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Introduction

In this thesis we aim to do two things, in the first three sections we develop
some arithmetic intersection theory in the style of Gillet-Soulé. When doing
intersection theory one uses Chow’s moving lemma to move divisors to rational
equivalent ones so that they intersect properly. When doing intersection theory
over fields the intersection numbers you get this way by taking degrees only de-
pend on the rational equivalence class of a divisor, however in case of SpecZ the
degree of a non-zero rational function is non-zero. This is remedied by in addi-
tion to the intersection theory over SpecZ, considering an analogous theory on
the complex points. Here we consider smooth hermitian line bundles and green
currents associated to divisors. For (green) currents there is a ∗-product which
satisfies properties analogous to the product in ordinary intersection theory. We
have tried to present the results in a way that showcases the similarities and the
results we use in arithmetic intersection theory boil down to similar statements
holding for both the intersection product and the ∗-product.

The other thing we are interested in is heights. In diophantine geometry heights
are used to control the number of rational points, they are used for finiteness
statements or describing distributions of infinitely many points for example.
First we use the arithmetic intersection theory from section 3 to define a global
height for arithmetic varieties. Next in section 4 we work with limits of models
in the style of Zhang to accomplish a number of things. First by considering
p-adic norms the treatment of the finite primes and the infinite prime become
more similar. Second by considering limits of models we enlarge the norms and
intersection numbers available to us, for example metrics at infinity don’t have
to be smooth anymore. We define local heights for each prime p and show that
these converge under some assumptions on the line bundles. We can decompose
the global height as a sum of local heights, the global height also converges
under some assumptions. We also consider metrics associated to an algebraic
dynamical system, i.e. we have a surjective morphism f : X → X of a smooth
integral projective variety over Q such that f∗L ∼= L⊗d for some line bundle
L and some d > 0. By a limit argument we obtain a metric on L that is
invariant under f∗. In section 5 we apply this when X is an abelian variety, f is
multiplication by n > 1 and L is a symmetric line bundle. The height obtained
from the invariant metric in this case is the Neron-Tate height and we prove
some of its elementary properties.
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1 Intersection theory

We define an arithmetic variety X to be a normal integral scheme that is pro-
jective and flat over Spec(Z) such that the generic fiber is smooth over Q. We
denote the generic point of X by η or ηX depending on context.

In this section we develop intersection theory on excellent schemes. Though
we won’t apply it in its full generality. We will apply it to arithmetic varieties
in the third section, but also to varieties over fields and Zp. We mostly focus
on the geometric aspects and will refer to other sources for the commutative
algebra running behind the scenes.

1.1 Intersection theory on excellent schemes

Let X be an integral excellent scheme and let R(X) = OX,η be the field of
rational functions on X. We let the group of codimension p cycles Zp(X) be
the free abelian group generated by the set {{x}}x∈X(p) , where X(p) is the set
of codimension p points x, i.e. dimOX,x = p. Similarly we define the group
of l-cycles Zl(X), the free abelian group generated by dimension l points, i.e.
dim {x} = l. If l + p = dimX then these coincide because arithmetic varieties
are excellent. For a codimension p cycle Z =

∑
x nx{x} in Zp(X) we define the

support to be

SuppZ =
⋃
nx 6=0

{x}.

Now let L be a line bundle on X and s a non-zero rational section of L, i.e.
0 6= s ∈ Lη. We define the support of (L, s) and the divisor associated to (L, s)
as follows. We set

Supp(L, s) := {x ∈ X|sx ∈ mxLx},

div(L, s) :=
∑

x∈X(1)

ordx(s){x}(∈ Z1(X)).

Here ordx is defined as follows: let b be a local basis for L around x, then
sx = fb for some rational function f . Then f can be written as a ratio g

h of two
regular functions. We set the order of vanishing of a regular function g at x as
the length lOX,x

(OX,x/(g)) of OX,x, and we set ordx(s) = ordx(g) − ordx(h).
For the many good properties of the length we refer to appendix A of [2]. For us
it is important that ordx is R(X)∗-linear on non-zero rational sections and that
it agrees with the discrete valuation at a codimension 1 point if X is normal.

Finally Supp(div(L, s)) is defined as above since div(L, s) ∈ Z1(X). The set
Supp(L, s) is closed and it always contains Supp(div(L, s)) in general, when X
is normal both notions coincide1.

Let Z =
∑r
i=1 niZi be a codimension p-cycle. We say that Z and (L, s) meet

properly if Supp(L, s)∩SuppZ∩X(p) = ∅. Under this assumption we can define
their intersection cycle as follows: We let γi be the generic point of Zi. Since
γi /∈ Supp(L, s) we see that s is a unit at γi, i.e. sγi /∈ mγiLγi . Therefore s|Zi

1prop 7.2.14(b) in [7]
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gives a non-zero rational section of L|Zi
and we define their intersection product

as

(L, s) · Z =

r∑
i=1

nidiv(L|Zi , s|Zi) ∈ Zp+1(X).

Since the order of a function at a point is linear, we have div(L⊗ L′, s⊗ s′) =
div(L, s) + div(L′, s′). Hence (L ⊗ L′, s ⊗ s′) · Z = (L, s) · Z + (L′, s′) · Z. So
our product is linear in (L, s), and clearly it is also linear in Z, this is of course
under the assumption everything intersects properly.

Proposition 1.1. Suppose (L1, s1) and (L2, s2) are line bundles on X with
rational sections and let Z be a cycle, such that they all intersect properly, then
the product is commutative in the following sense

(L1, s1) · ((L2, s2) · Z) = (L2, s2) · ((L1, s1) · Z).

Proof. We may assume Z is integral by linearity. Then we may assume Z = X,
since writing W = div(Lj |Z , sj |Z) we have

div(Li|W , si|W ) = div((Li|Z)|W , (si|Z)|W ).

Then we need to check that

(L1, s1) · div(L2, s2)

and
(L2, s2) · div(L1, s1)

have the same multiplicities at codimension 2 (inside Z) points of Supp(L1, s1)∩
Supp(L2, s2). This is again a statement about lengths and we refer to appendix
A of [2] or chapter 1.3 of [9].

Next we define the push-forward of cycles. Let f : X → Y be a proper mor-
phism of excellent schemes and let Γ be an irreducible closed subscheme of X
of dimension l. Then f(Γ) is an irreducible closed subscheme of Y of dimension
at most l. We set

f∗(Γ) =

{
[R(Γ) : R(f(Γ))]f(Γ), if dim f(Γ) = l

0, otherwise
,

and extend linearly to get a homomorphism f∗ : Zl(X)→ Zl(Y ), clearly this is
functorial by basic properties of field extensions.

Lemma 1.2. Let f : X → Y be a proper morphism of integral excellent schemes,
let 0 6= φ ∈ R(X), then f∗(div(φ)) = div(NR(X)/R(Y )(φ)) if dim(X) = dim(Y )
and 0 otherwise.

Proof. First assume dim(X) = dim(Y ), let y ∈ Y be a codimension 1 point,
since X is integral and f surjective we see that every x ∈ f−1(y) is a codimension
1 point of X. Since we only need to check the multiplicity at codimension 1
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points we may assume Y = SpecOY,y which is the spectrum of a 1-dimensional
local integral domain, and

X = SpecB = Spec
∏

xi∈f−1(y)

Bi

where Bi = OX,xi . Note that B is finite over A, the lemma then follows from
[9] 1.12.

If dim(Y ) < dim(X) − 2 the result is 0 by definition of the push-forward. So
suppose dim(Y ) = dim(X)−1, then we may assume Y to be irreducible. Let Xη

be the generic fiber of X → Y , note that for Z ⊂ X irreducible f∗Z is 0 unless Z
is the closure of a point in the generic fiber, in which case f∗Z = [R(Z) : R(Y )]Y .
Hence we may replace X by Xη and Y by SpecR(Y ), it then follows from [9]
1.18.

Now let (L, s) be a line bundle together with a rational section on Y and suppose
that f(ηX) /∈ Supp(L, s). Then we can consider (f∗L, f∗s) on X, where f∗s is
the image of s under Lf(ηX) → f∗(L)ηX . If Z is an l-dimensional cycle on X
meeting (f∗L, f∗s) properly, then also f∗Z meets (L, s) properly.

Proposition 1.3. In the situation above we have the following projection for-
mula:

f∗((f
∗L, f∗s) · Z) = (L, s) · f∗Z.

Proof. Let x ∈ X, then locally at f(x) ∈ Y we can write s = aω where ω is
locally a basis of L and a is a non-zero rational function. Let f∗x be the local
homomorphism OY,f(x) → OX,x, then we note that f∗x(a) is a unit at x if and
only if a is a unit at f(x). It follows that Supp(f∗L, f∗s) = f−1Supp(L, s).

Now by linearity we may assume Z is integral. By the above we see that (L, s)
and f∗(Z) again meet properly. Now note that

(f∗L, f∗s) · Z = div(f∗L|Z , f∗s|Z) = div(g∗(L|f(Z)), g
∗(s|f(Z))),

where g = f |Z : Z → f(Z). Taking pushforwards and using that the problem
is local on the image we reduce to the case where X = Z and f : X → Y is
surjective, where it is left to show

f∗div(f∗L, f∗s) = [R(X) : R(Y )]div(L, s).

This follows from lemma 1 since locally s is in the image of R(Y ) ⊂ R(X), so
that NX/Y (s) = s[R(X):R(Y )].

We let Ratp(X) ⊂ Zp(X) be the subgroup generated by rational divisors, that is
cycles of the form div(φ) where φ is a rational function on an integral subscheme
Y of codimension p − 1 on X. We also denote such a cycle as (φ/Y ). Then
we define the Chow groups CHp(X) of X to be Zp(X)/Ratp(X), similarly we
define CHp(X)(= CHdim(X)−p(X)).

As another corollary of lemma 1 we see that f∗ is compatible with rational equiv-
alence hence we get a well-defined pushforward on chow groups f∗ : CHp(X)→
CHp(Y ).
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Lemma 1.4. Let R be a Noetherian integral domain and X projective integral
over R. Let L be a line bundle on X and x1, ..., xr ∈ X points (of codimension
at least 1). Then there exists a non-zero rational section s of L such that

Supp(L, s) ∩ {x1, ..., xr} = ∅.

Proof. Note that we may assume the xi are closed points by picking points yi
in the closure of each xi and noting that s not a unit at yi implies that s is not
a unit at xi. Let m1, ...,mr be the maximal ideal sheaves corresponding to the
xi and I = m1 · · ·mr. Consider the short exact sequence

0→ IL→ L→ L⊗OX/I ∼=
r⊕
i=1

L⊗ κ(xi)→ 0.

Let O(1) be very ample, then by [5] III.5.2 we have for n� 0

H1(X, IL(n)) = 0.

From the long exact sequence in cohomology we find that

H0(X,L(n))→ H0(X,

r⊕
i=1

L(n)⊗ κ(xi))

is surjective. So there exists a global section s′ of L(n) with s′(xi) 6= 0 for all i,
and for L = OX we get a global section t of O(n) with t(xi) 6= 0 for all i. Hence
s = s′/t is a non-zero rational section of L with s(xi) 6= 0 for all i.

We now consider the intersection product on the Chow groups. Let L be a line
bundle and α ∈ CHp. Let Z ∈ Zp represent α. Then by lemma 2 when X
is integral and projective over a Noetherian integral domain, e.g. when X is
an arithmetic variety, there is a rational section s of L such that (L, s) and Z
intersect properly, we define

c1(L) · α = (L, s) · Z ∈ CHp+1(X)

Theorem 1.5. c1(L) · α does not depend on the choice of Z or s. Hence it
defines a morphism c1(L) : CH∗ → CH∗+1.

Proof. Note that if s′ is another rational section of L, then s and s′ differ by
some rational function φ. We find by linearity that

(L, s) · Z − (L, s′) · Z = div(φ|Z) ∈ Rat∗(X).

To show independence of Z, let (OY , φY ) be a rational divisor. We may assume
Y is integral. Then by commutativity (proposition 1.1) we have

(L, s) · div(OY , φ) = (OY , φY ) · div(L|Y , s|Y ).

We need to show the latter is rational. Writing div(L|Y , s|Y ) =
∑
i niZi we find

(L, s) · div(OY , φ) =
∑
i

nidiv(OZi , φ|Zi) ∈ Rat∗(X).
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From proposition 1.1 it follows that the order of the Li does not matter, we
have

c1(L1) ◦ ... ◦ c1(Ld) = c1(Lσ(1)) ◦ ... ◦ c1(Lσ(d))

for any permutation σ, therefore we have a well-defined morphism

c1(L1, ..., Ld) : CH∗ → CH∗+d,

depending only on L1, .., Ld. More generally we get a well-defined morphism

P (L1, ..., Ld) : CH∗ → CH∗+d

for P a homogeneous polynomial of degree d, depending only on L1, ..., Ld. Then
as a corollary of proposition 1.3 we have

f∗P (f∗L1, ..., f
∗Ld)(Z) = P (L1, ..., Ld)(f∗(Z)).

Let X be projective over R, closed point x ∈ X lies over some closed point
r ∈ R and we define deg(Z) =

∑
i ni[k(xi) : k(ri)] for Z =

∑
i nixi a 0-cycle.

Let f : X → Y be a proper morphism of schemes over R. Then from the
definition of f∗ it follows that deg f∗(Z) = deg(Z). When R = Spec k is the
spectrum of a field, note that CH0(Spec k) ∼= Z. Then the structure morphism
X → S induces CH0(X) → Z which, as seen from the definition, agrees with
deg.

When R = SpecZ even in the simplest case of X = SpecZ the degree of a
non-zero rational function, which is just a rational number, is non-zero. Hence
in general deg only gives a homomorphism on the cycle groups and not on
the Chow groups. Note however that we do have CH0(SpecZ) ∼= Z with 1
corresponding the class of SpecZ, so we have a degree for 1-cycles that does
respect rational equivalence by setting

deg(Z) = π∗(Z) ∈ CH1(SpecZ) ∼= Z

for a 1-cycle Z, where π : X → SpecZ is the structure morphism.

Note that π∗Z is non-zero only when Z is flat over SpecZ. In this case Z =∑
i ni{pi}+ V with pi closed points of the generic fiber, which is a variety over

Q, and V a sum of vertical divisors. Then deg(Z) =
∑
i ni equals the degree

of
∑
i nipi ∈ CH0(XQ). Hence we are essentially counting closed points of the

generic fiber, as in intersection theory of varieties over Q.

This notion of degree allows us to define the degree of a p + 1-cycle on with
respect to line bundles L1, ..., Lp on an arithmetic variety, as

deg(c1(L1, ..., Lp)(Z)),

and it satisfies the projection formula

deg(c1(f∗L1, ..., f
∗Lp)(Z)) = deg(c1(L1, ..., Lp)(f∗Z)).

Now let v(Q) be the set of places of Q and let |f |p = p−ordp(f) be the usual
p-adic norm, and |f |∞ the usual absolute value on Q ⊂ R, then we have the
product formula ∏

p∈v(Q)

|f |p = 1
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or equivalently if we set log(∞) = 1∑
p∈v(Q)

ordp(f) log(p) = 0,

for all f ∈ Q∗ = Rat(SpecZ)∗. For finite places − log |f |p = ordp(f) log(p) is
nothing but the degree of f at p multiplied by log(p). This suggests that if we
take in account what happens ”at infinity” we might still obtain an intersection
theory compatible with degrees.

2 Infinite parts

To take into account what happens ”at infinity” line bundles are replaced by
metrized line bundles, and we attach (green) currents to cycles. In this section
we discuss some of the theory of these metrized line bundles and currents. In
the next section we will use them to define arithmetic chow groups and deduce
analogues of all the statements in the first section ending with an arithmetic
degree that is compatible with rational equivalence.

2.1 Metrized line bundles

Let X be an arithmetic variety and consider the C-points of X denoted X(C).
This can be viewed as a complex manifold since the fiber over Q is assumed to
be smooth. For a point x ∈ X(C) let px be the corresponding scheme theoretic
point of X and denote the local ring homomorphism OX,px → C with φx. A
locally free coherent sheaf E on X gives rise to a locally free coherent sheaf EC
on X(C), with fibers E(x) = Epx ⊗OX,pX

C where the map OX,px → C is φx. A
hermitian metric h on E is a collection of hermitian metrics {hx}x∈X(C) with hx
a hermitian metric on E(x), h is said to be C∞ or smooth/continuous if locally
for sections s, s′ ∈ EC(U) the function hx(s(x), s′(x)) is smooth/continuous on
U . A pair E = (E, h) with h a (smooth/continuous) hermitian metric is called
a (smooth/continuous) hermitian locally free coherent sheaf on X.

On OX we have the constant section 1. This induces a canonical metric by
setting hx(1(x), 1(x)) = 1. We denote the pair (OX , h) = O

can

X .

For two metrized line bundles (E, h) and (E′, h′) we naturally get a metric on
E ⊗ E′ by setting

(h⊗ h′)x((s⊗ s′)(x), (t⊗ t′)(x)) = hx(s(x), t(x)) · h′(s′(x), t′(x)),

where s, t are local sections of E at x and s′, t′ of E′.

We can also consider the pull-back of a metrized line bundle. We get the induced
metric on f∗E by setting

f∗hx(f∗s(x), f∗s′(x)) = hf(x)(s(f(x)), s′(f(x))).
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2.2 Green currents

Now let X be a d-dimensional complex manifold. Let Ap,q(X) and Ap,qc (X) be
the spaces of smooth (p, q) forms on X and smooth (p, q) forms with compact
support respectively. We letDp,q(X) be the space of linear mapsAd−p,d−qc (X)→
C (continuous with respect to some topology on Ac though we will not care
about this here), these are called currents.

We give some important examples of currents:

1. let ω ∈ Ap,q(X), then we get [ω] ∈ Dp,q(X) defined by

[ω](η) =

∫
X

ω ∧ η, η ∈ Ad−p,d−qc (X).

This gives an identification of Ap,q(X) as a subgroup Dp,q(X).

2. Let Y be a codimension p complex submanifold of X, then we get a current
δY ∈ Dp,p(X) defined by

δY (η) =

∫
Y

η,

for a codimension p cycle Y =
∑
ni
Yi we define δY =

∑
i niδYi

.

If T is a (p, q)-current and ω a (p′, q′)-form we get a (p+p′, q+ q′) current ω∧T
defined by

ω ∧ T (η) = T (ω ∧ η).

By abuse of notation we also denote it [ω] ∧ T sometimes. With this definition
we have ω ∧ [η] = [η ∧ ω] = (−1)|ω||η|η ∧ [ω]. Note in particular that if one of ω
and η has even degree then the order doesn’t matter.

The differentials ∂, ∂ induce maps ∂ : Dp,q(X) → Dp+1,q(X), ∂ : Dp,q →
Dp,q+1(X) respectively by setting

∂(T )(η) = (−1)p+q+1T (∂(η)), ∂(T )(η) = (−1)p+q+1T (∂(η)),

for η ∈ Ad−p,d−qc (X). The sign here is chosen so that [dω] = d[ω] for ω a smooth
form, which can be seen from Stokes’ theorem.

Letting f : X → Y be a proper morphism of complex manifolds we can define
a pushforward f∗ : Dp,q(X)→ Dp−d+dimY,p−d+dimY (Y ) by setting

f∗(T )(η) = T (f∗(η)).

The pushforward of currents commutes with both ∂ and ∂ because pull-back
does on forms.

Note that we can view example 2 as a special case of example 1. Indeed we can
consider [1] on Y , then δY = i∗[1] where i : Y → X is the inclusion.

We set dc = 1
4πi (∂ − ∂), then ddc = i

2π∂∂. Let Y be a codimension p cycle
on X. Then g ∈ Dp−1,p−1(X) is called a green current for Y if there is some
ω ∈ Ap,p(X) such that

ddc(g) + δY = [ω].
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Theorem 2.1. (Poincaré-Lelong formula) Let (L, h) be a smooth hermitian line
bundle on a complex variety X and let s be a non-zero section of L. Then we
have an equality of currents

ddc[− log(h(s, s))] + δdiv(s) =
−i
2π

[∂∂ log(h(s, s))].

In other words [− log(h(s, s))] is a green current for div(s), we also denote it
[L, s].

We define the first Chern class of a line bundle c1(L, h) to be the form −i
2π [∂∂ log(h(s, s))].

Note that this doesn’t depend on s, since ∂∂ log |φ| = 0 for φ a rational function,
which also shows that c1(OcanX ) = 0. It is clear that c1 is linear in (L, h) and
d(c1) = 0, hence we get a homomorphism to the de Rham cohomology of X

c1 : P̂ic(X)→ H2
dR(X),

where P̂ic(X) is the group of isomorphism classes of metrized line bundles with
the operation ⊗ defined above. Further by definition of the pull-back metric it
is clear that c1 is compatible with pull-back (of forms).

2.3 Complex analogs

We work here with algebraic projective complex varieties. Cycles, morphisms
and (sections of) line bundles are all assumed to be algebraic.

First we define the ∗ product on green currents. Let (L, s) a smooth hermitian
line bundle and let gZ be a green current for a cycle Z on X such that (L, s)
and Z intersect properly. We define

[L, s] ∗ gZ = [L, s] ∧ δZ + c1(L) ∧ gZ .

This is again a green current for (L, s) ·Z, indeed we may assume Z is integral.
Then by Poincaré-Lelong on Z we have

ddc[− log(h(s, s))] ∧ δZ = c1(L) ∧ δZ − δdiv(s|Z),

hence we find

ddc([L, s] ∗ gZ) + δ(L,s)·Z = c1(L) ∧ δZ + ddc(c1(L) ∧ gZ)

= c1(L) ∧ δZ + c1(L) ∧ ddc(gZ)

= c1(L) ∧ ωZ ,

where ωZ = ddc(gZ) + δZ . As we shall now see the ∗-product satisfies similar
properties to the intersection product defined in the first section.

Lemma 2.2. Suppose f : X → Y is a morphism and Z ⊂ X a cycle. Let gZ be
a green current for Z and ωZ = ddcgz + δZ . If f∗[ωZ ] = [αZ ] for some smooth
form αZ then f∗gZ is a green current for f∗Z.

Proof. We have

ddcf∗gZ = f∗dd
cgZ = f∗[ωZ ]− f∗δZ = f∗[ωZ ]− δf∗Z .
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Now let f : X → Y be a proper morphism. Let L = (L, h) a hermitian line
bundle on Y , s a non-zero rational section of L intersecting a cycle Z properly.
Let gZ , ωZ as in the lemma.

Proposition 2.3. In the above situation we have a projection formula

f∗([f
∗L, f∗s] ∗ gZ) = [L, s] ∗ f∗gZ .

Proof. By linearity we may assume that Z is integral. First note we have the
equality

f∗(c1(f∗L) ∧ gZ) = c1(L) ∧ f∗gZ .

Indeed if we let ω be a smooth form we have by definition

f∗(c1(f∗L) ∧ gZ)(ω) = c1(f∗L) ∧ gZ(f∗ω)

= gZ(c1(f∗L) ∧ f∗ω))

= gZ(f∗(c1(L) ∧ ω))

= c1(L) ∧ f∗gZ(ω).

It remains to show that

f∗([−f∗(log h(s, s))] ∧ δZ) = [− log h(s, s)] ∧ δf∗Z .

We may assume X = Z is irreducible. Let again ω be a smooth form then we
have

f∗([−f∗(log h(s, s))] ∧ δZ)(ω) =

∫
Z

−f∗(log h(s, s)ω)

= deg(Z/f(Z))

∫
f(Z)

− log h(s, s)ω

=

∫
f∗Z

− log h(s, s)ω

= [− log h(s, s)] ∧ δf∗Z(ω).

Where in the second equality we use that f is generically finite étale.

Proposition 2.4. Let (L1, s1), (L2, s2) be smooth hermitian line bundles with
non-zero rational sections and let gZ be a greens function for a cycle Z, suppose
that (Li, si) and Z intersect properly. Then the ∗ product is commutative in the
following sense2

[L1, s1] ∗ ([L2, s2] ∗ gZ) = [L2, s2] ∗ ([L1, s1] ∗ gZ),

up to exact forms.

Proof. By definition we have to show equality

[L1, s1]∗δ[L2,s2]·Z+c1(L1)∗([L2, s2]∗δZ) = [L2, s2]∗δ[L1,s1]·Z+c1(L2)∗([L1, s1]∗δZ)

2Note that d[α] = [dα] holds for smooth forms whereas log h(s, s) has logarithmic singu-
larities along div(s). Therefore we do need to prove something instead of it being a simple
calculation using the definitions.
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up to exact forms. By definition of δ and linearity we may assume Z = X.3 It
then follows from the following precise statement.

Theorem 2.5. Let (L1, s1), (L2, s2) smooth hermitian line bundles such that
(L1, s1) and (L2, s2) intersect properly, then we have

[L1, s1] ∧ δdiv(L2,s2) + c1(L1) ∧ [L2, s2]− [L2, s2] ∧ δdiv(L1,s1) − c1(L2) ∧ [L1, s1]

=
i

2π
(∂([L1, s1] ∧ ∂[L2, s2]) + ∂([L2, s2] ∧ ∂[L1, s1])).

Proof. The idea is to use Hironaka’s resolution of singularities to get a sequence
of blow-ups such that the support of the pull-backs of div(s1),div(s2) and the
exceptional locus is a normal crossings divisor. Using a partition of unity the
problem is then reduced to a computation on Cn, see [9] 5.3 for more details.

2.4 Local height

Let (L0, s0), ..., (Lk, sk) smooth hermitian line bundles with rational sections
and let Z be a cycle, and suppose all the div(si) and Z intersect properly. Note
that if Z is prime then on Z the 0 function can be interpreted as a green current
for Z with ωZ = 1. And we have

[L0, s0] ∗ · · · ∗ [Lk, sk] ∧ δZ = i∗([i
∗L0, i

∗s0] ∗ · · · ∗ [i∗Lk, i
∗sk] ∗ 0),

where i : Z → X is the inclusion.

Now assume k = dimZ, then we define the local height of Z with respect to the
(Li, si) as

〈(L0, s0), ..., (Lk, sk)|Z〉∞ = [L0, s0] ∗ · · · ∗ [Lk, sk] ∧ δZ(
1

2
).

Note that by commutativity the local height of Z only depends on the (Li, si)
and not on their order. For this note that

[Li, si] ∗ (gZ + ∂A+ ∂B) = [Li, si] ∗ gZ + c1(Li) ∧ ∂A+ c1(Li) ∧ ∂B,

but
c1(Li) ∧ ∂A+ c1(Li) ∧ ∂B = ∂(c1(Li) ∧A) + ∂(c1(Li) ∧B),

since c1(Li) is a closed form. Now the right hand side vanishes because the
intersection of all the div(si) with Z is 0-dimensional.

Remark 2.6. From the definition it follows that for gZ a green current for Z
we have

[L0, s0]∗· · ·∗ [Lk, sk]∗gZ = [L0, s0]∗· · ·∗ [Lk, sk]∧δZ +c1(L1)∧· · ·∧c1(Lk)∧gZ .
3Here and possibly in other places we use Hironaka’s resolution of singularities so that we

may assume Z is smooth.
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Then since [Lk, sk] ∗ gZ is a green current for Y = (Lk, sk) · Z, if we plug this
in the above equation things cancel and we find

〈(L0, s0), ..., (Lk, sk)|Z〉∞ = 〈(L0, s0), ..., (Lk−1, sk−1)|Y 〉∞ + c1(L0) ∧ · · · ∧ c1(Lk−1) ∧ sk ∧ δZ(
1

2
)

= 〈(L0, s0), ..., (Lk−1, sk−1)|Y 〉∞ −
1

2

∫
Z

log hk(sk, sk)c1(L1) ∧ · · · ∧ c1(Lk−1).

This allows us to compute the local height inductively, combining this with the
projection formula from proposition 2.3 allows us to deduce a projection formula
for local heights.

Proposition 2.7. Let f : X → Y be a (proper smooth) morphism, (L0, s0), ..., (Lk, sk)
smooth hermitian line bundles on Y and Z a k-cycle on X. Assume f(Z) in-
tersects the (Li, si) properly, then we have

〈(f∗L0, f
∗s0), ..., (f∗Lk, f

∗sk)|Z〉∞ = 〈(L0, s0), ..., (Lk, sk)|f∗Z〉∞.

Proof. We use induction on k, for k = 1 this is just the projection formula from
before (proposition 2.3). Let k > 1 and assume it holds for k−1, we may assume
Z = X is prime and let W = (Lk, sk) · Z. Then by the induction formula we
have

〈(f∗L0, f
∗s0), ..., (f∗Lk, f

∗sk)|Z〉∞

= 〈(f∗L0, f
∗s0), ..., (f∗Lk−1, f

∗sk−1)|W 〉∞ −
1

2

∫
Z

log f∗hk(sk, sk)c1(f∗L1) ∧ · · · ∧ c1(f∗Lk−1).

Using that c1 commutes with f∗, induction on the dimension of W and the
transformation formula for integrals shows that the right hand side satisfies the
projection formula hence is equal to

〈(L0, s0), ..., (Lk−1, sk−1)|f∗W 〉∞ −
1

2

∫
f∗Z

log hk(sk, sk)c1(L1) ∧ · · · ∧ c1(Lk−1).

Using the induction formula again shows the proposition.

3 Arithmetic intersection theory.

3.1 Arithmetic intersection theory

Let X again be an arithmetic variety. We define an arithmetic cycle of codi-
mension p to be a pair (Z, T ) where Z is a cycle of codimension p and T is a
(p−1, p−1) current on X(C). We say that (Z, T ) is of green type if T is a green
current for Z(C). The group of arithmetic cycles of codimension p, respectively

those of green type are denoted ẐpD(X) and Ẑp(X) respectively. Similarly we
can define arithmetic cycles of dimension l and if p+ l = dimX we have

ẐpD(X) = ẐD,l(X), Ẑp(X) = Ẑl(X).

We give some important examples:
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1. Let L = (L, h) be a smooth hermitian line bundle on X and s a non-zero
rational section of L. Then by Poincaré-Lelong (div(s),− log h(s, s)) is of

green type, denoted by d̂iv(L, s).

2. Let Y be an integral subscheme of codimension p−1 on X and φ a non-zero
rational function on Y . Then we can define

[− log |φ|2]Y (C)(η) =

∫
Y (C)

(− log |φ|2)η.

By Poincaré-Lelong the cycle (div(OY , φ), [− log |φ|2]Y (C)) is of green type,

it is denoted by (φ̂/Y ).

3. If u, v are currents of type (p−2, p−1) and (p−1, p−2) respectively then
(0, ∂(u) + ∂(v)) is a p-dimensional cycle of green type.

Let R̂at
p
(X) be the group generated by cycles in examples 2 and 3. Then we

define arithmetic chow groups/arithmetic chow groups of green type respectively
as follows

ĈH
p

D(X) = ẐpD(X)/R̂at
p
(X), ĈH

p
(X) = Ẑp(X)/R̂at

p
(X).

For a morphism f : X → Y of arithmetic varieties we can define a pushforward
of arithmetic cycles by

f∗(Z, T ) = (f∗Z, f∗T ),

this induces a homomorphism f∗ : ĈHD,l(X) → ĈHD,l(Y ) as we see in the
following lemma.

Lemma 3.1. Let f : X → Y be a proper morphism and let Z be a d-dimensional
subvariety of X. Then for φ a non-zero rational function on Z and η a smooth
(d, d) form on Y with compact support we have∫

Z

log |φ|2f∗η =

∫
f(Z)

log |NR(Z)/R(f(Z))(φ)|2η

if dim(f(Z)) = d and 0 otherwise. In other words we have

f∗[log |φ|2] ∧ δZ = [log |NR(Z)/R(f(Z))(φ)|2] ∧ δf∗Z .

Proof. First if dim(Z) > dim(f(Z)) then η is 0 on f(Z). If dim(Z) = dim(f(Z)),
then we may assume X = Z is irreducible. Then we can consider a dense smooth
open subset U ⊂ f(Z) such that f |U : f−1(U) → U is finite étale and f−1(U)
does not intersect the support of φ. By finite étale the change of coordinates
formula implies that ∫

f−1(U)

f∗ω = deg(Z/f(Z))

∫
U

ω,

for any form ω. Since f−1(U) does not intersect the support of φ we have
NR(Z)/R(f(Z)(φ) = φdeg(Z/f(Z)), so that taking log multiplies by deg(Z/f(Z)).
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Now let L = (L, h) be a smooth hermitian line bundle and s a non-zero rational
section of L. Let (Z, T ) be an arithmetic cycle of codimension p such that Z
and (L, s) meet properly. Then we define the arithmetic intersection cycle as
follows

(L, s) · (Z, T ) = ((L, s) · Z, [L, s] ∗ T ).

From proposition 1.1 we see that this is linear in (L, s) and (Z, T ).

We again have a projection formula. Let f : X → Y be a proper morphism
of arithmetic varieties. Let L = (L, h) a hermitian line bundle on Y , s a non-
zero rational section of L and assume that f(ηX) /∈ Supp(L, s). Let f∗s as in
proposition 2. Let (Z, T ) be an arithmetic cycle on X such that (f∗L, f∗s) and
Z meet properly.

Proposition 3.2. In the above situation we get an arithmetic projection for-
mula

f∗((f
∗L, f∗s) · (Z, T )) = (L, s) · f∗(Z, T ).

Proof. This follows from propositions 1.3 and 2.3.

We now consider the intersection product on the arithmetic Chow groups. Let

L be a hermitian line bundle and α ∈ ĈH
p

D. Let (Z, T ) ∈ Ẑp represent α. Then
there is a rational section s of L such that (L, s) and Z intersect properly and
we define

ĉ1(L) · α = (L, s) · (Z, T ).

Theorem 3.3. ĉ1(L) · α does not depend on the choice of (Z, T ) or s. Hence

it defines a morphism ĉ1(L) : ĈH
∗
D → ĈH

∗+1

D .

Proof. First we show independence of s, so let s′ be another section such that
the supports intersect properly. Then we have (L, s′) = (L ⊗ OcanX , s ⊗ φ) for
some rational function φ. By linearity then

(L, s) · (Z, T )− (L, s′) · (Z, t) = (OcanX , φ) · (Z, T ) = (φ̂/Z)

since c1(OcanX ) = 0.

So far we have morphism c(L) : Ẑ∗ → ĈH
∗+1

D , and we need to show that

R̂at
∗
⊂ ker c(L). First consider (0, ∂A + ∂B) ∈ R̂at

∗
. Then since c1(L) is a

closed form we have (perhaps up to sign) equality

(L, s) · (0, ∂A+ ∂B) = (0, ∂(c1(L) ∧A) + ∂(c1(L) ∧B)) ∈ R̂at
∗+1

.

Next we consider φ̂/Y , we may assume Y is integral by linearity. Then if Y
is vertical we are done by the first section. So suppose Y is horizontal. First
assume it is generically smooth. By 5.19(commutatitivity up to exact forms at
least for generically smooth Y ) and the projection formula we have

(L, s) · (φ̂/Y ) = j∗((j
∗L, j∗s) · d̂iv(O

can

Y , φ))

= (φ/div(s|Y ))∧ = 0,

inside CHD.

The general case follows by resolution of singularities, see [9] 5.20 for more
details.
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Now let d = dimX and let (Z, T ) ∈ ẐD,0(X). Write Z =
∑
x∈X(0)

nxx then we

define the arithmetic degree

d̂eg(Z, T ) =
∑

x∈X(0)

nx log #κ(x) +
1

2
T (1).

Theorem 3.4. The arithmetic degree has the following properties:

1. for f : X → Y a morphism of arithmetic varieties we have d̂eg(Z, T ) =

d̂egf∗(Z, T ).

2. for α ∈ R̂at0(X) the degree is zero, hence it induces d̂eg : ĈHD,0(X)→ R.

Proof. For x a closed point we have

f∗x = [κ(x) : κ(f(x))]f(x),

so that
d̂eg(f∗x, 0) = [κ(x) : κ(f(x))] log #κ(f(x)) = log #κ(x).

For currents T we have f∗T (1) = T (f∗(1)) = T (1), hence 1. follows.

By 1. it suffices to show 2. for X = SpecZ. Here it is just the product formula,
that is ∑

p∈v(Q)

log |f |p = 0

for f ∈ Q. Note that |f |2∞ = hcan(f, f), hence the factor 1
2 in the definition.

Remark 3.5. Note that if z =
∑
i niPi is a cycle of closed points contained in

one of the fibres Xp, then d̂eg(Z, 0) = deg(Z) log(p), where on the right hand
side we view Z as a cycle on the fibre Xp viewed as a scheme over Fp and the
degree is defined as in section 1. In particular if Z is a q-cycle contained in Xp

and L1, ..., Lq is a collection of smooth hermitian line bundles then

〈L1, ..., Lq|Z〉 = deg(c1(L1) · · · c1(Lq) · Z) log(p).

3.2 Global and local heights

Now let Z be a q-cycle ofX, and let L1, ..., Lq be a collection of smooth hermitian
line bundles. We define the height of Z with respect to L1, ..., Lq as

〈L1, ..., Lq|Z〉 := d̂eg(ĉ1(L1) · · · ĉ1(Lq) · (Z, 0)).

For Z a q + 1-cycle of X we define it as in section 1.4 From the projection
formula and theorem 2.1 we obtain a projection formula for heights:

〈f∗L1, ..., f
∗Lq|Z〉 = 〈L1, ..., Lq|f∗Z〉.

4note that CH0(SpecZ) ∼= ĈH0(SpecZ) ∼= Z
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Now let s1, ..., sq be rational sections of L1, ..., Lq used to compute the height.
Note that by theorem 3.4(i) the height decomposes as a sum

〈L1, ..., Lq|Z〉 =
∑
p

〈(L1, s1), ..., (Lq, sq)|Z〉p + 〈(L1, s1), ..., (Lq, sq)|Z〉∞,

where p runs over the primes of Z. Here we say that 〈.〉p are the local heights at
p with respect to the Li, si. Note that 〈.〉∞ is the same local height at infinity
as in section 2.

Remark 3.6. Now write div(sq|Z) = H +
∑
p Vp, where H is the horizontal

part of div(sq|Z) and Vp is the part supported on the fiber over p. By linearity
the height decomposes as a sum of the heights of H and the Vp. By remark 3.5
the heights of Vp only give a contribution at p calculated by intersection theory
in the fiber over p. Hence from the induction formula for the local height at
infinity (remark 2.6) and the linear independence of log(p) over Q it follows that
the local heights at p verify the following induction formula:

〈(L1, sq), ..., (Lq, sq)|Z〉p = 〈(L1|Z , s1|Z), ..., (Lq−1|Z , sq−1|Z)|H〉p+c1(L1|Z) · · · c1(Lq−1|Z)Vp log(p).

Note the similarities with the induction formula at infinity, where the c1 term
is given by an integral over Z. In the next section we will introduce p-adically
metrized line bundles. As it turns out the c1 term can then be interpreted
as integrating a certain measure denoted c1(L1) · · · c1(Lq−1) log ||sq||δZ over a
suitable analytic space defined over Qp, this is done by considering the Berkovich
analytic space as explained in [1].

4 Models and adelic metrics

In the preceeding sections we gave the infinite place/prime special treatment in
a sense, by considering metrized line bundles on the complex points. Whereas
we grouped the finite places/primes together via intersection theory over SpecZ.
We note however that the definition of metrized line bundles still makes sense
for the finite places if we consider the Qp points X(Qp) instead of C-points,
and instead of hermitian metrics we consider p-adic norms. Note that for these
definitions we only need to consider the generic fiber of X. For arithmetic
varieties there is a natural way to define p-adic metrics, and it is closely related
to the intersection theory of the fibers over p.

4.1 Model metrics

Let |.|p be the standard p-adic norm on Q, and let Qp be the completion of Q
with respect to the p-adic norm. Let X be a smooth projective variety over Qp
and let L be a line bundle. A p-adic metric on L is a collection of p-adic norms on
each fiber L(x), x ∈ X(Qp). We can put continuity assumptions on the metrics
but this does not really matter for us right now as we will only consider model
metrics. As in the complex case there are natural norms on pull-backs and tensor
products. By putting f∗||f∗s||(x) = ||s||(f(x)) and ||s⊗t||(x) = ||s||(x) · ||t||(x).
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Suppose X̃ is projective, integral and flat over SpecZp, and suppose the generic

fiber is isomorphic to X. Let L̃ be a line bundle on X̃ and suppose L̃|X ∼= L⊗e

for some e. These data define a model (X̃, L̃, e) for (X,L). To such a model
there is a natural way to assign a p-adic metric on L. Namely let x ∈ X(Qp),
then since X̃ is projective over Spec(Zp), by the valuative criterion of properness

there is a unique extension x̃ ∈ X̃(Zp) of x, i.e. we have a commutative diagram

x : SpecQp → X
↓ ↓

x̃ : SpecZp → X̃

,

hence x∗L⊗e = x̃∗L̃ ⊗Zp Qp. Whenever we have a 1-dimensional Qp vector
space V with a Zp submodule W of rank 1, there is a natural p-adic norm on

V . Namely by setting ||x||W = infr∈Qp
{|r| : x ∈ rW} for x ∈ V . Since L̃ is

a model for L⊗e we put ||s||L̃(x) = ||s⊗e||1/e
x̃∗L̃

, we refer to such a metric as a
model metric.

Remark 4.1. Assume e = 1, then log ||s||L̃(x) is nothing but the order of
vanishing of s at the closed point of x̃ multiplied by a factor of log(p), i.e.

where the zariski closure of x inside X̃ intersects the closed fiber. Compare
for example when X̃ = SpecZp and s ∈ Qp, then ||s||(SpecQp) = |s|p. If s is

supported on the closed fiber and X̃ is regular, then each x̃ intersects a unique
irreducible component of the closed fiber so that log ||s|| is locally constant
and gives the multiplicities of the irreducible components. This allows us to
evaluate log ||s|| on the generic points of irreducible components. In general one
may always blow-up to get enough sections that intersect a unique irreducible
component.

Proposition 4.2. Let (X̃, L̃, e) be a model for (X,L). Suppose we have another

model X̃ ′ for X together with a birational morphism ϕ : X̃ ′ → X̃ which restricts
to an isomorphism over the generic fiber, then (X̃ ′, ϕ∗L̃′, e) is another model
for (X,L) inducing the same metric.

Proof. Note that ϕ is projective since it is a morphism of projective schemes over
Spec(Zp).5 Let x ∈ X̃(Qp) and let x̃ ∈ X̃(Zp) be the unique section extending x.
Because ϕ is an isomorphism over the generic fiber there is a 1-1 correspondence
between X̃(Qp) and X̃ ′(Qp). Let x′ ∈ X̃ ′(Qp) be the point corresponding to x.
Then we have the following commutative diagram

x′ : Spec(Qp) → X̃ ′

↓ ↓ ϕ
x̃ : Spec(Zp) → X̃

.

Since ϕ is projective x̃ lifts to a unique section x̃′ ∈ X̃ ′(Zp) extending x′ and

we have equality x̃∗L̃ ∼= x̃′∗ϕ∗L̃.

Now suppose L0, ..., Lk is a collection of line bundles with model metrics, and
suppose (X̃i, L̃i, ei) are models inducing the metrics. Consider the product

5[7] corollary 3.3.32
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X0,...,k = X̃0 ×SpecZp
· · · ×SpecZp

X̃k and set X̃ to be the Zariski closure of
∆(X) inside X0,...,k, where ∆ is the diagonal map of X into the generic fiber

X×SpecQp · · ·×SpecQp X of X0,...,k. Let ι be the inclusion of X̃ into X0,...,k, and

let pi be the projection onto X̃i. Now note that pi ◦ι restricts to pi ◦∆ = idX on
the generic fiber, hence we can apply the proposition to see that ι∗p∗i L̃i induces

the same metric as L̃i. So we find that X̃ is a common model for all the metrics.

As another consequence we can and will assume from now on that our models
are normal. When we have a collection of line bundles with model metrics they
have common normal model to which we can apply the intersection theory of
section 1.

Now assume again (L0, s0), ..., (Lk, sk) is a collection of line bundles with model
metrics and rational sections, suppose Z ⊂ X is a k-cycle and that the (Li, si)

and Z all intersect properly. Let (X̃, L̃i, ei) be a normal common model for all

the model metrics and let Z̃ be the zariski closure of Z inside X̃. We define the
local height at p of Z with respect to the bundles as

〈(L0, s0), ..., (Lk, sk)|Z〉p :=
1

e0 · · · ek
degp((L̃0, s

⊗e0
0 ) · · · (L̃k, s⊗ekk ) · Z̃),

where for the right hand side the sections s⊗eii are viewed as rational sections

of L̃i. This intersection product is contained in the closed fiber and degp is the
degree of this intersection product viewed as a scheme over SpecFp multiplied
by a factor of log(p).

Note that the local height does not depend on the models. Indeed suppose
(X̃ ′, L̃′0, ..., L̃

′
k, e
′
0, ..., e

′
k) is another model for the metrics, then again using the

diagonal construction there is a model X̃ ′′ dominating both X̃ ′ and X̃, which
is an isomorphism on the generic fiber X. The right hand side in the definition
of the local height being defined in terms of intersection theory satisfies the
projection formula. Therefore we can directly compare the local heights defined
by the L̃′i and the L̃i, a telescoping argument then finishes the proof cf. theorem
4.5.

4.2 Limits

Let ||.|| be a p-adic metric for L on X. We say ||.|| is approximated by a sequence

of models (X̃i, L̃i, ei) if log ||.||/||.||L̃i
converges uniformly to zero on X(Qp).

Consider the following example, suppose L has a p-adic model metric ||.||1. Sup-
pose we have a surjective morphism f : X → X together with an isomorphism
ϕ : f∗L→ L⊗d for some integer d > 1. Consider the metrics inductively defined
as ||s||n = (ϕ∗f∗||s⊗d||n−1)

1
d , where ϕ∗||s|| = ||ϕ(s)||.

Theorem 4.3. The limit ||.||0 = limn→∞ ||.||n exists and is the unique metric

on L satisfying ϕ∗f∗||.||
1
d
0 = ||.||0.

Proof. Put h = log ||.||1/||.||2, note that h is bounded on X(Qp) because ||.||1
and ||.||2 are model metrics. We can put them on a common model and consider

the rational section s extending 1. Then log ||s||1||s||2 (x) is the order of vanishing
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at the closed point of x̃, up to a factor log(p), so this is bounded over X(Qp).
Then note that log ||.||1||.||2 (x) does not depend on 0 6= s ∈ L(x), indeed if 0 6= s′ is

a second section then s′ = fs for some f ∈ Qp and we have

log
||s′||1(x)

||s′||2(x)
= log

||s||1(x)|f |p
||s||2(x)|f |p

= log
||s||1(x)

||s||2(x)
.

Now note that

log ||.||n =
1

d
ϕ∗f∗ log ||.||n−1

... = (
1

d
ϕ∗f∗)n−2 log ||.||2

= (
1

d
ϕ∗f∗)n−2(h+ log ||.||1)

= (
1

d
ϕ∗f∗)n−2h+ log ||.||n−1.

Therefore log ||.||n = log ||.||1 +
∑n−2
k=0( 1

dϕ
∗f∗)kh, since h is bounded we see that

sup
x∈X(Qp)

|(1

d
ϕ∗f∗h| ≤ 1

dk
sup

x∈X(Qp)

|h|,

so that h∞ :=
∑∞
k=0( 1

dϕ
∗f∗)kh exists and we see that ||.||n converges to ||.||0 =

||.||1eh∞ .

By definition it is clear that ϕ∗f∗||.||
1
d
0 , now if ||.||′ also satisfies the equation,

then ||.||0||.||′ satisfies it at well. Then we find that

sup
x∈X(Qp)

| log
||.||0
||.||′
| = sup

x∈X(Qp)

|1
d
ϕ∗f∗ log

||.||0
||.||′
| ≤ 1

d
sup

x∈X(Qp)

| log
||.||0
||.||′
|,

therefore the supremum is 0 so that ||.||0 = ||.||′.

Note that the theorem still holds for all p (including p = ∞) when one starts

with a bounded metric ||.||1, which in case of finite p just means that log ||.||1||.|| is

bounded for some model metric ||.||, and in case of p =∞ just means that ||.||1
is bounded on the compact complex manifold X(C) for all rational sections s
of L.

We want to extend the local height to metrics that are approximated by models.
For the limit of heights to exist we need some positivity criteria on the line
bundles. Recall that a line bundle L on a variety X is nef if c1(L)C ≥ 0 for
all irreducible curves C ⊂ X. By Kleiman’s theorem (e.g. [6] section 1.4.B) if
L1, .., LdimX is a collection of nef line bundles then c1(L1) · · · c1(LdimX) ≥ 0.

Let (X̃, L̃) be a model, we say it is vertically nef/ample if L̃ is nef/ample when
restricted to the closed fiber. Note that vertically ample implies vertically nef
and that the pull-back of nef/ample line bundles is again nef/ample (the nef
case follows from the projection formula).

A p-adic line bundle L on X is said to be semipositive if it can be approximated
by vertically nef models. We say a p-adic line bundle L is integrable if it can
be written as the difference of two semipositive line bundles. We make a final
remark before extending the local height to integrable line bundles.
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Remark 4.4. Suppose X̃ is a model for X, and denote Xp the closed fiber.
Let Z ⊂ X be an irreducible d dimensional subvariety of X and let L1, ..., Ld
be line bundles on X. Assume the line bundles extend to line bundles on X̃
which by abuse of notation we will also call L1, ..., Ld. Let Z̃ be the Zariski
closure of Z and let Zp be the closed fiber of Z̃. Then the intersection numbers

c1(L1) · · · c1(Ld)Z, c1(L1|Xp
) · · · c1(Ld|Xp

)Zp and c1(L1) · · · c1(Ld)Z̃ agree. By
linearity these equalities extend to all d-cycles. We refer to [2] 20.3 for details,
as we have not discussed intersections of general cycles.

Theorem 4.5. Let (L0, s0), ..., (Ld, sd) be semipositive p-adic line bundles with

si rational sections intersecting a d-cycle Z ⊂ X properly. Suppose (X̃i, L̃i,0, ..., L̃i,d, ei,1, ..., ei,d)
are vertically nef models for L

ei,j
j approximating ||.||1, ..., ||.||d. Then the limit

〈(L0, s0), ..., (Ld, sd)|Z〉p := lim
i→∞
〈(L̃i,0, s0), ..., (L̃i,d, sd)|Z〉p

exists.

Proof. Let ε > 0 and fix m,n � 0. Let (X̃, L̃0, L̃
′
0, ..., L̃d, L̃

′
d, e0 = e′0, ..., ed =

e′d) be a common model such that (L̃i, ei), (L̃
′
i, e
′
i) induce the metrics on Li given

by the models X̃m and X̃n respectively. Further we may assume m and n are
big enough so that ∣∣∣∣∣log

||.||L̃i

||.||L̃′i

∣∣∣∣∣ < ε.(∗)

We need to compare

1

e0 · · · en
(c1(L̃0) · · · c1(L̃d)− c1(L̃′0) · · · c1(L̃′d))

with respect to the sections s0, ..., sd. We expand the brackets as a telescoping
sum:

c1(L̃0) · · · c1(L̃d)− c1(L̃′1) · · · c1(L̃′d) = c1(L̃0) · · · c1(L̃d)− c1(L̃′0)c1(L̃2) · · · c1(L̃d)

+ c1(L̃′0)c1(L̃2) · · · c1(L̃d)− c1(L̃′0)c1(L̃′2)c1(L̃3) · · · c1(L̃d)

...

+ c1(L̃′0) · · · c1(L̃′d−1)c1(L̃d)− c1(L̃′0) · · · c1(L̃′d)

=

d∑
k=1

c1(L̃′0) · · · c1(L̃′k−1)c1(L̃′k ⊗ L̃−1k )c1(L̃k) · · · c1(L̃d).

Let s̃k be the section extending sk ⊗ s−1k = 1. Note that it has support on the

closed fiber X̃p. By (*) we have

p−εe0···ed ≤ ||s̃k||(x) ≤ pεe0···ed

for each x ∈ X(Qp). It then follows from remark 4.1 that the divisors

D1,k = [εe1 · · · ed]X̃p + div(s̃k)
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and
D2,k = [εe1 · · · ed]X̃p − div(s̃k)

are both effective, where [.] is the integer part of a real number. Using the
vertical nefness we see that

c1(L̃′0|Di,k
) · · · c1(L̃′k−1|Di,k

)c1(L̃k+1|Di,k
) · · · c1(L̃d|Di,k

) ≥ 0,

for i = 1, 2 and k = 0, ..., d. Therefore the absolute value of

Ik = c1(L̃′0) · · · c1(L̃′k−1)c1(L̃′k ⊗ L̃−1k )c1(L̃k) · · · c1(L̃d)

= c1(L̃′0) · · · c1(L̃′k−1)c1(L̃k+1) · · · c1(L̃d)div(s̃k)

is bounded by

εe0 · · · edc1(L̃′0) · · · c1(L̃′k−1)c1(L̃k+1) · · · c1(L̃d)X̃p,

which, by remark 4.4, equals

εe0 · · · edc1(L0) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld).

Now using the triangle inequality on the telescoping sum we see that

1

e0 · · · ed
|degp(c1(L̃0) · · · c1(L̃d)− c1(L̃′0) · · · c1(L̃′d))|

≤
d∑
k=0

|Ik| log(p)

e0 · · · ed

≤ ε
d∑
k=0

c1(L0) · · · c1(Lk−1)c1(Lk+1) · · · c1(Ld) log(p).

Note that the limit does not depend on the approximation used, indeed if
{X̃ ′i,j}i>0,j=0,...,k also approximate the line bundles, then apply the theorem

to the alternating sequences {X̃1,j , X̃
′
1,j , ...}j=0,...,k.

We quickly mention that for p = ∞ there are also notions of positivity for
smooth hermitian line bundles, and thus we get a notion of integrability. The
proof of 4.5 for the local height at infinity is similar, the induction formula
(remark 2.6) implies that the contribution of Ik is given by

Ik =

∫
X(C)

log ||s̃k||−1c1(L0) ∧ · · · ∧ c1(Lk−1) ∧ c1(Lk+1) ∧ · · · ∧ c1(Ld).

Then use positivity plus the fact that log ||s̃k||−1 ≤ ε. Note that an integrable
hermitian line bundle is not necessarily smooth anymore.

From theorem 4.5 we obtain a local height for integrable line bundles, note that
by definition of the local height given in terms of intersection theory it inherits
the following properties:

1. The local height is multilinear and symmetric in the (Li, si) and linear in
Z,
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2. it satisfies an induction formula,

3. suppose f : X → Y is a proper morphism of Qp varieties, then the local
height satisfies the projection formula:

〈(f∗L0, f
∗s0), ..., (f∗Lk, f

∗sk)|Z〉p = 〈(L0, s0), ..., (Lk, sk)|f∗Z〉p.

For 2 note that H (see remark 3.6) only depends on the section sq, the local
height with respect to H converges by the theorem. Therefore the vertical part
also converges to a constant depending only on s0, ..., sq.

For 3 note that given a model Ỹ of Y , there exists a model X̃ of X and a proper
morphism f̃ : X̃ → Ỹ extending f . Indeed given any model X̃ of X, then f
determines a rational map X̃ → Ỹ and we can eliminate the indeterminacy.
It is easy to see that the pull-back metric is induced by X̃, since x ∈ X(Qp)
gives f ◦ x ∈ Y (Qp) and x̃ ∈ X̃(Zp) gives f̃ ◦ X̃ ∈ Ỹ (Zp). And we have

x∗f∗L = (f ◦x)∗L, x̃∗f̃∗L = (f̃ ◦ x̃)∗L, further as we noted before the pull-back
of a nef/ample line bundle is again nef/ample.

4.3 Adelic metrics

Now assume X is a smooth projective variety over Q. An adelic metrized line
bundle on X is a collection of metrics {||.||p}p∈v(Q) such that:

- for each finite p, ||.||p is a p-adic metric for LQp on XQp ,

- ||.||∞ is a hermitian metric,

- for every local section s of L, ||s||p = 1 for almost all p.

We say the adelic metrized line is integrable if all the metrics ||.||p are integrable.

For example if X̃ is an arithmetic variety with generic fiber X together with
a smooth hermitian line bundle L, then (X̃ × SpecZp, L ⊗ Zp) are models for
LQp

, and the adelic metric on LQ is integrable. An adelic metric coming from
an arithmetic model will be called an adelic model metric.

Now let L0, ..., Ld be integrable adelic metrized line bundles on X and let Z be
a d-cycle. Let s0, ..., sd be rational sections of L0, ..., Ld such that they intersect
Z properly. By theorem 4.4 the local heights exist and we define the global
height to be the sum of the local heights

〈L0, ..., Ld|Z〉 :=
∑

p∈v(Q)

〈(L0, s0), ..., (Ld, sd)|ZQp
〉p.

Note that by assumption the right hand side is a finite summation, and if the
line bundles have adelic model metrics then we recover the height from section
3. Further note that it inherits properties 1 (multilinearity) and 3 (projection
formula) from the local heights.
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Proposition 4.6. The global height does not depend on the chosen rational
sections.

Proof. Note that if s′0 is another rational section then s′0 = fs0 for some rational
function f , and ||fs′0||p = |f |p||s′0||, where |f |p is the canonical p-adic metric on
OX and the canonical metric at ∞ as defined in section 2. By linearity it thus
suffices to show that

〈OcanX , L1, ..., Ld|Z〉 = 0.

We continue to use f, s1, ..., sd, first note that since c1(OX) = 0 the vertical
term vanishes in the induction formula for each p. Therefore we may assume
d = 0 and Z ∈ X(Q), applying the induction formula once more we have (see
remark 4.1)

〈(OcanX , f)|Z〉p = − log |f |p.
Then by the product formula ∑

p∈v(Qp)

log |f |p = 0.

Suppose {X̃(p)
n }n≥1 give model metrics approaching the p-adic metrics. Then

we get adelic metrics for each n and can take the global height. In general there
is no reason for these global heights to converge, even though the local ones do,
i.e. we can’t just switch the summation over p and the limit over n. For this
reason one may put extra assumptions on the adelic metrics, for example that all
but finitely many of the metrics are model metrics. Or if they are approachable
by a sequence of adelic model metrics, then for almost all p the metric does not
depend on n.

Continuing with the example in theorem 4.2 if we consider f : X → X surjective
where this time X is a smooth projective variety over Q, such that ϕ : Ld → f∗L
is an isomorphism for some d > 1, if we further assume (X̃, L̃, e) is an arithmetic
model inducing an adelic metric ||.||. The morphism f and the isomorphism ϕ
extend over an open set U of SpecZ, then by normalizing the n-fold composition
of this extension we obtain a morphism f̃n : X̃n → X̃ extending n-fold composi-
tion f ◦· · ·◦f . Note that for p ∈ U we have ||.||p = (ϕ∗f∗||.||p)

1
d . Now set ||.||n,p

the p-adic metric induced by the model (X̃n, f̃
∗
nL̃, nde). Then for p ∈ U we have

||.||n,p = ||.||p, and by theorem 4.2 for all p the metric ||.||n,p converges to some
metric ||.||0,p. Hence we get an adelic metric satisfying ϕ∗f∗||.||0 = ||.||0.

Now let L be an integrable ample line bundle on X and Z ⊂ X a closed subva-
riety, we define the normalized height of Z with respect to L as

hL(Z) :=
〈L, ..., L|Z〉

(dimZ + 1) deg c1(L)dimZZ
.

Now suppose f is as above and L has the adelic metric ||.||0, then since L is
ample this metric is integrable. Further note that f is finite of degree ddimX .

Proposition 4.7. In the situation above we have the equality

hL(f∗Z) = dhL(Z).
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Proof. Note that the numerator and denominator in the definition of the nor-
malized height both satisfy the projection formula therefore we have

hL(f∗Z) = hf∗L(Z).

By definition of ||.||0 we have f∗L ∼= L
d
, therefore by multilinearity (note the

global height contains dimZ + 1 factors of L) we find that

hL(f∗Z) =
ddimZ+1

ddimZ
hL(Z) = dhL(Z).

Note that even though the local metrics from theorem 4.2 depend on the iso-
morphism ϕ up to a constant rational fucntion, by the product formula this
dependence disappears so that the global height only depends on ϕ.

5 Neron-Tate heights

Recall that an abelian variety A over a field k is a connected projective group
variety over Spec k, where a group variety over k is a group object (X,m, i, 0)
in the category of varieties over Spec k. Here m : X ×Spec k X → X is the
multiplication, i : X → X is the inverse and 0 ∈ X(k) is the neutral element.
For the basic theory of abelian varieties we use here we refer to [8].

5.1 Neron-Tate height

Let A be an abelian variety over Q. Let [1] = id, [n] = m ◦ (∆, [n− 1]) if n > 1,
[n] = i◦ [−n] if n < 0, i.e. [n] is the multiplication by n map that sends a closed
point a to a+ ...+ a = na.

Let L be a line bundle on A, then we say L is symmetric if [−1]∗L ∼= L and
anti-symmetric if [−1]∗L ∼= L−1. By the theorem of the cube we have

[n]∗L ∼= L⊗
n2+n

2 ⊗ [−1]∗L⊗
n2−n

2 .

In particular [n]∗L ∼= L⊗n
2

if L is symmetric and [n]∗L ∼= L⊗n if L is anti-
symmetric.

We can always write L⊗2 as the sum of a symmetric and anti-symmetric line
bundle, namely

Lsym := L⊗ [−1]∗L

is symmetric and
Lasym := L⊗ [−1]∗L−1

is anti-symmetric.

Now let Ã be a model for A and suppose L is an ample line bundle. Applying
proposition 4.7 with f = [n] and the limit metrics on Lsym or Lasym respectively
shows that

hLsym
([n]∗Z) = n2hLsym

(Z),
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hLasym
([n]∗Z) = nhLasym

(Z).

Further note that since [nm] = [n][m] the heights

hLsym
, hLasym

do not depend on n > 1.

Now assume L is symmetric and suppose Z is a rational point, then hL is
called the Neron-Tate height of A with respect to L. We observe the following
properties of the Neron-Tate height, we have by definition

hL(Z) = ĉ1(L)Z,

it immediately follows that this is linear in L, further by the projection formula
it follows that hf∗L = hL ◦ f .

Now consider the morphisms σ, δ, π1, π2 : A × A → A, where σ is the multipli-
cation (P,Q) 7→ P + Q, δ(P,Q) = P − Q, and πi are the projections. By the
seesaw principle we have

σ∗L⊗ δ∗L ∼= π∗1L
⊗2 ⊗ π∗2L⊗2.

Therefore by considering the point (P,Q) on A × A we see by the projection
formula that

hL(P +Q) + hL(P −Q) = 2hL(P ) + 2hL(Q).

This equality implies that

〈P,Q〉 :=
1

2
(hL(P +Q)− hL(P )− hL(Q))

is a quadratic form on A×A.

5.2 Conjectures and theorems related to heights

We state some conjectures and theorems related to the Neron-Tate heights, and
the more general heights coming from theorem 4.3.

Consider X, f, L as in the end of section 4. Suppose y ∈ X(Q) has a finite orbit
{y, f(y), ...} then clearly hL(y) = 0. One can wonder if the converse also holds,
suppose the height is zero, must the orbit then also be finite. This turns out to
be true, and for abelian varieties this means that a point is torsion if and only
if the height is zero. Naturally one is led to wonder if the same thing is true if
Y is an effective cycle of positive dimension.

Suppose C is a smooth curve of genus at least 2 over Q, then C can be embedded
into its jacobian variety J which is an abelian variety. Fix such an embedding
and consider the Neron-Tate height on J with respect to a symmetric ample
divisor as before. Then the Manin-Mumford conjecture states that C can only
contain finitely many torsion points of J , more generally the Bogomolov con-
jecture states that there is some ε > 0 such that only finitely many points have
height bounded by ε. These have both been proved by Raynaud, and Ullmo
and Zhang respectively.
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The Northcott property for a height function is, if there only finitely many
points of bounded height and degree, e.g. only finitely many rational points.
Abelian varieties satisfy the Northcott property with respect to the Neron-Tate
height.

Consider again an abelian variety A over Q, the Mordell-Weil theorem states
that A(Q) is finitely generated. Assuming A(Q)/mA(Q) is finite for some m ≥ 2
makes it possible for an easy proof using the Neron-Tate height:
Let P1, ..., Pk be representatives of A(Q)/mA(Q), let hL be a Neron-Tate height
on A and let C = maxi=1,...,k hL(Pi). Then the set

S = {x ∈ A(Q)|hL(x) ≤ C}

is finite by the Northcott property. Now consider a point Q not in 〈S〉, by
Northcott we may assume hL(Q) is minimal, and write Q = mQ′+Pi for some
i and Q′ /∈ 〈S〉. Then we have

m2hL(Q′) = hL(mQ′) = hL(Q− Pi) ≤ 2hL(Q) + 2hL(Pi) < 4hL(Q),

we find that hL(Q′) < hL(Q), therefore Q′ ∈ S which is a contradiction.

Some final remarks: the intersection theory developed in the first 3 sections
holds in much more generality. For example one can intersect arbitrary cycles,
consider the pull-back of cycles a long a flat morphism and there are product
formulas relating the intersection theory on a product of two spaces to both
spaces.

Almost all results over Q translate without much effort to number fields K,
where one has to replace SpecZ with SpecOK and take good care of the places.
For example the model metrics still work by considering Kv in place of Qp, and
the conjectures/theorems above are valid for number fields.

In arithmetic intersection theory there are a plethora of arithmetic analogues
of theorems that hold in ordinary intersection theory. For example there is an
arithmetic Riemann-Roch theorem. Or if L is a smooth hermitian line bundle
we can consider the number of small sections

h0(L) := #{s ∈ H0(X,L)|||s||sup ≤ 1}.

Then there is an arithmetic Nakai-Moishezon criterion stating when large powers
of L are generated by small sections, and for example there also is an arithmetic
Hilber-Szamuel formula giving the asymptotics of h0(L

n
).
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