roch space of the blowup S′.
Note that π∗(nF∞) = nF ′∞, since µP (nF∞) = 0.

Lemma 3.23. For all n,m ≥ 1, the restriction of π∗ to Vn,m is an isomorphism

Vn,m
∼−→ LS′(nF ′∞ −mE).
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Proof. Let f ∈ Vn,m such that f 6= 0. We have π∗((f)S) = (f)′S + µP ((f)S)E.
So we get

(π∗(f))S′ −mE + nF ′∞ = (f)′S + µP ((f)S)E −mE + nF ′∞

= (µP ((f)S)−m)E + (f)′S + nF ′∞

Now (µP ((f)S)−m)E � 0 since µP ((f)S) ≥ m, and we have

(f)′S + nF ′∞ = ((f)S + nF∞)′ � 0,

since f ∈ LS(nF∞). So π∗(f) ∈ LS′(nF ′∞ − mE). So π∗ restricts to a
map Vn,m → LS′(nF ′∞ − mE). It is still injective, as it is the restriction
of an isomorphism. For surjectivity, let g ∈ LS′(nF ′∞ − mE) ⊂ LS′(nF ′∞).
There is f ∈ L(nF∞) such that π∗(f) = g. Using Lemma 3.20, we get
µP ((f)S) = ordE(g) ≥ m, so f ∈ Vn,m.

We get the following corollary.

Corollary 3.24. There is an s ∈ k(S′)∗ such that for all n ≥ 1 the following
map is an isomorphism

Vn,n → LS′(nF ′0),

f 7→ π∗(f)/sn.

Proof. The map ρ : S′ → P1 induces a map ρ∗ : k(P1) → k(S′). Let s ∈ k(P1)
such that s has a zero at the image of F0 and a unique, simple pole at the image
of F∞. Note that such an s exists because P is a k-point, so it has the same
degree as the image of F∞. Identify s with its image ρ∗(s) in k(S′) ∼= k(S). Then
(s)S = F0 −F∞ and (s)S′ = F ′0 +E −F ′∞. Now multiplication by sn ∈ k(S′) is
an isomorphism

LS′(nF ′0)→ LS′(nF ′∞ − nE).

Combining this with Lemma 3.23, applied to the case m = n, we get the desired
result.

Remark 3.25. In particular, since LS′(nF ′0) contains the constants, Vn,n con-
tains the element sn ∈ k(S). This corresponds to the element nF0 ∈ Ln,n.

Lemma 3.26. Assume n ≥ 2 and let C ∈ Ln,n be a connected curve. Then
the arithmetic genus pa(C ′) of the strict transform of C is equal to 1, and
µP (C) = n.

Proof. Write KS′ for a canonical divisor on S′. Set µ := µP (C) ≥ n. Since
KS′ ∼ π∗(KS) + E, we get

C ′ + µE = π∗(C) ∼ π∗(−nKS) ∼ −n(KS′ − E) = −nKS′ + nE.

Rewriting yields C ′ ∼ −nKS′+(n−µ)E. Thus computing the arithmetic genus
using Proposition 3.16 yields

2pa(C ′)− 2 = C ′(C ′ +KS′)

= (−nKS′ + (n− µ)E) · ((1− n)KS′ + (n− µ)E)

= n(n− 1)K2
S′ + (n− µ)(1− 2n)E ·KS′ + (n− µ)2E2.
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We have

K2
S′ = (π∗(−F∞) + E)2 = (F∞)2 + 2π∗(−F∞) · E + E2.

Since F 2
∞ = 1, and π∗(−F∞) · E = 0, this yields

K2
S′ = 1 + 2 · 0− 1 = 0.

Using Lemma 3.18 and the fact that KS′
∼= π∗(KS) + E, we get:

KS′ · E = (π∗(KS) + E) · E = 0 + E2 = −1.

Now, writing c = µ− n ≥ 0, we get

2pa(C ′)− 2 = (n− µ)(1− 2n) · (−1)− (n− µ)2

= −(c2 + (2n− 1)c).

Assume c > 0. Then 2pa(C ′)− 2 = −(c2 + (2n− 1)c) ≤ −4, since n ≥ 2, which
implies pa(C ′) ≤ −1. This yields a contradiction, since pa(C ′) ≥ pg(C

′) ≥ 0.
We conclude c = 0, so µ = n, and pa(C ′) = 1.

Note that Ln,n is parametrized by a projective space of dimension dimVn,n − 1.
The connected curves in Ln,n are birational to curves on S′ of arithmetic genus 1.
So if we have dimVn,n ≥ 2 we can find such curves, and these are candidates
for having infinitely many rational points.
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4 Existence of a Linear System

In this section we will study the space LS′(nF ′0) defined in the previous section,
and we will give a sufficient condition for it to have dimension at least 2.

4.1 An Exact Sequence of Sheaves

In order to get a better understanding of the space LS′(nF ′0), we will use an
exact sequence of sheaves on S′. We start by defining some sheaves on general
schemes. Throughout this section, let X be an integral scheme. We follow
[Har77], Section II.6.

Definition 4.1. Let f : Y → X be a morphism of schemes.

• We define the direct image sheaf f∗OY on X by setting

f∗OY (U) = OY (f−1(U))

for any U ⊂ X open.

• The map f is called a closed immersion if it induces a homeomorphism
Y → f(Y ), where f(Y ) has the topology induced from X, and the mor-
phism f# : OX → f∗OY is surjective.

Lemma 4.2. Let j : Y → X be a closed immersion, and let F be a sheaf of
abelian groups on Y . Then Hi(Y,F) = Hi(X, j∗F) for all i.

Proof. [Har77], Lemma II.2.10.

Definition 4.3. Assume D = {(Uj , fj)}j is an effective Cartier divisor on X.
We define the associated subscheme Y to be the closed subscheme defined by
the fi. We write i : Y → X for the closed immersion, and we define the ideal
sheaf IY to be the kernel of the morphism i# : OX → i∗OY .

Lemma 4.4. Let D be an effective Cartier divisor on X, with associated sub-
scheme Y . We have an exact sequence of sheaves on X

0→ IY → OX → i∗OY → 0.

Proof. This follows immediately from the definitions.

Definition 4.5. Let D = {(Uj , fj)}j be a Cartier divisor on X. Given an open
set U of X, consider the set

OX(D)(U) = {f ∈ k(X) : (f · fj)|Uj∩U ∈ OX(Uj ∩ U) for all j}

This yields a sheaf OX(D) on X, called the sheaf associated to D.

Lemma 4.6. Let D,D′ be Cartier divisors on X. Then OX(D) is a locally free
OX -module of rank 1, and OX(D +D′) = OX(D)⊗OX(D′).

Proof. [Har77], Proposition II.6.13.
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Lemma 4.7. Let D be an effective Cartier divisor on X, and let Y be the
corresponding closed subscheme. Then we have an isomorphism of sheaves

IY
∼= OX(−D).

Proof. [Har77], Proposition II.6.18.

4.2 The Sequence for del Pezzo Surfaces

In this subsection we will apply the lemmas in the previous subsection to the
case of del Pezzo surfaces of degree 1. Recall that for such a surface S we have
a morphism ρ : BlO(S)→ P1 associated to | −KS |, and almost all fibers under
this morphism are smooth curves of genus 1, so they are elliptic curves, each
with the unique point on the exceptional curve above O. We will prove the
following theorem.

Theorem 4.8. Let S be a del Pezzo surface of degree 1 over a field k with
corresponding map ρ : BlO(S)→ P1. Let n ≥ 2 be an integer and let P ∈ S(k)
be a point. Let F0 ∈ | −KS | be such that P ∈ F0. Assume that F0 is smooth
and that the order of P on F0 is equal to n. Let F ′0 be the strict transform of
F0 in S′ = BlP (S). Then

(i) dimk(LS′(mF ′0)) = 1 for 0 ≤ m < n;

(ii) dimk(LS′(nF ′0)) = 2;

(iii) Vm,m has dimension 1 for 0 ≤ m < n, and Vn,n has dimension 2.

Before we give the proof we state some results on elliptic curves and del Pezzo
surfaces.

Remark 4.9. A Weil divisor on an elliptic curve E is a formal sum, an element
of the free abelian group generated by the closed points on E. On E we also
have a group law, an actual addition of points. To avoid confusion, we write∑
Q nQ(Q) for a divisor, and

∑
Q nQQ for a sum of points on E.

Lemma 4.10. Let (E,O) be an elliptic curve, and let D =
∑
Q nQ(Q) be a

Weil divisor on E. Assume that all the points in the support of D are k-points.
Then D is principal if and only if∑

Q

nQ = 0 and
∑
Q

nQQ = O on E.

Proof. This is [Sil09], Corollary III.3.5.

For an elliptic curve E and a canonical divisor KE we have degKE = 0 by
[Sil09], Corollary II.5.5. Note that `(KE) = pg(E) = 1, so KE ∼ 0.

Lemma 4.11. Let X be a del Pezzo surface. Then H1(X,OX) = 0.

Proof. [Kol96], Lemma III.3.2.1.
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Lemma 4.12. Let X be a surface over a field k, and let π : X ′ → X be the
blowup of a point P . Then pa(X ′) = pa(X).

Proof. [Har77], Corollary V.3.5. proves this for algebraically closed fields. The
extension of scalars from k to k̄ is an exact functor that commutes with taking
the Čech complex of a finite affine cover, so the dimensions of the cohomology
groups agree.

Lemma 4.13. Let C and D be two curves on a surface X, having no common
irreducible component. Then

C ·D =
∑

P∈C∩D
(C ·D)P ,

where (C · P )P is the intersection multiplicity at P .

Proof. See [Har77], Proposition V.1.4 for this, and the definition of the inter-
section multiplicity at a point.

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. Recall that LS′(nF ′0) is the vector space of 0 and all
elements f ∈ k(S′)∗ satisfying

(f)S′ + nF ′0 � 0.

So LS′(nF ′0) is equal to the vector space of global sections of the sheaf OS′(nF
′
0).

In other words

LS′(nF ′0) = Γ(S′, OS′(nF
′
0)) = H0(S′, OS′(nF

′
0)).

We will show that dimH0(S′, OS′(nF
′
0)) = 2. For the sake of legibility, we will

write Hi(X,D) instead of Hi(X,OX(D)) from now on.

We have that F ′0 is effective, so combining Lemma 4.4 and Lemma 4.7, we
get the following exact sequence of sheaves on S′

0→ OS′(−F ′0)→ OS′ → i∗OF ′0 → 0,

where i : F ′0 → S′ denotes the inclusion. By Lemma 4.6, OS′(mF
′
0) is locally

free of rank 1, so tensoring with it is exact. We obtain the exact sequence

0→ OS′((m− 1)F ′0)→ OS′(mF
′
0)→ i∗OF ′0 ⊗OS′(mF

′
0)→ 0.

Here we used that OS′(D) ⊗ OS′(D′) ∼= OS′(D + D′), and OS′ = OS′(0). As
before, let F∞ ∈ | −KS | be such that P /∈ F∞. Recall that F ′0 ∼ π∗(F∞)− E,
so OS′(mF

′
0) ∼= OS′(mπ

∗(F∞) − mE). Write D := m(π∗(F∞) − E). Since
F ′0 6⊂ supp(D), the inclusion F ′0 → S′ yields a divisor i∗(D) on F ′0. We get an
isomorphism

i∗OF ′0 ⊗OS′(mF
′
0) ∼= i∗OF ′0(i∗(D)).

We will now show that O is the only common point of F0 and F∞. First we
note that they have no common irreducible component: since F0 is irreducible,
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this would imply that F0 is this common component. In particular, we would
get F0 ⊂ F∞, but since P ∈ F0 and P /∈ F∞, this is a contradiction. Now by
Lemma 4.13, we get

F0 · F∞ =
∑

Q∈F0∩F∞

(F0 · F∞)Q.

Since F0, F∞ ∈ | −KS |, the left-hand side equals (−KS)2 = 1. So we get

1 = F0 · F∞
=

∑
Q∈F0∩F∞

(F0 · F∞)Q

≥ (F0 · F∞)O

≥ 1,

so we get equality throughout. In particular, O is the only common point of F0

and F∞, with multiplicity 1. We get F ′0 ∩mπ∗(F∞) = m(O). Writing j for the
composition of the map F0 → F ′0 with i, we get

i∗OF ′0(i∗(D)) ∼= j∗OF0
(m(O)−m(P )).

In conclusion, we have the following exact sequence of sheaves on S′

0→ OS′((m− 1)F ′0)→ OS′(mF
′
0)→ j∗OF0

(m(O)−m(P ))→ 0.

Here we get the term −m(P ), since P is the image of E on S. This is by defini-
tion, since E was defined as the fiber above P . Taking global sections, we obtain
a long exact sequence of k-vector spaces for all m ≥ 1, from which we only need
the first few terms. We use Lemma 4.2 to replace Hi(S′, j∗OF0

(m(O) − m(P )))
by Hi(F0,m(O)−m(P )).

0 H0(S′, (m− 1)F ′0) H0(S′,mF ′0) H0(F0,m(O)−m(P ))

H1(S′, (m− 1)F ′0) H1(S′,mF ′0) H1(F0,m(O)−m(P ))
δm

Note the following: for 1 ≤ m < n we have H0(F0,m(O) − m(P )) = 0.
This follows from Lemma 4.10: since mO − mP 6= O on F0, the divisor
m(O) − m(P ) is not principal, and we get dimH0(F0,m(O) − m(P )) = 0.
Since nP = O on F0, we get dimH0(F0, n(P ) − n(O)) = 1. By induction, we
can now prove that dimH0(S′,mF ′0) = 1 for 0 ≤ m < n. For m = 0 this holds
since H0(S′, 0) = H0(S′, OS′) ∼= k. For the induction step we use the first part
of the long exact sequence, which now reads

0→ H0(S′, (m− 1)F ′0)→ H0(S′,mF ′0)→ 0,

for 1 ≤ m < n. So we get H0(S′, (m− 1)F ′0) ∼= H0(S′,mF ′0), which proves (i).

By Serre duality ([Har77], Corollary III.7.7 and Remark III.7.12.1), using the
fact that KE ∼ 0, we have

dimkH
1(F0,m(O)−m(P )) = dimkH

0(F0,m(P )− m(O)).
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By the same arguments as before, we get

dimH1(F0,m(O)− m(P )) =

{
0, 1 ≤ m < n,

1, m = n.

Using induction again, we can now prove that H1(S′,mF ′0) = 0 for 0 ≤ m < n.
The case m = 0 follows from Lemmas 4.11 and 4.12, and for the induction step
we note that part of the long exact sequence now yields

0→ H1(S′, (m− 1)F ′0)→ H1(S′,mF ′0)→ 0,

for 1 ≤ m < n. So H1(S′,mF ′0) ∼= H1(S′, (m− 1)F ′0), which is 0 by hypothesis.
Combining all this, we note that for m = n the long exact sequence now yields
a short exact sequence

0→ H0(S′, (n− 1)F ′0)→ H0(S′, nF ′0)→ H0(F0, n(O)− n(P ))→ 0.

In particular, we get dimH0(S′, nF ′0) = 1 + 1 = 2, which proves (ii).

By Corollary 3.24, we know that dimk Vm,m = dimk LS′(mF ′0) for all m, so
(iii) follows immediately from (i) and (ii).

4.3 Example for Small n

We have shown that the existence of a point P of order n implies that a certain
vector space has dimension 2. This in turn yields a one-dimensional linear
subsystem L := Ln,n of | − nKS | (see Definition 3.22), given by curves that
contain P with multiplicity n. For small n, the equations for these curves can
easily be computed. In this subsection, we compute these for n = 2 and n = 3.

Lemma 4.14. Let S be a del Pezzo surface of degree 1 defined over a field k
with corresponding map ρ : BlO(S)→ P1, and let P be a point on S.

(i) If P has order 2 on its fiber under ρ, then S can be written as a sextic
hypersurface in Pk(2 : 3 : 1 : 1) given by (1) such that the coefficients
satisfy

c30 = c60 = c61 = c62 = 0,

where P corresponds to the point [0 : 0 : 0 : 1].

(ii) If P has order 3 on its fiber under ρ, then S can be written as a sextic
hypersurface in Pk(2 : 3 : 1 : 1) given by (1) such that the coefficients
satisfy

c20 = c40 = c41 = c60 = c61 = c62 = c63 = 0,

where P corresponds to the point [0 : 0 : 0 : 1].

Proof. Embed S in Pk(2 : 3 : 1 : 1). Since P has order two or three on its
fiber, it is not equal to [1 : 1 : 0 : 0], so by changing variables we can assume
P = [0 : 0 : 0 : 1]. Consider the affine patch W 6= 0. Here S can be given by the
equation

y2 + a1(s)xy + a3(s)y = x3 + a2(s)x2 + a4(s)x+ a6(s),

17



where y = Y
W 3 , x = X

W 2 , s = Z
W and an =

∑n
i=0 anis

i is a polynomial of degree
at most n. Since P = (0, 0, 0) lies on the surface, we find a60 = 0.

Now assume P has order two on its fiber F . Then the tangent line to F at P is
given inside F by the equation x = 0. Since the line is given by a30y = a40x, we
get a30 = 0, a40 6= 0. We can now change coordinates, with the new coordinate
x′ := x+ a61

a40
s instead of x. We get the following equation for S, where we omit

the primes at x for the sake of legibility.

y2 + b1(s)xy + b3(s)y = x3 + b2(s)x2 + b4(s)x+ b6(s)

where bn =
∑n
i=0 bnis

i, and b30 = b60 = b61 = 0, b40 6= 0. We again change
coordinates, setting x′ := x+ b62

b40
s2. We get an equation for S given by

y2 + c1(s)xy + c3(s)y = x3 + c2(s)x2 + c4(s)x+ c6(s),

where, again, the primes are left out. Here we have cn =
∑n
i=0 cnis

i with
c30 = c60 = c61 = c62 = 0, as desired.

Next, assume P is of order three on its fiber. Then we immediately get a30 6= 0,
since otherwise the tangent line to F at P would be vertical, which would imply
P had order two. We change coordinates, setting y′ := y − a40

a30
x− a61

a30
s, to get

an equation

y2 + b1(s)xy + b3(s)y = x3 + b2(s)x2 + b4(s)x+ b6(s),

where, again, the primes are left out. Here we have bn =
∑n
i=0 bnis

i, and
b40 = b60 = b61 = 0, b30 6= 0. Since P has order three, we get 2P = −P , so the
tangent line to F at P only intersects F at P . This tangent line is given by
y = 0, so we get that the following equation can only have one solution

x3 + b20x
2 + b40x+ b60 = 0.

Since we have b40 = b60 = 0, this implies b20 = 0. As our next step, we change
coordinates, setting y′ := y − b62

b30
s2 − b41

b30
sx to get an equation

y2 + d1(s)xy + d3(s)y = x3 + d2(s)x2 + d4(s)x+ d6(s),

where dn =
∑n
i=0 dnis

i, and d20 = d40 = d41 = d60 = d61 = d62 = 0, d30 6= 0.
Again, the primes are left out. Finally, setting y′ := y − d63

d30
s3, we get an

equation in coefficients cn =
∑n
i=0 cnis

i, such that we also have c63 = 0.

In the case where P has order 2, after assuming S is in the form of Lemma
4.14(i), we have V2,2 = 〈x, s2〉. The linear system L2,2 consists of the curves of
the form x−λs2 = 0, for λ ∈ k, which is indeed of dimension 1. If we substitute
x = λs2 in the equation for S, we obtain the following equation for the curve

y2 + λs2 · c1(s)y + c3(s)y = s2 · f(s),

for certain f ∈ k[s] with deg(f) ≤ 4. The multiplicity of this curve at the point
P = (0, 0, 0) is at least 2, since c30 = 0.
In the case where P has order 3, after assuming S is in the form of Lemma
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4.14(ii), something similar happens. We get V3,3 = 〈y, s3〉, and L3,3 consists of
the curves y − λs3 = 0, for λ ∈ k. Substituting y = λs3 yields the following
equation

λ2s6 + λs3 · c1(s) · x+ λs3 · c3(s) = x3 + c2(s)x2 + c4(s)x+ c6(s),

which indeed has multiplicity at least 3 at P = (0, 0, 0).

Remark 4.15. To get a better understanding of what these curves look like,
one can apply the following coordinate change

t = 1
s ,

x′ = x
s2 ,

y′ = y
s3 ,

and then multiply the resulting equations by t6. In the case where n = 2, this
yields the following equations

y2 + λ(c10t+ c11)y + (c31t
2 + c32t+ c33)y = t4 · f(1/t).

So the resulting curves are double covers of P1, ramified at four points. For
n = 3, one gets cubic equations.

4.4 Properties of the Linear System

Throughout this section, we let everything be as defined in Theorem 4.8, with
the extra assumption that k is a perfect field. So far, we have proved that the
linear system | − nKS | has a one-dimensional subsystem L, consisting of those
curves that have multiplicity at least n in P . We are interested in the nature
of the corresponding curves. In this section we will show that all the strict
transforms of these curves on the blowup S′ are connected, and that an open
dense subset of the curves is smooth. First, we will prove that the base locus
of L consists solely of the point P , and that the base locus of |nF ′0| is empty.
Then we will apply the following theorem.

Theorem 4.16. Let X be a smooth projective variety over an algebraically
closed field k of characteristic 0. Let M be a linear system with base locus Σ.
Then there is an open dense subset of curves in M that are smooth at all points
in X − Σ.

Proof. This is Bertini’s theorem. See [Har77], Corollary III.10.9 and Remark
III.10.9.2.

Proposition 4.17. Write L for the linear system obtained in Theorem 4.8.
Then we have:

(1). The base locus Σ of L is just the point P ;

(2). If D1, D2 ∈ L, then D′1 ·D′2 = 0;

(3). The base locus of |nF ′0| is empty.
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Proof. First of all, note that P is contained in the base locus of L. Now assume
that dim Σ ≥ 1. We know that nF0 is one of the element of L, so Σ ⊂ F0, which
implies dim Σ = 1. Since F0 is irreducible, we get Σ = F0. For D ∈ L, this now
implies that D − F0 � 0, since F0 ⊂ suppD. Thus we get an injective map

L→M,

D 7→ D − F0,

where M := {D ∈ | − nKS − F0| : µP (D) ≥ n − 1}. For D ∈ L we
have µP (D − F0) = µP (D) − µP (F0) ≥ n − 1, so indeed the image is con-
tained in M . We get dimM ≥ dimL = 1. Since F0 ∈ | − KS |, we
have M = {D ∈ | − (n − 1)KS | : µP (D) ≥ n}. This set is contained in
{D ∈ | − (n − 1)KS | : µP (D) ≥ n − 1}, and this set is the projective space
associated to the vector space Vn−1,n−1. By Theorem 4.8, this vector space has
dimension 1, so dimM = 0, and we arrive at a contradiction. We conclude that
dim Σ = 0.

Now let D ∈ L such that F0 6⊂ D. Then nF0 and D are two elements of L
that have no common irreducible component, so we get

n2 = (−nKS)2 = nF0 ·D ≥
∑

Q∈nF0∩D
µQ(nF0) ·µQ(D) ≥ µP (nF0) ·µP (D) = n2.

We conclude that nF0 ∩D = {P}, so the base locus of L, which is contained in
this intersection, consists only of the point P . Note that π∗(D) = D + nE by
Lemma 3.26 and Lemma 3.20, so we get, using Lemma 3.18

nF ′0 ·D′ = (π∗(nF0)− nE) · (π∗(D)− nE)

= nF0 ·D − nE(π∗(nF0) + π∗(D)) + n2E2

= n2 − 0− n2 = 0.

Now, since the base locus of {π∗(D) : D ∈ L} is equal to the inverse image
of the base locus of L, we find that it equals E. Thus, the base locus B of
{π∗(D)−nE : D ∈ L} must be contained in E. If its dimension is 1, it must be
equal to E, but since E is not contained in π∗(nF0) − nE, we find dimB = 0,
so it is a finite set of points. Since nF0 and D have no common irreducible
component, and E is not a component of nF ′0, the strict transforms nF ′0 and D′

have no common component. Above we showed nF ′0 ·D′ = 0, so they have no
common points, and the base locus is empty.

Combining the last results, we immediately obtain the following corollary.

Corollary 4.18. There is an open dense subset of curves in |nF ′0| that are
smooth.

Our next goal is to show that the strict transforms are connected. Because the
linear system |nF ′0| has no base points, it corresponds to a projective morphism
f : S′ → P1, such that the fibers of f are the elements of |nF ′0|. By Stein
factorization (see [Har77], Corollary III.11.5), the morphism factors as f = g◦f ′,
where C = Specf∗OS′ , the morphism f ′ : S′ → C is projective with connected
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fibers, and g : C → P1 is a finite morphism. We fix C, f ′ and g for the remainder
of this section. Our first step will be to show that C is isomorphic to P1. Then
we will show that g is in fact a map of degree 1 to conclude that f has connected
fibers. To prove the first step, we will use the following lemma.

Lemma 4.19. Assume we have the following commutative diagram of abelian
groups

A B C 0

A′ B′ C ′.

α

f

β

g h

α′ β′

Assume the rows are exact, f is surjective, and g is injective. Then h is injective.

Proof. Let c ∈ C be such that h(c) = 0. By exactness, there is b ∈ B such
that β(b) = c. Now β′(g(b)) = h(β(b)) = 0, so g(b) ∈ kerβ′ = imα′. Let
a′ ∈ A′ map to g(b). Since f is surjective, we obtain a ∈ A with f(a) = a′.
Now g(α(a)) = α′(f(a)) = g(b). By injectivity of g, this yields α(a) = b. By
exactness of the upper row, we get c = β(α(a)) = 0, so h is injective.

We will use this lemma to prove that H1(C,OC) = 0, but first we state a
theorem by Serre.

Theorem 4.20. Let X be a noetherian scheme. Then the following conditions
are equivalent:

(i) X is affine;

(ii) Hi(X,F) = 0 for all F quasi-coherent and i > 0;

(iii) H1(X, I) = 0 for all coherent sheaves of ideals I.

Proof. [Har77], Theorem III.3.7.

Proposition 4.21. Let φ : X → Z be a morphism from a surface to a variety
of dimension 1. Then there is an injection H1(Z, φ∗OX)→ H1(X,OX).

Proof. Write F = φ∗OX . Take U, V ⊂ Z open affine such that Z = U ∪ V .
Define U ′ = φ−1(U) and V ′ = φ−1(V ). We obtain the commutative diagram
below. Here the rows are part of the Mayer-Vietoris sequence, for which we
refer to [Dan96], I.4.4.

H0(U,F|U )⊕H0(V,F|V ) H0(U ∩ V,F|U∩V ) H1(Z,F) 0

H0(U ′, OX |U ′)⊕H0(V ′, OX |V ′) H0(U ′ ∩ V ′, OX |U ′∩V ′) H1(X,OX)
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Because U, V are affine, and F is quasi-coherent, we have

H1(U,F) = 0 = H1(V,F).

So the upper row, which would in general end in H1(U,F|U )⊕H1(V,F|V ), ends
in a 0 by the previous theorem. By definition of the direct image, the left two
vertical maps are isomorphisms. Applying Lemma 4.19 to the diagram, we get
that the map H1(Z,F)→ H1(X,OX) is injective.

Because C = Specf∗OS′ , we have OC ∼= f∗OS′ . Because the composition f is
surjective, so is g, so dimC = dimP1 = 1. Now Lemma 4.21 yields an injection
H1(C,OC) → H1(S′, OS′). Because S′ is the blowup of a del Pezzo surface,
Lemma 4.12 and Lemma 4.11 yield that H1(S′, OS′) = 0, so H1(C,OC) = 0.
To conclude that C ∼= P1, we are left to show that C is smooth. We will show
that it is equal to its normalization. For this we use two lemmas from the Stacks
Project.

Lemma 4.22. Let k be a field. Let X be a proper scheme of dimension at
most 1 over k. If X ′ → X is a birational proper morphism, then

dimkH
1(X,OX) ≥ dimkH

1(X ′, OX′).

If X is reduced, H0(X,OX) → H0(X ′, OX′) is surjective, and equality holds,
then X ′ = X.

Proof. [Sta18, Tag 0CE0,] Lemma 49.18.4.

Lemma 4.23. Let k be a field, and let Z be a proper curve over k. Set
κ := H0(Z,OZ). Then

[κ : k]s dimκH
1(Z,OZ) ≥ pg(Z).

Proof. [Sta18, Tag 0CE0,] Lemma 49.18.5.

Proposition 4.24. The curve C is isomorphic to P1. The finite morphism
g : C → P1 is of degree 1.

Proof. Again we use the normalization C ′ of C, which is smooth because k is
perfect. We have a birational proper morphism C ′ → C, so by Lemma 4.22 we
get H1(C ′, OC′) = 0, since we have H1(C,OC) = 0. Since S′ is normal, and
C ′ is the normalization of C, the morphism f ′ factors through C ′. Because S′

contains k-points, so does C ′. By Lemma 4.23, we get pg(C
′) = 0, and since

C ′ is smooth and has a k-point, this implies C ′ ∼= P1. Now we note that C
is reduced as it is the image of a reduced scheme, H0(C,OC) → H0(C ′, OC′)
is surjective, and H1(C,OC) = 0 = H1(C ′, OC′), so we apply Lemma 4.22
again to conclude C = C ′ ∼= P1. Recall that the map g is finite, and that f ′

has connected fibers. Write m for the degree of g. Since f ′ is a morphism to
C, it corresponds with a linear system M without base points. Let F be a
fiber of f ′. Because all fibers are pullbacks of points on C, these fibers are all
linearly equivalent. Any fiber of f is a union of m fibers of f ′, and because all
these fibers are linearly equivalent, a fiber of f is linearly equivalent to mF .
In particular we have nF ′0 ∼ mF . Recall that PicS′ ∼= PicS ⊕ Z by Lemma
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3.18, and F ′0 corresponds to (F0,−1) in this group, so it is a primitive element.
Thus the fact that mF and nF ′0 are linearly equivalent implies that F ∼ dF ′0
for d = n

m . But as shown in Theorem 4.8, the system |dF ′0| has dimension 0 for
d < n. We conclude that d = n, and thus m = 1.

Combining the results in this section, we can now prove the following theorem.

Theorem 4.25. The linear system |nF ′0| induces a morphism f : BlP (S)→ P1

with connected fibers of arithmetic genus 1. In characteristic zero, an open
dense subset of the fibers is smooth.

Proof. We know that the morphism f ′ has connected fibers, and f = g ◦ f ′.
Since g is of degree 1, every fiber of g ◦ f ′ is just a fiber of f ′, hence connected.
We conclude that f has connected fibers. Recall that Lemma 3.26 implies that
the genus of these curves equals 1. Corollary 4.18 implies that in characteristic
zero an open dense subset of the fibers of f is smooth.

So in characteristic zero almost all elements of |nF ′0| are irreducible curves of
genus 1, of which those containing a k-point are elliptic curves over k.

5 A Result on Density of the Rational Points

Throughout this section let S be a del Pezzo surface of degree 1 over Q, and
let ρ : BlO(S) → P1 be the morphism associated to the anticanonical divisor.
Set n ≥ 2, and assume P ∈ S(Q) is a point that has order n on its fiber under ρ.
Let φ : BlP (S) → P1 be the morphism associated to the linear system |nF ′0| in
Theorem 4.8. We consider the blowup BlO,P (S) in both points, and abusing
notation, we write ρ and φ for the obtained morphisms from this blowup to P1.
We will prove the following theorem.

Theorem 5.1. If φ has a smooth fiber that contains infinitely many rational
points, then the rational points lie dense in BlO,P (S).

Before we prove this we state some preliminary results on elliptic curves.

Lemma 5.2. Let E be an elliptic curve over a field k, and let m ∈ Z. Write
E[m] for the set of m-torsion points of E over an algebraic closure of k. If
char(k) = 0 or char(k) = p and p - m, then E[m] ∼= (Z/mZ)2.

Proof. [Sil09], Corollary III.6.4.

Theorem 5.3. Let E be an elliptic curve over Q. Then the torsion subgroup
of E(Q) is isomorphic to one of the following groups

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Proof. This is Mazur’s theorem. See [Sil09], Theorem VIII.7.5.
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Recall that the affine part of S can be given by an equation

y2 + c1(s)xy + c3(s)y = x3 + c2(s)x2 + c4(s)x+ c6(s).

Consider the generic fiber of the morphism ρ in BlO,P (S), which is the fiber
of ρ, defined over the function field Q(s) of P1. Following the notation of [Sil09],
Exercise III.3,7, we obtain polynomials φm, ψm, ωm ∈ Q[s, x, y] such that for
any s0 ∈ Q such that its fiber is smooth, and any point Q = (xQ, yQ, s0) the
multiple m[Q] on its fiber under ρ is given by(

φm(Q)

ψm(Q)2
,
ωm(Q)

ψm(Q)3

)
.

Thus the point Q is m-torsion on its fiber under ρ if and only if m[Q] is the
point at infinity, so if and only if ψm(Q) = 0. As mentioned in the exercise, the
polynomial ψm is independent of y, so we may actually view it as an element in
Q[s, x].

Definition 5.4. For m ∈ Z≥1, we define Zm ⊂ BlO,P (S) to be the zero locus
of the polynomial ψm.

Now for every s0 ∈ Q the x-coordinates of the m-torsion points on the fiber
above s0 are precisely the roots of ψm(s0) ∈ Q[x]. Accordingly, we find that for
a point Q = (xQ, yQ, sQ) ∈ BlO,P (S) on a smooth fiber, Q is m-torsion if and
only if it is a root of ψm ∈ Q[s, x].

Remark 5.5. If we intersect Zm with a smooth fiber of ρ, we obtain exactly the
m-torsion points on this fiber. Since the group of m-torsion points is isomorphic
to (Z/mZ)2, we find that Zm is a closed curve of degree m2 over P1, which
possibly contains components of singular fibers of ρ.

We are now ready to prove the theorem.

Proof of Theorem 5.1. Write F for the fiber of φ that contains infinitely many
rational points. Note that each fiber R of ρ can contain only finitely many of
these points: assume R ∩ F has infinitely many points. Then we must have
dim(R∩F ) = 1, so they have an irreducible component in common. Since F is
smooth and connected, it is irreducible, so we have F ⊂ R. But then the image
of F on BlO(S) is contained in the image of R. In particular, P is contained
in the image of R with multiplicity at least n. Since P lies on a smooth fiber,
this is a contradiction. Since the singular fibers of ρ form a closed strict subset,
and each of those fibers contains at most finitely many rational point, we can
conclude that infinitely many of the rational points on F lie on a smooth fiber
of ρ.

Now we have infinitely many rational points on F that lie on smooth fibers of
ρ, but cannot lie in a finite union of fibers of ρ. Using Lemma 2.2, it suffices to
show that only finitely many of these points have finite order on their fiber. By
Mazur’s theorem it suffices to show that for m ∈ {1, . . . , 10} ∪ {12} the curves
Zm and F have only finitely many points in common. This is immediate, unless
the curves have a common irreducible component. As mentioned above F is
irreducible, so this would imply that F ⊂ Zm. We will show that this can not
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happen. Since F is one of the fibers of φ, its image on BlO(S) intersects P with
multiplicity n ≥ 2. The image of Zm on BlO(S) intersects a smooth fiber of
ρ precisely in the m-torsion points, and there are m2 such points on a fiber.
Because of this, the multiplicity on Zm of each of these points must be 1. In
particular, since P lies on a smooth fiber, its multiplicity on the image of Zm
is at most 1. Since P has multiplicity n on the image of F , we conclude that
F 6⊂ Zm, so F only contains finitely many m-torsion points. Combining this for
all m, we conclude that F contains only finitely many points that are torsion
on their fiber of ρ, which is what we wanted to show.

Remark 5.6. To conclude density of the rational points on a del Pezzo surface
over Q of degree 1 with a Q-torsion point P , one can apply Theorem 5.1 as
follows. Search for any other rational point Q, not equal to O. If Q lies on a
smooth fiber of φ in BlO,P (S), then this fiber is an elliptic curve over Q with Q
as its zero, and if it has positive rank, we are already done. Besides Q, the fiber
contains another Q-point, namely the sum of points on the fiber that lie above
P . If this point has infinite order, this proves the density. If the rational points
are indeed Zariski dense, one has to get rather unlucky for these points not to
satisfy these conditions, since the singular fibers are contained in some closed
strict subset of the blowup in O and P , and all the torsion points are contained
in a finite union of the curves Zm.
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