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Introduction

In this thesis, we will consider two versions of a discount single server system with exponentially
distributed arrivals and departures on a discrete time scale.

In the first model, to be discussed in Chapter 1, we add a reward for every customer who has
been served, and a fee for each time step a customer is in service. We also add arrival control.
The model is described in more detail in Section 1.1. The goal is to find an optimal strategy that
minimizes the expected total discounted cost (Section 1.2). To find this strategy, we use a direct,
explicit algorithm called value iteration. This strategy turns out to be a threshold strategy: a given
amount of customers is allowed to enter the system, and once this amount of customers is present,
any newly arriving customer is refused.

Furthermore, we prove monotonicity properties of the model in Section 1.3. Lastly, the n-horizon
cost function of value iteration is decomposed into a subsequent application of different operators
(Section 1.4).

In the second chapter, the model of Chapter 1 is used, with the addition of departure control.
We add an extra, faster server, so we have a slower Server 1 and a faster Server 2, and we can
choose at any transition moment which server to use. Using Server 2 involves extra costs per time
unit. A detailed description of the model can be found in Section 2.1.

In this model, we again want to find an optimal policy (Section 2.3), but now we first rewrite
the explicit algorithm as a consecutive application of operators (Section 2.2). It turns out that we
can split these operators into operators deciding whether or not an incoming customer should be
accepted, and operators deciding which server to use. This was a surprising result, as we did not
know in advance that the two decisions can be made independently from each other. Using these
operators, we find that the optimal policy is a two-dimensional threshold strategy. In Section 2.4,
we give a theorem on the relationship between the two thresholds.

Furthermore, we prove the convergence of the thresholds, and thus the strategy, and of the n-
horizon relative cost function, by using two initial functions such that one approaches the optimal
value function from below and the other from above (Section 2.5). This shows that the choice of
the starting functions affects the results, which was unknown so far. Finally, we prove that such
functions exist and give a numeric example to demonstrate the results graphically (Section 2.6).
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Chapter 1

Discounted model with controlled
arrivals

1.1 Model description

Consider a single server system with customers arriving according to an exponential distribution
with mean 1/λ and service time exponentially distributed with mean 1/µ. Let the successive
service times and the interarrival times be mutually independent. The state space is given by
S = {0, 1, 2, . . .} and denotes the number of customers in the system.

Even though this model is a continuous time model, it will for now be treated as a discrete model
with time steps of size T ∈ R>0. When there are i ∈ S customers in this discretized system, we
have the following probabilities pij to end up in state j ∈ S after a time step:

pij =


µ
T , j = i− 1, i ≥ 1; or j = i = 0,

1− λ
T −

µ
T , j = i, i ≥ 1,

λ
T , j = i+ 1, i ≥ 0,
0, else.

(1.1)

We would like to have the probability of staying in a state i ≥ 1 after a time step equal to zero
to have less probability transitions and thus a more simple structure. Therefore we must choose
T such that 1 − λ/T − µ/T = 0. This gives T = λ + µ. Note that T ≥ λ + µ must always hold,
because otherwise pij < 0 for j = i, i ≥ 1.

Inserting T = λ+ µ into Equation (1.1) gives:

pij =


µ

λ+µ , j = i− 1, i ≥ 1 or j = i = 0,
λ

λ+µ , j = i+ 1, i ≥ 0,

0, else.

(1.2)

This is a very common model in the literature and many of its properties are already known (see
[1] as an example). Therefore, in this chapter we will take a look at a slightly adapted form of this
model, where we can decide whether or not to accept an incoming customer. The action space is
denoted by A = {0, 1} and thus there are two different actions a ∈ A. Action a = 0 means that an
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arriving customer is rejected, and action a = 1 that the customer is accepted. This action space A
slightly changes the transition probabilities in Equation (1.2), yielding

pij(a) =


µ

λ+µ , a ∈ {0, 1} and j = i− 1, i ≥ 1; or a = 1 and j = i = 0,
λ

λ+µ , a = 1 and j = i+ 1, i ≥ 0; or a = 0 and j = i, i ≥ 1,

1, a = 0 and j = i = 0,
0, else.

(1.3)

Equation (1.3) can be used to give matrices P (a) with entries pij(a):

P (0) =


1 0 0 0 · · ·
µ

λ+µ
λ

λ+µ 0 0 · · ·
0 µ

λ+µ
λ

λ+µ 0

0 0 µ
λ+µ

λ
λ+µ

...
. . .

. . .

 , and P (1) =



µ
λ+µ

λ
λ+µ 0 0 · · ·

µ
λ+µ 0 λ

λ+µ 0

0 µ
λ+µ 0 λ

λ+µ

0 0 µ
λ+µ 0

. . .
...

. . .
. . .


.

Using this notation it is clear that P (a)vnα(i) =
∑

j pij(a)vnα(j).

Next, a profit R ∈ R≥0 is added for every customer who has been served. We also add a fine
per customer per unit time b · i, where b ∈ R≥0 is a constant and i ∈ S the number of customers in
the system during the time unit under consideration.

Furthermore, we will view this model as a discounted model. Let ρ ∈ R≥0 be the rate of in-
terest per time unit T . Then, α := 1/(1 + ρ) is the discount factor.

This model is loosely based on Example 8.9: Machine replacement model [3].

1.2 Finding the minimizing strategy

The problem, as formulated in Section 1.1, is defined by both costs and profits. We choose to model
it as a minimization problem. To do so, profits are considered to be negative costs. Of course,
it could also be the other way around: a maximization problem where the cost are viewed as a
negative profit, but this would clearly give the same results.

Let ci(a) be the direct cost per time unit T . With the above data for profit and fine, we get
the following cost: ∀i ∈ S:

ci(a) =

{
b · i− pi,(i+1)(0) ·R, a = 0,

b · i− pi,(i+1)(1) ·R, a = 1,

=

{
b · i, a = 0,

b · i− λ
λ+µR, a = 1.

(1.4)

Let N be the total number of time steps taken into account. Let vnα(i) be the minimized expected
discounted cost, with i customers in the system at time (N −n). Paragraph 8.4 in [3] already gives
a few useful statements, as it gives a way to iteratively find a sequence v0α(i), v1α(i), v2α(i), . . ., ∀i ∈ S
by applying Algorithm 1.1.
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Algorithm 1.1. Successive approximation

1. Pick v0α(i) ∈ R arbitrarily, ∀i ∈ S; let f0α(i) = 1, ∀i ∈ S.

2. Let vn+1
α (i) = mina∈A

{
ci(a) +αP (a)vnα(i)

}
, and fn+1

α (i) = arg mina∈A
{
ci(a) +αP (a)vnα(i)

}
,

for n = 0, 1, . . ., i ∈ S.

Note that this algorithm satisfies the constraints in Paragraph 8.3.5 in [3] and thus is correct and
converges towards the optimal values of v∗α(i), i ∈ S.

In the following Subsection 1.2.1, the abovementioned theory is applied in a numerical example.

1.2.1 Numerical example

In order to achieve some understanding of this model, we take a look at a specific example of the
model. Let λ = 1, µ = 2, R = 3, b = 1, ρ = 1/9 and thus α = 1/(1 + 1/9) = 0.9. These numbers
plugged into Equation (1.3) give the following transition probabilities:

pij(a) =


2
3 , a ∈ {0, 1} and j = i− 1, i ≥ 1; or a = 1 and j = i = 0,
1
3 , a = 1 and j = i+ 1, i ≥ 0; or a = 0 and j = i, i ≥ 1,
1, a = 0 and j = i = 0,
0, else.

Together with Equation (1.4), the data give the following cost per time unit:

ci(a) =

{
i, a = 0,
i− 1, a = 1.

These values of pij(a) and ci(a) can be used to iteratively determine vnα as well as fnα for n ∈ S,
using Algorithm 1.1.

Assumption 1.2. Let v0α(i) = mina∈A
{
ci(a)

}
= ci(1) = b · i− λ/

[
λ+ µ

]
R = i− 1, ∀i ∈ S.

Assume Assumption 1.2 holds for the rest of this chapter, without any references.

When applying the second step of Algorithm 1.1 for the first time, we need to calculate v1α(i)
separately for i = 0, since probabilities pij(a) are regular for i ≥ 1. For i = 0, the algorithm gives:

v1α(0) = min

{
c0(0) + α

λ

λ+ µ
v0α(0) + α

µ

λ+ µ
v0α(0), c0(1) + α

λ

λ+ µ
v0α(1) + α

µ

λ+ µ
v0α(0)

}
= min {−0.9,−1.6}
=− 1.6,
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and therefore f1α(0) = 1. For i ≥ 1 we get:

v1α(i) = min

{
ci(0) + α

λ

λ+ µ
v0α(i) + α

µ

λ+ µ
v0α(i− 1),

ci(1) + α
λ

λ+ µ
v0α(i+ 1) + α

µ

λ+ µ
v0α(i− 1)

}
= min {1.9i− 1.5, 1.9i− 2.2}
=1.9i− 2.2,

which gives f1α(i) = 1 for i ≥ 1. Note that v1α(i) is linear on {1, 2, . . .}.

The following steps are all a repetition of step 2 from Algorithm 1.1. For n = 1 (where vn+1
α = v2α

is calculated), it is again necessary to separately calculate v2α(0). Also, we need to calculate v2α(1)
separately from the rest, because of its dependence on the value v1α(0) and the non-linearity of v1α(i)
at i = 0.

v2α(0) = min

{
c0(0) + αv1α(0), c0(1) + α

λ

λ+ µ
v1α(1) + α

µ

λ+ µ
v1α(0)

}
= min {−1.44,−2.05}
=− 2.05;

v2α(1) = min

{
c1(0) + α

λ

λ+ µ
v1α(1) + α

µ

λ+ µ
v1α(0), c1(1) + α

λ

λ+ µ
v1α(2) + α

µ

λ+ µ
v1α(0)

}
= min {−0.05,−0.48}
=− 0.48;

v2α(i) = min

{
ci(0) + α

λ

λ+ µ
v1α(i) + α

µ

λ+ µ
v1α(i− 1),

ci(1) + α
λ

λ+ µ
v1α(i+ 1) + α

µ

λ+ µ
v1α(i− 1)

}
= min {2.71i− 3.12, 2.71i− 3.55}
=2.71i− 3.55, for i ≥ 2.

As can be seen in these calculations, for every i ∈ S, the minimizing action is a = 1, so that
f2α(i) = 1, ∀i ∈ S. Note that v2α(i) is linear on i ∈ {2, 3, . . .}.

Now that we have obtained understanding of the calculation of both vnα(i) and fnα (i) using the
iterative scheme of Algorithm 1.1, the program R will be used for the calculations of vnα and fnα for
n ≥ 0. With the results given above, we were able to verify the correctness of the R code, and with
this code we were able to generate some extra values. The code can be found in Appendix A.

Some of the values of vnα(i) can be found in Table 1.1.

Note that the results in Table 1.1 confirm that the maximum state affected by the state 0 cost in
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v0α(0) = −1.00 v0α(1) = 0.00 v0α(2) = 1.00 v0α(3) = 2.00 v0α(4) = 3.00 v0α(5) = 4.00
v1α(0) = −1.60 v1α(1) = −0.30 v1α(2) = 1.60 v1α(3) = 3.50 v1α(4) = 5.40 v1α(5) = 7.30
v2α(0) = −2.05 v2α(1) = −0.48 v2α(2) = 1.87 v2α(3) = 4.58 v2α(4) = 7.29 v2α(5) = 10.00
v3α(0) = −2.37 v3α(1) = −0.67 v3α(2) = 2.09 v3α(3) = 5.31 v3α(4) = 8.75 v3α(5) = 12.19
v4α(0) = −2.63 v4α(1) = −0.80 v4α(2) = 2.19 v4α(3) = 5.84 v4α(4) = 9.81 v4α(5) = 13.90
v5α(0) = −2.81 v5α(1) = −0.92 v5α(2) = 2.18 v5α(3) = 6.07 v5α(4) = 10.45 v5α(5) = 15.06
v6α(0) = −2.96 v6α(1) = −1.04 v6α(2) = 2.10 v6α(3) = 6.13 v6α(4) = 10.78 v6α(5) = 15.79
v7α(0) = −3.09 v7α(1) = −1.15 v7α(2) = 2.01 v7α(3) = 6.10 v7α(4) = 10.91 v7α(5) = 16.48

Table 1.1: Expected discounted costs vnα(i) in two decimals, where i is the number of customers in
the queue at time N − n.

i iterations is state i.

The strategies fnα (i) corresponding to the values in Table 1.1 are given in Table 1.2.

f0α(0) = 1 f0α(1) = 1 f0α(2) = 1 f0α(3) = 1 f0α(4) = 1 f0α(5) = 1
f1α(0) = 1 f1α(1) = 1 f1α(2) = 1 f1α(3) = 1 f1α(4) = 1 f1α(5) = 1
f2α(0) = 1 f2α(1) = 1 f2α(2) = 1 f2α(3) = 1 f2α(4) = 1 f2α(5) = 1
f3α(0) = 1 f3α(1) = 1 f3α(2) = 1 f3α(3) = 1 f3α(4) = 1 f3α(5) = 1
f4α(0) = 1 f4α(1) = 1 f4α(2) = 1 f4α(3) = 0 f4α(4) = 0 f4α(5) = 0
f5α(0) = 1 f5α(1) = 1 f5α(2) = 0 f5α(3) = 0 f5α(4) = 0 f5α(5) = 0
f6α(0) = 1 f6α(1) = 1 f6α(2) = 0 f6α(3) = 0 f6α(4) = 0 f6α(5) = 0
f7α(0) = 1 f7α(1) = 1 f7α(2) = 0 f7α(3) = 0 f7α(4) = 0 f7α(5) = 0

Table 1.2: Strategy fnα (i) corresponding to the minimum values vnα(i) in Table 1.1, where i denotes
the number of customers in the queue at time N − n.

We have plot the values of the expected discounted costs vnα(i) from Table 1.1 in Figure 1.1, and
the thresholds that can be deduced from Table 1.2 in the Figure 1.2.
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Figure 1.1: Expected discounted costs vnα(i), for several values of time step n, with parameters
λ = 1, µ = 2, R = 3, b = 1, α = 0.9.

Figure 1.2: Thresholds in for time n, with parameters λ = 1, µ = 2, R = 3, b = 1, α = 0.9. Note
that in =∞ for n ∈ {0, . . . , 3}.
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1.2.2 Form of the optimal strategy

From the results of the example in Section 1.2.1, displayed in Table 1.2, we can formulate a theorem
on what we would expect the optimal strategy fα(i) to look like.

Theorem 1.3. The optimal strategy fnα (i) is a threshold strategy ∀n ∈ N≥0, meaning that there
exists in ∈ S such that

fnα (i) =

{
1, i ≤ in,
0, i > in.

The proof of Theorem 1.3 consists of the combination of four lemmas, which is an adaption of the
roadmap given in Exercise 2.7 in [5].

Lemma 1.4. fn+1
α (i) = 0 iff vnα(i+ 1)− vnα(i) ≥ R/α, ∀n ≥ 0, ∀i ∈ S.

Proof. By Algorithm 1.1 holds: vn+1
α (i) = maxa∈A {ci(a) + αP (a)vnα(i)}, ∀i ∈ S, n ≥ 0.

In this proof, we will distinguish the two cases i > 0 and i = 0, since for i = 0 the transition
rates have a different structure than for i > 0.

Case i > 0 The following holds for i ∈ S, i > 0:

fn+1
α (i) = arg min

a∈A
{ci(a) + αP (a)vnα(i)}

= arg min {ci(0) + αP (0)vnα(i), ci(1) + αP (1)vnα(i)}

= arg min

{
b · i+ α

λ

λ+ µ
vnα(i) + α

µ

λ+ µ
vnα(i− 1),

b · i− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(i+ 1) + α

µ

λ+ µ
vnα(i− 1)

}
= arg min

{
α

λ

λ+ µ
vnα(i),− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(i+ 1)

}
(1.5)

= arg min {αvnα(i),−R+ αvnα(i+ 1)} ,

where in Equation (1.5) the constant term b · i+ α · µ/(λ+ µ)vnα(i− 1) is left out, since it is added
to both sides of the minimization term and does not affect the minimizing argument a ∈ A.

Therefore, fn+1
α (i) = 0 iff αvnα(i) ≤ −R + αvnα(i + 1) for i > 0, which can be rewritten into

the original form in this lemma: fn+1
α (i) = 0 iff vnα(i+ 1)− vnα(i) ≥ R/α, ∀i > 0.

The only case left to consider is i = 0.

Case i = 0 In this case, the following holds:

fn+1
α (0) = arg min

a∈A
{c0(a) + αP (a)vnα(i)}

= arg min

{
αvnα(0),− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(1) + α

µ

λ+ µ
vnα(0)

}
.
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It follows that fn+1
α (0) = 0 iff αvnα(0) ≤ −λ/(λ + µ)R + α · λ/(λ + µ)vnα(1) + α · µ/(λ + µ)vnα(0),

which results in vnα(1)− vnα(0) ≥ R/α.

Conclusion Now we can conclude that ∀i ∈ S: fn+1
α (i) = 0 iff vnα(i+ 1)− vnα(i) ≥ R/α.

The following lemma is about some specific behaviour of vnα(i).

Lemma 1.5. vnα(i) is a non-decreasing sequence in i, ∀n ≥ 0.

Proof. We prove this by induction on n.

Case n = 0 As in Algorithm 1.1, let

v0α(i) = min
a∈A
{ci(a)} = min

{
b · i, b · i− λ

λ+ µ
R

}
= b · i− λ

λ+ µ
R,

where the value of ci(a) is given in Equation (1.4). Now, take the difference between two succeeding
values of v0α:

v0α(i+ 1)− v0α(i) = b · (i+ 1)− λ

λ+ µ
R−

(
b · i− λ

λ+ µ
R

)
= b ≥ 0, ∀i. (1.6)

This inequality means that v0α is an increasing and thus non-decreasing sequence in i.

The general induction step is split into two parts, one for i > 0 and the other for i = 0, for
the same reasons the proof of Lemma 1.9 was split into these two cases.

Case n > 0, i > 0 Assume, that vnα is non-decreasing, n ≥ 0. According to Algorithm 1.1,

vn+1
α (i) = min

a∈A
{ci(a) + (αP (a)vn)i}

= min {ci(0) + αP (0)vnα(i), ci(1) + αP (1)vnα(i)}

= min

{
b · i+ α

λ

λ+ µ
vnα(i) + α

µ

λ+ µ
vnα(i− 1),

b · i− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(i+ 1) + α

µ

λ+ µ
vnα(i− 1)

}
=

λ

λ+ µ
min

{
αvnα(i),−R+ αvnα(i+ 1)

}
+ b · i+ α

µ

λ+ µ
vnα(i− 1). (1.7)

10



Now, take the difference between two consecutive values:

vn+1
α (i+ 1)− vn+1

α (i)

=
λ

λ+ µ
min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
+ b · (i+ 1) + α

µ

λ+ µ
vnα(i)

− λ

λ+ µ

(
min

{
αvnα(i),−R+ αvnα(i+ 1)

}
+ b · i+ α

µ

λ+ µ
vnα(i− 1)

)
=

λ

λ+ µ

(
min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
−min

{
αvnα(i),−R+ αvnα(i+ 1)

})
+ b+ α

µ

λ+ µ

(
vnα(i)− vnα(i− 1)

)
(1.8)

≥ λ

λ+ µ

(
min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
−min

{
αvnα(i),−R+ αvnα(i+ 1)

})
+ b. (1.9)

The last inequality holds because vnα is non-decreasing and thus vnα(i)− vnα(i− 1) ≥ 0.

At this point, there are four possibly optimal strategies to consider: the action minimizing the
first minimization expression in Equation (1.9) could be either zero (the first term) or one (the
second term), and the same holds for the second minimization expression.

• Let arg min
{
αvnα(i + 1),−R + αvnα(i + 2)

}
= 0 and arg min

{
αvnα(i),−R + αvnα(i + 1)

}
= 0,

which corresponds to
(
fn+1
α (i), fn+1

α (i + 1)
)

= (0, 0). Combined with Equation (1.9) this
gives:

vn+1
α (i+ 1)− vn+1

α (i) ≥ λ

λ+ µ

(
αvnα(i+ 1)− αvnα(i)

)
+ b ≥ b ≥ 0,

where vnα(i+ 1) ≥ vnα(i) holds because vnα is non-decreasing.

• Let arg min
{
αvnα(i + 1),−R + αvnα(i + 2)

}
= 0 and arg min

{
αvnα(i),−R + αvnα(i + 1)

}
= 1,

which corresponds to
(
fn+1
α (i), fn+1

α (i + 1)
)

= (1, 0). This, combined with Equation (1.9),
gives:

vn+1
α (i+ 1)− vn+1

α (i) ≥ λ

λ+ µ

(
αvnα(i+ 1) +R− αvnα(i+ 1)

)
+ b =

λ

λ+ µ
R+ b ≥ 0.

• Let arg min
{
αvnα(i + 1),−R + αvnα(i + 2)

}
= 1 and arg min

{
αvnα(i),−R + αvnα(i + 1)

}
= 0,

which corresponds to
(
fn+1
α (i), fn+1

α (i+1)
)

= (0, 1). This gives, together with Equation (1.9):

vn+1
α (i+ 1)− vn+1

α (i) ≥ λ

λ+ µ

(
−R+ αvnα(i+ 2)− αvnα(i)

)
+ b

≥ λ

λ+ µ

(
−R+ αvnα(i+ 2) +R− αvnα(i+ 1)

)
+ b (1.10)

≥ 0,

where Inequality (1.10) holds because min
{
αvnα(i),−R + αvnα(i + 1)

}
= αvnα(i). The last

inequality follows from the fact that vnα is non-decreasing.
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• Let arg min
{
αvnα(i + 1),−R + αvnα(i + 2)

}
= 1 and arg min

{
αvnα(i),−R + αvnα(i + 1)

}
= 1,

which corresponds to
(
fn+1
α (i), fn+1

α (i + 1)
)

= (1, 1). Combining this with Equation (1.9),
gives:

vn+1
α (i+ 1)− vn+1

α (i) ≥ λ

λ+ µ

(
−R+ αvnα(i+ 2) +R− αvnα(i+ 1)

)
+ b ≥ b ≥ 0,

which holds because vnα is non-decreasing.

For these four situations is shown that Equation (1.9) is always bigger than or equal to zero, and
thus vn+1

α (i+ 1)− vn+1
α (i) ≥ 0, ∀i > 0.

Case n > 0, i = 1 Assume vnα is non-decreasing, n ≥ 0. If vn+1
α is also non-decreasing, the

following inequality must hold:

vn+1
α (1)− vn+1

α (0) ≥ 0. (1.11)

Equation (1.7) with i = 1 gives an expression for vn+1
α (1). An expression for vn+1

α (0) can be
obtained using Algorithm 1.1:

vn+1
α (0) = min

{
c0(0) + αvnα(0), c0(1) + α

λ

λ+ µ
vnα(1) + α

µ

λ+ µ
vnα(0)

}
= min

{
b · 0 + αvnα(0), b · 0− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(1) + α

µ

λ+ µ
vnα(0)

}
= min

{
α

λ

λ+ µ
vnα(0),− λ

λ+ µ
R+ α

λ

λ+ µ
vnα(1)

}
+ α

µ

λ+ µ
vnα(0)

=
λ

λ+ µ
min

{
αvnα(0),−R+ αvnα(1)

}
+ α

µ

λ+ µ
vnα(0). (1.12)

We need to show that subtracting Equation (1.12) from Equation (1.7) with i = 1 results in
Inequality (1.11).

vn+1
α (1)− vn+1

α (0) =
λ

λ+ µ
min

{
αvnα(1),−R+ αvnα(2)

}
+ b · 1 + α

µ

λ+ µ
vnα(0)

−
(

λ

λ+ µ
min

{
αvnα(0),−R+ αvnα(1)

}
+ α

µ

λ+ µ
vnα(0)

)
=

λ

λ+ µ

(
min

{
αvnα(1),−R+ αvnα(2)

}
−min

{
αvnα(0),−R+ αvnα(1)

})
+ b. (1.13)

There are four different possibilities for the optimal strategies to consider: the action minimizing
the first minimization expression in Equation (1.13) could be either zero or one, and the same holds
for the second minimization expression.

• Let arg min {αvnα(0),−R+ αvnα(1)} = 0 and arg min {αvnα(1),−R+ αvnα(2)} = 0, which cor-
responds to

(
fn+1
α (0), fn+1

α (1)
)

= (0, 0). These filled into Equation (1.13) gives:

vn+1
α (1)− vn+1

α (0) =
λ

λ+ µ

(
αvnα(1)− αvnα(0)

)
+ b ≥ b ≥ 0,

where vnα(1) ≥ vnα(0) holds by the non-decreasingness of vnα.
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• Let arg min {αvnα(0),−R+ αvnα(1)} = 1 and arg min {αvnα(1),−R+ αvnα(2)} = 0, which cor-
responds to

(
fn+1
α (0), fn+1

α (1)
)

= (1, 0). These filled into Equation (1.13) gives:

vn+1
α (1)− vn+1

α (0) =
λ

λ+ µ

(
αvnα(1) +R− αvnα(1)

)
+ b =

λ

λ+ µ
R+ b ≥ 0.

• Let arg min {αvnα(0),−R+ αvnα(1)} = 0 and arg min {αvnα(1),−R+ αvnα(2)} = 1, which cor-
responds to

(
fn+1
α (0), fn+1

α (1)
)

= (0, 1). These filled into Equation (1.13) gives:

vn+1
α (1)− vn+1

α (0) =
λ

λ+ µ

(
−R+ αvnα(2)− αvnα(0)

)
+ b

≥ λ

λ+ µ

(
−R+ αvnα(2) +R− αvnα(1)

)
+ b (1.14)

≥ 0,

where for Inequality (1.14) we used that min
{
αvnα(0),−R + αvnα(1)

}
= αvnα(0) and thus

−αvnα(0) ≥ R− αvnα(1). The last step holds because vnα is non-decreasing.

• Let arg min {αvnα(0),−R+ αvnα(1)} = 1 and arg min {αvnα(1),−R+ αvnα(2)} = 1, which cor-
responds to

(
fn+1
α (0), fn+1

α (1)
)

= (1, 1). These filled into Equation (1.13) gives:

vn+1
α (1)− vn+1

α (0) =
λ

λ+ µ

(
−R+ αvnα(2) +R− αvnα(1)

)
+ b ≥ b ≥ 0,

because vnα is non-decreasing.

In all the four possibilities of the optimal strategies, it is shown that Equation (1.11) is satisfied,
and therefore vn+1

α is also non-decreasing in i = 0.

Conclusion Combining the two induction steps, we have proven that vnα is a non-decreasing
sequence in i ≥ 0 for every n ≥ 0.

The following lemma gives a conditional statement about the form of the optimal strategy fn+1
α .

Lemma 1.6. The optimal strategy fn+1
α (i) is a threshold strategy, if vnα(i) is convex in i, ∀n ≥ 0.

Proof. Let vnα be convex in i, i.e. vnα(i+ 2)− vnα(i+ 1) ≥ vnα(i+ 1)− vnα(i) for i ∈ S. We know that
vnα(i) is non-decreasing sequence in i by Lemma 1.5.

By Lemma 1.4 we know the following:

fn+1
α (i) = 0⇔ vnα(i+ 1)− vnα(i) ≥ R

α
.

Now let in be defined as follows:

in = max

{
i ∈ S ∪ {∞} |vnα(i+ 1)− vnα(i) <

R

α

}
.

13



Note that the convexity of vnα(i) gives that ∀i ∈ {0, 1, . . . , in − 1, in} holds vnα(i+ 1)− vnα(i) < R/α,
which is equivalent to {

0, 1, . . . , in − 1, in
}

=

{
i|vnα(i+ 1)− vnα(i) <

R

α

}
.

Lemma 1.4, combined with the given assumption that vnα(i) is non-decreasing, gives the following
two possibilities for this in:

1. in =∞.
Then fn+1

α (i) = 1, ∀i ∈ S, which is a threshold strategy with threshold in =∞.

2. in ∈ S.
Then ∀i ≥ in, vnα(i+ 1)− vnα(i) ≥ R/α and thus

fn+1
α (i) =

{
1, 0 ≤ i ≤ in,
0, i > in,

which indeed is a threshold strategy with threshold in.

Therefore in both cases fnα (i) is a threshold strategy as defined in Theorem 1.3.

The following lemma is the last one needed to prove Theorem 1.3. This lemma is about the con-
vexity of vnα, which was the condition used in the previous Lemma 1.6 but was not yet proven.

Lemma 1.7. vnα(i) is convex in i, ∀n ≥ 0.

Proof. We will prove this by induction.

Case n = 0 Assumption 1.2 gives an expression of v0α(i):

v0α(i) = b · i− λ

λ+ µ
R.

This expression shows that v0α(i) is linear in i and thus convex.

The induction step is split into two parts: one for i > 0 and one for i = 0.

Case n > 0, i > 0 Assume that vnα is convex for some n ≥ 0. Then Lemma 1.6 states that
the optimal strategy fn+1

α is a threshold strategy.

Proving that vn+1
α is convex is equivalent to showing the following:

vn+1
α (i+ 2)− vn+1

α (i+ 1) ≥ vn+1
α (i+ 1)− vn+1

α (i), ∀i ∈ S,

which is equivalent to proving that:

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i) ≥ 0, ∀i ∈ S. (1.15)
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Equation (1.7) gives an expression for vn+1
α (i) and can be used to evaluate

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i), ∀i ≥ 1,

and see whether the outcome satisfies Inequality (1.15).

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i)

=
λ

λ+ µ
min

{
αvnα(i+ 2),−R+ αvnα(i+ 3)

}
+ b · (i+ 2) + α

µ

λ+ µ
vnα(i+ 1)

− 2

(
λ

λ+ µ
min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
+ b · (i+ 1) + α

µ

λ+ µ
vnα(i)

)
+

λ

λ+ µ
min

{
αvnα(i),−R+ αvnα(i+ 1)

}
+ b · i+ α

µ

λ+ µ
vnα(i− 1)

=
λ

λ+ µ
min

{
αvnα(i+ 2),−R+ αvnα(i+ 3)

}
− 2

λ

λ+ µ
min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
+

λ

λ+ µ
min

{
αvnα(i),−R+ αvnα(i+ 1)

}
+ α

µ

λ+ µ

(
vnα(i+ 1)− 2vnα(i) + vnα(i− 1)

)
≥ λ

λ+ µ

(
min

{
αvnα(i+ 2),−R+ αvnα(i+ 3)

}
− 2 min

{
αvnα(i+ 1),−R+ αvnα(i+ 2)

}
+ min

{
αvnα(i),−R+ αvnα(i+ 1)

})
,

where the last inequality holds because vnα is convex by assumption. Also, the convexity of vnα
combined with Lemma 1.6 gives that fn+1

α is a threshold strategy, leaving four possible strategies
of
(
fn+1
α (i), fn+1

α (i+ 1), fn+1
α (i+ 2)

)
which are all explored below.

• Let
(
fn+1
α (i), fn+1

α (i+ 1), fn+1
α (i+ 2)

)
= (0, 0, 0). This gives the following inequalities:

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i)

≥ λ

λ+ µ

(
αvnα(i+ 2)− 2αvnα(i+ 1) + αvnα(i)

)
= α

λ

λ+ µ

(
vnα(i+ 2)− 2vnα(i+ 1) + vnα(i)

)
≥ 0,

where the last inequality holds because vnα is convex.

• Let
(
fn+1
α (i), fn+1

α (i+ 1), fn+1
α (i+ 2)

)
= (1, 0, 0). This gives the following inequalities:

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i)

≥ λ

λ+ µ

(
−R+ αvnα(i+ 3)− 2αvnα(i+ 1) + αvnα(i)

)
=

λ

λ+ µ

(
α
[
vnα(i+ 3)− 2vnα(i+ 1) + vnα(i)

]
−R

)
≥ λ

λ+ µ

(
α
[
vnα(i+ 3)− vnα(i+ 2)

]
−R

)
(1.16)

≥ 0,
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where inequality (1.16) holds because vnα is convex and thus −2vnα(i+1)+vnα(i) ≥ −vnα(i+2).
The final inequality follows from fn+1

α (i+ 2) = 0, because that yields:

αvnα(i+ 2) ≤ −R+ αvnα(i+ 3).

• Let
(
fn+1
α (i), fn+1

α (i+ 1), fn+1
α (i+ 2)

)
= (1, 1, 0). This gives the following inequalities:

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i)

≥ λ

λ+ µ

(
−R+ αvnα(i+ 3)− 2

(
−R+ αvnα(i+ 2)

)
+ αvnα(i)

)
=

λ

λ+ µ

(
α
[
vnα(i+ 3)− 2vnα(i+ 2) + vnα(i)

]
+R

)
≥ λ

λ+ µ

(
α
[
− vnα(i+ 1) + vnα(i)

]
+R

)
(1.17)

≥ 0,

where inequality (1.17) holds because vnα is convex and thus vnα(i+3)−2vnα(i+2) ≥ −vnα(i+1).
The last inequality follows from the fact that fn+1

α (i) = 1 and thus αvnα(i) ≥ −R+αvnα(i+1).

• Let
(
fn+1
α (i), fn+1

α (i+ 1), fn+1
α (i+ 2)

)
= (1, 1, 1). This gives the following inequalities:

vn+1
α (i+ 2)− 2vn+1

α (i+ 1) + vn+1
α (i)

≥ λ

λ+ µ

(
−R+ αvnα(i+ 3)− 2

(
−R+ αvnα(i+ 2)

)
−R+ αvnα(i+ 1)

)
= α

λ

λ+ µ

(
vnα(i+ 3)− 2vnα(i+ 2) + vnα(i+ 1)

)
≥ 0,

where the final inequality is true because of the convexity of vnα.

Now we have shown that the convexity of vnα implies Inequality (1.15) for i ≥ 1 and every possible
threshold strategy fn+1

α , so vn+1
α (i) is convex for i ≥ 1.

Case n > 0, i = 0 It remains to prove, that

vn+1
α (2)−2vn+2

α (1) + vn+1
α (0) ≥ 0. (1.18)

The same induction hypothesis and assumptions hold as in the case for n > 0, i > 0. Equation
(1.12) gives an expression for vn+1

α (0). By Equation (1.7) we know the expressions for vn+1
α (1) and

vn+1
α (2):

vn+1
α (1) =

λ

λ+ µ
min

{
αvnα(1),−R+ αvnα(2)

}
+ b+ α

µ

λ+ µ
vnα(0),

vn+1
α (2) =

λ

λ+ µ
min

{
αvnα(2),−R+ αvnα(3)

}
+ 2b+ α

µ

λ+ µ
vnα(1).
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These expressions give the following equalities:

vn+1
α (0)− 2vn+1

α (1) + vn+1
α (2)

=
λ

λ+ µ
min

{
αvnα(0),−R+ αvnα(1)

}
+ α

µ

λ+ µ
vnα(0)

− 2

(
λ

λ+ µ
min

{
αvnα(1),−R+ αvnα(2)

}
+ b+ α

µ

λ+ µ
vnα(0)

)
+

λ

λ+ µ
min

{
αvnα(2),−R+ αvnα(3)

}
+ 2b+ α

µ

λ+ µ
vnα(1)

=
λ

λ+ µ

(
min

{
αvnα(0),−R+ αvnα(1)

}
− 2 min

{
αvnα(1),−R+ αvnα(2)

}
+ min

{
αvnα(2),−R+ αvnα(3)

})
+ α

µ

λ+ µ

(
vnα(1)− vnα(0)

)
.

By the convexity of vnα together with Lemma 1.6, we know that fn+1
α is a threshold strategy, leaving

us with four possibilities for strategies fn+1
α (j), where j = 0, 1, 2.

• Let
(
fn+1
α (0), fn+1

α (1), fn+1
α (2)

)
= (0, 0, 0). This gives the following inequalities:

vn+1
α (2)− 2vn+1

α (1) + vn+1
α (0)

=
λ

λ+ µ

(
αvnα(2)− 2αvnα(1) + αvnα(0)

)
+ α

µ

λ+ µ

(
− vnα(0) + vnα(1)

)
= α

λ

λ+ µ

(
vnα(2)− 2vnα(1) + vnα(0)

)
+ α

µ

λ+ µ

(
vnα(1)− vnα(0)

)
≥ 0,

where the last inequality holds because vnα(2)−2vnα(1)+vnα(0) ≥ 0 by the convexity of vnα, and
vnα(1)− vnα(0) ≥ 0 holds by Lemma 1.5, which states that vnα is a non-decreasing sequence.

• Let
(
fn+1
α (0), fn+1

α (1), fn+1
α (2)

)
= (1, 0, 0). This gives the following inequalities:

vn+1
α (2)− 2vn+1

α (1) + vn+1
α (0)

=
λ

λ+ µ

(
−R+ αvnα(1)− 2αvnα(1) + αvnα(2)

)
+ α

µ

λ+ µ

(
− vnα(0) + vnα(1)

)
=

λ

λ+ µ

(
α [vnα(2)− vnα(1)]−R

)
+ α

µ

λ+ µ

(
vnα(1)− vnα(0)

)
≥ 0,

where the last inequality holds because fn+1
α (1) = 0, which means that αvnα(1) ≤ −R+αvnα(2).

Also, vnα(1)− vnα(0) ≥ 0 because of Lemma 1.5.

• Let
(
fn+1
α (0), fn+1

α (1), fn+1
α (2)

)
= (1, 1, 0). This gives the following inequalities:

vn+1
α (2)− 2vn+1

α (1) + vn+1
α (0)

=
λ

λ+ µ

(
−R+ αvnα(1)− 2

[
−R+ αvnα(2)

]
+ αvnα(2)

)
+ α

µ

λ+ µ

(
− vnα(0) + vnα(1)

)
=

λ

λ+ µ

(
α [−vnα(2) + vnα(1)] +R

)
+ α

µ

λ+ µ

(
vnα(1)− vnα(0)

)
≥ 0,
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where the final inequality holds because −vnα(2) + vnα(1) + R ≥ 0, since fn+1
α (1) = 1, and

vnα(1)− vnα(0) ≥ 0 because of Lemma 1.5.

• Let
(
fn+1
α (0), fn+1

α (1), fn+1
α (2)

)
= (1, 1, 1). This gives the following inequalities:

vn+1
α (2)− 2vn+1

α (1) + vn+1
α (0)

=
λ

λ+ µ

(
−R+ αvnα(1)− 2

[
−R+ αvnα(2)

]
−R+ αvnα(3)

)
+ α

µ

λ+ µ

(
− vnα(0) + vnα(1)

)
= α

λ

λ+ µ

[
vnα(1)− 2vnα(2) + vnα(3)

]
+ α

µ

λ+ µ

(
vnα(1)− vnα(0)

)
≥ 0,

where in the last inequality, vnα(1) − 2vnα(2) + vnα(3) ≥ 0 holds by the convexity of vnα, and
Lemma 1.5 gives: vnα(1)− vnα(0) ≥ 0.

The above calculations show that Equation (1.18) holds for all possible strategies, and therefore
vn+1
α (i) is convex in i = 0.

In this proof we have first shown that the convexity of vnα(i) implies that vn+1
α (i) is also con-

vex for i ≥ 1. Now we have additionally proven that the convexity of vnα(i) implies Equation (1.18).
Combining this with the first step of this proof, namely the convexity of v0α(i), ∀i, we can conclude
that vnα is convex, ∀n ≥ 0, ∀i ∈ S.

Proof of Theorem 1.3.
By the lemmas stated before, we know the following:

• v0α is convex in i (first part of the proof of Lemma 1.7, page 14);

• The convexity of vnα implies that vn+1
α is also convex (Lemma 1.7);

• vnα being convex implies that the optimal strategy fn+1
α is a threshold strategy (Lemma 1.6).

Therefore, strategy fn+1
α is a threshold strategy ∀n, in other words, fnα is a threshold strategy

∀n ∈ N≥0.

1.2.3 Convergence of the threshold

When studying the results in Table 1.2 in Section 1.2.1, we can formulate an other assumption on
the convergence of the threshold in fnα . This hypothesis is given in the following theorem, based
on Exercise 2.8 in [5].

Theorem 1.8. (in)n forms a non-increasing sequence of threshold strategies, where in is the thresh-
old of the optimal strategy in time step n.

Before proving Theorem 1.8, first some lemmas will be stated and proven.
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Lemma 1.9. vnα(i+ 1)− vnα(i) ≥ vn−1α (i+ 1)− vn−1α (i) for all i ∈ S, n ≥ 1.

Proof. To prove this, we will use the method of induction, where the two steps will both be split
into the cases i > 0 and i = 0.

Case n = 1, i > 0 In this case, we need to show that

v1α(i+ 1)− v1α(i) ≥ v0α(i+ 1)− v0α(i), ∀i ≥ 1,

which is equivalent to:

v1α(i+ 1)− v1α(i)−
[
v0α(i+ 1)− v0α(i)

]
≥ 0, ∀i ≥ 1. (1.19)

Equation (1.6) gives an expression for v0α(i+ 1)− v0α(i), ∀i. Equation (1.8) gives an expression for
vn+1
α (i+1)−vn+1

α (i) for n ≥ 1. Substituting these terms into the left-hand side of Inequality (1.19)
gives:

v1α(i+ 1)− v1α(i)−
[
v0α(i+ 1)− v0α(i)

]
=

λ

λ+ µ

(
min

{
αv0α(i+ 1),−R+ αv0α(i+ 2)

}
−min

{
αv0α(i),−R+ αv0α(i+ 1)

})
+ b+ α

µ

λ+ µ

(
v0α(i)− v0α(i− 1)

)
− b

=
λ

λ+ µ

(
min

{
α

[
b(i+ 1)− λ

λ+ µ
R

]
,−R+ α

[
b(i+ 2)− λ

λ+ µ
R

]}
−min

{
α

[
bi− λ

λ+ µ
R

]
,−R+ α

[
b(i+ 1)− λ

λ+ µ
R

])}
+ α

µ

λ+ µ
b

=
λ

λ+ µ

(
min

{
αb,−R+ 2αb

}
−min

{
0,−R+ αb

})
+ α

µ

λ+ µ
b. (1.20)

From Inequality (1.19), it is clear that the expression in Equation (1.20) needs to be larger than or
equal to zero for all possible optimal strategies f0α and f1α.

By Theorem 1.3 we know that the strategy fn+1
α is a threshold strategy ∀n. By Algorithm 1.1

we can deduce that f0α(i) = 1, ∀i ∈ S, so there are no other strategies f0α to be tried. Therefore
only the strategy for

(
f1α(i), f1α(i+ 1)

)
can be varied legitimately. Thanks to this reasoning, there

are three different strategies leading to a different outcome of Equation (1.20).

• Let
(
f1α(i), f1α(i+ 1)

)
= (0, 0). Then:

v1α(i+ 1)− v1α(i)−
[
v0α(i+ 1)− v0α(i)

]
=

λ

λ+ µ
αb+ α

µ

λ+ µ
b ≥ 0,

so Equation (1.19) is satisfied.
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• Let
(
f1α(i), f1α(i+ 1)

)
= (1, 0). The following holds:

v1α(i+ 1)− v1α(i)−
[
v0α(i+ 1)− v0α(i)

]
=

λ

λ+ µ

(
αb+R− αb

)
+ α

µ

λ+ µ
b

=
λ

λ+ µ
R+ α

µ

λ+ µ
b

≥ 0,

and thus Equation (1.19) is satisfied.

• Let
(
f1α(i), f1α(i+ 1)

)
= (1, 1). In this case we get:

v1α(i+ 1)−v1α(i)−
[
v0α(i+ 1)− v0α(i)

]
= − λ

λ+ µ
R+ 2α

λ

λ+ µ
b+

λ

λ+ µ
R− α λ

λ+ µ
b+ α

µ

λ+ µ
b

=
λ

λ+ µ
b+ α

µ

λ+ µ
b

≥ b,

so Equation (1.19) is satisfied.

At this point we have proven that Equation (1.19) holds for all circumstances for i ≥ 1.

Case n = 1, i = 0 To prove Lemma 1.9, we need to show the following:

v1α(1)− v1α(0) ≥ v0α(1)− v0α(0),

which is equivalent to:

v1α(1)− v1α(0)−
[
v0α(1)− v0α(0)

]
≥ 0. (1.21)

For the calculation of v0α(1) − v0α(0), Equation (1.6) can be used. Equation (1.13) with n = 0 can
be used for the calculation of v1α(1)− v1α(0).

v1α(1)− v1α(0)−
[
v0α(1)− v0α(0)

]
=

λ

λ+ µ

(
min

{
αv0α(1),−R+ αv0α(2)

}
−min

{
αv0α(0),−R+ αv0α(1)

})
+ b− b

=
λ

λ+ µ

(
min

{
α

[
b− λ

λ+ µ
R

]
,−R+ α

[
2b− λ

λ+ µ
R

]}
−min

{
α

[
− λ

λ+ µ
R

]
,−R+ α

[
b− λ

λ+ µ
R

]})
=

λ

λ+ µ

(
min

{
αb,−R+ 2αb

}
−min

{
0,−R+ αb

})
. (1.22)

Since Equation (1.22) needs to satisfy Inequality (1.21), all possible combinations of strategies have
to be distinguished to find out whether the expression is indeed greater than or equal to zero. Note
that the strategy for n = 1 has to be a threshold strategy, so (f1α(0), f1α(1)) = (0, 1) cannot occur.
Also note that the strategy for n = 0 is f0α(i) = 1, ∀i ∈ S by Algorithm 1.1, so no variations are
possible for this strategy.
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• Let (f1α(0), f1α(1)) = (0, 0). Then Equation (1.22) becomes:

v1α(1)− v1α(0)−
[
v0α(1)− v0α(0)

]
=

λ

λ+ µ

(
αb− 0

)
=

λ

λ+ µ
αb ≥ 0,

so Equation (1.21) is satisfied.

• Let (f1α(0), f1α(1)) = (1, 0). Then Equation (1.22) becomes:

v1α(1)− v1α(0)−
[
v0α(1)− v0α(0)

]
=

λ

λ+ µ

(
αb+R− αb

)
=

λ

λ+ µ
R ≥ 0,

so Equation (1.21) is satisfied.

• Let (f1α(0), f1α(1)) = (1, 1). Then Equation 1.22 becomes:

v1α(1)− v1α(0)−
[
v0α(1)− v0α(0)

]
=

λ

λ+ µ

(
−R+ 2αb+R− αb

)
=

λ

λ+ µ
αb ≥ 0,

so Equation (1.21) is satisfied.

In the above calculations is shown that Inequality (1.21) holds for all circumstances. This combined
with the previous step in this proof shows that v1α(i+ 1)− v1α(i) ≥ vn−1α (i+ 1)− vn−1α (i), ∀i ∈ S.

Case n > 1, i > 0 Assume vnα(i + 1) − vnα(i) ≥ vn−1α (i + 1) − vn−1α (i) holds ∀n ≤ N for
some N ≥ 1. Then the induction hypothesis gives:

vNα (i+ 1)− vNα (i) ≥ vN−1α (i+ 1)− vN−1α (i), ∀i ∈ S. (1.23)

Now we need to show for i ≥ 1, that

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ 0. (1.24)

Equation (1.8) gives an expression for vn+1
α (i+ 1)− vn+1

α (i) that we can insert in Equation (1.24)
for n = N and n = N − 1.
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vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
=

λ

λ+ µ

(
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

})
+ b+ α

µ

λ+ µ

(
vNα (i)− vNα (i− 1)

)
− λ

λ+ µ

(
min

{
αvN−1α (i+ 1),−R+ αvN−1α (i+ 2)

}
−min

{
αvN−1α (i),−R+ αvN−1α (i+ 1)

})
− b− α µ

λ+ µ

(
vN−1α (i)− vN−1α (i− 1)

)
=

λ

λ+ µ

(
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

}
−min

{
αvN−1α (i+ 1),−R+ αvN−1α (i+ 2)

}
+ min

{
αvN−1α (i),−R+ αvN−1α (i+ 1)

})
+ α

µ

λ+ µ

[
vNα (i)− vNα (i− 1)−

(
vN−1α (i)− vN−1α (i− 1)

) ]
≥ λ

λ+ µ

(
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

}
−min

{
αvN−1α (i+ 1),−R+ αvN−1α (i+ 2)

}
+ min

{
αvN−1α (i),−R+ αvN−1α (i+ 1)

})
,

(1.25)

where the final step holds because of the induction hypothesis in Equation (1.23).

Similarly to previous proofs, all possible strategies are verified to prove that Inequality (1.24)
holds in each of them. Note that according to Theorem 1.3 the optimal strategy is a threshold
strategy.

However, not all combinations of threshold strategies for fNα (i), fNα (i+1), and fN+1
α (i), fN+1

α (i+1),
∀i, appear to be valid. To prove this, we use the following two statements:

• fN+1
α (i) = 0 iff vNα (i+ 1)− vNα (i) ≥ R/α (Lemma 1.4);

• vNα (i+ 1)− vNα (i) ≥ vN−1α (i+ 1)− vN−1α (i) (Equation (1.23)).

From these statements, we can deduce that fNα (i) = 0 implies that vN−1α (i+ 1)− vN−1α (i) ≥ R/α.
In order to satisfy Equation (1.23) also vNα (i+ 1)− vNα (i) ≥ R/α holds, and thus fN+1

α (i) = 0. In
summary, this means:

fNα (i) = 0 ⇒ fN+1
α (i) = 0. (1.26)

Below, the previously mentioned possible threshold strategies are given, and for each is proven that
Inequality (1.24) holds. Note that the strategies made impossible by Implication (1.26) are left out.

•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (0, 0) and
(
fNα (i), fNα (i+ 1)

)
= (0, 0).
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In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
αvNα (i+ 1)− αvNα (i)− αvN−1α (i+ 1) + αvN−1α (i)

)
≥ 0,

where the final step holds as a result of the induction hypothesis (1.23).

•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (0, 0) and
(
fNα (i), fNα (i+ 1)

)
= (1, 0).

In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
αvNα (i+ 1)− αvNα (i)− αvN−1α (i+ 1)−R+ αvN−1α (i+ 1)

)
=

λ

λ+ µ

(
αvNα (i+ 1)− αvNα (i)−R

)
≥ 0,

where the final step holds because: min
{
αvNα (i),−R+ αvNα (i+ 1)

}
= αvNα (i).

•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 0) and
(
fNα (i), fNα (i+ 1)

)
= (1, 0).

In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
αvNα (i+ 1) +R− αvNα (i+ 1)− αvN−1α (i+ 1)−R+ αvN−1α (i+ 1)

)
=0.

•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (0, 0) and
(
fNα (i), fNα (i+ 1)

)
= (1, 1).

In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
αvNα (i+ 1)− αvNα (i) +R− αvN−1α (i+ 2)−R+ αvN−1α (i+ 1)

)
≥ λ

λ+ µ

(
αvNα (i+ 1) +R− αvNα (i+ 1)− αvN−1α (i+ 2) + αvN−1α (i+ 1)

)
(1.27)

≥ λ

λ+ µ

(
R− αvN−1α (i+ 2) + αvN−1α (i+ 1)

)
≥ 0,

where Inequality (1.27) holds because fN+1
α (i) = 0 and thus

−α λ

λ+ µ
vNα (i) ≥ λ

λ+ µ
R− α λ

λ+ µ
vNα (i+ 1).

The final inequality holds because fNα (i+ 1) = 1 and thus vN−1α (i+ 2)− vN−1α (i+ 1) ≥ R/α.

23



•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 0) and
(
fNα (i), fNα (i+ 1)

)
= (1, 1).

In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
αvNα (i+ 1) +R− αvNα (i+ 1) +R− αvN−1α (i+ 2)−R+ αvN−1α (i+ 1)

)
=

λ

λ+ µ

(
R− αvN−1α (i+ 2) + αvN−1α (i+ 1)

)
≥ 0,

where the final step holds by: min
{
αvN−1α (i+ 1),−R+ αvN−1α (i+ 2)

}
= −R+αvN−1α (i+2).

•
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 1) and
(
fNα (i), fNα (i+ 1)

)
= (1, 1).

In this case Equation (1.25) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vNα (i+ 1)− vNα (i)

]
≥ λ

λ+ µ

(
−R+ αvNα (i+ 2) +R− αvNα (i+ 1) +R− αvN−1α (i+ 2)−R+ αvN−1α (i+ 1)

)
≥ α λ

λ+ µ

(
vN−1α (i+ 2)− vN−1α (i+ 1)− vN−1α (i+ 2) + vN−1α (i+ 1)

)
= 0,

where the second step holds as a result of the induction hypothesis (1.23).

From the above enumeration can be concluded that for every possible combination of strategies,
Inequality (1.24) holds ∀i ≥ 1, when assuming Induction Hypothesis (1.23). The next and final
step in this proof is the induction step for i = 0.

Case n > 1, i = 0 Assume ∃N ≥ 1, such that vnα(i + 1) − vnα(i) ≥ vn−1α (i + 1) − vn−1α (i)
holds ∀n ≤ N , ∀i ≥ 0. This assumption gives Inequality (1.23), which was used in the previous
step of this proof as well. The inequality we need to prove in this case is:

vN+1
α (1)− vN+1

α (0)−
[
vNα (1)− vNα (0)

]
≥ 0. (1.28)

Substituting Equation (1.13) into Equation (1.28) gives:

vN+1
α (1)− vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
min

{
αvNα (1),−R+ αvNα (2)

}
−min

{
αvNα (0),−R+ αvNα (1)

})
+ b

−
(

λ

λ+ µ

(
min

{
αvN−1α (1),−R+ αvN−1α (2)

}
−min

{
αvN−1α (0),−R+ αvN−1α (1)

})
+ b

)
=

λ

λ+ µ

(
min

{
αvNα (1),−R+ αvNα (2)

}
−min

{
αvNα (0),−R+ αvNα (1)

}
−min

{
αvN−1α (1),−R+ αvN−1α (2)

}
+ min

{
αvN−1α (0),−R+ αvN−1α (1)

})
. (1.29)
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Again, we need to go through all possible strategies to prove that Equation (1.28) holds in all cases.
Using Implications (1.26), some combinations of strategies can be excluded, just like we did in the
case with n > 0, i > 0. We will not further discuss these.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (0, 0) and
(
fNα (0), fNα (1)

)
= (0, 0).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
αvNα (1)− αvNα (0)− αvN−1α (1) + αvN−1α (0)

)
≥ 0,

where the last inequality follows from the induction hypothesis.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (0, 0) and
(
fNα (0), fNα (1)

)
= (1, 0).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
αvNα (1)− αvNα (0)− αvN−1α (1)−R+ αvN−1α (1)

)
=

λ

λ+ µ

(
αvNα (1)− vNα (0)−R

)
≥ 0,

where the last inequality holds by Lemma 1.4, which states that fN+1
α (0) = 0 implies that

vNα (1)− vNα (0) ≥ R/α.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 0) and
(
fNα (0), fNα (1)

)
= (1, 0).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
αvNα (1) +R− αvNα (1)− αvN−1α (1)−R+ αvN−1α (1)

)
= 0.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (0, 0) and
(
fNα (0), fNα (1)

)
= (1, 1).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
αvNα (1)− αvNα (0) +R− αvN−1α (2)−R+ αvN−1α (1)

)
≥ λ

λ+ µ

(
αvNα (1)− αvNα (0)− αvN−1α (1)−R+ αvN−1α (1)

)
(1.30)

=
λ

λ+ µ

(
αvNα (1)− αvNα (0)−R

)
≥ 0,

where Inequality (1.30) holds, since fNα (1) = 1 implies that R−αvN−1α (2) ≥ −αvN−1α (1). The
last inequality holds by Lemma 1.4, stating that fN+1

α (0) = 0 implies vNα (1)− vNα (0) ≥ R/α.
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• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 0) and
(
fNα (0), fNα (1)

)
= (1, 1).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
αvNα (1) +R− αvNα (1) +R− αvN−1α (2)−R+ αvN−1α (1)

)
=

λ

λ+ µ

(
R− αvN−1α (2) + αvN−1α (1)

)
≥ 0,

where the last inequality holds by Lemma 1.4, which states that fNα (1) = 1 implies that
vN−1α (2)− vN−1α (1) ≤ R/α.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 1) and
(
fNα (0), fNα (1)

)
= (1, 1).

In this case Equation (1.29) becomes:

vN+1
α (1)−vN+1

α (0)−
[
vNα (1)− vNα (0)

]
=

λ

λ+ µ

(
−R+ αvNα (2) +R− αvNα (1) +R− αvN−1α (2)−R+ αvN−1α (1)

)
≥ λ

λ+ µ

(
αvN−1α (2)− αvN−1α (1)− αvN−1α (2) + αvN−1α (1)

)
(1.31)

= 0,

where Inequality (1.31) holds by the induction hypothesis vNα (2)−vNα (1) ≥ vN−1α (2)−vN−1α (1).

Now we have shown that in all possible combinations of strategies Inequality (1.28) holds, when
given Induction Hypothesis (1.23). These complete the Induction step and hence the proof of
Lemma 1.9.

Proof of Theorem 1.8:
For the clarity of the proof, we will first give an overview of useful results achieved earlier.

• vnα(i+ 1)− vnα(i) ≥ vn−1α (i+ 1)− vn−1α (i) for all i ∈ S, n ≥ 1 (Lemma 1.9);

• fn+1
α (i) = 0 iff vnα(i+ 1)− vnα(i) ≥ R

α (Lemma 1.4);

• The optimal strategy fnα (i) is a threshold strategy ∀n, meaning that ∃i∗n ∈ S such that
fnα (i) = 1, ∀i ≤ i∗n and fα(i) = 0, ∀i > i∗n (Theorem 1.3).

Now, let iN ∈ S be the threshold for strategy fN+1
α for some N ≥ 0. Then, ∀i ≤ iN holds:

vNα (i + 1) − vNα (i) < R
α . By the fact that vNα (i + 1) − vNα (i) ≥ vN−1α (i + 1) − vN−1α (i) follows that

vN−1α (i+ 1)− vN−1α (i) < R
α and thus fNα (i) = 1.

Now, we may conclude that fN+1
α (i) = 1 ⇒ fNα (i) = 1, which is equivalent to fNα (i) 6= 1 ⇒

fN+1
α (i) 6= 1. This can be rewritten into fNα (i) = 0 ⇒ fN+1

α (i) = 0 (which is equivalent to Impli-
cation (1.26)), which means that once a strategy N does not allow the ith customer to enter the
queue, strategy N + 1 will also decline any ith customer in line. Thus (in)n is a non-increasing
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sequence of threshold strategies.

All the above theorems and lemmas are proven for cost function ci(a) from Equation (1.4). How-
ever, in these proofs we only used the fact that ci(a) is a non-decreasing and convex function in i.
Therefore, we can formulate the following theorem:

Theorem 1.10. Theorems 1.3 and 1.8 hold for every cost function Ci(a) of the form

Ci(a) =

{
B(i), a = 0,
B(i)− pi,(i+1)(1)R, a = 1,

where B is a non-decreasing convex function and pi,(i+1)(1) = λ
λ+µ as defined in Equation (1.3).

The proof of this theorem consists of the proofs of Theorems 1.3 and 1.8 and their corresponding
lemmas using the properties of Ci(a) given in Theorem 1.10 instead of ci(a) given in Equation (1.4).

1.3 Monotonicity of the model

Next to the limiting behaviour of the optimal strategy fnα (i), it is also interesting to look at the
behaviour of the model for different values of α. A presumption of this behaviour is stated in the
following theorem, and proven afterwards.

Theorem 1.11. Let α < β. Then: threshold inα ≥ inβ, ∀n ≥ 0.

Before proving Theorem 1.11, we will state and prove some lemmas.

Lemma 1.12. Let α < β. Assume vnα(i + 1) − vnα(i) −
[
vnβ (i + 1) − vnβ (i)

]
≤ 0, ∀i ∈ S for some

n ∈ N≥0. Then α
[
vnα(i+ 1)− vnα(i)

]
− β

[
vnβ (i+ 1)− vnβ (i)

]
≤ 0.

Proof. Lemma 1.5 states that vnα(i) is a non-decreasing sequence in i. Therefore, in inequality

vnα(i+ 1)− vnα(i) ≤ vnβ (i+ 1)− vnβ (i), (1.32)

both sides are positive. Since α < β, multiplying the smaller side of (1.32) with α and the larger
side with β will preserve the inequality, resulting in the assertion of the lemma.

With the help of the following lemma, we will be able to prove Theorem 1.11.

Lemma 1.13. Let α < β. Then: vnα(i+ 1)− vnα(i) ≤ vnβ (i+ 1)− vnβ (i).

Proof. In this proof, we need to show that:

vnα(i+ 1)− vnα(i)−
[
vnβ (i+ 1)− vnβ (i)

]
≤ 0, ∀i ∈ S, n ≥ 0. (1.33)

We use induction to show this. The induction step is split into two parts by considering the cases
i = 0 and i > 0 separately.
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Case n = 0, i ≥ 0 Equation (1.6) substituted into Equation (1.33) with n = 0 gives:

v0α(i+ 1)− v0α(i)−
[
v0β(i+ 1)− v0β(i)

]
= b− b = 0 ≤ 0, ∀i ∈ S,

which means that Equation (1.33) is satisfied for n = 0, i ≥ 0.

At this point, we can proceed with the induction step.

Induction step Assume ∃N ≥ 0 such that Inequality (1.33) holds ∀i ∈ S, ∀n ≤ N .

Induction step, i > 0 Then Equation (1.8) yields:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

=
λ

λ+ µ

(
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

})
+ b+ α

µ

λ+ µ

(
vNα (i)− vNα (i− 1)

)
− λ

λ+ µ

(
min

{
βvNβ (i+ 1),−R+ βvNβ (i+ 2)

}
−min

{
βvNβ (i),−R+ βvNβ (i+ 1)

})
− b− β µ

λ+ µ

(
vNβ (i)− vNβ (i− 1)

)
=

λ

λ+ µ

[
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

}
−min

{
βvNβ (i+ 1),−R+ βvNβ (i+ 2)

}
+ min

{
βvNβ (i),−R+ βvNβ (i+ 1)

}]
+

µ

λ+ µ

[
α
(
vNα (i)− vNα (i− 1)

)
− β

(
vNβ (i)− vNβ (i− 1)

)]
≤ λ

λ+ µ

[
min

{
αvNα (i+ 1),−R+ αvNα (i+ 2)

}
−min

{
αvNα (i),−R+ αvNα (i+ 1)

}
−min

{
βvNβ (i+ 1),−R+ βvNβ (i+ 2)

}
+ min

{
βvNβ (i),−R+ βvNβ (i+ 1)

}]
, (1.34)

where the last inequality follows from Lemma 1.12.

Now, assume that fN+1
α (i) = 0. Then, Lemma 1.4 states, that vNα (i+ 1)− vNα (i) ≥ R/α, which is

equivalent to α
(
vNα (i+ 1)− vNα (i)

)
≥ R. By Lemma 1.12, it follows that β

(
vNβ (i+ 1)− vNβ (i)

)
≥ R

and therefore vNβ (i+1)−vNβ (i) ≥ R/β. By Lemma 1.4, this implies, that fN+1
β (i) = 0. Summarising

this means, that:

fN+1
α (i) = 0 ⇒ fN+1

β (i) = 0. (1.35)

For strategies
(
fN+1
α (i), fN+1

α (i+1)
)

and
(
fN+1
β (i), fN+1

β (i+1)
)
, there are three possible threshold

strategies. This results in nine combinations of threshold strategies. But given Implication (1.35),
not every combination of strategies is feasible. Below we will only name the pairs of threshold
strategies that are valid by Implication (1.35), and show that Inequality (1.33) holds.
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• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (0, 0) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
αvNα (i+ 1)− αvNα (i)− βvNβ (i+ 1) + βvNβ (i)

]
≤ 0,

where the last inequality holds by Lemma 1.12 combined with the induction hypothesis.

• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 0) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
αvNα (i+ 1) +R− αvNα (i+ 1)− βvNβ (i+ 1) + βvNβ (i)

]
≤ 0,

where the last inequality holds because fN+1
β (i) = 0 and thus βvNβ (i) ≤ −R+ βvNβ (i+ 1).

• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 1) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
−R+ αvNα (i+ 2) +R− αvNα (i+ 1)− βvNβ (i+ 1) + βvNβ (i)

]
≤ λ

λ+ µ

[
R− βvNβ (i+ 1) + βvNβ (i)

]
(1.36)

≤ 0,

where Inequality (1.36) holds, as fN+1
α (i+ 1) = 1 implies that αvNα (i+ 2)− αvNα (i+ 1) ≤ R.

The final inequality holds, because fNβ (i) = 0, implying that βvNβ (i)− βvNβ (i+ 1) +R ≤ 0.

• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 0) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (1, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
αvNα (i+ 1) +R− αvNα (i+ 1)− βvNβ (i+ 1)−R+ βvNβ (i+ 1)

]
= 0.

• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 1) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (1, 0).
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Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
−R+ αvNα (i+ 2) +R− αvNα (i+ 1)− βvNβ (i+ 1)−R+ βvNβ (i+ 1)

]
≤ λ

λ+ µ

[
R− βvNβ (i+ 1) + βvNβ (i)

]
≤ 0,

where the second inequality holds because fN+1
α (i+ 1) = 1 and therefore

−R+ αvN+1
α (i+ 2) ≤ αvN+1

α (i+ 1).

• Let
(
fN+1
α (i), fN+1

α (i+ 1)
)

= (1, 1) and
(
fN+1
β (i), fN+1

β (i+ 1)
)

= (1, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (i+ 1)− vN+1

α (i)−
[
vN+1
β (i+ 1)− vN+1

β (i)
]

≤ λ

λ+ µ

[
−R+ αvNα (i+ 2) +R− αvNα (i+ 1) +R− βvNβ (i+ 2)−R+ βvNβ (i+ 1)

]
≤ 0,

where the last inequality holds by Lemma 1.12 combined with the induction hypothesis.

So far, we have proven that, given the induction hypothesis, Inequality (1.33) holds for every pos-
sible combination of threshold strategies for

(
fN+1
α (i), fN+1

α (i+ 1)
)

and
(
fN+1
β (i), fN+1

β (i+ 1)
)

for
i > 0. To finish this proof, we need to show that, given the induction hypothesis, Inequality (1.33)
holds for i = 0.

Induction step, i = 0 Note, that we still have the assumption that ∃N ≥ 0 such that
Inequality (1.33) holds ∀i ∈ S, ∀n ≤ N . Equation (1.13) gives:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

(
min

{
αvNα (1),−R+ αvNα (2)

}
−min

{
αvNα (0),−R+ αvNα (1)

})
+ b

− λ

λ+ µ

(
min

{
βvNβ (1),−R+ βvNβ (2)

}
−min

{
βvNβ (0),−R+ βvNβ (1)

})
− b

=
λ

λ+ µ

(
min

{
αvNα (1),−R+ αvNα (2)

}
−min

{
αvNα (0),−R+ αvNα (1)

}
−min

{
βvNβ (1),−R+ βvNβ (2)

}
+ min

{
βvNβ (0),−R+ βvNβ (1)

})
.

With a reasoning similar to the one leading to Implication (1.35), we can state that fN+1
α (0) = 0

is equivalent to αvNα (1)−αvNα (0) ≥ R, which implies βvNβ (1)− βvNβ (0) ≥ R, which is equivalent to

fN+1
β (0) = 0. In summary, this means:

fN+1
α (0) = 0 ⇒ fN+1

β (0) = 0. (1.37)
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For i = 1, Implication (1.35) can be used.

Just as in the case of the induction step with i > 0, there are nine possible combinations of
threshold strategies for

(
fN+1
α (0), fN+1

α (1)
)

and
(
fN+1
β (0), fN+1

β (1)
)
. Three of these are impossible

by Implication (1.37). We will check the remaining combinations below to see if Inequality (1.33)
holds.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (0, 0) and
(
fN+1
β (0), fN+1

β (1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
αvNα (1)− αvNα (0)− βvNβ (1) + βvNβ (0)

]
≤ 0,

where the last inequality holds by Lemma 1.12 combined with the induction hypothesis.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 0) and
(
fN+1
β (0), fN+1

β (1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
αvNα (1) +R− αvNα (1)− βvNβ (1) + βvNβ (0)

]
≤ 0,

where the last inequality holds because fN+1
β (0) = 0.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 1) and
(
fN+1
β (0), fN+1

β (1)
)

= (0, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
−R+ αvNα (2) +R− αvNα (1)− βvNβ (1) + βvNβ (0)

]
≤ λ

λ+ µ

[
R− βvNβ (1) + βvNβ (0)

]
(1.38)

≤ 0,

where Inequality (1.38) holds because fN+1
α (1) = 1. The final inequality holds because

fNβ (0) = 0.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 0) and
(
fN+1
β (0), fN+1

β (1)
)

= (1, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
αvNα (1) +R− αvNα (1)− βvNβ (1)−R+ βvNβ (1)

]
= 0.
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• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 1) and
(
fN+1
β (0), fN+1

β (1)
)

= (1, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
−R+ αvNα (2) +R− αvNα (1)− βvNβ (1)−R+ βvNβ (1)

]
≤ λ

λ+ µ

[
R− βvNβ (1) + βvNβ (0)

]
≤ 0,

where the last inequality holds because fN+1
α (1) = 1.

• Let
(
fN+1
α (0), fN+1

α (1)
)

= (1, 1) and
(
fN+1
β (0), fN+1

β (1)
)

= (1, 0).
Then, the left-hand side of Equation (1.34) becomes:

vN+1
α (1)− vN+1

α (0)−
[
vN+1
β (1)− vN+1

β (0)
]

=
λ

λ+ µ

[
−R+ αvNα (2) +R− αvNα (1) +R− βvNβ (2)−R+ βvNβ (1)

]
≤ 0,

where the last inequality holds by Lemma 1.12 combined with the induction hypothesis.

By the above we have shown that, given the induction hypothesis, Equation (1.33) holds for every
feasible combination of threshold strategies for

(
fN+1
α (0), fN+1

α (1)
)

and
(
fN+1
β (0), fN+1

β (1)
)
.

Conclusion By this induction, we have proven Lemma 1.13 to be correct.

Now that we have proven Lemmas 1.12 and 1.13, we can give a proof of Theorem 1.11.

Proof of Theorem 1.11.
By Lemma 1.13 we know that vnα(i + 1) − vnα(i) −

[
vnβ (i + 1) − vnβ (i)

]
≤ 0, ∀i ∈ S, n ≥ 0. Then

Lemma 1.12 gives: α
[
vnα(i+ 1)− vnα(i)

]
− β

[
vnβ (i+ 1)− vnβ (i)

]
≤ 0, ∀i ∈ S, n ≥ 0.

This means that if vnα(i + 1) − vnα(i) ≥ R/α, then vnβ (i + 1) − vnβ (i) ≥ R/β, which is equivalent to
the following:

fn+1
α (i) = 0 ⇒ fn+1

β (i) = 0.

Since the strategies for α and β both are threshold and sending off customer i in the α-model
implies refusing the ith customer in the β-model, we can conclude that the threshold for α has to
be greater than or equal to the threshold for β, ∀n ≥ 0. Therefore, inα ≥ inβ, ∀n ≥ 0 must hold.

1.4 Operators

An other way to approach the discounted model with controlled arrivals, is with the help of so-
called operators, see [4] and [2]. This means that the calculation for vn+1

α (i), as mentioned in
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Algorithm 1.1 and explicitly given in Equation (1.7), is calculated by a few consecutive functions.
From Equation (1.7), we get the following operators:

vn+1
α,4 (i) = vnα(i) (1.39a)

vn+1
α,3 (i) = TDv

n+1
α,4 (i) (1.39b)

vn+1
α,2 (i) = TCAv

n+1
α,4 (i) (1.39c)

vn+1
α,1 (i) = Tunif

(
vn+1
α,3 (i), vn+1

α,2 (i)
)

(1.39d)

vn+1
α,0 (i) = Tdiscv

n+1
α,1 (i) (1.39e)

vn+1
α (i) = vn+1

α,0 (i). (1.39f)

The function of each of the operators in Equations (1.39a) up to (1.39f) can be found in Table 1.3,
where the following notation is used for any function g : N≥0 → R:

g(i− 1)+ =

{
g(i− 1), i > 0,
g(0), i = 0.

This notation, also implemented in vnα, will occur in the rest of this thesis.

Description of the operator The operator

Departure TDf(i) = f(i− 1)+

Controlled arrivals TCAf(i) = min
{
f(i),−R

α + f(i+ 1)
}

Uniformization Tunif
(
f(i), g(i)

)
= λ

λ+µf(i) + µ
λ+µg(i)

Discounted costs Tdiscf(i) = αf(i) +B(i)

Table 1.3: The functions of the operators mentioned in Equations (1.39a) up to (1.39f).

Note that the operators can be defined in different ways, although they are forced to have a struc-
ture similar to the representation given in Table 1.3.

When implementing the operators from Table 1.3 as described in Equations (1.39a) up to (1.39f),
Equation (1.7) for calculating vn+1

α (i) becomes:

vn+1
α (i) =TdiscTunif

(
TCAv

n
α(i), TDv

n
α(i)

)
. (1.40)

Note that the operator-representation of vn+1
α (i) in Equation (1.40) can be used for the proofs in

this chapter. In the following chapter, where we will add controlled departure to our model, we
will show how this works by proving similar theorems using the operators.
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Chapter 2

Discounted model with controlled
arrivals and departures

2.1 Model description

The model in this chapter is an adaptation of the original discounted model as described in Section
1.1. All variables as introduced in Chapter 1 are defined similarly, as well as the choice of accepting
or refusing any incoming customer. For the fee per customer per time unit we take Ci(a), a ∈ A,
as described in Theorem 1.10.

The new part in this adapted model is the choice between two servers, both with exponentially
distributed service time. Server 1 has mean service time 1/µ1 and Server 2 has mean service time
1/µ2, such that Server 2 is faster than Server 1 and thus µ1 ≤ µ2.

For this model, we again want to calculate vn+1
α (i) by an algorithm similar to Algorithm 1.1.

Before we can give such an algorithm, we need to give the transition matrices for every possible
combination of choices. Let a ∈ A = {0, 1} be the choice for accepting or refusing an incoming cus-
tomer, as described in Chapter 1. The choice for the server is given by d ∈ D = {1, 2}, with d = 1
representing the choice for the slower and cheaper Server 1, and d = 2 for the faster, more expensive
Server 2. The action space in each state is therefore given by A×D =

{
(0, 1), (0, 2), (1, 1), (1, 2)

}
.

To be able to compare the different combinations of actions, we discretize time and uniformize
the probabilities. For the discretized time steps we take T = λ + µ1 + µ2, which is similar to the
choice of T in Chapter 1. The uniformized transition probabilities are then given in the following
matrices P (a, d) with (a, d) ∈ A×D.
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P (0, 1) =
1

λ+ µ1 + µ2


λ+ µ1 + µ2 0 0 0 · · ·

µ1 λ+ µ2 0 0 · · ·
0 µ1 λ+ µ2 0
0 0 µ1 λ+ µ2
...

. . .
. . .



P (0, 2) =
1

λ+ µ1 + µ2


λ+ µ1 + µ2 0 0 0 · · ·

µ2 λ+ µ1 0 0
0 µ2 λ+ µ1 0

0 0 µ2 λ+ µ1
. . .

...
. . .

. . .



P (1, 1) =
1

λ+ µ1 + µ2


µ1 + µ2 λ 0 0 · · ·
µ1 µ2 λ 0 · · ·
0 µ1 µ2 λ
0 0 µ1 µ2
...

. . .
. . .



P (1, 2) =
1

λ+ µ1 + µ2


µ1 + µ2 λ 0 0 · · ·
µ2 µ1 λ 0
0 µ2 µ1 λ

0 0 µ2 µ1
. . .

...
. . .

. . .

 .

Note, that time discretization has an effect on cost function Ci(a) from Theorem 1.10. For this
adapted model, cost function Ci(a) is calculated similarly to the cost function in Chapter 1, Equa-
tion (1.4), and is now given by

Ci(a) =

{
B(i)− pi,(i+1)(0, d) ·R, a = 0, d ∈ D,
B(i)− pi,(i+1)(1, d) ·R, a = 1, d ∈ D,

=

{
B(i), a = 0, d ∈ D,
B(i)− λ

λ+µ1+µ2
·R, a = 1, d ∈ D,

with B(i) : S → R a non-decreasing and convex function.

Assume, that the use of the faster Server 2 brings some additional cost per time unit T , say
K ∈ R≥0. In other words, let k : D → R such that k(1) = 0 and k(2) = K. Additionally, assume
we can choose at any change of state in the process which server is to serve the customer currently
in service.

Next, we will formulate an algorithm for the calculation of vnα(i) and strategy fnα (i), ∀i ∈ S, n ≥ 0,
where the strategy is of the form fnα (i) = (a, d), (a, d) ∈ A × D. When we refer to one of the

components of fnα (i), we use the notation fnα (i) =
((
fnα (i)

)
1
,
(
fnα (i)

)
2

)
.
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Algorithm 2.1. Successive approximation extended model

1. Pick v0α(i) ∈ R arbitrarily, ∀i ∈ S; let strategy f0α(i) = (1, 1), ∀i ∈ S.

2. Let vn+1
α (i) = min(a,d)∈A×D

{
Ci(a) + αP (a, d)vnα(i) + k(d)

}
, and thus

fn+1
α (i) = arg min(a,d)∈A×D

{
Ci(a) + αP (a, d)vnα(i) + k(d)

}
, for n = 0, 1, . . ., i ∈ S.

Note that this algorithm satisfies the constraints in Paragraph 8.3.5 in [3] and thus is correct and
converges towards the optimal values of v∗α(i), i ∈ S.

We make the following assumption on the starting value of v0α(i), which holds until a different
starting value is given.

Assumption 2.2. Let v0α(i) = min(a,d)∈A×D {Ci(a) + k(d)}.

With the help of this Algorithm 2.1, we can elaborate on the value of vnα(i). For n = 0, we get:

v0α(i) = min
{
Ci(0) + k(1), Ci(0) + k(2), Ci(1) + k(1), Ci(1) + k(2)

}
= min

{
B(i), B(i) +K,B(i)− λ

λ+ µ1 + µ2
R,B(i)− λ

λ+ µ1 + µ2
R+K

}
= B(i)− λ

λ+ µ1 + µ2
, (2.1)

which corresponds to f0α(i) = (1, 1), which is the strategy from step 1 of the algorithm, and is
equivalent to accepting an incoming customer and using the slower Server 1, ∀i ∈ S. This strategy
is in line with Step 1 in Algorithm 2.1 and therefore the value for v0α(i) from Assumption 2.2 is valid.
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Let n ≥ 0. Then, according to Step 2 Algorithm 2.1, the following holds:

vn+1
α (i) = min

(a,d)∈A×D

{
Ci(a) + αP (a, d)vnα(i) + k(d)

}
= min

{
λ+ µ2

λ+ µ1 + µ2
αvnα(i) +

µ1
λ+ µ1 + µ2

αvnα(i− 1)+ +B(i), (2.2)

λ+ µ1
λ+ µ1 + µ2

αvnα(i) +
µ2

λ+ µ1 + µ2
αvnα(i− 1)+ +B(i) +K,

λ

λ+ µ1 + µ2
αvnα(i+ 1) +

µ2
λ+ µ1 + µ2

αvnα(i) +
µ1

λ+ µ1 + µ2
αvnα(i− 1)+

+B(i)−R λ

λ+ µ1 + µ2
,

λ

λ+ µ1 + µ2
αvnα(i+ 1) +

µ1
λ+ µ1 + µ2

αvnα(i) +
µ2

λ+ µ1 + µ2
αvnα(i− 1)+

+B(i)−R λ

λ+ µ1 + µ2
+K

}
=

1

λ+ µ1 + µ2
min

{
min

[
(λ+ µ2)αv

n
α(i) + µ1αv

n
α(i− 1)+, (2.3)

λαvnα(i+ 1) + µ2αv
n
α(i) + µ1αv

n
α(i− 1)+ −Rλ

]
,

min
[
(λ+ µ1)αv

n
α(i) + µ2αv

n
α(i− 1)+ +K,

λαvnα(i+ 1) + µ1αv
n
α(i) + µ2αv

n
α(i− 1)+ −Rλ+K

]}
+B(i)

=
1

λ+ µ1 + µ2
min

{
λmin

[
αvnα(i), αvnα(i+ 1)−R

]
+ µ2αv

n
α(i) + µ1αv

n
α(i− 1)+,

λmin
[
αvnα(i), αvnα(i+ 1)−R

]
+ µ1αv

n
α(i) + µ2αv

n
α(i− 1)+ +K

}
+B(i)

=
µ1 + µ2

λ+ µ1 + µ2
αmin

{
µ2

µ1 + µ2
vnα(i) +

µ1
µ1 + µ2

vnα(i− 1)+, (2.4)

µ1
µ1 + µ2

vnα(i) +
µ2

µ1 + µ2
vnα(i− 1)+ +

K

α(µ1 + µ2)

}
+

λ

λ+ µ1 + µ2
αmin

[
vnα(i), vnα(i+ 1)− R

α

]
+B(i).

In Equation (2.2), the order of the strategies fn+1
α (i) in the minimization is equal to (0, 1), (0, 2),

(1, 1) and (1, 2). In Equation (2.3) the order of strategies fn+1
α (i) is different to be able to separate

the minimization regarding acceptance. The order is equal to (0, 1), (1, 1) and (0, 2), (1, 2), where
we use that min{u, v, w, x} = min{min[u,w],min[v, x]} with u, v, w, x ∈ R.

2.2 Operators of extended model

In Section 1.4 we showed how operators can be used to split the calculation of vnα(i) in the original
model for n ≥ 0, i ∈ S into several consecutive, less complex, parts. For the extended model of this
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chapter, with an additional choice of a slow or a fast, more expensive server, we can do the same
with slightly different operators.

vn+1
α,5 (i) = vnα(i) (2.5a)

vn+1
α,4 (i) = TDv

n+1
α,5 (i) (2.5b)

vn+1
α,3 (i) = TCAv

n+1
α,5 (i) (2.5c)

vn+1
α,2 (i) = TCDv

n+1
α,4 (i) (2.5d)

vn+1
α,1 (i) = Tunif

(
vn+1
α,2 (i), vn+1

α,3 (i)
)

(2.5e)

vn+1
α,0 (i) = Tdiscv

n+1
α,1 (i) (2.5f)

vn+1
α (i) = vn+1

α,0 (i). (2.5g)

The description of each of the operators in Equations (2.5b) up to (2.5f) can be found in Table 2.1.

Description of the operator The operator

Departure TDf(i) = f(i− 1)+

Controlled arrivals TCAf(i) = min
{
f(i),−R

α + f(i+ 1)
}

Controlled departure TCDf(i) = min
{

µ2
µ1+µ2

f(i+ 1) + µ1
µ1+µ2

f(i),

µ1
µ1+µ2

f(i+ 1) + µ2
µ1+µ2

f(i) + K
α(µ1+µ2)

}
Uniformization Tunif

(
f(i), g(i)

)
= µ1+µ2

λ+µ1+µ2
f(i) + λ

λ+µ1+µ2
g(i)

Discounted costs Tdiscf(i) = αf(i) +B(i)

Table 2.1: The definitions of the operators mentioned in Equations (2.5b) up to (2.5f).

Implementing the operators from Table 2.1 in Equations (2.5a) up to (2.5g), Equation (2.4) for
calculating vn+1

α (i) becomes:

vn+1
α (i) = TdiscTunif

(
TCDTDv

n
α(i), TCAv

n
α(i)

)
. (2.6)

2.3 Finding the optimal strategy

Note, that with Equations (2.4) and (2.6), we have two equivalent ways to calculate vn+1
α (i) for the

extended model. We can formulate a theorem on what the optimal strategy will look like. Before
we give this theorem, we will state a few observations.

As Equation (2.1) shows, for n = 0 the optimal strategy f0α(i) = (1, 1), ∀i ∈ S, meaning that
every incoming customer is accepted and Server 1 is used. This being the optimal strategy means
that we only need statements about the optimal strategy for n > 0.

Equation (2.4) shows that the minimization term from Equation (2.2) can be split into two separate
minimizations on different sets: one minimizing over a ∈ A, and the other one over d ∈ D.
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Theorem 2.3. The optimal strategy fnα (i) is a two-dimensional threshold strategy, ∀n ∈ N≥0,
i ∈ S, i.e. ∃ ina , ind ∈ S such that

(
fnα (i)

)
1

=

{
1, 0 ≤ i ≤ ina ,
0, i > ina ,(

fnα (i)
)
2

=

{
1, 0 ≤ i ≤ ind ,
2, i > ind .

In order to prove Theorem 2.3, we follow the path of the proof of the similar Theorem 1.3 using
multiple lemmas.

Lemma 2.4.
(
fn+1
α (i)

)
1

= 0 iff vnα(i+ 1)− vnα(i) ≥ R/α.

Proof. Thanks to Equation (2.4), it is clear that the only part of the calculation of vn+1
α (i) depend-

ing on a ∈ A is min [vnα(i), vnα(i+ 1)−R/α]. Choosing the first term of this expression is equivalent
to choosing a = 0; the second term stands for choosing a = 1.

Since the choice of a ∈ A is only dependent on vnα(i) and vnα(i + 1), there is no need to split
the case for i = 0, because both terms are valid for i = 0.

⇒ When a = 0 is the optimal choice, the following has to hold:

vnα(i) ≤ vnα(i+ 1)− R

α
,

which is equivalent to the expression given in this lemma.

⇐ Let vnα(i + 1) − vnα(i) ≥ R/α. Then mina∈A {vnα(i), vnα(i+ 1)−R/α} = vnα(i) and thus
arg mina∈A {vnα(i), vnα(i+ 1)−R/α} = 0, which is equivalent to fn+1

α (i) = 0.

The following lemma is similar to Lemma 2.4, but provides a statement on the difference between
two consecutive values of vnα(i) and the optimal strategy d ∈ D.

Lemma 2.5.
(
fn+1
α (i)

)
2

= 2 iff vnα(i)− vnα(i− 1)+ ≥ K/[α(µ2 − µ1)].

Proof. This proof is very similar to the proof of Lemma 2.4. The optimal strategy for the choice
of d ∈ D only depends on the first minimization expression in Equation (2.4). First, we will look
at the case i > 0, then we prove the statement in this Lemma 2.5 for i = 0.

i > 0,⇒ When d = 2 is the optimal choice in state i ∈ S, the following must hold:

µ2
µ1 + µ2

vnα(i) +
µ1

µ1 + µ2
vnα(i− 1)+ ≥ µ1

µ1 + µ2
vnα(i) +

µ2
µ1 + µ2

vnα(i− 1)+ +
K

α(µ1 + µ2)

⇔ (µ2 − µ1)vnα(i)− (µ2 − µ1)vnα(i− 1)+ ≥ K

α

⇔ vnα(i)− vnα(i− 1)+ ≥ K

α(µ2 − µ1)
. (2.7)
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i > 0,⇐ Let vnα(i)− vnα(i− 1)+ ≥ K/[α(µ2 − µ1)]. Then,

vnα(i)− vnα(i− 1)+ ≥ K

α(µ2 − µ1)

⇔ (µ2 − µ1)vnα(i)− (µ2 − µ1)vnα(i− 1)+ ≥ K

α

⇔ µ2
µ1 + µ2

vnα(i) +
µ1

µ1 + µ2
vnα(i− 1)+ ≥ µ1

µ1 + µ2
vnα(i) +

µ2
µ1 + µ2

vnα(i− 1)+ +
K

α(µ1 + µ2)
.

Thus

arg min

{
µ2

µ1 + µ2
vnα(i) +

µ1
µ1 + µ2

vnα(i− 1)+,
µ1

µ1 + µ2
vnα(i) +

µ2
µ1 + µ2

vnα(i− 1)+ +
K

α(µ1 + µ2

}
= 2,

in other words, fn+1
α (i) = 2.

For i = 0, we will prove the negation of Lemma 2.5. This is necessary and sufficient.

Let fn+1
α (i) = (a, 1). Then:

µ2
µ1 + µ2

vnα(0) +
µ1

µ1 + µ2
vnα(0) <

µ1
µ1 + µ2

vnα(0) +
µ2

µ1 + µ2
vnα(0) +

K

α(µ1 + µ2)

0 <
K

α(µ1 + µ2)
,

and thus the left-hand side of the negation of Lemma 2.5 is always true for i = 0. The negation of
the right-hand side is:

vnα(0)− vnα(0) = 0 <
K

α(µ2 − µ1)
,

which is true by the constraints on the variables.

This concludes the proof, so the statement in Lemma 2.5 holds ∀i ∈ S.

Additionally to the proof of Lemma 2.5, we can state that for i = 0, Inequality (2.7) never holds,
so that the optimal strategy

(
fnα (0)

)
2

= 1, ∀n ∈ N≥0.

The following lemma analyzes some specific behaviour of vnα(i).

Lemma 2.6.
{
vnα(i)

}
i∈S is a non-decreasing sequence, ∀n ≥ 0.

Proof. We will prove this by induction on n, using the operator-representation from Section 2.2.
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Case n = 0 In this case, v0α(i) = B(i)− λ/[λ+ µ1 + µ2], cf. Equation (2.1). This gives:

v0α(i+ 1)− v0α(i) = B(i+ 1)− λ

λ+ µ1 + µ2
−
(
B(i)− λ

λ+ µ1 + µ2

)
= B(i+ 1)−B(i),

which is non-negative, since B(i) is assumed to be non-decreasing in i.

Case n > 0 Assume vmα is non-decreasing ∀m ≤ n. To prove that vn+1
α is also non-decreasing,

we will go over all the steps in Equations (2.5a) up to (2.5g) and prove that each of them is non-
decreasing.

• vn+1
α,5 = vnα (cf. Equation (2.5a)).

Since vnα is non-decreasing by assumption, vn+1
α,5 is as well.

• vn+1
α,4 = TDv

n+1
α,5 (cf. Equation (2.5b)).

Let TDf(i) = f(i− 1)+ as in Table 2.1. If f is non-decreasing, then

TDf(i+ 1)− TDf(i) = f(i)− f(i− 1) ≥ 0, for i ≥ 1.

The only equation left to check, is whether TDf(1)− TDf(0) is non-negative.

TDf(1)− TDf(0) = f(0)− f(0) ≥ 0.

Therefore, TDf(i) is non-decreasing in i, given that f(i) is non-decreasing in i. Since vn+1
α,5 is

non-decreasing, vn+1
α,4 = TDv

n+1
α,5 is non-decreasing as well.

• vn+1
α,3 = TCAv

n+1
α,5 (cf. Equation (2.5c)).

Let TCAf(i) = min{f(i),−R/α+ f(i+ 1)} as in Table 2.1. If f is a non-decreasing function
in i, the first term of the minimization is non-decreasing as it equals f(i). The second term,
−R/α+ f(i+ 1), is also non-decreasing, because the non-decreasingness of f(i) implies that
f(i+ 1) is non-decreasing, and adding the constant −R/α does not affect this.
The minimum of two non-decreasing functions is by definition also non-decreasing. Therefore,
TCAf is non-decreasing, given that f is non-decreasing. Since vn+1

α,5 is non-decreasing, also

vn+1
α,3 = TCAv

n+1
α,5 is non-decreasing.

• vn+1
α,2 = TCDv

n+1
α,4 (cf. Equation (2.5d)).

Let

TCDf(i) = min

{
µ2

µ1 + µ2
f(i+ 1) +

µ1
µ1 + µ2

f(i),

µ1
µ1 + µ2

f(i+ 1) +
µ2

µ1 + µ2
f(i) +

K

α(µ1 + µ2)

}
,

as in Table 2.1. Since f(i) is non-decreasing, so is f(i+1). Let f be a non-decreasing function
in i, then so is f(i + 1). A convex combination of two non-decreasing functions is also non-
decreasing, so the first term of the minimization is non-decreasing as well. Adding a constant
to a non-decreasing function does not affect non-decreasingness, so the convex combination
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of the second term in the minimization with the added constant K/[α(µ1 + µ2)] is also non-
decreasing. The minimization of two non-decreasing function is again non-decreasing, so
TCDf(i) is non-decreasing.
Earlier was shown that vn+1

α,4 is non-decreasing, so vn+1
α,2 = TCDv

n+1
α,4 is non-decreasing as well.

• vn+1
α,1 = Tunif

(
vn+1
α,2 , v

n+1
α,3

)
(cf. Equation (2.5e)).

Let

Tunif
(
f(i), g(i)

)
=

µ1 + µ2
λ+ µ1 + µ2

f(i) +
λ

λ+ µ1 + µ2
g(i),

as in Table 2.1. Let f, g be non-decreasing functions in i. Then this is a convex combination
of two non-decreasing functions, which gives a non-decreasing function.
As vn+1

α,2 and vn+1
α,3 have been shown to be non-decreasing, also vn+1

α,1 = Tunif
(
vn+1
α,2 , v

n+1
α,3

)
is

non-decreasing.

• vn+1
α,0 = Tdiscv

n+1
α,1 (cf. Equation (2.5f)).

Let Tdiscf(i) = αf(i)+B(i) as in Table 2.1. Let f be a non-decreasing function in i. The first
part of the expression, αf(i), is non-decreasing, as α is positive and f(i) is non-decreasing.
B(i) is assumed to be non-decreasing. The sum of two non-decreasing functions is again
non-decreasing, and thus Tdiscf(i) is a non-decreasing function.
We have shown that vn+1

α,1 is a non-decreasing function, and thus vn+1
α,0 = Tdiscv

n+1
α,1 is non-

decreasing as well.

• vn+1
α = vn+1

α,0 (cf. Equation (2.5g)).

Since vn+1
α,0 is non-decreasing, vn+1

α is non-decreasing as well.

From the enumeration above follows that non-decreasingness of vnα, implies that vn+1
α is non-

decreasing in i as well.

Conclusion Combining the two induction steps, we have proven that vnα(i) is a non-decreasing
sequence in i for every n ≥ 0.

The following lemma concerns the convexity of vnα(i).

Lemma 2.7. vnα(i) is convex in i ∈ S, ∀n ∈ N≥0.

Proof. We will prove this Lemma 2.7 by induction on n using the operators-representation from Sec-
tion 2.2. Note that any convex sequence g(i) has the property g(i+2)−g(i+1) ≥ g(i+1)−g(i), ∀i.

Case n=0 Using Equation (2.1), we get:

v0α(i+ 2)−2v0α(i+ 1) + v0α(i)

= B(i+ 2)− λ

λ+ µ1 + µ2
− 2

(
B(i+ 1)− λ

λ+ µ1 + µ2

)
+B(i)− λ

λ+ µ1 + µ2

= B(i+ 2)− 2B(i+ 1) +B(i),

which holds when B(i) is convex in i. This is true, thanks to the conditions given in Theorem 1.10.
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Case n > 0 Assume vmα is convex ∀m ≤ n. To prove that vn+1
α (i) is also convex in i, we

will go over the steps in Equations (2.5a) up to (2.5g) and prove that each of them gives a convex
function in i.

• vn+1
α,5 = vnα (cf. Equation (2.5a)).

Since vnα is convex by assumption, vn+1
α,5 is convex as well.

• vn+1
α,4 = TDv

n+1
α,5 (cf. Equation (2.5b)).

Let TDf(i) = f(i − 1)+ as in Table 2.1. Let f be a convex and non-decreasing function in
i. For i ≥ 1, TDf(i + 2) − 2TDf(i + 1) + TDf(i) = f(i + 1) − 2f(i) + f(i − 1) ≥ 0 by the
convexity of f . The only equation left to check, is whether TDf(2) − 2TDf(1) + TDf(0) is
non-negative:

TDf(2)− 2TDf(1) + TDf(0) = f(1)− 2f(0) + f(0) = f(1)− f(0) ≥ 0,

where the last inequality holds because f is non-decreasing.
Therefore, TDf is convex, given that f is convex and non-decreasing. Since vn+1

α,5 is convex

and non-decreasing, also vn+1
α,4 = TDv

n+1
α,5 is convex.

• vn+1
α,3 = TCAv

n+1
α,5 (cf. Equation (2.5c)).

Let

TCAf(i) = min

{
f(i),−R

α
+ f(i+ 1)

}
,

as in Table 2.1. Let f be a convex function. We need to prove the following inequality:

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i) ≥ 0.

To do so, we distinguish all possible combinations of the values of the minimization expres-
sions.

1. Let TCAf(i) = f(i). Then: f(i+ 1)− f(i) ≥ R/α. By the convexity of f , this implies:

f(i+ 2)− f(i+ 1) ≥ R

α
, which is equivalent to TCAf(i+ 1) = f(i+ 1); and

f(i+ 3)− f(i+ 2) ≥ R

α
, which is equivalent to TCAf(i+ 2) = f(i+ 2).

This gives us:

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i)

= f(i+ 2)− 2f(i+ 1) + f(i)

≥ 0,

where the last inequality holds because f is convex.

2. Let TCAf(i) = −R/α+ f(i+ 1).
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(a) Let TCAf(i + 1) = f(i + 1). Then f(i + 2) − f(i + 1) ≥ R/α. By the convexity of
f , this implies:

f(i+ 3)− f(i+ 2) ≥ R

α
, which is equivalent to TCAf(i+ 2) = f(i+ 2).

This gives:

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i)

= f(i+ 2)− 2f(i+ 1)− R

α
+ f(i+ 1)

= f(i+ 2)− f(i+ 1)− R

α
≥ 0,

where the last inequality holds because TCAf(i+ 1) = f(i+ 1).

(b) Let TCAf(i+ 1) = −R/α+ f(i+ 2).

i. Let TCAf(i+ 2) = f(i+ 2). This gives:

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i)

= f(i+ 2)− 2

(
−R
α

+ f(i+ 2)

)
− R

α
+ f(i+ 1)

=
R

α
− f(i+ 2) + f(i+ 1)

≥ 0,

where the last inequality holds because TCAf(i+ 1) = −R/α+ f(i+ 2).

ii. Let TCAf(i+ 2) = −R/α+ f(i+ 3). This gives:

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i)

= −R
α

+ f(i+ 3)− 2

(
−R
α

+ f(i+ 2)

)
− R

α
+ f(i+ 1)

= f(i+ 3)− 2f(i+ 2) + f(i+ 1)

≥ 0,

where the last inequality holds because of the convexity of f .

We have shown that for every combination of minimizing actions, that

TCAf(i+ 2)− 2TCAf(i+ 1) + TCAf(i) ≥ 0, ∀i ∈ S.

Therefore, by the convexity of vn+1
α,5 , also vn+1

α,3 = TCAv
n+1
α,5 is convex.

• vn+1
α,2 = TCDv

n+1
α,4 (cf. Equation (2.5d)).

Let

TCDf(i) =
1

µ1 + µ2
min

{
µ2f(i+ 1) + µ1f(i), µ1f(i+ 1) + µ2f(i) +

K

α

}
,

as in Table 2.1. Let f be a convex function in i. To show the convexity of TCDf , we will
show that TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i) ≥ 0 for every possible combination of the
values of the minimization expressions.
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1. Let TCDf(i) =
[
µ2f(i+ 1) + µ1f(i)

]
/(µ1 + µ2).

(a) Let TCDf(i+ 1) =
[
µ2f(i+ 2) + µ1f(i+ 1)

]
/(µ1 + µ2).

i. Let TCDf(i+ 2) =
[
µ2f(i+ 3) + µ1f(i+ 2)

]
/
(
µ1 + µ2

)
. Then:

TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i)

=
1

µ1 + µ2

{
µ2f(i+ 3) + µ1f(i+ 2)− 2

[
µ2f(i+ 2) + µ1f(i+ 1)

]
+ µ2f(i+ 1) + µ1f(i)

}
=

1

µ1 + µ2

{
µ2
[
f(i+ 3)− 2f(i+ 2) + f(i+ 1)

]
+ µ1

[
f(i+ 2)− 2f(i+ 1) + f(i)

]}
≥ 0,

where the last inequality holds because of the convexity of f .

ii. Let TCDf(i+ 2) =
[
µ1f(i+ 3) + µ2f(i+ 2) +K/α

]
/(µ1 + µ2). Then:

TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i)

=
1

µ1 + µ2

{
+ µ1f(i+ 3) + µ2f(i+ 2) +

K

α
− 2
[
µ2f(i+ 2) + µ1f(i+ 1)

]
µ2f(i+ 1) + µ1f(i)

}
=

1

µ1 + µ2

{
µ2
[
f(i+ 1)− f(i+ 2)

]
+ µ1

[
f(i+ 3)− 2f(i+ 1) + f(i)

]
+
K

α

}
≥ 1

µ1 + µ2

{
− µ2

[
f(i+ 2)− f(i+ 1)

]
+ µ1

[
− f(i+ 2) + f(i+ 3)

]
+
K

α

}
(2.8)

≥ 1

µ1 + µ2

{
− µ2

[
f(i+ 2)− f(i+ 1)

]
+ µ1

[
f(i+ 2)− f(i+ 1)

]
+
K

α

}
(2.9)

≥ 0,

where for Inequality (2.8) we used that f(i) − 2f(i + 1) ≥ −f(i + 2) since f is
convex. In Inequality (2.9) we used that f(i+ 3)−f(i+ 2) ≥ f(i+ 2)−f(i+ 1),
which again holds by the convexity of f . The final inequality holds because
TCDf(i+ 1) = 1/(µ1 + µ2)

[
µ2f(i+ 2) + µ1f(i+ 1)

]
.

(b) Let TCDf(i+ 1) =
[
µ1f(i+ 2) + µ2f(i+ 1) +K/α

]
/(µ1 + µ2). Then

1

µ1 + µ2

[
(µ2 − µ1)

(
f(i+ 2)− f(i+ 1)

)]
≥ K

α(µ1 + µ2)
.
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By the convexity of f , this implies:

1

µ1 + µ2

[
(µ2 − µ1)

(
f(i+ 3)− f(i+ 2)

)]
≥ K

α(µ1 + µ2)
,

which is equivalent to:

TCDf(i+ 2) =
1

µ1 + µ2

[
µ1f(i+ 3) + µ2f(i+ 2) +

K

α

]
.

We now get the following:

TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i)

=
1

µ1 + µ2

{
µ1f(i+ 3) + µ2f(i+ 2) +

K

α
− 2

[
µ1f(i+ 2) + µ2f(i+ 1) +

K

α

]
+ µ2f(i+ 1) + µ1f(i)

}
=

1

µ1 + µ2

{
µ2
[
f(i+ 2)− f(i+ 1)

]
+ µ1

[
f(i+ 3)− 2f(i+ 2) + f(i)

]
− K

α

}
≥ 1

µ1 + µ2

{
µ2
[
f(i+ 2)− f(i+ 1)

]
− µ1

[
f(i+ 1)− f(i)

]
− K

α

}
(2.10)

≥ 1

µ1 + µ2

{
µ2
[
f(i+ 2)− f(i+ 1)

]
− µ1

[
f(i+ 2)− f(i+ 1)

]
− K

α

}
(2.11)

≥ 0,

where, in inequality (2.10), we used that f(i+ 3)− 2(i+ 2) ≥ −f(i+ 1), since f is
convex. In Equation (2.11) we used that f(i+ 1)− f(i) ≤ f(i+ 2)− f(i+ 1), which
again holds by the convexity of f . The final inequality holds, because

TCDf(i+ 1) =
1

µ1 + µ2

[
µ1f(i+ 2) + µ2f(i+ 1) +

K

α

]
.

2. Let TCDf(i) =
[
µ1f(i + 1) + µ2f(i) + K/α

]
/(µ1 + µ2). Then we know the following:[

(µ2 − µ1)
(
f(i + 1) − f(i)

)]
/(µ1 + µ2) ≥ K/

[
α(µ1 + µ2)

]
. By the convexity of f , this

implies:

1

µ1 + µ2

[
(µ2 − µ1)

(
f(i+ 2)− f(i+ 1)

)]
≥ 1

µ1 + µ2
· K
α
,

which is equivalent to:

TCDf(i+ 1) =
1

µ1 + µ2

[
µ1f(i+ 2) + µ2f(i+ 1) +

K

α

]
.

Similarly it follows, that TCDf(i+ 2) =
[
µ1f(i+ 3) + µ2f(i+ 2) +K/α

]
/(µ1 + µ2). We
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now get the following:

TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i)

=
1

µ1 + µ2

{
µ1f(i+ 3) + µ2f(i+ 2) +

K

α
− 2
[
µ1f(i+ 2) + µ2f(i+ 1) +

K

α

]
+ µ1f(i+ 1) + µ2f(i) +

K

α

}
=

1

µ1 + µ2

{
µ2
[
f(i+ 2)− 2f(i+ 1) + f(i)

]
+ µ1

[
f(i+ 3)− 2f(i+ 2) + f(i+ 1)

]}
≥ 0,

where the last inequality holds because of the convexity of f .

We have shown, that for every combination of minimizing actions,

TCDf(i+ 2)− 2TCDf(i+ 1) + TCDf(i) ≥ 0

holds. Therefore, by the convexity of vn+1
α,4 , also vn+1

α,2 = TCDv
n+1
α,4 is convex.

• vn+1
α,1 = Tunif

(
vn+1
α,2 , v

n+1
α,3

)
(cf. Equation (2.5e)).

Let

Tunif
(
f(i), g(i)

)
=

µ1 + µ2
λ+ µ1 + µ2

f(i) +
λ

λ+ µ1 + µ2
g(i),

as in Table 2.1. Let f, g be convex functions in i. This is a convex combination of two convex
functions, which gives a convex function.
Since both vn+1

α,2 and vn+1
α,3 are shown to be convex, also vn+1

α,1 = Tunif
(
vn+1
α,2 , v

n+1
α,3

)
is convex.

• vn+1
α,0 = Tdiscv

n+1
α,1 (cf. Equation (2.5f)).

Let Tdiscf(i) = αf(i) + B(i) as in Table 2.1. Let f be a convex function in i. The first part
of Tdiscf , αf , is convex, since α is a positive constant and f is convex. B(i) is assumed to be
convex in i. As the sum of two convex functions is also convex, Tdiscf is a convex function.
We have shown, that vn+1

α,1 is a convex function, and thus we get that vn+1
α,0 = Tdiscv

n+1
α,1 is also

convex.

• vn+1
α = vn+1

α,0 (cf. Equation (2.5g)).

Since vn+1
α,0 is convex, vn+1

α is convex as well.

From the enumeration above follows that the convexity of vnα implies that vn+1
α is also convex.

Conclusion Combining the two induction steps, we have shown that vnα is convex ∀n ≥ 0.

Now we can give a proof of Theorem 2.3, stating that the optimal strategy fnα (i) is a two-dimensional
threshold strategy.
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Proof of Theorem 2.3.
Threshold for a ∈ A Lemma 2.4 implies that:(

fn+1
α (i)

)
1

= 0 ⇔ vnα(i+ 1)− vnα(i) ≥ R

α
.

Now let ina ∈ S be defined as follows:

ina = max

{
i ∈ S ∪ {∞}

∣∣vnα(i+ 1)− vnα(i) <
R

α

}
. (2.12)

Together with Lemma 2.6, stating that vnα(i) is non-decreasing, this gives two possibilities for ina :

1. ina =∞.
Then

(
fn+1
α (i)

)
1

= 1, ∀i ∈ S.

2. ina ∈ S.
Then, vnα(i+ 1)− vnα(i) ≥ R/α, ∀i ≥ ina and thus(

fn+1
α (i)

)
1

=

{
1, 0 ≤ i ≤ ina ,
0, i > ina .

In both cases,
(
fn+1
α (i)

)
1

is a threshold strategy.

Threshold for d ∈ D Lemma 2.5 implies that:(
fn+1
α (i)

)
2

= 2 ⇔ vnα(i)− vnα(i− 1)+ ≥ K

α(µ2 − µ1)
.

Now let ind ∈ S be defined as follows:

ind = max

{
i ∈ S ∪ {∞}

∣∣vnα(i)− vnα(i− 1)+ <
K

α(µ2 − µ1)

}
. (2.13)

Together with Lemma 2.6, stating that vnα(i) is non-decreasing, this gives two possibilities for ind :

1. ind =∞.
Then

(
fn+1
α (i)

)
2

= 1, ∀i ∈ S.

2. ind ∈ S.
Then, vnα(i)− vnα(i− 1)+ ≥ K/[α(µ2 − µ1)], ∀i ≥ ind and thus(

fn+1
α (i)

)
2

=

{
1, 0 ≤ i ≤ ind ,
2, i > ind .

In both cases,
(
fn+1
α (i)

)
2

is a threshold strategy.

Conclusion The optimal strategy fnα (i) is a two-dimensional threshold strategy, ∀n ∈ N≥0,
i ∈ S, with thresholds ina , i

n
d ∈ S from Equations (2.12) and (2.13) such that:(

fnα (i)
)
1

=

{
1, 0 ≤ i ≤ ina ,
0, i > ina ,(

fnα (i)
)
2

=

{
1, 0 ≤ i ≤ ind ,
2, i > ind .
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2.4 Relationship between thresholds

As the optimal strategy fnα (i) is a two-dimensional threshold strategy with thresholds ina , i
n
d ∈ S,

where ina is given by Equation (2.12) and ind by Equation (2.13). In this paragraph, we will state a
theorem on the relationship between ina and ind .

Theorem 2.8. Let ina , i
n
d ∈ S, n ≥ 0. Then the following hold:

• If ina < ind − 1, then R < K/(µ2 − µ1).

• If ina = ind − 1, then R/α,K/
[
α(µ2 − µ1)

]
∈
(
vnα(ind )− vnα(ind − 1), vnα(ind + 1)− vnα(ind )

]
.

• If ina > ind − 1, then R > K/(µ2 − µ2).

Proof. • Let ina < ind − 1.
In this case, we know that vnα(ina +1)−vnα(ina) < vnα(ind )−vnα(ind−1)+, by the convexity of vnα(i)
(see Lemma 2.7). These terms cannot be equal to each other, because otherwise ina would be
larger by Equation (2.12). This is equivalent to

R

α
<

K

α(µ2 − µ1)
.

• Let ina = ind − 1.
In this case, we know that vnα(ind )− vnα(ind − 1)+ = vnα(ina + 1)− vnα(ina) and vnα(ind + 1)− vnα(ind ).
This means, by Equation (2.12), that

vnα(ind )− vnα(ind − 1)+ <
R

α
≤ vnα(ind + 1)− vnα(ind ).

Similarly, according to Equation (2.13), holds

vnα(ind )− vnα(ind − 1)+ <
K

α(µ2 − µ1)
≤ vnα(ind + 1)− vnα(ind ).

Therefore, we can conclude that

R

α
,

K

α(µ2 − µ1)
∈
(
vnα(ind )− vnα(ind − 1)+, vnα(ind + 1)− vnα(ind )

]
.

• Let ina > ind − 1.
The convexity of vnα(i), gives that vnα(i) gives vnα(ina + 1) − vnα(ina) > vnα(ind ) − vnα(ind − 1)+.
These terms cannot be equal to each other, because otherwise ina would be larger by Equation
(2.13). This is equivalent to

R

α
>

K

α(µ2 − µ1)
.

Note that in practice, Server 2 will only be used when ina > ind − 1.
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2.5 Convergence in the model

2.5.1 Convergence of the thresholds

As in Section 1.2.3, we are interested in the convergence of the behaviour of the threshold in fnα .
The following theorem addresses this issue. It is similar to Theorem 1.8. Note, that ina is the largest
state in which a customer is accepted, and ind the final state to use slow Server 1 (see Theorem 2.3).

Theorem 2.9. Assume v1α,up(i + 1) − v1α,up(i) ≥ v0α,up(i + 1) − v0α,up(i), ∀i ∈ S. Then
(
(ina , i

n
d )
)
n

forms a two-dimensional non-increasing sequence of threshold strategies, where ina is the threshold
for the acceptance of a customer in time step n and ind the threshold for the choice of server, for
n ≥ 1.

When v1α,low(i + 1) − v1α,low(i) ≤ v0α,low(i + 1) − v0α,low(i), ∀i ∈ S holds,
(
(ina , i

n
d )
)
n

forms a two-
dimensional non-decreasing sequence of threshold strategies, for n ≥ 1.

Note that in this theorem, n ≥ 1 must hold. This is because for n = 0, the strategy is already
defined by the first step of Algorithm 2.1: f0α(i) = (1, 1), ∀i ∈ S.

Theorem 2.9 is proven with the help of the following lemma.

Lemma 2.10. Let function f1, f2, g1, g2 : S → R be convex and non-decreasing, in such a way
that f1(i + 1) − f1(i) ≥ g1(i + 1) − g1(i), as well as f2(i + 1) − f2(i) ≥ g2(i + 1) − g2(i). Then
for every operator T from Table 2.1, it holds that: Tf1(i + 1) − Tf1(i) ≥ Tg1(i + 1) − Tg1(i),
∀i ∈ S. For Tunif , which we mention separately because it has two arguments, the following must
hold: Tunif

(
f1(i+1), f2(i+1)

)
−Tunif

(
f1(i), f2(i)

)
≥ Tunif

(
g1(i+1), g2(i+1)

)
−Tunif

(
g1(i), g2(i)

)
,

∀i ∈ S.

Proof. Let f1, f2, g1, g2 : S → R be convex and non-decreasing, with f1(i+1)−f1(i) ≥ g1(i+1)−g1(i)
and f2(i + 1) − f2(i) ≥ g2(i + 1) − g2(i), ∀i ∈ S. Then we get the following inequalities for the
operators from Table 2.1.

• Departure-operator: TDf(i) = f(i− 1)+.
When plugging in f1 and g1, we get for i > 0:

TDf1(i+ 1)− TDf1(i)−
[
TDg1(i+ 1)− TDg1(i)

]
= f1(i)− f1(i− 1)−

[
g1(i)− g1(i− 1)

]
≥ 0.

Let i = 0. Then we get:

TDf1(1)− TDf1(0)−
[
TDg1(1)− TDg1(0)

]
= f1(0)− f1(0)−

[
g1(0)− g1(0)

]
= 0.

Thus TDf1(i+ 1)− TDf1(i) ≥ TDg1(i+ 1)− TDg1(i) holds, ∀i ∈ S.
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• Controlled arrivals-operator: TCAf(i) = min
{
f(i),−R/α+ f(i+ 1)

}
.

When plugging in f1 and g1, we get ∀i ∈ S:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= min

{
f1(i+ 1),−R

α
+ f1(i+ 2)

}
−min

{
f1(i),−

R

α
+ f1(i+ 1)

}
−
[
min

{
g1(i+ 1),−R

α
+ g1(i+ 2)

}
−min

{
g1(i),−

R

α
+ g1(i+ 1)

}]
. (2.14)

To see that Equation (2.14) is non-negative, we need to distinguish all possible combinations
for the four different minimization expressions. Denote the minimizing consecutive actions
by CA

(
f1(i)

)
, CA

(
f1(i+ 1)

)
, CA

(
g1(i)

)
, CA

(
g1(i+ 1)

)
∈ {0, 1}.

Let CA
(
g1(i)

)
= 0. Then g1(i+ 1)− g1(i) ≥ R/α. This implies that f1(i+ 1)− f1(i) ≥ R/α,

which is equivalent to CA
(
f1(i)

)
= 0. Similarly, we get

CA
(
g1(i+ 1)

)
= 0 ⇒ CA

(
f1(i+ 1)

)
= 0,

CA
(
f1(i)

)
= 1 ⇒ CA

(
g1(i)

)
= 1,

CA
(
f1(i+ 1)

)
= 1 ⇒ CA

(
g1(i+ 1)

)
= 1.

Now we can distinguish the possible combinations of the minimum values of the minimization
expressions and show that Equation (2.14) is non-negative.

– Let CA
(
f1(i)

)
= 0; CA

(
f1(i + 1)

)
= 0; CA

(
g1(i)

)
= 0; CA

(
g1(i + 1)

)
= 0. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

]
≥ 0,

by the assumptions on f1 and g1.

– Let CA
(
f1(i)

)
= 0; CA

(
f1(i + 1)

)
= 0; CA

(
g1(i)

)
= 1; CA

(
g1(i + 1)

)
= 0. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= f1(i+ 1)− f1(i)−

[
g1(i+ 1) +

R

α
− g1(i+ 1)

]
≥ 0,

where we used that CA
(
f1(i)

)
= 0, implying that f1(i+ 1)− f1(i) ≥ R/α.

– Let CA
(
f1(i)

)
= 0; CA

(
f1(i + 1)

)
= 0; CA

(
g1(i)

)
= 1; CA

(
g1(i + 1)

)
= 1. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= f1(i+ 1)− f1(i)−

[
−R
α

+ g1(i+ 2) +
R

α
− g1(i+ 1)

]
≥ 0,
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where we used that CA
(
f1(i)

)
= 0 implies f1(i+1)−f1(i) ≥ R/α, and CA

(
g1(i+1)

)
= 1

which implies that −
[
g1(i+ 2)− g1(i+ 1)

]
≥ −R/α.

– Let CA
(
f1(i)

)
= 1; CA

(
f1(i + 1)

)
= 0; CA

(
g1(i)

)
= 1; CA

(
g1(i + 1)

)
= 0. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= f1(i+ 1) +

R

α
− f1(i+ 1)−

[
g1(i+ 1) +

R

α
− g1(i+ 1)

]
= 0.

– Let CA
(
f1(i)

)
= 1; CA

(
f1(i + 1)

)
= 0; CA

(
g1(i)

)
= 1; CA

(
g1(i + 1)

)
= 1. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= f1(i+ 1) +

R

α
− f1(i+ 1)−

[
−R
α

+ g1(i+ 2) +
R

α
− g1(i+ 1)

]
≥ 0,

where we used that CA
(
g1(i+ 1)

)
= 1 implies −

[
g1(i+ 2)− g1(i+ 1)

]
≥ −R/α.

– Let CA
(
f1(i)

)
= 1; CA

(
f1(i + 1)

)
= 1; CA

(
g1(i)

)
= 1; CA

(
g1(i + 1)

)
= 1. Then,

Equation (2.14) becomes:

TCAf1(i+ 1)− TCAf1(i)−
[
TCAg1(i+ 1)− TCAg1(i)

]
= −R

α
+ f1(i+ 2) +

R

α
− f1(i+ 1)−

[
−R
α

+ g1(i+ 2) +
R

α
− g1(i+ 1)

]
≥ 0,

where we used the assumption that f1(i+ 2)− f1(i+ 1) ≥ g1(i+ 2)− g1(i+ 1).

Now we have shown that Equation (2.14) is non-negative ∀i ∈ S, and thus that

TCAf1(i+ 1)− TCAf1(i) ≥ TCAg1(i+ 1)− TCAg1(i).

• Controlled departures-operator:
TCDf(i) = min

{
µ2f(i+ 1) + µ1f(i), µ1f(i+ 1) + µ2f(i) +K/α

}
/(µ1 + µ2).

When plugging in f1 and g1, we get ∀i ∈ S:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
min

{
µ2f1(i+ 2) + µ1f1(i+ 1), µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α

}
−min

{
µ2f1(i+ 1) + µ1f1(i), µ1f1(i+ 1) + µ2f1(i) +

K

α

}
−
[
min

{
µ2g1(i+ 2) + µ1g1(i+ 1), µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α

}
−min

{
µ2g1(i+ 1) + µ1g1(i), µ1g1(i+ 1) + µ2g1(i) +

K

α

}])
. (2.15)
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We will use a notation similar to one for the controlled arrivals-operator, where the choice
of the first minimization expression is given by CD

(
f1(i+ 1)

)
∈ {1, 2}, where 1 denotes the

first term of the minimization expression being the minimum, and 2 the second term. For
the other minimization expressions in Equation (2.15) a similar notation holds.

Let CD
(
f1(i)

)
= 1. Then

(
f1(i + 1) − f1(i)

)
≤ 0. By the definition of f1(i) and g1(i)

follows that also
(
g1(i+1)−g1(i)

)
≤ 0 must hold, which is equivalent to CD

(
g1(i)

)
= 1. In a

similar way we get CD
(
f1(i+1)

)
= 1⇒ CD

(
g1(i+1)

)
= 1; CD

(
g1(i)

)
= 2⇒ CD

(
f1(i)

)
= 2;

and CD
(
g1(i+ 1)

)
= 2 ⇒ CD

(
f1(i+ 1)

)
= 2.

Before investigating all combinations of the four minimizing actions in Equation (2.15), we
want to point out the following:

f1(i+ 2)− f1(i)−
[
g1(i+ 2)− g1(i)

]
≥ f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

]
≥ 0, (2.16)

where we used that f1(i+ 2)− g1(i+ 2) ≥ f1(i+ 1)− g1(i+ 1).

Now we can distinguish the possible combinations of the minimum values of the minimization
expressions and show that Equation (2.15) is non-negative.

– Let CD
(
f1(i)

)
= 1; CD

(
f1(i + 1)

)
= 1; CD

(
g1(i)

)
= 1; CD

(
g1(i + 1)

)
= 1. Then

Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ2f1(i+ 2) + µ1f1(i+ 1)− µ2f1(i+ 1)− µ1f1(i)

−
[
µ2g1(i+ 2) + µ1g1(i+ 1)− µ2g1(i+ 1)− µ1g1(i)

])
=

1

µ1 + µ2

(
µ2
(
f1(i+ 2)− f1(i+ 1)−

[
g1(i+ 2)− g1(i+ 1)

])
+ µ1

(
f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

]))
≥ 0,

where we used the assumption that f1(j + 1)− f1(j) ≥ g1(j + 1)− g1(j), with j = i and
j = i+ 1.

– Let CD
(
f1(i)

)
= 1; CD

(
f1(i + 1)

)
= 2; CD

(
g1(i)

)
= 1; CD

(
g1(i + 1)

)
= 1. Then
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Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ2f1(i+ 1)− µ1f1(i)

−
[
µ2g1(i+ 2) + µ1g1(i+ 1)− µ2g1(i+ 1)− µ1g1(i)

])
≥ 1

µ1 + µ2

(
µ1
(
f1(i+ 2)− f1(i)

)
+
K

α

−
[
µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α
− µ2g1(i+ 1)− µ1g1(i)

])
(2.17)

=
1

µ1 + µ2

(
µ1
[
f1(i+ 2)− f1(i)− g1(i+ 2) + g1(i)

])
≥ 0,

where for Inequality (2.17) we used that CD
(
g1(i+1)

)
= 1, which implies the following:

−
(
µ2g1(i+ 2) +µ1g1(i+ 1)

)
≥ −

(
µ1g1(i+ 2) +µ2g1(i+ 1) +K/α

)
. The final inequality

holds by Inequality (2.16).

– Let CD
(
f1(i)

)
= 1; CD

(
f1(i + 1)

)
= 2; CD

(
g1(i)

)
= 1; CD

(
g1(i + 1)

)
= 2. Then

Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ2f1(i+ 1)− µ1f1(i)

−
[
µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α
− µ2g1(i+ 1)− µ1g1(i)

])
=

1

µ1 + µ2

(
µ1
(
f1(i+ 2)− f1(i)−

[
g1(i+ 2)− g2(i)

]))
≥ 0,

where we used Inequality (2.16).

– Let CD
(
f1(i)

)
= 2; CD

(
f1(i + 1)

)
= 2; CD

(
g1(i)

)
= 1; CD

(
g1(i + 1)

)
= 1. Then

Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ1f1(i+ 1)− µ2f1(i)−

K

α

−
[
µ2g1(i+ 2) + µ1g1(i+ 1)− µ2g1(i+ 1)− µ1g1(i)

])
≥ 1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ2f1(i+ 1)− µ1f1(i)

−
[
µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α
− µ2g1(i+ 1)− µ1g1(i)

])
(2.18)

=
1

µ1 + µ2

(
µ1
[
f1(i+ 2)− f1(i)− g1(i+ 2) + g1(i)

])
≥ 0,
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where for Inequality (2.18) we used that CD
(
f1(i)

)
= 2, which implies the following:

−
[
µ1f1(i+ 1) +µ2f1(i) +K/α

]
≥ −

[
µ2f1(i+ 1) +µ1f1(i)

]
; and that CD

(
g1(i+ 1)

)
= 1

implies that −
[
µ2g1(i + 2) + µ1g1(i + 1)

]
≥ −

[
µ1g1(i + 2) + µ2g1(i + 1) + K/α

]
. The

final inequality holds by Inequality (2.16).

– Let CD
(
f1(i)

)
= 2; CD

(
f1(i + 1)

)
= 2; CD

(
g1(i)

)
= 1; CD

(
g1(i + 1)

)
= 2. Then

Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ1f1(i+ 1)− µ2f1(i)−

K

α

−
[
µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α
− µ2g1(i+ 1)− µ1g1(i)

])
≥ 1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ2f1(i+ 1)− µ1f1(i)

−
[
µ1g1(i+ 2) +

K

α
− µ1g1(i)

])
(2.19)

=
1

µ1 + µ2

(
µ1
[
f1(i+ 2)− f1(i)− g1(i+ 2) + g1(i)

])
≥ 0,

where for Inequality (2.19) we used that CD
(
f1(i)

)
= 2, which implies the following:

−
[
µ1f1(i + 1) + µ2f1(i) +K/α

]
≥ −

[
µ2f1(i + 1)− µ1f1(i)

]
. The final inequality holds

by Inequality (2.16).

– Let CD
(
f1(i)

)
= 2; CD

(
f1(i + 1)

)
= 2; CD

(
g1(i)

)
= 2; CD

(
g1(i + 1)

)
= 2. Then

Equation (2.15) becomes:

TCDf1(i+ 1)− TCDf1(i)−
[
TCDg1(i+ 1)− TCDg1(i)

]
=

1

µ1 + µ2

(
µ1f1(i+ 2) + µ2f1(i+ 1) +

K

α
− µ1f1(i+ 1)− µ2f1(i)−

K

α

−
[
µ1g1(i+ 2) + µ2g1(i+ 1) +

K

α
− µ1g1(i+ 1)− µ2g1(i)−

K

α

])
=

1

µ1 + µ2

(
µ1
(
f1(i+ 2)− f1(i+ 1)−

[
g1(i+ 2)− g1(i+ 1)

])
+ µ1

(
f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

]))
≥ 0,

where we used the assumption that f1(j + 1)− f1(j) ≥ g1(j + 1)− g1(j), with j = i and
j = i+ 1.

By the above numeration we have shown that Equation (2.15) is non-negative, ∀i ∈ S, and
thus that TCDf1(i+ 1)− TCDf1(i) ≥ TCDg1(i+ 1)− TCDg1(i).

• Uniformization-operator: Tunif
(
f(i), g(i)

)
= f(i)(µ1+µ2)/(λ+µ1+µ2)+g(i)λ/(λ+µ1+µ2).
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Let f1(i), f2(i), g1(i) and g2(i) as defined at the beginning of the proof. We then get:

Tunif
(
f1(i+ 1), f2(i+ 1)

)
− Tunif

(
f1(i), f2(i)

)
−
[
Tunif

(
g1(i+ 1), g2(i+ 1)

)
− Tunif

(
g1(i), g2(i)

)]
=

1

λ+ µ1 + µ2

(
(µ1 + µ2)f1(i+ 1) + λf2(i+ 1)− (µ1 + µ2)f1(i)− λf2(i)

−
[
(µ1 + µ2)g1(i+ 1) + λg2(i+ 1)− (µ1 + µ2)g1(i)− λg2(i)

])
=

µ1 + µ2
λ+ µ1 + µ2

(
f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

])
+

λ

λ+ µ1 + µ2

(
f2(i+ 1)− f2(i)−

[
g2(i+ 1)− g2(i)

])
≥ 0,

where the final inequality follows from the assumptions on f1(i), g1(i), f2(i) and g2(i).

• Discounted costs-operator: Tdiscf(i) = αf(i) +B(i).
Recall that B(i) is a non-decreasing, convex function in i. Let f1(i) and g1(i) have the same
properties as described before. Then:

Tdiscf1(i+ 1)− Tdiscf1(i)−
[
Tdiscg1(i+ 1)− Tdiscg1(i)

]
= αf1(i+ 1) +B(i+ 1)− αf1(i)−B(i)−

[
αg1(i+ 1) +B(i+ 1)− αg1(i)−B(i)

]
= α

(
f1(i+ 1)− f1(i)−

[
g1(i+ 1)− g1(i)

])
≥ 0,

where the last inequality holds by the definition of f1(i) and g1(i).

By the above enumeration we have shown that for every operator T in Table 2.1 the statement in
this Lemma 2.10 holds.

With the help of Lemma 2.10, we can give a proof of Theorem 2.9.

Proof of Theorem 2.9:
By previous lemmas we know the following:

•
(
fn+1
α (i)

)
1

= 0 iff vnα(i+ 1)− vnα(i) ≥ R/α (Lemma 2.4);

•
(
fn+1
α (i)

)
2

= 2 iff vnα(i)− vnα(i− 1)+ ≥ K/
[
α(µ2 − µ1)

]
(Lemma 2.5);

• The optimal strategy fnα (i) is a two-dimensional threshold strategy ∀n (Theorem 2.3).

Now, assume v1α,up(i + 1) − v1α,up(i) ≥ v0α,up(i + 1) − v0α,up(i). Then, using Equations (2.5a) up to
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(2.5g) combined with Lemma 2.10, we get:

v1α,5,u(i+ 1)− v1α,5,u(i) = v0α,up(i+ 1)− v0α,up(i)
≤ v1α,up(i+ 1)− v1α,up(i) = v2α,5,u(i+ 1)− v2α,5,u(i)

⇒ v1α,4,u(i+ 1)− v1α,4,u(i) = TDv
1
α,5,u(i+ 1)− TDv1α,5,u(i)

≤ TDv2α,5,u(i+ 1)− TDv2α,5,u(i) = v2α,4,u(i+ 1)− v2α,4,u(i)

⇒ v1α,3,u(i+ 1)− v1α,3,u(i) = TCAv
1
α,5,u(i+ 1)− TCAv1α,5,u(i)

≤ TCAv2α,5,u(i+ 1)− TCAv2α,5,u(i) = v2α,3,u(i+ 1)− v2α,3,u(i)

⇒ v1α,2,u(i+ 1)− v1α,2,u(i) = TCDv
1
α,4,u(i+ 1)− TCDv1α,4,u(i)

≤ TCDv2α,4,u(i+ 1)− TCDv2α,4,u(i) = v2α,2,u(i+ 1)− v2α,2,u(i)

⇒ v1α,1,u(i+ 1)− v1α,1,u(i) = Tunif
(
v1α,2,u(i+ 1), v1α,3,u(i+ 1)

)
− Tunif

(
v1α,2,u(i), v1α,3,u(i)

)
≤ Tunif

(
v2α,2,u(i+ 1), v2α,3,u(i+ 1)

)
− Tunif

(
v2α,2,u(i), v2α,3,u(i)

)
= v2α,1,u(i+ 1)− v2α,1,u(i)

⇒ v1α,0,u(i+ 1)− v1α,0,u(i) = Tdiscv
1
α,1,u(i+ 1)− Tdiscv1α,1,u(i)

≤ Tdiscv2α,1,u(i+ 1)− Tdiscv2α,1,u(i) = v2α,0,u(i+ 1)− v2α,0,u(i)

⇒ v1α,up(i+ 1)− v1α,up(i) = v1α,0,u(i+ 1)− v1α,0,u(i)

≤ v2α,0,u(i+ 1)− v2α,0,u(i) = v2α,up(i+ 1)− v2α,up(i).

In short, this proves that

v0α,up(i+ 1)− v0α,up(i) ≤ v1α,up(i+ 1)− v1α,up(i)⇒ v1α,up(i+ 1)− v1α,up(i) ≤ v2α,up(i+ 1)− v2α,up(i).

Using induction, it can be shown similarly that

vn−1α,up(i+ 1)− vn−1α,up(i) ≤ vnα,up(i+ 1)− vnα,up(i)⇒ vnα,up(i+ 1)− vnα,up(i) ≤ vn+1
α,up(i+ 1)− vn+1

α,up(i),

and thus:

vn−1α,up(i+ 1)− vn−1α,up(i) ≤ vnα,up(i+ 1)− vnα,up(i), ∀n ≥ 0,∀i ∈ S. (2.20)

Now, let
(
fnα (i)

)
1

= 0 for some i ∈ S. Then vn−1α (i + 1) − vn−1α (i) ≥ R/α. By Inequality (2.20),

also vnα(i+ 1)− vnα(i) ≥ R/α, and thus
(
fn+1
α (i)

)
1

= 0. This means that declining the ith customer
at time n implies that the ith incoming customer is also declined at time n+ 1.

Next, let
(
fnα (i)

)
2

= 2 for some i ∈ S. Then vn−1α (i) − vn−1α (i − 1)+ ≥ K/
[
α(µ2 − µ1)

]
. By

Inequality (2.20), also vnα(i)− vnα(i− 1)+ ≥ K/
[
α(µ2 − µ1)

]
, and thus

(
fn+1
α (i)

)
2

= 2. This means
that using Server 2, when there are i customers in the system at time n, implies that Server 2 is
also used when there are i customers in the system at time n+ 1.

By the previous argument, we can conclude that
(
(ina,up, i

n
d,up)

)
n

forms a two-dimensional non-
increasing sequence of threshold strategies for n ≥ 1.

The argument for the other part of the proof is similar to the above, but with reversed inequalities.
Therefore, we conclude also that v1α,low(i+ 1)− v1α,low(i) ≤ v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S, implies

that
(
(ina,low, i

n
d,low)

)
n

forms a two-dimensional non-decreasing sequence of threshold strategies.
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2.5.2 Convergence of the strategy

In this section we aim to determine the optimal strategy by enclosing it between a lower and an
upper bound. Theorem 2.9 forms the key to this enclosure.

Corollary 2.11. Let v0α,up(i) be such that v1α,up(i+ 1)− v1α,up(i) ≥ v0α,up(i+ 1)− v0α,up(i), ∀i ∈ S,
with consecutive thresholds

(
(ina,up, i

n
d,up)

)
n

. Let v0α,low(i) be such that v1α,low(i + 1) − v1α,low(i) ≤
v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S, with consecutive thresholds

(
(ina,low, i

n
d,low)

)
n

.
Then, if ina,up = ina,low := i∗a for some n ≥ 1, this implies that i∗a is the optimal threshold and will
not change in further time steps. The same holds if ind,up = ind,low := i∗d for some n ≥ 1; then i∗d is
the optimal threshold and will not change in further time steps.

Proof. This corollary follows directly from Theorem 2.9, where we note that by Algorithm 2.1,
f0α(i) = (1, 1), ∀i ∈ S, so i0a = ∞ and i0d = ∞, independent of the starting value. Therefore,
Corollary 2.11 holds for n ≥ 1.

2.5.3 Convergence of vnα(i)− vnα(0)

The focus of this subsection is a result from the non-decreasingness of vnα(i) from Lemma 2.7 and
the results from Subsections 2.6.1 and 2.6.2.

Corollary 2.12. Let v0α,up(i) be such that v1α,up(i+1)−v1α,up(i) ≥ v0α,up(i+1)−v0α,up(i), ∀i ∈ S, with
thresholds

(
(ina,up, i

n
d,up)

)
n

. Let v0α,low(i) be such that v1α,low(i+1)−v1α,low(i) ≤ v0α,low(i+1)−v0α,low(i),

∀i ∈ S, with thresholds
(
(ina,low, i

n
d,low)

)
n

.
Then the following equation holds:

vnα,low(i)− vnα,low(0) ≥ v∗α(i)− v∗α(0) ≥ vnα,up(i)− vnα,up(0), ∀i ∈ S, ∀n ≥ 0.

Before we prove Corollary 2.12, remark that Algorithm 2.1 converges towards the optimal values
of v∗α(i), i ∈ S.

Proof. Using Theorem 1.8, it holds for n ≥ 0, ∀i ∈ S:

v0α,low(i)− v0α,low(0)

=
(
v0α,low(i)− v0α,low(i− 1)

)
+
(
v0α,low(i− 1)− v0α,low(i− 2)

)
+ . . .+

(
v0α,low(1)− v0α,low(0)

)
≥
(
v1α,low(i)− v1α,low(i− 1)

)
+
(
v1α,low(i− 1)− v1α,low(i− 2)

)
+ . . .+

(
v1α,low(1)− v1α,low(0)

)
≥ . . .
≥
(
vnα,low(i)− vnα,low(i− 1)

)
+
(
vnα,low(i− 1)− v0α,low(i− 2)

)
+ . . .+

(
vnα,low(1)− vnα,low(0)

)
= vnα,low(i)− vnα,low(0). (2.21)
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Similarly holds for vnα,up(i), ∀n ≥ 0, ∀i ∈ S:

v0α,up(i)− v0α,up(0)

=
(
v0α,up(i)− v0α,up(i− 1)

)
+
(
v0α,up(i− 1)− v0α,up(i− 2)

)
+ . . .+

(
v0α,up(1)− v0α,up(0)

)
≤
(
v1α,up(i)− v1α,up(i− 1)

)
+
(
v1α,up(i− 1)− v1α,up(i− 2)

)
+ . . .+

(
v1α,up(1)− v1α,up(0)

)
≤ . . .
≤
(
vnα,up(i)− vnα,up(i− 1)

)
+
(
vnα,up(i− 1)− v0α,up(i− 2)

)
+ . . .+

(
vnα,up(1)− vnα,up(0)

)
= vnα,up(i)− vnα,up(0). (2.22)

We know, by the choice of v0α,low(i) and v0α,up(i), that v0α,up(i+1)−v0α,up(i) ≤ v0α,low(i+1)−v0α,low(i),
∀i ∈ S. This inequality combined with Equations (2.5a) up to (2.5g) and Lemma 2.10 gives for

v1α,5,u(i+ 1)−v1α,5,u(i) = v0α,up(i+ 1)− v0α,up(i)
≤ v0α,low(i+ 1)− v0α,low(i) = v1α,5,l(i+ 1)− v1α,5,l(i)

⇒ v1α,4,u(i+ 1)−v1α,4,u(i) = TDv
1
α,5,u(i+ 1)− TDv1α,5,u(i)

≤ TDv1α,5,l(i+ 1)− TDv1α,5,l(i) = v1α,4,l(i+ 1)− v1α,4,l(i)
⇒ v1α,3,u(i+ 1)−v1α,3,u(i) = TCAv

1
α,5,u(i+ 1)− TCAv1α,5,u(i)

≤ TCAv1α,5,l(i+ 1)− TCAv1α,5,l(i) = v1α,3,l(i+ 1)− v1α,3,l(i)
⇒ v1α,2,u(i+ 1)−v1α,2,u(i) = TCDv

1
α,4,u(i+ 1)− TCDv1α,4,u(i)

≤ TCDv1α,4,l(i+ 1)− TCDv1α,4,l(i) = v1α,2,l(i+ 1)− v1α,2,l(i)
⇒ v1α,1,u(i+ 1)−v1α,1,u(i) = Tunif

(
v1α,2,u(i+ 1), v1α,3,u(i+ 1)

)
− Tunif

(
v1α,2,u(i), v1α,3,u(i)

)
≤ Tunif

(
v1α,2,l(i+ 1), v1α,3,l(i+ 1)

)
− Tunif

(
v1α,2,l(i), v

1
α,3,l(i)

)
= v1α,1,l(i+ 1)− v1α,1,l(i)

⇒ v1α,0,u(i+ 1)−v1α,0,u(i) = Tdiscv
1
α,1,u(i+ 1)− Tdiscv1α,1,u(i)

≤ Tdiscv1α,1,l(i+ 1)− Tdiscv1α,1,l(i) = v1α,0,l(i+ 1)− v1α,0,l(i)
⇒ v1α,up(i+ 1)−v1α,up(i) = v1α,0,u(i+ 1)− v1α,0,u(i)

≤ v1α,0,l(i+ 1)− v1α,0,l(i) = v1α,low(i+ 1)− v1α,low(i).

In short, this proves that v0α,up(i+ 1)−v0α,up(i) ≤ v0α,low(i+ 1)−v0α,low(i)⇒ v1α,up(i+ 1)−v1α,up(i) ≤
v1α,low(i+ 1)− v1α,low(i). Using induction, it can be shown similarly that:

v0α,up(i+ 1)− v0α,up(i) ≤ v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S,
⇒

vnα,up(i+ 1)− vnα,up(i) ≤ vnα,low(i+ 1)− vnα,low(i), ∀i ∈ S, ∀n ≥ 0. (2.23)

Using the same technique that was used to achieve Inequalities (2.21) and (2.22), Implication (2.23)
also implies

vnα,up(i)− vnα,up(0) ≤ vnα,low(i)− vnα,low(0), ∀i ∈ S,∀n ≥ 0.
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Therefore, we can conclude that

vnα,low(i)− vnα,low(0) ≥ v∗α(i)− v∗α(0) ≥ vnα,up(i)− vnα,up(0), ∀i ∈ S∀n ≥ 0.

2.6 Computation of v0
α,low(i) and v0

α,up(i)

Theorem 2.9, Corollary 2.11 and Corollary 2.12 are only of value if we can find functions v0α,up(i)
and v0α,low(i) such that

v1α,up(i+ 1)− v1α,up(i) ≥ v0α,up(i+ 1)− v0α,up(i), ∀i ∈ S,

and
v1α,low(i+ 1)− v1α,low(i) ≤ v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S,

both hold.

Let v0α,low(i) and v0α,up(i) be of a similar form:

v0α,low(i) = γl(i+ 1)2, (2.24)

v0α,up(i) = γu(i+ 1)2, (2.25)

where γl, γu ≥ 0 to make sure that v0α,low(i), v0α,up(i) are convex and non-decreasing in i. Assume
that the fine is of the form B(i) = bi with b ∈ R>0.

We choose for the quadratic form in Equations (2.24) and (2.25), because the fee is linear in i
and the sum of many linear functions approaches a quadratic function.

2.6.1 Computation of v0α,low(i)

Firstly, we will deduce how to choose γl in Equation (2.24), in order that

v1α,low(i+ 1)− v1α,low(i) ≤ v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S. (2.26)
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To give an expression of Inequality (2.26) for i > 0, we will combine Equations (2.4) and (2.24).

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
min

{
µ2γl(i+ 2)2 + µ1γl(i+ 1)2, µ1γl(i+ 2)2 + µ2γl(i+ 1)2 +

K

α

}
−min

{
µ2γl(i+ 1)2 + µ1γli

2, µ1γl(i+ 1)2 + µ2γli
2 +

K

α

}]
+

λ

λ+ µ1 + µ2
α

[
min

{
γl(i+ 2)2, γl(i+ 3)2 − R

α

}
−min

{
γl(i+ 1)2, γl(i+ 2)2 − R

α

}]
+B(i+ 1)−B(i)

−
[
γl(i+ 2)2 − γl(i+ 1)2

]
=

1

λ+ µ1 + µ2
α

[
min

{
µ2γl(4i+ 4) + µ1γl(2i+ 1), µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α

}
−min

{
µ2γl(2i+ 1), µ1γl(2i+ 1) +

K

α

}]
+

λ

λ+ µ1 + µ2
α

[
min

{
γl(2i+ 3), γl(4i+ 8)− R

α

}
−min

{
0, γl(2i+ 3)− R

α

}]
+ b− γl(2i+ 3). (2.27)

According to Theorem 2.3, the optimal strategy is a threshold strategy. Therefore, we can distin-
guish the following cases for Equation (2.27).

• Let f1α,low(i) = (0, 1) and f1α,low(i+ 1) = (0, 1).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α
[
µ2γl(4i+ 4) + µ1γl(2i+ 1)− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α
[
γl(2i+ 3)

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ1
. (2.28)

• Let f1α,low(i) = (0, 1) and f1α,low(i+ 1) = (0, 2).
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Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α
[
γl(2i+ 3)

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ K

λ+µ1+µ2

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i+ 3) + 2µ1

) . (2.29)

• Let f1α,low(i) = (0, 2) and f1α,low(i+ 1) = (0, 2).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ1γl(2i+ 1)− K

α

]
+

λ

λ+ µ1 + µ2
α
[
γl(2i+ 3)

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2
. (2.30)

• Let f1α,low(i) = (1, 1) and f1α,low(i+ 1) = (0, 1).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α
[
µ2γl(4i+ 4) + µ1γl(2i+ 1)− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α

[
γl(2i+ 3)− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ λR

λ+µ1+µ2

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
2µ1 + λ(2i+ 3)

) . (2.31)
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• Let f1α,low(i) = (1, 1) and f1α,low(i+ 1) = (0, 2).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α

[
γl(2i+ 3)− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ K+λR

λ+µ1+µ2

(2i+ 3)− α
λ+µ1+µ2

µ1(4i+ 4)

=
b+ K+λR

λ+µ1+µ2

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
(λ+ µ2)(2i+ 3)− µ1(2i+ 1)

) . (2.32)

• Let f1α,low(i) = (1, 2) and f1α,low(i+ 1) = (0, 2).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ1γl(2i+ 1)− K

α

]
+

λ

λ+ µ1 + µ2
α

[
γl(2i+ 3)− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ λR

λ+µ1+µ2

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
λ(2i+ 3) + 2µ2

) . (2.33)

• Let f1α,low(i) = (1, 1) and f1α,low(i+ 1) = (1, 1).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α
[
µ2γl(4i+ 4) + µ1γl(2i+ 1)− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α

[
γl(4i+ 8)− R

α
− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
2µ1 − 2λ

) . (2.34)
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• Let f1α,low(i) = (1, 1) and f1α,low(i+ 1) = (1, 2).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ2γl(2i+ 1)

]
+

λ

λ+ µ1 + µ2
α

[
γl(4i+ 8)− R

α
− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ K

λ+µ1+µ2

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i+ 1) + 2(µ2 − λ)

) . (2.35)

• Let f1α,low(i) = (1, 2) and f1α,low(i+ 1) = (1, 2).
Then Equation (2.27) becomes:

v1α,low(i+ 1)− v1α,low(i)−
[
v0α,low(i+ 1)− v0α,low(i)

]
=

1

λ+ µ1 + µ2
α

[
µ1γl(4i+ 4) + µ2γl(2i+ 1) +

K

α
− µ1γl(2i+ 1)− K

α

]
+

λ

λ+ µ1 + µ2
α

[
γl(4i+ 8)− R

α
− γl(2i+ 3) +

R

α

]
+ b− γl(2i+ 3)

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

(1− α)(2i+ 3) + α
λ+µ1+µ2

(
2µ2 − 2λ

) . (2.36)
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To give an expression of Inequality (2.26) for i = 0, we will combine Equations (2.4) and (2.24).

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α

[
min

{
µ2γl2

2 + µ1γl1
2, µ1γl2

2 + µ2γl1
2 +

K

α

}
−min

{
µ2γl1

2 + µ1γl1
2, µ1γl1

2 + µ2γl1
2 +

K

α

}]
+

λ

λ+ µ1 + µ2
α

[
min

{
γl(2)2, γl(3)2 − R

α

}
−min

{
γl(1)2, γl(2)2 − R

α

}]
+B(1)−B(0)−

[
γl2

2 − γl12
]

=
1

λ+ µ1 + µ2
α

[
min

{
3µ2γl, 3µ1γl +

K

α

}
−min

{
0,
K

α

}]
+

λ

λ+ µ1 + µ2
α

[
min

{
3γl, 8γl −

R

α

}
−min

{
0, 3γl −

R

α

}]
+ b− 3γl

=
1

λ+ µ1 + µ2
αmin

{
3µ2γl, 3µ1γl +

K

α

}
+

λ

λ+ µ1 + µ2
α

[
min

{
3γl, 8γl −

R

α

}
−min

{
0, 3γl −

R

α

}]
+ b− 3γl. (2.37)

Note that K/α > 0, so min
{

0,K/α
}

= 0. This also means that for i = 0 and n = 1, the slower
Server 1 is used, which is equivalent to

(
f1α,low(0)

)
2

= 1.

According to Theorem 2.3, both the choice for a ∈ A and d ∈ D are threshold strategies. Therefore,
we can distinguish the following cases for Equation (2.37).

• Let f1α,low(0) = (0, 1) and f1α,low(1) = (0, 1).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α
[
3µ2γl

]
+

λ

λ+ µ1 + µ2
α
[
3γl

]
+ b− 3γl

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

3(1− α) + α
λ+µ1+µ2

· 3µ1
. (2.38)

• Let f1α,low(0) = (0, 1) and f1α,low(1) = (0, 2).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α

[
3µ1γl +

K

α

]
+

λ

λ+ µ1 + µ2
α
[
3γl

]
+ b− 3γl

≤ 0.
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This expression is equivalent to the following constraint on γl:

γl ≥
b+ K

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3µ2
. (2.39)

• Let f1α,low(0) = (1, 1) and f1α,low(1) = (0, 1).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α
[
3µ2γl

]
+

λ

λ+ µ1 + µ2
α

[
3γl − 3γl +

R

α

]
+ b− 3γl

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ1)
. (2.40)

• Let f1α,low(0) = (1, 1) and f1α,low(1) = (0, 2).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α

[
3µ1γl +

K

α

]
+

λ

λ+ µ1 + µ2
α

[
3γl − 3γl +

R

α

]
+ b− 3γl

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ K+λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ2)
. (2.41)

• Let f1α,low(0) = (1, 1) and f1α,low(1) = (1, 1).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α
[
3µ2γl

]
+

λ

λ+ µ1 + µ2
α

[
8γl −

R

α
− 3γl +

R

α

]
+ b− 3γl

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
. (2.42)
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• Let f1α,low(0) = (1, 1) and f1α,low(1) = (1, 2).
Then Equation (2.37) becomes:

v1α,low(1)− v1α,low(0)−
[
v0α,low(1)− v0α,low(0)

]
=

1

λ+ µ1 + µ2
α

[
3µ1γl +

K

α

]
+

λ

λ+ µ1 + µ2
α

[
8γl −

R

α
− 3γl +

R

α

]
+ b− 3γl

≤ 0.

This expression is equivalent to the following constraint on γl:

γl ≥
b+ K

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

(3µ2 − 2λ)
. (2.43)

The previous enumerations can be used to determine a lower bound for γl. To do so, we will
distinguish all possible combinations of values of i1a and i1d.

1. Let i1a < i1d.

(a) Let f1α,low(0) = (0, 1) and i1d > 0.
Then we get, according to Equations (2.38), (2.28), (2.29) and (2.30), where we take for
i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b

3(1− α) + α
λ+µ1+µ2

· 3µ1
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

· 2µ1
,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
b

(1− α)
(
2(i1d + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the expression in grey will never be the maximum value.

(b) Let i1a = 0.
Then we get, according to Equations (2.40), (2.28), (2.29) and (2.30), where we take for
i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b+ λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ1)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

· 2µ1
,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
b

(1− α)
(
2(i1d + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the expression in grey will never be the maximum value.
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(c) Let i1a > 0.
Then we get, according to Equations (2.42), (2.34), (2.31), (2.28), (2.29) and (2.30),
where we take for i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
2µ1 + λ(2i1a + 3)

) ,
b

(1− α)
(
2(i1a + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ1

,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
b

(1− α)
(
2(i1d + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the grey expressions will never be the maximum value.

2. Let i1d < i1a.

(a) Let i1d = 0.
Then we get, according to Equations (2.43), (2.36), (2.33) and (2.30), where we take for
i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b+ K

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

(3µ2 − 2λ)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

(
2µ2 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
λ(2i1a + 3) + 2µ2

) ,
b

(1− α)
(
2(i1a + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the expression in grey will never be the maximum value.

(b) Let i1b > 0.
Then we get, according to Equations (2.42), (2.34), (2.35), (2.36), (2.33) and (2.30),
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where we take for i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ K

λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 1) + 2(µ2 − λ)

) ,
b

(1− α)
(
2(i1d + 1) + 3

)
+ α

λ+µ1+µ2

(
2µ2 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
λ(2i1a + 3) + 2µ2

) ,
b

(1− α)
(
2(i1a + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the grey expressions will never be the maximum value.

3. Let i1a = i1d.

(a) Let i1a = i1d = 0.
Then we get, according to Equations (2.41) and (2.30), where we take for i in each
expression the minimal possible value to gain the maximum:

γl ≥ max

{
b+ K+λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ2)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

· 2µ2

}
.

(b) Let i1a = i1d > 0.
Then we get, according to Equations (2.42), (2.34), (2.32) and (2.30), where we take for
i in each expression the minimal possible value to gain the maximum:

γl ≥ max

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)(2 · 1 + 3) + α
λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ K+λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
(λ+ µ2 − µ1)(2i1a + 3) + 2µ1

) ,
b

(1− α)
(
2(i1a + 1) + 3

)
+ α

λ+µ1+µ2
· 2µ2

}
,

where the expression in grey will never be the maximum value.

As can be seen in the enumeration above, there are seven different scenarios for the values of i1a
and i1d, which all affect the minimum value of γl. All different terms to be smaller than or equal to
γl do have similarities, and by that we can give the following estimate of γl:

γl ≥
b+ K+λR

λ+µ1+µ2

3(1− α)
, (2.44)
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since in each of the Equations (2.28) till (2.36) and (2.38) till (2.43) the numerator is either equal
to or smaller than the numerator of Equation (2.44), and the denominator is greater than the
denominator of Equation (2.44). Therefore, v0α,low(i) from Equation (2.24) becomes:

v0α,low(i) = γl(i+ 1)2, where γl ≥
b+ K+λR

λ+µ1+µ2

3(1− α)
.

2.6.2 Computation of v0α,up(i)

In order to determine v0α,up(i) from Equation (2.25), we must give a value of γu such that

v1α,up(i+ 1)− v1α,up(i) ≥ v0α,up(i+ 1)− v0α,up(i), ∀i ∈ S.

We will determine γu in a similar way as in Subsection 2.6.1 for γl. In Equation (2.27), no property
of γl or v0α,low(i) is used, and since v0α,low(i) and v0α,up(i) are of a similar form (cf. Equations (2.24)
and (2.25)), γl can be replaced by γu:

v1α,up(i+ 1)− v1α,up(i)−
[
v0α,up(i+ 1)− v0α,up(i)

]
=

1

λ+ µ1 + µ2
α

[
min

{
µ2γu(4i+ 4) + µ1γu(2i+ 1), µ1γu(4i+ 4) + µ2γu(2i+ 1) +

K

α

}
−min

{
µ2γu(2i+ 1), µ1γu(2i+ 1) +

K

α

}]
+

λ

λ+ µ1 + µ2
α

[
min

{
γu(2i+ 3), γu(4i+ 8)− R

α

}
−min

{
0, γu(2i+ 3)2 − R

α

}]
+ b− γu(2i+ 3). (2.45)

Also, for the enumeration starting on page 61, no properties of γl are used, except for the fact
that there Equation (2.27) has to be non-positive, and in this case with γu we need (2.45) to be
nonnegative. Therefore, this enumeration from pages 61 till 64 result in the same restrictions on
γu as on γl, but with an opposite sign. Similarly, the restrictions from the enumeration starting on
page 65 on γl are equal to the restrictions on γu with opposite signs.

With these similarities between the determination of γl and γu and thus v0α,low(i) and v0α,up(i),
we can give yet another enumeration similar to the one starting on page 67, where we distinguish
all possible combinations of values of i1a and i1d.

1. Let i1a < i1d.

(a) Let f1α,up(0) = (0, 1) and i1d = 0.
Then we get, according to Equations (2.39) and (2.30), the following, where we take for
i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b+ K

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3µ2
, lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the grey expression will never attain the minimum value.
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(b) Let f1α,up(0) = (0, 1) and i1d > 0.
Then we get, according to Equations (2.38), (2.28), (2.29) and (2.30), where we take for
i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b

3(1− α) + α
λ+µ1+µ2

· 3µ1
,

b

(1− α)
(
2(i1d − 1) + 3

)
+ α

λ+µ1+µ2
· 2µ1

,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the expressions in grey will never attain the minimum value.

(c) Let i1a = 0.
Then we get, according to Equations (2.40), (2.28), (2.29) and (2.30), where we take for
i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b+ λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ1)
,

b

(1− α)
(
2(i1d − 1) + 3

)
+ α

λ+µ1+µ2
· 2µ1

,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the expressions in grey will never attain the minimum value.

(d) Let i1a > 0.
Then we get, according to Equations (2.42), (2.34), (2.31), (2.28), (2.29) and (2.30),
where we take for i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)
(
2(i1a − 1) + 3

)
+ α

λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
2µ1 + λ(2i1a + 3)

) ,
b

(1− α)
(
2(i1d − 1) + 3

)
+ α

λ+µ1+µ2
· 2µ1

,

b+ K
λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 3) + 2µ1

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the grey expressions will never attain the minimum value.
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2. Let i1d < i1a.

(a) Let i1d = 0.
Then we get, according to Equations (2.43), (2.36), (2.33) and (2.30), where we take for
i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b+ K

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

(3µ2 − 2λ)
,

b

(1− α)
(
2(i1a − 1) + 3

)
+ α

λ+µ1+µ2

(
2µ2 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
λ(2i1a + 3) + 2µ2

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the expressions in grey will never attain the minimum value.

(b) Let i1d > 0.
Then we get, according to Equations (2.42), (2.34), (2.35), (2.36), (2.33) and (2.30),
where we take for i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)
(
2(i1d − 1) + 3

)
+ α

λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ K

λ+µ1+µ2

(1− α)(2i1d + 3) + α
λ+µ1+µ2

(
(µ2 − µ1)(2i1d + 1) + 2(µ2 − λ)

) ,
b

(1− α)
(
2(i1a − 1) + 3

)
+ α

λ+µ1+µ2

(
2µ2 − 2λ

) ,
b+ λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
λ(2i1a + 3) + 2µ2

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the grey expressions will never attain the minimum value.

3. Let i1a = i1d.

(a) Let i1a = i1d = 0.
Then we get, according to Equations (2.41) and (2.30), where we take for i in each
expression the maximal possible value to gain the minimum:

γu ≤ min

{
b+ K+λR

λ+µ1+µ2

3(1− α) + α
λ+µ1+µ2

· 3(λ+ µ2)
, lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the expression in grey will never attain the minimum value.
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(b) Let i1a = i1d > 0.
Then we get, according to Equations (2.42), (2.34), (2.32) and (2.30), where we take for
i in each expression the maximal possible value to gain the minimum:

γu ≤ min

{
b

3(1− α) + α
λ+µ1+µ2

(3µ1 − 2λ)
,

b

(1− α)
(
2(i1a − 1) + 3

)
+ α

λ+µ1+µ2

(
2µ1 − 2λ

) ,
b+ K+λR

λ+µ1+µ2

(1− α)(2i1a + 3) + α
λ+µ1+µ2

(
(λ+ µ2 − µ1)(2i1a + 3) + 2µ1

) ,
lim
i→∞

b

(1− α)(2i+ 3) + α
λ+µ1+µ2

· 2µ2

}
,

where the expression in grey will never attain the minimum value.

In every of the beforementioned cases for the relation between i1a and i1d, γu has to be less than or
equal to zero. At the introduction of γu in Equation (2.25) was stated that γu ≥ 0. Therefore, the
only possible value is γu = 0, which gives the following equation for v0α,up(i):

v0α,up(i) = γu(i+ 1)2 = 0, with γu = 0.

In Subsections 2.6.1 and 2.6.2 we have shown that the choices of

v0α,low(i) = γl(i+ 1)2, with γl ≥
b+ K+λR

λ+µ1+µ2

3(1− α)
, (2.46)

v0α,up(i) = γu(i+ 1)2 = 0, with γu = 0, (2.47)

give a starting value for Theorem 2.9, Corollary 2.11 and Corollary 2.12, which makes them useful
not only in theory, but also in practice.

Note that in Equations (2.24) and (2.25), the basis equations use (i+ 1)2. We have also tried the
more natural equation of i2, but this gave us an extra constraint on the variables. The equivalent
of Equation (2.42) requires µ1 ≥ 2λ and the equivalent of Equation (2.43) requires µ2 ≥ 2λ. Since
by definition µ1 < µ2, these restrictions can be summarized in µ1 ≥ 2λ. This constraint is probably
due to the lack of steepness in i = 0 for the function i2, which the function we used, (i+ 1)2, does
have.

2.6.3 Numerical example

Now that we have proven that v0α,low(i) and v0α,up(i) can be chosen such that

v1α,up(i+ 1)− v1α,up(i) ≥ v0α,up(i+ 1)− v0α,up(i), ∀i ∈ S,

and
v1α,low(i+ 1)− v1α,low(i) ≤ v0α,low(i+ 1)− v0α,low(i), ∀i ∈ S,
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both hold, we will show graphically the results of Corollary 2.11 and Corollary 2.12. The corre-
sponding R-code can be found in Appendix B.

We give one numerical example, with the choice of parameters mostly equal to the situation in
Subsection 1.2.1. We choose λ = 1, µ1 = 2, µ2 = 3, K = 1, R = 3, b = 1 and α = 0.9. For the
value of vα,up(i), we follow Equation (2.47) and thus choose γu = 0. For the value of v0α,low(i), we
take, according to Equation (2.46),

γl =
b+ K+λR

λ+µ1+µ2

3(1− α)
=

1 + 1+1·3
1+2+3

3(1− 0.9)
=

50

9
.

Figure 2.1: Expected reduced discount costs vnα,low(i)− vnα,low(0) and vnα,up(i)− vnα,up(0), for several
values of time step n, with parameters λ = 1, µ1 = 2, µ2 = 3, K = 1, R = 3, b = 1, α = 0.9,
γu = 0, γl = 50/9.

In Figure 2.1, we have plotted the expected reduced discount costs of vnα,low(i) and vnα,up(i) for

several values of n. The graph shows that for n = 50, the graphs of v50α,low(i) − v50α,low(0) and

v50α,up(i) − v50α,up(0) are already that close to each other, that they are drawn at the same spot.
Therefore, this graph confirms the claim of Corollary 2.12 and also shows that the convergence
goes rather fast; within 50 time steps, the difference between the lower bound and the upper bound
is hardly visible, and thus the range of the optimal expected discount costs decreases rapidly.

Figure 2.2(a) shows the thresholds ina,up and ind,up for different values of n. Figure 2.2(b) shows the
thresholds ina,low and ind,low for different values of n. We can see, that for n ≥ 6, ina,low = ina,up = 1,
and thus i∗a = 1. For n ≥ 15, we get ind,low = ind,up = 4, and thus i∗d = 4. So within 15 iterations of
Algorithm 2.1, we know the optimal strategy. This validates the statement in Corollary 2.11.
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(a) Thresholds ina,up and ind,up for time n. Note that ina,up = ∞ for n ∈ {0, . . . , 4}, and ind,up = ∞ for
n ∈ {0, . . . , 11}.

(b) Thresholds ina,low and ind,low for time n. Note that i0a,low = i0d,low = ∞ by the definition of f0
α in

Algorithm 2.1.

Figure 2.2: Thresholds for time n, with parameters λ = 1, µ1 = 2, µ2 = 3, K = 1, R = 3, b = 1,
α = 0.9, γu = 0, γl = 50/9.
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Appendix A

Discounted model: R code

X <− 20 #Max s i z e queue i s (X−1); queue can be 0
T <− 20 #Number o f time s t e p s
lambda <− 1 #A r r i v a l r a t e
mu <− 2 #Departure r a t e
R <− 3 #P r o f i t per customer served
b <− 1 #Fine per customer per time u n i t in queue
alpha <− 0 .9 #Discount r a t e
plambda <− lambda/ ( lambda+mu) #Prob a r r i v a l
pmu <− mu/ ( lambda+mu) #Prob depar ture

i<− NULL; for ( j in 1 :X) { i <− c ( i , j )}
#i i s v e c t o r s i z e X, v a l u e s 1 , . . . , X
c0 <− b∗ ( i −1) #Cost r e f u s i n g customer
c1 <− b∗ ( i −1) − plambda∗R #Cost a c c e p t i n g customer

v <− matrix (0 ,X,T) #Expected d i s coun ted p r o f i t
vhelp <− array (0 ,dim=c (X,T, 2 ) )
#v h e l p ( , , 1 ) : incoming customer sen t away ;
#v h e l p ( , , 2 ) : incoming customer accepted

#Note : the code does not compi le wi th the e x t r a e n t e r s added in
#the f o l l o w i n g l i n e s , but they are necessary f o r r e a d a b i l i t y .
for ( k in 1 :X) {

vhelp [ 1 , k , 1 ] <− c0 [ k ] #Set the f i r s t time s t e p
vhelp [ 1 , k , 2 ] <− c1 [ k ]
v [ 1 , k ] <− min( vhelp [ 1 , k , 1 ] , vhelp [ 1 , k , 2 ] )

}
for ( j in 2 :T) {

vhelp [ j , 1 , 1 ] <− c0 [ 1 ] + alpha∗v [ ( j −1) ,1 ] #Empty queue
vhelp [ j , 1 , 2 ] <− c1 [ 1 ] + alpha∗plambda∗v [ j −1 ,2]

+ alpha∗pmu∗v [ j −1 ,1]
v [ j , 1 ] <− min( vhelp [ j , 1 , 1 ] , vhelp [ j , 1 , 2 ] )
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for ( k in 2 : (X−1)) {
vhelp [ j , k , 1 ] <− c0 [ k ] + alpha∗plambda∗v [ j −1,k ]

+ alpha∗pmu∗v [ j −1,k−1]
vhelp [ j , k , 2 ] <− c1 [ k ] + alpha∗plambda∗v [ j −1,k+1]

+ alpha∗pmu∗v [ j −1,k−1]
v [ j , k ] <− min( vhelp [ j , k , 1 ] , vhelp [ j , k , 2 ] )

}
vhelp [ j ,X, 1 ] <− 2∗vhelp [ j ,X−1 ,1] − vhelp [ j ,X−2 ,1] #(X−1) customers
vhelp [ j ,X, 2 ] <− 2∗vhelp [ j ,X−1 ,2] − vhelp [ j ,X−2 ,2]
v [ j ,X] <− min( vhelp [ j ,X, 1 ] , vhelp [ j ,X, 2 ] )

}
#This on ly works because f e e=b∗ i ,
#so v h e l p [ , , 1 ] and v h e l p [ , , 2 ] are l i n e a r

f <− matrix (0 ,T,X) #S t r a t e g y f
for ( j in 1 :T) {

for ( k in 1 :X) {
i f ( vhelp [ j , k , 1 ] > vhelp [ j , k , 2 ] ) {

f [ j , k ] <− 1
}

}
}
#f [ , ] = 0 : r e f u s e customer ; f [ , ] = 1 : accep t customer

#Threshold f u n c t i o n
thr <− matrix (0 ,T, 1 )
for ( j in 1 :T) {

for ( k in 1 :X) {
i f ( f [ j , k ] == 1) {

thr [ j , 1 ] <− k−1
}

}
}
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Appendix B

Discounted model with the choice
between two servers: R code

X <− 20 #Max s i z e queue i s (X−1); queue can be 0
T <− 51 #Number o f time s t e p s
lambda <− 1 #A r r i v a l r a t e
mu1 <− 2 #Departure r a t e s low Server 1
mu2 <− 3 #Departure r a t e f a s t Server 2
K <− 1 #2 #Extra c o s t f o r Server 2
R <− 3 #P r o f i t per customer served
b <− 1 #Fine per customer per time u n i t in queue
alpha <− 0 .9 #Discount r a t e
plambda <− lambda/ ( lambda+mu1+mu2) #Prob a r r i v a l
pmu1 <− mu1/ ( lambda+mu1+mu2) #Prob depar ture from Server 1
pmu2 <− mu2/ ( lambda+mu1+mu2) #Prob depar ture from Server 2

B <− integer (X)
c0 <− integer (X)
c1 <− integer (X)
for ( i in 1 :X) {

B[ i ] <− i−1
c0 [ i ] <− B[ i ] #Cost r e f u s i n g customer
c1 [ i ] <− B[ i ] − plambda∗R #Cost a c c e p t i n g customer

}

#Run code t w i c e : f o r v low and v up s e p a r a t e l y
gamma <− (b+(K+lambda∗R)/ ( lambda+mu1+mu2) )/((1− alpha )∗3) #v low
#gamma <− 0 #v up

v <− matrix (0 ,T,X) #Expected d i s c o u n t c o s t
f <− array (0 ,dim=c (T,X, 2 ) ) #S t r a t e g y

#f ( , ,1)=0: r e f u s e customer ; f ( , ,1)=1: accep t customer ,
#f ( , ,2)=1: use s low s e r v e r ; f ( , ,2)=2: use f a s t s e r v e r .
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RS <− matrix (0 ,T,X) #Refuse incoming customer , Slow s e r v e r
RF <− matrix (0 ,T,X) #Refuse incoming customer , Fast s e r v e r
AS <− matrix (0 ,T,X) #Accept incoming customer , Slow s e r v e r
AF <− matrix (0 ,T,X) #Accept incoming customer , Fast s e r v e r

for ( k in 1 :X) { #Set the f i r s t time s t e p
v [ 1 , k ] <− gamma∗ ( k )ˆ2 #i in 0 : (X−1) , k in 1 :X, so kˆ2=( i +1)ˆ2

f [ 1 , k , 1 ] <− 1
f [ 1 , k , 2 ] <− 1

}

for ( j in 2 :T) {
#L e f t boundary , X=1 ( empty queue )

#Note : the code does not compi le wi th the e x t r a e n t e r s added in
#the f o l l o w i n g l i n e s , but they are necessary f o r r e a d a b i l i t y .

RS[ j , 1 ] <− alpha∗v [ j −1 ,1] + c0 [ 1 ]
RF[ j , 1 ] <− alpha∗v [ j −1 ,1] + c0 [ 1 ] + K
AS[ j , 1 ] <− plambda∗alpha∗v [ j −1 ,2]

+ (pmu1+pmu2)∗alpha∗v [ j −1 ,1] + c1 [ 1 ]
AF[ j , 1 ] <− plambda∗alpha∗v [ j −1 ,2]

+ (pmu1+pmu2)∗alpha∗v [ j −1 ,1] + c1 [ 1 ] + K
v [ j , 1 ] <− min(RS [ j , 1 ] , RF[ j , 1 ] , AS [ j , 1 ] , AF[ j , 1 ] )
i f ( v [ j , 1 ] == RS[ j , 1 ] | v [ j , 1 ] == RF[ j , 1 ] ) {

f [ j , 1 , 1 ] <− 0
}
i f ( v [ j , 1 ] == AS[ j , 1 ] | v [ j , 1 ] == AF[ j , 1 ] ) {

f [ j , 1 , 1 ] <− 1
}
i f ( v [ j , 1 ] == RS[ j , 1 ] | v [ j , 1 ] == AS[ j , 1 ] ) {

f [ j , 1 , 2 ] <− 1
}
i f ( v [ j , 1 ] == RF[ j , 1 ] | v [ j , 1 ] == AF[ j , 1 ] ) {

f [ j , 1 , 2 ] <− 2
}

for ( k in 2 : (X−1)) {
#Regular , non−boundary e n t r i e s

#Note : the code does not compi le wi th the e x t r a e n t e r s added in
#the f o l l o w i n g l i n e s , but they are necessary f o r r e a d a b i l i t y .

RS[ j , k ] <− ( plambda+pmu2)∗alpha∗v [ j −1,k ]
+ pmu1∗alpha∗v [ j −1,k−1]+ c0 [ k ]
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RF[ j , k ] <− ( plambda+pmu1)∗alpha∗v [ j −1,k ]
+ pmu2∗alpha∗v [ j −1,k−1]+ c0 [ k ] + K

AS[ j , k ] <− plambda∗alpha∗v [ j −1,k+1]
+ pmu2∗alpha∗v [ j −1,k ] + pmu1∗alpha∗v [ j −1,k−1] + c1 [ k ]

AF[ j , k ] <− plambda∗alpha∗v [ j −1,k+1]
+ pmu1∗alpha∗v [ j −1,k ] + pmu2∗alpha∗v [ j −1,k−1] + c1 [ k ] + K

v [ j , k ] <− min(RS [ j , k ] , RF[ j , k ] , AS [ j , k ] , AF[ j , k ] )
i f ( v [ j , k ] == RS[ j , k ] | v [ j , k ] == RF[ j , k ] ) {

f [ j , k , 1 ] <− 0
}
i f ( v [ j , k ] == AS[ j , k ] | v [ j , k ] == AF[ j , k ] ) {

f [ j , k , 1 ] <− 1
}
i f ( v [ j , k ] == RS[ j , k ] | v [ j , k ] == AS[ j , k ] ) {

f [ j , k , 2 ] <− 1
}
i f ( v [ j , k ] == RF[ j , k ] | v [ j , k ] == AF[ j , k ] ) {

f [ j , k , 2 ] <− 2
}

}

#Right boundary , wi th (X−1) customers in the system

#This on ly works because f e e=b∗ i , so RS[ j , ] , RF[ j , ] , AS[ j , ]
#and AF[ j , ] are l i n e a r f o r every time s t e p j .

RS[ j ,X] <− 2∗RS[ j ,X−1] − RS[ j ,X−2]
RF[ j ,X] <− 2∗RF[ j ,X−1] − RF[ j ,X−2]
AS[ j ,X] <− 2∗AS[ j ,X−1] − AS[ j ,X−2]
AF[ j ,X] <− 2∗AF[ j ,X−1] − AF[ j ,X−2]
#This on ly works because f e e=b∗ i ,
#so RS[ j , ] , RF[ j , ] , AS[ j , ] and AF[ j , ] are l i n e a r
v [ j ,X] <− min(RS [ j ,X] , RF[ j ,X] , AS [ j ,X] , AF[ j ,X] )
i f ( v [ j ,X] == RS[ j ,X] | v [ j ,X] == RF[ j ,X] ) {

f [ j ,X, 1 ] <− 0
}
i f ( v [ j ,X] == AS[ j ,X] | v [ j ,X] == AF[ j ,X] ) {

f [ j ,X, 1 ] <− 1
}
i f ( v [ j ,X] == RS[ j ,X] | v [ j ,X] == AS[ j ,X] ) {

f [ j ,X, 2 ] <− 1
}
i f ( v [ j ,X] == RF[ j ,X] | v [ j ,X] == AF[ j ,X] ) {

f [ j ,X, 2 ] <− 2
}

}
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# Threshold f u n c t i o n
thr <− matrix (0 ,T, 2 )
for ( j in 1 :T) {

for ( k in 1 :X) {
i f ( f [ j , k , 1 ] == 1) {

thr [ j , 1 ] <− k
}
i f ( f [ j , k , 2 ] == 1) {

thr [ j , 2 ] <− k
}

}
}

#Run code t w i c e : f o r v low and v up s e p a r a t e l y
v low <− v
#v up <− v

thr low <− thr
#t h r up <− t h r
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