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The notation used throughout this thesis, in alphabetical order.

A Set of arcs between demand nodes.
Cr Coverage assigned to route r.
Ccombi Coverage of the region using the combi coverage measure.
CMEXCLP Coverage of the region using the MEXCLP coverage measure.
Csingle Coverage of the region using the single coverage measure.
Ci(S) Coverage of the region for configuration S except that the relocating ambulance

is in node i instead of the origin.
C(t, S, r) Coverage of route r at time t with initial configuration S.
c Scaling parameter in the weighted multiple path evaluation method.
D Destination of a relocation.
di Probability that an arriving incident occurs in node i.
f(t) Penalty function.
f(τi,j) Contribution to the coverage of node j if the relocating ambulance is in node i.
H(S) Set of all possible configurations that can be attained after one relocation from

initial configuration S.
ki Number of other ambulances that can reach node i in time.
L Time threshold for late arrivals.
N Set of demand nodes.
NS Set of nodes that can be reached in time in configuration S.
n Number of ambulances.
ni Number of idle ambulances that have node i as their destination.
O Origin of a relocation.
PS,i Number of ambulances that can reach node i in time in configuration S.
q Busy fraction.
R Routeset containing routes to be evaluated.
S Configuration, i.e. the set of locations of idle and relocating ambulances.
S(O,D) Configuration after relocating an ambulance from O to D, i.e. (S∪{D})\{O}.
TR Longest travel time of the routes in routeset R.
TS,i Non-decreasing travel times for all ambulances in configuration S to node i.
ti,j Driving time from i to j when relocating.
ti Travel time from the origin to node i, i.e. tO,i.
tri Time route r is in node i.
V Set of Route Points.
Vr Nodes along route r.
W Set of base locations and waiting sites.
x(t) Position of relocating ambulance at time t.
α Scaling parameter for the convex combination method.
β Scaling parameter in penalty functions.
γ Scaling parameter in route evaluation in TIFAR.
δ Maximum overlap of nodes for routes in a routeset.
ζ Scaling parameter in penalty functions.
λ Poisson arrival rate of incidents.
τi,j Driving time from i to j when responding to an incident.
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1 Introduction

Every second counts in the world of ambulance care. Providers of emergency care
need to respond quickly to requests. However, the resources and budget are lim-
ited. That’s why emergency service providers need to think carefully about how
they spend them. Mathematical models have been developed to obtain better effi-
ciency in ambulance care. In 2015, 93.4% of the most urgent calls in the Netherlands
were reached within 15 minutes [1]. Although this percentage is increasing, it is
required by law in the Netherlands that 95% of the most urgent calls be answered
within 15 minutes. There are 24 EMS regions in the Netherlands. Figure 1a shows
the base locations in the Netherlands for each Emergency Medical Service (EMS)
region, while Figure 1b shows the percentage of A1-calls that have been answered
within 15 minutes in 2015. The research project REPRO (from REactive to PROac-
tive planning of ambulance services), aimed at developing mathematical models in
cooperation with ambulance service providers from the Netherlands, focuses on this
issue. The project strives to make new and better ambulance planning methods.

(a) (b)

Figure 1: Map of the EMS regions in the Netherlands. The pink dots in (a) indicate
a base location for ambulances. The color in (b) indicates the percentage of A1-calls
that were reached within 15 minutes in 2015 per region.

In this thesis we take the developed models for ambulance relocation and extend
them by looking at different routes a relocating ambulance can take. An ambulance
responding to an incident will still take the fastest route. We test our methods on
various graphs, either square grids or graphs representing a real EMS region in the
Netherlands. When an ambulance is relocating, it will always take the fastest path
in the current models, but it might improve coverage when the ambulance takes a
different route. This brings us to the main question of our thesis:

How can we evaluate routes depending on coverage and travel time and how does
relocating over different routes influence the performance of the model?

The idea to look at routes of relocating ambulances came from the EMS region
Amsterdam. There it was observed that some relocating ambulances did not reach
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their base location, because they had to respond to an incident before reaching its
destination. This implies that the route a relocating ambulance takes to the base
location influences whether it can respond to an incident in time.
We use two different simulation tools in this thesis. The first model is programmed
in Matlab and will be used in the first half of this thesis. Here we look at different
relocation policies and how changes in the test region affect the performance of the
policies. Then we switch to the Testing Interface For Ambulance Research (TI-
FAR) when we analyse real EMS regions. Our contribution consists of developing
relocation policies for the models and implementing them in Matlab and TIFAR.
Furthermore, we tested our methods in various simulations to see how they perform.

In Section 2 we formulate the problem more extensively and give some background
information about how the Emergency Medical Services are organized in the Nether-
lands. In Section 3 we introduce the basis model we use for our first set of sim-
ulations. Furthermore, we discuss several measures for the coverage of a region.
In Section 4 we propose a way to extend the base model with our own relocation
policies. In Section 5 we test our relocation policies on different grids using simu-
lations and discuss the results for these grids. In Section 6 we test the policies for
Flevoland using generated data based on historical data. We also run simulations
on historical data from 2011.

In the remaining sections of our thesis we describe the second simulation tool in
more detail. Section 7 is an introduction to the TIFAR. In Section 8 we present
a way to implement dynamic routing in our simulations. Here we describe how
we choose the routes we want to consider for each relocation, and how we evaluate
them. The results of our simulations are shown in Section 9. We run our simulations
for the EMS regions Gooi & Vechtstreek, Amsterdam and Utrecht. Finally, in
Section 10 we discuss our conclusions and give some suggestions for further research.

5



2 Problem Description and Background

When an incident occurs, an ambulance needs to respond to it as soon as possible.
To achieve this, it is important that available ambulances position themselves at
strategic places throughout the region. Extensive research has already been done
to develop new models for ambulance positioning and relocation. The article by
Bélanger, Ruiz and Soriano [2] is a comprehensive survey of the different models that
have been proposed to organise ambulance care. It mentions models to determine
where the base locations should be in the region [4], [5], as well as ambulance
relocation models [9].

To achieve a better coverage of the region, it can be necessary to move an ambulance
to another base location. This is called a relocation. In the currently developed
models, the route an ambulance takes when it relocates, is the shortest route with
respect to the travel time. However, a relocating ambulance does not always arrive
at its destination, because it has to go to an incident before it arrives. Thus
the route an ambulance takes is important, since it also gives coverage to the
region while driving. Driving along one of the alternative routes might decrease the
number of late arrivals. Thus we want to take multiple routes of similar length into
consideration. Note that choosing a certain route depends on the current state of
the system, which includes the position of the other ambulances.

An example of multiple routes of similar lengths is in Flevoland, which uses the
model presented in [3], where it was observed that if an ambulance relocates from
Dronten to Lelystad, it always uses the highway. However, one can also drive
through Biddinghuizen in the south, or use one of the secondary roads to reach
Lelystad. These alternative routes have roughly the same length, but the ambulance
covers different parts of Flevoland. Figure 2 shows possible routes the ambulance
can take.

Figure 2: Multiple routes from Dronten to Lelystad, indicated with black lines.
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This leads us to the main question of our thesis: How can we evaluate routes
depending on coverage and travel time and how does relocating over different routes
influence the performance of the model? What factors of the region influence the
performance of dynamic routing? When we develop a method for dynamic routing,
we need to consider how to determine the possible routes the ambulance can take
as well and how we can evaluate these routes. When we test our methods, we are
particularly interested in the effect on the number of late arrivals and the mean
response time, with the goal of getting more insight in dynamic routing. To do
this, we first need some background information on ambulance care.

2.1 Ambulance Care

We explain the basics of ambulance care on the basis of the Netherlands. In the
Netherlands there are 24 Emergency Medical Service (EMS) regions, which in Dutch
are called Regionale AmbulanceVoorzieningen (RAV). Each of these regions has its
own ambulance service provider, who organises the emergency care. Each service
provider manages the ambulance units in the region, and determines which ambu-
lance responds to an emergency call.

There are three different call urgencies in the Netherlands:

- A1-calls: in this type of call there is an immediate threat to the health of the
patient, or the threat can only be fixed after on-site care of ambulance staff.
These calls have the highest priority, and the ambulance should be on-site
within 15 minutes.

- A2-calls: in this type of call there is serious health damage to the patient,
but there is no acute danger to life. The ambulance staff aim to be on-site
within 30 minutes, but this is not enforced by law.

- B-calls: this type of call is for transport of a patient between hospitals and
home addresses. The destination is known in advance. This type of call is
also called planned transport.

The dispatcher determines urgency of the calls. In this thesis we assume that every
call is of type A1, unless stated otherwise. In the Netherlands it is required by law
that 95% of the A1-calls are answered in 15 minutes. The response time consists of
three parts. These three parts are the dispatch time, chute time and travel time. If
an ambulance is not on the scene within 15 minutes, then we call it a late arrival.
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3 Current Model

In this section, we describe the model introduced in [3], which we used as a basis
for our model. In Section 3.1 we describe the basis model and in Section 3.2 we
discuss performance measures for this model and extended versions of the model.
In Section 3.3 we explain how the model implements dynamic routing by explaining
how we choose a relocation.

3.1 Basis Model

In this section we describe the basis model we used in this thesis, which is based
on the model used in [3]. The region is modeled as a weighted directed graph,
where N is the set of demand nodes, each representing a neighborhood or postal
code area of the region. Some of these nodes are also base locations or waiting sites
for ambulances. The set of base locations and waiting sites is W ⊂ N . Incidents
arrive according to a Poisson process with arrival rate λ. The probability that this
incoming incident occurs at node i is the demand of that node, which we denote
by di. Thus the arrival rate of an incident at node i is λdi. Note that

∑
i=1 di = 1.

The connections between nodes are modeled by arcs (i, j) ∈ A, where i, j ∈ N . The
driving time between two nodes when the ambulance is relocating is ti,j . When
an ambulance responds to an incident, it drives faster while using optical signals
and sirens. This changes the travel time between nodes. Let τi,j be the travel time
between nodes i and j of an ambulance responding to an incident.

Now we look at the ambulances in the region. We denote the number of ambulances
in the region by n. These ambulances can be idle, relocating or busy. If an ambu-
lance is idle, it is at a waiting site and can respond to an incident. A relocating
ambulance can also respond to an incident, but it is moving between two nodes.
When an incident occurs, we use the node that a relocating ambulance is driving
from as its location. The set of current locations of idle and relocating ambulances,
which is tracked by a list of demand nodes, is called the current configuration of
the region, which we denote by the set S. It is possible that there are multiple
ambulances at one location, hence a node can occur more than once in S. Note
that the number of available ambulances is |S|. In Figure 3 we show an example of
a configuration for a small graph.
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Figure 3: A graph with idle ambulances in node 2 (A1, A2) and a relocating ambu-
lance going from node 6 to node 5 (A3). The configuration is thus S = {2, 2, 6}.

Finally, if an ambulance is busy, then it is responding to an incident and therefore
it cannot respond to another incident. The time that an ambulance is busy on
average, is called the busy fraction, which we denote by q. An ambulance is late,
if it arrives at an incident after time threshold L. This threshold is 15 minutes
for A1-calls in the Netherlands. In reality there are different types of ambulances,
but in the first part of this thesis we only consider one type of ambulance.

Table 1: Notation.

N Set of demand nodes.
W Set of base locations and waiting sites.
A Set of arcs.
di Probability that an arriving incident occurs in node i.
λ Poisson arrival rate of incidents.
ti,j Driving time from i to j when relocating.
τi,j Driving time from i to j when responding to an incident.
n Number of ambulances.
S Configuration, i.e. the set of locations of idle and relocating ambulances.
q Busy fraction.
L Time threshold for late arrivals.
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3.2 Performance Measures

There are multiple ways to measure the coverage of a configuration of ambulances.
We look at three measures. The first one is the single coverage measure. Using this
measure, the objective is to maximise the amount of locations that are covered by
at least one ambulance. Given a configuration S, let NS be the collection of nodes
that can be reached by an available ambulance within L seconds. Then the single
coverage measure of the configuration is:

CSingle(S) =
∑
i∈NS

di.

This coverage measure was first used in the Maximal Covering Location Problem
introduced by Church and Revelle [4].

The second coverage measure we use is the MEXCLP coverage, which has been
introduced by Daskin in the Maximum Expected Covering Location Problem [5].
In this problem we also take the probability that an ambulance is busy into account,
and we consider the multiple ambulances that can cover a node. The formula for
this measure is:

CMEXCLP (S) =
∑
i∈N

di

PS,i∑
j=1

(1− q)qj−1.

Here PS,i is the number of ambulances that can reach node i in configuration S on
time. The term (1 − q)qj−1 is the probability that the j-th closest ambulance is
available, while the (j−1) closer ambulances are occupied. The MEXCLP coverage
of a node then takes the summation of all ambulances that can reach the node within
the target time, and the MEXCLP coverage of the configuration is the sum of the
coverages of all nodes.

Finally we look at a third measure, which is based on the MEXCLP coverage. Note
that for each demand node i ∈ N , we know that the travel time from each other
demand node j ∈ S to i is tj,i. We can sort these travel times non-decreasing in the
vector TS,i = (ts1,i; . . . ; ts|S|,i) such that s1, . . . , s|S| ∈ S. We also use a penalty
function f , which is non-decreasing as a function of the response time t. We now
have the following measure:

Ccombi(S) =
∑
i∈N

di

( |S|∑
j=1

(1− q)qj−1f(tsj ,i)
)
, (1)

with sj ∈ TS,i. We want to minimise this value, in contrast to the single and
MEXCLP coverage, since the penalty function is non-decreasing. Note that the
contribution of an ambulance decreases the farther away it is from node i. This is
because of the term qj−1 from the MEXCLP coverage in the equation.

There is a variety of functions that one can use for the penalty function f . The
first one we discuss, is the average response time to a request

f(t) = t, t ≥ 0.

Here, each extra time unit that one is late, gives the same additional penalty, see
Figure 4a. Another penalty function is the maximum allowed response time

f(t) =

{
0 if t ≤ L,
1 if t > L,
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where L is the threshold for late arrivals. Thus, this function induces a penalty,
when arriving after L time units. This function is displayed in Figure 4c. A
drawback of this method is that it does not differentiate between a short response
time and a response time barely below L. The following penalty function overcomes
that problem:

f(t) =
(

1 + e−β(t−L)
)−1

, t ≥ 0,

which gives us a smoother version of the previous function. Here β is a scaling
parameter. Figure 4b shows this penalty function. Lastly, we consider a penalty
function that is a combination of the two previous functions and is displayed in
Figure 4d. The function is given by

f(t) =


(
ζ · (1 + e−β(t−L))

)−1
if t ≤ L,

ζ−1
ζ +

(
ζ · (1 + e−β(t−L))

)−1
if t > L.

This function focuses on minimising the number of late arrivals, since the penalty
increases drastically when the response time is larger than L. Here β and ζ are
scaling parameters.

t

f(t)

(a)

t

f(t)

(b)

t

f(t)

L

(c)

t

f(t)

L

(d)

Figure 4: Examples of penalty functions.
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3.3 Relocation Policy

In this section we describe how the base model chooses a relocation. There are
four possible situations for a relocation to occur. We call these situations decision
moments, which are moments that:

1. an incident occurs and an ambulance has been sent to that incident. There
is now one less ambulance in the new configuration.

2. an ambulance has finished its service at the hospital or the incident scene and
has become idle. Thus there is an extra ambulance available.

3. an ambulance starts its shift at a base location. There is now one more
ambulance available.

4. an ambulance ends its shift. Fewer ambulances are available now.

We call these decision moments of types 1, 2, 3 and 4 respectively. At these de-
cision moments, the dispatcher has to decide whether a relocation is necessary. It
is possible that a relocation is not necessary at a decision moment of type 1, 3
and 4. The configuration may still be satisfactory in terms of expected response
time to future incidents. At decision moments of type 2 there will always be a
relocation, since the new idle ambulance has to be relocated. If a relocation is
necessary to improve the configuration, then the dispatcher has to select a pair of
base locations (O,D), meaning that an ambulance is sent from origin O ∈ S to des-
tination D ∈W . Choosing a relocation pair depends on the current configuration.
Each possible pair (O,D) gives a new configuration S(O,D) = (S ∪{D}) \ {O}. We
want to choose a relocation such that

S = argmin
S(O,D)∈H(S)

∑
i∈N

di

( |S|∑
j=1

(1− q)qj−1f(t)
)
. (2)

Here H(S) is the set of all possible new configurations S(O,D) that can be at-
tained after one relocation from the initial configuration. Thus we choose a reloca-
tion (O,D) that minimises Equation (2) and thus gives us the largest improvement
in coverage using Ccombi in Equation (1). We could also use the single coverage or
the MEXCLP coverage measures, but we get a better performance if we use the
Combi measure. For more information, see [3].

If a relocation pair (O,D) has been chosen, the dispatcher has to determine how the
new configuration will be achieved. Originally, the dispatcher selects an ambulance
at origin O that takes the shortest path to destination D. We are interested in
the effect on the performance of routes other than the shortest path. Thus the
dispatcher can also choose other routes. In Section 4 we discuss how one can select
and evaluate alternative routes.
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4 Measures for Routes

In this section we describe two ways to evaluate a possible route for a relocating
ambulance. We assume that the current configuration is S and that a relocation
starts in origin O and has destination D. In Section 4.1 we discuss the Multiple
Path Evaluation (MPE) method, where we generate multiple paths and evaluate the
coverage of those paths. In Section 4.2 we explain our second method, which uses
a shortest path algorithm with a convex combination of the distance and coverage
on each arc.

We compare our methods to the shortest path method. The shortest path method
chooses for each relocation (O,D) the shortest path as a route for the relocating
ambulance.

4.1 Multiple Path Evaluation

This method evaluates multiple routes for each relocation. Ideally, the routes do not
have much overlap with each other. There are multiple ways that one can choose
routes. In our model we choose the routes as follows: let V ⊂ N be a collection of
predetermined nodes. These nodes have to be chosen manually. We call V the route
points. For each node v ∈ V , we take the shortest route from O to D through v.
We also look at the shortest route from O to D, which does not necessarily pass
any nodes in V . This gives us routeset R. Note that |R| ≤ |V |+1, since it contains
the shortest route and one route for each route point, assuming that the routes are
unique. Figure 5 shows a routeset created using two route points.

Origin

DestinationRP1

RP2

Figure 5: Routeset consisting of three routes. The shortest route is red, and the
other routes go through route points RP1 and RP2.

Each route visits a set of nodes. Let Vr be the set of nodes on route r, r ∈ R.
In order to evaluate a route, we give a value for the coverage for each node of
the route. We determine the coverage of the configuration, when the relocating
ambulance is in node i ∈ Vr instead of in the origin O. Denote this coverage
by Ci(S). We assume that the position of the other ambulances does not change.
Observe that CO(S) is the coverage of the initial configuration and CD(S) is the
coverage after the relocation. For each node on the route we know the travel time
to the next node, hence we know how long the relocating ambulance is in each area.
The time interval that the relocating ambulance is in node i of route r is denoted
by tri . These time intervals are right open and left closed. Thus, for each route r we
have a corresponding set of time intervals indicating the area where the relocating
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ambulance is at time t. See Figure 6 for an example of a route r starting in O, and
traveling through nodes i, j and k and arriving at destination D.

[ [ [ [) ) ) )|
Travel time

trO tri trj trk trD

Figure 6: Timeline indicating at which node a relocating ambulance is.

We define C(t, S, r) as follows:

C(t, S, r) =

{
Ci(S) if t ∈ tri .

0 otherwise.

C(t, S, r) is the coverage of route r at time t with initial configuration S.
Now we can evaluate the route r by virtue of:

∫ TR

t=0

C(t, S, r)dt. (3)

Here, TR is the longest travel time of any of the generated routes. We use the single
coverage or the MEXCLP coverage for Ci(S). In this thesis we use the MEXCLP
coverage, unless explicitly stated otherwise. In Figure 7 we map the coverage of
two possible routes. The red line is the shortest path, while the blue line is an
alternative path.

Time

Coverage

CO(S)

CD(S)

TR

Figure 7: The coverage of the region during two routes.

Figure 7 shows that the blue route has a better coverage early on, but it also arrives
later at the destination. Hence the red route has a better coverage at the end while
the blue route is still relocating. The blue area represents when the blue route is
better with respect to the coverage, and similarly, the red area represents when the
red route is better. The size of the area shows how much better a route is. We can
see which route has a higher value for the coverage by subtracting the blue area
from the red area.
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It is possible that an ambulance has to respond to an incident before it has com-
pleted its relocation. To account for this, we want that the later nodes on the
routes contribute relatively little to the value of the route in comparison to the
earlier nodes, since we are less likely to reach those nodes. We can modify Equa-
tion (3) to achieve this. We add the decreasing function e−ct, were c is a constant,
which gives us ∫ TR

t=0

C(t, S, r)e−ctdt.

We call this method the Weighted Multiple Path Evaluation (WMPE).

4.2 Convex Combination

The previous method chooses multiple routes for each relocation and assigns a value
to each of these. Our second method determines one route, by utilising Dijkstra’s
Algorithm [6]. We model the road network as a directed graph, where the value of
arc (i, j) depends on the distance or driving time between i and j and the coverage
of the configuration, if the relocating ambulance is at node j instead of the origin O.
When we determine the coverage of a node, we assume again that the positions of
the other ambulances does not change. Thus the length of the arc (i, j) is

αti,j + ti,j · (1− α)(1− Cj(S)). (4)

Here α ∈ [0, 1] denotes the weight of the distance compared to the coverage. We
have that α = 1 gives us the graph with the normal travel times. We use the
term (1−Cj(S)) as opposed to Cj(S) because Dijkstra’s algorithm minimalises the
shortest path. We want to travel through the nodes that give us a higher coverage,
thus we want the arcs pointing to these nodes to have a relatively lower value,
so that Dijkstra’s algorithm is more likely to choose these arcs. We multiply the
term (1 − α)(1 − Cj(S)) with ti,j to normalise the two terms in the sum, because
the coverage is smaller than one, while the driving time is generally larger than
one second. Note that the driving time between nodes is known. Also observe
that (1−Cj(S)) ≥ 0 since Cj(S) ≤ 1. Furthermore, we use the MEXCLP measure
for Cj(S), since this gave us the best results in the simulations.

After all the arcs have been given a value, we apply Dijkstra’s algorithm which gives
us the shortest path from O to D, which now takes the coverage into consideration.
We let the relocating ambulance drive along the resulting route.
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5 Grid Simulations

In this section we discuss the experimental set-up. We test our methods on var-
ious 10 × 10 grids and on the EMS region of Flevoland. We discuss the grids in
the corresponding subsections. We aim to test our methods with respect to the
sensitivity of the arrival rate λ, the distribution of the demand and the size of
the grid. To accomplish this, we have done a number of simulations testing these
factors. The simulation in Section 5.1 is used as a basis to which we compare the
other simulations. In Section 5.2 we look at the effects of an increased arrival rate.
In Sections 5.3 and 5.4 we use a grid with a different demand distribution. In Sec-
tion 5.5 we look at a larger grid. In Section 5.6 we look at the effect of adding a
hole in the middle of the grid. Finally, we look at the effect of our methods on grids
with random lengths in Section 5.7. We also look at the EMS region of Flevoland
in Section 6.

For every simulation we generate incidents for a period of 200 days. The incidents
arrive according to a Poisson process of rate λ. We create a table with incidents
containing the information when an incident occurs, where it happens and if the
ambulance has to go to the hospital afterwards. This table is called an instance. For
each grid we generate one instance, and we test all our methods on this instance.
Thus the time and place an incident occurs is the same in each simulation, only the
way we relocate ambulances is different.

For each of the simulations we have to calculate the busy fraction, since it is different
for each grid. To do so, we first simulate the static policy on the grid. In the static
policy, an ambulance returns to its home location, the base location at which it
started, at decision moments of type 2. There are no other relocations in the static
policy. After we simulate the static policy, we calculate the busy fraction q by
dividing the average time an ambulance was unavailable by the total model time.
The busy fraction of Flevoland is known.

Furthermore, we assume that the number of ambulances in the grid stays constant.
Thus none of the ambulances ever go off shift in our simulations. This changes
for the real EMS regions in Sections 6 till 9, where we use the actual ambulance
schedules.

We use the methods in Sections 4.1 and 4.2. For the multiple path evaluation
method and the convex combination method we use the MEXCLP coverage, since
this gave us the best results in our simulations. In the weighted multiple path
evaluation method, we use c = 0.0003.

We consider the following performance measures for our methods.

- The percentage of late arrivals.

- The mean response time.

- The mean single coverage.

- The mean MEXCLP coverage.
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In these simulations, the response time consists only of the travel time. The dispatch
and chute time are not taken into account. To compensate for this, we deduct the
expected time of the dispatch and chute time from the time threshold L. This
expected time is estimated to be 3 minutes. Thus for the simulation of Flevoland
we have that a time threshold of L = 12 minutes instead of 15 minutes. For
the 10× 10 grids we have a time threshold of L = 8 minutes, since the nodes in the
grid are closer to each other than in Flevoland. The single and MEXCLP coverage
of the region are determined at two instances in the simulation. The first instance
is when an incident occurs and the second instance is when a busy ambulance
becomes idle. We use the coverage of the region at these instances to determine the
mean coverage of the region. See Section 3.2 for how we calculate these coverages.
Furthermore, we calculate the 95% Student’s t-confidence intervals (CI) for the
percentage of late arrivals.

We discuss the results of our simulations in the following sections.
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5.1 Basis Grid

In this section we first discuss the graph that we use as the basis of our simulations.
It is the 10×10 grid shown in Figure 8. The nodes on this grid are connected to their
horizontal and vertical neighbors. We set the travel distance between two nodes
to be 100 seconds when relocating and 90 seconds when responding to an incident.
There are also base locations, hospitals and route points. These are indicated with
red, blue and green nodes respectively. The base locations are chosen randomly,
except that they are not too close to each other. At the start of the simulation
there are two idle ambulances at each waiting site, thus there are ten ambulances
in total in the region. The hospitals are placed in the corners of the map and not
in the same place as the base locations. This is to ensure that there is always a
relocation when an ambulance becomes available at a hospital. The route points
are chosen in the center of the grid, because nodes in the center cover a larger area
than the nodes on the border.

Figure 8: Our basis grid for the simulations. Blue nodes represent hospitals, red
nodes are base locations, and green nodes are route points for the MPE method. Ev-
ery node is connected to its horizontal and vertical neighbor, but not to its diagonal
neighbor.
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We equip the grid in Figure 8 with a uniform demand, i.e. di = 1
100 for each

node i. We also have an arrival rate of λ = 0.0015. The busy fraction of the grid
is q = 0.288. We use the same values for the variables in the other simulations,
unless stated otherwise. Table 2 shows the result of our simulation. We tested the
Shortest Path method (SP), the MPE method, the WMPE method and the Convex
Combination method (CC). We assume that an ambulance is late to an incident if
it arrives after 8 minutes, i.e. L = 8 minutes.

Table 2: Simulation results.

SP MPE WMPE CC
Late arrivals 3.65% 3.50% 3.49% 3.24%
95% CI Lower bound 3.42% 3.27% 3.23% 3.03%
95% CI Upper bound 3.87% 3.72% 3.71% 3.46%
Mean response time 226.13 s 225.34 s 225.30 s 224.12 s
Mean single coverage 98.33% 98.34% 98.34% 98.35%
Mean MEXCLP coverage 91.10% 91.11% 91.11% 91.12%

We see that all our methods perform better than the shortest path method with
respect to every performance measure. The MPE and WMPE method are 0.15
and 0.16 percentage points better respectively than the shortest path method with
respect to late arrivals. The convex combination method performs the best with
a 0.41 percentage point decrease in late arrivals compared to the shortest path
method. Furthermore, observe that the 95% confidence interval of the convex
combination method has only a small overlap with the 95% confidence interval of
the shortest path method.

Thus, there is some merit in using different relocation routes for ambulances, since
our methods show improvement over the shortest path method. An explanation for
this is that there are usually multiple shortest paths between two nodes in the grid,
since the length of each arc is the same. The shortest path method picks one of
these shortest path at random, which might not necessarily give the best coverage
while driving. The MPE method has more routes to choose from, and makes a
decision based on Equation (3). Thus having only a small set of routes to choose
from can already give an improvement. On the other hand, the convex combination
method considers all the arcs in the graph and determines which path over these
arcs gives the highest contribution to the coverage.

We did not need to test the convex combination method for other values than α = 1
2 ,

since the results are the same for all values of α ∈ [0, 1). The reason for this is that
the distance between two neighboring nodes is the same. Thus the contribution
of αti,j in Equation (4) is the same for each arc. Routes that travel over the
same number of arcs have the same contribution of αti,j to their value. Thus the
difference in their value is determined solely by the (1−α)(1−Cj(S)) term on the
arcs. Since (1−α) is now a constant for a given α, the value of the route depends on
the term (1−Cj(S)). Furthermore, a route over more nodes generally has a larger
value for Equation (4), since it sums over more arcs, so the convex combination
method rarely considers routes longer than the shortest path. Thus, which route is
chosen is unaffected by α. Hence, we did not vary α for most of the grids. However,
we did change it for the simulation of the grid in Section 5.7 and for Flevoland in
Section 6, since the distance between two neighboring nodes is not constant there.
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5.2 Increased Arrival Rate

In this section we look at the influence of an increased arrival rate, since we are
interested if our methods still work better when ambulances are busier. To do
this, we changed the arrival rate to λ = 0.003. This results in twice as many
incidents on average. The busy fraction also increases because of this change. We
have q = 0.803. Since there are more incidents in this simulation, we set L = 12
minutes. The results of the simulation are in Table 3.

Table 3: Simulation results for L = 12 minutes.

SP MPE WMPE CC
Late arrivals 41.22% 40.44% 39.95% 40.32%
95% CI Lower bound 40.80% 40.02% 39.53% 39.90%
95% CI Upper bound 41.65% 40.86% 40.37% 40.74%
Mean response time 1081.9s 1074.7 s 1046.7 s 1054.7 s
Mean single coverage 55.92% 56.34% 56.78% 56.49%
Mean MEXCLP coverage 28.24% 28.50% 28.87% 28.54%

We see that the WMPE method outperforms all other methods. This is to be
expected when an ambulance is busy 80% of the time, since now the first part of
the relocation is more important than the end of the relocation, as the ambulance
is likely to be interrupted during the relocation. The MPE and convex combi-
nation methods also perform better than the shortest path method. The largest
improvement is in the mean response time.

If we compare it to our basis grid, we see that the new methods still perform better
than the shortest path, although the convex combination method performs worse
than the WMPE method. Furthermore, there are roughly 30,000 relocations of
ambulances during the 200 days, as opposed to the roughly 45,000 relocations from
the method in Section 5.1. The reason for this is that when an ambulance becomes
available, it has a higher probability that there is already an incident waiting for
a response. Thus a larger decrease in percentage points of late arrivals is achieved
while the number of relocations is lower.
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5.3 Corner Demand

In the following two subsections we want to test the influence of the demand pat-
tern on the performance. To do this, we made two more grids with a different
distribution of the demand. In this section we discuss the first of these grids. This
grid is shown in Figure 9. This grid has a higher demand in the corners. We have
done this to simulate a more rural area with a few villages. The base locations,
hospitals and route points are in the same place as in Figure 8.

Figure 9: A grid with different demands on each node. Blue nodes have a demand
of 1

40 and the rest of the nodes have a demand of 1
200 .
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We use the following parameters for this grid. The arrival rate is set to λ = 0.0015
for this grid. This gives us a busy fraction of q = 0.290, which is almost the same
busy fraction as in Section 5.1. Table 4 shows the results for L = 8 minutes. This
gives us the following results.

Table 4: Simulation results for L = 8 minutes.

SP MPE WMPE CC
Late arrivals 4.68% 4.63% 4.61% 4.10%
95% CI Lower bound 4.42% 4.37% 4.36% 3.86%
95% CI Upper bound 4.94% 4.89% 4.87% 4.34%
Mean response time 251.87 s 251.13 s 251.13 s 250.64 s
Mean single coverage 98.43% 98.42% 98.43% 98.44%
Mean MEXCLP coverage 89.02% 89.02% 89.02% 89.03%

We see again that the convex combination method performs better on this grid
than the other methods. The performance with respect to late arrivals is improved
with 0.58 percentage points, when compared to the shortest path method. The 95%
confidence interval of the number of late arrivals also has no overlap with the 95%
confidence intervals of any of the other methods. We further have that the WMPE
method outperforms the MPE method. Note that the MPE method has a lower
mean single and MEXCLP coverage than the shortest path method, as well as the
WMPE and convex combination method.

What stands out is that the performance of the MPE method is much closer to the
performance of the shortest path method when compared to our basis grid, while
the convex combination method still performs better. This could be because we
did not change the route points, which are still in the center of the grid. Thus the
ambulances drive more often through the center, where the demand is lower, and
thus they do not contribute much extra to the coverage. The convex combination
method takes all arcs in consideration when determining the best path, thus one
gets more diverse routes. We conclude that the location of the route points is very
important for the performances of the MPE and WMPE methods.
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5.4 Bubble Demand

In this section we look at our second grid where we changed the demand pattern.
Previously, we put a higher demand at the corners of the grid. This time we put
higher demand in the middle. This is shown in Figure 10. We moved the hospitals
in the grid, since it makes more sense that not all hospitals are in the corners, were
the demand is lower than in the middle. The hospitals are indicated by a blue
outline. The base locations and route points are still in the same place.

Figure 10: A grid where the demand is concentrated in the middle. The green nodes
have a demand of 3

100 , the red nodes have a demand of 1
100 and the other nodes have

a demand of 1
200 . The nodes with a blue outline also contain hospitals.
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We keep the same arrival rate for the incidents. The busy fraction for this grid
is q = 0.29. Table 5 shows the result for L = 8 minutes.

Table 5: Simulation results for L = 8 minutes.

SP MPE WMPE CC
Late arrivals 1.47% 1.47% 1.40% 1.35%
95% CI Lower bound 1.32% 1.32% 1.26% 1.20%
95% CI Upper bound 1.61% 1.62% 1.54% 1.49%
Mean response time 197.76 s 192.25 s 193.94 s 195.80 s
Mean single coverage 99.26% 99.27% 99.27% 99.27%
Mean MEXCLP coverage 94.86% 94.88% 94.88% 94.87%

What is striking is that the MPE method has a similar performance to the shortest
path method with respect to late arrivals. On the other hand the WMPE method
performs better than the shortest path and the MPE method. This can be ex-
plained by the fact that the WMPE method has a bigger focus on the beginning
of a relocation route, which might prevent it from taking longer routes than neces-
sary. The convex combination method still performs the best of all methods with
respect to late arrivals, although the relative increase is smaller, 0.12 percentage
points, when compared to our base grid, where the improvement was 0.41 percent-
age points. A reason for this is that the number of late arrivals in these simulations
is lower than in the base simulations.

When we compare the results of this grid to our basis grid, we see that the number
of late arrivals has decreased for all relocation methods. The reason for this is that
the incidents are much more concentrated in a central spot. This makes the area
easier to cover with the available ambulances, since the base location in the middle
provides good coverage of the area with higher demand.
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5.5 Larger Grid

In Figure 11 we increased the size of the grid by a factor four, in order to see
how our methods perform on larger graphs. When increasing the size of the grid,
the hospitals, base locations and route points are also relocated. We increased
the number of base locations and ambulances in the grid as well. There are now
eighteen ambulances in the grid, with two starting at each base location.

Figure 11: A 20× 20 version of our grid. There are hospitals and base locations in
blue nodes. Red nodes only have base locations, and green nodes are route points
for the MPE method.
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In this larger grid with a new configuration we have to calculate the busy fraction
again. We get a busy fraction of q = 0.333 when we use the static policy, thus we
use this as the busy fraction for our simulations. Since we increased the size of the
grid, we also increased the time threshold for late arrivals to L = 12 minutes. See
Table 6 for the results.

Table 6: Simulation results.

SP MPE WMPE CC
Late arrivals 2.85% 3.23% 3.15% 2.33%
95% CI Lower bound 2.64% 3.01% 2.93% 2.15%
95% CI Upper bound 3.05% 3.44% 3.36% 2.51%
Mean response time 388.64 s 361.31 s 360.63 s 371.12 s
Mean single coverage 97.58% 97.59% 97.58% 97.58%
Mean MEXCLP coverage 88.46% 88.53% 88.52% 88.50%

The MPE and WMPE method do not perform better than the shortest path method
in terms of late arrivals. This could be, because the grid changed too much when we
upscaled it. The length of the routes in general is longer than in the base grid. When
an ambulance drives over one of the alternative routes, it arrives even later at its
destination. Furthermore, the base locations are further away from each other, and
have to cover a larger area. Thus it could be more important that the ambulance
reaches it destination on time, since the base location has to cover a larger area.
Another possibility is that when deciding a route for a relocating ambulance, we do
not take into consideration that another ambulance might become available during
its relocation. We also do not take into consideration where the other relocating
ambulances are going, since we freeze them in place when determining the route.
This might result in routes that cover the same area multiple times. Finally, it is
also possible that the route points have been chosen poorly.

However, these methods have the best performance with respect to mean response
time. The WMPE method does outperform the MPE method except in coverage,
although the difference is small for both coverage measures.

On the other hand, the convex combination method outperforms the shortest path
method in every performance measure. There is no overlap between the 95% confi-
dence intervals for the late arrivals. This could be because the convex combination
method prefers shorter routes over longer routes, thus an ambulance does not arrive
much later at its destination when compared to the shortest path method.
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5.6 Grid with Hole

In this section we tested our methods on a grid with a hole in it, inspired by Central
Park in Manhattan. The grid is shown in Figure 12. We tested two situations. In
the first situation the route along the black nodes was inaccessible. In the second
situation, ambulances could drive over the route along black nodes, creating a short-
cut. The demand of the black nodes is zero, hence there can be no incidents there.
We also changed the location of the route points, since the original points are no
longer on the grid. We placed them in the corners of the hole. One base location is
also gone, since the number of nodes in the grid is decreased. Thus there are only
eight ambulances instead of ten.

Figure 12: A grid with a hole in it. Blue nodes represent hospitals, red nodes are
base locations, and green nodes are route points for the MPE method. The black
nodes indicate the additional route.
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In this grid we have that the busy fraction is q = 0.291. Table 7 shows us the
results for the grid without the shortcut along the black nodes, while Table 8 shows
the results with the shortcut.

Table 7: Simulation results without shortcut.

SP MPE WMPE CC
Late arrivals 13.27% 13.54% 13.52% 8.70%
95% CI Lower bound 12.85% 13.13% 13.10% 8.35%
95% CI Upper bound 13.68% 13.96% 13.94% 9.04%
Mean response time 311.63 s 310.94 s 311.17 s 201.75 s
Mean single coverage 90.19% 90.23% 90.22% 91.63%
Mean MEXCLP coverage 75.44% 75.48% 75.47% 77.07%

Table 8: Simulation results with shortcut.

SP MPE WMPE CC
Late arrivals 13.34% 13.10% 13.11% 9.26%
95% CI Lower bound 12.92% 12.69% 12.70% 8.90%
95% CI Upper bound 13.75% 13.51% 13.52% 9.61%
Mean response time 309.68 s 305.72 s 305.95 s 217.10 s
Mean single coverage 90.20% 90.23% 90.23% 91.35 %
Mean MEXCLP coverage 75.48% 75.51% 75.52% 76.80 %

We see that the convex combination method performs better than all other methods
in both cases. There is an improvement of 4.57 percentage point in the number
of late arrivals without the shortcut, and an improvement of 4.08 percentage point
with the shortcut. The 95% confidence interval of the number of late arrivals also
has no overlap with the 95% confidence intervals of the other methods. There is also
a decrease in mean response time of 109.88 seconds and 92.58 seconds respectively.

On the other hand, the MPE and WMPE method do not perform better than the
shortest path method with respect to late arrivals when there is no shortcut. The
mean response times and mean coverages on the other hand are better. When there
is a shortcut, the MPE and WMPE method improve on the shortest path method
for all performance measures. A reason for this is that the shortest path is more
likely to pick the shortcut, while taking another route would improve the coverage
of the system.

It is striking that the shortest path and convex combination method perform worse
when there is a shortcut. A possible reason for this is that the shortcut itself has
demand zero, i.e. there are no incidents on the shortcut. Thus while taking the
shortcut ensures that one reaches their destination earlier, the coverage of the grid
during the travel time is lower. If an incident happens while the ambulance is on
the shortcut, it is less likely to respond in time.
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5.7 Random Lengths on Edges

During the simulations we noticed that the convex combination method performed
better than any other method. One of the explanations why it works so well on the
grids is that there are many shortest paths between two nodes, since the length of
the edges is the same. Thus the shortest path method takes a random route, while
the convex combination method picks the path with the best coverage among these
shortest paths. This made us wonder if the method would still improve the result
if we changed the lengths of the arcs so that there are fewer shortest paths. To do
this we took the basis grid in Figure 8 and picked the length of the arcs uniform
random between 75 and 125. We picked these values so that the graph still satisfies
the triangle inequality. The arcs can only be integer values. We equip the grid with
uniform demand distribution. Our new grid has a busy fraction of q = 0.293.

The results are shown in Table 9. Since the length between two nodes is different,
we used multiple values of α in the convex combination method. Note that α = 1
results in the shortest path method.

Table 9: Simulation results.

SP MPE CC α = 1
2 CC α = 0

Late arrivals 3.85% 4.39% 3.77% 3.65%
95% CI Lower Bound 3.61% 4.14% 3.53% 3.42%
95% CI Upper Bound 4.08% 4.64% 4.00% 3.87%
Mean response time 239.63 s 238.39 s 239.28 s 238.32 s
Mean single coverage 98.12% 98.32% 98.14% 98.14%
Mean MEXCLP coverage 89.90% 91.08% 89.90% 89.90%

At first we see that the MPE method performs considerably worse when compared
to the shortest path. This is most likely caused by the fact that the route points have
not changed, so they might be in unfavorable positions. Although an improvement
on the shortest path method is still possible. The convex combination method
performs better for both values of α. However, if we compare it to our basis grid,
the improvement is relatively smaller. This is probably because there are fewer
shortest paths.
It is also striking that α = 0 outperforms α = 1

2 . This implies that the coverage
part in Equation (4) is more important than the distance part. Note that the
coverage part of the equation also takes the distance into account, to normalise the
equation. Thus if one takes α = 0, one does not lose the influence of the distance
completely.
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6 Flevoland Simulations

Ultimately, we want to test our methods on real EMS regions to see if we get possible
improvements. Thus we made simulations for the EMS region Flevoland. We also
look at other regions in Section 9, where we use TIFAR for our simulations. First,
we talk about the region itself and we explain how the ambulance care is organised
in Flevoland in Section 6.1. In Section 6.2 we discuss the results of the simulations.

6.1 EMS Region Flevoland

Flevoland is a rural area, with nearly 400,000 citizens. Almost half of these citizens
live in Almere, the biggest city of Flevoland. The rest of the people are mainly
living in one of the five other towns. The base locations in Flevoland are located in
these six towns, and there are hospitals in Almere and Lelystad. Figure 13 shows
the region and its base locations, as well as the route points we use.

Figure 13: Map of the EMS region Flevoland. The grey areas are the municipals of
Flevoland, and the base locations are represented by black dots. The route point of
RP1 is colored green, the route points of RP2 are colored red and the route points
of RP3 are colored blue.

We model the region of Flevoland using the zip code areas as nodes in a directed
graph. Flevoland has 91 zip code areas. The driving time between each pair of zip
code areas are estimated by the Rijksinstituut Volksgezondheid en Milieu (National
Institute for Public Health and Environment). See [7] for more information of how
these times were estimated. These driving times are for ambulances with their
sirens and optical signals turned on. To obtain the travel time of a relocating
ambulance, we multiplied the driving times with 10

9 .
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GGD Flevoland, the ambulance service provider of the region Flevoland, has pro-
vided us with historical data of emergency requests in the year 2011. We used this
data to estimate the demand d of each area and the arrival rate λ of incoming in-
cidents. For this simulation we divided a day into 24 time blocks of one hour each.
We calculated the demand of an area and the arrival rate for each of these time
blocks. The arrival rate is based on A1 and A2-calls. However, we assume that
every incoming incident has priority A1, since it becomes too complicated to work
with two time thresholds. If we neglect the A2 priority incidents on the other hand,
we do not get a realistic simulation, since 27% of the incidents have priority A2 [1].

We also take the schedule of the ambulances in Flevoland into account. For the
previous grids, we assumed that the number of ambulances was constant over time
and that their shift never ends. Now an ambulance has to return to its base to
end its shift, and the number of ambulances changes throughout the day. The
ambulance schedules are provided by GGD Flevoland.

To apply the MPE method, we need a set of route points. We use the following set
of route points in our simulation.

1. RP1: one route point in Zeewolde.

2. RP2: four route points in Zeewolde, Dronten, Lelystad and
the Noordoostpolder.

3. RP3: three route points in Almere, Lelystad and the Noordoostpolder.

We chose RP1 because we are interested in alternative routes from Almere to Dron-
ten through Zeewolde. We chose RP2 to see the effects of adding more than one
route point. Finally we chose RP3 since it passes the major cities in Flevoland. See
Figure 13 for the location of these route points.
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6.2 Results

In this section, we discuss the results of the MPE, WMPE and CC method for
Flevoland. We also look at the effect of the methods on different times of the day,
since the number of incidents and the number of ambulances is different during the
day, the evening and the night. Furthermore, we used real data from 2011 to see
how well our methods perform.

First we tested the MPE method. We used the route points shown in Figure 13.
Using this method, we get the results as shown in Table 10.

Table 10: Simulation results for the MPE method.

SP MPE (RP1) MPE (RP2) MPE (RP3)
Late arrivals 6.06% 5.78% 5.71% 5.90%
95% CI Lower bound 5.61% 5.34% 5.28% 5.46%
95% CI Upper bound 6.50% 6.21% 6.16% 6.34%
Mean response time 279.18 s 279.18 s 278.01 s 279.08 s
Mean single coverage 96.29% 96.30% 96.27% 96.26%
Mean MEXCLP coverage 90.19% 90.19% 90.20% 90.15%

The MPE method is effective in decreasing the number of late arrivals, since all col-
lections of route points give an improvement. Even the set RP1 that only contained
one route point gives an improvement of 0.28 percentage point. Adding more route
points like in RP2 decreases the number of late arrivals even more, although the
extra effect of the three extra route points is small compared to just adding the
initial route point. We also see that more route points does not necessarily mean
that one gets better results, since RP1 has less late arrivals than RP3. Thus one
has to choose the route points carefully, since taking more route points leads to a
longer computation time.

We now look at the WMPE method for these sets of route points. They are shown
in Table 11.

Table 11: Simulation results for the WMPE method.

WMPE (RP1) WMPE (RP2) WMPE (RP3)
Late arrivals 6.48% 6.50% 6.31%
95% CI Lower bound 6.02% 6.04% 5.88%
95% CI Upper bound 6.94% 6.97% 6.77%
Mean response time 285.86 s 284.56 s 281.49 s
Mean single coverage 96.29% 96.24% 96.24%
Mean MEXCLP coverage 90.18% 90.13% 90.15%

The WMPE method performs worse than the MPE method, while it performed
better on the grids. It also performs worse than the shortest path method. An
explanation could be that the ambulances are not interrupted as often as on the
grid, since the arrival rate for incidents is lower in Flevoland than in the grids.
Thus, if the start of a relocation has higher weight, then the ambulance might take
a less favorable route and arrive later at an incident. This could also be a result of
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a badly chosen value for c, but we did not have time to test it for any other values
of c.

We saw that the MPE method performs better in Flevoland than the shortest path
method, but we also want to know during which part of the day it performs better,
and during which part it performs worse. To accomplish this, we divided the day
into three parts. These three parts are the night from 0:00 to 8:00, the day from 8:00
to 16:00 and the evening from 16:00 to 0:00. Figure 14 shows the number of late
arrivals during each of these time periods for the MPE method. We omitted the
WMPE method since it did not give an improvement on the shortest path method.
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Figure 14: The number of late arrivals during the morning, afternoon and night for
various methods.

It turns out that the MPE method does not perform better in the night. This could
be because there are fewer incidents during the night, thus taking longer routes
when relocating can be less efficient, since you are less likely to be interrupted
during your relocation. Most of the improvement happens during the day and
evening, where the number of incidents, and therefore late arrivals, are higher in
general. This leads us to take a closer look at the time during the day and see how
our methods perform during this period. We took real life data from the year 2011 in
Flevoland. This data contains only incidents that happened during 7:00 and 20:00.
We do not take the shifts of the ambulances into account, and we assume that
there are ten ambulances in the region. In Table 12 we show the results during this
period for various methods.
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Table 12: Simulation results with data from 2011.

SP MPE CC α = 1
2 CC α = 0

Late arrivals 4.27% 4.14% 4.14% 4.10%
95% CI Lower Bound 3.82% 3.69% 3.69% 3.66%
95% CI Upper Bound 4.73% 4.59% 4.59% 4.55%
Mean response time 290.8 s 292.6 s 290.1 s 290.4 s
Mean single coverage 97.39% 97.39% 97.39% 97.39%
Mean MEXCLP coverage 93.45% 93.44% 93.45% 93.45%

We see that the MPE method and the convex combination method perform better
during the day than the shortest path method. The late arrivals decrease by 0.13
percentage points for the MPE method and 0.17 percentage points for the CC
method with α = 0. Furthermore, we have that α = 0 performs better than α = 1

2
for the convex combination method, just like in Section 5.7. We also see that the
mean response time does not improve when compared to the shortest path method.
Note that the percentage of late arrivals is lower than in Table 10, because we only
consider the daytime, and the number of late arrivals is relatively smaller there.
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7 Introduction to TIFAR

In this part of the thesis we discuss Testing Interface For Ambulance Research
(TIFAR), a simulation tool developed by Stokhos which can be used to evaluate
different ambulance dispatch strategies and help dispatchers when and where to
relocate an ambulance to. Figure 15 shows the interface of TIFAR. Our goal is to
add a relocation policy to the TIFAR simulation tool and see what the effects are on
real Emergency Medical Service Regions in the Netherlands. In this section we give
a brief explanation of how TIFAR works. See [8] for a more detailed explanation.

Figure 15: The interface of TIFAR. The base locations are indicated with with
names, and the number between the brackets are the number of ambulances at the
base. Ambulances responding to an incident follow a red route. In the top left is
shown which relocation should be taken, if any.

We use real data of the EMS regions from 2015 in our simulations with TIFAR.
This data contains:

- when the incident occurred,

- where it occurred,

- how long the ambulance has to be on-scene for treatment of the patient,

- if the patient has to go to the hospital, including which hospital,

- the time the ambulance has to spend at the hospital (if the patient needs to
go to the hospital),

- the urgency of the call.

After an incident occurs, we have to dispatch an ambulance to the incident. All
the calls are put into a queue. Handling of arriving calls is modelled as a priority
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queueing system. Here, A1-calls are first-come-first-served, and A2-calls have lower
priority and are handled when there are no calls with urgency A1 left or as soon
as 15 minutes have passed, since we want A2-calls to be answered within 30 minutes.
We assign the ambulance that can respond the quickest to the incoming call. Note
that only one ambulance will be assigned to a call and that we do not reassign
ambulances to the call.

The speed of an ambulance depends on the type of road and whether it uses its
sirens and optical signals. If an ambulance responds to an A1-call, we assume that
it uses its sirens and optical signals, and when it responds to an A2-call, we assume
that it does not use them.

TIFAR can also use multiple relocation rules. We already discussed the Combi
Algorithm in Section 3.3. However, for our simulations we use the Dynamic MEX-
CLP (DMEXCLP) algorithm. DMEXCLP uses the definition of coverage of the
MEXCLP model discussed in Section 3.2. The MEXCLP coverage is computed
when an ambulance becomes available for relocation purposes. When calculating
the coverage of the system, we only consider the destination of the idle ambulances,
since that will be the state of the system if no further incidents happen. Let ni
be the number of idle ambulances that have i as their destination. When an am-
bulance becomes idle and needs to be relocated, the DMEXCLP model sends the
ambulance to the waiting site that results in the largest MEXCLP coverage. This
is the same as choosing the base that results in the largest marginal coverage over
all demand. This can be interpreted as the benefit of having an additional k-th
ambulance near node i, given by di(1− q)qk−1. The waiting site that gives us the
biggest improvement in coverage can be calculated by

argmax
w∈W

∑
i∈V

di(1− q)qk(i,w,n1,...,n|W |)−1,

where

k(i, w, n1, . . . , n|W |) =

|W |∑
j=1

nj1{τi,j≤L} + 1{τw,i≤L}

is the number of idle ambulances that can reach node i if we assume that the
ambulance is relocated to waiting site w. The symbol 1 stands for the indica-
tor function. With this method we determine the destination of our relocation.
For more information about the DMEXCLP algorithm, we refer to the paper by
Jagtenberg, Bhulai and van der Mei [9].

In Section 8 we add dynamic routing to TIFAR and in Section 9 we discuss the
impact of this change.
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8 Dynamic Routing in TIFAR

In this section we describe how we implement dynamic routing in TIFAR. When-
ever a relocation occurs, we determine the origin and the destination using the
DMEXCLP algorithm. Given this origin-destination pair, we propose a method
that consists of two parts to determine which route the relocating ambulance should
take. In the first part we determine multiple possible routes between the origin and
the destination. We want these routes not to be too similar. In the second part we
evaluate all the generated routes and return the route that gives the best coverage
overall.

8.1 Generating routesets

In this section we explain how we create the set containing different routes that
be evaluated. The first route we add is the shortest path between the origin and
destination. We use decision points on the road network to help us generate more
routes. Decision points are points on the road network where the route splits and
the ambulance has to decide which route it takes. Figure 16 shows all the decision
points in Flevoland.

Figure 16: The decision points of Flevoland are indicated with black crosses. We
also take decision points on highways of nearby areas into account.

When we generate a routeset, we want to look at fewer decision points, since we
are only interested in the decision points accessible from the origin and destination
within a reasonable amount of time. Let tO,D be the travel time between the origin
and destination in seconds. We look at the decision points that can be reached
from the origin and the destination in tO,D seconds. See Figure 17 for the decision
points between Almere and Dronten.
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Figure 17: The decision points reachable from Almere and Dronten within tO,D
seconds, where O is Almere and D is Dronten.

For all the resulting decision points we keep track whether there is already a route
that visits the decision point. When we add a route to the routeset, we check
all the decision points it travels trough and mark them as visited. After adding
the shortest path and marking all the decision points along the way, we look at
an unvisited decision point. We first choose the unvisited decision point with the
lowest y-coordinate, and try to add the route through that decision point. We then
repeat this for the unvisited decision point with the highest x-coordinate, then the
highest y-coordinate and next the lowest x-coordinate. Then we look again at the
unvisited decision point with the lowest y-coordinate, until all decision points are
visited. Thus we mark the decision points in a counter clockwise fashion, starting
from the outside. We use this method to speed up routeset generation, because it
prevents picking multiple decision points on a road facing outward.
To illustrate this we look at Figure 17 again. If one first takes the route through
the green decision point, one will not reach the red decision point, and thus we
have to look at a route through the red decision point at a later time as well, since
it is still unvisited. This route will be very similar to the route through the green
decision point, and we want to avoid similar routes. Thus by picking the more
outward decision points first, we mark more decision points and prevent looking at
too many similar routes.

We also apply snapping to the route. This is a procedure designed to prevent going
back and forth over the same path when we create the shortest path through the
decision point by removing paths that we travel over twice. However, the decision
point of the original route should remain covered. Thus we can only remove a path
if one can reach the original coverage point within 15 minutes. See Figure 18 for
an example of snapping. Here we have a route from Almere through a node in
Zeewolde to Dronten. Figure 18a shows the route without snapping. We see that
this route travels over the same road twice while entering Zeewolde. In Figure 18b
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we applied snapping, and we do not go into Zeewolde, but we still cover the area
because the ambulance drives past it.

(a) Route without snapping. (b) Route with snapping.

Figure 18: We have a route from Almere to Dronten through Zeewolde.

When we create a route, we try to add it to the routeset. We compare the route to
each other route in the set, since we want to generate multiple routes that do not
have much overlap. If there is another route in the routeset that has at least δ%
overlap with the new route, then we do not add the new route to the routeset.
Thus lower values of δ result in smaller routesets. We can take multiple values
for δ. Figures 19a, 19b and 19c show multiple routesets that are created between
Almere and Dronten for different values of δ. It shows the different roads that are
taken, but the routes have some overlap. If the black line is thicker, then there are
more routes that travel over that road.
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(a) δ = 10, 2 routes were added. (b) δ = 50, 6 routes were added.

(c) δ = 90, 15 routes were added.

Figure 19: Routesets between Almere and Dronten with different values for δ.

We want diverse routesets, but they should not be too large, since this increases
the computation time. In the simulations we use δ = 50.
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8.2 Evaluating the routeset

After generating the routeset R for origin O and destination D, we need to evaluate
each route in the routeset. The routes consist of a series of nodes. We introduce
some notation that we use to give each route a value. Let ti be the travel time
from the origin to node i. Furthermore let x(t) be the position of the ambulance
at time t. The position of the ambulance can be determined much more precisely
in TIFAR, as opposed to our first simulation model. We can now determine where
the ambulance is between nodes. When we evaluate the routes, we assume that
the other idle ambulances do not move and that no additional ambulances become
available. Finally we use the function f(τi,j) to determine whether node j is covered
when the ambulance is in node i. If node j is covered, then f(τi,j) is equal to the
contribution to the coverage of node j, otherwise it is zero. We use the MEXCLP
function, which gives us

f(τi,j) = 1{τi,j≤L}dj(1− q)q
kj−1,

where kj is the number of other ambulances that can reach node j within the time
threshold L. The approximation of the coverage of a route r ∈ R consists of two
parts. The first part is the contribution of driving along the route itself, which has
the following formula:

∑
i∈r\O

∑
j∈N

∫ ti

ti−1

f(τx(t),j)e
−γtidt.

For each node i ∈ r \ O we look at the contribution to the coverage of all demand
nodes when the ambulance is in node i. The term e−γti is used give higher weight
to the start of the route, similar to the WMPE method in Section 4.2. Here γ is
a scaling parameter that simulates uncertainty when time goes on. For γ we take
the arrival rate between incidents in the region, taken from the data of 2015.

The second part of the coverage is the contribution of staying at the destination.
The ambulance arrives at the destination after tD seconds. The term e−γti is used
to make sure the contribution of this term is finite. Thus for the second part we
have: ∑

j∈N

∫ ∞
tD

f(τD,j)e
−γt′dt′.

Note that the contribution of this term is greater the sooner you arrive at the desti-
nation. Without this term, the ambulances would keep on driving and never arrive
at their destination, since arriving at the destination would not give additional
coverage in the equation.

When we combine these two parts, we get the following approximation of the cov-
erage for routes r ∈ R:

Cr =
∑
i∈r\O

∑
j∈N

∫ ti

ti−1

f(τx(t),j)e
−γtidt+

∑
j∈N

∫ ∞
tD

f(τD,j)e
−γt′dt′. (5)
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9 Simulation Results

In this section we discuss the simulation results. We are interested in three regions,
namely Gooi & Vechtstreek, Amsterdam and Utrecht. We used the historical data
from 2015 for our simulations. We simulated the months September and October,
since there are no major holidays in these months. We compare our dynamic
routing method to the DMEXCLP method without dynamic routing. To compare
both methods we look at the number of late arrivals and the mean response time.
We also show where in the region we have the largest improvement.

9.1 Gooi & Vechtstreek

The EMS region Gooi & Vechtstreek is located north of Utrecht, and it is one of the
smallest EMS regions in the Netherlands. It is a rural area with a population just
over 250,000. Most of the people live in the towns Hilversum, Huizen, Blaricum,
Bussum and Weesp. The ambulance service provider for the region is RAV Gooi
& Vechtstreek. Yearly, there are more than 17,000 incidents. There are three base
locations, situated in Hilversum, Blaricum and Weesp. Figure 20 shows a map of
the region and its base locations.

Figure 20: The Grey area is the EMS region Gooi & Vechtstreek. The three base
locations are indicated with black dots.
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Table 13 shows the results of the simulations with and without dynamic routing.

Table 13: Simulation results with data from 2015.

DMEXCLP DMEXCLP with dynamic routing
Late arrivals 16.03% 15.87%
95% CI Lower bound 13.99% 13.84%
95% CI Upper bound 18.06% 17.90%
Mean response time 682.72s 688.31s

The high percentage of late arrivals is due to a shortage of ambulances in the
evening, especially in the weekends. At that time there are barely enough ambu-
lances available to handle the incoming calls. We also see that there is a small
increase in mean response time. To get a better understanding of where and when
we get the most improvement, we look at Figure 21. Nodes are colored green if
the dynamic routing method performed better in that node than the DMEXCLP
method, thus where dynamic routing had less late arrivals. The node is red if the
dynamic routing method performed worse.
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Figure 21: Comparison of number of late arrivals in Gooi & Vechtstreek.

We see that the most improvement is in Wijdemeren, the municipal in the south-
west. This comes at the cost of more late arrivals in the municipal Gooise Meren,
which is located in the North. Dynamic routing thus moves the location of late
arrivals to more rural areas, since we now take the highway through Gooise Meren
less and instead drive through Wijdemeren.
Since the region is understaffed in the evening, we are interested if our method
performs better or worse in the evening compared to the rest of the day. Figure 22
shows the late arrivals in the evening compared to the rest of the day. Here the
evening is from 16:00 to midnight. Dynamic routing performed better in green
nodes and worse in red nodes.
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(a) Evening. (b) Rest of the day.

Figure 22: Comparison of number of late arrivals for different times of the day.

We see that dynamic routing performs much worse during the evening than during
the rest of the day. Sometimes there is a shortage in the number of available
ambulances during the evening, which might be the reason that dynamic routing
performs worse. Note that we used the same γ throughout the simulation. The
results might improve if we take different γ for different times of the day.
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Finally we looked at the relative improvement for the municipals in the region.
Since there are less incidents in Wijdemeren, any extra incident that is reached
on time gives a larger relative improvement than in more densely populated areas.
Figure 23 shows the relative improvement.

Figure 23: The relative improvement in late arrivals for Gooi & Vechtstreek. The
black dots indicate the base locations.

We see that there is a relative improvement in Wijdemeren and Huizen, while
dynamic routing performs worse in Weesp. Notice that both of these municipals
do not have a base location. Wijdemeren normally has the lowest percentage on
time arrivals. Dynamic routing redistributes the late arrivals so the percentage late
arrivals of each municipal gets closer together.
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9.2 Amsterdam

The EMS region of Amsterdam is a combination of two former EMS regions named
Zaanstreek-Waterland in the north and Amsterdam-Amstelland in the South. The
population of this region is 1,2 million people, with 68% of these people living in the
city Amsterdam. This region is densely populated compared to Gooi & Vechtstreek.
Figure 24 shows the region as well as the base locations.

Figure 24: The Grey area is the EMS region Amsterdam. The eight base locations
are indicated with black dots.

In Table 14 we show the simulation results for Amsterdam and in Figure 25 we
show where dynamic routing gave a decrease in late arrivals and where it gave an
increase. Green nodes indicate where dynamic routing performed better and red
nodes where it performed worse. The base locations are also shown.

Table 14: Simulation results with data from 2015.

DMEXCLP DMEXCLP with dynamic routing
Late arrivals 0.69% 0.69%
95% CI Lower bound 0.53% 0.53%
95% CI Upper bound 0.85% 0.85%
Mean response time 469.60s 458.13s
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Figure 25: Comparison of number of late arrivals in Amsterdam. The base locations
are indicated with black dots.

The number of late arrivals is so low because the ambulances that handle B-calls
can also respond to A1-calls in this simulation, while they do not do in real life.
The late arrivals in Amsterdam stay about the same, but the mean response time
decreases when we use dynamic routing. This is mainly because dynamic routing
has the biggest improvement in Amsterdam Zuid-Oost (south east Amsterdam),
shown in Figure 25. This comes at a trade-off for more late arrivals in the semi-
rural areas outside of the city Amsterdam, especially in Volendam. Observe that
Amsterdam Zuid-Oost does not have a base location for ambulances, since we used
older base locations. Thus dynamic routing sends an ambulance over Amsterdam
Zuid-Oost to cover that part of region better.

Nowadays there is a post in Amsterdam Zuid-Oost. Thus dynamic routing can be
used to cover an area where one would want a base location, and might even be
used to search for appropriate base locations. There are other models to determine
the optimal base location in a region, see [10] for more information.
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9.3 Utrecht

Utrecht is a densely populated area with approximately 1,2 million inhabitants. It
is one of the largest EMS regions in the Netherlands. The ambulance provider of
the region is RAV Utrecht and they handle more than 85,000 incidents each year.
The region along with its base locations are shown in Figure 26 .

Figure 26: The Grey area is the EMS region Utrecht. The base locations are indi-
cated with black dots.

Table 15 shows the late arrivals and the mean response time for Utrecht. Further-
more, in Figure 27 we compare both methods, similar to what we did for Gooi &
Vechtstreek and Amsterdam.

Table 15: Simulation results with data from 2015.

DMEXCLP DMEXCLP with dynamic routing
Late arrivals 7.03% 7.15%
95% CI Lower bound 6.38% 6.50%
95% CI Upper bound 7.68% 7.81%
Mean response time 571.53s 568.47s
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Figure 27: Comparison of number of late arrivals in Utrecht. The base locations
are indicated with black dots.

Given the results in Table 15, we see a slight increase in the number of late arrivals.
In Figure 27 we see that most of the deterioration happens in the cities, Amersfoort
and Veenendaal in particular. There is a small decrease in the mean response time
as well. This can be because the ambulances respond quicker to incidents farther
away from base locations when we use dynamic routing. The most improvement is
gained in semi-rural areas with no base location. Especially in Lopik in the south-
west and Eemnes in the north-east have many green dots. This is because relocating
ambulances drive through these regions more. However, there is a deterioration in
the other corners of Utrecht. In both in the north-west and the south-east dynamic
routing loses out to the standard DMEXCLP method. Both these regions have base
locations, as opposed to Lopik and Eemnes. Thus because of dynamic routing, the
ambulances arrive later at the base locations in the corners of the region, which
results in more late arrivals.
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Since we have the most improvement in more thinly populated areas, we are inter-
ested in the relative improvement of the region. In Figure 28 we show the relative
improvement for each municipal in Utrecht.

Figure 28: Comparison of number of late arrivals in Utrecht. The base locations
are indicated with black dots.

The figure shows that there is a large relative improvement in Lopik and Eemnes.
What stands out is that both of these regions are rural areas at the border of the
regions without a base location. The deterioration is mostly in Veenendaal and de
Ronde Venen in the north-west. Thus we see a redistribution of the late arrivals in
the region, where the areas with a lower percentage on time arrivals improve.
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10 Conclusion and Further Research

In this thesis we researched ambulance relocation models and developed algorithms
to introduce dynamic routing to these models. We considered the following ques-
tion:

How can we evaluate routes depending on coverage and travel time and how does
relocating over different routes influence the performance of the model?

To answer this question, we developed multiple relocation methods. The first
method was the Multiple Path Evaluation method, where we first generate a set
of routes and we evaluate them using Equation (3). The second method changes
the values on the arcs of the graph to depend on the distance and the coverage.
We apply a shortest path algorithm on the newly obtained graph. To get a better
understanding of how various parameters influence the performance of alternative
routing for relocations, we ran simulations on small 10 × 10 grids. In the basic
grid with uniform demand (see Figure 8) we saw that both methods, as well as the
weighted variation of the Multiple Path Evaluation method, performed better than
the shortest path method. The reason for this is that there are multiple shortest
paths in the grid, and the shortest path method picks one randomly. Thus the
MPE and CC methods that put more thought into picking a route perform bet-
ter. We conclude that using an alternative routing policy can positively affect the
performance of ambulance care.

Furthermore, the route points for the Multiple Path Evaluation method are key to
its performance. We have observed that we can decrease the number of late arrivals
by only considering a few extra routes. The Weighted Multiple Path Evaluation
method performed best when the number of incidents is relatively high. The convex
combination method performed better in most grids than any of the other methods.
The improvements are especially apparent in the grid with higher demand in the
corners (Figure 9) and the grid with the hole (Figure 12). These two grids have
in common that the demand in the center of the grid was relatively small. The
route points were also in the center of the grid, thus the MPE method took routes
through the center, while the convex combination method took routes that stayed
longer in the areas with higher demand.

We ran simulations for Flevoland using real life data from 2011. The data only
contains incidents from 7:00 to 20:00. We observed that the number of late arrivals
can be decreased by 0.17 percentage point.

For the real EMS regions that we simulated with TIFAR we saw mostly a shift in
the late arrivals. In Gooi & Vechtstreek and Utrecht the ambulance arrived sooner
in more remote areas, at the cost of the larger cities. This gave a large relative
improvement in the remote areas with no base locations. Thus dynamic routing
ensures a more even distribution of the ambulances.
In the simulation for Amsterdam most of the improvements where in Amsterdam
Zuid-Oost. This is because this is a densely populated area without a base location,
thus there were less late arrivals in that area and the mean response time decreased
by 11.5 seconds. Thus dynamic routing can be used to cover for a potential missing
base location.
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A suggestion for further research is to look into the effect of the parameter γ in
Equation (5). It is possible that there was too much emphasis on the beginning of
the route, like with the WMPE method in Flevoland. This can lead to ambulances
arriving later at their destination and potentially arrive later at an incident.

A possible extension of dynamic routing is to only use it when certain restrictions
are met. For example, we can only consider dynamic routing

- during certain times of the day,

- when there are at least k ambulances available,

- for specific (O,D) pairs.

Further research is required to see what the effect of these restrictions is.
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