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2 Abstract

In his thesis, we will first outline the theory of stochastic cooperative game theory without transfer
payments, as developed by Borm, Tijs and Timmer in [6]. We will compare and contrast it with
classical cooperative game theory. Subsequently, we will use this theory to model a two-player
game in which owners of intermittent renewable energy sources (such as wind mills and solar
panels) could cooperate in order to minimize their fine due to prediction errors of their production.
We will describe two different kinds of cooperation and compare and contrast them in terms of
their respective beneficiality to the players involved by computing the core. Furthermore, we will
consider the case in which the prediction errors of the players are correlated. Subsequently, we
compute the Shapley values of the two-player game, after which we generalize our results to the
case of three participating players. Throughout this thesis, we stress the practical relevance of this
work to real-world examples by pointing towards and incorporating previous experimental work
on the actual prediction error distributions of renewable energy production devices.
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3 Background

Cooperative game theory was introduced by von Neumann and Morgenstern in 1944 in their seminal
work Theory of Games and Economic Behavior [16]. Their theory mathematically describes the
possible benefits of cooperation to individual players. Their work and and the work of subsequent
mathematicians including Lloyd Shapley, Donald B. Gillies, David Schmeidler and others did in
this field [13] predominantly focused on a deterministic setting. This means that the participants
of the game know beforehand exactly what the coalitional values of the game are. In other words:
if all players are rational, then it is always possible to perfectly predict their modus operandi in
the game.

In many real-world examples, however, benefits or drawbacks resulting from cooperation be-
tween two or more people or other entities is not-predetermined. Rather, the act of initiating
cooperation is a decision with a certain amount of risk attached to it. People do not always know
what the full consequences of their actions will be and how others will behave.

It wasn’t until the early 70s that the mathematical theory of cooperative decision-making
under risk was seriously studied. The mathematicians Abraham Charnes and Daniel Granot jointly
initiated the study of stochastic cooperative game theory in the 1973 with their paper entitled Prior
solutions: extensions of convex nucleolus solutions to chance-constrained games [8]. Their work
extended the theory of cooperative games to situations in which the benefits obtained by players
are random variables. As in the deterministic variant of von Neumann and Morgenstern, Charnes
and Granot investigated how the randomly distributed benefits ought to be distributed among the
different players.

Their theory consists of a two-stage allocation process. A perhaps slightly surprising aspect of
their theory is that, although the benefits are random, a deterministic amount is allocated during
each stage. During the first stage – which is before it is known by the players what the benefits
are – payoffs are promised to the individuals. In the second stage, after the players are told what
the realization of the randomly distributed benefits is, the promised payoffs from stage one are
modified.

This two-stage process is described for several different important allocation values, including
the core and the Shapley value.

The work of Charnes and Granot was ground-breaking. However – its pivotal nature notwith-
standing – there are some drawbacks inherent to their approach. First of all, it does not allow
for an explicit incorporation of each individual player’s attitude towards risk [24]. This means
that risk-averse or risk-seeking behavior of players cannot be taken into account in their model.
Although that would not be a problem in reformulating deterministic cooperative games, it is a
drawback because people, companies and other entities in the real world have different ways of ap-
proaching risk. To me, another downside of their approach is that the two-stage allocation process
seems a bit unnatural or contrived.

For a long time after Charnes and Granot did their pioneering work, there was no alternative
approach towards stochastic cooperative game theory. It took until 1999 – more than a quarter
century later – until the deficiencies in their model were repaired by Jeroen Suijs, Anja de Wae-
genaere and Peter Borm. Their model, which they first applied to a problem in actuarial science
[23], explicitly includes the preferences of the individuals. This means that any kind of behavior
towards risk can be expressed by the preferences. This allows for the inclusion of varying degrees
of risk-aversity and risk-propensity of the participating players.

In addition, the work by Suijs et al. does not require a two-stage process. In their model,
the agents decide on the allocation before the realization of the random variables that denote the
benefits or costs. As a result, the whole allocation process is more elegant.

In 2000, yet another important contribution was made to the body of work on stochastic
cooperative game theory. Judith Timmer, Peter Borm, and Stef Tijs based their model [6] on the
one presented in the articles by Suijs et al. The main tennets of their theory are therefore similar to
the one by Suijs et al. There are some minor differences, however. Suijs et al. divide an allocation
into two parts. First of all, the allocation of risk is determined. This manifests itself through
a determination of which non-negative multiples of the random payoff (or cost) are divided up
amongst the players. Subsequently, it is decided how to distribute the deterministic payments to
and from each player. This deterministic aspect enables the agents to “insure themselves” against
possibly bad stochastic outcomes. The more deterministic benefits the agents receive, the bigger
the risk they are willing to bear.
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A difference is that Timmer et al. allow for multiples of random payoffs, which can even be
negative. Suijs et al. only allow non-negative fractions of random payoffs. This difference is subtle,
however: the negative multiples or multiples larger than one are only potentially necessary in the
approach of Timmer et al. when dealing with the Shapley value, as the marginal contribution of
a player can be bigger than one or negative. In other aspects of their theory (including the core
and the imputation set) the allocations are non-negative fractions of random payoffs, too.

Another difference between the models by Timmer et al. and Suijs et al. lies in their exclusion
and inclusion respectively of deterministic benefit transfers [24]. As Timmer et al. do not allow
for the transfer of deterministic payments, their model becomes a tad more simple than the model
by Suijs et al.

This was one of the reasons why we chose to adopt the model by Timmer et al. Thanks to the
relative simplicity of their model, it becomes easier to apply it to real-world problems and perform
calculations. Furthermore, we suspect – though we can’t solidify this argument – that players in
the real world are more likely to cooperate within the boundaries of this model. It allows for easier
and quicker computations, both analytically and computationally. It is for these reasons that the
model by Timmer, Borm, and Thijs was chosen as the object of study for this thesis, and as a tool
to tackle a specific problem related to the prediction of renewable energy production that will be
outlined in the following chapters.
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4 Introduction to stochastic cooperative game theory

4.1 Preferences
Classical cooperative game theory was largely developed in the 1950s. It involves a set of players
N and a characteristic function v : 2N → R that maps all coalitions to their corresponding value.
In case these values are all non-negative, we call it a value or profit game. Conversely, when these
values are less than or equal to zero we call it a cost game. In both cases, the aim is to determine
how to divide the value of the grand coalition.

In classical cooperative game theory, the payoffs coalitions receive are deterministic. There is
no ambiguity involved in the payoffs and the players know exactly how much benefit all coalitions
will yield for them. In [6], however, Timmer et al. developed a generalization of classical cooper-
ative game theory. In their model, payoffs for coalitions are not deterministic anymore. Rather,
the payoffs will be stochastic. We will mostly follow the model described in the work by Timmer
et al., albeit with some small alterations.

In order to work with stochastic payoffs, we need to define the triple (Ω,F ,P). This is a
probability space, where Ω is the outcome space, F is a σ-algebra in Ω and P is a probability
measure on F . Furthermore, a stochastic variable X is a measurable function that assigns a
real number X(ω) to each outcome ω ∈ Ω. In addition, we define L := {X | E|X| < ∞}, and
L+ is a subset of consisting of those stochastic variables in L that are nonnegative. So we have
L+ := {X ∈ L | P(X < 0) = 0}.

Denote by R(S) ∈ L+ the stochastic payoff to coalition S. Let R = {R(S) | S ⊂ N,S 6= ∅}
be the set of all of these payoffs. Each player i ∈ S receives a multiple of the payoff of the whole
coalition. Let p ∈ RS be an allocation for coalition S. Player i ∈ S receives piR(S). The allocation
p is efficient when ∑

i∈S
pi = 1, and pi ≥ 0 for all i.

Let ∆∗(S) := {p ∈ RS |
∑
i∈S pi = 1} be the set of efficient allocations for coalition S.

An additional element of stochastic cooperative game theory (one that is not present in the
classical version) is the notion of player preferences. By means of these preferences, players deter-
mine how to compare two stochastic payoffs. Let A := {S ⊂ N | S 6= ∅, ui(R(S)) 6= 0, ∀i ∈ N}
be the set of coalitions for which the payoff is nonzero. Allocations are multiples of payoffs. There-
fore, the set of all possible payoffs to players i ∈ N is {pR(S) | p ∈ R, i ∈ S ∈ A}.

Players prefer some stochastic payoffs or costs over others. We use the notation %i to denote
a preference relation of player i ∈ N . If player i weakly prefers stochastic payoff X to Y , we
write X %i Y . If player i strictly prefers X to Y , we write: X �i Y . If X %i Y and Y %i X
simultaneously, we write X ∼i Y . This means that player i is indifferent to receiving X or Y .

In order that the stochastic ordering is in a certain sense “well-behaved”, we demand that
it satisfies a certain property. Note that at this point, we deviate slightly from the original for-
mulation by Timmer et al. in [6]. We believe that they needlessly complicated matters when
they tried to convey a desirable property for allocations of stochastic payments. The following is a
reformulation of their original approach. Depending on the functions one chooses in this reformula-
tion, it is possible to make this approach coincide with and yield the same results as their approach.

Property 1 For each player i ∈ N there exist pairs of utility functions Ui : L+ → R, and
ui : L+ → R such that Ui(piR(S)) = piuiR(S).

In other words, we require that the stochastic payoffs for coalitions are linear in pi. There are
many examples of preference relations that satisfy Property 1. Here we list three of them.

Example 1.1 Players can prefer random variables based on their expected values. So for player
i we could have X %i Y iff E(X) ≥ E(Y ) for any payoffs X and Y . Here, E(X) denotes the
expectation of X. If this is the case, we say that player i has expectational preferences. So here we
have the utility functions Ui(R(S)) = E(R(S)) = ui(R(S)). These preferences satisfy Property 1.
Example 1.2 The following type of preference involves quantiles of random variables. For
βi ∈ (0, 1), define uXβi := sup{t ∈ R | P(X ≤ t) ≤ βi}. We refer to this value as the βi-quantile of
X. Assume that 0 < βi < 1 is such that uR(S)

βi
> 0 for all S ∈ A. Players can choose whichever
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value of βi they like.

Furthermore, we define the utility function Qβi as follows:

Qβi(X) =

{
uXβi if E(X) ≥ 0

uX1−βi if E(X) < 0.

We say that player i has quantile preferences if X %i Y if and only if Qβi(X) ≥ Qβi(Y ). In this
case, we define Ui(R(S)) = Qβi(R(S)). It is perhaps not that evident that all requirements of
Property 1 are satisfied. We will therefore prove it.

Lemma 4.1.1 The quantile utility function satisfies Property 1.

Proof Let q ∈ R. Then

u
q·R(S)
βi

= sup{t ∈ R | P(q ·R(S) ≤ t) ≤ βi}
= sup{t ∈ R | P(R(S) ≤ t/q) ≤ βi}.

Now, define t′ := t/q. Then:

u
q·R(S)
βi

= sup{q · t′ | P(R(S) ≤ t′) ≤ βi}
= q sup{t′ | P(R(S) ≤ t′) ≤ βi}

= q · uR(S)
βi

.

This means that Qβi(piR(S)) = piQβi(R(S)). So, if we define ui(·) := Qβi(·) =: Ui(·), this yields
a pair of functions that satisfies Property 1. �

This type of preference is perhaps not as intuitively clear as the previous one. For more background
and intuition behind the choice for this type of preference relation and how it relates to other notions
of risk-averseness and risk-propensity, we refer to Appendix A (see 14.1) of this thesis. For the
moment, it suffices to point out that the higher his chosen value for βi is in a profit game, the
more risk-seeking a player is (he aims to maximize his profits for the highest possible profit value
there is). Conversely, lower values of βi are associated with more risk-averse behavior. For the cost
game, the situation is reversed: risk-seeking players choose a low value of βi, whereas risk-averse
players choose a high one.

Note that the value βi = 1
2 , in particular, is important. For this value, the associated quantile

is the median of the random variable X.

Example 1.3 The expectational preferences (see Example 1.1) are a special case of von Neumann-
Morgenstern preferences. Player i is said to have von Neumann-Morgenstern preferences if there
exists a utility function wi : R→ R such that X % Y if and only if E(wi(X)) ≥ E(wi(Y )) for every
X and Y . For expectational preferences, we may take wi(x) = x. Suppose wi(x) = xa for some
a ∈ Q>0. Then, for ui(X) = E(wi(X)), this implies that ui((R(S))) = E(wi(R(S))) = E(R(S)a),
so we have piui((R(S))) = piE(R(S)a). We require that Ui(piR(S)) = piui(R(S)) = piE(R(S)a).
This in turn implies that Ui(X) = ui(X)/pa−1

i . (Notice that the case of a = 1 coincides with
Example 1.1).

4.2 The tracking function
In order to determine whether a player wishes to join a particular coalition, it is important that he
is able to compare the payoffs of one coalition to another. In Property 1, we required that utility
functions Ui with i ∈ N , satisfy the relationship Ui(piR(S)) = piui(R(S)).

As a consequence, for all players i ∈ N there exists a unique number αi = αi(S, T, pi) ∈ R
such that Ui(piR(S)) = Ui(αiR(T )) for all S, T ⊂ N and pi ∈ R. This number αi is dependent
on pi, R(S), R(T ), and Ui. In order to keep track of which α corresponds to these combinations
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of variables, we define the tracking function αi : A×A× R → R. By Property 1, the function
that determines the unique value of αi is such that Ui(piR(S)) = piui(R(S)) = αiui(R(T )) =
Ui(piR(T )). We therefore find that

αi(S, T, pi) = pi
ui(R(S))

ui(R(T ))
.

There is still, however, a minor problem if ui(R(T )) = 0 for some coalition T . Then, our function
αi(·, ·, ·) is not defined properly. We need to extend the domain of αi in order to take into account
the case in which ui(R(T )) = 0. We do so by putting: αi(S, T, pi) =∞, if ui(R(T )) = 0.

4.3 Comparison with the original formulation
As we mentioned before, Timmer et al. had quite a different approach concerning the comparison
of two stochastic payoffs. In this subsection, we will first outline their approach. Afterwards, we
will compare their description of how stochastic payoffs can be measured against one another with
our new approach.

Instead of our Property 1, Timmer et al. proposed the following assumption regarding the
way a player compares two payoffs.

Assumption For each player i ∈ N there exist functions f iS : R → R, S ∈ A, that are sur-
jective, continuous and strictly monotone increasing, such that

1. f iS(t)R(S) %i f iT (t′)R(T ) if and only if t ≥ t′,

2. f iS(0) = 0.

So in the approach of Timmer et al., if player i compares the payoffs pR(S) and qR(T ) then
pR(S) %i qR(T ) if and only if t = (f iS)−1(p) ≥ t′ = (f iT )−1(q). One may interpret the function
(f iS)−1 as a utility function with respect to multiples of R(S). The second part of the assumption,
f iS(0) = 0, is a normalization condition. We can choose our f iS(·) in such a way that it satisfies the
assumption above, and coincides with the examples we have given above.

For instance, suppose that the preferences of player i are such that X %i Y if and only if
E(X) ≥ E(Y ) (as in Example 1.1 above). Then f iS(t) = t/E(R(S)) ensures that %i satisfies the
assumption above.

Timmer et al. define the tracking function, too. As they have a different basic setup about the
way stochastic payoffs are compared, the tracking function is consequentially found in a different
manner, too. Again, we have a tracking function α̃i : A×A×R→ R. By the above Assumption,
we have α̃i(S, T, p) = f iT ((f iS)−1(p)). In the case of expectational preferences (as described above),
it holds that (f iS)−1(p) = p · E(R(S)), so

αi(S, T, p) = f iT ((f iS)−1(p))

= f iT (p · E(R(S)))

= p
E(R(S))

E(R(T ))
.

So the tracking functions coincide in this case.

However, consider the case of the von-Neumann-Morgenstern preferences (as we described for
our model in Example 1.3). If we have ui(x) = xn, then the only plausible choice for our f iS(·)
would be

f iS(t) =

{
t1/n

(E(ui(R(S))))1/n
, if t ≥ 0

− t1/n

(E(ui(R(S))))1/n
, if t < 0.

This results in the following tracking function:

α(S, T, p) =

 p (E(ui(R(S))))1/n

(E(ui(R(T ))))1/n
if p ≥ 0

−p (E(ui(R(S))))1/n

(E(ui(R(T ))))1/n
if p < 0.
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Let us focus on the case p > 0. So here we have the expectation of powers of random variables in
the tracking function, just like in our reformulation. However, a difference is the fractional powers
of the expectational values. These do not coincide with our tracking function in Example 1.3. We
could choose different expressions of Ui(·) and ui(·) in order to make the tracking function coincide
with the one found above. However, we don’t see why the additional fractional power should be
included in the case von Neumann-Morgenstern preferences. As can be seen in our exposition of
this type of preference in Section 8, the von Neumann-Morgenstern utility functions do not seem
to require this additional fractional exponent. We therefore hold on to our own interpretation of
the von Neumann-Morgenstern preferences and their corresponding tracking functions. We will
use the tracking functions as described in Example 1.3 to study stochastic cooperative games in
which players have different attitudes towards risk.

Furthermore, we believe our new formulation of stochastic cooperative games, and in particular
the way the stochastic payoffs are compared by players according to their own preferences, is easier
to understand and more intuitive than the description by Timmer et al. [6]. So, although our
approach is based on the insights by Timmer et al., we will work with our definition of preference
relations to apply it to different examples of the stochastic cooperative energy prediction games in
the subsequent sections of this thesis.

We conclude this section by stating the following theorem. Thanks to our reformulation of
Property 1 (Property 2.1 in [6]) and the resulting simplification of the tracking function, it becomes
almost trivial to prove it. For the original theorem and its proof, we refer to [6], p. 5 and 6.

Theorem 4.3.1 For all i ∈ N , the following three statements hold:

1. αi(S, S, h) = h for all h ∈ R, S ∈ A ,

2. αi(T,U, αi(S, T, p)) = αi(S,U, p) for any p ∈ R and S, T, U ∈ A,

3. αi(S, T, p) = p · αi(S, T, 1) for any p ∈ R and S, T ∈ A.

Proof

1. We have: αi(S, S, h) = hui(R(S))
ui(R(S)) = h.

2. Furthermore, the following equalities hold:

αi(T,U, αi(S, T, p)) = αi

(
T,U, p

ui(R(S))

ui(R(T ))

)
= p

ui(R(S))

ui(R(T ))
· ui(R(T ))

ui(R(U))

= p
ui(R(S))

ui(R(U))
.

3. We see that

αi(S, T, p) = p
ui(R(S))

ui(R(T ))

= p · αi(S, T, 1). �

4.4 Relationship with classical cooperative game theory
In a sense, stochastic cooperative game theory introduced by Timmer et al. is both a general-
ization and a reformulation of classical cooperative game theory. Let us first focus on the former
characterization. Timmer et al.’s model is a generalization because any deterministic cooperative
game with N players and a characteristic function v : 2N → R can be embedded in the stochastic
framework by defining ui(R(S)) = v(S). This consequentially means that αi(S, T, p) = p v(S)

v(T ) . If
all coalitional values are deterministic (meaning that P(R(S) = q) = 1 for some q ∈ R), then the
game becomes a “regular” classical cooperative game.

The only difference between the “regular” game and this game, is that is still a reformulation
within this new framework. Whereas before, we would have allocations x with

∑
i∈N xi = v(N) 6= 0
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among the players, and player i receives a share of xi of the grand total. In the new framework,
this is equivalent to player i receiving the fraction pi = xi

v(N) of the total payoff v(N). We could
therefore say that before, the allocations were given in absolute terms, whereas they are now stated
relative to the allocation for the grand coalition N . In the following section, we will give a concrete
example of a game, in which it becomes clear that the two formulations of cooperative game theory
are equivalent in the case of deterministic payoffs.
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5 The model

In this section, we recall definitions of key concepts from Section 4. Afterwards, we describe notions
such as the imputation set and the core. In Section 11.2, we describe the Shapley value too.
The tuple (N,R,A, α) gives a complete description of a stochastic cooperative game. Here, we
have:

• N = {1, 2, . . . , n} is the player set,

• R := {R(S) | S ⊂ N,S 6= ∅} is the set of coalitional payoffs,

• A is the set of coalitions with a nonzero payoff (as defined in section 4.1),

• α = (αi)i∈N is the collection of tracking functions of all players.

We will now use this terminology to generalize notions of classical cooperative game theory in terms
of their stochastic counterpart. As mentioned in the previous section, an allocation for coalition S
is a vector p ∈ RS in which each player i receives a fraction pi of the random payoff R(S).

If we demand that an individual player i gains more benefits from cooperating within the
coalition S than operating on his own, the allocation αiR(S) for coalition S must be ‘larger’ than
the allocation piR({i}) = 1R({i}). In this case, pi = 1 because an individual player – a singleton
coalition – does not share the profits with any other player. Therefore, an allocation p for a
coalition S will be called individually rational if pi ≥ αi({i}, S, 1) for all players i ∈ S. Let IR(S)
be the set of all efficient individual rational allocations for coalitions S.

When an allocation is both individually rational and efficient, we call such an allocation an
imputation. The imputation set is defined as follows:

I(N,α) = {p ∈ ∆∗(N) | pi ≥ αi({i}, N, 1) for all players i ∈ N}.

Note that I(N,α) = IR(N). Please also observe that this is the imputation set for the profit game.
For the cost game, the inequalities are reversed.

We now introduce the concept of a dominated set. This concept is related tot the notion of the
core in stochastic cooperative games, which is why it is important. The set dom(S) contains those
allocations for coalition N that are dominated by coalition S. This means there exists an allocation
q ∈ ∆∗(S) that is strictly preferred by all members of S:

dom(S) = {p ∈ RN | ∃q ∈ ∆∗(S) : αi(S,N, qi) > pi for all i ∈ S}.

Those allocations for N that are not dominated by some allocation for S belong to the core of the
game. Therefore, we can define the core as follows:

C(N,α) = {p ∈ ∆∗(N) | p /∈ dom(S) ∀S ⊂ N}.

This brings us to the following simpler characterization.

Lemma 5.0.1 It holds that

C(N,α) :=
{
p ∈ ∆∗(N) |

∑
i∈S

pi
αi(S,N, 1)

≥ 1 ∀S ⊂ N
}
.

Proof We will prove this by showing that both inclusions C(N,α) ⊆ L and L ⊆ C(N,α) hold.
Define L :=

{
p ∈ ∆∗(N) |

∑
i∈S

pi
αi(S,N,1) ≥ 1 ∀S ⊂ N

}
.

• L ⊆ C(N,α)
Let p ∈ L. Then,

∑
i∈S

pi
αi(S,N,1) ≥ 1 ∀S ⊂ N . Suppose that p ∈ dom(S). This means

there exists a q such that αi(S,N, qi) > pi ∀i ∈ S. By part 3 of Theorem 4.3.1, this is
equivalent to qiαi(S,N, 1) > pi ∀i. This in turn means that qi > pi/αi(S,N, 1) for all i. If
we sum both sides over all i ∈ S, we obtain 1 =

∑
i∈S qi >

∑
i∈S pi/αi(S,N, 1) ≥ 1. This is

a contradiction, thus p /∈ dom(S).
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• C(N,α) ⊆ L
Let p ∈ C(N,α). Suppose now that p /∈ L. This means ∃S ⊂ N such that
γ :=

∑
i∈S pi/αi(S,N, 1) < 1. Define q with ε = (1−γ)/|S| such that qi = pi/αi(S,N, 1) + ε.

Then
∑
i∈S qi = 1. As γ < 1, we have ε > 0. But this means we have found a q such that

qi > pi/αi(S,N, 1) for all i ∈ S. By part 3 of Theorem 4.3.1, this means that p ∈ dom(S).
This contradicts p ∈ C(N,α). Therefore, the assumption that p /∈ L was not correct, and we
have proved what we needed to. Thus, C(N,α) = L. �

We will later define the Shapley value for stochastic cooperative games. For now, the core suffices.
Notice that the above characterization of the core is related to the profit maximization version

of the game. We will focus on the version with (positive) costs. Players aim to minimize these
costs. In this case, the inequalities for the core are flipped.

5.1 Example for comparison with the classical model
Let us consider a simple, deterministic game to compare the new framework with the classical one.
Consider the following game with characteristic function v(·):

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 1 2 2 4 5 5 9

The core of this game is given by:

C(v) =

{
x ∈ RN

∣∣∣∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for all S ∈ 2N
}

=

{
x ∈ RN

∣∣∣∑
i∈N

xi = 9, x1 ≥ 1, x2 ≥ 2, x3 ≥ 2, x1 + x2 ≥ 4, x1 + x3 ≥ 5, x2 + x3 ≥ 5

}
.

We can also compute the core within the new framework when all players have deterministic
preferences. So, αi(S, T, p) = p v(S)

v(T ) for i = 1, 2, 3. It is equivalent to the “previous” core and it is
given by:

C(N,α) =

{
p ∈ ∆∗(N)

∣∣∣ pS /∈ dom(S) for all coalitions S ∈ 2N
}

=

{
p ∈ ∆∗(N)

∣∣∣ ∑
i∈S

pi
αi(S,N, 1)

≥ 1 for all coalitions S ∈ 2N
}

=
{
p ∈ ∆∗(N)

∣∣ p1

1/9
≥ 1,

p2

2/9
≥ 1,

p3

2/9
≥ 1,

p1

4/9
+

p2

4/9
≥ 1,

p1

5/9
+

p3

5/9
≥ 1,

p2

5/9
+

p3

5/9
≥ 1
}

=
{
p ∈ ∆∗(N)

∣∣ p1 ≥
1

9
, p2 ≥

2

9
, p3 ≥

2

9
, p1 + p2 ≥

4

9
, p1 + p3 ≥

5

9
, p2 + p3 ≥

5

9

}
.

5.2 Example with stochastic payoffs
Consider a situation in which there are three musicians: a drummer, a guitarist, and a piano player.
These three musicians each have the option to either give a musical performance by themselves, or
work together with one or both of the other musicians. They perform on the street, so their income
depends on the generosity of the people passing by. They therefore don’t know in advance how much
a performance will yield in terms of monetary value. However, they can gauge their approximate
incomes based on past performances. Their income levels from past street concerts tells them,
that the income from a performance is distributed uniformly. For each type of collaborative effort
with the other musicians, this is the case, too. Their yields can be summarized as follows, with
the drummer being player 1, the guitarist player 2, and the piano player player 3:
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R(S) =



U [0, 2] if S = {1}
U [1, 4] if S = {2}
U [0, 4] if S = {3}
U [5, 8] if S = {1, 2}
U [2, 7] if S = {1, 3}
U [6, 8] if S = {2, 3}
U [18, 22] if S = {1, 2, 3}

Suppose furthermore, that player 1 has expectational preferences, player 2 has quantile preferences
with β2 = 0.6, and player 3 has quantile preferences with β3 = 0.9.
For this stochastic game, we can calculate the imputation set and the core. Note that for a
uniformly distributed random variable X on [a, b], we have F (x) = P (X ≤ x) = (x − a)/(b − a).
So the quantile function is Qβ(U [a, b]) = β · (b− a) + a. From the definition of the imputation set
in Section 5, we obtain that:

p1 ≥ α1({1}, N, 1) =
E(R({1}))
E(R(N))

=
1/2(0 + 2)

1/2(18 + 22)
=

1

20

p2 ≥ α2({1}, N, 1) =
Q0.6(U [1, 4])

Q0.6(U [18, 22])
=

0.6(4− 1) + 1

0.6(22− 18) + 18
=

2.8

20.4
=

7

51

p3 ≥ α3({3}, N, 1) =
Q0.9(U [0, 4])

Q0.9(U [18, 22])
=

0.9(4− 0) + 0

0.9(22− 18) + 18
=

3.6

21.6
=

1

6
.

Therefore, the imputation set is

I(N,α) =
{
p ∈ ∆∗(N)

∣∣ p1 ≥
1

20
, p2 ≥

7

51
, p3 ≥

1

6

}
We can also calculate the core using Lemma 5.0.1. Consider the subset S = {1, 2}. We must have∑
i∈S pi/αi(S,N, 1) = p1/α1({1, 2}, N, 1) + p2/α2({1, 2}, N, 1) ≥ 1. We derive that

α1({1, 2}, N, 1) =
E(R({1, 2}))
E(R(N))

=
1/2(5 + 8)

1/2(18 + 22)
=

13

40

α2({1, 2}, N, 1) =
0.6(8− 5) + 5

0.6(22− 18) + 18
=

1

3
.

So for this particular subset, we obtain the inequality

40

13
p1 + 3p2 ≥ 1.

Similarly, we can deduce the other inequalities from the other subsets, which yields the core:

C(N,α) =
{
p ∈ I(N,α)

∣∣ 40

13
p1 + 3p2 ≥ 1,

40

9
p1 +

216

65
p3 ≥ 1,

17

6
p2 +

108

19
p3 ≥ 1

}
,

as I(N,α) ⊂ C(N,α).
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6 An energy prediction game

In most countries in which wind mills, solar panels and other intermittent renewable energy sources
generate energy and deliver that to the main grid, the owners of these renewable energy sources
are required to predict how much energy their sources will produce. These predictions have to be
communicated some time period ahead to the transmission system operator (TSO). After these
predictions have been sent, participants in the market are then financially responsible for any de-
viation from the contract. Deviations of production from prediction levels need to be compensated
by the producers by paying imbalance prices for the amount of energy over or underdelivered [19].
In the Netherlands, the imbalance prices fluctuate wildly and differ day by day. Furthermore, the
imbalance price could differ significantly depending on there being overproduction or underproduc-
tion. In Spain, however, the imbalance prices for positive and negative imbalances are equal. To
make the problem slightly more tractable, we assume the Spanish situation in which the imbalance
costs for overproduction and underproduction are equal [19]. This in turn means that the amount
of imbalance costs to be paid are directly proportional to the amount of energy that is less or more
than the predicted amount of energy.

The distribution of the normalized forecast error (the normalized deviation of the amount of
energy produced) of wind mills was the topic of investigation by Hodge et al. in [12]. (Roughly
similar results are found on p. 12 of [7] and Figures 12 and 13 of [1].) The distribution is as follows:

Figure 1: The normalized day-ahead prediction error distribution of a wind mill

In Section 3.2 of their article, Hodge et al. propose that the hyperbolic distribution most accurately
models the distribution error. The hyperbolic distribution, however, is quite hard to work with.
It is a complicated distribution involving Bessel functions. Furthermore, it is not known whether
a closed form expression for the convolution of two independent hyperbolic distributions can be
computed.

As can be inferred from Figure 1, the normal distribution is a rough estimate of the prediction
error. Though it is not perfect, we will from now on assume that the prediction error has a normal
distribution. We choose this distribution, because it is more or less accurate and because much
more about this distribution is known. It is easier to handle than a hyperbolic distribution.

Thus, we assume that the normalized prediction error for a renewable energy source has a
normal distribution with mean µ and standard deviation σ. The value of σ changes according to
the changing time frame of the prediction. In the day-ahead case, for which the forecast error
density is plotted in Figure 1 for wind mills, we have σ = 0, 026. Furthermore, Hodge et al.
experimentally found that µ = 0, 002. We consider this to be negligible compared to the value of
σ and close enough to zero. Therefore, we assume that µ = 0.

In the previous paragraphs, we established that the imbalance costs are proportional to the
forecasting error. The larger the forecasting error, the larger the cost. If the prediction error X
has a normal distribution N(0, σ2), Y has a so-called “half-normal” distribution, H(0, σ2), with

11



probability density function

fY (y, σ) =
1

σ

√
2

π
e−

y2

2σ2 , y ≥ 0.

The following plot [15] illustrates the difference between the probability density functions of the
normal and associated half-normal distributions:

Figure 2: A standard normal distribution and the corresponding half-normal distribution

The corresponding cumulative distribution function of the half-normal distribution is

FY (y, σ) = erf
( y√

2σ

)
=

2√
π

∫ y/(
√

2σ)

0

exp(−z2)dz, y ≥ 0.

Let Y1, Y2 be independent, half-normally distributed random variables with unequal variances. So,
Y1 ∼ H(0, σ2

1) and Y2 ∼ H(0, σ2
2), where σ1 6= σ2. Then the costs for the prediction cost game for

two players owning a renewable energy source are as follows:

R(S) =

 Y1 if S = {1}
Y2 if S = {2}
Y1 + Y2 if S = {1, 2}.

In order to figure out the coalitional stochastic value R({1, 2}), we have to compute the convolution
of two half-normal distributions with unequal variances. Furthermore, we also need the cumulative
distribution function if we use quantile utility functions (which we saw in Example 1.2).

It turns out that the following result is useful for the computation of the aforementioned cu-
mulative distribution function (which can be found in [3], albeit with a minor mistake – a sign
error – in the fourth equality of the derivation).

Lemma 6.0.1 ∫ z

0

e−a
2x2

erf (bx) dx =
tan−1(b/a)

a
√
π

− 2
√
π

a
T
(√

2az, b/a
)
,

where T (x,m) is Owen’s T-function, defined as T (x,m) := 1
2π

∫m
0

e−(1/2)x2(1+y2)

1+y2 dy.

Proof Let

h(z) :=

∫ z

0

e−a
2x2

erf (bx) dx

=
2√
π

∫ z

0

e−a
2x2

(∫ bx

0

e−t
2

dt

)
dx.

We now perform the substitution y := t/x. This means that dy/dt = 1/x, so dy = dt/x. In other
words, t = yx and dt = xdy. Substituting these values in the previous integrals gives:
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h(z) =
2√
π

∫ z

0

e−a
2x2

(∫ b

0

e−(yx)2x dy

)
dx

=
2√
π

∫ b

0

(∫ z

0

e−(a2+y2)x2

xdx

)
dy.

For the inner integral, we make the substitution u := x2. This means du/dx = 2x, so
dx = du/2x. Thus:

h(z) =
2√
π

∫ b

0

∫ z2

0

1

2
e−(a2+y2)ududy

=
1√
π

∫ b

0

[
1

−(a2 + y2)
e−(a2+y2)u

]z2
0

dy

=
1√
π

∫ b

0

1− e−(a2+y2)z2

a2 + y2
dy

=
1

a
√
π

[
tan−1(b/a)− 2πT (

√
2az, b/a)

]
. �

We are now ready to prove the following theorem.

Theorem 6.0.2 Let Z = Y1 + Y2, with Y1 ∼ H(0, σ2
1) and Y2 ∼ H(0, σ2

2), where Y1 and Y2 are
independent. Let σZ :=

√
σ2

1 + σ2
2. Then:

FZ(z) =

√
2

σZ
√
π

[(
σZ
√

2 tan−1
(
σ2

σ1

)
√
π

−2σZ
√

2πT
( z

σZ
,
σ2

σ1

))
+

(
σZ
√

2 tan−1
(
σ1

σ2

)
√
π

−2σZ
√

2πT
( z

σZ
,
σ1

σ2

))]
.

Proof
Using the definition of the convolution, we start with:

fZ(z) =

∫ z

0

fY2(z − x) · fY1(x)dx

=
2

σ1σ2π

∫ z

0

exp

(
−(z − x)2

2σ2
2

)
exp

(
−x2

2σ2
1

)
dx

=
2

σ1σ2π

∫ z

0

exp

(
−(x2 − 2xz + z2)

2σ2
2

)
exp

(
−x2

2σ2
1

)
dx

=
2

σ1σ2π
exp

(
−z2

2σ2
2

)∫ z

0

exp

(
−x2 + 2xz

2σ2
2

)
exp

(
−x2

2σ2
1

)
dx

=
2

σ1σ2π
exp

(
−z2

2σ2
2

)∫ z

0

exp

(
−(σ2

1 + σ2
2)x2 + 2zσ2

1x

2σ2
1σ

2
2

)
dx.

Using our definition of σZ , we obtain:

fZ(z) =
2

σ1σ2π
exp

(
−z2

2σ2
2

)∫ z

0

exp

(
−σ2

Zx
2 + 2zσ2

1x

2σ2
1σ

2
2

)
dx.

We now use the method of completing the square to re-write this expression in a more convenient
form. This means we write the expression in the numerator of the exponent within the integral,
which is of the form ax2 + bx (in our case: a = −σ2

Z , b = 2zσ2
1), and transform it into something

of the form a(x− h)2 + k. In our case, we find h = −b/(2a) = (zσ2
1)/(σ2

Z) and k = −(b2)/(4a) =
(z2σ4

1)/(σ2
Z). Then:
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fZ(z) =
2

σ1σ2π
exp

(
−z2

2σ2
2

)∫ z

0

exp

−σ2
Z

(
x− zσ2

1

σ2
Z

)2

+
(zσ2

1)2

σ2
Z

2σ2
1σ

2
2

 dx

=
2

σ1σ2π
exp

(
−z2

2σ2
2

)
exp

(
z2σ2

1

2σ2
1σ

2
2σ

2
Z

)∫ z

0

exp

−σ2
Z

(
x− zσ2

1

σ2
Z

)2

2σ2
1σ

2
2

 dx

=
2

σ1σ2π
exp

(
−z2(σ2

Z − σ2
1)

2σ2
2σ

2
Z

)∫ z

0

exp

−σ2
Z

(
x− zσ2

1

σ2
Z

)2

2σ2
1σ

2
2

 dx

=
2

σ1σ2π
exp

(
−z2

2σ2
Z

)∫ z

0

exp

−σ2
Z

(
x− zσ2

1

σ2
Z

)2

2σ2
1σ

2
2

 dx.

We multiply this last expression by 1 =
√

2π
(
σ1σ2

σZ

)2
/
√

2π
(
σ1σ2

σZ

)2, where we put the numerator
outside the integral and the denominator inside [10]. This yields:

fZ(z) =
2

σ1σ2π
exp

(
−z2

2σ2
Z

)√
2π

(
σ1σ2

σZ

)2 ∫ z

0

1√
2π
(
σ1σ2

σZ

)2
exp

−
(
x− zσ2

1

σ2
Z

)2

2
(
σ1σ2

σZ

)2

 dx

=
2
√

2

σZ
√
π

exp

(
−z2

2σ2
Z

)∫ z

0

1√
2π
(
σ1σ2

σZ

)2
exp

−
(
x− zσ2

1

σ2
Z

)2

2
(
σ1σ2

σZ

)2

 dx.

The expression in the integral represents the probability density function of a normal distribution
with mean zσ2

1/σ
2
Z and standard deviation σ1σ2/σZ . If we define Φ(x,m, s) as the value of the

cumulative normal distribution value at x with mean m and standard deviation s, this means that:

fZ(z) =
2
√

2

σZ
√
π

exp

(
−z2

2σ2
Z

)[
Φ

(
z,
zσ2

1

σ2
Z

,
σ1σ2

σZ

)
− Φ

(
0,
zσ2

1

σ2
Z

,
σ1σ2

σZ

)]
.

In order to find the cumulative distribution function, we need to integrate the expression above
from 0 to z. Let Φ(x, 0, 1) := Φ(x). This is notation that is widely used to denote the cumulative
standard normal distribution (in which m = 0 and σ = 1). We will use the identity Φ(z) =
1
2 (1 + erf( z√

2
)), where erf(z) = 2√

π

∫ z
0
e−t

2

dt. This gives us:

FZ(z) =

∫ z

0

fZ(x)dx

=
2
√

2

σZ
√
π

∫ z

0

exp

(
−x2

2σ2
Z

)[
Φ

(
x,
xσ2

1

σ2
Z

,
σ1σ2

σZ

)
− Φ

(
0,
xσ2

1

σ2
Z

,
σ1σ2

σZ

)]
dx

=
2
√

2

σZ
√
π

∫ z

0

exp

(
−x2

2σ2
Z

)1

2

1 + erf

x− xσ2
1

σ2
Z

σ1σ2

σZ

√
2

− 1

2

1 + erf

 −xσ
2
1

σ2
Z

σ1σ2

σZ

√
2

 dx
=

√
2

σZ
√
π

∫ z

0

exp

(
−x2

2σ2
Z

)erf

x− xσ2
1

σ2
Z

σ1σ2

σZ

√
2

− erf

 −xσ
2
1

σ2
Z

σ1σ2

σZ

√
2

 dx.
Splitting the above expression into the difference of two integrals yields:
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FZ(z) =

√
2

σZ
√
π

∫ z

0

exp

(
−x2

2σ2
Z

)
erf

x− xσ2
1

σ2
2

σ1σ2

σZ

√
2

 dx−
∫ z

0

exp

(
−x2

2σ2
Z

)
erf

 −xσ
2
1

σ2
Z

σ1σ2

σZ

√
2

 dx


=

√
2

σZ
√
π

∫ z

0

exp

(
−x2

2σ2
Z

)
erf

x
(

1− σ2
1

σ2
Z

)
σ1σ2

σZ

√
2

 dx−
∫ z

0

exp

(
−x2

2σ2
Z

)
erf

 −xσ
2
1

σ2
Z

σ1σ2

σZ

√
2

 dx


=

√
2

σZ
√
π

[∫ z

0

exp

(
−x2

2σ2
Z

)
erf

(
x

σ2√
2σZσ1

)
dx−

∫ z

0

exp

(
−x2

2σ2
Z

)
erf

(
−x σ1√

2σZσ2

)
dx

]
.

The error function is an odd function. This means that erf(−x) = − erf(x). Therefore, we obtain:

FZ(z) =

√
2

σZ
√
π

[∫ z

0

exp

(
−x2

2σ2
Z

)
erf

(
x

σ2√
2σZσ1

)
dx+

∫ z

0

exp

(
−x2

2σ2
Z

)
erf

(
x

σ1√
2σZσ2

)
dx

]
.

Now we can apply Lemma 6.0.1 to both integrals, as our expression is of the form:

FZ(z) =

√
2

σZ
√
π

[ ∫ z

0

exp(−a2x2) erf(b1x)dx+

∫ z

0

exp(−a2z2) erf(b2x)dx

]
,

with a = 1/(σZ
√

2), b1 = σ2/(
√

2σZσ1), and b2 = σ1/(
√

2σZσ2). This gives us the desired ex-
pression for FZ(·). �

Though our result gives us insight in the cumulative distribution of the convolution of two half-
normal random variables, the final expression is still a bit complicated. In order to make further
calculations less cumbersome, we will consider the case in which the standard deviations of the
two half-normal variables are equal to one another.

Corollary 6.0.2.1 Let Y1, Y2 ∼ H(0, σ) be independent and let Z = Y1 + Y2 as before. Then
FZ(z) = erf

(
z

2σ

)2 .

Proof Use the previous theorem and plug in the values σ1 = σ2 = σ. Then we find:

FZ(z) =
1

σ
√
π

[(
2σ tan−1(1)√

π
− 4σ

√
πT
( z

σ
√

2
, 1
))

+

(
2σ tan−1(1)√

π
− 4σ

√
πT
( z

σ
√

2
, 1
))]

=
4 tan−1(1)

π
− 8T

( z

σ
√

2
, 1
)

= 1− 8T
( z√

2σ
, 1
)
.

We now use Property 2.3 of Table II of [17], which on p. 414 states that

T (z, 1) =
1

2
Φ(z)

[
1− Φ(z)

]
.

This implies that

FZ(z) = 1− 8

[
1

2
Φ
( z

σ
√

2

)(
1− Φ

( z

σ
√

2

))]

=

[
2Φ
( z√

2σ

)
− 1

]2

.

Now we use the following identity relating the cumulative normal distribution function and the
error function: Φ(x) = 1

2 + 1
2 erf

(
x√
2

)
. Substituting this identity in the above expression gives:
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FZ(z) =
[
2
(1

2
+

1

2
erf
( z

2σ

))
− 1
]2

= erf
( z

2σ

)2

. �

Example 2

Assume that both players have quantile preferences with β1 = 0.7 and β2 = 0.9 and that
σ1 = σ2 = σ = 0.026. So, αi(S, T, p) = pu

R(S)
βi

/u
R(T )
βi

. Then we find
I(N,α) = C(N,α) = {p ∈ ∆∗(N) | p1 ≤ 0.526, p2 ≤ 0.597}. We see that the core of this game is
non-empty.

This calls for the question: for exactly which values of the quantiles is the core of the game
non-empty? The following theorem elucidates the answer to that very question.

Proposition 6.0.1 If two players play the energy prediction game and both have quantile prefer-
ences with β1 = β2 = β, then the core of this game is non-empty iff 0, 626 ≤ β ≤ 1.

Proof From the definition of the imputation set for a two-person cost game (see Equation 5 and
Lemma 5.0.1), we know that I(N,α) = {p ∈ ∆∗(N) | pi ≤ αi({i}, N, 1) for all i ∈ N} = C(N,α),
where N = {1, 2}. For quantile preferences with equal quantiles for both players, this means that
the fraction z1

z2
(where z1 and z2 are the quantiles such that P(R({i}) ≤ z1) = erf( z1√

2σ
) = β

(for i = 1, 2) and P(R({1, 2}) ≤ z2) = erf( z22σ )2 = β) has to be bigger than 1/2. If this is not
the case, no efficient allocation anymore exists. This is because p1 ≤ α1({1}, N, 1) = z1

z2
and

p2 ≤ α2({2}, N, 1) = z1
z2

in the core of the game. If these fractions are smaller than 1/2, the sum of
p1 and p2 cannot be equal to 1 anymore, so the allocation cannot be efficient. (Note that for the
calculation of the quantiles, we don’t need to use the supremum and the ≤-inequality anymore.
For continuous functions, equality is sufficient.)

To find out for which values of β this holds, we compute the inverse of both g{i}(z1) :=

erf( z1√
2σ

) and g{1,2}(z2) := erf( z22σ )2. We see that Qβ(R({i})) = z1 = g−1
{1}(β) =

√
2σ erf−1(β) and

Qβ(R({1, 2})) = z2 = g−1
{1,2}(β) = 2σ erf−1(

√
β). Therefore, α({i}, N, 1) = z1

z2
= erf−1(β)√

2 erf−1(
√
β)

for
i = 1, 2. If we set z1

z2
= 1/2, we find β = 0, 626. We quickly see that z1

z2
> 1/2 iff 0, 626 ≤ β ≤ 1.

This completes the proof. �

6.1 A variant of the game: combined predictions
Recall that in Theorem 6.0.2 we computed the convolution of two half-normal distributions. We
did this in order to compare the stochastic costs associated with the grand coalition N = {1, 2}
and the single-player costs associated with coalitions {1} and {2}. It must be noted that that the
computation of the two half-normal distributions implies that the two fines associated with the
prediction error of both individual players are added to one another to find the total cost, after
which these total costs will be distributed among the two players. For expectational preferences,
cooperation in this manner does not yield any advantage to the players, as the expectation of the
sum is equal to the sum of the expectations. For the quantile preferences, cooperation does yield
benefits, depending on the value of βi. We elaborate on the benefits and drawbacks of cooperation
in Section 7.

Instead of having individual predictions, it could also be the case that the two players would
make their predictions together. In this case, the predictions are added to up to form a new
prediction of the two players as a single, cooperating entity. This means that we first have to
compute the convolution of two normally distributed random variables. That tells us how the
prediction error of the two players combined would be distributed. Taking the absolute value of
that random variable generates the distribution of the costs that they would have to pay in total.

So this new game is a variation of the energy prediction game we described earlier. It is
interesting to see how it differs from the previous game. Let us analyze it.
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If the prediction error of player 1 is distributed as P1 ∼ N(0, σ2
1), then the distribution of

the fine to be paid equals Q1 = |P1| ∼ H(0, σ2
1). In a similar vein, the cost for player 2, who has

prediction error distribution P2 ∼ N(0, σ2
2), is equal to Q2 = |P2| ∼ H(0, σ2

2).
When the two players work together in this new game, their combined prediction error is dis-
tributed as P1 + P2 ∼ N(0, σ2

1 + σ2
2). This means that the fines to be paid are distributed as

Q = |P1 + P2| ∼ H(0, σ2
1 + σ2

2).

So, the stochastic cost for the coalitions in a two-player game are as follows:

R(S) =

 |P1|, if S = {1}
|P2|, if S = {2}
|P1 + P2| if S = {1, 2}.

So the cumulative distribution errors for the fines are

FQi(y, σi) = erf
( y√

2σi

)
, y ≥ 0, i = 1, 2

and

FQ(y,
√
σ2

1 + σ2
2) = erf

(
y√

2(σ2
1 + σ2

2)

)
, y ≥ 0.

Let us assume players play the cost-sharing game in which both of them have quantile preferences.
The question arises: for which quantile values is the core of the game non-empty? The following
theorem sheds light on the matter.

Proposition 6.1.1 If two players play the variant of the energy prediction game and both have
quantile preferences with β1 = β2 = β, and σ1 = σ2 = σ, then the core of the game is non-empty
iff pi ≤

√
2

2 ≈ 0.71 for i = 1, 2.

Proof Let z1 and z2 be such that erf
(

z1√
2σ

)
= β and erf

(
z2
2σ

)
= β. The core is non-empty iff the

fraction z1
z2

is bigger than 1/2, otherwise there exists no efficient allocation. We can find out for

which values of β this holds by computing the inverses of g{i}(z1) := erf
(

z1√
2σ

)
(with i = 1, 2) and

g{1,2} := erf
(
z2
2σ

)
. This amounts to g−1

{i}(β) = σ
√

2 erf−1(β) and g−1
{1,2}(β) = 2σ erf−1(β). Then we

compute αi({i}, N, 1) =
g−1
{i}(β)

g−1
{1,2}(β)

=
√

2σ erf−1(β)
2σ erf−1(β)

=
√

2
2 ≈ 0.71. Note that this fraction is bigger than

1/2. Thus, by Lemma 5.0.1, the core of the game is C(N,α) = {p ∈ ∆∗(N) | pi ≤
√

2
2 for i = 1, 2}.

�

We obtain a similar result when we consider expectational preferences.

Proposition 6.1.2 If two players play the variant of the energy prediction game and both have ex-
pectational preferences, and σ1 = σ2 = σ, then the core of the game is non-empty iff pi ≤

√
2

2 ≈ 0.71
for i = 1, 2.

Proof As both players have expectational preferences, we have αi(S, T, p) = p E(R(S))
E(R(N)) for

i = 1, 2. This means that αi({i}, N, 1) = E(R({i}))
E(R(N)) . We first calculate the numerator of this

fraction. We have

E(R({i})) =

∫ ∞
0

yfQi(y)dy

=
1

σ

√
2

π

∫ ∞
0

y exp
(
− y2

2σ2

)
dy.
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Implementing the substitution u = y2, with dy = du/2y, gives

E(R({i})) =
1

σ

√
2

π

∫ ∞
0

exp
(
− u

2σ2

)
·
(1

2

)
du

=
1

σ

1√
2π

∫ ∞
0

exp
(
− u

2σ2

)
du

=
1

σ

1√
2π

[
− 2σ2 exp

(
− u

2σ2

)]∞
0

= σ

√
2

π
.

Now we calculate the value of the denominator.

E(R(N)) =

∫ ∞
0

yfQ(y)dy

=
1

σ
√
π

∫ ∞
0

y exp
(
− y2

4σ2

)
dy.

Again, we use the substitution u = y2, with dy = du/2y. It yields:

E(R(N)) =
1

σ
√
π

∫ ∞
0

exp
(
− u

4σ2

)
·
(1

2

)
du

=
1

2σ
√
π

[
− 4σ2 exp

(
− u

4σ2

)]∞
0

=
2σ√
π
.

Therefore, we find that αi({i}, N, 1) = E(R({i}))
E(R(N)) =

σ
√

2
π

2σ√
π

=
√

2
2 for i = 1, 2. So, by Lemma 5.0.1,

we have C(N,α) = {p ∈ ∆∗(N) | pi ≤
√

2
2 for i = 1, 2}. �
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7 Interpretation

So far, we have mainly focused on two variants of the energy prediction game. In the first variant,
each player individually predicts his energy production levels. Then the fines for deviations from
the predictions are calculated, again for both players individually. Finally, the two fines are added
together and the costs were distributed in a certain manner. Let us call this variant of the game
Variant A. We described this variant of the game in Section 6, until halfway through page 16.

In the second variant, the predictions of both players are aggregated and the fines for the
combined prediction errors are calculated. After that, the fines associated with these errors are
distributed among the two players. We call this variant of the game Variant B. We analyzed this
variant of the game in Section 6.1.

7.1 Analysis of variants A and B for quantile preferences
We have analyzed these variants in more detail by examining the case in which we have two play-
ers, and both players have quantile preferences. Both players have the same quantile β. Proposi-
tion 6.0.1 shows that for variant A, core of the game is non-empty iff 0, 626 ≤ β ≤ 1. This means
that the players must be both quite risk-seeking to find cooperation beneficial to themselves.

Proposition 6.1.1 shows that the core of the game of Variant B is non-empty iff pi ≤
√

2
2 for

i = 1, 2. It is striking that the fraction of the total costs the players are willing to bear of the
grand coalition is constant and independent of the value of their quantile β. So no matter which
value of β they choose (so no matter how risk-averse or risk-seeking they are), they always want
to cooperate under the same conditions.
So although variants A and B may be superficially similar, the requirements for cooperation be-
tween the two players differ substantially. In variant A the act of cooperating at all depends on the
value of β of both players, whereas in variant B the question of cooperating or not is β-independent.
Furthermore, notice that the utilitarian benefits for the players in variant A increase as the value
for β increases. For β = 0, 626, the core is non-empty, but just barely. The players are only willing
to cooperate if they are obliged to pay at most half of the total costs incurred. When β = 1,
however, the core of the game becomes equal to the core for the game of variant B: pi ≤ 1√

2
=
√

2
2

for i = 1, 2. This means that the more risk-averse the players are, the larger the core becomes and
the more beneficial it is to players to cooperate.

Returning to variant A: for β = 0, 626, the core is a singleton: only consisting of the allocation
p = (p1, p2) = (1/2, 1/2). If we propose the only allowed efficient allocation of the costs (which is
(1/2, 1/2), too), the players don’t really benefit: they pay equally much when they play the game
on their own.

When β = 1, however, we have pi ≤
√

2
2 ≈ 0.71 for i = 1, 2. If we now propose some

“fair” allocation of the costs – say (1/2, 1/2) again – the players benefit substantially: their utility
associated with these preferences increases by −(0, 5 − 0, 71) = 0, 21 percentage points. This
means the percentual increase of utilities 0,21

0,71 × 100% ≈ 29.3%, compared to when they play on
their own. In other words, their relative utility increases with 29.3%. Now cooperation surely is a
more attractive option than opting to play individually! Note that the actual costs do not decrease
in Variant A. Only the utilities with respect to the preferences increase. Notice furthermore that
for all values except β = 1, players prefer to play variant B over variant A. Thus we conclude that
in general, players would prefer to play variant B over variant A of the game.

7.2 Variant B with expectational preferences
What is interesting is that under expectational preferences, the core of the game for Variant B is
the same as for quantile preferences. We see this in Propositions 6.1.1 and 6.1.2. Expectational
preference can be viewed as a risk-neutral preference. So for risk-neutral players, it is beneficial
to cooperate when pi ≤

√
2

2 . We again stress that cooperation is much preferred over not doing
so. However, this time it is not just the utilities that decrease. The actual costs decrease, too.
When working together, the players with expectational preferences, too, need to pay almost 30%
less than when they don’t. The reasoning for this fact goes as follows: when player i (i = 1, 2)
operates on its own, his expected payments are

E(R({i})) =
σ
√

2√
π
.
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The expected costs for both players combined are

E(R(N)) =
2σ√
π
.

When these combined costs are divided fairly among the two players, each pays only σ/(
√
π).

Thus, the percentual decrease of costs per player is

−
( σ√

π
− σ

√
2
π )

σ
√

2√
π

× 100% =

σ√
π

(
√

2− 1)

σ
√

2√
π

× 100%

=

√
2− 1√

2
× 100%

≈ 29.3%.

This is important: it shows that owners of renewable energy sources can save a substantial amount
of costs associated with badly predicting the energy production levels of their wind mills or solar
panels. Cooperating by sharing the costs for the prediction error makes renewable energy sources
less costly to own and operate, and more profitable.

7.3 Variant B with other preferences
When looking at quantile preferences, it is often the case that the core of the game changes
according to the different values of β the players choose. Picking a high value of β means the player
is relatively risk-seeking, whereas players with low values of β are more risk-averse. However, we
have shown that the value of β does not matter for the characterization of the core for variant B
of the game. So the core does not change according to this quantification of risk-aversity or
risk-seekingness.

There are, however, other ways to quantify the measure of risk the players are willing to take
when playing the game. This involves so-called Neumann-Morgenstern preferences. We will ana-
lyze these preferences in the next section.
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8 Neumann-Morgenstern preferences

Let us immediately define this new type of preference. We say that player i has Neumann-
Morgenstern (N-M) preferences, if there exists a utility function ui : R → R and a functions
w(x) = xn such that X %i Y if and only if ui(X) = E(wi(X)) ≥ E(wi(Y )) = ui(Y ) for any X and
Y . The special case in which ui(x) = x, corresponds to expectational preferences.
Certain other properties of the function w(·) correspond to specific attitudes regarding risk. The
following image [25] helps us to understand this concept:

Figure 3: Decreasing linear, concave and convex utility functions for loss games

This image represents a series of utility functions. On the L-axis, we see the value of the loss,
whereas the u(L)-axis shows the (perceived) utility of the corresponding value. The yellow graph
shows the correspondence between value and utility for risk-neutral players. The utility decreases
linearly with the loss. This relationship is characterized by the utility function w(x) = ax+b, with
a < 0.

The orange graph shows the same relationship between loss and utility for a risk-averse player.
The player’s utility decreases quickly when the loss increases. This graph could correspond to the
utility function w(x) = a

√
x + b, with a < 0. In general, the orange graph could be any convex

decreasing function.
Finally, the red graph shows the relationship for a risk-seeking player. The risk-seeking player

is relatively unphased by a little bit of extra loss. Only when the losses get very big, the player
becomes wholly dissatisfied. For instance, its graph could be of the form w(x) = ax2 + b, with
a < 0. In general, it could be any concave decreasing function.

In the above discussion of the convex, concave and linear utility functions, we have mostly
tried to give the reader a bit of intuition as to why certain utility functions correspond to certain
types of attitudes towards risk. We have not provided any solid, analytical evidence for the
relationship between convexity or concavity and the utility players derive from some stochastic
game. This relationship was more formally described in an article by Michael Rothschild and Joseph
Stiglitz [20]. They prove that certain characterizations for attitudes towards risk are equivalent to
one another. For a short exposition on their work, we refer to Appendix B (see 14.2) of this thesis.

8.1 Application of von N-M preferences
In general, we can incorporate the von N-M (von Neumann-Morgenstern) utility functions within
the framework of preference relations as laid out in Section 4.1. We defined the von N-M preferences
in Section 8.1. We have already calculated the core of the variant B game, when both players have
von N-M preferences with w(x) = −x, as this corresponds to expectational preferences.
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It remains to the figured out, however, what the core looks like when the players either have convex
or concave utility functions. For these situations, we take the utility functions

w1
i : R>0 → R

x 7→ −
√
x

and

w2
i : R>0 → R

x 7→ −x2

respectively. For the first type of function, we have

u1
i (R(S)) = E(R(S)1/2),

and αi(S, T, p) = p E(R(S)1/2)
E(R(T )1/2)

. For the second type of function, we have

u2
i (R(S)) = E(R(S)2),

and it similarly holds that αi(S, T, p) = p E(R(S)2)
E(R(T )2) .

We first calculate the core of a game in which two players with identical variances of their
error probability density functions have N-M preferences with w2

i (x) = −x2 (i = 1, 2), so they are
risk-seeking. So we have to calculate the appropriate α-value αi({i}, N, 1) =

E(u2
i (R({1}))

E(u2
i (R(N))

. Notice,
that if we really want to pick a proper loss utility function, it would for instance be of the form
u2
i (x) = −x2 + b for some b > 0 (because we start off with high utility for zero losses). In order to

be able to calculate both the numerator and the denominator of this fraction, we need the following
lemma, which we state without proof [4]:

Lemma 8.1.1 The following holds:

∫ ∞
0

xne−ax
2

dx =


1
2Γ
(
n+1

2

)
/a

n+1
2 , if n > −1, a > 0

(2k−1)!!
2k+1ak

√
π
a , if n = 2k, k ∈ Z, a > 0 (!! is the double factorial )

k!
2ak+1 , if n = 2k + 1, k ∈ Z, a > 0,

where the double factorial function is defined as n!! :=

dn2 e−1∏
k=0

(n− 2k) and Γ(·) is the Gamma func-

tion, defined as Γ(z) =
∫∞

0
xz−1e−xdx. �

Proposition 8.1.1 Assume that two players play variant B of the energy prediction game and
both have N-M preferences with w2

i (x) = −x2 and σ1 = σ2 = σ, and α specified above. Then
C(N,α) = {p ∈ ∆∗(N) | pi = 1

2 for i = 1, 2}.

Proof We begin with the numerator. By the Law of the Unconscious Statistician, we have:

E(w2
i (R({1}))) =

∫ ∞
0

w2
i (y)fR({1})(y)dy

=

∫ ∞
0

−y2 1

σ

√
2

π
exp

(
− y2

2σ2

)
dy

= − 1

σ

√
2

π

∫ ∞
0

y2 exp
(
− y2

2σ2

)
dy.

The second part of Lemma 8.1.1 with n = 2, k = 1, and a = 1/(2σ2) yields:

u2
iR({1}) = E(w2

i (R({1}))) = − 1

σ

√
2

π

(σ3

2

√
2π
)

= −σ2.
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Doing the exact same procedure, but now with a = 1/(4σ2), yields

u2
i (R({N})) = E(w2

i (R(N)) = −2σ2.

As αi({i}, N, 1) = ui(R({i}))
ui(R(N)) , we find with Lemma 5.0.1 that C(N,α) = {p ∈ ∆∗(N) | pi =

1
2 for i = 1, 2}. �

So, the core is non-empty, but it contains only one allocation. Risk-seeking players don’t derive
much benefit from collaborating in this game. They are equally willing to cooperate as to work
on their own, as the expected payment for both players together is exactly twice the expected
payment for each individual player.
Next, we will take a look at the same game played by risk-averse players. We have obtained the
following result.

Proposition 8.1.2 Assume that two players play variant B of the energy prediction game and
both have N-M preferences with w1

i (x) = −
√
x and σ1 = σ2 = σ, and α specified above, then

C(N,α) = {p ∈ ∆∗(N) | pi ≤ 1
21/4 ≈ 0.84 for i = 1, 2}.

Proof Again we have to calculate αi({i}, N, 1) =
E(w1

i (R({1})))
E(w1

i (R(N)))
. Using the Law of the

Unconscious Statistician once more, we first compute the numerator:

E(w1
i (R({1}))) =

∫ ∞
0

w1
i (y)fR({1})(y)dy

=
1

σ

√
2

π

∫ ∞
0

−√y exp
(
− y2

2σ2

)
dy.

The first part of Lemma 8.1.1, with n = 1/2, a = 1/(2σ2), yields the following:

u1
i (R({1}))) = E(w1

i (R({1}))) = − 1

σ
√

2π

[
Γ
(3

4

)
/(2σ2)−3/4

]
.

In a similar manner, we can use Lemma 8.1.1 with n = 1/2 and a = 1/(4σ2) to calculate that

u1
i (R({N}))) = E(w2

i (R(N))) = − 1

2σ
√
π

[
Γ
(3

4

)
/(4σ2)−3/4

]
.

This means that

αi({i}, N, 1) =
E(w1

i (R({1})))
E(w1

i (R(N)))
=

1

21/4
≈ 0.84.

By Lemma 5.0.1, the proof is complete. �.

There are a couple of interesting things to note at this point.

First of all, our results thus far suggest that the more risk-averse the players of the game are,
the more they gain from cooperating in the grand coalition. On the other hand, the risk-seeking
players are only willing to participate in the coalition if they must pay exactly half of the total
costs, the players with expectational preferences (so those that are risk-neutral) are already willing
to take on a larger share of the total cost: approximately 71 %. Risk-averse players (so those with
a concave utility function) allow for an ever greater burden of the costs: they are willing to bear
84 %. The greater the share of the costs of the grand coalition the players are willing to take on,
the bigger the benefits they can reap from cooperation.

Second of all, it seems that the quadratic utility function is the maximally risk-seeking utility
function that yields a non-empty core. If the degree of the utility function is higher than two,
the core will become empty. In other words: it will not be beneficial for the players anymore
to cooperate, when their utility functions are of the form ui(x) = x2+ε for some ε > 0. In-
deed, α({i}, N, 1) =

(
1
2

)1+ε in this case. As the core consists of the efficient allocations p with
p1 ≤

(
1
2

)1+ε and p2 ≤
(

1
2

)1+ε, it is empty when ε > 0.
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9 Correlated prediction errors

So far, we have assumed that the random variables that describe the prediction error distributions
are independent of each other. This means that, because these errors are normally distributed, we
have P1 ∼ N(0, σ2

1) and P2 ∼ N(0, σ2
2), and P1 + P2 = N(0, σ2

1 + σ2
2).

In practice, however, the prediction errors are not always independent of each other. When, for
instance, a solar panel and a wind turbine are placed in close vicinity to each other, the prediction
error of the wind turbine is correlated with the prediction error of the solar panel. This has been
experimentally verified by Zhang et al. in [26]. They computed Pearson’s correlation coefficient
between wind and solar power forecast errors. This coefficient is defined as follows:

ρ :=
Cov(X1, X2)

σ1σ2
.

It is a well-established result (see, for instance, [2]) that the sum of two non-independent normally
distributed random variables X1 and X2 is distributed as follows:

X1 +X2 ∼ N(0, σ2
1 + σ2

2 + 2Cov(X1, X2)).

By the definition of Pearson’s correlation coefficient, we find that

X1 +X2 ∼ N(0, σ2
1 + σ2

2 + 2ρσ1σ2).

In Propositions 6.1.1 and 6.1.2, we have characterized the cores of variant B of the energy prediction
game with two players with quantile and expectational preferences, respectively. We have shown
that the cores for these preferences are the same.

Next, we will analyze the same game with correlated energy prediction error. We will inves-
tigate for which values of Pearson’s correlation coefficient, it is beneficial for players to cooperate.
The stochastic payments are defined as on p. 17, in Equation 6.1 :

R(S) =

 |P1|, if S = {1}
|P2|, if S = {2}
|P1 + P2|, if S = {1, 2},

Here, Pi ∼ N(0, σ2
i ) for i = 1, 2 and P1 + P2 ∼ N(0, σ2

1 + σ2
2 + 2ρσ1σ2). This means that, when

σ1 = σ2 = σ, it holds that

R(S) =

 Q1, if S = {1}
Q2, if S = {2}
Q, if S = {1, 2},

with Qi ∼ H(0, σ2) for i = 1, 2, and Q ∼ H(0, 2σ2(1 + ρ)).

Proposition 9.0.1 Suppose two players play variant B of the energy production prediction game,
their prediction errors are correlated with Pearson’s correlation coefficient ρ, and σ1 = σ2 = σ, and
both players have expectational preferences. Then C(N,α) 6= ∅, if −1/2 ≤ ρ ≤ 1.

Proof To determine the core, we need to determine the value of αi({i}, N, 1) = E(R({i}))
E(R(N)) .

We have E(R({i})) = σ
√

2
π for i = 1, 2, and E(R(N)) = 2σ

√
1+ρ
π . This means that αi({i}, N, 1) =

1
2

√
2

1+ρ . By Lemma 5.0.1, we have C(N,α) = {p ∈ ∆∗(N) | pi ≤ 1
2

√
2

1+ρ , i = 1, 2}. An

allocation in the core can therefore only be efficient if αi({i}, N, 1) ≥ 1
2 . So setting 1

2

√
2

1+ρ = 1
2

gives us an upper bound for ρ. With a bit of basic algebra, we see that ρ = 1.
On the other hand, an allocation in the core cannot be efficient when pi > 1 for any i ∈ N .

So setting αi({i}, N, 1) = 1
2

√
2

1+ρ = 1 gives us a lower bound for ρ. Again, we perform some

elementary algebraic operations to find ρ = − 1
2 . Thus we find that the core is non-empty when

− 1
2 ≤ ρ ≤ 1. �

We can do a similar analysis, when both players have quantile (instead of expectational) preferences:
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Proposition 9.0.2 Suppose two players play variant B of the energy production prediction game
and their prediction errors are correlated with Pearson’s correlation coefficient ρ, and σ1 = σ2 = σ,
and both players have quantile preferences with β1 = β2 = β. Then C(N,α) 6= ∅ if − 1

2 ≤ ρ ≤ 1.

Proof Again, we ought to calculate αi({i}, N, 1) = u
β
R({1})
i

/u
β
R({N})
i

. The nominator and denomi-

nator of this fraction are the numbers z1 and z2 respectively such that FXi(z1, σ) = erf
(

z1√
2σ

)
= β

and FX1+X2
(z2,
√

2σ) = erf
(

z1
2σ
√

1+ρ

)
. We define the inverses of these functions as g{1}(β) and

g{N}(β) respectively. Calculating them yields g{1}(β) = erf−1(β)
√

2σ and g{N}(β) = erf−1(β)2σ
√

1 + ρ.
This means that

αi({i}, N, 1) =
u
β
R({1})
i

u
β
R({N})
i

=
g{1}(β)

g{N}(β)
=

erf−1(β)
√

2σ

erf−1(β)2σ
√

1 + ρ
=

1√
2(1 + ρ)

.

Analogous to the previous proof, by setting z1/z2 = 1
2 , we find the upper bound for ρ such that

the core is non-empty. We find that ρ = 1. Setting z1/z2 = 1 gives us the lower bound. It yields
ρ = − 1

2 . This gives the desired result. �

It is a perhaps curious fact that for these two vastly different stochastic preferences, the core is
non-empty for the same values of the Pearson correlation coefficient.

9.1 Experimental Results
After having computed the values of the Pearson correlation coefficient for which cooperation is
desirable, it is of interest to compare this to the values this coefficient actually attains in the real
world in the context of renewable energy sources.

There is evidence that that there is a one-to-one correspondence between the Pearson corre-
lation coefficient of the power output of renewable energy sources and the same coefficient of the
normalized prediction error of these energy sources.

Consider the case in which there are two renewable energy sources of the same type. It has
been experimentally verified that the Pearson correlation coefficient is a function of distance, re-
source, terrain and time scale. We first focus on the first of these dimensions. As the distance
between two renewable energy sources increases, the correlation in power output (and therefore
also in the normalized prediction error) generally increases. This can be inferred from Section
IV.A of [11]. In other words: the more geographically diverse the energy sources are distributed,
the less variable and the less uncertain their aggregate production levels are. The following table
provides us with a summary of the relationship between the distance between two wind mills and
the correlation coefficient, which was taken from Table 3 on p. 328 of [11].
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Figure 4: Table summarizing the relationship between the distance and correlation coefficient of
the power output of wind mills

Indeed, the correlation decreases as the distance increases. When the distance becomes very large
(in some cases, when the distance gets larger than about 1.500 kilometers), the correlation can
become negative. In that case, the value of the Pearson correlation coefficient decreases, but it still
remains fairly low. In all observed cases, the coefficient floats between 0, 9 and −0, 1. The data in
the image above is represented in graphical form in the image below:
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Figure 5: The distance versus Pearson’s correlation coefficient

As we found in Propositions 9.0.1 and 9.0.2 of this thesis, cooperation between renewable energy
sources is beneficial to both players when ρ ∈ [− 1

2 , 1]. So it is safe to assume that players can
benefit from cooperation, when their distance between them is within reasonable bounds (i.e. less
than 10.000 kilometers). Even when this distance bound is exceeded, the synergistic effects of
cooperation will still manifest itself. Even when, for some distance, we would find ρ < −1/2, the
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core can still be non-empty and cooperation can still yield benefits to both players. Propositions
9.0.1 and 9.0.2 only gave sufficient, and not necessary, conditions for a non-empty core.

In the proof of Proposition 9.0.1, we mentioned that the core of the two-player prediction game
for variant B in which both players have expectational preferences is as follows:

C(N,α) =

{
p ∈ ∆∗(N) | p1 ≤

1

2

√
2

1 + ρ
, p2 ≤

1

2

√
2

1 + ρ

}
.

This means that the core becomes larger when the value of the correlation coefficient ρ becomes
smaller. In the figure below, we plot the function y = 1

2

√
2

1+x to see exactly how much players
benefit from cooperating. The higher the value of the function, the bigger the part of the costs the
players are willing to bear to cooperate. We can see that, especially when ρ < −0, 8, this fraction
increases dramatically.
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1
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3
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Figure 6: Correlation versus the fraction of the costs players are willing to bear to still find
cooperation beneficial to themselves

In turn, this means that players gain more from cooperating when their prediction error distri-
butions are less correlated. Taking into account the discussion of the relationship between the
correlation error and the distance between renewable energy sources above, we can infer that the
benefits of cooperation increase when the renewable energy sources are further away from each
other (until the distance becomes more than 1.500 kilometers).

Our suspicion, that there is a one-to-one correspondence between the correlation coefficient of
the power production and the correlation coefficient of the prediction error is justified by an article
by Focken et al. [9]. In their research, they found out that the cross correlation (in other words:
the Pearson correlation coefficient) of the prediction error decreases as the distance between wind
mills in Germany increases. This is illustrated by the following image of their article, which was
presented on page 10.
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Figure 7: The relationship between the distance and the prediction error correlation coefficient
between wind mills for different time frames

The different lines represent the relationship between the distance and the Pearson correlation
coefficient of the prediction errors for different time frames of the predictions (as can be seen in
the top right corner of the image). The cross-correlation for the prediction error seems to decrease
a bit quicker than the cross-correlation for the power output, so perhaps the relationship is not
entirely one-to-one. The general behavior of the graphs is similar, however. Based on the graph
above, cooperation is most beneficial to the participating players when the distance between the
renewable energy sources is about 600 kilometers (though it differs for the different time frames).

Similar results have been obtained for the correlation between power outputs of geographically
dispersed solar panels by Mills et al. in [14]. This relationship in particular is visualized on page 10
of their paper. Again, the experimental evidence suggests that cooperation between the renewable
energy sources is beneficial for both entities. Furthermore, the benefits increase as the distance
increases, because the Pearson correlation coefficient decreases with increased spreading.
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10 Unequal standard deviations

So far, we have mainly looked at and proven results on the case for equal standard deviations of
the prediction error distributions of both players. This is not, however, very realistic. According
to Zhang et al. in [26], the values of the standard deviations can change dramatically, either by
altering the time frame for the predictions, or by looking at different types of renewable energy
resources (such as wind mills and solar panels). In the following image, the error distributions for
day-head (24 hours), four-hour-ahead and one-hour-ahead predictions are shown for a pair of wind
mils and solar panels in the Western Interconnection in the United States.

Figure 8: Normalized prediction error distributions of wind mills (left) and solar panels (right) for
different time frames

We see that the standard deviation increases as the time between the moment of prediction and the
moment of production increases. This was to be expected. And the longer the difference between
the time at which the prediction was made and the time for which the energy output was to be
predicted, the more inaccurate the prediction is (likely) going to be.

Furthermore, there are differences between the prediction errors for wind mills and solar panels.
For the one-hour-ahead predictions, the prediction for wind mills is more accurate than for solar
panels. However, the day-ahead predictions are not nearly as bad for solar panels as for the wind
mills.

A couple of further remarks need to be made. First of all, the values of the standard devia-
tions are not given in [26]. We could, however, approximate these values by plotting the normal
distribution with µ = 0 for different values of σ. Then we can compare the resulting plots with
the image above to infer the values for the standard deviations that are approximately correct.

Second, the prediction errors are not normally distributed. As we already explained in the
beginning of Section 6, the errors follow a hyperbolic distribution. However, due to the fact that
is hard to work with this distribution, we use the normal distribution with mean µ = 0.

10.1 The core and the Shapley value
As mentioned previously, so far we have focused on the case in which σ1 = σ2 = σ. In particular,
we have proved numerous results regarding the core of the energy prediction games with these
parameters. So far, we have neglected an important value of such games: the Shapley value.
When the standard deviations of the distributions governing the prediction errors are equal, it is
a trivial fact that the Shapley vector is (1/N, 1/N, . . . , 1/N), when N players participate in the
game.

Things become more interesting, however, when the standard deviations are not equal any-
more. From now on we therefore suppose that σ2 = kσ1 for some constant k ∈ R>0.

So, the prediction error for player 1 is P1 = N(0, σ2), for player 2 it is P2 = N(0, k2 · σ2), and for
both players combined it is P3 = N(0, σ2 · (1 + k2)). The stochastic cost for the coalitions in a
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two-player game are therefore as follows:

R(S) =

 |P1| = Q1 = H(0, σ2), if S = {1}
|P2| = Q2 = H(0, k2 · σ2), if S = {2}
|P1 + P2| = Q = H(0, σ2(1 + k2)) if S = {1, 2}.

We will investigate for which values of k the Shapley value is an element of the core of the game.
We note furthermore that from now on, we will focus exclusively on variant B of the game,

and all players have expectational preferences. We henceforth assume this is the variant of the
game the players play. This is due to the fact that convolutions of half-normal distributions are
complicated. Another reason we focus on variant B of the game is that we find it more natural
that the players combine their predictions of their production levels and that they derive more
surplus value from cooperation.

Before we can calculate the Shapley values, we must of course first define the notion of this
value in the context of stochastic cooperative game theory. Again, we rely on [6].

A bijection σ of the players in N is a function σ : {1, 2, . . . , n} → N . Each bijection sorts the
players in a different order, and σ(i) denotes which player in N is at position i of the order. We
define Π(N) as the set of all bijections of N . Furthermore, let Sσi := {σ(k) | k ≤ i} be the set of
the first i players in the order, according to bijection σ (where i ∈ {1, 2, . . . , n} and Sσ0 := ∅).

Recall that for a deterministic cooperative game with transferable utility and a characteristic
function v(·), the marginal vector mσ(v) is defined as

mσ
σ(k)(v) := v(Sσk )− v(Sσk−1) = v(Sσk )−

k−1∑
i=1

mσ
σ(i)(v)

for each k ∈ {1, 2, . . . , n}.

In an analogous manner, we can define marginal vectors in the context of stochastic cooperative
game theory. Let yσσ(i)(α) be the marginal contribution of player i in the order of bijection σ in
terms of the game (N,α). As such a contribution is formulated as a multiple of the random payoff
for Sσi . Hence, the contribution of the first player according to σ equals this player’s random
payoff. So we have yσσ(1)(α) = 1. The second player in the order is σ(2). When he joins the first
player, the coalition Sσ2 is formed. The marginal contribution of σ(2) is the random payoff of Sσ2
minus the marginal contribution of player σ(1). Thus,

yσσ(2)(α) = 1− ασ(1)(S
σ
1 , S

σ
2 , y

σ
σ(1)(α)).

Similarly, the marginal contribution of the third player is

yσσ(3)(α) = 1−
2∑
k=1

aσ(k)(S
σ
k , S

σ
3 , y

σ
σ(k)(α))).

When we extrapolate this idea, we can recursively define the marginal contribution of σ(i) to
coalition Sσi−1. We have:

yσσ(i)(α) = 1−
i−1∑
k=1

aσ(k)(S
σ
k , S

σ
i , y

σ
σ(k)(α))

for all i ∈ {1, 2, . . . , n}. This in turn enables us to define the marginal vector mσ(α) by:

mσ
σ(i)(α) := ασ(i)(S

σ
i , N, y

σ
σ(i)(α)),

for i = 1, 2, . . . , n. This, finally, allows us to define the Shapley value φ(α) of a stochastic cooper-
ative game as the average of all n! previously defined marginal vectors:

φ(α) :=
1

n!

∑
σ∈Π(N)

mσ(α).

An important property of the Shapley value is that it is an efficient allocation for the grand coali-
tion.
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Lemma 10.1.1 φ(α) ∈ ∆∗(N).

Proof We prove that the marginal vector mσ(α) is efficient when σ is the identity function from
N to N . The proof for the other bijections σ goes analogously.

The following equalities hold:

mσ
σ(|N |)(α) = mσ

|N |(α)

= α|N |(N,N, y|N |(α))

= y|N |(α)α|N |(N,N, 1)

= y|N |(α)
u|N |(N)

u|N |(N)

= 1−
|N |−1∑
k=1

yσk
uk(Sk)

uk(N)

= 1−
|N |−1∑
k=1

mσ
k(α).

Therefore, the marginal vector mσ(α) is efficient. The proof for the other marginal vectors is
similar. If all individual marginal vectors are efficient, then the average of these vectors is efficient,
too. �

10.2 Deterministic equivalent
In Subsection 4.4, we described the relationship between classical cooperative game theory and
stochastic cooperative game theory. We explained that in this case, αi(S, T, p) = p v(S)

v(T ) , where v(·)
is the characteristic function of deterministic cooperative games. In this subsection, we will show
that the Shapley value as laid out by Timmer et al. [6] is equivalent to the classical formulation
of this value, denoted by Φ(v), e.g. cf. Peter Borm in [5]. Assume that the marginal vector
Mσ(v) ∈ RN , for σ ∈ Π(N), is in the classical case defined by

Mσ
σ(k)(v) = v({σ(1), . . . , σ(k − 1), σ(k)})− v({σ(1), . . . , σ(k − 1)})

= v(Sσk )− v(Sσk−1)

for all k ∈ {1, . . . , |N |}. In order to prove the equivalence (up to a normalizing factor v(N)) of the
two characterizations of the Shapley value, we must first prove the following lemma.

Lemma 10.2.1
i∑

k=1

yσσ(k)(α)v(Sσk ) = v(Sσi ) (∗)

Proof We prove this lemma by means of induction. For i = 1, we have

yσσ(1)(α) · v(Sσ1 ) = 1 · v(Sσ1 ) = v(Sσ1 ).

That is our base case. We now assume that (∗) holds for i = 1, . . . , l (this is our induction
hypothesis), and show that it implies that for the case i = l+ 1, the equality is true, too. We find
the following equalities

l+1∑
k=1

yσσ(k)(α)v(Sσk ) = v(Sσl ) + yσσ(l+1)(α)v(Sσl+1)

= v(Sσl ) +

(
1−

l∑
k=1

yασ(k) ·
v(Sσk )

v(Sσl+1)

)
v(Sσk )

= v(Sσl ) + v(Sσl+1)−
l∑

k=1

yσσ(k)(α)v(Sσk )

= v(Sσl ) + v(Sσl+1)− v(Sσl ) = v(Sσl+1).
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When we combine the base case with the implication as shown above, we obtain the desired proof.
�

We can use this lemma to prove the following assertion.

Proposition 10.2.1

Φ(v) =
1

|N |!
∑

σ∈Π(N)

mσ(v) = v(N) · φ(α).

In [6], Timmer et al. describe that the marginal contributions yσσ(i)(α) of player i, as expressed by
a multiple of the random payoff for Sσi , are given by the recursive expression

yσσ(i)(α) = 1−
i−1∑
k=1

ασ(k)(S
σ
k , S

σ
i , y

σ
σ(k)(α)).

In our case, we assign a utility uσ(i)(·) to this random payoff Sσi , making the multiples yσσ(i)

“deterministic” in a sense.
We know, from Theorem 4.3.1, that

ασ(k)(S, T, p) = p · ασ(k)(S, T, 1)

= p
v(S)

v(T )
∀k ≤ n.

Therefore, the proportional marginal contributions can be rewritten as

yσσ(i)(α) = 1−
i−1∑
k=1

yσσ(k)(α)
v(Sσk )

v(Sσi )
with yσσ(1) = 1.

This gives rise to the following expression of the marginal vectors.

mσ
σ(i)(α) =

(
1−

i−1∑
k=1

yσσ(k)(α)
v(Sσk )

v(Sσi )

)
· v(Sσi )

v(N)

=
v(Sσi )

v(N)
−

i−1∑
k=1

yσσ(k)(α)
v(Sσk )

v(N)

=
1

v(N)

(
v(Sσi )−

i−1∑
k=1

yσσ(k)(α)v(Sσk )
)
.

Remember that in stochastic cooperative game theory, the allocations are given as fractions, relative
to the value of the grand coalition ui(R(N)). In this case, we have ui(R(N)) = v(N). So if we
multiply this value with the marginal vectors as given above, we obtain the absolute contributions
of each player in each marginal vector. We therefore find

Mσ
σ(i)(α) = v(Sσi )−

i−1∑
k=1

yσσ(k)(α)v(Sσk ).

When we apply Lemma 10.2.1 to the second term of the right side of the equality above, we obtain

Mσ
σ(i)(α) = v(Sσi )− v(Sσi−1).

This completes the proof. �
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10.3 An example
Let us apply this new concept of the Shapley value to our energy prediction game. We apply it to
variant B of the game. It gives us the following result.

Proposition 10.3.1 Assume that two players play variant B of the energy prediction game, they
have expectational preferences, and σ2 = kσ1 = kσ for some constant k ∈ R>0. Then the Shapley
value is given by

φ(α) =
(1

2
+

1− k
2
√

1 + k2
,

1

2
+

k − 1

2
√

1 + k2

)
.

Proof Let us first look at the bijection σ = (1, 2). We immediately find yσσ(1)(α) = 1. In the

proof of Proposition 6.1.2, we found E(R({1})) = E(Q1) = σ
√

2
π . As the denominator can be

found by computing the expected value of Q (as described in Equation 10.1), we obtain

yσσ(2)(α) = 1− ασ(1)({1}, N, 1)

= 1− α1({1}, N, 1)

= 1− E(Q1)

E(Q)

= 1−
σ
√

2
π

σ
√

1 + k2
√

2
π

= 1− 1√
1 + k2

.

We can do the same thing for the other bijection: σ = (2, 1). We quickly see that yσσ(1)(α) = 1.

Notice that, in this case, E(R({2})) = E(Q2) = kσ
√

2
π (cf. Proposition 6.1.2 and Equation 10.1),

because σ2 = kσ. Hence we compute:

yσσ(2)(α) = 1− ασ(1)({1}, N, 1)

= 1− α2({1}, N, 1)

= 1− E(Q2)

E(Q)

= 1−
kσ
√

2
π

σ
√

1 + k2
√

2
π

= 1− k√
1 + k2

.

Thus y(1,2) = (1, 1− 1√
1+k2

), and y(2,1) = (1− k√
1+k2

, 1). We can use these marginal contributions
to find the marginal vectors. For σ = (1, 2), we have

mσ
σ(1)(α) = mσ

1 (α)

= α1({1}, N, 1)

=
E(Q1)

E(Q)

=
1√

1 + k2
,

and

33



mσ
σ(2)(α) = mσ

2 (α)

= α2

(
N,N, 1− 1√

1 + k2

)
= 1− 1√

1 + k2
.

When σ = (2, 1), we find that

mσ
σ(1)(α) = mσ

2 (α)

= α2({2}, N, 1)

=
E(Q2)

E(Q)

=
k√

1 + k2
,

and

mσ
σ(2)(α) = mσ

1 (α)

= α1

(
N,N, 1− k√

1 + k2

)
= 1− k√

1 + k2
.

This means that m(1,2)(α) =
(

1√
1+k2

, 1− 1√
1+k2

)
and m(2,1)(α) =

(
1− k√

1+k2
, k√

1+k2

)
.

We therefore find that

φ(α) =
1

2!

(
m(1,2)(α) +m(2,1)(α)

)
=
(1

2
+

1− k
2
√

1 + k2
,

1

2
+

k − 1

2
√

1 + k2

)
.

This completes the proof. �

Let us take a closer look at this Shapley value. When k = 1, we see that φ(α) =
(

1
2 ,

1
2

)
. This

makes sense, because we have σ2 = kσ1 = σ1 in this situation. This in turn implies that both
players are equally (im)precise when predicting their energy production levels. Thus, it is be fair
for them to pay half of the costs when cooperating.

When k 6= 1, when can also intuitively grasp that this Shapley value is correct. As k > 1
increases, the value for the first player decreases, while the value for the second player increases.
This is fair because the bigger the value k, the better the prediction of player 1 is compared to the
prediction of player 2 (as we have σ1 < σ2). So player 1 deserves to pay a smaller fraction of the
total costs. As k < 1 decreases, the same reasoning applies. Analogously, player 1 should bear a
larger part of the total costs as k < 1.

10.4 Shapley in the core
Though the Shapley value seems a fair allocation of the total costs when two players cooperate in
variant B of the energy prediction game, we must also verify that this value is an element of the
core of the game. In order to be able to verify this, we first compute the core of the game when
the two players have unequal variances.

Proposition 10.4.1 Assume that two players play variant B of the energy prediction game and
σ1 = kσ2 and their prediction error distributions are uncorrelated. Then, C(N,α) = {p ∈
∆∗(N) | p1 ≤ 1√

1+k2
, p2 ≤ k√

1+k2
} 6= ∅.
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Proof By Proposition 6.1.2 and Equation 10.1, we have

α1({1}, N, 1) =
E(Q1)

E(Q)

=
σ
√

2
π

σ
√

1 + k2
√

2
π

=
1√

1 + k2
.

and

α2({2}, N, 1) =
E(Q2)

E(Q)

=
kσ
√

2
π

σ
√

1 + k2
√

2
π

=
k√

1 + k2
.

By the definition of the core (see Lemma 5.0.1), we obtain

C(N,α) =
{
p ∈ ∆∗(N)

∣∣ p1 ≤
1√

1 + k2
, p2 ≤

k√
1 + k2

}
.

We now show that C(N,α) 6= ∅. The core of a two-person game can only be empty whenever
α1({1}, N, 1) + α2({2}, N, 1) = k+1√

1+k2
< 1 because then the allocation p cannot be efficient any-

more. Setting k+1√
1+k2

< 1 yields k + 1 <
√

1 + k2. This implies (1 + k)2 < 1 + k2. In other words,
2k < 0. This contradicts k > 0. Therefore, C(N,α) 6= ∅. �

Proposition 10.3.1 allows us to prove the following assertion:

Proposition 10.4.2 Assume that two players play variant B of the energy prediction game. Then
φ(α) ∈ C(N,α), for whichever value of k ∈ R>0 is chosen such that σ2 = kσ1 = kσ.

Proof From Proposition 10.3.1, we know that for an efficient allocation to lie in the core, we must
have p1 ≤ 1√

1+k2
and p2 ≤ k√

1+k2
. So we must verify whether p1 = 1

2 + 1−k
2
√

1+k2
≤ 1√

1+k2
and

p2 = 1
2 + k−1

2
√

1+k2
≤ k√

1+k2
for all values of k ∈ R>0. We only verify this for player 2 . We have

2k > 0 (as k > 0)

=⇒ 1 + k2 < 1 + 2k + k2 = (1 + k)2

=⇒ 4(1 + k2) < 4(1 + k)2

=⇒ 2
√

1 + k2 ≤ 2(k + 1)

=⇒ 1 ≤ 2(k + 1)

2
√

1 + k2
=

k + 1√
1 + k2

=⇒ 1

2
≤ k + 1

2
√

1 + k2
=

k√
1 + k2

− (k − 1)

2
√

1 + k2

=⇒ 1

2
+

k − 1

2
√

1 + k2
≤ k√

1 + k2

The last implication verifies the necessary inequality. Furthermore, the Shapley value is efficient
by Lemma 10.1.1. This completes the proof. �
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10.5 Correlations and unequal standard deviations
Next, we consider the case in which that error distributions are correlated. It is not much of a
stretch from Proposition 10.3.1 to generalize that for this game, we obtain the following result:

Proposition 10.5.1 When two players play variant B of the energy prediction game, where σ2 =
kσ1 = kσ, and their prediction errors are correlated through Pearson’s correlation coefficient ρ, we
have

φ(α) =
(1

2
+

1− k
2
√

1 + 2kρ+ k2
,

1

2
+

k − 1

2
√

1 + 2kρ+ k2

)
.

We present this result without proof, it would be a tad repetitive to repeat the calculations pre-
sented in the proof op Proposition 10.3.1. In addition, we ascertain that for this generalization,
too, the Shapley value lies in the core.

It is worthwhile to quickly point out the role of ρ in the Shapley value. In the case of a positive
correlation ρ > 0, the correlation coefficient acts as a damper of the extra (negative) costs that need
to be paid by both players. This is true because it increases the denominator in both fractions for
the proportion of the costs to be paid per player. However, when ρ < 0, the correlation coefficient
starts acting as an amplifier, as it decreases the value of this denominator.

By similar calculations to those in the proof of Proposition 10.4.1, we see that

Proposition 10.5.2 When two players play variant B of the energy prediction game, where σ2 =
kσ1 = kσ, and their prediction errors are correlated through Pearson’s correlation coefficient ρ, we
have

C(N,α) =
{
p ∈ ∆∗(N) | p1 ≤

1√
1 + k2 + 2kρ

, p2 ≤
k√

1 + k2 + 2kρ

}
6= ∅.

We only show that C(N,α) 6= ∅. The calculation of the core itself is similar to those in Proposition
10.4.1, so we don’t deem it necessary to present them here again.

We note that the core of the game is empty whenever α1({1}, N, 1) + α2({2}, N, 1) < 1. In
our case, this translates to k+1√

1+k2+2kρ
< 1. After some basic algebraic operations, this boils down

to to 2k ≤ 2kρ, implying that ρ > 1. By the definition of the Pearson correlation coefficient,
ρ ∈ [−1, 1], so this is impossible. This means that, however correlated the prediction errors are, it
is always in the interest of the individual participating players to cooperate. �

10.6 Real-world consequences
This implies that in the real world, it is beneficial for the owners of differing types of renewable
energy sources to cooperate by jointly performing a prediction of the energy production levels of
their devices. In Section 9.1 we pointed out that cooperation is often beneficial for the same types
of renewable energy sources (when their standard deviations of the prediction error distributions
are exactly the same, which is, admittedly, unlikely). The results above moreover show that
cooperation is also beneficial when the standard deviations of the prediction errors are unequal to
one another. This means that we can combine multiple technologies, like solar panels and wind
mills, which differ in the accuracy with regards to their predictions of their production levels.
Furthermore, we demonstrated that cooperation also yields benefits when the error distributions
are correlated. The correlations have been determined on the basis of experiments, as can be seen
in Section IV.B of [11] and citations therein. They have been calculated for different combinations
of resources, such as wind and solar energy, and wind and wave energy. The positive ascertainment
we can make is that the value of the Pearson correlation coefficient does not matter and thus that
cooperation between any combination of renewable energy sources is always beneficial.
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11 Three players

So far, we have only focused on the situation in which two players participate in the energy produc-
tion prediction game. It is rather restrictive, however, to confine oneself to this setting. Instead,
it is plausible that more than two players wish to participate to reap the benefits of cooperation.
In the forthcoming (sub)sections, we will show that is possible that three players cooperate. We
will compute the core and the Shapley value for this type of this game. Additionally, we prove
that for the 3-player game, the Shapley value is an element of the core, too. We allow the standard
deviations to be (possibly) unequal to one another, but uncorrelated. This means, that we have
σ2 = k1σ1 = k1σ, and σ3 = k2σ1 = k2σ.

11.1 The core
Recall that in Lemma 5.0.1, we showed that the core amounts to

C(N,α) =
{
p ∈ ∆∗(N) |

∑
i∈S

pi/αi(S,N, 1) ≥ 1 for all S ⊂ N
}
.

For the cost game, the inequality signs are flipped.
This means that for a two-player game, the core is equal to the imputation set (as defined on page
3). In that situation (which has been the case so far), we only need to consider two inequalities to
determine both the imputation set and the core. In the three-player variant of the game, however,
things become slightly more complicated. The core is more complicated than the imputation set.
The costs are as follows:

R(S) =



|P1| if S = {1}
|P2| if S = {2}
|P3| if S = {3}
|P1 + P2| if S = {1, 2}
|P1 + P3| if S = {1, 3}
|P2 + P3| if S = {2, 3}
|P1 + P2 + P3| if S = {1, 2, 3},

where, P1 ∼ N(0, σ2), P2 ∼ N(0, k2
1 · σ2), and P3 ∼ N(0, k2

2 · σ2).
We will now compute the core, in case all players have expectational preferences.

Proposition 11.1.1 Assume that three players play variant B of the energy production prediction
game. Then

C(N,α) =



p ∈ ∆∗(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 ≤ 1√
1+k21+k22

p2 ≤ k1√
1+k21+k22

p3 ≤ k2√
1+k21+k22

p1 + p2 ≤
√

1+k21
1+k21+k22

p1 + p3 ≤
√

1+k22
1+k21+k22

p2 + p3 ≤
√

k21+k22
1+k21+k22



.

Proof Using Lemma 5.0.1, we have

p1 ≤ α1({1}, N, 1) =
E(|P1|)

E(|P1 + P2 + P3|)

=
σ
√

2
π

σ
√

1 + k2
1 + k2

2

√
2
π

=
1√

1 + k2
1 + k2

2

.
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In a similar manner, we find p2 ≤ α2({2}, N, 1) = k1√
1+k21+k22

and p3 ≤ α3({3}, N, 1) = k2√
1+k21+k22

.

These are the inequalities associated with the singletons {1}, {2}, and {3}.

When we take into consideration the inequality associated with the set S = {1, 2}, we obtain∑
i∈{1,2}

pi/αi({1, 2}, N, 1) =
p1

α1({1, 2}, N, 1)
+

p2

α2({1, 2}, N, 1)
≤ 1.

As both players have expectational preferences, we obtain

∑
i∈{1,2}

pi/αi({1, 2}, N, 1) =
p1(

E(|P1+P2|)
E(|P1+P2+P3|

) +
p2(

E(|P1+P2|)
E(|P1+P2+P3|)

)
= p1

E(|P1 + P2 + P3|)
E(|P1 + P2|)

+ p2
E(|P1 + P2 + P3|)

E(|P1 + P2|)

= (p1 + p2)
E(|P1 + P2 + P3|)

E(|P1 + P2|)
≤ 1.

This implies that

p1 + p2 ≤
E(|P1 + P2|)

E(|P1 + P2 + P3|)

=
σ
√

1 + k2
1

√
2
π

σ
√

1 + k2
1 + k2

2

√
2
π

=

√
1 + k2

1

1 + k2
1 + k2

2

.

Analogously, we find p1 + p3 ≤
√

1+k22
1+k21+k22

and p2 + p3 ≤
√

k21+k22
1+k21+k22

.
This completes the proof. �

11.2 The Shapley value
Next, we will show that the Shapley value is an element of the core. In order to verify this, we
first need to compute the Shapley value for a three-player game. Recall that in Subsection 10.1,
the Shapley value was defined in the context of stochastic cooperative games. We will follow the
procedure for finding the Shapley value as given in that subsection. This leads us to the following
proposition:

Proposition 11.2.1 For a three-player energy production prediction game of variant B with σ2 =
k1σ1 = k1σ and σ3 = k2σ1 = k2σ, the Shapley value is given by

φ(α) =
1

6
√

1 + k2
1 + k2

2

(
2 +

√
1 + k2

1 +
√

1 + k2
2 + 2

√
1 + k2

1 + k2
2 − 2

√
k2

1 + k2
2 − k1 − k2,

2k1 +
√
k2

1 + 1 +
√
k2

1 + k2
2 + 2

√
1 + k2

1 + k2
2 − 2

√
1 + k2

2 − 1− k2,

2k2 +
√
k2

2 + 1 +
√
k2

2 + k2
1 + 2

√
1 + k2

1 + k2
2 − 2

√
1 + k2

1 − 1− k1

)
.

Proof We first calculate the marginal contribution vectors yσ(α), where yσσ(i) is the marginal
contribution of the ith player according to the bijection σ. We start with σ = (1, 2, 3).
We have yσσ(1)(α) = yσ1 (α) = 1. In this case, we have Sσ1 = {1}. Since σ(2) = 2, we find Sσ2 = {1, 2}.
Therefore,
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yσσ(2)(α) = yσ2 (α)

= 1− ασ(1)(S
σ
1 , S

σ
2 , y

σ
σ(1)(α))

= 1− α1({1}, N, 1)

= 1− E(|P1|)
E(|P1 + P2|)

= 1−
σ
√

2
π

σ
√

1 + k2
1

√
2
π

= 1− 1√
1 + k2

1

.

Next, σ(3) = 3 is added, and the coalition Sσ3 = {1, 2, 3} = N is formed. Thus,

yσσ(3) = yσ3 (α)

= 1−
2∑
k=1

ασ(k)(S
σ
k , S

σ
3 , y

σ
σ(k)(α))

= 1− α1

(
{1}, N, 1

)
− α2

(
{1, 2}, N, 1− 1√

1 + k2
1

)
= 1− 1√

1 + k2
1 + k2

2

−
(

1− 1√
1 + k2

1

)
· E(|P1 + P2|)
E(|P1 + P2 + P3|)

= 1− 1√
1 + k2

1 + k2
2

−
(

1− 1√
1 + k2

1

)( √
1 + k2

1√
1 + k2

1 + k2
2

)
= 1−

√
1 + k2

1√
1 + k2

1 + k2
2

.

This means that our first marginal contribution vector is given by

y(1,2,3)(α) =
(

1, 1− 1√
1 + k2

1

, 1−
√

1 + k2
1√

1 + k2
1 + k2

2

)
.

Analogously, we can compute all of the other marginal contribution vectors for the other bijections.
We state the results without going through all of the corresponding calculations (the calculation
of the first marginal contribution vector is deemed sufficient). They’re given by:

y(1,3,2)(α) =
(

1, 1−
√

1 + k2
2√

1 + k2
1 + k2

2

, 1− 1√
1 + k2

2

)
,

y(2,1,3)(α) =
(

1− k1√
1 + k2

1

, 1, 1−
√

1 + k2
1√

1 + k2
1 + k2

2

)
,

y(2,3,1)(α) =
(

1−
√
k2

1 + k2
2√

1 + k2
1 + k2

2

, 1, 1− k1√
k2

1 + k2
2

)
,

y(3,1,2)(α) =
(

1− k2√
1 + k2

2

, 1−
√

1 + k2
2√

1 + k2
1 + k2

2

, 1
)
,

y(3,2,1)(α) =
(

1−
√
k2

1 + k2
2√

1 + k2
1 + k2

2

, 1− k2√
k2

1 + k2
2

, 1
)
.

Next, we calculate the marginal vectors. We calculate the marginal vector m(1,2,3)(α). We obtain
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mσ
σ(1)(α) = mσ

1 (α)

= α1(Sσ1 , N, y
σ
1 (α))

= α1({1}, N, 1)

=
1√

1 + k2
1 + k2

2

.

In addition,

mσ
σ(2)(α) = mσ

2 (α)

= α2(Sσ2 , N, y
σ
2 (α))

= α2

(
{1, 2}, N, 1− 1√

1 + k2
1

)
=
(

1− 1√
1 + k2

1

)( √
1 + k2

1√
1 + k2

1 + k2
2

)
=

√
1 + k2

1√
1 + k2

1 + k2
2

− 1√
1 + k2

1 + k2
2

.

Finally, we derive:

mσ
σ(3) = mσ

3 (α)

= α3(Sσ3 , N, y
σ
3 (α))

= α3

(
N,N, 1−

√
1 + k2

1√
1 + k2

1 + k2
2

)
= 1−

√
1 + k2

1√
1 + k2

1 + k2
2

.

Thus, our first marginal vector is given by

m(1,2,3) =

(
1√

1 + k2
1 + k2

2

,

√
1 + k2

1√
1 + k2

1 + k2
2

− 1√
1 + k2

1 + k2
2

, 1−
√

1 + k2
1√

1 + k2
1 + k2

2

)
=

1√
1 + k2

1 + k2
2

(
1,
√

1 + k2
1 − 1,

√
1 + k2

1 + k2
2 −

√
1 + k2

1

)
.

Performing the same calculations with the other bijections enables us to find the other marginal
vectors, too. They are:

m(1,3,2) =
1√

1 + k2
1 + k2

2

(
1,
√

1 + k2
1 + k2

2 −
√

1 + k2
2,
√

1 + k2
2 − 1

)
,

m(2,1,3) =
1√

1 + k2
1 + k2

2

(√
1 + k2

1 − k1, k1,
√

1 + k2
1 + k2

2 −
√

1 + k2
1

)
,

m(2,3,1) =
1√

1 + k2
1 + k2

2

(√
1 + k2

1 + k2
2 −

√
k2

1 + k2
2, k1,

√
k2

1 + k2
2 − k1

)
,

m(3,1,2) =
1√

1 + k2
1 + k2

2

(√
1− k2

2 − k2,
√

1 + k2
1 + k2

2 −
√

1 + k2
2, k2

)
,

m(3,2,1) =
1√

1 + k2
1 + k2

2

(√
1 + k2

1 + k2
2 −

√
k2

1 + k2
2,
√
k2

1 + k2
2 − k2, k2

)
.

Therefore, the Shapley value if given by
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φ(α) =
1

n!

∑
σ∈Π(N)

mσ(α)

=
1

3!

(
m(1,2,3) +m(1,3,2) +m(2,1,3) +m(2,3,1) +m(3,1,2) +m(3,2,1)

)
=

1

6
√

1 + k2
1 + k2

2

(
2 +

√
1 + k2

1 +
√

1 + k2
2 + 2

√
1 + k2

1 + k2
2 − 2

√
k2

1 + k2
2 − k1 − k2,

2k1 +
√
k2

1 + 1 +
√
k2

1 + k2
2 + 2

√
1 + k2

1 + k2
2 − 2

√
1 + k2

2 − 1− k2,

2k2 +
√
k2

2 + 1 +
√
k2

2 + k2
1 + 2

√
1 + k2

1 + k2
2 − 2

√
1 + k2

1 − 1− k1

)
,

as desired. �

Now that we have characterized both the core and the Shapley value for the three-player game,
we are ready to prove the following proposition:

Proposition 11.2.2 Assume that three players play variant B of the energy production game, and
σ2 = k1σ1 and σ3 = k2σ1 = k2σ. Then φ(α) ∈ C(N,α).

Proof First note that the Shapley value is efficient by Lemma 10.1.1. Furthermore, to prove
the above statement, we need to verify that the Shapley value satisfies all six inequalities that
characterize the core of this game , cf. Proposition 11.1.1. Let’s start by proving the first inequality.
This entails proving that

p1 =
2 +

√
1 + k2

1 +
√

1 + k2
2 + 2

√
1 + k2

1 + k2
2 − 2

√
k2

1 + k2
2 − k1 − k2

6
√

1 + k2
1 + k2

2

≤ 1√
1 + k2

1 + k2
2

,

which – with a bit of basic algebra – is equivalent to the inequality

√
1 + k2

1 +
√

1 + k2
2 + 2

√
1 + k2

1 + k2
2 ≤ 4 + k1 + k2 + 2

√
k2

1 + k2
2

= (1 + k1) + (1 + k2) + 2(1 +
√
k2

1 + k2
2).

We have re-arranged the right-hand side in order to clarify the validity of the inequality by applying
the triangle inequality:

√
1 + k2

1 ≤ 1 + k1√
1 + k2

2 ≤ 1 + k2

2
√

1 + k2
1 + k2

2 ≤ 2(1 +
√
k2

1 + k2
2).

Adding these together gives us the verification we need.

We can follow a similar procedure the prove that the second and third inequalities characterizing
the core hold. We therefore skip these and move to inequalities four, five, and six. For these
inequalities, we construct another procedure. This procedure was inspired by an insight by Fedor
Petrov [18].

We focus on the sixth (and last) inequality of the core. This is the inequality for p2 + p3. It
boils down to proving that

4
√
k2

1 + k2
2 + 1− 4

√
k2

1 + k2
2 ≤

√
k2

1 + 1− k1 +
√
k2

2 + 1− k2 + 2

is true for all k1, k2 ∈ R>0. To this end, we define f(x) :=
√
x+ 1 −

√
x. By computing the

derivative, we see that f ′(x) = 1
2 ( 1√

x+1
− 1√

x
) < 0 for all x > 0, which means that f is decreasing
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for x > 0.
This means, that the following three inequalities hold:

f(k2
1 + k2

2) ≤ f(k2
1),

f(k2
1 + k2

2) ≤ f(k2
2),

2f(k2
1 + k2

2) ≤ 2f(0).

Adding these terms together yields 4f(k2
1 + k2

2) ≤ f(k2
1) + f(k2

2) + 2f(0). In other words,

4
√
k2

1 + k2
2 + 1− 4

√
k2

1 + k2
2 ≤

√
k2

1 + 1− k1 +
√
k2

2 + 1− k2 + 2,

which is what we needed to prove.
Analogously, we can prove the fourth and fifth inequalities of the core by defining the functions
g(x) :=

√
x+ k2

2 −
√
x and h(x) :=

√
x+ k2

1 −
√
x, respectively. If we follow the same procedure

as the one above, the result follows. �
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12 Optimal coalitions

In Section 9.1, we explained that cooperation gets increasingly beneficial between players for which
the correlation coefficient of their prediction error is as small as possible. As the value of this
correlation coefficient is inversely correlated with the distance between the renewable energy sources
(up to about 600 kilometers), the further they are removed from one another, the more beneficial
it is for them to cooperate.

It would be interesting to see just how much the players can save on their prediction error
costs. This is probably best illustrated by means of an example. Consider the simplified, two-player
case with σ1 = σ2 = σ, ρ = 0 and both have expectational preferences. Recall that in Proposition
6.1.2, we found that the core is C(N,α) = {p ∈ ∆∗(N) | p1 ≤

√
2

2 ≈ 0.707, p2 ≤
√

2
2 ≈ 0.707}. In

Proposition 10.4.2 we also showed that the Shapley value is an element of the core. For our case,
this amounts to φ(α) = ( 1

2 ,
1
2 ).

This means that the percentual decrease of the costs per player is −
(

0,5−0,707
0,707

)
× 100% =

29, 3%. This is already quite a substantial decrease of the costs!
We can also look at the three-player case. Again, we suppose σ1 = σ2 = σ. It follows from

Proposition 11.1.1 that the core in this case is C(N,α) = {p ∈ ∆∗(N) | p1 ≤ 1√
3
, p2 ≤ 1√

3
, p3 ≤

1√
3
, p1 + p2 ≤

√
2
3 , p1 + p3 ≤

√
2
3 , p2 + p3 ≤

√
2
3}. So p1 ≤ 1√

3
=
√

3
3 ≈ 0.577. Proposition

11.2.1 implies φ(α) = ( 1
3 ,

1
3 ,

1
3 ). Compared to the costs to be paid when an individual player

does not cooperate with any other player, the costs decrease by −
(

0.333−0.577
0,577

)
× 100% = 42.3%.

Compared to the case in which two players cooperate, the three-player variant is 42.3%−29.3% = 13
percentage points cheaper.

These are the simple, albeit a bit unrealistic cases. In reality, the deviations of the prediction
error distributions are often not equal to one another. Furthermore, the predictions are often
correlated. We can calculate the benefits per owner of a renewable energy source in any specific
case we wish, thanks to the analysis of on unequal standard deviations (Section 10) and correlated
prediction errors (Section 9). Again, it could be instructive to look at an example.

Consider the case of renewable energy cooperatives in the Netherlands. Renewable energy
cooperatives are citizen-led initiatives in which renewable energy sources are collectively purchased
and the produced energy is sold. These renewable energy cooperatives are spread all across the
Netherlands (and other countries). In some municipalities, there are wind energy cooperatives. In
others, there a solar energy cooperatives. Some municipalities even have both. Sometimes, these
cooperatives are not separate, but they have both wind mills and solar panels. Of course, there
are also municipalities in which there is not a single renewable energy cooperative present.

Let’s focus on the wind cooperatives first. The following map was made based on data collected
by the renewable energy cooperatives research center Hier Opgewekt [21]. It shows all municipalities
in which a wind energy cooperative is located.
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Figure 9: Municipalities in which a wind cooperative was either realised by the end of 2016, planned
in 2017, or in preparation in 2017.

If, for whatever reason, only two cooperatives are allowed to cooperate, then by Section 9.1 it
would be most beneficial for both players to be as far away from each other as possible. In the case of
the wind energy cooperatives, it would be best if the cooperative from the municipality Veere (in the
South-West corner of the province Zeeland) called “Zeeuwing/Mattenhaven”, would cooperate with
the cooperative from Eemsmond (in the North of the province Groningen). The latter cooperative
is called “Kantens/2 EAZ”. Let’s call these cooperatives “Zeeuwing” and “Kantens”, respectively, for
convenience. As the crow flies, the distance between Veere and Eemsmond is about 290 kilometers.
According the graph by Focken et al., shown in Section 9.1, the cross-correlation coefficient is about
0, 1 for the 6-hour prediction error for this distance. Furthermore, both are wind cooperatives. The
prediction techniques are probably not very different, and therefore one is supposedly not much
more precise than the other. We can therefore assume that 0.8 ≤ k ≤ 1.2. Let’s choose k = 1.2.
In Proposition 10.5.2, we pointed out that the core in the case of unequal standard deviations and
non-zero correlation coefficients is

C(N,α) =

{
p ∈ ∆∗(N) | p1 ≤

1√
1 + k2 + 2kρ

, p2 ≤
k√

1 + k2 + 2kρ

}
.

Plugging in the values we deduced above for this case, we see

C(N,α) =
{
p ∈ ∆∗(N) | p1 ≤ 0, 611, p2 ≤ 0, 733

}
.

In Proposition 10.5.1, we also obtained an expression for the Shapley value, which is:

φ(α) =

(
1

2
+

1− k
2
√

1 + 2kρ+ k2
,

1

2
+

k − 1

2
√

1 + 2kρ+ k2

)
.

When we again plug in the values for k and ρ we deduced above, we obtain

φ(α) =
(
0.439 , 0.561

)
.

This means that for player 1 and player 2, the percentual decrease in costs amount to−
(

0.439−0.611
0.611

)
×

100% ≈ 28.1% and −
(

0.561−0.733
0.733

)
× 100% ≈ 23.5% respectively. Note that the more accurate

player (the one with the lower standard deviation) is rewarded a higher percentual cost decrease
than the more inaccurate one.
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13 Directions for further research

In this thesis, we have characterized the core and the Shapley value for two-player (which we
analyzed for two variants) and three-player energy prediction games. We allowed for non-equal
standard deviations and dependent prediction error distributions. We showed that for these cases
and appropriate values of the correlation coefficient, the Shapley value is an element of the core.
Furthermore, we characterized the core for different von-Neumann-Morgenstern preferences and
for both expectational and quantile preferences, all within the framework of stochastic cooperative
game theory as laid out by [6].

An obvious way to extend our research is to take into account more than three players. We
strongly suspect that the core is non-empty for any amount of players that participate. Further-
more, we believe that the associated Shapley value is an element of the core.

Furthermore, different assumptions on the underlying distributions of the prediction error can
be taken into account for the calculations. Throughout this thesis, we have assumed that it is
a normal distribution with µ = 0 and some value σ > 0. This implies that the associated cost
distribution is half-normal. However, experimental data suggests that, although it is close to zero,
µ 6= 0. Therefore, the associated cost distribution is not half-normal. The half-normal distribution
is a special case of the so-called “Folded normal distribution” when µ = 0. However, when µ 6= 0,
we obtain different values for the expectation and the quantiles of the random variable. Thus, the
core and the Shapley value change, too. We can even discard the assumption that the normalized
prediction error is normally distributed at all. As we mentioned in Section 6, the hyperbolic
distribution is a more accurate representation of the prediction error. Taking this fact into account
would complicate matters even further, but at the same time it would make the description of the
energy prediction game more accurate.

In addition, it can be verified whether other properties and concepts of stochastic cooperative
game theory can be applied to the energy prediction game. In [6], Timmer et al. describe different
notions of convexity. One can try to prove or disprove whether the energy prediction game is
marginal convex, individual-merge convex, or coalitional-merge convex. Another property that
can be checked is superadditvity.

Furthermore, the theory of stochastic cooperative game theory itself can be extended, after
which it can be applied to energy prediction problems (among other things). For instance, the
notion of the nucleolus has not been defined within the framework of Timmer et al. [6]. It has
only been described [22] for the version of stochastic cooperative game theory as laid out by Suijs
et al. [23]. Another solution concept that can be useful in this context is the Aumann-Shapley
value. It can give a description of the Shapley value for energy prediction games in which a very
large number of players participate. The Aumann-Shapley value can give an approximation of the
“regular” Shapley value in this case, as it describes the asymptotic behaviour of the Shapley value
for an infinite amount of players.
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14 Appendix

14.1 Appendix A
In Subsection 4.1, we introduced the notion of preferences for stochastic payoffs (or costs). For
Example 1.1, it is intuitively clear why a player would prefer stochastic variable X over Y when
E(X) ≥ E(Y ).

For Example 1.2, however, things are less obvious. Below, we will explain the notion of
quantile preferences in a bit more detail.

Interpretation

Let us consider the situation of a profit game. First of all, the value of βi that player i chooses
is related to the way it approaches risk. When it chooses a low value, the player is seeking to
determine which random variable has the highest quantile at this low value of βi. Since the value
of βi is low, player i can’t expect to make a lot of profit at this point. But it chooses the random
variable for which quantile for that value is the highest. So, in a sense, the player is maximizing
the minimum value of the random variable. In other words, it is optimizing a maxmin problem.
Therefore, players who choose a low value of βi are risk-averse players.

On the other hand, a player could also choose a high value of βi. In that case, the players
is optimizing for the random variable with the highest maximum quantile. So the player is, in a
sense, optimizing a maxmax problem. Such a player is deemed risk-seeking. It does not care much
for the lower possible quantiles of the random variable, even if they’re potentially very low.

In the cost game, the situation is reversed: high values for βi are associated with risk-averse
behavior, while low values correspond to risk-seeking.

14.2 Appendix B
The relationship between different notions of riskiness associated with different random variables
was more formally established by Rothschild and Stiglitz in [20]. According to them, there are (at
least) four plausible answers to the question: “When is a random variable Y ‘more variable’ than
another random variable X ?” Two of these answers are:

1. Every risk averter prefers X to Y . In Section 7, we elaborated on the so-called von-Neumann-
Morgenstern preferences. We explained that those players i with concave utility function
ui(X) are risk-averse players. Suppose X and Y have the same mean, but a risk-averse
player i prefers X to Y . In other words:

E(ui(X)) ≥ E(ui(Y )) for all concave functions ui(·).

(If the utility function is convex, the inequality sign flips). If this is the case, it is reasonable
to state that X is less risky than Y .

2. Random variable Y has more weight in the tails than X. Suppose that X and Y have density
functions fX(·) and gY (·) respectively, and that gY (·) was obtained from fX(·) by removing
some of the probability weight from the center of gY (·) and adding it to the tails of fX(·) in
such a way that its mean remains unchanged. Then it would be fair to say that X is less
uncertain than Y .

Rothschild and Stiglitz prove in their paper that these two (and one other) notions of riskiness are
equivalent to another. We will not repeat nor analyze their proof, which is Theorem 2 of their
article. We do point out, however, that the equivalence of these two characterizations provides us
with a useful framework within which we can interpret the von-Neumann-Morgenstern preferences.
We now see that, if a risk-averse player can choose between stochastic payoffs X and Y with the
same mean, it would choose the one with the least weight in the tails. So a risk-averse player would
choose stochastic payoff X, because the expected utility it derives from it is highest in that case.
However, a risk-seeking player would choose Y , because there is more weight in the tails. So there
is a bigger chance the risk-seeking player would make more profits, although there is an equally
big chance it would make less profits. Equivalently, the expected utility of the risk-seeking player
is more for the random variable Y than for X.
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