
Optimal routing algorithms: A flow-based approach and speed-up
techniques for static networks
Laan, J.S. van der

Citation
Laan, J. S. van der. (2017). Optimal routing algorithms: A flow-based approach and speed-
up techniques for static networks.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597015

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597015

J.S. van der Laan

Optimal Routing Algorithms
A flow-based approach and speed-up techniques for static

networks

Master’s thesis

Supervisor: Dr. F.M. Spieksma

Date of exam: 29 November 2017

Mathematisch Instituut, Universiteit Leiden

Optimal Routing Algorithms
A flow-based approach and speed-up techniques for static networks

Student name: J.S. van der Laan
Student ID: s1281321

Master program: Mathematics
Specialisation: Applied Mathematics

Department: Mathematisch Instituut,
Universiteit Leiden

Date: November 23, 2017

Supervisor: Dr. F.M. Spieksma

Abstract

Many practical optimisation problems can be formulated as a traffic as-
signment problem, i.e. optimally route a multi-commodity flow through
a network. In order to do this, a network is defined that can capture
congestion and a notion of optimal flow. The shortest path problem is
derived as a sub-problem of the traffic assignment problem, discussing
several algorithms that can solve it. In addition, several speed-up tech-
niques for the shortest path problem are described that can be applied to
static networks. In conclusion, an algorithm is discussed that solves the
traffic assignment problem by iteratively solving a shortest path problem.

Contents

Introduction 4

1 Preliminaries 5

2 Shortest Paths 8
2.1 Problem definition . 8
2.2 Labelling Algorithms . 8

2.2.1 The Bellman-Ford algorithm [2, 10] 10
2.2.2 Dijkstra’s algorithm [8] 10

2.3 Bidirectional Dijkstra . 12
2.4 The Primal-Dual Algorithm . 14

2.4.1 The classic Primal-Dual Algorithm 16
2.4.2 Application to the shortest path problem 18

3 Speed-up techniques 21
3.1 Goal directed techniques . 21

3.1.1 Geometric Containers [33] 21
3.1.2 A* search and ALT . 22
3.1.3 Arc Flags [16] . 24
3.1.4 Precomputed Cluster Distances (PCD) [22] 25

3.2 Hierarchy-Based Methods . 26
3.2.1 Contraction . 27
3.2.2 Reach-Based Routing [14] 28
3.2.3 Graph Separators . 29

3.3 Table look-up techniques . 31
3.3.1 Compressed Path Databases (CPD) 31
3.3.2 Hub Labelling (HL) [3] 32
3.3.3 Transit Node Routing (TNR) [1] 32

3.4 Combining speed-up techniques 32
3.4.1 Shortcuts + Reach + ALT 33
3.4.2 TNR + Arc Flags . 33

3.5 Discussion . 34
3.5.1 Path Construction . 34
3.5.2 Dynamic Graphs . 34
3.5.3 Multi commodity . 35

4 Flows 36
4.1 Traffic assignment problem . 36
4.2 Computation of the UE . 39

Bibliography 42

3

Introduction

Routing a flow optimally through a network represents a remarkable amount of
practical problems, occurring in fields such as transportation, computer science,
operations research, chemistry and social science. Graphs are often used as the
mathematical representation of the networks to capture the abstract structure
of such optimisation problems. An impressive amount of research has been
done on graphs and optimisation related problems, resulting in numerous algo-
rithms that solve the optimal routing problem. This thesis contains an assembly
of some interesting algorithms that depicts the variety in approaches and the
mathematical elegance that intertwines them.

Chapter 1 states the necessary notation and definitions to create the ab-
stract framework that is used throughout this thesis. The definition of a multi-
commodity flow and a notion of optimality leads to the routing problem that is
referred to as the traffic assignment problem.

Chapter 2 derives the shortest path problem as a sub-problem of the traffic
assignment problem. Other research on the shortest path problem does, in gen-
eral, not have a flow-based framework. In this thesis, the flow-based framework
is chosen deliberately to emphasise the similarity of the two problems and will
lead directly to a linear program that is then solved by the classic Primal-Dual
Algorithm. Furthermore, a generic labelling algorithm is given, from which
the two well-known Bellman-Ford and (Bidirectional) Dijkstra algorithms are
obtained.

When networks are static, in the sense that many shortest path queries are
made without changing the network, information can be retrieved in advance.
This information can then be used to improve the query-times. Several such
speed-up techniques are discussed in Chapter 3, including a surprising return
of the Primal-Dual Algorithm and a dominant use of the Bidirectional Dijkstra
algorithm.

A second notion of optimality will be introduced in Chapter 4, together with
a proof of equivalence concerning the first notion of optimality. In conclusion,
the optimal routing problem, with respect to the second notion, is solved by
the Frank-Wolfe algorithm. Applying the Frank-Wolfe algorithm shows that
the general routing problem can be solved by an iterative process of shortest
path computations, once again emphasising the mathematical elegance of the
subject.

4

1. Preliminaries

This chapter will introduce the notation and definitions that will be used.
Let G = (V,A) be a directed graph with |V | = n < ∞ vertices and |A| =

m <∞ edges, where au,v := (u, v) ∈ A is a directed edge from u ∈ V to v ∈ V .
The considered graphs are non-empty, connected and without multiple edges
with the same direction between two nodes.

Define a set of source nodes, S ⊆ V , and a set of target nodes, T ⊆ V . The
pairs (s1, t1), . . . , (sk, tk), for si ∈ S and ti ∈ T , are called origin-destination
pairs (O-D pairs). The set of O-D pairs does not necessarily contain all possible
s-t pairs, with s ∈ S and t ∈ T . Every O-D pair (si, ti), for i ∈ {1, . . . , k}, has
a set of possible paths from si to ti, denoted by Pi.
Assumption 1.0.1. We only consider O-D pairs for which Pi 6= ∅. In other
words, there always exists at least one path that connects si to ti, for every
O-D pair (si, ti), with i ∈ {1, . . . , k}.

Furthermore, define P :=
⋃k
i=1 Pi. To each path P ∈ P we associate a path

flow fP ∈ [0,∞). The flow f on a graph is the collection of all path flows fP ,
for P ∈ P, i.e. f =

⋃
P∈P fP . The flow on a single edge a ∈ A is given by

fa =
∑
P∈P

δaP fP , where δaP :=

{
1, if a ∈ P
0, otherwise

. (1.0.1)

Note that fa is the amount of flow between all O-D pairs that passes through
the edge a, where fP only represents the flow on one path, for one O-D pair.
Also note that a flow f does not necessarily satisfy the usual flow conservation
property. See for example Figure 1.2.

Between each si-ti pair, a prescribed amount of flow has to be sent, denoted
by the flow rate (or demand) ri. The triple Ci := (si, ti, ri) is referred to as a
commodity, where C := {C1, . . . , Ck} is the set of all commodities.

Definition 1.0.2 (Feasible flow). A flow f is called feasible if, for each com-
modity Ci ∈ C, with i ∈ {1, . . . , k}, the following properties hold.

�

∑
P∈Pi

fP = ri,

� fP ≥ 0, for all P ∈ Pi.

Furthermore, every edge (u, v) = a ∈ A is assigned a non-negative, contin-
uous and non-decreasing weight function ca : R+ → R+, also denoted by cu,v,
mapping the amount of flow on the edge to the corresponding weight. This
weight function is an abstract quantity that can represent many features of an
edge. The function is non-decreasing to capture congestion on edges with higher
flow throughput. For a feasible flow f , the total weight of a path P is given by

cP (f) :=
∑
a∈P

ca(fa). (1.0.2)

The total weight of the flow f is given by

z(f) :=
∑
P∈P

cP (f)fP =
∑
a∈A

ca(fa)fa. (1.0.3)

5

v1 v2

v3 v4

1

1
2x2

x2

5

x2

Figure 1.1: A graph G
with edge weight functions
stated besides the edges.

v1 v2

v3 v4

2

1
2 1

2 2

1
2

Figure 1.2: A feasible flow
f for the graph G, given in
Figure 1.1.

A graph G, together with a set of commodities C and a weight function c, as
described above, define an instance GC,c. Note that such an instance can have
many different feasible flows.

The following is an example of an instance with assigned flow.

Example 1.0.3. Consider the graph given in Figure 1.1 together with the
commodities C1 := (v1, v4, 2) and C2 := (v2, v3, 1). The two O-D pairs (s1, t1) :=
(v1, v4) and (s2, t2) := (v2, v3) have path sets

P1 := {(v1, v3, v4), (v1, v2, v4), (v1, v2, v3, v4)} and

P2 := {(v2, v3), (v2, v4, v3)}

respectively.
A possible feasible flow f is given in Figure 1.2. For commodity C1, the flow

is sent along only one of the three possible paths. For commodity C2, the flow
is sent along all possible paths. This results in the following flow.

f(v1,v2,v4) = 2, f(v1,v3,v4) = 0, f(v1,v2,v3,v4) = 0, (1.0.4)

f(v2,v3) = 1
2 and f(v2,v4,v3) = 1

2 . (1.0.5)

Note that the flow on edge (v2, v4) is the sum of the flows along all paths, so
fav2,v4

= 2 1
2 .

Some thought reveals that changing the flow f to another feasible flow in G
will result in a higher total weight z(f). So, the flow f in Figure 1.2 is the flow
that minimises the total weight. This leads to the following definition.

Definition 1.0.4 (System optimum). Let GC,c be an instance. Then a flow f
is called the system optimum (SO) if it solves the problem

minimize z(f)

subject to
∑
P∈Pi

fP = ri, i ∈ {1, . . . , k}

fP ≥ 0, P ∈ P

. (1.0.6)

Finding such a flow is referred to as the traffic assignment problem.

6

Note that, although in practice often the case, the edges do not have a
capacity constraint. However, one could incorporate a capacity constraint by
assigning a weight function to an edge that is asymptotic at the desired capac-
ity. Minimising program (1.0.6) will then prevent the flow from exceeding the
capacity.

7

2. Shortest Paths

2.1 Problem definition

In this chapter we will formulate the shortest path problem using the notation
introduced in Chapter 1. Furthermore, several algorithms will be discussed that
can solve this problem.

We will formulate the shortest path problem as the problem of finding the
SO flow for a special instance GC,c. These special instances will be defined as
follows. Let S be a set of source nodes and T be a set of target nodes, with
the desired O-D pairs (s1, t1), . . . , (sk, tk), for which the shortest path must be
found. Let ri = 1, for all i ∈ {1, ..., k}, and let ca be a constant function1 of
the flow, for all a ∈ A. This way, only one unit of flow has to be sent between
the source and target node of the O-D pairs, without the effect of congestion.
Note that for O-D pair (si, ti) the unit of flow could, in general, be split between
more than one path. However, it is intuitively clear that all flow will be sent
along the path with minimal weight, and thus the shortest path between si and
ti. The weight of such a path is defined as the distance from si to ti, i.e.

dsi,ti := min
P∈Pi

cP . (2.1.1)

So, a shortest path problem comes down to finding the flow that solves (1.0.6)
for an instance as described above. This will implicitly give the shortest paths
between all O-D pairs.

Three main sub problems can be distinguished.

� S = V = T – All possible pairs of nodes are an O-D pair. This is referred
to as the all-pairs shortest path (APSP) problem.

� |S| = 1 – This is referred to as a single source shortest path (SSSP) prob-
lem. When considering an SSSP problem, we will always denote S := {s}.

� |S| = 1 = |T | – This is referred to as a point-to-point (P2P) shortest
path problem. When considering a P2P problem, we will always denote
S := {s} and T := {t}.

2.2 Labelling Algorithms

Two well-known algorithms that solve the SSSP problem (as well as the P2P
problem) are the Bellman-Ford algorithm and Dijkstra’s algorithm. These two
algorithms can both be seen as special cases of one generic labelling algorithm.

The labelling algorithm labels every node v ∈ V with the following two
values:

� d∗v – The tentative distance from s to v.

� pred(v) – The predecessor node of v on the shortest path from s to v.

1While considering a shortest path problem, the weight of an edge will be referred to as
ca, instead of ca(fa), since it is constant.

8

These values will be updated until d∗ti = ds,ti , for all O-D pairs (s, ti).
Initially s has tentative distance zero and no predecessor. For every other

node the tentative distance is set to ∞, also with no predecessor. During the
algorithm an edge (u, v) ∈ A is called tense if

d∗v > d∗u + cu,v. (2.2.1)

Let (u, v) ∈ A be tense. The stored tentative distance to v is incorrect, since d∗v
can be improved. The edge can be relaxed by updating the tentative distance
of v, in other words by putting

d∗v ← d∗u + cu,v. (2.2.2)

If there are no tense edges in the graph left, a shortest path tree from s is found
and the algorithm stops, since, for a shortest s-t path P , all edges (u, v) ∈ P
have

d∗v = ds,v = d∗u + cu,v. (2.2.3)

Remark 2.2.1. For all v ∈ V and at arbitrary time during the algorithm, we
have

d∗v ≥ ds,v (2.2.4)

The order in which the edges of the graph are relaxed is imposed by a Box

of vertices, which initially only contains source node s. A vertex is pulled from
the Box and all its outgoing tense edges are relaxed. After that, the vertex at
the end of a relaxed edge is put into the Box. Once the Box is empty, there are
no more tense edges and the shortest path tree is found. See Algorithm 1.

Algorithm 1 Generic Labelling algorithm

1: procedure GenericLabel-
ing(s)

2: Init(s);
3: Box← {s};
4: while Box 6= ∅ do
5: pull u from the Box;
6: for all (u, v) ∈ A do
7: if (u, v) tense then
8: Relax(u, v);
9: Box← Box ∪ {v};

10: end if
11: end for
12: end while
13: end procedure

function Init(s)
d∗s ← 0;
pred(s)← ∅;
for s 6= v ∈ V do

d∗v ←∞;
pred(v)← ∅;

end for
end function

function Relax(u, v)
d∗v ← d∗u + cu,v;
pred(v)← u;

end function

Note that the way vertices are pulled from the Box (Line 5 of Algorithm 1)
and stored inside the Box (Line 9 of Algorithm 1) is not made explicit. The
Bellman-Ford algorithm and Dijkstra’s algorithm use different implementations
of the Box, resulting in two algorithms that, at first glance, may occur as unre-
lated.

9

2.2.1 The Bellman-Ford algorithm [2, 10]

In the case of the Bellman-Ford algorithm, the Box is a queue with the first-in-
first-out (FIFO) property. After scanning2 vertex s, all shortest paths of length
one are found. After scanning all vertices that were queued while scanning s,
all shortest paths of length at most two are found and after |V | − 1 iterations
the algorithm has found all shortest paths of length at most |V | − 1. Lemma
2.2.2 shows that there always exists a shortest path with at most |V | − 1 edges.
Hence, after |V | − 1 times scanning all queued vertices, a shortest path from s
to every other nodes is found.

Moreover, |V | − 1 times scanning all queued vertices is equivalent to |V | − 1
times relaxing all tense edges in the graph. This results in the algorithm that
is often referred to as the Bellman-Ford(-Moore) Algorithm. See Algorithm 2.
The time complexity of this algorithm is, straightforwardly, O(nm).

Algorithm 2 The Bellman-Ford algorithm

1: procedure BellmanFord(s)
2: Init(s);
3: repeat |V | − 1 times
4: for all a ∈ A do
5: if a tense then
6: Relax(a);
7: end if
8: end for
9: end repeat

10: end procedure

Lemma 2.2.2. Let G = (V,A) be a directed graph with non-negative edge
weights ca. There exists a shortest path of at most |V | − 1 edges, between every
two nodes u, v ∈ V .

Proof. Let P = (u = p1, p2, . . . , p`+1 = v) be a shortest path with ` edges. If no
node is visited more than once, we have `+ 1 ≤ |V | and we are done. Suppose
p∗ is a node that is visited more than once. Let P ∗ be the subpath, from p∗ to
p∗ in P . Since the edge weights are non-negative, we have cP∗ ≥ 0. Now, let P̄
be the path P , where the subpath P ∗ is replaced by the single node p∗. Then
cP̄ ≤ cP , so cP̄ is also a shortest path. We can analogously replace all cycles by
the corresponding nodes. This way, no node is visited more than once and we
found the desired path of at most |V | − 1 edges.

2.2.2 Dijkstra’s algorithm [8]

If the Box in Algorithm 1 is implemented as a priority queue, denoted by Q, with
key d∗v, it is equivalent to Dijkstra’s algorithm. The priority queue is an abstract
data type which ensures that the element with highest priority, with respect to
the key, is on top and can be extracted in constant time. In our case, the node
with lowest tentative distance will have the highest priority. Every time a node
is pulled from or stored in the priority queue, it has to be reorganised to preserve

2Lines 6-11 of Algorithm 1 will be referred to as scanning vertex u.

10

this property. Despite the extra time that is needed to reorganise the queue,
this implementation has an important property: after scanning a node v, it can
be added to a set that represents the shortest path tree found so far, denoted
by T .3

Lemma 2.2.3 proves that T is indeed a shortest path tree. As a result, every
node only has to be scanned once. In the case of a P2P problem the algorithm
can thus be stopped after the target is added to T . Algorithm 3 states Dijkstra’s
algorithm for the P2P case. If the priority queue is implemented as Thorup’s
Fibonacci heap [32], this algorithm has a time complexity of O(n log log n+m).
Note that this is a better time complexity then that of Algorithm 2.

Algorithm 3 Dijkstra’s P2P algorithm

1: procedure Dijkstra(s, t)
2: Init(s);
3: Q, T ← {s};
4: while t /∈ T do
5: pull u from the top of Q;
6: for all (u, v) ∈ A do
7: if (u, v) tense then
8: Relax(u, v);
9: Q← Q ∪ {v};

10: end if
11: end for
12: T ← T ∪ {u};
13: end while
14: end procedure

Lemma 2.2.3. For every v ∈ T during Algorithm 3, d∗v = ds,v holds.

Proof. The following proof is by induction on |T |.

1. The tree T only grows, so |T | = 1 implies T = {s} and d∗s = ds,s = 0
holds.

2. Let u be the last vertex that was scannned and added to T and define
T ′ := T \ {u}. Assume

d∗v = ds,v, for all v ∈ T ′. (I.H.)

3. Let P be the shortest path from s to u. If d∗u = cP = ds,u, then we are
done. So, suppose

cP < d∗u. (2.2.5)

Let (x, y) ∈ A be the first edge of P such that x ∈ T ′ and y /∈ T ′ and
define Px the subpath of P from s to x. Then we have

cPx
+ cx,y ≤ cP (2.2.6)

3Note that T is, in fact, not a tree, but a set of nodes. However, a tree can be derived
with the edges (pred(v), v), for v ∈ T . Hence, it will be referred to as a tree.

11

s x t
2 2

3

~T

s x t
2 2

3

~T

Figure 2.1: Consider the graph G = ({s, x, t}, {(s, x), (x, t), (s, t)})
with cs,x = 2, cx,t = 2 and cs,t = 3. After two forward and two backward
iterations of Algorithm 4, we have ~T = {s, x} and ~T = {x, t}. The two
trees connect in node x, but s→ x→ t is not the shortest path.

and

d∗x + cx,y
(I.H.)

≤ cPx + cx,y. (2.2.7)

While scanning vertex x, y is relaxed, since they are adjacent. Thus,

d∗y ≤ d∗x + cx,y. (2.2.8)

Finally, we have
d∗u ≤ d∗y, (2.2.9)

since y /∈ T ′ and u is the vertex that is pulled after x. By combining
inequalities (2.2.5) through (2.2.9) a contradiction follows, which implies
that d∗u = ds,u.

Combining steps 1, 2 and 3 proves the lemma.

2.3 Bidirectional Dijkstra

When solving a P2P problem with a Dijkstra search, T is grown from the source
node s without any sense of ‘direction’ toward the target node t. The result is a
very large search area, i.e. a large number of scanned nodes. The bidirectional
Dijkstra search is a method that reduces the search area significantly. Instead
of one shortest path tree from s, a second shortest path tree is grown from the
target node t.

In order to do this, define ~A := {(v, u) | (u, v) ∈ A} as the set of backward

arcs and ~ca := ~ca as the backward weight of edge a ∈ ~A, for all a ∈ ~A. Every
other backward quantity is defined by replacing the edges and weights by the
backward edges and backward weights, respectively. Algorithm 4 states the
bidirectional Dijkstra algorithm.

It is important to note that, once the two trees connect, say in node x ∈ V ,
then a shortest s-t path can be found. However, Figure 2.1 shows that this path
does not necessarily contain x. Using Lemma 2.3.1, it follows that

ds,t = min
v∈~T ∪ ~T

(
~d∗v + ~d∗v

)
. (2.3.1)

So, after the stopping criterion (Line 3 of Algorithm 4) is met, (2.3.1) will state
the shortest path.

Lemma 2.3.1. If ~T ∩ ~T 6= ∅, then there exists v ∈ ~T ∪ ~T with ~d∗v + ~d∗v = ds,t.

12

Algorithm 4 Bidirectional Dijkstra

1: procedure BidirDijkstra(s, t)
2: InitBidir(s, t);

3: while ~T ∩ ~T = ∅ do
4: if Choose(~Q, ~Q) = ~Q then

5: pull u from the top of ~Q;
6: ~T ← ~T ∪ {u};
7: for all (u, v) ∈ ~A do
8: if (u, v) tense then

9:
−−−−→
Relax(u, v);

10: ~Q← ~Q ∪ {v};
11: end if
12: end for
13: else
14: pull u from the top of ~Q;
15: ~T ← ~T ∪ {u};
16: for all (u, v) ∈ ~A do
17: if (u, v) tense then

18:
←−−−−
Relax(u, v);

19: ~Q← ~Q ∪ {v};
20: end if
21: end for
22: end if
23: end while
24: end procedure

function InitBidir(s)
~d∗s,

~d∗t ← 0;
pred(s), succ(t)← ∅;
~Q, ~T ← {s};
~Q, ~T ← {t};

for v ∈ V, v 6= s do
~d∗v ←∞;
pred(v)← ∅;

end for
for v ∈ V, v 6= t do

~d∗v ←∞;
succ(v)← ∅;

end for
end function

13

Proof. Let x ∈ ~T ∩ ~T be the node that connects the two trees.
First, consider a shortest s-t path P with at least one node y /∈ ~T ∪ ~T . Define

subpaths Ps→y, Py→t from s to y and y to t, respectively. Since x ∈ ~T and

y /∈ ~T , we have ds,x = d∗x ≤ cPs→y
. Analogously, dx,t ≤ cPy→t

. So, it follows
that

ds,t = cP = cPs→y + cPy→t ≥ ds,x + dx,t = ~d∗x + ~d∗x. (2.3.2)

Since P is a shortest s-t path, we have ~d∗x + ~d∗x = ds,t and the claim holds.
Now, consider any shortest s-t path P ′ = (s = v1, v2, . . . , v` = t). Let i such

that vi is the last node in P ′ that also is in ~T . If vi+1 /∈ ~T , we have vi+1 /∈ ~T ∪ ~T
and thus ~d∗x + ~d∗x = ds,t, as proven above. So, assume vi+1 ∈ ~T . Because vi ∈ ~T
and vi+1 ∈ ~T , we have (Lemma 2.2.3) ~d∗vi = ds,vi and ~d∗vi+1

= dvi+1,t. So

ds,t = ds,vi + cvi,vi+1 + dvi+1,t = ~d∗vi + cvi,vi+1 + ~d∗vi+1
. (2.3.3)

When vi+1 was added to ~T , vi was relaxed, ensuring that

dvi,t ≤ ~d∗vi ≤ ~d∗vi+1
+ cvi,vi+1

(2.3.4)

Substituting (2.3.4) into (2.3.3) results in

ds,t = ~d∗vi + cvi,vi+1
+ ~d∗vi+1

≥ ~d∗vi + ~d∗vi ≥ ds,vi + dvi,t = ds,t. (2.3.5)

Hence, the inequalities of (2.3.5) are equalities, resulting in ~d∗vi + ~d∗vi = ds,t,
which proves the claim.

Using Lemma 2.3.1 in Figure 2.1, we find that ~T ∪ ~T = {s, x, t} and ~d∗v+ ~d∗v =
ds,t, for either v = s or v = t.

The Choose function in Line 4 of Algorithm 4 can be specified in different
ways.

� Always choose ~Q – This results in a standard Dijkstra search.

� Always choose ~Q – This results in a standard Dijkstra search from t in ~G.

� Alternate between ~Q and ~Q – This results in the Dantzig procedure [4].

� Choose the queue with minimal tentative distance – This results in the
Nicholson procedure [24].

It is not clear from the literature which of the latter two achieves the best
performance.

2.4 The Primal-Dual Algorithm

An alternative way to solve a P2P problem can be found by taking a closer look
at Definition 1.0.4. Note that f is an SO, only if it solves (1.0.6) and, more
importantly, if f is a flow. Reformulating problem (1.0.6) in terms of decision
variables fa and adding flow constraints results in a linear program that solves
the shortest path problem.

14

The linear program will minimise the total weight

z(f) =
∑
a∈A

ca(fa)fa =
∑
a∈A

cafa, (2.4.1)

while preserving the flow conservation4 in every node. The flow rate of the O-D
pair (s, t) is equal to 1, since we consider a shortest path instance. So, in order
for f to be feasible, the following constraints apply.

∑
u∈V

fau,v
−
∑
u∈V

fav,u
=

 +1 if v = s
−1 if v = t

0 if v ∈ V \ {s, t}
(2.4.2)

The LHS of (2.4.2) can be written as the product Mf , where f is the vector
f = (fa1 , . . . , fam) and M = (mij) is the (n ×m) node-edge incidence matrix
of G, defined by

mij =

 +1 if edge aj leaves node i
−1 if edge aj enters node i

0 otherwise
, for

i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} . (2.4.3)

So, the primal linear program that solves the shortest path problem is given by

minimise z(f) =
∑
a∈A

cafa

subject to mvf =

 +1 if v = s
−1 if v = t

0 otherwise

fa ≥ 0, a ∈ A,

(SP-P)

where mv is the v-th row of M . Note that the |V | equalities in the primal
(SP-P) are redundant, since flow conservation in |V | − 1 nodes implies the flow
conservation in the last node. Hence, any one of the equalities can be left out.

The dual of primal (SP-P) will have the constraints Maπ ≤ ca, for all a ∈ A,
where Ma is defined as the a-th column of the matrix M . Because of the way
the matrix M is defined, this reduces to πu − πv ≤ cu,v for all (u, v) ∈ A. By
leaving out the equality of row t of primal (SP-P), we may take πt = 0. So the
dual of the shortest path problem is then given by

maximise πs

subject to πu − πv ≤ cu,v, (u, v) ∈ A
πv ≶ 0, v ∈ V

. (SP-D)

Because the shortest path problem can be formulated as a linear program,
there is a broad spectrum of algorithms that can solve it. Below we will discuss
the Primal-Dual Algorithm. The Primal-Dual Algorithm is a general LP solving
algorithm that works particularly well on network related problems. First we
will discuss the classic Primal-Dual Algorithm, after which we will apply it to
the primal-dual pair (SP-P) and (SP-D).

4Note that, for a P2P instance, the flow conservation of edge flows does hold, since there
is only one O-D pair.

15

Let π(0) feasible in (D).

Solve (RP) and
(DRP) w.r.t. π(i).

Solve (P) using (2.4.4),
(2.4.5) and π(i).

π(i+1) ← π(i) + θπ̄
using (2.4.10).

i← 0

ζ = 0

ζ > 0i← i+ 1

Figure 2.2: Schematic representation of the Primal-Dual Algorithm.

2.4.1 The classic Primal-Dual Algorithm

As the name suggests, the Primal-Dual Algorithm uses both the primal and the
dual of a linear program to solve it. Consider the following primal and dual.

min z = cTx

s.t. Mx = b ≥ 0,

x ≥ 0.

(P)

max w = bTπ

s.t. MTπ ≤ c,
π ≶ 0.

(D)

We assume that (P) is feasible and c ≥ 0. The former assumption is plau-
sible, since (P) will represent program (SP-P), which is feasible by Assumption
1.0.1. The latter will provide us with an initial feasible dual solution π = 0 and
is plausible, since c will represent the non-negative edge weights of a graph.

A well-known property of linear programs is the complementary slackness
condition, which states: x feasible in (P) and π feasible in (D) are both optimal
if and only if the following equations hold.

πi(m
T
i x− bi) = 0 for all i ∈ {1, . . . , n}, (2.4.4)

(cj −MT
j π)xj = 0 for all j ∈ {1, . . . ,m}, (2.4.5)

with Mj the j-th column and mi the i-th row of M .
The Primal-Dual Algorithm starts with a feasible π for (D). It will then

attempt to find a feasible x for (P) that obeys the complementary slackness
conditions. If it succeeds, an optimal solution is found. Otherwise, it is able
to construct a new feasible dual solution that improves the objective function
value. Eventually, by iterating this process, a feasible primal-dual solution pair
will be found that obeys the complementary slackness conditions. A schematic
representation of this process is given in Figure 2.2.

Let π be feasible in (D). Note that the conditions of (P) are equalities, so
(2.4.4) is satisfied for any feasible x. Hence, we focus on (2.4.5). If a feasible x
can be found, with xj = 0, whenever cj−MT

j π > 0, then (2.4.5) is satisfied and
a solution is found. The Primal-Dual Algorithm will attempt to find such x,
given a feasible π, by solving an auxiliary problem, called the restricted primal
(RP).

Define
J := {j : MT

j π = cj} (2.4.6)

16

as an index set and consider

min ζ =

n∑
i=1

yi

s.t.
∑
j∈J

mijxj + yi = bi, i ∈ {1, . . . , n},

xj ≥ 0, j ∈ J,
xj = 0, j /∈ J,
yi ≥ 0,

(RP)

where yi is a new variable for each equality constraint in (P).
The program (RP) is then solved. If a solution (x̄, ȳ) is found with ζ = 0,

then x̄ and π will obey the complementary slackness conditions and we are done.
If not, we update the current feasible solution π of (D) to one that increases
the corresponding objective function value w. In order to do this, consider the
dual of the restricted primal.

max ω = bTπ

s.t. MT
j π ≤ 0, j ∈ J,

πi ≤ 1, i ∈ {1, . . . , n},
πi ≶ 0,

(DRP)

Let π̄ denote the optimal solution of (DRP). The original π is then replaced
by

π ← π + θπ̄, (2.4.7)

where θ will be chosen in such a way that the new π increases w while remaining
feasible in (D).

Proposition 2.4.1. Let ζ̄ > 0 be the optimal value of (RP) and let π̄ denote
the optimal solution to (DRP). Then there exists θ > 0, such that π∗ := π+ θπ̄
is feasible in (D) with bTπ∗ > bTπ.

Proof. Since π̄ is the optimal solution to (DRP), we have bT π̄ = ζ̄ > 0. So, the
objective function of (D) for our new π∗ will then satisfy

bTπ∗ = bTπ + θbT π̄ = bTπ + θζ̄ > bTπ, (2.4.8)

for θ > 0. To remain feasible, we require, for all j ∈ {1, . . . ,m},

MT
j π
∗ = MT

j π + θMT
j π̄ ≤ cj . (2.4.9)

It suffices to show the following.

� For j ∈ J , we have MT
j π ≤ cj , since π is feasible in (D), and MT

j π̄ ≤ 0,
since π̄ is feasible in (DRP). Hence, (2.4.9) holds for all j ∈ J .

� For j /∈ J , we have MT
j π < cj by the definition of J . So, by choosing5

θ := min
{j /∈J|MT

j π̄>0}

(
cj −MT

j π

MT
j π̄

)
, (2.4.10)

5Note that θ > 0. Also note that, if MT
j π̄ ≤ 0 for all j ∈ {1, . . . ,m}, then θ could be

increased indefinitely, resulting in an infeasible (P), which contradicts our assumption. Hence,
there exists j /∈ J , such that MT

j π̄ > 0.

17

requirement (2.4.9) will hold for all j /∈ J .

The θ > 0 given in (2.4.10) satisfies the requirements of Proposition 2.4.1.

In order to see that the Primal-Dual Algorithm terminates in a finite number
of steps, consider the extended version of (RP), given by

min ζ∗ =

n∑
i=1

yi

s.t. Mx+ y = b,

x, y ≥ 0.

(2.4.11)

Note that a basis of (RP) is also a basis of (2.4.11). Program (2.4.11) has a
finite number of basic feasible solutions, since n,m < ∞. Every iteration a
j∗ /∈ J is chosen according to (2.4.10). By (2.4.9), j∗ will enter J at the next
iteration. As a result, xj∗ enters the basis of (2.4.11), resulting in a new feasible
solution with a strictly lower value, since −MT

j∗ π̄ < 0. Hence, no cycling will
take place, ensuring a finite number of iterations before termination.

Note that, in every iteration, the Primal-Dual algorithm requires an optimal
solution for programs (RP) and (DRP). In fact, the Primal-Dual algorithm will
only be effective if either of the programs allow an easy solution. The structure
of (DRP) will provide an easy solution if the Primal-Dual Algorithm is applied
to the shortest path problem, as will be shown next.

2.4.2 Application to the shortest path problem

For convenience, the Primal-Dual Algorithm will be applied to a backward P2P
instance. The primal for such a backward shortest path instance is

minimise z(f) =
∑
a∈ ~A

~ca(fa)fa =
∑
a∈ ~A

~cafa

subject to ~mvf =

 −1 if v = s,
+1 if v = t,

0 otherwise,

fa ≥ 0, a ∈ ~A.

(BSP-P)

By omitting the equation of row s, such that πs = 0, we get the dual of the
backward shortest path instance.

maximise πt

subject to πu − πv ≤ ~cu,v, (u, v) ∈ ~A,

πv ≶ 0, v ∈ V.
(BSP-D)

Let π(0) be an initial feasible solution for the dual (BSP-D). Every iteration
we construct the index set

~J = {(u, v) ∈ ~A | π(i)
u − π(i)

v = ~cu,v}. (2.4.12)

18

The restricted primal is then given by

minimise ζ =

m−1∑
i=1

yi

subject to ~mvf + yv =

{
+1 if v = t,

0 otherwise,

fu,v ≥ 0, (u, v) ∈ ~J,

fu,v = 0, (u, v) /∈ ~J,

yi ≥ 0.

(BSP-RP)

Finally, the dual of (BSP-RP) is

maximise πt

subject to πu − πv ≤ 0, (u, v) ∈ ~J,

πu ≤ 1,

πu ≶ 0.

(BSP-DRP)

Finding an optimal solution for (BSP-DRP) is easy. We have πs = 0, so set

π̄u ← 0 for every u that has a path from u to s in ~J to satisfy πu − πv ≤ 0, for
(u, v) ∈ ~J . If there is a path from t to s in ~J , then π̄t = 0 is optimal and ζ = 0,
so we are done. If not, we maximise by setting π̄u ← 1, for all nodes u ∈ V that
are not already set to 0, while satisfying πu ≤ 1 and πu−πv ≤ 0, for (u, v) ∈ ~J .
Note that it is not necessary, for maximising (BSP-DRP), to set π̄u ← 1, for
u 6= t. This will, however, illustrate the the progress of this algorithm more
clearly, as can be seen in Example 2.4.2.

Now, π̄ is an optimal solution to (BSP-DRP) and π(i) can be updated by

π(i+1) ← π(i) + θπ̄, where θ = min
{(u,v)/∈ ~J|π̄u−π̄v>0}

[~cu,v − (πu − πv)]. (2.4.13)

Further thought reveals that, once π̄u = 0, it will remain 0 and the value
of πu will therefore remain fixed until the algorithm terminates. So, in every
iteration, only the edges from nodes that are next closest to s will be added
to ~J . In fact, if π(0) ≡ 0, it can be shown that this algorithm is equivalent
to Dijkstra’s Algorithm [34]. Example 2.4.2 shows the primal dual algorithm
applied to a P2P instance.

Example 2.4.2. Consider the following instance ~G(s,t,1),~c, where the cost ~c is

stated besides the arcs, and the corresponding instance ~G(s,t,1), ~c.

1 3

t

42

s

5

2

1

1

2

2

2

4

Instance ~G(s,t,1),~c.

1 3

t

42

s

5

2

1

1

2

2

2

4

Instance ~G(s,t,1), ~c.

19

Because the equality of row s is omitted, we have πs = 0 and we define
π̄ := (π̄1, π̄2, π̄3, π̄4, π̄t). Let π(0) = (0, 0, 0, 0, 0) be the initial feasible solution to
the dual. The Primal-Dual Algorithm will proceed with the following iterations.

1. ~J ← ∅,
π̄ ← (1, 1, 1, 1, 1),
θ ← 2, for arc (2, s),
π(1) ← (2, 2, 2, 2, 2).

2. ~J ← {(2, s)},
π̄ ← (1, 0, 1, 1, 1),
θ ← 2, for arcs (4, 2) and (1, 2),
π(2) ← (4, 2, 4, 4, 4).

3. ~J ← {(2, s), (1, 2), (4, 2)},
π̄ ← (0, 0, 1, 0, 1),
θ ← 2, for arc (3, 1),
π(3) ← (4, 2, 5, 4, 5).

4. ~J ← {(2, s), (1, 2), (4, 2), (3, 1)},
π̄ ← (0, 0, 0, 0, 1),
θ ← 2, for arc (t, 3),
π(4) ← (4, 2, 5, 4, 7).

5. ~J ← {(2, s), (1, 2), (4, 2), (3, 1), (t, 3)},
π̄ ← (0, 0, 0, 0, 0),
ζ ← 0.

The optimal solution is π(4) = (4, 2, 5, 4, 7) with the corresponding set ~J =
{(2, s), (1, 2), (4, 2), (3, 1), (t, 3)}. The shortest path from s to t can be found

in the forward set ~J = {(u, v) | (v, u) ∈ ~J}, i.e. s → 2 → 1 → 3 → t, with

ds,t = π
(4)
t = 7. Note that the tree, implied by the set ~J , grows equivalently to

the tree T of a Dijkstra run.

20

3. Speed-up techniques

This chapter will contain several speed-up techniques for P2P instances, that
exploit the staticity of graphs. In many applications that use shortest path
computations, a large number of queries is being made on the same graph. For
example, a road network is a reasonably static graph. Many queries for optimal
routes can be made before the graph has to be updated. This staticity can be
exploited by preprocessing the graph, storing the preprocessed information and
using it to reduce query-time. Such a query consists of one s-t pair, for which the
shortest path has to be found. The information from the preprocessing phase is
used to accelerate the search. Once a graph changes, it has to be preprocessed
again.

Ideally both preprocessing-time and query-time are short, while storing lit-
tle data. In practice, there usually is a trade-off between them, which results
in application-dependent performance. More extensive preprocessing will, for
example, often result in faster query-times. However, fast changing networks,
which have to be preprocessed more often, could benefit more from a less ex-
tensive preprocessing phase, with longer query-times as a result. Using a large
amount of data can result in both fast preprocessing-time and query-time. As
a consequence, queries can only be made from devices that have fast access to
a large amount of data. The performance of the speed-up techniques in this
chapter will not be addressed, since this is application-dependent.

The various techniques discussed in this chapter will all try to find infor-
mation, during preprocessing, that can be used to prioritise vertices that are
more likely to be on the shortest path and exclude vertices that are, with cer-
tainty, not in the shortest path. Every technique will have an alternative way
of obtaining and using this information.

3.1 Goal directed techniques

The classical Dijkstra algorithm is, as mentioned in section 2.3, a very robust
algorithm which searches in all directions until it finds the target. In the pre-
processing phase of the following goal directed speed-up techniques, information
is computed that will guide the query-search toward the target. This way, the
search space is reduced, which will lead to faster query-times.

3.1.1 Geometric Containers [33]

In the preprocessing phase of the Geometric Containers method, a set Vu,v ⊂ V
is computed, for every edge (u, v) ∈ A. The set Vu,v contains the vertices w for
which a shortest u-w path exists, that has (u, v) as the first edge of that path.
So

Vu,v := {w ∈ V | ∃ shortest path (u, v, . . . , w)}. (3.1.1)

Storing a set of vertices for every edge in A uses a lot of storage space. Instead,
the sets are encoded, using geometric information. For every set Vu,v, a geomet-
ric container Su,v is stored, such that every node in Vu,v lies in the container
Su,v. In order to do this, we assume that we are given a layout L : V → R
in the Euclidean plane. There are numerous ways to encode these geometric

21

containers. In many cases the bounding box is the most efficient way to encode
Su,v, according to [33]. For the bounding box, only four corner points have to
be stored, instead of Vu,v. Note that Su,v may contain more nodes than Vu,v
alone. However, this will not affect the correctness of the query algorithm.

The query algorithm is a slightly altered Dijkstra algorithm. Normally, while
scanning a node u ∈ V , the node v is added to Q if the edge (u, v) is tense. In
this case, v is not added to Q if t /∈ Su,v. In other words, the Dijkstra search is
pruned at edge (u, v) ∈ A if there does not exist a shortest u-t path that starts
with (u, v). This algorithm can be easily combined with the bidirectional A*
algorithm that will be discussed next.

3.1.2 A* search and ALT

For a shortest s-t path query, the A* algorithm defines a heuristic h : V → R
by the following properties:

� Feasibility:
cv,w − hv + hw ≥ 0, ∀(v, w) ∈ A. (3.1.2)

� Let ht = 0. It is then easy to prove that hu ≤ du,t, for all u ∈ V . Hence,
hu is a lower bound on du,t.

Given such a heuristic, new edge weights can be defined as

chv,w := cv,w − hv + hw, ∀(u, v) ∈ A. (3.1.3)

The feasibility constraint on the heuristic ensures non-negativity of the new
edge weights. Furthermore, for every possible s-t path P ∈ P we have

chP =
∑

(v,w)∈P

chv,w (3.1.4)

=
∑

(v,w)∈P

cv,w − hv + hw (3.1.5)

=

 ∑
(v,w)∈P

cv,w

− hs + ht (3.1.6)

= cP − hs. (3.1.7)

So, the length of every s-t path is only reduced by the constant hs. As a result,
the shortest path in the graph with adjusted edge weight is also the shortest
path in the original graph. Finding the shortest path comes down to a Dijkstra
search in the graph with the new edge weight ch.1 The new edge weights2 have
as a result that edges, that lead to nodes which are closer to the target, weigh
less. Therefore, the nodes that are closer to the target will be higher in the
priority queue and will thus be scanned earlier. The shortest path tree T will
grow more toward the target, instead of growing in arbitrary direction.

1This is equivalent to a Dijkstra search with priority queue key d∗u + hu and the original
edge weight c, as is shown in [13].

2Or altered priority queue key.

22

Surprisingly, the Primal-Dual Algorithm (see Section 2.4) is also equivalent,
if the initial feasible dual is chosen as π(0) := −h. Recall that such an initial
solution is only feasible if the condition

π(0)
u − π(0)

v ≤ ~cu,v, ∀(u, v) ∈ ~A (3.1.8)

holds. Substituting the heuristic and the using the fact that ~cu,v, for (u, v) ∈ ~A,

is equal to ~cv,u, for (v, u) ∈ ~A, results in

hv − hu ≤ cv,u, ∀(v, u) ∈ ~A. (3.1.9)

Interchanging (v, u) for (v, w) results in inequality (3.1.2). So, for every feasible
heuristic, π(0) := −h is indeed an initial feasible solution.

The equivalence between the Primal-Dual Algorithm and the A* algorithm
is proven by Xugang Ye et al. [34].

Choosing a heuristic with ALT

Heuristics with values hu that are sharper lower bounds on du,t, for all u ∈ V ,
will have a faster Dijkstra search. In theory, if the heuristic is an exact lower
bound (i.e. hu = du,t for all u ∈ V), only nodes on the shortest s-t path will be
visited during the Dijkstra search.

A first choice for a heuristic hu could be the metric distances between u and
t, after the graph is projected on a metric space, such that the distance between
adjacent nodes is equal to the weight of the edge. This heuristic is then feasible
by the triangle inequality. Although this results in an algorithm that is a lot
faster than classic Dijkstra, it performs poorly compared to the other speed-up
techniques. ALT (A*, Landmarks and the Triangle inequality) is a speed-up
technique that defines a heuristic that has tighter lower bounds on du,t, with
better performance as a result.

In the preprocessing phase, define L ⊂ V as a set of landmarks and, for every
l ∈ L, compute du,l and dl,u, for all u ∈ V . These distances will be used during
the query phase to define the heuristic. For an s-t query, a subset L∗ ⊂ L of
landmarks is chosen for which the following lower bounds are made, for every
vertex v ∈ V , using the triangle inequality.

� ∀l ∈ L∗ we have dv,l − dt,l ≤ dv,t.

� ∀l ∈ L∗ we have dl,t − dl,v ≤ dv,t.

Now let hv := maxl∈L∗{dl,t − dl,v, dv,l − dt,l}. This heuristic h is feasible, since
the maximum of two feasible heuristics is also feasible. Choosing the right
subset of landmarks is very important for good performance. A big subset
requires a lot of calculation to determine the heuristic, whereas a small subset
results bounds that are less tight. Best results are achieved by choosing small
subsets of landmarks that lay behind the source and target node at the edge of
the graph.

Bidirectional A*

It is possible to do a bidirectional A* search. For this a forward heuristic ~h
and backward heuristic ~h are defined during the query phase. Unfortunately,

23

a straightforward bidirectional search, using these heuristics, is in general not
sufficient. Suppose the two searches meet in the node u ∈ V . The combined
length of the forward and backward search is then equal to

~dhs,u + ~dhu,t = ds,u + du,t − (~hs + ~hs) + (~hu + ~hu). (3.1.10)

This distance is dependent on the node u, so it is not guaranteed that this
results in the shortest path.

We call ~h and ~h consistent if ~hu + ~hu is constant for all u ∈ V . In this
case the total found distance will be constant, so differences in distance will be
equivalent to differences in distance in the original graph. In order to guarantee
shortest paths, one can use consistent heuristics. This is, however, not always
an ideal choice. For example, ALT is in general not a consistent heuristic.

Another way to guarantee shortest paths is altering the stopping criterion
in the following way. In the initialisation of the query algorithm, define length
of the current best found s-t distance as µ := ∞ and the meeting point of the
current best found s-t path as uµ. If the forward and backward search meet in

a vertex u let ~Ps,u and ~Pu,t be the paths of the forward and backward search,
respectively. If ~c~Ps,u

+ ~c ~Pu,t
< µ holds, do the following:

� Update µ← ~c~Ps,u
+ ~c ~Pu,t

.

� Update uµ ← u.

� Prune both the forward and backward search at u.

The algorithm can now be stopped if either u is scanned with a distance larger
than µ or if ~Q ∪ ~Q = ∅. The shortest s-t path then has length µ with meeting
point uµ. This stopping criterion will be referred to as the extended stopping
criterion.

3.1.3 Arc Flags [16]

During the preprocessing phase of Arc Flags, the graph is partitioned into k
(preferably balanced) disjoint cells, K := {K1, . . . ,Kk}, with a small number of
boundary nodes3. Every edge a ∈ A is assigned a label of k bits. The i-th bit
of this label will be set if and only if a is the beginning of any shortest path to
at least one node in Ki.

The label of arc (u, v) ∈ A can be computed by performing a Dijkstra search,
for both u and v, to all other nodes in V 4. For each w ∈ V , if |du,w−dv,w| = cu,v,
then (u, v) is the start of a shortest path to w. The bit of the (u, v)-label
corresponding to the cell of w can now be set. This method takes 2m one-to-all
Dijkstra searches, which can be improved.

For every boundary node of cell Ki, perform a one-to-all backward Dijkstra
search. At the end of each search, all the i-th bits of the edges in the corre-
sponding shortest path tree can be set. This way, only one one-to-all search
has to be performed for every boundary node. Moreover, the searches of all
boundary nodes of a cell can be performed simultaneously by updating the ten-
tative distance of all boundary nodes at once, taking into account the mutual

3A boundary node is a node that has at least one adjacent node that is not in the same
cell.

4Such searches are referenced to as one-to-all searches.

24

distances of the boundary nodes. Note that contracting all nodes of a cell into
one super node and performing one backward search from this super node can
result in incorrect arc-flags.

A search for an s-t query can now simply prune the search at an arc a, if
the bit of its label, corresponding to the cell of target node t, is not set. In this
case there does not exist any shortest path starting from a to the cell of node
t, hence a search in that direction is unnecessary.

To improve performance, a multilevel partitioning can be made. Here every
cell will again be partitioned into several smaller cells and lower level arc flags
will be calculated for every edge in such a partitioned cell. The query search can
then be pruned according to the lower level arc flags, once it reaches a cell of the
target node to reduce the search area within this cell. This multilevel arc flag
technique works particularly well in combination with a bidirectional search.
This way, the inefficient lower level searches can be kept to a minimum, since
the forward and backward search could meet before either search has reached
the cell of the opposite search.

3.1.4 Precomputed Cluster Distances (PCD) [22]

Again, during the preprocessing phase, the graph is partitioned into k (balanced)
cells, K := {K1, . . . ,Kk}, with preferably a small number of boundary nodes.
Next, as the name suggests, the distances between these cells will be computed,
where the distance from cell Ki to Kj is defined as

dKi,Kj
:= min

u∈Ki,v∈Kj

du,v, ∀i, j ∈ {1, ..., k}. (3.1.11)

Note that in general dKi,Kj
6= dKj ,Ki

, since we have a directed graph. In order
to compute the distance from cell Ki to Kj , add a new node s∗i to the graph
and add new edges (s∗i , u) of weight cs∗i ,u := 0, for all boundary nodes u of cell
Ki. In other words, let

V ∗i := V ∪ {s∗i }, (3.1.12)

A∗i := A ∪ {(s∗i , u) | u is a boundary node of Ki} (3.1.13)

and, for all a ∈ A∗,

c∗a =

{
ca if a ∈ A,
0 otherwise.

(3.1.14)

Using the new graph G∗i = (V ∗i , A
∗
i), with weight function c∗, start a Dijkstra

search from node s∗i and terminate the search once a node from Kj is scanned,
say w. We then have dKi,Kj

= ds∗i ,w.
The s-t query consists of a bidirectional Dijkstra search. The precomputed

cluster distances will be used to prune the search on certain nodes. The condi-
tions for such a prune will be established below for the forward search. Analo-
gous conditions can be made for the backward search.

After scanning a node u in the forward search, a lower bound on the minimal
distance from s, via u, to t, denoted ds,u,t, is computed. Note that

ds,u,t = ds,u + du,t ≥ ds,t. (3.1.15)

This lower bound is then compared to an upper bound on ds,t. The search is
be pruned whenever the lower bound of the scanned node exceeds the current
upper bound. The computation of these bounds is discussed below.

25

For an s-t query, two values have to be determined before the bounds can be
computed. Let S and T be the cells of s and t respectively. From both nodes an
individual Dijkstra search is performed until the closest boundary nodes s′ ∈ S
and t′ ∈ T of the corresponding cluster are found. After ds,s′ and dt′,t are found,
the bounds will be computed and the search will be pruned accordingly.

Computing the lower bounds

For every scanned node u a new lower bound is computed. Define U and T as
the cell of node u and t, respectively. Next, define t′ ∈ T as the boundary node
that is closest to t. It is then easy to verify that the following inequality holds

ds,u + dU,T + dt′,t < ds,u,t. (3.1.16)

The quantities ds,u, dU,T and dt′,t are known, since node u is already scanned by
the forward search, dU,T is a precomputed cluster distance and dt′,t is already
found. The following lower bound can thus be defined

ds,u,t := ds,u + dU,T + dt′,t. (3.1.17)

Computing the upper bounds

Let k∗i ∈ Ki be the starting point and t∗ ∈ T be the end point of the shortest
path from cell Ki to cell T . Then the following inequality holds for every
ki ∈ Ki:

ds,t ≤ ds,k∗i + dKi,T + dt∗,t. (3.1.18)

Whenever the forward search scans such a starting node k∗i for cluster Ki, the
current upper bound can be updated. The values ds,k∗i and dKi,T are, again,
already known. If the backward search has already visited t∗, dt∗,t is also known.
However, if that is not the case, dt∗,t can be upper bounded by the diameter of
T , i.e.

dt∗,t ≤ max
u,v∈T

du,v. (3.1.19)

The current upper bound d̄s,t can thus be updated to either ds,k∗i +dKi,T +dt∗,t
or ds,k∗i + dKi,T + maxu,v∈T du,v.

Now, whenever ds,u,t > d̄s,t, the search can be pruned. Note that the forward
search can use both the lower and upper bounds of the backward search and
vice versa.

3.2 Hierarchy-Based Methods

The following techniques exploit the natural hierarchy that a lot of networks
have. They will aim to prioritize on “important” nodes and arcs, that are on
many shortest paths. For example, in road networks, highways can be seen as
important arcs of the network, since these arcs are on many shortest (or fastest)
paths.

26

3.2.1 Contraction

Intuitively it is efficient to add shortcuts between important vertices amongst
which many long-distance shortest paths lay. The following speed-up techniques
use this idea.

Contraction Hierarchies (CH) [12]

The vertices are numbered 1, . . . , n in ascending order of ‘importance’. This
notion of importance will be discussed below. The vertices will be repeatedly
contracted in order of importance and shortcuts will be added to preserve short-
est paths.

Let v be the least important node that will be contracted next. For all
possible node pairs u,w ∈ {v+1, . . . , n}, where u and w have higher importance
than v and are neighbours of v, a local search is performed. If the shortest path
from u to w is unique and contains v, a shortcut edge (u,w) with weight du,w
is added to the graph. After all such pairs are checked and shortcuts are added
accordingly, v and all its in- and outgoing edges are temporarily removed from
the graph. The contraction continues on the remaining graph. Figure 3.1 shows
the contraction of such a node v.

v

u

w

cu,v

cv,w

im
p

or
ta

n
ce

v

u

w
du,w

im
p

or
ta

n
ce

Figure 3.1: Contraction of the node v.

For an s-t query, all contracted vertices and edges are replaced. The graph
now contains a ‘hull’ of upward shortcuts that lead to more important nodes. A
bidirectional Dijkstra search from s and t is performed in this extended graph.
The search will be limited to only visit vertices of higher importance. It is easy
to see that, due to the way the shortcuts are added, such a search indeed finds
the shortest path. The search is terminated whenever the extended stopping
criterion is met, see page 24.

How important a vertex is, can be defined in numerous ways. In [12] a prior-
ity queue is used that gives priority to vertices according to a linear combination
of several terms. This priority queue will be maintained and updated during the
contraction. Arguably the most important term is the edge difference, defined
as: The number of shortcuts introduced when contracting v minus the number
of edges incident to v.

Highway Hierarchies (HH) [28, 30]

With this method multiple layers of ‘highway’ arcs are added and unimpor-
tant/‘local’ arcs and vertices are contracted during the preprocessing phase
to create a highway hierarchy. This can be achieved in the following way.
Make a Dijkstra-ranking, where Nu,v represents the total number of scanned
nodes, after v is scanned, in a Dijkstra search from u. For a parameter H, find

27

v ∈ V such that Nu,v = H and let dHu := du,v. Then define a neighbourhood
NH
u := {w ∈ V | du,w ≤ dHu }. A highway hierarchy is recursively constructed

as follows, where G0 := G∗0 := (V0, A0) is the original graph.

� Let Ai be the subset of all arcs (u, v) ∈ A∗i−1, for which there exists
a shortest path (x, . . . , u, v, . . . , y) between any pair x, y ∈ V ∗i−1, with
v /∈ NH

x and u /∈ NH
y . Let Vi be the maximum subset of Vi−1, such that,

together with edges Ai, there are no isolated nodes. Then Gi := (Vi, Ai)
is called the i-th layer.

� The layer Gi is modified, to a new graph G∗i , in two steps.

– First the 2-core of Gi is taken. This is done by repeatedly removing
all nodes of degree one, together with its adjacent edge. The 2-core
is the graph that remains. This way, all trees that where connected
to the graph are removed and every node in the 2-core has a degree
of two or more.

– All lines in the remaining 2-core are replaced by edges. A line is a
path (u0, . . . , u`), where the inner nodes (u1, . . . , u`−1) are of degree
two. A line is replaced by removing all edges and inner nodes of the
path and replacing it by an edge with weight equal to the length of
the original path.

All the lines and trees that are removed are referred to as the components
of Gi. The remaining graph, that only has nodes of degree three or higher,
is denoted G∗i = (V ∗i , A

∗
i) and is referred to as the core of Gi. The next

graph layer will be based on G∗i .

After all layers have been constructed, they are joined together into one multi-
layered graph. Note that the graphs G∗i are only constructed to define the next
layer, but will not be part of the multi-layered graph. For all nodes vi ∈ Vi,
edges (vi−1, vi) of weight zero are created, where vi−1 is the node in Vi−1 that
vi is a copy of.

Again, as query algorithm, a slightly altered bidirectional upward Dijkstra
search is performed. The search is altered in the following two ways.

� We define the entrance point of layer i as the first node of its core that has
been scanned by a search. A search will only scan the nodes that belong
to the layer i neighbourhood of the entrance point of that layer.

� Nodes of components are only scanned if the edge from its predecessor to
that node is an upward edge or if that edge also belongs to the component.

The search is only terminated if ~Q ∪ ~Q = ∅. The restrictions on the search
will guarantee that no components will be searched unnecessarily.

3.2.2 Reach-Based Routing [14]

Let u, v, w ∈ V and P a shortest u-w path containing v. Define

rv,P := min{du,v, dv,w} (3.2.1)

28

as the reach of v with respect to P . Define Pv as the set of all possible shortest
paths between all possible u-w pairs that contain v. The reach of v is then
defined as

rv := max{rv,P | P ∈ Pv}. (3.2.2)

The reach of a node gives a sense of how far other nodes on shortest paths
containing v can be.

When a shortest s-t path has to be computed, again, a bidirectional Dijkstra
search is performed. If, however,

ds,v > rv and dv,t > rv, (3.2.3)

then there does not exist a shortest s-t path containing v and the search can be
pruned at v. These conditions can also be checked using lower bounds on the
mentioned distances. Suppose the forward search is about to scan node v ∈ V
and the backward search has not already scanned this node. In this case only
ds,v is known. The distance dv,t can now be lower bounded by du,t, where u

is the node that was last added to ~T . If both ds,v and du,t are larger than
the reach of v, the search can be pruned at v. Similar arguments hold for the
backward search.

During preprocessing, an APSP computation can be performed to compute
the reach of all nodes. However, this is very costly and can be easily improved
upon. For example, one could compute only partial shortest path trees, with
upper bounds on the reach as a result. Condition (3.2.3) for pruning at v still
suffices if rv represents an upper bound on the reach of v.

3.2.3 Graph Separators

The speed-up techniques in this category exploit the separability of planar
graphs [21]. Most graphs, for which shortest paths need to be found, are not
strictly planar. However, if they only have a small set of non-planar edges, it
is still possible to find a small set of separators. These separators can either be
edges or vertices. After removing them from the graph, it will be decomposed
into several components. These components can then be used during prepro-
cessing to obtain information that will speed up the query search. Both vertex
and arc separator techniques will be discussed.

Vertex Separators [17]

During preprocessing a (preferably small) vertex separator set V ∗ ⊂ V is com-
puted. This set separates the graph G into several components after it is re-
moved from G. Let K ⊂ V \V ∗ be such a component. Then we define V ∗K ⊂ V ∗
as the minimal set that disconnects K from the remainder of G after removing
V ∗K . Suppose we want to find a path from u ∈ K1 to v ∈ K2, with K1 6= K2.
Every u-v path has to go through at least one node in V ∗K1

and at least one
node in V ∗K2

. See Figure 3.2 for an example.
From the separator set V ∗ a new overlay graph G∗ is constructed. An edge

between nodes u, v ∈ V ∗ is added to E∗, if there does not exist a shortest u-v
path in G that contains another vertex w ∈ V ∗. The new edge (u, v) is assigned
weight equal to the shortest u-v path distance in G. By doing this for all possible

29

v2
v1

v3

K1

K2

K3

Figure 3.2: An example
graph with separator vertices
V ∗ = {v1, v2, v3} and com-
ponents K1, K2 and K3.
Here V ∗

K1
= {v1, v2}, V ∗

K2
=

{v2, v3} and V ∗
K3

= {v1, v3}.

v2
v1

v3

K1

K2

K3

Figure 3.3: An example
graph with overlay graph for
the graph in Figure 3.2. Note
the lack of edges between v1
and v3.

node pairs of V ∗, an overlay graph is constructed that preserves shortest path
distances. See Figure 3.3.

The bidirectional Dijkstra search, that is run during a query, can now be
pruned, whenever it reaches one of the separator nodes. The search will then
be proceeded from the corresponding node in the overlay graph.

Furthermore, this method can also be extended to a multilevel variant, where
repeatedly a vertex separator set in the previous overlay graph is computed.
This will result in shortcuts over larger distances that can result in faster query-
times. However, it also requires more preprocessing time and more storage
space.

The query-times can be reduced even further by adding more shortcut edges
in the following way. For all vertices u in component K, the shortest paths
to/from all v ∈ V ∗K are computed and upward/downward shortcuts (u, v)/(v, u)
are added. Before using these upward edges to go to the overlay graph directly,
one has to check if the source and target node are in the same component. If this
is the case, then proceeding to the overlay graph can result in non-optimal paths.
So, in such a case, a local bidirectional Dijkstra search can be performed instead.
Note that adding these additional shortcuts requires even more preprocessing
time and storage space.

Arc Separators

Similar to the Geometric Container and Arc Flag methods, the graph is split
into k balanced cells, K := {K1, . . . ,Kk}, with (preferably) a low number of
arcs between the cells. The arcs between the cells are now the separators, with
the boundary nodes incident to these arcs.

Again, an overlay graph is constructed. This time, all separator arcs and
boundary nodes are added. In addition, for every cell Ki and every pair of
boundary nodes b1, b2 ∈ Ki a shortcut edge (b1, b2) is added, with weight equal
to the shortest b1-b2 path, restricted to the cell Ki. Thus, for every cell an
overlay clique of all the boundary nodes is added. Once again, this method can
be extended by computing a multilevel graph partitioning and adding several
overlay graphs.

The query algorithm is similar to that of the vertex separator method. A

30

Figure 3.4: An example graph with dashed arc separators between
three cells, with boundary node cliques.

bidirectional Dijkstra search is performed, but whenever a boundary node is
reached, the search will be lifted to the overlay graph.

The Customisable Route Planning (CRP) algorithm [6] splits the prepro-
cessing into two parts. In the first part, a multilevel partition of the graph is
computed and the topology of the graph is captured. Note that this part is
independent of the cost function, so it can be skipped if only the cost function
of the graph is changed. The second part is dependent of the cost function and
computes the cost of the shortcuts in the overlay cell cliques.

3.3 Table look-up techniques

Theoretically, the fastest query time can be achieved by performing an APSP
computation and store all shortest paths in a table during preprocessing. An s-t
query would then only require one table look-up. PHAST [7] is an algorithm that
can solve an APSP computation on large graphs in reasonable time. However,
storing the distances of all possible s-t pairs would require O(V 2) space, which
is prohibitive. The following techniques exploit the fast APSP computation of
PHAST, while using less storage space to get a better trade-off.

3.3.1 Compressed Path Databases (CPD)

In this robust speed-up technique a PHAST computation is performed in the
preprocessing phase. This way the shortest path for every possible pair of nodes
is known. The first edge of these paths is stored. During the query phase, where
the shortest path between s ∈ V and t ∈ V has to be found, one can recursively
call the first edge of the remaining shortest path to t, since all those edges
are stored during preprocessing. This query algorithm is very fast, because it
only has to visit the nodes that are on the shortest s-t path. However, despite
sophisticated data compression methods, the storage space that is needed to
store the first edge of every possible path is still very large.

31

3.3.2 Hub Labelling (HL) [3]

During the preprocessing phase of HL, every node u ∈ V is assigned two labels,
~Lu and ~Lu, that store a set of vertices/hubs ~Hu, ~Hu ⊂ V and the distances du,v
and dv,u, for all v ∈ ~Hu and v ∈ ~Hu, respectively. These labels are chosen in
such a way that, for every pair u,w ∈ V , the shortest u-w path contains at least
one node v such that v ∈ ~Lu∩ ~Lw. The query algorithm, then finds the shortest
s-t path by

ds,t = min
u∈~Ls∩ ~Lt

ds,u + du,t (3.3.1)

One way to find such a labelling is by using an CH ranking. The hubs of a node
v then include all the nodes with equal or higher rank than v.

3.3.3 Transit Node Routing (TNR) [1]

TNR selects a subset T ⊂ V of transit nodes, for which an APSP computation
is performed, using PHAST. The result is stored in a distance table. For every
vertex u ∈ V \ T a set of access nodes ~Au ⊂ T is computed, which contain all
v ∈ T , that are the first transit nodes on a shortest path starting in u. All the
distances from u to the access nodes are stored as well. Analogous distances
from ~Au are stored, for all u ∈ V . The shortest path is then found by minimizing
the cost of the s-as-at-t path, where as ∈ ~As and at ∈ ~At. It is however possible
that the shortest s-t path does not contain a transit node. Since this would
result in a incorrect shortest path, the query is first classified as local or non-
local. Here, local means that it could be possible that there are no transit nodes
on the shortest s-t path. An alternative algorithm is needed to solve these local
queries.

Choosing the transit nodes

Both vertex separators and the boundary nodes of an arc separator are a logical
choice for the transit node set, since, in these cases, locality classification is
straightforward. Even though TNR, with vertex separators as transit nodes,
seems very similar to the extended vertex separator technique, it has a different
trade-off. In both cases the paths from vertices to its separator set and the paths
between all separator nodes is precomputed. However, the separator technique
adds shortcuts to an overlay graph, that has to be searched in query-time,
whereas TNR stores all computed paths in tables. Hence, TNR will have faster
query-times, but requires more storage space.

The transit node set can also be constructed using the ’important’ nodes of
a hierarchy based technique, e.g. CH or HH, as these nodes will, in general, be
visited more often. The locality classification is in this case less straightforward.

3.4 Combining speed-up techniques

Speed-up techniques that exploit different features of the graph can be easily
combined to get even better performance. The following are two examples of
speed-up techniques that are well suited to combine.

32

3.4.1 Shortcuts + Reach + ALT

The strength of reach-based routing lays in pruning vertices that meet condition
(3.2.3), so the search will skip nodes that will not lead to a shortest path. Adding
shortcuts to a graph, before computing the reach, will make this method more
effective. Methods that add shortcuts, e.g. CH and HH, will reduce the number
of vertices on long distance paths. The reach of the vertices, on this long distance
path, is then reduced, as is shown in Example 3.4.1. The lower reach will have
a positive effect on the performance, since condition (3.2.3) is met more often,
resulting in searches that are pruned more often.

Example 3.4.1. Consider the graph in Figure 3.5. The weight of the arcs
for both directions is stated above the arcs. The corresponding reach is stated
below the vertices. After adding a shortcut for both directions, the reach of
intermediate nodes is reduces significantly, as is shown in Figure 3.6.

50 51 52 53 52 51 50

50 1 1 1 1 1 1 50

Figure 3.5: An example graph. The reach is stated below the vertices.

50 4 3 2 3 4 50

50 1 1 1 1 50

6

Figure 3.6: An example graph with shortcuts. The reach is stated
below the vertices.

After computing the reach on the graph with shortcuts, one can apply ALT
efficiently on a small subset of the graph. Applying ALT only on the vertices
with high reach will reduces the number of landmark distances that have to be
precomputed significantly. Furthermore, the lower bounds that are computed
for ALT can be directly applied to the reach conditions, with an even better
performance as result. Alternatively, ALT can be applied to a core graph, like
the overlay graph constructed by HH, since the landmark distances and bounds
are not affected by the shortcuts.

3.4.2 TNR + Arc Flags

The bottleneck of the TNR query algorithm, for an arbitrary s-t pair, is com-
paring the transit node sets ~As and ~At to find the shortest path. The query time
can be improved by using arc flags to decrease the number of table look-ups.
The transit node set T is divided into k disjoint cells K := {K1, . . . ,Kk}, with

Ki ⊂ T , for all i ∈ {1, . . . , k}. For every s ∈ V and every u ∈ ~As, k bits are
stored. The i-th bit of u is set if and only if there exists a node v ∈ Ki such
that

ds,u + du,v = min
w∈ ~As

{ds,w + dw,v}. (3.4.1)

33

Analogous bits are set for the backward transit node sets. During an s-t query,
only the u ∈ ~As and v ∈ ~At, for which the bits of the corresponding cells are
set, have to be compared.

3.5 Discussion

The algorithms, discussed in this chapter, preprocess the graph and compute,
during a query, the distance of the shortest path, using the preprocessed infor-
mation. In practice, however, this can be considered insufficient. This section
will cover several topics that could improve the practical use of the algorithms.

3.5.1 Path Construction

The query algorithms, that are discussed so far, only return the distance of
the requested shortest path. Outputting the actual shortest path can be desir-
able, but is for some techniques non-trivial. How this path can be constructed
depends on the preprocessed information that is used.

Predecessors

Methods that do not skip any nodes during the query algorithm, like most
goal directed methodes, can store predecessor nodes, as is done in the original
Dijkstra algorithm. The path can then be constructed by recursively retrieving
all predecessor nodes, starting with the target node.

Small Shortcuts

Constructing the path using predecessors in a graph with shortcuts can result
in a partial path, since the shortcuts represent paths in the original graph.
Methods that add shortcuts, that only bypass one node per shortcut, can store
the corresponding intermediate node, together with the shortcut. Whenever the
path needs to be constructed, one can retrieve the intermediate node. CH is an
example of an algorithm that uses such shortcuts. Shortcuts on high levels may
skip a node that also was connected with shortcuts. This way a shortcut can
span across multiple nodes from the original graph. In this case a path needs
to be constructed by recursively unpacking the underlying shortcuts.

Large Shortcuts

A path containing shortcuts that span across multiple nodes, in algorithm such
as HH and CRP, can be constructed by either storing all intermediate nodes, or
performing a local bidirectional search to find intermediate nodes. The former
results in more storage space, whereas the latter requires longer query time.

3.5.2 Dynamic Graphs

A drawback of the discussed techniques is the staticity of graphs that is manda-
tory to perform the query algorithms. In practice, however, edge weights can
change frequently. Whenever the graph changes, the previous preprocessed

34

information could be flawed and the graph has to be preprocessed again. Re-
preprocessing the entire graph is costly and can often be prevented.

� In some cases it is possible to do only a partial preprocessing phase. For
instance, CH can maintain the previous ordering of importance and recal-
culate only those shortcuts that could be affected by the changes to the
graph.

� Another approach is to split the entire preprocessing phase into a weight-
dependent and a weight-independent phase. CRP uses this approach [6]
by making a weight-independent partitioning and overlay, that can be
maintained on weight changes. Weight-independent contraction orders,
in hierarchy-based techniques, can also be used to split the preprocessing
phase.

� Under special circumstances it is possible to run the algorithm with un-
changed preprocessing information and still get correct results. ALT, for
example, will keep correct bounds if the weight on edges is only increased.

3.5.3 Multi commodity

The query algorithms of the discussed speed-up techniques focus on solving P2P
instances. However, it can be desirable to compute the shortest path distance
for more than one O-D pair. Straightforwardly, all O-D pair queries can be
solved separately. Using hierarchical methods in combination with buckets [19]
or a restricted implementation of PHAST [5], one can improve upon solving a
P2P for every O-D pair separately.

In the special case of an one-to-all5 shortest path problem, one could argue
that the original Dijkstra algorithm is optimal, since it constructs a shortest
path tree, while visiting the minimal amount of vertices. However, the PHAST
algorithm achieves better performance by exploiting the ability to parallelize
calculations [7].

5Recall that a one-to-all shortest path problem requires the shortest path from one source
node to all other vertices of the graph.

35

4. Flows

4.1 Traffic assignment problem

A network has often more than one user travelling between different origins
and destinations. If many users travel over the same route simultaneously,
congestion can occur. The above can be captured by a flow as was described in
Chapter 1.

Recall Definition 1.0.4. A flow f is an SO for instance GC,c if it solves

minimize z(f)

subject to
∑
P∈Pi

fP = ri, i ∈ {1, . . . , k},

fP ≥ 0, P ∈ P.

(4.1.1)

Assumption 4.1.1. In addition to the assumptions that, for all a ∈ A, the
function fa 7→ ca(fa) is continuous, non-negative and non-decreasing, we assume
that, for all a ∈ A, ca is continuously differentiable and

∂2ca(fa)

∂f2
a

≥ 0. (4.1.2)

Lemma 4.1.2. The objective function z(f) of (4.1.1) is convex under Assump-
tion 4.1.1.

Proof. It suffices to show that the Hessian of z(f) is positive definite. We have,
for all b ∈ A,

∂z(f)

∂fb
=

∂

∂fb

∑
a∈A

faca(fa) (4.1.3)

= cb(fb) + fb
dcb(fb)

dfb
(4.1.4)

and, for all a, b ∈ A,

∂2z(f)

∂fb ∂fa
=

{
2dca(fa)

dfa
+ fa

d2ca(fa)
df2

a
, if a = b,

0, otherwise.
(4.1.5)

So, the Hessian is a diagonal matrix with all positive terms, implying that it is
positive definite. Hence, z(f) is convex.

Remark 4.1.3. Under Assumption 4.1.1, SO program (4.1.1) has a unique min-
imum, since

� The feasible region of the SO program (4.1.1) is convex. It is easy to see
that the linear equality constraints imply a convex feasible region. The
non-negativity constraints will not alter this fact.

� The objective function z(f) is convex by Lemma 4.1.2.

36

ts

cP1
(x) = x

cP2
(x) = 1

Figure 4.1: (Pigou’s example) In this example there is one O-D pair
with flow rate 1. The edges represent two different s-t paths, P1 and
P2. Selfish routing results in a UE where all users take the upper path
P1, with total weight 1. A simple calculation shows that minimizing
the total weight is achieved by evenly splitting the flow among the two
paths, which results in total weight 3

4
.

In many cases users in a network tend to be selfish and will choose a path
that has minimum weight. This selfish routing leads to the following definition
of the user equilibrium:

Definition 4.1.4 (User equilibrium). Let f be a feasible flow in a graph G with
weight function c and flow rate r. Then f is called a user equilibrium (UE) if
for all i ∈ {1, ..., k} and P, P ∗ ∈ Pi with fP > 0, we have

cP (f) ≤ cP∗(f).

In other words, in a UE there does not exist flow that can be assigned to a
path with less weight. Note that a UE and SO are not necessarily equal. See
Figure 4.1 for an example. However, the two can be proven equivalent.

Proposition 4.1.5 (Equivalence of UE and SO). Let GC,c be an instance.
Denote c̃a(x) := d

dx (x · ca(x)) the marginal weight function and let c̃P (x) =∑
a∈P c̃a(x). Then f is the SO for GC,c if and only if f is a UE for GC,c̃.

In order to prove Proposition 4.1.5, consider the following lemma.

Lemma 4.1.6 (Characterization of the SO). Using the same notation as in
Proposition 4.1.5, the following holds. Flow f is the SO for GC,c if and only if,
for every i ∈ {1, . . . , k} and every pair P, P ∗ ∈ Pi with fP > 0,

c̃P (f) ≤ c̃P∗(f).

Proof. This proof is based on a proof described in [31]. The necessary conditions
for a flow f to be an SO and therefore the minimum of linear program (4.1.1),
are given by the first-order conditions for a stationary point of the Lagrangian
program

minimize L(f, u) = z(f) +

k∑
i=1

ui

(
ri −

∑
P∈Pi

fP

)
subject to fP ≥ 0, P ∈ P,

, (4.1.6)

where the variables ui are the Lagrange multipliers associated with the flow

37

f

L(f, u)

f∗
f

L(f, u)

f∗ = 0

Figure 4.2: First-order conditions for Lagrangian with non-negative
flow constraints. Left: Internal minimum with f∗ ≥ 0 and ∂L(f∗,u)

∂fP
= 0.

Right: Constrained minimum with f∗ = 0 and ∂L(f∗,u)
∂fP

≥ 0.

conservation constraint of O-D pair (si, ti). These necessary conditions are

fP
∂L(f, u)

∂fP
= 0, ∀P ∈ P, (4.1.7)

∂L(f, u)

∂fP
≥ 0, ∀P ∈ P, (4.1.8)

∂L(f, u)

∂ui
= 0, ∀i ∈ {1, . . . , k}, (4.1.9)

fP ≥ 0, ∀P ∈ P. (4.1.10)

Conditions (4.1.9) and (4.1.10) simply restate the flow conservation and
non-negativity constraints of (4.1.1). Conditions (4.1.7), (4.1.8) and (4.1.10)
are necessary to minimize the Lagrangian with the non-negativity constraint on
the flow variable, see Figure 4.2. To simplify conditions (4.1.7) and (4.1.8) the
derivatives are written as the sum of two terms as follows:

∂L(f, u)

∂fP
=
∂z(f)

∂fP
+

∂

∂fP

 k∑
i=1

ui

ri − ∑
P̂∈Pi

fP̂

 . (4.1.11)

For P ∈ Pj we have that the second term is equal to −uj . The derivative in
the first term is given by

∂z(f)

∂fP
=

∑
a∈A

∂z(f)

∂fa
· ∂fa
∂fP

=
∑
a∈A

∂
(∑

b∈A cb(fb)fb
)

∂fa
· δaP

=
∑
a∈A

δaP · c̃a(fa)

= c̃P (f).

So the first-order conditions for a stationary point of the Lagrangian program

38

can be written as

fP (c̃P (f)− ui) = 0, ∀P ∈ Pi,∀i ∈ {1, . . . , k}, (4.1.12)

(c̃P (f)− ui) ≥ 0, ∀P ∈ Pi,∀i ∈ {1, . . . , k}, (4.1.13)∑
P∈Pi

fP = ri, ∀i ∈ {1, . . . , k}, (4.1.14)

fP ≥ 0, ∀P ∈ P. (4.1.15)

So, for a path P in commodity i with fP > 0 equation (4.1.12) gives that
c̃P (f) = ui. Inequality (4.1.13) then gives that every other path P ∗ ∈ Pi has
the property

c̃P∗(f) ≥ ui = c̃P (f).

So the fact that f is an SO flow implies that, for every i ∈ {1, . . . , k} and
every pair P, P ∗ ∈ Pi with fP > 0,

c̃P (f) ≤ c̃P∗(f).

To proof the reversed implication, it is sufficient that program (4.1.6) has an
unique solution, see Remark 4.1.3. This concludes the proof.

With Lemma 4.1.6 the proof of Proposition 4.1.5 is trivial.

Proof of Proposition 4.1.5. The correctness of this statement follows directly
from Lemma 4.1.6 and Definition 4.1.4.

Consider Pigou’s example in Figure 4.1. Using the marginal weight func-
tions, as defined in Proposition 4.1.5, results in c̃P1(x) = 2x and c̃P2(x) = 1.
Some thought reveals that the flow for a UE with respect to c̃, as Proposition
4.1.5 indicates, indeed splits the flow evenly among the two paths.

4.2 Computation of the UE

Consider an instance GC,c for which we want to find a UE flow f . To use
Proposition 4.1.5 we need to find a function, say φ, for which the marginal
weight function is equal to c. So, let φa(x) =

∫ x
0
ca(y) dy · x−1 and define the

potential function

Φ(f) :=
∑
a∈A

∫ fa

0

ca(x) dx. (4.2.1)

Note that Lemma 4.1.2 still holds for Φ(f).

Corollary 4.2.1. Let GC,c be an instance. Then a feasible flow f is a UE for
GC,c if and only if f is the SO for GC,φ.

Proof. Follows directly from Proposition 4.1.5.

39

Corollary 4.2.1 states that finding a UE for an instance GC,c is equal to
finding a solution to the following minimisation problem:

minimize Φ(f) =
∑
a∈A

∫ fa

0

ca(x) dx

subject to
∑
P∈Pi

fP = ri, i ∈ {1, . . . , k},

fP ≥ 0, P ∈ Pi, i ∈ {1, . . . , k}.

(4.2.2)

One way to solve this linear program is by the Frank-Wolfe algorithm [11]. This
algorithm can be summarized as follows:

1. Initialisation. Find a feasible solution f0 for (4.2.2) and let n = 0.

2. Direction finding. Find gn that solves

minimize ∇Φ (fn) (gn − fn)T

subject to
∑
P∈Pi

gnP = ri, i ∈ {1, . . . , k},

gnP ≥ 0, P ∈ Pi, i ∈ {1, . . . , k}.

(4.2.3)

3. Step-size determination. Find αn that solves

min
0≤αn≤1

Φ [fn + αn (gn − fn)] . (4.2.4)

4. Move. Let fn+1 := fn + αn (gn − fn).

5. Convergence test. If Φ (fn) − Φ
(
fn+1

)
< κ, stop1. Else, let n := n + 1

and repeat from step 2.

Similarly to the Primal-Dual Algorithm, a new linear program has to be
solved in every iteration. Solving (4.2.3) will turn out to be easy when applying
the Frank-Wolfe algorithm to the traffic assignment problem. A better under-
standing of the structure of program (4.2.3) can be obtained by taking a closer
look at the objective function. The objective function of (4.2.3) can be further
written as

∇Φ(fn)(gn − fn)T =
∑
a∈A

(
∂Φ (fn)

∂fna

)
(gna − fna) (4.2.5)

=
∑
a∈A

ca (fna) (gna − fna) (4.2.6)

=
∑
a∈A

ca (fn) gna −
∑
a∈A

ca (fn) fna . (4.2.7)

The first sum of (4.2.7) corresponds to the total weight of flow gn through a
graph with constant weight functions ca (fn), whereas the second sum is just a
constant. To minimize this total weight, it is sufficient to calculate the short-
est path for every O-D pair in the graph with constant edge weight functions

1Any other convergence criteria could be used.

40

ca (fn). As a result, the UE can be found by an iterative process of shortest
path calculations.

Note that the weight functions change with every iteration. Hence, one has
to consider a shortest path algorithm that is suited for dynamic graphs, such as
the Bidirectional Dijkstra algorithm or the Primal-Dual Algorithm.

41

Bibliography

[1] Holger Bast et al. “In Transit to Constant Time Shortest-path Queries in
Road Networks”. In: Proceedings of the Meeting on Algorithm Engineer-
ing & Expermiments. New Orleans, Louisiana: Society for Industrial and
Applied Mathematics, 2007, pp. 46–59.

[2] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied
Mathematics 16.1 (1958), pp. 87–90. issn: 0033569X, 15524485.

[3] Edith Cohen et al. “Reachability and Distance Queries via 2-hop Labels”.
In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’02. San Francisco, California: Society for Indus-
trial and Applied Mathematics, 2002, pp. 937–946. isbn: 0-89871-513-X.

[4] George B. Dantzig. “On the Shortest Route Through a Network”. In:
Manage. Sci. 6.2 (Jan. 1960), pp. 187–190. issn: 0025-1909. doi: 10.1287/
mnsc.6.2.187. url: http://dx.doi.org/10.1287/mnsc.6.2.187.

[5] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. “Faster
Batched Shortest Paths in Road Networks”. In: 11th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems. Ed. by Alberto Caprara and Spyros Kontogiannis. Vol. 20. OpenAc-
cess Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2011, pp. 52–63. isbn: 978-3-939897-
33-0. doi: 10.4230/OASIcs.ATMOS.2011.52. url: http://drops.

dagstuhl.de/opus/volltexte/2011/3266.

[6] Daniel Delling et al. “Customizable Route Planning”. In: Proceedings of
the 10th International Symposium on Experimental Algorithms (SEA’11).
Springer Verlag, May 2011. url: https://www.microsoft.com/en-

us/research/publication/customizable-route-planning/.

[7] Daniel Delling et al. PHAST: Hardware-Accelerated Shortest Path Trees.
Tech. rep. Sept. 2010. url: https : / / www . microsoft . com / en - us /

research / publication / phast - hardware - accelerated - shortest -

path-trees/.

[8] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”.
In: Numer. Math. 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X. doi:
10.1007/BF01386390. url: http://dx.doi.org/10.1007/BF01386390.

[9] Jittat Fakcharoenphol and Satish Rao. “Planar Graphs, Negative Weight
Edges, Shortest Paths, and Near Linear Time”. In: J. Comput. Syst. Sci.
72.5 (Aug. 2006), pp. 868–889. issn: 0022-0000. doi: 10.1016/j.jcss.
2005.05.007. url: http://dx.doi.org/10.1016/j.jcss.2005.05.007.

[10] L. R. Ford. Network Flow Theory. P-923. California, Santa Monica, Aug.
1956, pp. 87–90.

[11] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic program-
ming”. In: Naval Research Logistics Quarterly 3.1-2 (1956), pp. 95–110.
issn: 1931-9193.

42

https://doi.org/10.1287/mnsc.6.2.187
https://doi.org/10.1287/mnsc.6.2.187
http://dx.doi.org/10.1287/mnsc.6.2.187
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
http://drops.dagstuhl.de/opus/volltexte/2011/3266
http://drops.dagstuhl.de/opus/volltexte/2011/3266
https://www.microsoft.com/en-us/research/publication/customizable-route-planning/
https://www.microsoft.com/en-us/research/publication/customizable-route-planning/
https://www.microsoft.com/en-us/research/publication/phast-hardware-accelerated-shortest-path-trees/
https://www.microsoft.com/en-us/research/publication/phast-hardware-accelerated-shortest-path-trees/
https://www.microsoft.com/en-us/research/publication/phast-hardware-accelerated-shortest-path-trees/
https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007

[12] Robert Geisberger et al. “Contraction Hierarchies: Faster and Simpler Hi-
erarchical Routing in Road Networks”. In: Proceedings of the 7th Interna-
tional Conference on Experimental Algorithms. WEA’08. Provincetown,
MA, USA: Springer-Verlag, 2008, pp. 319–333. isbn: 3-540-68548-0, 978-
3-540-68548-7.

[13] Andrew V. Goldberg and Chris Harrelson. “Computing the Shortest Path:
A Search Meets Graph Theory”. In: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’05. Vancouver,
British Columbia: Society for Industrial and Applied Mathematics, 2005,
pp. 156–165. isbn: 0-89871-585-7.

[14] Ron Gutman. “Reach-Based Routing: A New Approach to Shortest Path
Algorithms Optimized for Road Networks.” In: Jan. 2004, pp. 100–111.

[15] Richard V. Helgason, Jeffery L. Kennington, and B. Douglas Stewart.
“The One-to-one Shortest-path Problem: An Empirical Analysis with the
Two-tree Dijkstra Algorithm”. In: Computational Optimization and Ap-
plications 2.1 (June 1993), pp. 47–75. issn: 0926-6003. doi: 10.1007/

BF01299142. url: http://dx.doi.org/10.1007/BF01299142.

[16] Moritz Hilger et al. “Fast Point-to-Point Shortest Path Computations with
Arc-Flags”. In: The Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge. American Mathematical Society, 2009, pp. 41–72.

[17] Martin Holzer, Frank Schulz, and Dorothea Wagner. “Engineering Multi-
level Overlay Graphs for Shortest-path Queries”. In: J. Exp. Algorithmics
13 (Feb. 2009), 5:2.5–5:2.26. issn: 1084-6654.

[18] Lasse Kliemann and Peter Sanders, eds. Algorithm Engineering: Selected
Results and Surveys. Cham: Springer International Publishing, 2016. isbn:
978-3-319-49487-6.

[19] Sebastian Knopp et al. “Computing Many-to-many Shortest Paths Using
Highway Hierarchies”. In: Proceedings of the Meeting on Algorithm Engi-
neering & Expermiments. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics, 2007, pp. 36–45.

[20] Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, eds. Algorith-
mics of Large and Complex Networks: Design, Analysis, and Simulation.
Berlin, Heidelberg: Springer-Verlag, 2009. isbn: 978-3-642-02093-3.

[21] Richard J. Lipton and Robert E Tarjan. A Separator Theorem for Planar
Graphs. Tech. rep. Stanford, CA, USA, 1977.

[22] Jens Maue, Peter Sanders, and Domagoj Matijevic. “Goal-directed Shortest-
path Queries Using Precomputed Cluster Distances”. In: J. Exp. Algo-
rithmics 14 (Jan. 2010), 2:3.2–2:3.27. issn: 1084-6654. doi: 10.1145/

1498698.1564502.

[23] E.F. Moore. The Shortest Path Through a Maze. Vol. 3523. Bell Telephone
System. Technical publications. monograph. Bell Telephone System., 1959.

[24] T. A. J. Nicholson. “Finding the Shortest Route between Two Points in
a Network”. In: The Computer Journal 9.3 (1966), pp. 275–280.

43

https://doi.org/10.1007/BF01299142
https://doi.org/10.1007/BF01299142
http://dx.doi.org/10.1007/BF01299142
https://doi.org/10.1145/1498698.1564502
https://doi.org/10.1145/1498698.1564502

[25] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. (Originally published: Englewood
Cliffs, NJ : Prentice Hall, Inc., 1982). Mineola, NY, USA: Dover Publica-
tions, Inc., 1998. isbn: 0-486-40258-4.

[26] Ira Sheldon Pohl. “Bi-directional and Heuristic Search in Path Problems”.
PhD thesis. Stanford, CA, USA, 1969.

[27] Tim Roughgarden. “Routing Games”. In: Algorithmic Game Theory. Ed.
by Noam Nisan et al. New York, NY, USA: Cambridge University Press,
2007. Chap. 18, pp. 461–486. isbn: 0-521-87282-0.

[28] Peter Sanders and Dominik Schultes. “Highway Hierarchies Hasten Ex-
act Shortest Path Queries”. In: Proceedings of the 13th Annual European
Conference on Algorithms. ESA’05. Palma de Mallorca, Spain: Springer-
Verlag, 2005, pp. 568–579. isbn: 3-540-29118-0, 978-3-540-29118-3. doi:
10.1007/11561071_51. url: http://dx.doi.org/10.1007/11561071_
51.

[29] Dominik Schultes and Peter Sanders. “Dynamic Highway-node Routing”.
In: Proceedings of the 6th International Conference on Experimental Al-
gorithms. WEA’07. Rome, Italy: Springer-Verlag, 2007, pp. 66–79. isbn:
978-3-540-72844-3.

[30] Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. “Using Multi-
level Graphs for Timetable Information in Railway Systems”. In: Revised
Papers from the 4th International Workshop on Algorithm Engineering
and Experiments. ALENEX ’02. London, UK, UK: Springer-Verlag, 2002,
pp. 43–59. isbn: 3-540-43977-3.

[31] Yosef Sheffi. Urban Transportation Networks. Englewood Cliffs, NJ 07632:
Prentice Hall, Inc., 1985. isbn: 0-139-39729-9.

[32] Mikkel Thorup. “Integer Priority Queues with Decrease Key in Constant
Time and the Single Source Shortest Paths Problem”. In: J. Comput.
Syst. Sci. 69.3 (Nov. 2004), pp. 330–353. issn: 0022-0000. doi: 10.1016/
j.jcss.2004.04.003. url: http://dx.doi.org/10.1016/j.jcss.
2004.04.003.

[33] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. “Geometric
Containers for Efficient Shortest-path Computation”. In: J. Exp. Algorith-
mics 10 (Dec. 2005). issn: 1084-6654. doi: 10.1145/1064546.1103378.

[34] Xugang Ye, Shih-Ping Han, and Anhua Lin. “A Note on the Connection
Between the Primal-Dual and the A* Algorithm”. In: International Jour-
nal of Operations Research and Information Systems (IJORIS) 1.1 (Jan.
2010), pp. 73–85.

44

https://doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/11561071_51
https://doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1016/j.jcss.2004.04.003
http://dx.doi.org/10.1016/j.jcss.2004.04.003
http://dx.doi.org/10.1016/j.jcss.2004.04.003
https://doi.org/10.1145/1064546.1103378

	Introduction
	Preliminaries
	Shortest Paths
	Problem definition
	Labelling Algorithms
	The Bellman-Ford algorithm Bellman:1958:ORP,Ford:1956:NFT
	Dijkstra's algorithm Dijkstra:1959:NTP

	Bidirectional Dijkstra
	The Primal-Dual Algorithm
	The classic Primal-Dual Algorithm
	Application to the shortest path problem

	Speed-up techniques
	Goal directed techniques
	Geometric Containers Wagner:2005:GCE
	A* search and ALT
	Arc Flags Hilger:2006:FPS
	Precomputed Cluster Distances (PCD) Maue:2010:GSQ

	Hierarchy-Based Methods
	Contraction
	Reach-Based Routing Gutman:2004:RBR
	Graph Separators

	Table look-up techniques
	Compressed Path Databases (CPD)
	Hub Labelling (HL) Cohen:2002:RDQ
	Transit Node Routing (TNR) Bast:2007:TCT

	Combining speed-up techniques
	Shortcuts + Reach + ALT
	TNR + Arc Flags

	Discussion
	Path Construction
	Dynamic Graphs
	Multi commodity

	Flows
	Traffic assignment problem
	Computation of the UE

	Bibliography

