
Quadratic points on modular curves
Alberts, S.

Citation
Alberts, S. (2017). Quadratic points on modular curves.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597017
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597017


S. Alberts

Quadratic points on modular curves

Master thesis

Supervisor: Dr. P.J. Bruin

Date: November 24, 2017

Mathematisch Instituut, Universiteit Leiden



Contents

Introduction 3

1 Modular and hyperelliptic curves 5

1.1 The definition of modular curves . . . . . . . . . . . . . . . . . . 5

1.2 The Tate normal form of elliptic curves . . . . . . . . . . . . . . 7

1.3 A few low level examples of modular curves . . . . . . . . . . . . 9

1.3.1 The universal elliptic curve for X1(4) . . . . . . . . . . . . 9

1.3.2 The universal elliptic curve for X1(5) . . . . . . . . . . . . 10

1.4 Mumford representations . . . . . . . . . . . . . . . . . . . . . . 10

1.5 A classification of points on genus 2 hyperelliptic curves . . . . . 12

2 Counting points of the Jacobian 16

2.1 Reduction modulo primes . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Selmer groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Galois cohomology . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The definition of Selmer groups . . . . . . . . . . . . . . . 19

3 Points on X1(13) 20

3.1 A hyperelliptic equation for X1(13) . . . . . . . . . . . . . . . . . 20

3.2 Classifying points on X1(13) over quadratic extensions of Q(ζ13)+ 21

4 An equation for X1(16) 23

4.1 The universal elliptic curve for X1(8) . . . . . . . . . . . . . . . . 23

4.2 A hyperelliptic equation for X1(16) . . . . . . . . . . . . . . . . . 24

4.3 The universal elliptic curve for X1(16) . . . . . . . . . . . . . . . 25

5 The Jacobian of X1(16) 27

5.1 Counting the points of J1(16)(K) . . . . . . . . . . . . . . . . . . 27

5.2 Classifying points on X1(16) over quadratic extensions of Q(ζ16)+ 28

A Lists of elliptic curves with torsion points 30

A.1 List of elliptic curves with a point of order 13 . . . . . . . . . . . 30

A.2 List of elliptic curves with a point of order 16 . . . . . . . . . . . 32

B Codes 34

B.1 Magma code for listing the points of X1(13) . . . . . . . . . . . . 34

B.2 Magma code for listing the points of X1(16) . . . . . . . . . . . . 36

2



Introduction

For many years, people have been interested in the possible torsion structures
of elliptic curves over a given base field K. For K = Q, Mazur gave a complete
list of possible torsion structures of elliptic curves in the article [Mazu] from
1977.

Theorem (Mazur).

If E is an elliptic curve over Q, then E(Q)tors is isomorphic to one of the following
groups: Z/mZ,Z/nZ× Z/2Z for m ∈ {1, . . . , 10} ∪ {12} and n ∈ {2, 4, 6, 8}.

The proof of this theorem uses modular curves. We will be using modular curves
to study 13- and 16-torsion points of elliptic curves over number fields.

Modular curves are curves that parametrize pairs of an elliptic curve, together
with some torsion structure. This torsion structure can be a finite subgroup, a
point or something else. What torsion structure it is depends on the modular
curve. Over the complex numbers, modular curves can be obtained by tak-
ing quotients of the upper half plane by congruence subgroups. We consider the
curves Y1(N) for N ≥ 4. The points of these curves correspond in a natural way
to pairs of an elliptic curve together with a point of order N , up to isomorphism.

The article [KaNe] started to list the quadratic points of the curve X1(13) over
Q(ζ13)+. Using the results of [KaNe] about the Jacobian of X1(13), we will
finish this list. After this, we use many of the same techniques that we used
for X1(13) to list all quadratic points of X1(16) over Q(ζ16)+. It will also be
explained which elliptic curves correspond to all these quadratic points.

The curves X1(13) and X1(16) are hyperelliptic curves of genus 2. Therefore,
the first chapter will contain some general theory about modular and hyperel-
liptic curves. We will discuss the basic definitions and properties of modular
curves. After this, we will move on to hyperelliptic curves and their Jacobians.
Chapter 1 will finish by proving a theorem about how to classify all quadratic
points of hyperelliptic curves of genus 2. To find all quadratic points of X1(13)
and X1(16), we need to use the points of their Jacobians. Chapter 2 will cover
two methods of bounding the torsion subgroup of the Jacobian of any abelian
variety. These methods involve reduction modulo primes and Selmer groups.

Chapter 3 starts by deriving a hyperelliptic equation for X1(13). Then the
theory from chapter 1 will be used to list the points of X1(13) defined over
quadratic extensions of Q(ζ13)+. This builds on the article [KaNe]. In chap-
ter 4 we will move on to X1(16). A hyperelliptic equation will be derived for
X1(16). In chapter 5 we will bound the torsion subgroup of the Jacobian of
X1(16). Then the same techniques as in chapter 3 will be used to list the points
of X1(16) defined over quadratic extensions of Q(ζ16)+.

This thesis is aimed at master level students who have taken an introductory
course in algebraic geometry and elliptic curves. We will not assume any knowl-
edge in scheme theory. This is why we will skip some constructions and precise
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definitions that involve schemes. Instead, we will state and use the relevant
properties for us.
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1 Modular and hyperelliptic curves

In this chapter we give an introduction to modular curves and hyperelliptic
curves. We will give the basic definitions and results about modular curves.
Then we will discuss the Tate normal form of elliptic curves and give some
examples of modular curves. After this we move on to hyperelliptic curves. We
state the general definition of hyperelliptic curves and their Jacobian variety.
We discuss the Mumford representation of points of the Jacobian. We finish this
chapter by showing how these Mumford representations can be used to make a
classification of all points of the hyperelliptic curve.

1.1 The definition of modular curves

We start this chapter by giving an introduction to modular curves. The algebraic
definition is rather involved. The precise construction is not necessary for our
purposes. Therefore, we give the analytic construction of modular curves. This
construction only covers modular curves over the complex numbers. In [DiSh]
one can read how to define modular curves over arbitrary base fields. First we
need the definition of a congruence subgroup.

Definition 1.1 (Congruence subgroup).

1. A principal congruence subgroup is a group of the form

Γ(N) :=

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1 0
0 1

)
mod N

}
for some positive integer N .

2. A congruence subgroup is a subgroup Γ of SL2(Z) that contains a
principal congruence subgroup Γ(N). The smallest such N is called the
level of Γ.

Examples 1.2.

The most important examples of congruence subgroups for our purposes are
Γ(N), Γ0(N) and Γ1(N). Those last two groups are defined by

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1 mod N, c ≡ 0 mod N

}
.

There is an action of SL2(Z) on the upper half plane

H := {z ∈ C | Im(z) > 0}.

This action is given by (
a b
c d

)
· z =

az + b

cz + d
.

5



Therefore, every congruence subgroup acts on H as well.

Given a congruence subgroup Γ, we can consider the quotient space Y (Γ) :=
Γ\H. It is a non-trivial fact that this space has the structure of a Riemann
surface. By adding finitely many points to Y (Γ), one can obtain a compact
Riemann surface denoted by X(Γ). The space X(Γ) can also be obtained as
a quotient space. This is done by extending the upper half plane to H∗ :=
H ∪ P1(Q). This H∗ can be given a topology, which we shall not describe here.
Any congruence subgroup Γ is still acting on H∗. We can obtain X(Γ) as the
quotient space Γ\H∗. Although H∗ does not have the structure of a Riemann
surface, the quotient space does. For details on the topological and complex
structure on these spaces Y (Γ) and X(Γ), see chapter 2 of [DiSh].

Definition 1.3 (Complex modular curve).

A complex modular curve is either:

1. a quotient Y (Γ) := Γ\H, where Γ is a congruence subgroup;
2. the compactification X(Γ) of Y (Γ) described above;

where Γ is a congruence subgroup.

Examples 1.4. We denote

Y (N) := Y (Γ(N)), Y0(N) := Y (Γ0(N)), Y1(N) := Y (Γ1(N)).

The compactifications of these curves are denoted by X(N), X0(N), X1(N).

Definition 1.5 (Cusps).

Let Γ be a congruence subgroup. The points in X(Γ) − Y (Γ) are called the
cusps of X(Γ).

The main reason of interest for these curves is their moduli interpretation: the
points of these curves can be used to classify elliptic curves together with certain
torsion data. These curves all have equivalents over arbitrary base fields, as
summarized in the following theorem.

Theorem & Definition 1.6.

Let N ≥ 1 be an integer. There exist algebraic curves Y (N), Y0(N) and Y1(N)
over Q, such that for all fields K with char(K) = 0 we have:

• If N ≥ 3, there is a natural one-to-one correspondence between K-points
of Y (N) and isomorphism classes of pairs (E, (P,Q)), where E is an ellip-
tic curve over K and (P,Q) is a Z/NZ-basis for the N -torsion of E(K).

• If K is algebraically closed, there is a natural one-to-one correspondence
between points of Y0(N) and isomorphism classes of pairs (E,C), where
E is an elliptic curve overK and C is a cyclic subgroup of orderN of E(K).

• If N ≥ 4, there is a natural one-to-one correspondence between points
of Y1(N) and isomorphism classes of pairs (E,P ), where E is an elliptic
curve over K and P is a point of E(K) of order 13.
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By adding finitely many points to these curves, we can obtain smooth projective
curves, which are denoted byX(N), X0(N) andX1(N) respectively. ForK = C,
the curves Y1(N), Y0(N), X1(N) and X0(N) are as defined in Examples 1.4.

As we mentioned before, constructing these modular curves is too involved to
include here. Instead, we will just use the existence and moduli interpretation
of these curves. The precise definition of the curves and their compactifications
is covered in great detail in the book [DiSh].

We will be interested in the curves X1(N). Given a non-cuspidal point of this
curve, we need to be able to calculate the corresponding elliptic curve.

Theorem & Definition 1.7 (Universal elliptic curve).

Let N ≥ 4 be an integer. There is a family of curves, naturally parametrized by
the points of X1(N), such that every non-cuspidal point of X1(N) corresponds
to an elliptic curve with (0, 0) of order N . This family is called the universal
elliptic curve for X1(N).

Concretely, the universal elliptic curve will be given by an equation of the form

y2 + cxy + by = x3 + bx2.

In this equation, b and c will be rational functions on X1(N). The equation
defines a smooth curve whenever Q is a non-cuspidal point of X1(N).

Remark 1.8.

For a precise definition of the modular curves X(N), X0(N) and X1(N), as well
as the universal elliptic curve, we would need to go into what natural means.
However, this involves scheme theory. Because we do not want to assume scheme
theory as a prerequisite, we will not go into the precise definition here. In our
applications, we will have concrete examples of modular curves and explicit
correspondences between points and elliptic curves.

1.2 The Tate normal form of elliptic curves

We will now discuss the Tate normal form of an elliptic curve, which we can
then use to give some concrete examples of modular curves.

Definition 1.9 (Tate normal form).

Let K be a field, E and elliptic curve over K and P ∈ E(K) a point that is not
of order 1, 2 or 3. The Tate normal form of the pair (E,P ) is a model for E
given by an equation

y2 + cxy + by = x3 + bx2,

where b, c are in K and P = (0, 0).

One way to derive an equation for X1(N) is to look at a possible relation between
b, c that can be obtained from the fact that P is of order N . We will do this
later for N = 4 and N = 5. Before that, we need to discuss how to find the
Tate normal form of such a pair.
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We let (E,P ) be a pair as in the above definition. Let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

be a Weierstrass equation for E. We can always translate our curve, so we can
assume that P = (0, 0). This gives that a6 = 0.

Next, we know that P is not of order 2. This gives that the tangent line to E
through P is not vertical. This tangent line is given by the linear parts of the
equation for E, so this line is given by a3y = a4x. Thus we find that a3 6= 0.
We can therefore make the change of variables given by

y := y′ +
a4
a3
x.

Now the tangent line at 0 is given by y′ = 0.

Substituting this, we get a model for E of the form

E : y2 + b1xy + b3y = x3 + b2x
2,

with P = (0, 0) of order N and b3 6= 0.

Now we use that P is not a 3-torsion point. This means that P + P + P 6= 0.
Therefore, the third point on the tangent line on E in (0, 0) is different from
(0, 0). This line is given by y = 0, giving that x3 + b2x

2 has a root different
from 0; hence b2 6= 0.

We make another change of variables, by

y :=

(
b3
b2

)3

y′, x :=

(
b3
b2

)2

x′.

Substituting this in the equation and dividing by
(
b3
b2

)6
, we find the equation

y2 +
b1b2
b3

xy +
b32
b23
y = x3 +

b32
b23
x2.

By writing c = b1b2
b3

and b =
b32
b23

, we see that this is the desired form. In summary,

we have found the following algorithm.

Algorithm 1.10 (Derivation of the Tate normal form). Let E be an elliptic
curve given by a Weierstrass equation

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6. (1.2)

Let P = (x0, y0) be a point of order N ≥ 4.

1: Substitute
x = x′ + x0, y = y′ + y0

into equation (1.2). To simplify the notation, we omit the primes. We
obtain the following equation for E:

y2 + a1xy + a3y = x3 + a2x
2 + a4x. (1.3)
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2: Substitute
y = y′ +

a4
a3
x

into equation (1.3). We obtain the following equation for E:

y2 + b1xy + b3y = x3 + b2x
2. (1.4)

3: Substitute

y =

(
b3
b2

)
y′, x =

(
b3
b2

)
x′

into equation (1.4).

4: Divide the equation obtained in step 3 by

(
b3
b2

)6

.

Remark 1.11. The Tate normal form is the unique Weierstrass equation with
the conditions that P = (0, 0), the tangent line at P is horizontal and a2 = a3.
This is because the only admissible coordinate changes on elliptic curves are
given by

x = u2x′ + r, y = u3y′ + su2x+ t,

where u ∈ K× and r, s, t ∈ K. There is no non-trivial coordinate change that
respects the above conditions on the Tate normal form.

1.3 A few low level examples of modular curves

We want to give some examples of modular curves. We will derive the universal
elliptic curve for X1(4) and X1(5).

1.3.1 The universal elliptic curve for X1(4)

We let N = 4. Let (E,P ) be a pair of an elliptic curve E and a point P of
order 4, given in Tate normal form. So we have P = (0, 0) and E is given by an
equation of the form

y2 + cxy + by = x3 + bx2.

First we compute −2 · P , which is the third intersection point of the tangent
line at P with E. This line is horizontal, and we find that −2 · P = (−b, 0).
Because this point is of order 2, the tangent line here is vertical. We translate
(−b, 0) to 0, by substituting x = x′ − b. We find

y2 + c(x′ − b)y + by = (x′ − b)3 + b(x′ − b)2.

The linear part of this equation gives an equation for the tangent line. We get

−cby + by = 3b2x′ − 2b2x′.

This line is vertical precisely if c = 1. Therefore, we find that E is given by

y2 + xy + by = x3 + bx2 (1.5)
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with b 6= 0. This is the equation for the universal elliptic curve for X1(4). The
discriminant of this equation is −16b5 + b4. So if b = 1

16 , the resulting curve is
not smooth. Therefore, 1

16 is a cusp of X1(4). We find that

Y1(4)(K) =

{
b ∈ K×

∣∣∣∣ b 6= 1

16

}
,

and X1(4) is the projective line over K. The three cusps of X1(4) are 0, 1
16 and

the point at infinity.

1.3.2 The universal elliptic curve for X1(5)

We now take N = 5 and as before our pair (E,P ) is in Tate normal form, so E
is given by

y2 + cxy + by = x3 + bx2. (1.6)

The tangent line at −2P = (−b, 0) is given by

y =
b

1− c
(x+ b).

We know that c 6= 1, because then P would be of order 4, so we are not dividing
by 0. Substituting this into equation (1.6) gives us a degree 3 equation for the
x-coordinate of 4P = −2 · −2P . Solving this equation gives us the x-coordinate
b2+bc−b
c2−2c+1 for 4P . Now using that 4P = −P = (0,−b), we find that

−b2 + bc− b
c2 − 2c+ 1

= 0.

This gives b(−b + c − 1) = 0. Because b 6= 0, we find that c = 1 + b. So the
universal elliptic curve for X1(5) becomes

E : y2 + (1 + b)xy + by = x3 + bx2.

We see that X1(5) is the projective line.

These are relatively simple, in both cases the resulting curve is a line. In chapters
3 and 4, more complicated modular curves will be described.

1.4 Mumford representations

In section 1.3 we chose to discuss X1(4) and X1(5) because they are relatively
simple to describe. The result of this is that we have found a line twice. Later on
in this thesis we will be looking at more complicated examples, which turn out
to be hyperelliptic curves. Therefore, we need to discuss hyperelliptic curves.

Definition 1.12 (Hyperelliptic curve). A hyperelliptic curve over a field
K is a smooth projective curve of genus at least 2, that admits a double cover
to the projective line.
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Any hyperelliptic curve X can be given by an equation of the form y2 +h(x)y =
f(x), and if char(K) 6= 2 this can be rewritten into the form y2 = f(x). These
equations are called hyperelliptic equations for X.

In a regular projective plane, hyperelliptic equations do not describe a smooth
curve. Therefore, hyperelliptic curves are embedded in the weighted projective
space P(1 : g + 1 : 1), where g is the genus of X.

When E is an elliptic curve over K, we know that its set of K-points is an
abelian group. This group structure is useful when trying to find points. When
X is a hyperelliptic curve, we do not have a group structure on X(K). That
is why we need the Jacobian variety of X. Whenever X(K) is non-empty, the
K-points of the abelian variety J form a group isomorphic to the Picard group
of X.

Definition 1.13 (Picard group). Let X be a curve over a field K. The Picard
group of X is the group Pic0(X) of K-rational divisors of X of degree 0, modulo
principal divisors.

Theorem & Definition 1.14 (Jacobian variety).

Let X be a hyperelliptic curve over a field K with X(K) 6= ∅. There is an
abelian variety J(X), for which its group of K-points is naturally isomorphic
to the Picard group of X. This variety J(X) is called the Jacobian variety
of X.

Remark 1.15.

As with the definition of modular curves, there is a notion of naturality in the
definition of the Jacobian. This naturality involves scheme theory and therefore
we will not explain what it means here.

The construction of the Jacobian is too complicated to describe here. For this
we refer to [MiJV]. As we did with modular curves, we will just use the existence
and properties of Jacobian varieties.

The reason we need Jacobian varieties is because we can use their points to
extract points of the original curve. We will run the involved calculations in
Magma. For this we need the following definition.

Definition 1.16 (Mumford representation).

Let X be a hyperelliptic curve over a field K, given by

y2 + h(x)y = f(x).

Let g be the genus of X. Let J(X) be the Jacobian of X. The Mumford
representation of a point in J(X)(K) is a triple (a(x), b(x), d), where:

• a(x) and b(x) are polynomials over K;
• a(x) is monic of degree at most g;
• b(x) has degree at most g + 1;
• a(x) divides b(x)2 + h(x)b(x)− f(x);
• d is a positive integer with deg(a(x)) ≤ d ≤ g + 1, such that

deg(b(x)2 + h(x)b(x)− f(x)) ≤ 2g + 2− d+ deg(a(x)).
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Every non-zero K-point of J(X) has a unique Mumford representation, see the-
orem 4.145 of [CoFr]. In algorithm 1.17 we will explain how to find a divisor
class corresponding to a K-point of J(X) in Mumford representation. Magma
lists points of J(X) in Mumford representation. From these Mumford repre-
sentations we can extract points of X. A K-point of J(X) is an element of the
Picard group of X, so it is an equivalence class of a degree 0 divisor. A repre-
sentative of this equivalence class is a sum of points of X. We will now describe
an algorithm to find such a representative from a Mumford representation.

There are some technicalities which make this more complicated when g is odd
and X has no K-rational points at infinity. This is irrelevant for our purposes,
so we will assume that g is even and X has at least one K-rational point at
infinity. The following algorithm can also be found in [Magm].

Algorithm 1.17 (Recovering divisors from Mumford representations).

Let X be a hyperelliptic curve over a field K. Assume that its genus g is even
and X has at least one K-rational point at infinity. Let J(X) be the Jacobian
of X. Let (a(x), b(x), d) be the Mumford representation of a non-zero K-point
of J(X).

1: Homogenize the polynomial a(x) to a polynomial A(x, z) of degree d. Ho-
mogenize the polynomial b(x) to a polynomial B(x, z) of degree g + 1.

2: Solve the equations A(x, 1) = 0 and A(x, 0) = 0 over an algebraic closure
of K.

3: For a solution α of A(x, 1) = 0, we put Pα := (α, b(α)). For a solution β
of A(x, 0) we put Pβ := (β : B(β, 0) : 0) in the weighted projective space
P(1 : g + 1 : 1).

4: Let D be the divisor of degree d obtained by summing all the points Pα
and Pβ .

5.1: If X has precisely one K-rational point ∞ at infinity, then D − d∞ is a
representative for the triple (a(x), b(x), d).

5.2: If X has more than one K-rational point at infinity, then let ∞1,∞2

be two distinct points at infinity. In this case, d is always even. Then
D − d/2(∞1 +∞2) is a representative for the triple (a(x), b(x), d).

1.5 A classification of points on genus 2 hyperelliptic curves

We finish this chapter by describing a way to classify all points of hyperelliptic
curves of genus 2, defined over quadratic extensions of the base field. Let K be
a field and X a hyperelliptic curve of genus 2.

Before we can give a proof of our classification theorem, we need a lemma. We
consider the variety Sym2X = (X ×X)/S2, where S2 is the symmetric group
permuting the coordinates. This is an alternative description of degree 2 divisors
of X. However, with this description we can also view it as a geometric object.

12



The hyperelliptic map X → P1 gives a degree 2 divisor D∞ which consists of
the points that map to ∞ ∈ P1. If these two points happen to coincide, then
this means that D∞ equals twice this single point. We obtain a map

ϕ : Sym2X → J,
D 7→ [D −D∞].

(1.7)

To show how to classify quadratic points of hyperelliptic curves, we need the
following lemma.

Lemma 1.18.

Consider the map ϕ defined in (1.7).

1. Outside of 0 ∈ J(K), the map ϕ is bijective. That is, for all 0 6= Q ∈ J(K),
the inverse image ϕ−1(Q) consists of a single divisor DQ.

2. The inverse image ϕ−1(0) is a line. That is,

ϕ−1(0) = {x−1(a) : a ∈ P1(K)},

where x : X → P1 is the hyperelliptic map obtained from the equation
y2 = f(x).

Proof.

1. Let 0 6= Q ∈ J(K). Choose any divisor FQ of degree 0 which is a repre-
sentative for Q. We are trying to find a divisor DQ ∈ (Sym2X)(K) which
satisfies [DQ −D∞] = [FQ], in other words DQ has to be linearly equiv-
alent to FQ +D∞. We use the Riemann-Roch theorem and Serre duality
to find this. We consider the 1-form ω = y−1dx. This has simple zeroes
at the infinite points and no poles. Therefore we can take div(ω) = D∞
as a canonical divisor. Riemann-Roch and Serre then give that

dimK H
0(X,OX(F ))− dimK H

0(X,OX(D∞ − F )) = 1− 2 + deg(F ),

for all divisors F . Applied to F = FQ +D∞ we obtain

dimK H
0(X,OX(FQ +D∞))− dimK H

0(X,OX(−FQ)) = 1.

Therefore the space H0(X,OX(FQ + D∞) is non-trivial. We prove that
it is one-dimensional. Because Q 6= 0, we know that there is no rational
function f with div(f) − FQ = 0. However, because the degree of FQ is
0, this in fact means that there can not be any f with div(f) − FQ ≥ 0
either. For every point P with vP (f) − FQ(P ) > 0, we would need a
P ′ with vP ′(f) − FQ(P ′) < 0. Therefore, the space H0(X,OX(−FQ)) is
trivial. Hence H0(X,OX(FQ +D∞)) is one-dimensional.

So there exists a rational function fQ on X such that div(fQ) +FQ +D∞
is effective. We can take DQ := div(fQ) + FQ +D∞. Any other rational
function g satisfying div(g)+Fq+D∞ ≥ 0 lies in the same one-dimensional
space as fQ and is therefore a scalar multiple. Thus, the divisor DQ is
unique.
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2. First note that all the points x−1(a) are indeed mapped to 0, as we can
look at the rational function x−a on X. This function has zeroes whenever
x = a and poles when x is at infinity, so indeed div(x−a) = x−1(a)−D∞.

Suppose now that D1, D2 are two distinct degree 2 divisors on X, with
ϕ(D1) = ϕ(D2). This means that D1 and D2 are linearly equivalent.
Hyperelliptic maps are unique up to automorphism of P1. For a proof of
this, see [Hart], page 158 and 342. We get a rational function f : X → P1

with div(f) = D1 − D2. Because the degrees of D1, D2 are equal to
2, this map must be a 2-cover. This means that f is the hyperelliptic
map x, composed with some automorphism of P1. Given that D1 =
f−1(0), D2 = f−1(∞), the automorphism gives that there are a, b ∈ P1(K)
with D1 = x−1(a), D2 = x−1(b). This gives that ϕ is injective outside of
{x−1(a) : a ∈ P1(K)}. Moreover, this means that no point outside of this
set is mapped to 0.

With this lemma we can formulate and prove the following theorem.

Theorem 1.19 (Classification of points of hyperelliptic curves of genus 2).

Let X be a hyperelliptic curve of genus 2 over a field K of characteristic different
from 2. Let X be given by the equation y2 = f(x). Let J be the Jacobian of X.
Then we have the following points that are defined over quadratic extensions of
K:

1. For every a ∈ K, we have the points (a,±
√
f(a)).

2. Let Q ∈ J(K) be non-zero. Let (a(x), b(x), d) be its Mumford representa-
tion. Then for α a root of a(x), we have the point (α, b(α)).

3. Let Q ∈ J(K) be non-zero. Let (a(x), b(x), d) be its Mumford represen-
tation. Let A(x, z) be the degree 2 homogeneous polynomial of a. For a
root β of A(x, 0) = 0, we have the point (β : b(β) : 0).

Moreover, the points we listed here are all the points of X that are defined over
quadratic extensions of K.

Proof. It is clear that all points listed above are indeed defined over quadratic
extensions of K, from the definition of Mumford representations. We have to
show that these are all points.

Let L be a quadratic extension of K. Let P ∈ X(L). The non-trivial K-
automorphism σ of L acts on X(L), so we get a point σP . This gives a degree 2
divisor D = P+σP which is defined over K, and so it is a point of (Sym2X)(K).
Lemma 1.18 gives that we have two cases. If ϕ(D) = 0, then D is of the form
x−1(a) for some a ∈ P1(K). This means that D = (a,

√
f(a)) + (a,−

√
f(a))

and thus P = (a,±
√
f(a)) is of the first form.

Otherwise D is mapped to a non-zero point of J(K), then we know from algo-
rithm 1.17 that P is of the second or third form.
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Definition 1.20 (Exceptional points). Let K be a field with char(K) 6= 2.
Let X be a hyperelliptic curve over K of genus 2, with equation y2 = f(x).
An exceptional point of X is a point of X that is defined over a quadratic
extension of K and not of the form (x,

√
f(x)).

In later chapters, we will be listing the exceptional points of various modular
curves. Theorem 1.19 tells that all exceptional points are obtained from K-
rational points of the Jacobian.
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2 Counting points of the Jacobian

Theorem 1.19 tells how to find all points on hyperelliptic curves of genus 2 de-
fined over quadratic extensions of the base field, using the points of the Jacobian.
Because there is always a family of points parametrized by the base field K, the
number of such points will be infinite unless K is finite. However, in some cases
it is possible to make a finite list of all exceptional points of hyperelliptic curves.
This is only possible when the group of K-points of the Jacobian is finite and
when we can explicitly compute all its points. In this section we will provide
two methods of bounding the number of torsion points of the Jacobian. When
we are dealing with finite Jacobians in later chapters, these methods will be
useful to find all its points.

2.1 Reduction modulo primes

In this section, we shall consider a number field K with ring of integers O and
a hyperelliptic curve X over K. We let J be the Jacobian of X. Let X be given
by an equation y2 = f(x), with f ∈ O[x]. Let p be a non-zero prime of K. Let
k(p) be the residue field of K at p.

Theorem 2.1. Let ∆ be the discriminant of f . Suppose p - 2∆. Then:

1. The curve X given by y2 = f(x) mod p is a hyperelliptic curve over k(p);

2. If J is the Jacobian of X, then there is a reduction map J(K)→ J(k(p));

3. Let e be the ramification index of p. Let p be the prime number lying
under p. Then if e < p − 1, then the reduction map J(K) → J(k(p)) is
injective on the torsion subgroup of J(K).

Remark 2.2. The precise definition of the reduction map is too technical to
include here. This theorem is a specific case of reduction modulo primes. In
general, if A is an abelian variety over a field K, there is a notion of good
reduction at a prime p of K. At these primes, there is a reduction map from
the K-points of A to the k(p)-points of the reduction of A modulo p. When
the hypothesis from part 3 of theorem 2.1 is satisfied, this reduction map is
injective on the torsion subgroup of A(K). However, to define good reduction
at primes in general, we would need to assume scheme theory. For our purposes,
the version stated here is sufficient. In the appendix of [Katz] a proof of the
more general version of theorem 2.1 is given.

2.2 Selmer groups

Sometimes reducing modulo primes will not give a sufficient upper bound for the
torsion of an abelian variety. Before we can define the Selmer groups, we need to
define the Galois cohomology groups. Then we define a restriction map on these
Galois cohomology groups. With this map, we will define the Selmer groups,
which are certain subgroups of Galois cohomology groups. The construction of
the Selmer groups will tell how they can be used to bound the number of points
of an abelian variety. We will not go into proofs on this matter, because they
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are not relevant for our purposes. We refer to the article [Poon] for details and
proofs.

2.2.1 Galois cohomology

Let K be a number field with algebraic closure K. We write G := Gal(K/K).
To define Galois cohomology, we need the definition of G-modules.

Definition 2.3 (G-module).

A left G-module is an abelian group A together with a left G-action that
distributes over the group structure on A and is continuous. That means, if A
is equipped with the discrete topology, the map G×A→ A is continuous.

Given a G-module A, we can look at its subgroup of G-invariants AG. Taking
the G-invariants of a G-module defines a left-exact functor from the category of
G-modules to the category of abelian groups. So if

0→ A→ B → C → 0 (2.1)

is a short exact sequence of G-modules, the sequence

0→ AG → BG → CG (2.2)

is still exact, but the last map is in general not surjective.

Definition 2.4 (Galois cohomology groups).

Let M be a G-module. For i ≥ 0, we define Ci(M) to be the group of continuous
G-equivariant functions from Gi+1 to M , where the G-action on Gi+1 is the
coordinate-wise multiplication in G and the topology on M is discrete. Together
with this, we define coboundary operators d : Ci(M) → Ci+1(M). Given f ∈
Ci(M), and (g0, . . . , gi+1) ∈ Gi+2 we put

(df)(g0, . . . , gi+1) := g0 · f(g1, . . . , gi+1) +

i∑
j=1

(−1)jf(g0, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1f(g0, . . . , gi).
(2.3)

These groups and operators define a cochain complex C•(M). The ith Galois
cohomology group of M is defined to be the ith cohomology group of C•(M).

Galois cohomology is functorial in M . We have H0(G,M) ∼= MG. The higher
degree Galois cohomology groups are a way of measuring the non-exactness of
sequence (2.2). For every short exact sequence

0→ A→ B → C → 0,

of G-modules, we get a long exact sequence

0→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ · · ·

in Galois cohomology groups. This is obtained by considering the induced short
exact sequence

0→ C•(A)→ C•(B)→ C•(C)→ 0

of chain complexes and taking the long exact sequence in cohomology of this
short exact sequence.
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2.2.2 Restriction

To define Selmer groups, we need to define a restriction map on the Galois
cohomology groups.

Throughout section 2.2.2, we let K be a number field.

Definition 2.5 (Place).

A place of K is an equivalence class of absolute values on K, where two absolute
values are equivalent if one is a power of the other.

Definition 2.6 (Non-Archimedean places).

Let v be a place of K. Let | · |v an absolute value representing v. Then v is
called non-Archimedean or finite if it satisfies the strong triangle inequality

|x+ y|v ≤ max{|x|v, |y|v}

for all x, y ∈ K.

If a place v is not non-Archimedean, it is called Archimedean or infinite.

Non-Archimedean places correspond to prime ideals of K. Given a prime ideal
p of K and x ∈ K×, we can define ordp(x) to be the largest integer n for which
x ∈ pn. The corresponding absolute value is given by |x|p := cordp(x), where
c ∈ (0, 1).

Archimedean places are obtained from embeddings of K into C. Each pair of
complex conjugate embeddings gives an absolute value on K, by restricting the
absolute value on C.

At any place v of K we can take the completion Kv. If v corresponds to the
prime ideal p, lying over the prime number p, then Kv will be a finite extension
of Qp. At Archimedean places, the completion will be isomorphic to R or C.

We choose an algebraic closure K of K. For any place v, we choose an algebraic
closure Kv of Kv. We also choose an embedding K ↪→ Kv. This embedding
induces a restriction map

resv : Gal(Kv/Kv)→ Gal(K/K),

which is injective. This follows from corollary 7.621 of [MiAN]. We write G for
Gal(K/K) and Gv for Gal(Kv/Kv). Let M be any G-module. The restrictions
resv induce maps

Hi(G,M)→ Hi(Gv,M).

Combining all these maps, we get the map

Res : Hi(G,M)→
∏

v a place

Hi(Gv,M), (2.4)

which is given by restricting on each coordinate.

1The corollary is stated for finite extensions of Qp, but the proof can be generalized to
finite extensions of Kv for any number field K.
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2.2.3 The definition of Selmer groups

Let K be a number field with algebraic closure K. Let A be an abelian variety
over K. Let n ≥ 2 be an integer. Let A[n] denote the n-torsion subgroup of
A(K) and G := Gal(K/K). We get the short exact sequence of G-modules

0→ A[n]→ A(K)
·n−→ A(K)→ 0, (2.5)

of which we can take the long exact sequence in cohomology. Because H0(G,−)
takes G-invariants, the sequence starts with A[n], A(K) and A(K). We get the
following sequence:

0→ A[n]→ A(K)
·n−→ A(K)→ H1(G,A[n])→ H1(G,A)

·n−→ H1(G,A)→ · · · .

Note that we abbreviate the notation a bit. For every place v of K, we fix a
algebraic closure Kv of Kv. We also choose embeddings K ↪→ Kv for all v. We
include the map Res from (2.4) in this picture, to get the diagram

0 A(K)/n H1(G,A[n]) H1(G,A)[m] 0

0
∏
v A(Kv)/n

∏
vH

1(Gv, A[n])
∏
vH

1(Gv, A) 0.

φ
Res Res

(2.6)

In this diagram, all products range over all places v of K, and Gv denotes the
Galois group Gal(Kv/Kv). The bottom sequence is obtained by starting with
sequence (2.5), but with Kv instead of K. This diagram is commutative with
exact rows.

Definition 2.7 (Selmer groups).

Let φ be the map H1(G,A[n])→
∏
vH

1(Gv, A) from diagram (2.6). The n-th
Selmer group of A is the kernel of φ. It is denoted by Seln(A).

Because the diagram is commutative with exact rows, we see that A(K)/nA(K)
is mapped into Seln(A). This means that the Selmer group can be used to bound
the size of A(K)/nA(K).
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3 Points on X1(13)

Until now, we discussed some general theory about modular and hyperelliptic
curves. This chapter is an extension of the article [KaNe], where X1(13) is
studied. The article gives an equation for X1(13) and calculates the points of
the Jacobian. In this chapter, we will be using the universal elliptic curve for
X1(13) to derive another equation. Then we will use the work of [KaNe] and
theorem 1.19 to make a list of all exceptional points of X1(13). The calculations
for making this list will be run in Magma.

3.1 A hyperelliptic equation for X1(13)

In this section we will be deriving an equation for X1(13). The curve X1(13) is
a hyperelliptic curve of genus 2. The article [KaNe] already gave an equation
for X1(13), but we want to link an equation to the universal elliptic curve for
X1(13). That is why we will now derive another equation for X1(13).

We start with the universal elliptic curve for X1(13). This universal elliptic
curve is given by

y2 + cxy + by = x3 + bx2 (3.1)

where b and c depend on the points of X1(13). We make the coordinate change
given by

b = t(t− 1)s, c = 1 + (t− 1)s. (3.2)

These equations give a one-to-one correspondence between s and t, unless c = 1
or c = 1 + b. In section 1.3 we found that these equations describe X1(4)
and X1(5), so for X1(13) we can make this coordinate change. In these new
coordinates, the universal elliptic curve is given by

y2 + (1 + (t− 1)s)xy + t(t− 1)sy = x3 + t(t− 1)sx2. (3.3)

To derive an equation for X1(13) from this universal elliptic curve, we run some
calculations in Magma. We want to determine what it means for (0, 0) to be of
order 13. So we want to know when 13 · (0, 0) is the point at infinity. We enter
the elliptic curve given by equation (3.3) into Magma. Then we can compute
13 · (0, 0). This is the point at infinity precisely if the numerators of the x-
and y-coordinate vanish. These numerators, px and py, are two polynomials in
s and t. They turn out to be powers of the same irreducible polynomial φ13.
Specifically, we have px = φ213 and py = φ313. Hence we find φ13 = py/px. We
get

φ13 = t3 − (s4 + 5s3 + 9s2 + 4s+ 2)t2 + (s3 + 6s2 + 3s+ 1)t+ s3. (3.4)

This is an equation for X1(13), but it is singular. To get a hyperelliptic equation
for X1(13), we make a few changes of variables.

First we write
s = s1 − 1, t = s1t1 + 1.
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We substitute this into equation (3.4) and divide the new equation by s31. We
get

t31 + (−s31 − s21 + 3)t21 + (−2s21 − s1 + 3)t1 + (−s1 + 1). (3.5)

We substitute
t1 =

s1
t2
− 1

into equation (3.5) and multiply the new equation by
t32
s21

. We get

− t2s31 + (2t22 − t2)s21 + (−t32 + 1)s1 + (t32 − t22). (3.6)

We write
s1 = s2 + t2.

Substituting this in equation (3.6) gives

(−s22 − 2s2 − 1)t22 + (−s32 − s22 + 1)t2 + s2. (3.7)

We write q := (−s22 − 2s2 − 1) and we multiply (3.7) by q. This gives

(qt2)2 + (−s32 − s22 + 1)qt2 + qs2. (3.8)

We put v := qt2 and u := s2. Our hyperelliptic equation for X1(13) is

v2 + (−u3 − u2 + 1)v − (u3 + 2u2 + u) = 0. (3.9)

For the purpose of computing points in Magma, we rewrite (3.9) into an equa-
tion of the form y2 = f(x). By completing the square, we get

(2v + (−u3 − u2 + 1))2 − (−u3 − u2 + 1)2 − 4(u3 + 2u2 + u) = 0. (3.10)

We write x = u, y = 2v + (−u3 − u2 + 1), to obtain the equation

y2 = f(x) = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1. (3.11)

In the next section, we list points of X1(13) in these (x, y)-coordinates. In
our Magma code in appendix B.1 we convert the (x, y)-coordinates back to the
(s, t)-coordinates from (3.3).

3.2 Classifying points on X1(13) over quadratic extensions
of Q(ζ13)

+

In this section we give a classification of all the pairs of elliptic curves and points
of order 13, defined over quadratic extensions of K = Q(ζ13)+. This section is
a continuation of the article [KaNe]. In the article a primitive element for K is
given. This primitive element a satisfies

a6 − a5 − 5a4 + 4a3 + 6a2 − 3a− 1.

Our model of X1(13) is different from the one used in the [KaNe]. We use the
equation

y2 = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1
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that we derived in section 3.1.

The article [KaNe] shows that X1(13)(K) only contains cusps. There are pre-
cisely 12 of them. It is also shown that J1(13) contains precisely 361 points
defined over K. The article finishes by listing some of the exceptional points of
X1(13), which is a list we will complete.

In theorem 1.19 we formulated a way to classify all the exceptional points of
X1(13). Therefore, we need to find all the points on J1(13). Then we will
extract the quadratic points of X1(13) from the K-points of J1(13). We do some
computations in Magma to find a Z/19Z-basis for J1(13)(K). We consider the
points ∞1 = (1 : 0 : 0), P = (0, 1) and

Q = (a5 − 4a3 − a2 + 3a, 6a5 + 6a4 − 31a3 − 19a2 + 21a+ 5)

ofX1(13)(K). From these points we get two points P−∞1, Q−∞1 of J1(13)(K).
A calculation in Magma gives that these two points span a group of 361 elements,
which is the whole group J1(13)(K).

We can now compute all points of J1(13)(K) in Magma by taking Z/19Z-linear
combinations of P −∞1 and Q −∞1. Magma will list these points in Mum-
ford representation. As discussed in section 1.4, these Mumford representations
will give back points of X1(13) defined over quadratic extensions of K. These
extension fields are quadratic, because the genus of X1(13) is 2.

This computation produces a list of all elliptic curves together with a point of
order 13, up to isomorphism. We run the computation in Magma. The code
for this process is included in appendix B.1. The result is a list of 288 elliptic
curves with the point (0, 0) of order 13.

A list of 288 curves is too big to include in this thesis. Therefore we refine
the list. Given curves in our list, we check whether they are defined over Q-
isomorphic fields. If this is the case, we check whether the curves themselves
are isomorphic after a coordinate change. Any two curves that turn out to be
isomorphic, will not be listed twice. This refinement results in a list of 8 elliptic
curves with (0, 0) as a point of order 13. This list is included at the end of this
thesis, in appendix A.1. The code in appendix B.1 produces both the full list
of 288 curves and the refined list of 8 curves.
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4 An equation for X1(16)

In the previous chapter we have applied the theory from chapter 1 to list points
of X1(13), making use of theorem 1.19. In this chapter we will make a start to
do the same for X1(16).

Like X1(13), the curve X1(16) is hyperelliptic of genus 2. Therefore, we can
use theorem 1.19 again. However, our research on X1(13) was a continuation of
[KaNe]. For X1(16) we do all the research ourselves.

In this chapter we will use two-division on the universal elliptic curve for X1(4)
we derived in section 1.3.1 to find the universal elliptic curve for X1(8). This
will then be used to derive an equation for X1(16). We will relate this equation
to the universal elliptic curve for X1(16).

4.1 The universal elliptic curve for X1(8)

In this first section we will find the universal elliptic curve for X1(8). For this
we use the universal elliptic curve for X1(4). In section 1.3.1 we found that the
universal elliptic curve for this curve is given by

y2 + xy + by = x3 + bx2, (4.1)

where b is non-zero and (0, 0) is a point of order 4. For any pair (E,Q) with Q
of order 8, we know that (E, 2Q) can be written in the form of (4.1). Therefore
if we find all possible two-division points of (0, 0) on the universal elliptic curve
for X1(4), we will find all possible points of order 8.

Definition 4.1 (Two-division polynomial).

Let E be an elliptic curve over a field K and P a point of E. The two-division
polynomial of (E,P ) is the monic polynomial f ∈ K[t] with the possible x-
coordinates of two-division points as its roots. That is, f(α) = 0 if and only if
there is a point Q ∈ E(K) with α as its x-coordinate and 2Q = P . Here K is
an algebraic closure of K.

The computation for a two-division polynomial is done in Sage2. Write E for
the universal elliptic curve given by (4.1). The two-division polynomial for
(E, (0, 0)) is

t4 − bt2 − 2b2t− b3.

Hence the equation we get for X1(8) is

t4 − bt2 − 2b2t− b3 = 0. (4.2)

We will now write b as a function of a new parameter r. We write t = br.
Substituting this in (4.2) gives

b4r4 − b3r2 − 2b3r − b3 = 0. (4.3)

2Magma can list the two-division points defined over the given base field. However, to our
knowledge, it can not produce the two-division polynomial of arbitrary points.
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We divide this equation by b3. We can now solve the equation for b. We get

b =
r2 + 2r + 1

r4
. (4.4)

Thus, we find that X1(8) is parametrized by the single variable r, so it is the
projective line.

Substituting (4.4) expression into (4.1), we get the curve given by

y2 + xy +
r2 + 2r + 1

r4
y = x3 +

r2 + 2r + 1

r4
x2. (4.5)

This curve has a point Q of order 8, with x-coordinate br = r2+2r+1
r3 . There

are two points with that x-coordinate, but only one of the points satisfies 2Q =
(0, 0). We can compute which point this is by computing the two possible y-
coordinates. Then we get two points Q1 and Q2. Precisely one of these points
satisfies 2Qi = (0, 0). We then have Q = Qi. We find that

Q =

(
r2 + 2r + 1

r3
,
r3 + 3r2 + 3r + 1

r5

)
is a point of order 8.

To get the universal elliptic curve for X1(8) we have to rewrite the pair (E,Q)
into its Tate normal form. We follow the algorithm 1.10 from section 1.2. We
find that the universal elliptic curve for X1(8) is given by

y2 +
r2 + 4r + 2

r2 + 3r + 2
xy +

r

r2 + 4r + 4
y = x3 +

r

r2 + 4r + 4
x2. (4.6)

4.2 A hyperelliptic equation for X1(16)

In this section we will derive an equation for the universal elliptic curve for
X1(16). We will use the same techniques as in our derivation for the universal
elliptic curve for X1(8). Write E for the universal elliptic curve for X1(8), so E
is given by

E : y2 +
r2 + 4r + 2

r2 + 3r + 2
xy +

r

r2 + 4r + 4
y = x3 +

r

r2 + 4r + 4
x2. (4.7)

We compute the two-division polynomial of (E, (0, 0)). We let Sage run the
computation. This polynomial is

s4 − r(r2 + 4r + 2)

(r + 1)(r + 2)3
s2 − 2r2

(r + 2)4
s− r3

(r + 2)6
. (4.8)

We change this into a polynomial equation in two variables by multiplying by
all the numerators. This gives the equation

(r+1)(r+2)6s4−r(r2+4r+2)(r+2)3s2−2r2(r+1)(r+2)2s−r3(r+1) = 0. (4.9)
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This is a singular equation for X1(16). We can find a hyperelliptic equation by
removing the singularities. We compute this equation and the coordinate change
in Magma. Denote C for the curve given by equation (4.9). The Magma com-
mand IsHyperelliptic(C) gives a hyperelliptic equation for X1(16), namely

v2 + (u3 + u2 + u+ 1)v = −u4 − u3 − u2 − u. (4.10)

The IsHyperelliptic function only gives a coordinate change from (r, s) to
(u, v). It does not give a coordinate change from (u, v) to (r, s). Therefore,
we use the function IsIsomorphic. Let Cproj be the projective closure of C.
Denote its coordinates by R,S, T .

The function IsIsomorphic applied to (X1(16), Cproj) gives the coordinate
change from X1(16) to Cproj. We let

u 7→ R(u, v, w) = −u6w − u4w3 + u2w5 + w7,
v 7→ S(u, v, w) = u7 + u4v − u3vw − u3w4,
w 7→ T (u, v, w) = u6w + 2u4w3 + u2w5.

Then the coordinate change from X1(16) to Cproj is given by

(u : v : w) 7→ (R(u, v, w) : S(u, v, w) : T (u, v, w)).

Here X1(16) is identified with its closure in the (1, 3, 1)-weighted projective
space.

We can restrict to affine coordinates: the infinite points of Cproj don’t give rise
to two-division points of (0, 0). This is because the roots of equation 4.8 are the
x-coordinates of all possible two-division points. All other points of Cproj will
therefore describe infinite points of E. The only infinite point of an elliptic curve
is not of order 16. So we can ignore those u, v, w with T (u, v, w) = 0. Therefore,
for the relevant points we have r = R/T and s = S/T . Moreover, the infinite
points of X1(16) in (u : v : w)-coordinates are all Q-rational. Mazur’s theorem,
stated in the introduction of this thesis, implies that the Q-rational points of
X1(16) are cusps.

Because we don’t need to consider infinite points, we can restrict to the points
with w = 1. We can express r and s in terms of u and v. We get

r =
−u6 − u4 + u2 + 1

u2(u2 + 1)2
,

s =
u7 + u4v − u3v − u3

u2(u2 + 1)2
.

(4.11)

4.3 The universal elliptic curve for X1(16)

We finish this chapter by finding the universal elliptic curve for X1(16). In the
last section we found a hyperelliptic equation for X1(16), given by

v2 + (u3 + u2 + u+ 1)v = −u4 − u3 − u2 − u. (4.12)
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To link this equation to the universal elliptic curve for X1(16), we need to
consider the universal elliptic curve for X1(8). This curve E is given by

y2 +
r2 + 4r + 2

r2 + 3r + 2
xy +

r

r2 + 4r + 4
y = x3 +

r

r2 + 4r + 4
x2. (4.13)

We expressed r in (u, v)-coordinates. It is given by

r =
−u6 − u4 + u2 + 1

u2(u2 + 1)2
.

We have a two-division point Q of (0, 0) on E with

s =
u7 + u4v − u3v − u3

u2(u2 + 1)2

as its x-coordinate. The pair (E,Q) is a pair of an elliptic curve together with
a point of order 16. To find the universal elliptic curve for X1(16), we have
to write this pair in its Tate normal form. To do this, we need to find the
corresponding y-coordinate. There are two possible y-coordinates. These give
two points Q1 and Q2 with x-coordinate s. One of these satisfies 2Qi = (0, 0).
We get Q = Qi, which gives

Q =

(
s,
−u2(u2 − 1)

(u2 + 1)3
v − u2(u2 − 1)

(u2 + 1)2

)
is a two-division point of (0, 0). Hence Q is of order 16.

By running algorithm 1.10, we obtain the universal elliptic curve for X1(16). It
is given by

y2 + c(u, v)xy + b(u, v)y = x3 + b(u, v)x2, (4.14)

where

b(u, v) =
u4 + u3 + u2 + u− 1

u8(u2 + 2u− 1)
v +

u6 + 2u5 + 3u4 + 2u3 + u2 − 1

u7(u2 + 2u− 1)
,

c(u, v) =
u4 + 2u− 1

u5(u− 1)(u2 + 2u− 1)
v +

u7 + u6 − 3u5 + 3u4 + u3 + u2 + u− 1

u4(u− 1)(u2 + 2u− 1)
,

(4.15)
and (0, 0) is the point of order 16.
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5 The Jacobian of X1(16)

In chapter 3, the Jacobian of X1(13) is used to find all exceptional points of
X1(13). We will do this again for X1(16), working over the field K = Q(ζ16)+.
We need to find the number of points of the Jacobian of X1(16) defined over this
field. After this, Magma will compute all these points. Then we will finish our
research and produce a list of elliptic curves defined over quadratic extensions
of our base field, together with a point of order 16.

5.1 Counting the points of J1(16)(K)

Our work here is inspired by the work in [KaNe]. It is based on the theory we
discussed in chapter 2.

Let J be the Jacobian of X1(16). The Magma function RankBound gives an
upper bound for the rank of the J over K. This bound is 0, which means that
the number of K-points of J is finite. So we only need to compute the number
of torsion points of J(K).

We use Magma to compute a number of points of X1(16) defined over K. The
infinite points of X1(16) are (1 : 0 : 0) and (1 : −1 : 0). The finite points we
found are

(−1, 0), (1,−2),
(0,−1), (0, 0),

(−a2 + 4a− 3, 2a2 − 8a+ 6), (a2 − 4a+ 1,−2a2 + 8a− 2),
(a2 − 4a+ 3,−2a3 + 8a2 − 6a− 2), (a2 − 4a+ 3, 2a3 − 16a2 + 38a− 26),

(−a2 + 4a− 1, 4a3 − 20a2 + 18a− 2), (−a2 + 4a− 1,−4a3 + 28a2 − 50a+ 6).
(5.1)

Here a is a primitive element of K, which is an element satisfying

a4 − 8a3 + 20a2 − 16a+ 2 = 0. (5.2)

These elements are written in (u, v)-coordinates. We substitute these coordi-
nates in the equation for the universal elliptic curve, which is given by equations
(4.14) and (4.15). Using Magma, we can now verify that the curve described by
the resulting equation is singular for all of the points listed in (5.1). Therefore
all of these points are cusps.

By taking Z-linear combinations of these cusps we can create 200 K-points of
J . We denote

∞1 := (1 : 0 : 0), P := (−1, 0),
Q := (a2 − 4a+ 3,−2a3 + 8a2 − 6a− 2), R := (−a2 + 4a− 3, 2a2 − 8a+ 6).

(5.3)
Then all 200 K-points of J we can make are in the set

Jpoints := {i · (P −∞1) + j · (Q−∞1) + k · (R−∞1) : 1 ≤ i, j, k ≤ 10}. (5.4)

Theorem 5.1.

The points of J(K) contained in the set Jpoints defined by (5.4) are all points
of J(K).
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Proof. Our model of X1(16) has discriminant −29, which means that J has good
reduction at all primes apart from the ones above 2. Moreover, the discriminant
of K is also a power of 2, which means that there is no ramification at any of
those primes. As a result, the hypothesis of theorem 2.1 is automatically satisfied
for all these primes.

The prime number 17 splits completely in K. Therefore, the residue class field
at primes above 17 is F17. Magma gives that the order of J(F17) is 400. So the
number of points of J(K) is either 200 or 400.

To finish the proof, we need to use the Selmer groups. In section 2.2.3 we
found that J(K)/nJ(K) injects into the group Seln(J) for any positive integer
n. Magma tells us that the group structure of J(F17) is (Z/2Z)4 ⊕ (Z/5Z)2.
Therefore the group structure J(K) is (Z/2Z)3⊕(Z/5Z)2 or (Z/2Z)4⊕(Z/5Z)2.
Consequently, the group structure of J(K)/2J(K) is either (Z/2Z)3 or (Z/2Z)4.
The 2-Selmer group Sel2(J) can be computed in Magma. We find that this is
isomorphic to (Z/2Z)3. Because J(K)/2J(K) is isomorphic to a subgroup of
Sel2(J), this implies that it must be isomorphic to (Z/2Z)3. We conclude that
J(K) is isomorphic to (Z/2Z)3 ⊕ (Z/5Z)2 and thus has precisely 200 elements.

5.2 Classifying points on X1(16) over quadratic extensions
of Q(ζ16)

+

In this last section we finish listing the exceptional points of X1(16). This is
almost identical to the work done in section 3.2. We define the fieldK = Q(ζ16)+

by using the primitive element a defined by

a4 − 8a3 + 20a2 − 16a+ 2 = 0. (5.5)

We enter the curve X1(16) into Magma by using equation (4.12). After this, we
enter the points ∞1, P,Q,R defined by equation (5.3).

We use these points to create the set Jpoints defined in equation (5.4). As proved
in theorem 5.1, these are all the points of the Jacobian of X1(16) defined over
K. Algorithm 1.17 is then used to recover the points of X1(16) from these
J1(16)-points. Finally the formulae from equation 4.15 are used to convert the
non-cuspidal points to elliptic curves. The code for this computation can be
found in appendix B.2.

The result is a list of 128 elliptic curves defined over quadratic extensions of K,
together with (0, 0) as a point of order 16, as well as one new cuspidal point.
A list of 128 curves is too long to include in this thesis. We refine the list by
checking if two curves defined over Q-isomorphic fields are isomorphic after a
coordinate change. If this is the case, we don’t list them twice. This gives a list
of 9 elliptic curves with a point of order 16, which is included in appendix A.2.
The code from appendix B.2 produces both the full list of 128 curves and the
refined list of 9 curves.

Remark 5.2. The refinement looks at the orbits of the different curves under
the action of the group Gal(K/Q)× ((Z/16Z)×/{±1}) and takes just one repre-
sentative from each of these orbits. If the orbits were of equal length, we would
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find a total of 8 = 128/16 curves in the refined list. However, an investigation in
Magma yields that there are two orbits of length 8 and seven orbits of length 16.
The representative curves from the orbit of length 8 are defined over quadratic
extensions of the quadratic subfield of K, which is why they are invariant under
the action of a non-trivial subgroup of Gal(K/Q).
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A Lists of elliptic curves with torsion points

A.1 List of elliptic curves with a point of order 13

In section 3.2 we discussed how to list all isomorphism classes of pairs of an
elliptic curve with a point of order 13, defined over quadratic extensions of K =
Q(ζ13)+. This list consists of 288 pairs, most of which have quite complicated
equations. The refinement we ran compressed this list to 8. We list them as
follows: a is the generator for K over Q as mentioned in [KaNe] and 3.2, and
our pairs will be in Tate normal form. Thus, the curves shall be given by an
equation of the form

y2 + cxy + by = x3 + bx2,

and the point of order 13 will be the point (0, 0). This curve shall be defined
over the quadratic extension L of K. In the table below we give a defining
polynomial for L = K(u), and then list the values of b, c.

Minimal polynomial Value of b Value of c
of u

x2 + (−a5 + 5a3 − 6a)x (6355a5 − 1840a4 (37a5 − 10a4

−a4 + a3 + 4a2 − 2a− 4 −33102a3 + 1943a2 −194a3 + 10a2

+39541a+ 8967)u +232a+ 53)u+ 1
+(5869a5 − 1701a4

−30567a3 + 1797a2

+36512a+ 8280)

x2 + (3a5 − 2a4 − 15a3 (1881a5 − 4354a4 (9a5 − 32a4 − 12a3

+9a2 + 16a− 9)x −4627a3 + 14211a2 +99a2 − 34a− 14)u
−a3 + a2 + 3a− 2 −4059a− 1853)u +14a5 − 23a4 − 37a3

+1671a5 − 3338a4 +64a2 − 12a− 6
−4449a3 + 10755a2

−2739a− 1335

x2 + (a4 − 2a3 − 2a2 (−38325666a5 + 106197055a4 (−1224a5 + 3357a4

+2a+ 3)x+ a4 − a3 +3562684a3 − 159611891a2 +185a3 − 5043a2

−3a2 + a+ 3 +52704627a+ 21641771)u +1577a+ 663)u
−20319726a5 + 56304183a4 −667a5 + 1785a4

+1888871a3 − 84623977a2 +192a3 − 2679a2

+27943268a+ 11474166 +724a+ 327

x2 + (a5 − 2a4 − 4a3 (935219a5 − 1997752a4 (328a5 − 702a4

+7a2 + 2a− 1)x− a5 −2406392a3 + 6474863a2 −842a3 + 2273a2

+2a4 + 2a3 − 6a2 + 3a −1744961a− 823164)u −614a− 288)u
−1094129a5 + 2337201a4 −383a5 + 818a4

+2815281a3 − 7575038a2 +986a3 − 2653a2

+2041453a+ 963031 +717a+ 337
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Minimal polynomial Value of b Value of c
of u

x2 + (−a5 + 6a3 (470596a5 − 136856a4 (256a5 − 73a4

−8a)x− 4a5 −2450016a3 + 144839a2 −1332a3 + 69a2

+a4 + 21a3 − a2 +2926220a+ 663533)u +1589a+ 377)u
−25a− 5 +1212608a5 − 352618a4 +664a5 − 192a4

−6313113a3 + 373120a2 −3457a3 + 198a2

+7540245a+ 1709796 +4129a+ 946

x2 + (−a4 + a3 + 4a2 (−7a5 + 9a4 + 33a3 (−a5 + 2a4 + 3a3

−3a− 2)x+ a5 − a4 −37a2 − 33a+ 29)u −5a2 − 3a+ 3)u− a4
−4a3 + 3a2 + 3a −4a5 + 3a4 + 16a3 +a3 + a2 − a+ 2

−13a2 − 13a+ 10

x2 + (−a5 − a4 (7353641a5 + 6926275a4 (681a5 + 646a4

+3a3 + 3a2 − 1)x −23318187a3 − 15866643a2 −2163a3 − 1477a2

−a4 + 3a2 − 1 +13310676a+ 3786860)u +1236a+ 352)u
+2888976a5 + 2721078a4 +270a5 + 247a4

−9160860a3 − 6233419a2 −850a3 − 570a2

+5229275a+ 1487718 +482a+ 138

x2 + (2a5 − 2a4 1/13((−11600107a5 + 14396626a4 1/13((−4639a5 + 5762a4

−10a3 + 7a2 + 12a +54529775a3 − 59546108a2 +21797a3 − 23817a2

−3)x+ 2a5 − 3a4 −55245487a+ 48118479)u −22081a+ 19240)u
−10a3 + 12a2 −17101529a5 + 21224264a4 −6831a5 + 8480a4

+12a− 8 +80391009a3 − 87786250a2 +32109a3 − 35071a2

−81446202a+ 70939084) −32531a+ 28353)
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A.2 List of elliptic curves with a point of order 16

In section 5.2 we discussed how to list all isomorphism classes of pairs of an
elliptic curve with a point of order 16, defined over quadratic extension of K =
Q(ζ16)+. This resulted in 128 pairs. After the refinement we ran, this number
is reduced to 9 pairs. We let a be the generator of K over Q defined by equation
(5.2), and we list the curves in Tate normal form, given by

y2 + cxy + by = x3 + bx2,

with (0, 0) as the point of order 16. The base field is the field L = K(u), and
we shall list the minimal polynomial for u, and then the values of b and c.

Minimal polynomial Value of b Value of c
of u

x2 + (−a3 + 6a2 1/4
(
(12a3 − 81a2 1/4

(
(5a3 − 34a2

−9a+ 3)x− a2 +139a− 19)u+ +60a− 12)u+
+5a− 4 −5a3 + 34a2 − 59a+ 9

)
(−a3 + 6a2 − 6a− 4)

)
x2 + 1/2(−3a3 + 16a2 1/2

(
(−348717a3 + 2736647a2 (−698a3 + 5478a2

−16a)x+ 1/2(−3a3 −6557711a+ 4581122)u −13128a+ 9173)u+
+16a2 − 18a+ 2) +417281a3 − 3274722a2 1/2(1671a3 − 13114a2

+ 7847078a− 5481853) +31424a− 21948)

x2 + 1/2(a2 1/2
(
(3111a3 − 21047a2 (105a3 − 710a2

−2a)x+ 1/2(2a3 +36234a− 5038)u +1221a− 168)u
−11a2 + 14a− 4) −1531a3 + 10358a2 +1/2(−67a3 + 454a2

−17833a+ 2481) −784a+ 114)

x2 + (−a3 + 7a2 1/2
(
(656a3 − 3424a2 1/2(−27a3 + 140a2

−12a+ 3)x− a3 +3573a− 425)u −144a+ 16)u− 36a3

+6a2 − 10a+ 2 +1683a3 − 8800a2 +189a2 − 204a+ 31
+ 9250a− 1180)

x2 + 1/2(3a3 − 19a2 1/2
(
(−2508a3 + 10443a2 (32a3 − 131a2 + 125a

+30a− 4)x+ 1/2(a3 −10136a+ 1310)u −16)u+ 1/2(57a3

−7a2 + 12a) −2016a3 + 8358a2 −236a2 + 220a− 26)
− 8115a+ 1049)

x2 + (a2 − 4a+ 4)x 1/4
(
(−2928299a3 + 12159003a2 (1181a3 − 4904a2

−a2 + 4a− 1 −11781066a+ 1522080)u +4752a− 614)u
−10341301a3 + 42939573a2 +1/2(8341a3 − 34634a2

−41604886a+ 5375232) +33558a− 4334)
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Minimal polynomial Value of b Value of c
of u

x2 − x− a2 + 4a− 2 1/8(3a2 − 12a+ 16)u u/2 + 1/2(−a2 + 4a− 2)
+1/4(−4a2 + 16a− 15)

x2 + 1/2(−a3 + 6a2 1/2
(
(328005a3 − 2574104a2 (−818a3 + 6419a2

−8a+ 2)x+ 1/2(−a3 +6168215a− 4309024)u −15381a+ 10745)u
+4a2 − 2a) +206560a3 − 1621033a2 +1/2(−1031a3 + 8088a2

+ 3884412a− 2713593) −19376a+ 13536)

x2 + (−a2 + 3a 1/2
(
(5948a3 − 46676a2 1/2(83a3 − 646a2

+3)x− a3 + 6a2 +111846a− 78137)u +1540a− 1074)u
−9a+ 2 +18992a3 − 149052a2 +130a3 − 1020a2

+ 357191a− 249558) +2446a− 1712
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B Codes

B.1 Magma code for listing the points of X1(13)

This code is to create the set of points on the Jacobian of X1(13) defined over
K = Q(ζ13)+, in Mumford representation. After that, we convert these back
to points of X1(13) defined over quadratic extensions of K. Finally we convert
them to give a list of elliptic curves with (0, 0) as a point of order 13. After
running this code, EC will consists of the full list of 288 pairs of curves with
(0, 0) as a point of order 13, and ECref consists of the refined list we included
in this thesis.

Q := RationalField();

R<t> := PolynomialRing(Q);

g := t^6 - t^5 - 5*t^4 + 4*t^3 + 6*t^2 -3*t - 1;

K<a> := NumberField(g);

A<x> := PolynomialRing(K);

f := x^6 + 2*x^5 + x^4 + 2*x^3 + 6*x^2 + 4*x + 1;

X := HyperellipticCurve(f);

J := Jacobian(X);

Xpoints := Points(X: Bound := 5);

P := Xpoints[3];

Q := Xpoints[12];

infty1 := Xpoints[1];

//P-infty1,Q-infty1 form a Z/19Z-basis for J

Jpoints := [i*(P-infty1) + j*(Q-infty1) : i in [1..19],

j in [1..19]];

//Creation of all the points of the Jacobian

j := 0; //Counter of curves

k := 0; //Counter of refined curves

l := 0; //Counter of loops

EC := [ ]; //Set of curves

Fields := [ ]; //Set of fields

ECref := [ ]; //Refined set of curves

Fieldsref := [ ]; //Refined set of fields

for n in [1..361] do

l := l+1;

h := Jpoints[n];

if (Degree(h[1]) eq 2) and (IsIrreducible(h[1])) then

//Only these points of Jpoints give new points

L<u> := NumberField(h[1]);

y := Evaluate(h[2],u);

v := 1/2*(y - (-u^3 - u^2+1));

t2 := v/(-u^2-2*u-1);

s1 := t2+u;
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s := s1-1;

t1 := s1/t2 -1;

t := t1*s1 + 1;

Y := [1+t*s-s, t*(t-1)*s, t*(t-1)*s, 0, 0];

E:= EllipticCurve(Y);

//Conversion from coordinates to elliptic curves

j := j+1;

EC[j] := E;

Fields[j] := L;//Count and add curve and field

B := true;

//Parameter to check if we have found a new curve

for m in [1..k] do //The refinement

L1 := AbsoluteField(L);

L2 := AbsoluteField(Fieldsref[m]);

//to get all iso’s we have to convert these

//to fields over Q

if (IsIsomorphic(L1,L2)) then

//Are the fields iso?

Ell1 := ChangeRing(E, L2);

Ell2 := ChangeRing(ECref[m],L2);

//Convert E to an elliptic curve over new field

for sigma in Automorphisms(L2) do

Z := [sigma(c) : c in aInvariants(Ell1)];

Ell := EllipticCurve(Z);

if (IsIsomorphic(Ell,Ell2)) then

//Are the curves iso?

B := false;

//Parameter sets to False

end if;

end for;

end if;

end for;

if B then

//If parameter is still True, add curve to the list

k := k+1;

ECref[k] := E;

Fieldsref[k] := L;

end if;

end if;

"Number of loops:", l;

"Number of curves:", k;//To keep track of the process

" ";

end for;
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B.2 Magma code for listing the points of X1(16)

This code is to create the set of points on the Jacobian of X1(16) defined over
K = Q(ζ16)+, in Mumford representation. After that, we convert these back
to points of X1(16) defined over quadratic extensions of K. Finally we convert
them to give a list of elliptic curves with (0, 0) as a point of order 16. After
running this code, EC will consists of the full list of 128 pairs of curves with
(0, 0) as a point of order 16, and ECref consists of the refined list we included
in this thesis.

Q := RationalField();

R<t> := PolynomialRing(Q);

g := t^4-8*t^3+20*t^2-16*t+2;

K<a> := NumberField(g);

A<x> := PolynomialRing(K);

f := - x^4 - x^3 - x^2 - x;

h := x^3 + x^2 + x + 1;

X := HyperellipticCurve(f,h);

J := Jacobian(X);

Xpoints := Points(X: Bound := 5);

P := Xpoints[3];

Q := Xpoints[9];

R := Xpoints[5];

infty1 := Xpoints[1];

//P-infty1,Q-infty1,R-infty1 span J

Jpoints := [i*(P-infty1) + j*(Q-infty1) + k*(R-infty1)

: i in [1..10], j in [1..10], k in [1..10]];

j := 0; //Counter of curves

k := 0; //Counter of refined curves

n := 0; //Counter of cusps

l := 0; //Counter of loops

EC := [ ]; //Set of curves

Fields := [ ]; //Set of fields

ECref := [ ]; //Refined set of curves

Fieldsref := [ ]; //Refined set of fields

Cusps := [ ]; //Set of cusps

for i in [1..200] do

l := l+1;

h := Jpoints[i];

if (Degree(h[1]) eq 2) and (IsIrreducible(h[1])) then

//Only these points of Jpoints give new points

L<u> := NumberField(h[1]);

v := Evaluate(h[2],u);

c1d := u^4 + 2*u - 1;

//first component of c, denominator

c1n := u^8 + u^7 - 3*u^6 + u^5;

//first component of c, numerator
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c1 := c1d/c1n;

//first component of c

c2d := u^7 + u^6 - 3*u^5 + 3*u^4 + u^3 + u^2 + u - 1;

//etc

c2n := u^7 + u^6 - 3*u^5 + u^4;

c2 := c2d/c2n;

c := c1*v + c2;

b1d := u^4 + u^3 + u^2 + u - 1;

b1n := u^10 + 2*u^9 -u^8;

b1 := b1d/b1n;

b2d := u^6 + 2*u^5 + 3*u^4 + 2*u^3 + u^2 - 1;

b2n := u^9 + 2*u^8 - u^7;

b2 := b2d/b2n;

b := b1*v+b2;

B<x,y> := PolynomialRing(L,2);

Aff := AffineSpace(B);

F := y^2 + c*x*y + b*y - x^3 - b*x^2;

//This data is to check if the curve is smooth

if not IsSingular(Curve(Aff,F)) then

//If it is, we can proceed as before

E := EllipticCurve([c,b,b,0,0]);

j := j+1;

EC[j] := E;

Fields[j] := L; //count and add curve and field

B := true;

//Parameter to check if we have found a new curve

for m in [1..k] do //The refinement

L1 := AbsoluteField(L);

L2 := AbsoluteField(Fieldsref[m]);

if (IsIsomorphic(L1,L2)) then

//Are the fields iso?

Ell1 := ChangeRing(E, L2);

Ell2 := ChangeRing(ECref[m],L2);

//Converse to a curve over new field

for sigma in Automorphisms(L2) do

Z := [sigma(c) : c in aInvariants(Ell1)];

Ell := EllipticCurve(Z);

if (IsIsomorphic(Ell,Ell2)) then

//Are the curves iso?

B := false;

//Parameter sets to False

end if;

end for;

end if;

end for;

if B then

//If parameter is still True, add curve to the list

k := k+1;
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ECref[k] := E;

Fieldsref[k] := L;

end if;

else //Add to cusps if curve wasn’t smooth

n := n+1;

Cusps[l] := [u,v];

end if;

end if;

"Number of loops:", l;

"Number of curves:", k;//To keep track of the process

" ";

end for;
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