
The high school scheduling problem: Improving local search; fairness
evaluation
Kooy, N. van der

Citation
Kooy, N. van der. (2017). The high school scheduling problem: Improving local search;
fairness evaluation.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597031

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597031

N.J. van der Kooy

The High School Scheduling Problem:

Improving Local Search

&

Fairness Evaluation

Master’s thesis

Supervisors:
Dr. F.M. Spieksma

Drs. B.A.F.J. van Kesteren

September 19, 2017

Mathematical Institute, University of Leiden

Contents

Abstract vi

1 Introduction 1
1.1 Overview & contribution . 1

I High School Scheduling Problem 3

2 Problem description 4

3 Problem modelling 4
3.1 Conceptual model . 4
3.2 Technical model . 6
3.3 Problem definition (generic model) 9
3.4 Complexity . 10

4 Current state of algorithms 11
4.1 Hill Climbing . 12
4.2 Genetic algorithms . 12
4.3 Tabu search . 13
4.4 Simulated annealing . 13

II High School Scheduling at Zermelo 14

5 Specification of the model 15
5.1 Hard constraints . 15
5.2 Soft constraints . 16
5.3 Softened hard constraints . 17
5.4 Evaluation . 18

6 Current optimisation algorithms 19

7 Problem definition 20

III Improving schedules using the Crowbar Method 22

8 Introduction 23

9 Description 23

10 Experimental setup 27

iii

11 Proof of concept 27
11.1 Softened hard constraints . 30

12 Efficacy of Crowbar Method 31
12.1 Optimisation of cutoff value . 32
12.2 Use of Crowbar Method on unoptimised schedules 35

13 Results 41

IV Evaluating a schedule 42

14 Introduction 43

15 A fairness evaluation 44
15.1 Conceptually . 44
15.2 Implementation . 44

16 The Statistician 46

17 Experiments 49
17.1 First schedule . 50
17.2 Second schedule . 53
17.3 Overview of results . 55
17.4 Changes in highest evaluator and schedule quality 55

18 Results 58

19 Conclusion 59
19.1 Inspiration for future research . 60

20 Glossary 62

21 Symbols & Notation 63

iv

Abstract

The High School Scheduling Problem is the operational research problem of
finding an optimal timetable for students and teachers in a secondary school.
It is a minimisation problem, in which we need to satisfy as many wishes as
possible while guaranteeing all demands are satisfied.

The High School Scheduling Problem has been studied for over half a century,
owing to the importance of schools having a good schedule and the difficulty of
finding a schedule that adequately satisfies the different constraints.

This thesis studies two new approaches to optimising solutions of a problem
instance. Both of these approaches are based on transformations of the prob-
lem’s search space. First, locally optimal solutions are improved by changing
the penalty associated with soft constraints in specific ways. Secondly, the
schedule’s penalty function itself is improved, aimed at shifting focus from im-
proving the schedule as a whole to making sure individual schedules become
acceptable.

vi

1 Introduction

Like many optimisation problems, the High School Scheduling Problem (HSSP)
is one that is difficult, not because it is hard to understand, but because even the
search space for a ‘small’ problem is so large that it is not (currently) possible
to efficiently1 find a schedule - let alone show it is the best one. Indeed, the
HSSP belongs to the class of NP-complete problems[16], a class of problems for
which (currently) no efficient algorithms exist.

Typically, the creation of a schedule is split into two phases: the construction
of an initial solution, and optimising this solution. In this thesis we focus
on the second phase, and study the optimisation of an already constructed
schedule.

1.1 Overview & contribution

In Part I, the generic HSSP is described in a conceptual and theoretical way.
Also, we analyse the problem’s complexity, and study the types of algorithms
currently in use to optimise solutions to the problem.

In Part II we describe the model of the HSSP we will be studying in this thesis,
and define the problem we will study in parts III and IV.

Since there is no efficient way to find an optimal solution, current techniques
are mainly based on heuristics that take a valid solution as a starting point
from which to develop better solutions. However, these ‘local searches’ have the
drawback of getting stuck in locally optimal solutions.

In Part III, we answer the question

Can we modify a local search algorithm to automatically escape local minima?

We designed a new algorithm, not currently found in existing literature, to
circumvent the drawback of local search. In addition, we study its effectiveness
in practice. We show that the algorithm produces results that can improve
schedules stuck in local minima and that it is not slower than the local search
algorithms already in use. Finally, we study optimisations to the algorithm
itself, with regard to parameters that can influence how fast the algorithm finds
results.

The optimisation of a scheduling problem is done based on a penalty function
describing the quality of the schedule. In real-world problems such as the HSSP,
an additional challenge is determining an objective function that objectively
values a schedule in a way similar to how a person would subjectively value
it.

In Part IV we study this penalty function itself. We answer the question:

1In this thesis, we understand ‘efficient’ to mean ‘in polynomial time relative to the input’.

1

How can the penalty function be chosen so that it better reflects the subjective
quality of a schedule?

We first propose an extended penalty function that introduces a subjective
balance or ‘fairness’ to the schedule. In addition, we develop a second algorithm
that uses this extended penalty combined with methods proposed in Part III to
solve the problem defined in Part II.

2

Part I

High School Scheduling
Problem

3

2 Problem description

In the HSSP we are given a number of lessons, each of which consists of students
who are taught a subject by one or more teachers. The given lessons need to be
fit into a schedule, which usually consists of a fixed number of time slots a day
on a fixed number of days a week. In The Netherlands for example, there are
often 8 or 9 timeslots per day, 5 days a week, with a total of 40 or 45 timeslots
per week. This arrangement of lessons then needs to be placed in a way that is
‘as good as possible’.

How ‘good’ a schedule is, is calculated using different constraints imposed upon
the schedule. These constraints are split into hard constraints and soft con-
straints. Hard constraints are not allowed to be violated, while soft constraints
influence the penalty of the proposed schedule. A schedule with a lower penalty
is seen as the better schedule.

If a constraint is hard or soft is a decision made when developing the mathe-
matical model behind a scheduling problem. This can vary between different
implementations, as the comparison in [16, Table 4.1] shows. The constraints
which are made hard in this thesis are specified in §5.

We assume that deciding which students and teachers are tied to a lesson has
been done in the preceding phase of constructing an initial schedule, and is
thus outside of the scope of this thesis. In addition, we assume we are provided
an initial schedule where all hard constraints are satisfied. Various research
has been done on this phase of timetabling. This has produced methods like
clustering which have proven effective in producing initial solutions to HSSP
instances within an acceptable amount of time[14].

Due to the sheer number of possible schedules,2 even with very liberal estimates
in the ratio of invalid to valid schedules, the search space is too large for any
type of brute force optimisation to be remotely feasible.3

3 Problem modelling

3.1 Conceptual model

Scheduling problems (and more specifically HSSPs) are not only complex (see
§3.4), but also hard to define generically. This is due to how the definition of the

2A typically sized Dutch secondary school of between 1000 and 2000 students might have
around 1500−2500 lessons a week which needs to planned in 40 timeslots. A naive calculation
gives us that there are over 1.32 · 103204 ways to place 2000 lessons into 40 timeslots. Picking
the best placement randomly, assuming there is one ‘best’ placement, is less likely than that
in a school of 1250 students every student has their birthday on January 1st.

3In chess, which has currently not been solved, there are around 10120 possible game
variations - a factor 103084 less than in our problem.

4

problem changes from country to country and even within countries, with local
requirements sometimes dramatically changing the constraints within the model.
Work exists in formulating a generic model that could be used internationally.
An example of this is the XHSTT format [6], and some research has been done
into optimising these kinds of international formats [5].

In this model, we assume that the provided lessons are fixed with regard to the
teachers and students assigned to these lessons. In other words, we assume that
we do not try to optimise schedules by changing which students are grouped
together in a class. Allowing this would mean we create many more variables
in our model, making the problem more complex.

Note that fixing lesson assignments is a reasonable decision to make: in real-life
examples, this is often done when changes need to be made to the schedule
halfway through a school year and we do not wish to break apart classes. In
addition, a lot of optimisation with regard to class assignment is usually done
prior to constructing the first schedule.

We also assume that assigning classes to rooms is done after the optimisation
phase and thus not something we need to take into account4.

The resulting structure of a lesson is shown in Figure 1.

Figure 1: A visual representation of the structure of a lesson
4As will be explained in §5.2, in the problems studied in this thesis we do make use of soft

constraints in the optimisation phase which prevent problems in the room assignment phase.

5

3.2 Technical model

3.2.1 Assumptions

There are several assumptions to be made on scheduling in Dutch secondary
schools in general. In our model, the following will be taken into account:

1. While students are assumed to be available during every timeslot, teachers
have a lot of freedom in determining which hours they prefer to teach;

2. A schedule is assumed to have a period of a week (i.e., a lesson which occurs
during the third time slot on a Monday always occurs on the third time
slot on a Monday). In practice, some weeks will have differing schedules
due to irregular events or exams taking place, but we disregard these cases.

3.2.2 Definitions

We base our model on a number of interrelated sets, as defined in Table 1. Note
that we do not define our model as an explicit optimisation problem considering
every possible constraint. This has been attempted in the literature ([8], [10]),
but formulations considering realistic constraints turn out to be impractical for
use in heuristic solvers.

Note that in this section and the rest of this thesis, we make use of the concept
of a multiset. A multiset is a generalisation of a set, in that it can contain the
same element multiple times. We use the notation {{a, a, b}}

6

S The set of all students

V

The set of all subjects. Note that in this model, a subject
is implicitly tied to a school year and a level.
Thus, German given to 4VWO is a different subject
than German given to 5HAVO.a

T The set of all teachers.

G
The set of all subject groups, which is a three-tuple of
a subject with at least one teacher or studentb. Thus,
G = {(S, v,T)|S ⊆ S, v ∈ V ,T ⊆ T , S ∪ T 6= ∅}.

M The set of all time slots.

L
The set of lessons, which is a multiset of subject groups.
A subject group g ∈ G exists in L exactly once for each
time it is given during the week.

a The Dutch secondary school system has levels aimed at different levels of
higher education: the prevocational VMBO which lasts four years, general
secondary education HAVO lasting five years, and pre-university education
VWO which lasts six years.

b It is possible to have a subject group which has either no students (like a
meeting) or no teachers (like a self-study session). The first situation in
particular is something that often occurs in practice.

Table 1: Definitions of sets used

Definition 3.1 (Schedule). A schedule is the multiset5 of lessons L whereby
each lesson l ∈ L is assigned a timeslot ml ∈ M . Intuitively, this means we
take the lessons from L, and create a schedule by scheduling these lessons into
a timeslot.

Example 3.2. For a set G = {g1, g2, g3}, we might have

L = {{g1, g1, g2, g2, g2, g2, g3}}.

We could then have

T = {{(g1, a), (g1, c), (g2, a), (g2, b), (g2, c), (g2, d), (g3, c)}}

for a, b, c, d ∈M .

Note that, according to Definition 3.1, no constraints on the schedule are taken
into account. Two lessons of the same subject group could in theory even be
placed simultaneously. In practice, constraints usually prohibit this.

Often we do not study the schedule as a whole, but instead consider a restricted
schedule.

Definition 3.3 (Restricted schedule). A restricted schedule is a subset of a
schedule T .

5A (sub)set based on a multiset is again a multiset

7

Restricted schedules are used to, for example, display the schedules for spe-
cific students, teachers and rooms. The schedule for student s ∈ S would be
{{((S, v,T),m) ∈ T |s ∈ S}}: all lessons where the set of students contains s.
All other entity specific schedules can be defined in a similar way.

Definition 3.4. For an a ∈ A, where A ∈ {S, T ,G,M}, define T A(a) as the
restricted schedule T where lessons contain element a ∈ A.

Note that the above definition does not include defining restricted schedules
based on subjects v ∈ V . Although the definition could be extended easily to
include it, such a restriction of a schedule is not usually of interest and is not
used in this thesis either.

Example 3.5. For g ∈ G, T G(g) is the restricted schedule of T containing
g ∈ G: the lessons for subject group g.

Example 3.6. For t ∈ T , T T (t) is the restricted schedule of T containing t ∈ T :
the lessons taught by teacher t.

As we will see in coming sections, a schedule is tied to constraints, where the
hard constraints make a schedule invalid if they are violated. We thus define a
function to check the validity of a (restricted) schedule.

Definition 3.7. Let VALID : P(L×M)→ {0, 1}. VALID is the validity function
of a (restricted) schedule T ∈ P(L×M), whereby VALID(T) = 1 means we have a
valid (restricted) schedule (no hard constraints are broken), while VALID(T) = 0
means it is invalid.

With no constraints imposed, we have VALID(T) = 1 for all T ∈ P(L×M). The
constraints introduced in later sections give us cases where VALID(T) = 0.

3.2.3 Hard constraints

Hard constraints are those constraints that must be satisfied by a schedule to
be a valid solution, as also defined by Definition 3.7. However, there are no
universal hard constraints which are present in every model.6 We thus do not
define any hard constraints here. In the model we will study in this thesis
there are several hard constraints which will be imposed. These constraints are
explained in §5.

3.2.4 Evaluation & Soft constraints

In most HSSPs, only (some subset of) the requirements are modelled as hard
constraints. However, especially as problems get larger, there are usually prefer-
ences that do not change the validity of the schedule, but do make one schedule

6Even constraints such as every student only being scheduled into one lesson at a time are
not seen as a hard constraint in every HSSP model.

8

better than the other. These preferences are known as soft constraints. Exam-
ples of common soft constraints are:

� Minimising the amount of idle time7 in teacher and student schedules,
especially when it leads to gaps;

� The preference of teachers for a day off;

� The distribution of a student’s lessons (making sure that there is roughly
the same amount of lessons each day for example).

Assuming a schedule is VALID by Definition 3.7, we still need a way to compare
these schedules based on their soft constraints. This is done using a penalty
function, which determines the quality of a proposed schedule based on the set
C of soft constraints.

The exact implementation of this function is generally quite specific to the
choices made in the algorithms used and the soft constraints implemented (an
example is shown in [11]). However, the general approach is to define some
penalty for each constraint violated, and taking the sum of each of these penal-
ties. Then, the schedule with the lowest overall penalty is taken to be the best
schedule.

Throughout this thesis, we will be using C as the notation for the set of all
possible soft constraints.

Definition 3.8. Φ : P(L × M) × P(C) → R≥0 is the penalty function of a
schedule T ∈ P(L ×M) subject to soft constraints C ⊆ C. Note that T must
be a schedule as described by Definition 3.1.

Note that this function does not have any requirement like linearity, and as we
will see it indeed often does not have these characteristics.

The details of how the model used in this thesis handles soft constraints in the
penalty function is discussed in Part II (§5.2 and §5.4).

3.3 Problem definition (generic model)

Given the notation and definitions introduced in §3.2, we can now define the
problem we are trying to solve as a minimisation problem.

Given L, C,M
minimise Φ(T , C)
subject to VALID(T) = 1,

(l,ml) ∈ T l ∈ L,m ∈M.

In this definition, the soft constraints to which the schedule is subject are in-
cluded by the minimisation of Φ(T , C) while the hard constraints are taken care

7A timeslot where no lesson is planned.

9

of by the requirement that VALID(T) = 1. The final requirement in the minimi-
sation problem is a reflection of Definition 3.1 which requires every lesson in L
to be included in the timetable.

Recall that we assume to be given an initial schedule T such that VALID(T) = 1,
so finding an initial valid solution is not a part of our problem.

3.4 Complexity

In [16], different sub-problems of the HSSP is shown to be NP-complete. Each
of these sub-problems are shown to be a special case of the HSSP, implying that
the HSSP itself is NP-complete. These sub-problems include restrictions placed
on teacher availability [16, §3.4], freedom of choice in a student’s curriculum [16,
§3.5], educational requirements (like distribution of subjects over separate days)
[16, §3.6], room assignment given room types and lessons scheduled in blocks
[16, §3.7] and time slot assignments taking into account blocks and teacher
availability [16, §3.8].

All of these difficulties are generally ones which are encountered in the Dutch
HSSP and in particular in the problem instance discussed in this thesis. We can
thus speak of the HSSP in general as being NP-complete.

In general, the HSSP is a problem which is not linear. Examples of nonlinear
constraints are given in §3.4.1.

Unlike linear programming problems, where the Simplex algorithm can in the
average case solve LP problems in polynomial time, we do not (yet) know of an
algorithm that can solve the HSSP efficiently. Since the problem is in essence
based on the placement of lessons into discrete time slots, the problem can be
seen as an (Nonlinear) Integer Programming Problem, for which currently no
general polynomial algorithms exist.

Any method of finding good solutions to the HSSP is currently based on heuris-
tic approaches, and provided P 6= NP [7] any algorithm which guarantees to
calculate the best solution brings with it the drawback of not being polynomial-
time executable. In practice, this means that for any real-life problem it is not
practically possible to know if a valid solution is the best possible with regard
to its penalty, and given the extremely large search space, it is in fact likely that
better solutions could be found given more computational time.

3.4.1 Nonlinearity of constraints

As described, the HSSP is a problem with a large amount of constraints. The
types of constraints we are dealing with are of course very important. For ex-
ample, if they were all linear we could see the problem as a Linear Programming
Problem, into which a lot of research has already been done. The constraints

10

used in a real world model are rarely linear. What follows are a few examples
based on the specific model used in Part II to illustrate this.

Example 3.9 (Dependencies between lessons). Often, the penalty of placing
a lesson in a certain timeslot will depend on other lessons which have already
been placed.

For instance, we might have the situation where a subject is taught for two
hours a week, and the preference is for these two hours to be scheduled in a
block (which often is the case for practical subjects like Physical Education or
Music). Thus, moving a lesson from one time slot to another will have a different
effect on the quality of the schedule depending on the placement of the other
lessons of that subject for a particular group.

Another example of this is that for instance we might want at most one lesson a
week during the last time slot. Thus, if a lesson being placed in a certain timeslot
results in a penalty also depends on other lessons which might be placed in this
timeslot. In addition, the same constraint might then cause a penalty for one
student while not doing so for another student.

Example 3.10 (Severity of multiple constraint violations). It is often the case
that the amount of times a constraint is violated does not linearly increase the
penalty on the schedule. For example, it might be the case that four gaps per
week in someone’s schedule is acceptable, more than four but less than seven
brings about a certain penalty per additional gap, while any gap above that
increases the penalty dramatically.

4 Current state of algorithms

As alluded to in §3.4, the HSSP is a problem where current solving methods are
based on heuristic approaches and search algorithms based on optimisations.
Modelling the problem as a (Mixed) Integer Programming Problem has been
attempted, but this has mostly been unsuccessful due to the large amount of
variables and constraints any realistic example has, and heuristic methods have
proven themselves to be more effective in these cases[2].

Ever since research into automated timetabling began around 1963[13], numer-
ous different approaches into finding an optimal solution have been proposed and
researched. The EURO Working Group on Automated Timetabling (WATT)
maintains a (non-exhaustive) list of research on educational timetabling since
around 1996, with multiple search algorithms being proposed[9]. In addition,
multiple surveys existing on the state of automated timetabling research ([12],
[13]). These surveys show that numerous different methods have been tried over
the years, most notably Tabu search, evolutionary algorithms, simulated anneal-
ing and several hybrid approaches that combine these mentioned methods with
more local approaches like the Hill Climbing algorithm.

11

In the following subsections, these different algorithms are globally described,
along with their experienced advantages and disadvantages when used to solve
HSSPs.

4.1 Hill Climbing

The Hill Climbing algorithm is based on improving a solution by performing a
single change (in the case of the HSSP: moving a single lesson), and accepting
the change if the schedule remains valid and the quality of the schedule improves.
Note that in real-life situations, a literal ‘single change’ often results in an invalid
schedule due to broken hard constraints. §6 discusses how this is handled in the
problem studied.

This type of algorithm is one that is extremely effective in finding an optimal
solution in its own neighbourhood: a local minimum. For a problem like the
HSSP, the Hill Climbing algorithm has the advantage of being relatively fast.
However, the obvious disadvantage is that in a high dimensional problem with
as many initial configurations as the HSSP, it is extremely unlikely that a locally
optimal solution we find, turns out to be a global optimum. In fact, in practice
it turns out that optima found by a Hill Climbing algorithm can almost always
be improved by further calculations, or by an eventual new iteration of the Hill
Climbing algorithm by restarting in a new initial configuration. In the literature,
the algorithm is thus almost exclusively used in combination with other search
methods[12].

4.2 Genetic algorithms

Genetic or evolutionary algorithms are one of the most popular ways to solve
and optimise an HSSP in certain situations. These algorithms work with a pop-
ulation of solutions, and create new solutions from the best quality candidates
from the original population. By crossing two good solutions, the aim is to cre-
ate offspring that is of even better quality, and random mutations introduced
into the new solutions are used to increase the diversity and to simultaneously
try to leave local optima (which is the problem encountered in the implementa-
tion of the Hill Climbing algorithms). Thus, as the name suggests, the design
of the algorithm is based on the biological evolutionary model.

One large drawback of evolutionary approaches is the significant runtime needed
to find solutions[3]. While they work from a theoretical standpoint they are often
not suitable to find feasible solutions to realistically sized problems.

A second problem is that they work best in situations where all constraints are
modelled as ‘soft’, and all suggested schedules are thus VALID. When this is not
the case, the crossing of two solutions often results in an invalid schedule, making
the method impractical in situations with a lot of hard constraints.

12

4.3 Tabu search

Like genetic algorithms, Tabu search is a very popular search method within
HSSPs. As [12, table 4] shows, this is a method that is used both on its own
and in combination with other methods in a hybrid search algorithm, and it has
additionally been the subject of several comparative studies. Tabu search is a
variation of the Hill Climbing algorithm, which attempts to solve the problem
of getting stuck in local optimal solutions by allowing solutions to get worse un-
der certain conditions and adding the previous solution to the so-called ‘Tabu
list’ in order to prevent the algorithm from returning to that solution. Even
though Tabu search enables a potential solution to get out of a local minimum,
in practise approaches using Tabu search also suffer from exceedingly high com-
putation times[1]. The reason for this is that the search space in even ‘simple’
cases is so large, that the number of banned positions needed to force a solution
out of a local optimum is impractically large.

4.4 Simulated annealing

One last search method often used in solving the HSSP is known as simulated
annealing. Inspired by annealing in metallurgy, simulated annealing is a prob-
abilistic process that is used to estimate the global optimum of some objective
function. The algorithm works, like Hill Climbing and Tabu Search, by finding
a neighbour of the current solution. When the proposed solution is better, it is
accepted, but a solution that is worse is accepted based on some probability that
gets lower as the difference in quality gets higher and — more importantly — as
the number of completed iterations increases. In other words, as the algorithm
progresses, the amount that a schedule is allowed to get worse decreases. By
initially allowing large changes in the schedule and gradually restricting this,
the method is ideal for estimating a global optimum in a large search space.
Although this algorithm is not used or studied in this thesis, research does exist
on the use of this method([2], [4], [17]).

13

Part II

High School Scheduling at
Zermelo

14

In this thesis, instead of studying the most general model as described in Part I,
we work on the model and constraints used at Zermelo Roostermakers, a Dutch
company specialising in software for the Dutch secondary school market. As
such, their model is tailored specifically to the peculiarities of the Dutch sec-
ondary school system, which brings with it constraints and specifications, when
compared to the generic model.

In this part, the specification of the model studied will be described and current
approaches to schedule optimisation are discussed.

5 Specification of the model

The model described in Part I was a generic one, and did not yet contain the
details of the problem we will actually be studying. The following chapter makes
the model of the HSSP more specific and constrained. After this chapter, any
references to the HSSP will be assumed to respect both the constraints defined
in Part I as well as those defined in this chapter.

5.1 Hard constraints

Recall from §3.2.3 that in the generic model no hard constraints are enforced. In
practise however, there are many constraints which could be modelled as being
‘hard’.

In this case, the decision was made to only model the possibility of a teacher or
student physically fulfilling his schedule as a hard constraint. In other words, the
only schedules explicitly disallowed are those where a teacher and/or a student
is expected to be at two lessons simultaneously.

Constraint 5.1 (No overlapping of lessons for teachers or students). For every
teacher t ∈ T , we demand that at any given moment, personal schedule T T (t)
of teacher t must contain no more than one lesson at a time. In other words,
for any m ∈M , we must have that

|{{(g′,m′) ∈ T T (t)|m′ = m}}| ≤ 1.

In the same way, for any student s ∈ S, we must have

|{{(g′,m′) ∈ T S(s)|m′ = m}}| ≤ 1

for all m ∈M . If not, the schedule is invalid.

Notice that this constraint also ensures that the same subject group cannot have
two lessons planned at the same moment: any schedule such that g ∈ G exist in
the schedule more than once during timeslot m ∈M cannot be valid, since then
the students and teachers tied to g (of which there is at least one according to

15

Table 1) would have to attend a lesson of subject group g multiple times at the
same time.

5.2 Soft constraints

Unlike most models discussed in the literature, the model we will be study-
ing allows for an enormous amount of different soft constraints. Moreover,
it allows the scheduler to define the weight of these different constraints and
whether to use them at all. These soft constraints are split into four distinct
categories:

1. Educational. These are constraints to do with how subject groups are
scheduled. For example, preference can be given to subject being taught
in blocks or not, to the spread of the same subject group being taught
over the week, and to how the lessons are divided over the day (whether
they are taught in the morning or in the afternoon for example).

2. Teachers. These involve constraints based on teacher availability and their
preferences for days off. Other constraints commonly found in this cat-
egory are limiting the amount of gaps the teacher has in his schedule or
the variation between his busiest and least busy day.

3. Students. For students, constraints commonly used include limiting the
number of gaps in the schedule (especially for lower grades), and limiting
the variation between the length of days (to make sure one day does not
contain significantly more lessons than another day).

4. “Counting groups”. As described in §1, the assigning of lessons to rooms
happens as a separate process after the scheduling of lessons. However,
this means that care has to be taken that lessons requiring similar types
of classroom will not cause conflicts in that process. This is where the
concept of “Counting groups” (Dutch: telgroepen) is used. A common
example is that all subjects for Physical Education are grouped into a
counting group, and this will penalise the schedule if more of these lessons
are scheduled simultaneously than the number of available gymnasia.

Next to these categories of constraints, there are two other categories that can
be taken into account. The first is placements. These have to do with con-
straints like the number of students assigned to subject groups and constraints
ensuring that classes do not get too large or too small. However, in this case
we do not take these constraints into account, since we do not allow students to
be placed into different subject groups. The sixth and last category relates to
classrooms. For example, a teacher can indicate his preference for classrooms,
or a penalty can be placed on a change in classrooms during a block. How-
ever, these constraints are also out of scope for this research, since we are not
concerned with placement of lessons in classrooms.

16

Note that the mentioned examples are non-exhaustive, and almost all possible
preferences can be modelled as a soft constraint.

Definition 5.2. For every category described above, we use an evaluator to
refer to the elements of the category to which we apply the soft constraint.

Example 5.3. An individual teacher is an evaluator of the Teachers category.

Example 5.4. The set of all Physical Education lessons is an evaluator of the
Counting Groups category.

Definition 5.5. A soft constraint is a rule that can be applied to a specific
evaluator in a schedule, whereby the total penalisation of a schedule increases
if the rule is broken.

5.3 Softened hard constraints

As mentioned in §5.1, the model studied uses only the bare minimum of hard
constraints. In practice of course, before a schedule is accepted by a school,
there are many constraints that must absolutely be satisfied, and in this sense
are hard constraints. An example of this is that if a teacher is absolutely not
available in a certain timeslot, there cannot exist any lessons taught by this
teacher during this particular timeslot. However, experience at Zermelo has
taught it is most effective to have as little hard constraints as possible.

This means that in this model we have soft constraints that are in fact demands
made on a schedule, and as such a schedule violating these constraints cannot
be accepted. These types of constraints are what we refer to as softened hard
constraints.

The obvious question is what the reason behind this is. This is due to the fact
that in practise it turns out that restricting too many options in the schedule
makes it a lot harder to create a VALID schedule, and it turns out to often
be easier to optimise a schedule which violates some of these “softened hard
constraints” than finding a valid schedule from scratch. In addition, local opti-
misation, once a valid schedule has been found, is impeded when working with
too many hard constraints: with few hard constraints it remains possible to
find a ‘path’ between solutions, which are reached by small incremental changes
to the current schedule. On the other hand, with a lot of hard constraints, it
becomes much harder to find VALID solutions in the neighbourhood of a given
schedule. Analysing the effectiveness of this approach is outside the scope of
this thesis.

Another motivation is that even ‘demands’ sometimes have flexibility in them.
If, for example, a teacher is not available at a certain time but a schedule with
this softened hard constraint is consistently much better in terms of its penalty,
then the scheduler could try and convince the teacher to switch around his day

17

off — a practical solution that would never have been considered if the schedule
had never been shown.

In practise, the softening of hard constraints means that the penalty associated
with violating one of these constraints is made significantly higher than the
penalty for violating any of the actual soft constraints from §5.2. In this model
for example, violated demands (a teacher teaching when he is not available, or a
student in his first two years having to stay in school until late) cause a penalty
of 1 000 000 being added to the penalty of the schedule, while most ‘normal’ soft
constraints usually do not have penalties above 100 000.

5.4 Evaluation

As described in §3.2.4, the penalty of a schedule is the sum of the different
penalties incurred by soft constraints being violated. These penalties are subdi-
vided under different sections: penalties from the educational category are tied
to subject groups, from the teachers category to teachers, from the students
category to students and from the counting groups category to the counting
groups. An example of parts of the overall penalty being assigned to teachers
is shown in Figure 2.

Definition 5.6. We define several subsets of C, namely the constraints which
are tied to a single evaluator (as defined in Definition 5.2) and create a penalty
in one of the categories described in §5.2. Note that we introduce the notation
of C as the set of counting groups.

� CE(g) for g ∈ G apply to subject group g and contribute to a penalty in
the Educational category.

� CT (t) for t ∈ T apply to teacher t and contribute to a penalty in the
Teachers category.

� CS(s) for s ∈ S apply to student s and contribute to a penalty in the
Students category.

� CC(c) for c ∈ C apply to counting group c and contribute to a penalty in
the Counting Groups category.

We would similarly define CP (g) for placements and CR(r) for rooms, but we
do not study these penalties in this thesis.

Note that we use the notation C(a) to refer to all soft constraints that apply to
some evaluator a, where a ∈ A with A ∈ {G,T, S,C}. The category the soft
constraints apply to (educational, students, teachers or counting groups) can be
determined from the set that a comes from.

18

In other words,

Φ(T , C) =
∑
g∈G

Φ(T , CE(g)) +
∑
t∈T

Φ(T , CT (t))

+
∑
s∈S

Φ(T , CS(s)) +
∑
c∈C

Φ(T , CC(c)).

Note that since a soft constraint is tied to only a single evaluator in a single
category, this sum of penalties is indeed equal to the penalty of the schedule
taking into account all constraints.

Figure 2: An example of penalty divided amongst teachers

This separating of the penalty into chunks instead of taking it all together is of
vital importance to the approach taken in this thesis, which will be expanded
upon in §9.

6 Current optimisation algorithms

Currently, practically all algorithms employed to optimise this specific HSSP
are based on some variation of the Hill Climbing algorithm as described in
§4.1. In the optimisation phase, a (partially) placed schedule is taken, and a
new valid schedule is created by taking a single lesson l ∈ T and trying to
schedule it in a different time slot. Then, any lesson already placed here that
would make the schedule invalid (by containing a teacher or student who is also
involved with lesson l) also gets placed in a new time slot. This happens either

19

through a process of ‘switching’ (where it is placed in the timeslot that l came
from) or through a process called ‘juggling’ where the lesson could be placed
in any timeslot. From there, the same process is recursively applied with the
conflicting lessons, until we have a new schedule. Even though more than one
lesson was potentially ‘juggled’ in order to move lesson l, the new schedule can
be seen as being a single change (of l to its new position) away from the original
schedule.

After calculating the penalty of the new schedule, the schedule is accepted if it
is not worse8 than the original schedule.

As a result, practically all algorithms used suffer from the same drawback as the
Hill Climbing algorithm does, which is that they all eventually get stuck in local
optima and none of them are designed with options to get out of them.9

The research attempted in Part III is focused on improving this aspect of sched-
ule optimisation.

7 Problem definition

The drawback of the Hill Climbing algorithm getting stuck in a local minimum,
described in §4.1, is one which is also regularly encountered in practice at Zer-
melo. Usually, this is seen by schedulers as the point beyond which the schedule
can no longer improve. Of course, the local minimum the schedule has converged
to often is not the global minimum.

In practice, this is not always a problem. As is shown in §3.4, finding the
global optimal solution is an NP-complete problem, and no heuristic method
guarantees that a solution which has been found is in fact the optimal solution.
However, as long as the schedule is good enough for the teachers and students
who need to work with it, it is not important whether the used solution is in
fact optimal.

In §3.3, the concept of a VALID schedule was introduced: a schedule where every
hard constraint is satisfied. Later, in §5.3, the concept of ‘softened hard con-
straints’ was introduced: constraints modelled as soft constraints even though
in practice they cannot be violated. With this in mind, we observe the con-
tradiction between what we want (a schedule where both hard and softened
hard constraints are not violated) and the definition given in §3.3 which only
requires no broken hard constraints. For this thesis, we thus need to extend our
definition and introduce the concept of an acceptable schedule.

8We explicitly accept the schedule if it is not worse as opposed to better, to allow the
algorithm to consider different schedules resulting in equal penalties in the hope that one of
these schedules can be altered to allow a real improvement.

9There are a few algorithms which have the option built in to accept a worsened solution,
but no implementation actually makes consistent use of this option to escape local minima.

20

Definition 7.1. Let ACCEPTABLE : P(L × M) → {0, 1}. ACCEPTABLE is the
acceptability function of a schedule T ∈ P(L×M), whereby ACCEPTABLE(T) = 1
means the schedule is VALID and no evaluator has a penalty above 1 000 000. In
other words:

ACCEPTABLE(T)⇔ VALID(T) ∧ ∀ evaluator a : Φ(T , C(a)) < 1 000 000.

Recall from §5.3 that softened hard constraints cause a penalty of 1 000 000
(or higher) to be added to the schedule. For a schedule to be ACCEPTABLE,
we automatically require no softened hard constraints to be violated. Note
that in theory it is also possible for a schedule to not be ACCEPTABLE, even if
no softened hard constraints are violated, if the sum of the penalties caused
by violated ’normal’ soft constraints exceeds 1 000 000. However, in practice
it turns out that nearly every schedule becomes ACCEPTABLE once no softened
hard constraints are broken.

We can thus extend the problem definition given in §3.3 on page 9 as follows:

Given L, C,M
minimise Φ(T , C)
subject to ACCEPTABLE(T) = 1,

(l,ml) ∈ T l ∈ L,m ∈M.

We retain the demand that the schedule is VALID through acceptability, but add
the demand that no individual evaluator is assigned too high a penalty.

Notice that the minimisation of the total penalty Φ(T , C) is secondary to the
schedule being acceptable: we want the penalty of a schedule to be as low as
possible, but in any case it needs to be acceptable.

21

Part III

Improving schedules using the
Crowbar Method

22

8 Introduction

A problem that schedulers often face is that a schedule returned to them by one
of the optimisation algorithms is not acceptable, due to softened hard constraints
being violated. This is due to current optimisation algorithms focussing on
minimising penalty Φ, end not being designed for the ultimate goal of creating
an ACCEPTABLE schedule.

However, as a result of local search being used, this unacceptable schedule will
often be one which is in a local minimum. Subsequently, any changes the Hill
Climbing algorithm makes do not lead to improvement and consequently the
schedule no longer improves.

One trick some schedulers use to solve this problem is a method known as the
Crowbar Method (Dutch: breekijzermethode). This is a method in which a
(softened hard) constraint c ∈ C that is broken is temporarily given a higher
penalty artificially, by scaling the evaluator to which this constraint is tied. In
this new ‘scaled’ situation the standard optimisation algorithms are run. The
goal of this approach is to find a schedule in which the ‘unscaled’ quality is
better than the original.

In this section, we study the automated scaling of evaluators, in such a way that
we are able to escape local minima and create an ACCEPTABLE schedule in the
process. This leads us to the question of this part of our thesis:

Can we modify a local search algorithm to automatically escape local minima?

As an extension to this question, we also study the effect on the acceptability
of a schedule optimised under this algorithm.

9 Description

First, we describe scaling evaluators. To this end, we define a list of scalars, one
for each evaluator, which in most cases will be 1.

Definition 9.1. For every evaluator a, we define SCALE as the value indicating
how to scale the penalty incurred by evaluator a. This value is equal to 1, unless
otherwise stated.

To use these scalars we introduce penalty function Φ, calculating the penalty
of a schedule while taking the scalars into account. In other words, Φ(T , C) is

23

calculated as ∑
g∈G

Φ(T , CE(g)) +
∑
t∈T

Φ(T , CT (t))

+
∑
s∈S

Φ(T , CS(s)) +
∑
c∈C

Φ(T , CC(c))

=∑
g∈G

SCALE(g)Φ(T , CE(g)) +
∑
t∈T

SCALE(t)Φ(T , CT (t))

+
∑
s∈S

SCALE(s)Φ(T , CS(s)) +
∑
c∈C

SCALE(c)Φ(T , CC(c))

In this section, we discuss the algorithm used to implement the Crowbar Method.
This algorithm is designed to select the evaluator that the Crowbar Method will
study. The aim is to choose an evaluator on which a scaling will have the highest
impact.

Algorithm 1 The Crowbar Method

1: Given: schedule T , Cutoff value m, Max scale s, Number of seconds t to
run optimiser algorithm

2: Global variable PENALTIES

3: BestSchedule← T
4: OriginalSchedule← T
5: e← ChooseEvaluator(E)
6: Complete← FALSE

7: while Complete 6= TRUE do
8: PrePenalty← Φ(T , C)
9: T ←RunOptimiser(T , t)

10: PostPenalty← Φ(T , C)
11: if PostPenalty < PrePenalty then
12: BestSchedule← T
13: Complete← CheckIfComplete
14: e← ChooseEvaluator(E)
15: else
16: SCALE(e)← min(SCALE(e) + 1, s)
17: end if
18: if User requested algorithm to end then
19: Complete← TRUE

20: end if
21: end while
22: return T

This algorithm itself uses a few other algorithms, including ChooseEvaluator,

24

CheckIfComplete, RunOptimiser and MIN . The implementations used for
these algorithms and all the procedures they use in turn, are shown below.

The implementation for RunOptimiser boils down to running the Hill Climbing
algorithm on a given schedule for a given number of seconds s, while MIN is
simply choosing the smaller out of two values.

For the ChooseEvaluator method, we use the penalty placed on a given eval-
uator to calculate a probability with which a certain evaluator will be chosen
in the next round. This probability equals the ratio between the penalty of the
evaluator and the sum of the penalties of every evaluator above cutoff value s
(this automatically means the sum of these probabilities equals 1).

25

23: procedure Initialise # Produce evaluators sorted by their penalty
24: E ← The set of evaluators
25: for every e ∈ E do
26: PENALTIES[e]← Φ(T , C(e))
27: end for
28: SORT(E) so that it is descending by the PENALTIES[e]
29: return E
30: end procedure
31:

32: procedure ChooseEvaluator(E)
33: E ← Initialise
34: PenaltySum← 0
35: CumulProb← []
36: CumulProbTot← 0
37: for every e ∈ E such that PENALTIES[e] ≥ m do
38: PenaltySum← PenaltySum + PENALTIES[e]
39: end for
40: for every e ∈ E such that PENALTIES[e] ≥ m do

41: CumulProb[e]← CumulProbTot + PENALTIES[e]
PenaltySum

42: CumulProbTot← CumulProbTot + PENALTIES[e]
PenaltySum

43: end for
44: r ← Random number from uniform distribution between 0 and 1
45: for every e ∈ E such that PENALTIES[e] ≥ m do
46: if r ≤ CumulProb[e] then
47: return e
48: end if
49: end for
50: end procedure
51:

52: procedure CheckIfComplete
53: if NoOfCrowbars >= MaxNoOfCrowbars then
54: return TRUE

55: end if
56: temp← Initialise
57: if Φ(FIRST(temp)) < m then
58: return TRUE

59: end if
60: return FALSE

61: end procedure

26

10 Experimental setup

To run simulations in which we supplement existing algorithms with the Crow-
bar Method, we make use of a grid-computing solution internally known as the
‘Arena’. The Arena is a coordinated system which hands out tasks to networked
computers known as Gladiators, prescribing an algorithm and a runtime each
time. When the task is complete the Gladiator sends the result back to the
Arena, at which time the Arena hands out a new task. By delegating the task
of performing calculations on the schedule to multiple Gladiators, the amount
of CPU-time spent on the problem can be increased by several orders of mag-
nitude without requiring more physical time, while the Arena itself only works
on coordinating tasks performed by a Gladiator.

In order to test the performance of the Crowbar Method, the Arena was modified
to be able to send a Gladiator the instruction to perform the Crowbar algorithm,
and to also be able to accept changes that worsen the unscaled value Φ whenever
a Gladiator introduces new scaling factors.

This is of course subject to numerous parameters. These parameters include:

� the frequency at which the Crowbar Method is called;

� to what limit a deterioration of Φ is accepted by the Arena;

� the frequency at which the values of SCALE are set to 1 in order to ‘reset’
our search space;

� the parameters of the Crowbar algorithm itself.

The values chosen for these parameters could potentially have a significant im-
pact on the results obtained by the Arena, both in the value of the result and
the time it takes the algorithm to reach it.

Inherent to the HSSP is that optimising schedules is extremely time consuming,
due to the huge search space and the fact that we are using heuristics. This
means that the time (both CPU and real-world) it takes to measure the signif-
icance of a change in parameters is also extremely large, at least with respect
to their long-term effect on the schedule. However, looking at the first results
obtained in §11 we see (statistically) significant differences between using the
Crowbar Method and not doing so. This will be analysed further in §12.

11 Proof of concept

To test the initial feasibility of the method discussed, we attempted to optimise
the schedule of the upper years (Dutch: ‘bovenbouw’) of a Dutch secondary
school. For schedulers, this part of the schedule is often more complex than the
schedule for the lower years, because of the freedom students have in choosing

27

their own curriculum. This means that the students in a class almost always
vary per subject, so switching two lessons in a schedule is often not directly
possible. This, as opposed to classes in the lower years, where students mostly
follow the same subjects and usually follow all these subjects with the same
classmates. This means that, providing teacher availability is not a problem,
two classes with the same students can be switched easily.

Important to note on the tested schedule is that the unmodified Arena, which
does not use the Crowbar algorithm, was not able to find any improvement in
the schedule after running for over 3000 CPU hours (around 3 days in actual
time in this instance). This is a time period after which a scheduler would
have most likely already made the assumption that the schedule ‘cannot be
optimised further’. It is too long a time period to expect someone to wait for
an improvement that might never come, due to the current schedule truly being
trapped in a local minimum.

In the modified Arena, the parameters described in Algorithm 1 and in §10 were
chosen on basis of a ‘best guess’. This entails the following:

� When handing out the task, there is an (h + 1)% probability that the
Crowbar Method is chosen. Here, h is the number of CPU hours which
have passed since the last improvement. In addition, we make sure only
one instance of the Crowbar algorithm is running at a time;

� Every time the Crowbar Method returns with a new value, the maximum
percentage that Φ is allowed to deteriorate (and thus increase) is some
value 0 ≤ x ≤ 15 (picked randomly each time).

� The probability of setting all scalings (crowbars) back to 1 (∀c ∈ C,
SCALE(c) = 1) is 0.5%.

� The cutoff value is picked randomly between 0 and 1 000 000, the maximum
scale is set at 10, and the maximum number of scalings is a randomly
picked number 1 ≤ x ≤ 3.

With these described parameters, the Arena was run four times, using between
40 and 60 Gladiators at each moment depending on how many happened to be
available. Note that at this stage the main goal was to see whether improving
the schedule was possible at all, and the focus was less on obtaining an identical
setup with regard to running time and number of Gladiators for each run. The
amount of CPU time spent on each run consequently fluctuates. The progress
of these four runs can be seen in Figures 3 and 4, of which the results are
summarised in Table 2.

28

Figure 3: The penalty development of the four optimisation runs over time

Figure 3 shows that during all four runs, at least some improvement on the
schedule was obtained. This already shows us an improvement over the situation
where the Arena did not use the Crowbar algorithm as one of its optimisation
algorithms. In addition, it can be noted that most improvements are grouped
relatively closely together, separated by large periods of no change. This can be
seen more clearly in Figure 4 below, where the vertical axis has been constrained
in order to better show the improvements to the schedule.

Figure 4: Same image as above, with a constrained vertical axis

29

The above figure shows a notable pattern, namely that in most cases an im-
provement is followed by more. Even if it was preceded by hundreds of hours of
stagnation, a single (sometimes very small) improvement is in almost all cases
followed by more improvements. Additionally, in this specific case, we find that
there were improvements that were achieved extremely quickly when incorpo-
rating the Crowbar algorithm (on average in just over 7 CPU hours or under
15 ‘real’ minutes using 40 to 60 Gladiators, see also the data in Table 2) that
were not found in over 3000 CPU hours of the normal Arena.

Run Φ start Φ end %∆
Runtime

(CPU hours)

Time to first
improvement (CPU

hours)

1 19 177 132 18 426 720 −3.9% 67 8.37

2 19 177 132 18 426 720 −3.9% 278 4.67

3 19 177 132 17 907 640 −6.6% 2008 5.33

4 19 177 132 17 769 056 −7.3% 1980 10.62

Table 2: Summary of the results obtained from 4 runs

The observation made in regard to Figure 4, that small improvements made
after periods of stagnation almost always lead to more improvements, reaffirms
that it makes sense to look for any improvement – no matter the size – instead
of trying to find the biggest improvement possible. This also makes sense in
the context of escaping local minima: the fact that an improvement is made, no
matter how small, shows we have escaped this local minimum and we can thus
keep making improvements until we find a new local minimum.

11.1 Softened hard constraints

As described in §5.3, a primary goal of schedule optimisation is not only to make
sure that the penalty Φ on the entire schedule is as low as possible, but also
that no softened hard constraints are broken in the optimised schedule.

Therefore, another good way to verify the effectiveness of the algorithm is by
looking at the evaluators in the different penalty categories (Educational, Teach-
ers, Students and Counting Groups as described in §5.2) and by verifying none
of these evaluators have softened hard constraints that are being violated. In
practice, this means verifying that none of these evaluators endure a penalty of
over 1 000 000, since this suggests the violation of a softened hard constraint.
Tables 3 and 4 below show the difference in penalties for the 5 most penalised
evaluators per category. We see very similar penalties occurring in each cat-
egory, except that the broken softened hard constraint by one of the teachers
before optimisation (in Table 3) has been resolved, reducing the highest eval-
uator overall from a penalty of 1 000 002 to 243 500. Note that it makes sense
to study the distribution of penalties amongst evaluators in this way, because

30

an evaluator represents one specific teacher, student, subject group or counting
group. Therefore, an excessive penalty on any single evaluator would give the
perception of a ‘bad’ schedule.

Educational Teachers Students Counting Groups
1 260 011 1 000 002 241 500 500
2 250 011 135 012 218 050 200
3 220 431 120 002 215 550 192
4 220 423 112 002 211 550 100
5 220 423 103 002 211 250 66

Table 3: Evaluators per category with the highest penalty before optimisation

Educational Teachers Students Counting Groups
1 220 431 135 072 243 500 500
2 220 423 126 002 217 750 200
3 220 423 120 202 215 550 192
4 220 416 112 002 210 550 100
5 220 116 100 002 203 050 66

Table 4: Evaluators per category with the highest penalty after optimisation

12 Efficacy of Crowbar Method

The main conclusion of §11 is that once a suitable scaling has been found that
improves the schedule even marginally, more significant optimisations often fol-
low. This can be seen as the result of the schedule having left its local optimum,
and being able to iteratively improve until a new local optimum is reached. In
addition, §11 confirms that the method employed is a fruitful one and can po-
tentially lead to improvements that are not found without using the Crowbar
Method.10

However, we also see that the time it takes for a schedule to be ‘forced out’
of its local minimum can still take large amounts of computer time. It seems
convincing that being able to reduce this time would be one of the best ways in
which to increase the overall performance of the algorithm.

Two questions arise from this initial exercise:

1. When optimising a schedule that does not improve without the Crowbar
Method, how do we obtain optimisations using the method as quickly as
possible?

10Inherent to the problem we are studying is that we cannot with 100% certainty guarantee
a benefit to using the Crowbar Method over not using it.

31

2. It situations where improvements to the schedule can still be found with-
out the Crowbar Method, does use of the method slow down optimisa-
tions?

The first question is studied in §12.1. Answering this enables us to make the
most out of new optimisations made using the Crowbar Method.

The second question it studied in §12.2. Being able to answer ‘no’ to this
question means there are no situations where using the new method has an
adverse effect on optimising schedules which we could already improve without
the Crowbar Method.

12.1 Optimisation of cutoff value

As shown in Algorithm 1, one of the parameters the Crowbar Method depends
on is a cutoff value, to determine which evaluators come into consideration to be
scaled by the algorithm. The reasoning behind this is, that it makes sense that
the evaluators that need to be scaled in order to force the schedule out of its
local optimum need to be large ones, or else the impact on the schedule will not
be significant enough. On the other hand, the results in §11 show that the first
improvement on a schedule need only be very slight in order to enter a sequence
of subsequent improvements. This suggests that scaling ‘small’ evaluators might
not necessarily be a waste of computing time and disregarding these might mean
some improvements are missed.

In order to test this, a program has been written that repeatedly ran the Arena
using 4 hyperthreaded (Intel i7-6820HQ, 2.7GHz) processor cores as Gladiators
until a first improvement is found. Then, the CPU time taken for this im-
provement to occur has been logged, after which the entire system was reset
and another run is done. In each run, a cutoff value is randomly taken from 0,
200 000, 400 000, 600 000 and 800 000.

12.1.1 First instance

For the first test run, we have taken the initial configuration of the schedule
from §11, and we have done around 60 runs for each of the above mentioned
cutoff values for a total of 299 runs. Each run is performed until the first
improvement is made, after which the experiment is started again. Figure 5
contains a boxplot of these results, overlaid with an individual blue dot for each
individual data point. Every circle corresponds to a data point outside the
whiskers of the boxplot and thus qualifies as an outlier. The blue dot on the
same height represents the same data point.

32

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

0 200000 400000 600000 800000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Cutoff value

C
P

U
 t

im
e

un
ti
l f

ir
st

 im
pr

ov
em

en
t

(s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●● ●

●

●
●●

●

●

● ●
● ●

●

●

●

●●

●

● ●

●

●
●

●

●●●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●
●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

Figure 5: Boxplots of time needed to find a schedule improvement, plotted
against the set cutoff value

Two things can be seen clearly from Figure 5:

1. The time taken to find the first result seems to significantly go down as
the cutoff value goes up to 400 000, after which it seems to level off.

2. There seems to be a much larger variation in datapoints as the cutoff value
gets lower.

Both of these results can be explained as the result of the first mentioned hy-
pothesis at the beginning of this chapter, namely that relatively large evaluators
need to be scaled in order to force a schedule into a new situation. This does not
only explain the larger average time needed when the cutoff value is lower (due
to more evaluators being possible and the extra time it takes for the algorithm

33

to pick the ‘correct’ one), but also the large variance (short times are possible,
if the correct evaluator happens to be scaled quickly).

A t−test on the data points with a cutoff value of at most 200 000 compared to
those with a value of at least 400 000 shows us that the difference between these
two sets is highly significant, with a p−value smaller than 0.0001.

12.1.2 Second instance

For the second test run, the same procedure was performed 161 times but now on
the schedule from §11 in a new configuration that was reached using the Crowbar
Method on the original schedule. This second configuration also stalled using
the normal Arena, but it could be further optimised again using the Crowbar
Method. The results of this are shown below in Figure 6.

34

●

●

●

●

●

●

0 200000 400000 600000 800000

20
00

40
00

60
00

80
00

10
00

0
12

00
0

Cutoff value

C
P

U
 t

im
e

un
ti
l f

ir
st

 im
pr

ov
em

en
t

(s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●
●●●

●●
●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

Figure 6: Boxplots of time needed to find a schedule improvement, plotted
against the set cutoff margin

We again see improvements are made using the Crowbar Method when they were
not found with the normal Arena, and that the time until first improvement
tended to increase once the cutoff value was taken at 0 or 200 000. Like in
§12.1.1, the difference between cutoff values of at most 200 000 and of at least
400 000 is highly significant.

12.2 Use of Crowbar Method on unoptimised schedules

In this subsection, we study the second question posed at the start of this section:
does using the Crowbar Method have any adverse effects on the optimisation of
schedules which we were still able to optimise without the method?

35

In an ideal situation, application of the method would also result in quicker
improvements, but we at least need to ensure that improvements are not found
more slowly when compared to the original situation.

12.2.1 First instance

For this first run, we took the problem from §11, but instead of taking the opti-
mised schedule, we made an entire new VALID schedule that totally disregards
the given soft constraints. As a result, the schedule initially had a penalty of
298 579 712 as opposed to the 19 177 132 we had before. Then we let the Arena
run for 2 CPU hours (around 15 – 16 minutes in real time using 8 CPU cores)
for 124 times in total, and we recorded the penalty Φ after this time.

●

●

●

●

●

●

●

●

●

●

0 200000 400000 600000 800000 No crowbar

1.
20

e+
08

1.
25

e+
08

1.
30

e+
08

1.
35

e+
08

1.
40

e+
08

1.
45

e+
08

Cutoff value

Q
ua

lit
y

af
te

r
2

C
P

U
 h

ou
rs

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

Figure 7: Boxplots of penalty after 2 CPU hours, plotted against the set cutoff
margin

36

Figure 7 shows us that the difference in average quality for different cutoff values
is quite small, seemingly indicating that in this situation the difference is not
significant. Additionally the variability is large, with the median quality for
every cutoff value falling within the margin of error of the other results. This
means that no choice of cutoff value (or the choice not to use the Crowbar
Method at all) is clearly superior.

Grouping all Crowbar runs together, we get Figure 8 below.

●

●

●●

●

●

Crowbar used No crowbar

1.
20

e+
08

1.
25

e+
08

1.
30

e+
08

1.
35

e+
08

1.
40

e+
08

1.
45

e+
08

Q
ua

lit
y

af
te

r
2

C
P

U
 h

ou
rs

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

Figure 8: Boxplots of penalty after 2 CPU hours, grouped by the use of the
Crowbar Method

Here, it is even more clear how small the difference in this case is, between using

37

and not using the Crowbar Method. Indeed, performing a Student’s t−test on
the two datasets from Figure 8 shows a non-significant difference. In addition,
none of the cutoff values by themselves differ significantly from the situation
without the Crowbar Method.

Even though the difference is too small to be significant, we do see the average
penalty after two hours of not using the Crowbar Method was the lowest of all
the variations in this instance. A potential explanation for this is the fact that
a part of the CPU time in the other cases was used to calculate a potential
Crowbar, which was then never actually used since the schedule had been sig-
nificantly improved in the meantime. This means that less CPU time was spent
on actually improving the schedule.

12.2.2 Second instance

For the second run, we studied a completely new schedule, based on a different
school than the one we were using before. We placed the lessons taking the
already calculated clusters [14] into account to create a VALID schedule that
had not yet been optimised, but some care was taken to place the lessons with
soft constraints being taken into account.

Next, we again ran the Arena, switching between different cutoff values for the
Crowbar Method and not using it at all. In total, 165 runs were performed. In
order to increase the number of datapoints per variation we limited ourselves to
setting cutoff values at 0, 400 000 and 800 000 and not using the Crowbar Method
at all. This means that there are around 41 datapoints for each variation.

38

●

●

●

0 400000 800000 No crowbar

15
00

00
00

15
50

00
00

16
00

00
00

16
50

00
00

17
00

00
00

17
50

00
00

Cutoff value

Q
ua

lit
y

af
te

r
2

C
P

U
 h

ou
rs

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

● ●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 9: Boxplots of penalty after 2 CPU hours, plotted against the set cutoff
margin

Here, like in the first instance above, we see that when improvements without
the Crowbar Method are possible, additionally using the algorithm does not
have an impact on the quality of the schedule after two CPU hours (positive or
negative).

Grouping the datapoints where the Crowbar Method was used, like in Figure 10
below, shows this even more clearly.

39

●

●

●

Crowbar No crowbar

15
00

00
00

15
50

00
00

16
00

00
00

16
50

00
00

17
00

00
00

17
50

00
00

Q
ua

lit
y

af
te

r
2

C
P

U
 h

ou
rs

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 10: Boxplots of penalty after 2 CPU hours, grouped by the use of the
Crowbar Method

40

13 Results

In this part, we tried to answer the question

Can we modify a local search algorithm to automatically escape local minima?

Looking at the data obtained in §11 and §12, one clear conclusion that can
be drawn is that the Crowbar Method is able to generate improvements which
were previously not possible. We saw improvements of a schedule that was not
improved by standard optimisation algorithms, even though these ‘standard’ al-
gorithms were given significantly more computing time. This consequently gives
us a positive answer to our question. In addition, as can be most clearly seen
from Table 4, the algorithm also succeeded in making the schedule ACCEPTABLE

where this was not possible before, which was our second goal.

After an initial result in §11, we studied how to make the Crowbar Method work
as efficiently as possible. We studied one of the parameters of the method, the
cutoff value, and found that setting this parameters correctly has a significant
impact on the efficiency of the method. In the case studied, the optimal value
was found at around 400 000. While it would depend on the exact schedule
what the optimal cutoff value would be, it makes sense that it is a relatively
high value (in this case, only a single evaluator out of 3 158 exceeded a penalty
of 400 000). Scaling an evaluator which already has a low penalty does not
significantly affect the search space, and thus does not make it likely for an
improvement to be found. Restricting the Crowbar algorithm to thus skip these
evaluators means it is more likely for a suitable evaluator to be picked by the
algorithm.

In addition, we studied the effect of applying the Crowbar Method to a schedule,
even when we could also find optimisations using the standard algorithms only.
In this instance, we found the average optimisation speed to be slightly lower
when the Crowbar Method is employed. However, both of these decreases were
not statistically significant and can thus confidently be disregarded. In any
case, they were not large enough to negate the positive results obtained from
schedules where optimisation without the Crowbar Method no longer seemed
possible.

A final important note to be made is that next to the statistical data obtained,
quite a bit of anecdotal data has been gathered from Zermelo employees in the
meantime. Their experiences seem to confirm the results gathered in this chap-
ter, which is that using the Crowbar Method generates improvements notably
absent when not using the method. Even when not statistically verified, their
experiences do support the assertions made in this part.

41

Part IV

Evaluating a schedule

42

14 Introduction

Imagine a schedule where the total penalty is based on the individual penalties
of 2 000 evaluators (students, teachers, subject groups etc) with a total penalty
of 2 000 000. It is possible that this entire penalty is based on two evaluators
violating a softened hard constraint and both contributing 1 000 000 to the total
penalty, forming 2 000 000. On the other hand, it could also be the case that
each of the 2 000 evaluators has a penalty of exactly 1 000. This might mean
that, for example, a student has one or two gaps in his schedule or something
else which is relatively insignificant.

Even though in this example both schedules have an equal penalty, one could ar-
gue that the second schedule is more balanced and fairer than the first schedule.
The concept of making the schedule more balanced and ‘fair’ for those involved
is what is studied in this part. More concretely, we answer the question:

How can the penalty function be chosen so that it better reflects the subjective
quality of a schedule?

This question is important when considering that the people who need to use
the schedule (teachers, students etc) all need to be satisfied with the quality of
their individual schedule, and consequently we cannot have someone who gets
an unworkable schedule. An accurate penalty function for a schedule should
ideally take this into account, and penalise schedules more heavily as a whole if
they are unbalanced (i.e., when the schedule is not ‘fair’).

This question aligns well with our goal of making ACCEPTABLE schedules as de-
fined by Definition 7.1. When a softened hard constraint is broken, one part of
the schedule is unacceptably worse off than other parts of the schedule. If an
objective function were able to reflect this in the penalty function, an optimisa-
tion algorithm would much better be able to work its way to a solution which
could be used in the real world.

The following sections of this thesis study an altered penalty calculation method
incorporating these ideas, as well as an algorithm which uses this altered penalty
combined with the Crowbar Method discussed in Part III in order to quickly
find ACCEPTABLE schedules by making the minimisation of Φ(T , C) only sec-
ondary.

43

15 A fairness evaluation

15.1 Conceptually

Our goal in this section is to find a way in which to give a higher penalty to
schedules which are not ACCEPTABLE. As such, we want to more severely penalise
evaluators with a penalty over 1 000 000. More generally, in view of the above
example, we want to incorporate the penalty variability amongst its evaluators
into determining the quality of a schedule: we want a schedule to be fair.

To this end, we will define a penalty Φ∗(T , C) which will take the concept of
fairness into account.

Definition 15.1. Ψ(T , C) : P(L×M)×P(C)→ R≥0 is the fairness function of a
schedule, which measures how evenly penalties are divided amongst evaluators.

Definition 15.2. Φ∗(T , C) : P(L×M)×P(C)→ R≥0 is the fairness evaluation
of a schedule: a penalty function which takes to into account both the violation
of soft constraints, as well as the fairness defined above. We define this function
as

Φ∗(T , C) = Φ(T , C) + Ψ(T , C)

At this point, a decision needs to be made with regard to how exactly the
fairness function should be defined, since Definition 15.1 does not address this.
One standard approach here is to take the standard deviation of the values of
all evaluators in the schedule, and adding this to the penalty. In §15.2, we show
the comparable but slightly altered calculation that was used.

15.2 Implementation

We first need to define Ψ appropriately, taking several factors into account:

1. It has to be efficiently calculable

2. It has to accurately reflect the variability in the schedule

Starting with the standard deviation, the standard way of measuring this kind
of variability, proved to be both inefficient as well as not able to effectively
alter the penalty to reflect the variability of the schedule evaluated. These two
problems are addressed separately below.

First, we want to be able to efficiently perform the calculations. Calculating the
quality of a schedule is the most time-consuming part of an optimisation algo-
rithm11, so much care must be taken that this remains as fast as possible.

11The standard Hill Climbing algorithms used spend around 80-90% of their time calculating
the quality of schedule variations, and only the small remainder was needed for the calculation
of new schedule variations.

44

However, standard deviation calculations bring with it complexity which makes
it difficult to efficiently implement in this case. Recall the standard deviation
of a set x with N entries is given by√√√√ 1

N

N∑
i=1

(xi − x)2,

where x is the mean of the elements of x. The difficulty in this case lies in
that the change of a single evaluator affects the average, and the distance to
the mean changes for each evaluator, forcing substantial recalculations. The
recalculating of a value for every evaluator can be prevented by using an altered
version of Welford’s method[15]. However, the recalculations which still needs
to be done for every changed evaluator turn out to be so time consuming that
the calculation of Φ∗ is up to 30% slower than Φ.

The solution to this problem was to not to take into account each evaluator’s
distance to the mean, but consider its distance to 0. This changes the calculation
to √√√√ 1

N

N∑
i=1

x2
i ,

removing the need to keep track of an average over all evaluators and thus
speeding up the calculation process. In addition, this measure also accomplishes
our goal as described in §15.1 of more heavily penalising evaluators as their
penalty gets larger.

The second requirement for our definition of the fairness function was that it
should give an accurate reflection of the variability within the schedule. When
defining our fairness evaluation as described above, a few initial tests show that
the penalty added to a typical schedule is not of enough significance to drasti-
cally change the structure of a schedule and accomplish our goal of balancing the
schedule. This is due to the penalty added to a typical schedule being less than
1% of the total penalty, as seen in Figure 11 where it is only 0.11%, resulting in
the fairness evaluation being far outweighed by the traditional evaluators.

Figure 11: The penalty on a schedule while using the
√

1
N

∑N
i=1 x

2
i as a fairness

function. The number under “Diversen” (Dutch for “miscellaneous”) is the

value of
√

1
N

∑N
i=1 x

2
i

45

In order to make the fairness function weigh up against the sum of the evaluators,
the function was changed to no longer divide by the number of evaluators,
but instead purely take the root over the sum of squares. Thus, we finally
define:

Ψ(T , C) =√∑
g∈G

Φ(T , CE(g))2 +
∑
t∈T

Φ(T , CT (t))2 +
∑
s∈S

Φ(T , CS(s))2 +
∑
c∈C

Φ(T , CC(c))2.

An example of this final fairness function can be seen in Figure 12:

Figure 12: The penalty on a schedule while using the
√∑N

i=1 x
2
i as a fairness

function. The number under “Diversen” is the value of
√∑N

i=1 x
2
i

Above, we used the unscaled penalty Φ to define Φ∗ and Ψ. Of course, we can
also define Φ

∗
as

Φ
∗
(T , C) = Φ(T , C) + Ψ(T , C),

with

Ψ(T , C) =√∑
g∈G

Φ(T , CE(g))2 +
∑
t∈T

Φ(T , CT (t))2 +
∑
s∈S

Φ(T , CS(s))2 +
∑
c∈C

Φ(T , CC(c))2.

Notice that in defining Ψ, we use the scaled penalty in our calculations. This
means that when scaling an evaluator, the extra penalty incurred due to the
scaling is also taken into account in the fairness evaluation.

16 The Statistician

To test the concept described in §15, a new schedule optimisation algorithm
(the Statistician) has been developed, that takes advantage of the new fairness
evaluation. The algorithm tries to optimise a schedule towards a situation where
the penalty is ‘spread out’ among the different evaluators as much as possible
and, importantly, tries to minimise the penalty of the maximal evaluator(s).

46

This is done by optimising Φ
∗

instead of Φ, and then punishing evaluators
which are above certain target value by penalising them extra heavily through
scaling.

In the subsections below, we first give a description of the algorithm. This
is followed by the experiments done, and finally the results of these experi-
ments.

Like the Crowbar algorithm described in Algorithm 1, the Statistician (described
below in Algorithm 2) is a meta-algorithm, which relies on other optimisation
algorithms through its call to RunScaledFairnessOptimiser to do local optimisa-
tions. The Statistician then makes changes to the search space through scaling
of certain evaluators and restarts if the stopconditions are not met.

Notice we refer to RunScaledFairnessOptimiser : when running the optimisa-
tion algorithms, we use the penalty function Φ

∗
in order to not only be able

to use the fairness evaluation, but also of the scaling technique introduced in
Part III.

Algorithm 2 The Statistician

1: Given: schedule T , Number of seconds t, Goal margin m
2: BestSchedule← T
3: BestMargin← GetHighestPenalty(T)
4: Complete← FALSE

5: while Complete 6= TRUE do
6: T ←RunScaledFairnessOptimiser(T , t)
7: if GetHighestPenalty(T) < BestMargin then
8: BestMargin← GetHighestPenalty(T)
9: BestSchedule← T

10: margin← DetermineMargin(T , margin)
11: end if
12: ScaleEvaluators(T , margin)
13: if BestMargin < m then
14: Complete← TRUE

15: end if
16: if User requested algorithm to end then
17: Complete← TRUE

18: end if
19: end while
20: return BestSchedule

Verbally, what the algorithm above does is:

1. Run a local search algorithm12 to optimise the given schedule, evaluating
using Φ

∗
.

12These are ‘basic’ local search algorithms, so do not make use of the Crowbar Method

47

2. After evaluation, determine if a new ‘best’ schedule has been found, where
‘best’ is determined from the value of the largest evaluator using Φ. If
needed, a new margin is calculated. This margin is used to measure the
progress of the algorithm.

3. Every evaluator with a penalty above margin is ‘scaled’, by using the
Crowbar Method.

4. Unless the user stops the algorithm or all of our evaluators are below a
certain target value, the algorithm repeats.

There are three subroutines that the Statistician uses:

1. GetHighestPenalty, which finds the value of the evaluator with the highest
penalty. The Statistician uses this as a measure for the ‘best’ schedule.

2. DetermineMargin, which is used to calculate a margin which we are trying
to get every evaluator below. This margin is an upper bound on penalties
that evaluators are allowed to have. First, we verify if there are any
evaluators above the current margin. If so, we do not yet lower it. If
all evaluators are under the current margin, we set the new margin to
GetHighestPenalty(T) · 0.95.

3. ScaleEvaluators, which adds a scaling factor to every evaluator above the
current margin, in order to try and force these evaluators down. Initially
0.5 is added to the scale, but as time goes on it is more aggressively scaled

by 1
10

th
of the current scale.

48

21: procedure GetHighestPenalty(T)
22: HighestPenalty← 0
23: for evaluators e do
24: HighestPenalty← max(HighestPenalty,Φ(T , C(e))
25: end for
26: return HighestPenalty

27: end procedure
28:

29: procedure DetermineMargin(T , currentMargin)
30: if GetHighestPenalty(T) > margin then
31: return currentMargin

32: end if
33: return 0.95 ·GetHighestPenalty(T)
34: end procedure
35:

36: procedure ScaleEvaluators(T , margin)
37: for evaluators e do
38: if Φ(T , C(e)) > margin then

39: SCALE(e)← SCALE(e) + max
(

0.5, SCALE(e)10

)
40: end if
41: end for
42: end procedure

17 Experiments

Like in Part III, we performed multiple experiments to test the Statistician, and
to see how the algorithm performed under different circumstances.

The experiments were conducted in three phases:

1. The optimisation of the schedule, using only the Arena

2. The optimisation of the original schedule using the Statistician13

3. Optimising using the Arena after having run the Statistician

The first phase mentioned above is to obtain a schedule suitable for comparison
with the results of phase three.

Phase two is where we really test the performance of our algorithm, and study
the acceptability of the schedules afterwards.

13Unlike the Arena, for the Statistician all calculations have been performed ‘locally’ on a
single computer. This is acceptable in this situation, since the CPU-time needed to obtain
results was significantly lower than in the previous part.

49

In phase three, we optimise the schedules from phase two (where the Statistician
was used) using the Arena. This is to see if using the Statistician has brought
us into a new area of the search space where we can optimise using our original
penalty function Φ while keeping our highest evaluator low (and the schedule
ACCEPTABLE).

A summary of the results is given in §17.3.

For the experiments, we used the following schedules:

1. In our first experiment, we study a situation where the higher grades (4th

year and higher) are placed in the schedule, while the lower years are not.

2. For the second experiment, we used the same schedule used for testing the
Crowbar Method in §11. As was seen previously, significant improvements
to the penalty of that schedule were possible, at the cost of a significant
amount of CPU time. Now, we look at whether the broken softened hard
constraints can also be solved using the Statistician.

17.1 First schedule

17.1.1 Initial schedule

After placing the higher grades according to their clusters, a schedule was ob-
tained where a large part of the penalty on the schedule was distributed among
a relatively small portion of evaluators.

Figure 13: The penalty on the first schedule before the Statistician, and the
penalty on the top 10 evaluators

As can be seen in Figure 13, in a schedule with a total penalty of 15 146 345,
5 114 619 (33.8%) is spread over the top 10 evaluators (only 0.5% of the number
of evaluators)

50

17.1.2 Phase one

After running the Arena for 3 full days using around 60 cores (around 4100 CPU
hours), the schedule had improved somewhat, but out of a penalty of 14 069 271,
4 606 673 (32.7%) was still distributed among the top 10.

Figure 14: The penalty on the schedule from Figure 13 after running the Arena
for 4100 CPU hours

17.1.3 Phase two

Now, going back to the schedule from Figure 13, we ran the Statistician for
around 4 days and looked at the variability of the penalty afterwards, as shown
in Figure 15.

Figure 15: The penalty on the schedule from Figure 13 after running the Statis-
tician for 4 days

51

Here we see how the total penalty has increased quite significantly, from 15 146 345
to 24 638 024. However, the sum of the penalties of the top 10 evaluators
has decreased to 2 016 410, or 8.2% of the penalty total (down from 33.8%).
In addition, the highest evaluator has a penalty of only 210 231, down from
1 003 501.

17.1.4 Phase three

After optimisation using the Statistician, we optimise the schedule using the
Arena for around 1700 CPU hours.

The result of optimising using the Arena can be seen in Figure 16

Figure 16: The penalty on the schedule from Figure 13 after running the Statis-
tician for 4 days and subsequently the Arena for 1700 CPU hours

As we can see, the penalty has decreased by 36% since the situation directly
after the Statistician, and is now only 2.9% higher than the original schedule.
On the other hand, the highest evaluator is still quite low, at 335 025, which is
66.6% less than initially. Also, the total penalty of the top 10 evaluators is at
11.6% of the total penalty, which is still significantly less than the 33.8% of the
original.

52

17.2 Second schedule

17.2.1 Initial schedule

Like the previous schedule, this instance was one where the higher grades had
been placed but the lower ones had not.

Figure 17: The penalty on the second schedule before the Statistician, and the
penalty on the top 10 evaluators

In this schedule, we see that with a total penalty of 19 177 132, 3 074 044 (16.0%)
is spread over the top 10 evaluators. In a schedule with 1 787 evaluators, this is
0.6% of evaluators.

17.2.2 Phase one

As described in §11, this schedule is one which (after at least 3 000 hours of CPU
time in the Arena) no longer showed any improvements. As such, the (distribu-
tion of the) penalty on the schedule after running it in the Arena remains the
same.

17.2.3 Phase two

Using the schedule from Figure 17, we ran the Statistician for just under 7 hours.
and again looked at the variability of the penalty afterwards. Notice that the
Statistician was run for a significantly shorter period than in the first schedule.
An explanation for this can be found in §17.4.

53

Figure 18: The penalty on the schedule from Figure 17 after running the Statis-
tician for 7 hours

Like in the first schedule, we see that both the sum of the penalties of the top
10 evaluators (8.6% of the total, down from 16%) and the penalty of the highest
evaluator have decreased significantly, at the cost of the total penalty (from
19 177 132 to 27 358 664, an increase of 42.7%).

17.2.4 Phase three

After optimisation using the Statistician, we again optimise using the Arena.
This time the Arena was run for around 16 000 CPU hours (one week in real
time, over a holiday period), but since the last optimisation was done only 38
hours into the run we can be fairly confident no more optimisations would be
found.

Figure 19: The penalty on the schedule from Figure 17 after running the Statis-
tician for 2 hours and subsequently the Arena for 16 000 CPU hours

54

As expected, the total penalty of the schedule has decreased, this time by 12.7%
compared to phase two. However, we can see that one of our main goals has
failed: The highest evaluator in the schedule has gone back to 1 000 002 —
higher than our goal of a maximum of 1 000 000. In addition, even though the
penalty of the top 10 evaluators is at 14.4% of the schedule total compared to
16.0% originally, its actual value has increased compared to the original.

The example of this second schedule shows the problem between alternating
optimisation between two different penalty functions (Φ and Φ∗). Doing so can
lead to situations where neither goal is achieved: using penalty Φ our schedule
is worse off than originally, while the reduction of the highest evaluator which
we achieved in phase two using fairness evaluation Φ∗ was all but undone in this
phase.

17.3 Overview of results

In the table below, we summarise the results obtained from the experiments
on our two schedules. We show the penalty of the schedule and of the highest
evaluator, and compare this to the initial penalty (notation: ∆ Start).

Ph. Φ ∆ Start top evaluator ∆ Start top 10 ∆ Start
Start 15 146 345 — 1 003 501 — 5 114 619 —

1 14 069 271 −7.1% 1 000 004 −0.3% 4 606 673 −9.9%
2 24 638 024 62.7% 210 231 −79.1% 2 016 410 −60.6%
3 15 585 426 2.9% 335 025 −66.6% 1 808 513 −64.6%

Table 5: Summary of the results of the first schedule

Ph. Φ ∆ Start top evaluator ∆ Start top 10 ∆ Start
Start 19 177 132 — 1 000 002 — 3 074 044 —

1 19 177 132 — 1 000 002 — 3 074 044 —
2 27 358 664 42.7% 273 000 −72.7% 2 364 125 −23.1%
3 23 877 944 24.5% 1 000 002 — 3 432 354 11.7%

Table 6: Summary of the results of the second schedule

17.4 Changes in highest evaluator and schedule quality

The way in which we measure the quality of a schedule in the Statistician is
by looking at the value of the highest evaluator in that schedule. However,
as is also the case with other optimisation algorithms, we always try to find a
balance between how long to run an algorithm and how much improvement is

55

still to be gained from this extra running time. As such, here we analyse the
development of the value of the highest evaluator over time in phase two, where
the Statistician was run on the schedule, to see if any conclusions can be drawn
with regard to the running time of the algorithm.

17.4.1 First schedule

As we can see in Figure 20, we notice a rapid decrease in the penalty on the
highest evaluator, as indicated by the orange line: Starting at 1 003 501, it
decreases to less than 800 000 (under our goal of 1 000 000) in less than an hour,
to under 500 000 in 12 hours and to its final value of 210 231 in 34 hours.

Figure 20: The development of the penalty on the schedule from Figure 13
during phase two.

The blue line indicates the quality of the schedule at 15 second intervals. As
we can see, in the first 30 hours of optimisation the penalty of the schedule
fluctuated relatively close to the starting penalty of 15 146 345 when we exclude
the peak around 10 hours in.

After around 34 hours, immediately after the value of the ‘highest evaluator’
had decreased to 210 231, the quality of the schedule at subsequent intervals
began to rapidly decrease, finally ending up above 50 000 000.

56

17.4.2 Second schedule

Like in the first schedule above, Figure 21 shows us how the initial lowering of
the best evaluator value happens quite rapidly. Also, while less obviously visible
than in the first schedule, we see that penalty Φ starts increasing significantly
after the last improvement of the highest evaluator.

Figure 21: The development of the penalty on the schedule from Figure 17
during phase two

As can be seen from figures 20 and 21, at some point the Statistician reaches a
point where the penalty on the schedule consistently stays significantly higher
than what had been reached before. The moment this happens coincides exactly
with the point at which the final improvement to the highest evaluator has been
made.

An explanation for this can be found by studying Algorithm 2: when a new
margin is calculated, this is taken to be 95% of the current highest evaluator.
However, at some point, a large amount of evaluators will fall within this mar-
gin due to all evaluators being forces closer together and will thus start being
scaled. This will start adversely affecting Φ, since all scaled evaluators will force
themselves into new timeslots removing the structure from the schedule.

This result can thus be seen as a shortcoming in the algorithm, and it is possible
that a better result might be obtained if the margin is decreased more subtly
when necessary. However, the trend seen above does also hint at a logical

57

conclusion. Namely, that at some point it becomes more and more difficult to
place lessons in such a way that penalties are spread out, and that over-forcing
lessons into a schedule severely degrades the quality of that schedule.

18 Results

In this part, we tried to answer the question

How can the penalty function be chosen so that it better reflects the subjective
quality of a schedule?

From the above tables, we can see both the effectiveness as well as the shortcom-
ings of using the Statistician as a way to optimise schedules using the ‘fairness’
of the schedule as the main focus.

In ‘Phase 2’, we ran the Statistician for a certain period of time, and we see that
this had the desired effect on both schedules: the value of the worst evaluator was
in both cases decreased dramatically, and we additionally saw decreases in the
sum of the top 10 evaluators. Since acceptability was defined in Definition 7.1
as a VALID schedule where no evaluator had an individual penalty of 1 000 000
or higher, we see that in both the studied schedules this goal was achieved, with
the highest evaluator being either 210 231 or 273 000. This means we can answer
the question posed in the affirmative.

In both cases, the penalty function Φ increased significantly. Since the Statis-
tician pays almost no attention to the quality of the schedule as-is but purely
to its fairness, it makes sense to try and use a standard optimisation algorithm
after the Statistician has completed in order to try and reduce Φ back. How-
ever, it can be seen from the result that this only sometimes works as intended.
In the first schedule, Φ was reduced back to almost the same level as initially,
while the highest evaluator stayed relatively low. On the other hand, the second
schedule shows that Φ stayed significantly higher than original while the highest
evaluator remained exactly the same as initially.

This shows that while the method used can be effective in some cases, it is not
guaranteed to ‘improve’ a schedule, no matter whether Φ or the value of the
highest evaluator is used as an indication of improvement.

58

19 Conclusion

In this thesis, we studied the High School Scheduling problem, specifically as it
relates to the Dutch schooling system and as implemented by a Dutch company
specialising in software related to High School Scheduling.

In parts I and II, we studied the HSSP in a general sense, and the specific
choices made in the model used in this research. Particularly, we introduced
the concept of softened hard constraints: constraints that are modelled as soft
constraints, but in reality cannot be violated if we want our schedule to be
acceptable.

In Part III, we studied the question

Can we modify a local search algorithm to automatically escape local minima?

We looked at the so called ‘Crowbar Method’, a method not yet found in the
literature in which violated constraints were scaled in order to give local op-
timisation algorithms more incentive to solve these problems. We looked at
examples of schedules where we could indeed see improvements using this tech-
nique. Since the scaling of constraints was most often done on those constraints
which caused the highest penalties for the schedule penalty, they were most of-
ten softened hard constraints. Consequently, the method occasionally manages
to reduce the penalty on a schedule and also solve the violation of softened hard
constraints. We were thus able to create an algorithm based on local search,
which appears able to escape local minima by transforming the search space the
algorithm is working in.

In Part IV, we shifted our focus from looking at constraints to looking at the
penalty function used to evaluate a schedule. We studied the question

How can the penalty function be chosen so that it better reflects the subjective
quality of a schedule?

The observation was made that the penalty function used was focused on the
reduction of the total penalty on the schedule, while perhaps it makes more
sense to also analyse the distribution of violated constraints, and to more heavily
penalise schedules when softened hard constraints are violated. This concept
was expanded to extend the penalty function with an extra penalty based on
how ‘fair’ a given schedule is: schedules where broken evaluators are distributed
fairly amongst teachers, students and other stakeholders are evaluated more
favourably than those where all the broken constraints are focused on a small
number of evaluators.

Using this altered penalty, we found we could relatively quickly reduce the
penalty on the most heavily penalised evaluator quite dramatically. On the
other hand, this increased the penalty on the schedule as a whole when using
the original penalty function. This means our goal with the altered penalty

59

function was definitely reached with regard to the total penalty, which was
more spread out over the different evaluators.

Using the original penalty, we found this resulted in the total penalty increasing
significantly. When trying to optimise these schedules using the local search
algorithms, we found that in some cases we managed to get the total penalty
down to around the level we had before while still having a relatively low highest
evaluator. In some other cases however, we found the highest evaluator returned
to the level found originally while the total penalty also remained at a higher
level than before. In other words, trying to get the ‘best of both worlds’ using
two different penalty functions sometimes gave positive result, but in other cases
it only worked counterproductively.

19.1 Inspiration for future research

The research done in this thesis can be seen as somewhat exploratory. Global
proofs of concept were developed for the questions posed, based on ideas and
experiences about High School Scheduling and on optimisation problems in gen-
eral. These were then applied to specific problem instances where their poten-
tial benefits were shown and described. However, this process raised follow up
questions which were not studied in this thesis. Potential ways in which the
performed research can be further developed are described below.

� Use of the Crowbar Method on general optimisation problems

The Crowbar Method is, as far as is known, a novel approach to optimisa-
tion problems. In the context of this thesis the approach was applied to the
High School Scheduling problem, but the promising results obtained invite
the question whether the method could also be applied against other op-
timisation problems. Specifically, this would entail optimisation problems
which are based around minimising the penalty generated by soft con-
straints (as opposed to problems dominated by hard constraints). These
could be other kinds of scheduling problems, unrelated to the HSSP, but
also different optimisation problems altogether.

� More specialised methods to calculate scaling factors

An important part of the Crowbar Method is choosing which evaluators to
scale. In this case, the decision was made to choose one of the evaluators
above a certain penalty threshold using a probability weighted using the
penalty of the evaluator. However, no alternative ways in which to choose
the evaluator to scale were studied. Choosing the correct evaluator to
scale every time (and by the correct factor) would potentially increase
the speed at which the Crowbar Method is effective by several orders of
magnitude, so optimising this decision could be worthwhile. Examples of
factors which could be taken into account are, for example, the number of

60

classes a teacher needs to teach14 or to what grade a subject is taught.

� Study into matching schedule penalty with subjective quality

In Part IV, a ‘fairness evaluation’ was introduced in an attempt to create
a penalty function whereby the penalty on the schedule agreed with what
is subjectively found to be a ‘good’ schedule. In defining this penalty, we
were also taking into account the problem we were attempting to solve
as described in §7 where we wanted every evaluator to end up under a
‘good enough’ (having a penalty under 1 000 000). This goal was reached,
but at the cost of having a penalty on the schedule as a whole increase
significantly. The question which this result brought up is to what extent
a better variability of the schedule is acceptable when taking into account
the cost of an increased penalty based on broken soft constraints.

As such, it is not immediately obvious that the penalty introduced in
Part IV is one which always gives a penalty to schedules which matches
its subjective quality. No more in depth research was done in this area,
so studying the penalty of High School Scheduling Problems in general
might be an interesting topic to explore.

� The real-world effectiveness of the proposed methods

In this research, both the Crowbar Method and the work done with the
‘fairness evaluation’ and the Statistician was done in a way which showed
its performance on a few problem instances. It must be noted that this was
done with little knowledge of all the intricacies of scheduling, or the years
of experience many schedulers have. This means that, although promising,
it remains to be seen how much benefit will be found when schedulers use
the method in practice. By the end of this research, with the scheduling
season beginning for Dutch secondary schools, we have received multiple
indications of useful results being obtained from the Crowbar Method in
particular. However, no large scale study has yet been done into how much
schedule quality has improved or how much time is saved.

14As someone’s schedule get fuller they are usually more difficult to place correctly, so they
might be given priority.

61

20 Glossary

Throughout this thesis, use was made of terms which often have specific mean-
ings within timetabling. What follows is a list of these terms.

Block A lesson for a subject group which is planned on
two or more consecutive time slots on the same
day, in practice becoming one long lesson.

Cluster(ing) A method of structuring a schedule, by grouping
lessons into clusters: sets which can be sched-
uled simultaneously, due to the sets of students
attending each lesson being disjoint.

Constraint, hard A restriction placed on a timetable which may
not be broken.

Constraint, soft A restriction placed on a time table which may
be broken, but which does decrease the evalua-
tion of the proposed timetable.

Gap A gap in a timetable occurs when there is idle
time surrounded by lessons. For teachers and
students, a gap means that after a certain num-
ber of lessons, they will have to wait before be-
ing able to attend their next lesson.

HSSP High School Scheduling Problem.

Lesson One time-instance of a subject group meeting.
Next to a subject group, a lesson is tied to a
room and a time slot .

Penalty The quality of a schedule. Often a numeric
value based on which soft constraints are bro-
ken by the timetable, and how important these
constraints are relative to each other.

Subject group A collection of students following a certain sub-
ject taught by a (number of) teacher(s). A sub-
ject group is assigned a number of lessons for
every week, possibly with extra constraints.

Time slot A discrete moment on the timetable where a les-
son may take place. A timetable usually con-
sists of an equal number of timeslots (8 to 10) on
each weekday, and 0 on each day in the weekend.

62

21 Symbols & Notation

What follows is a list of the symbols and notation used throughout this the-
sis. More thorough and rigorous definitions are found in the content of the
thesis.

{{a, a, b}} Notation for a multiset, which may contain an
element multiple times.

ACCEPTABLE(T) A function which indicates if a given schedule T
is acceptable.

C The set of all soft constraints.
CA(a) A subset of the soft constraints, whereby A

refers to the category and a to the relevant en-
tity (Definition 5.6).

C The set of all counting groups.
G The set of all subject groups.
L The set of all lessons.
M The set of all timeslots.
P(A) The powerset of some set A, so the set contain-

ing all subsets of A (including the empty set and
A itself).

R The set of all rooms.
S The set of all students.
S A subset of S, used as the group of students tied

to a subject group.
SCALE(a) For an evaluator a, SCALE(a) is the value in-

dicating how to scale the penalty incurred by
evaluator a. This value is equal to 1, unless
otherwise stated.

T The set of all teachers.
T A subset of T , used as the group of teachers tied

to a subject group.
T A schedule, which is a subset of L.
TA(a) For an a ∈ A, whereby A ∈ {S, T ,G,R,M},

TA(a) is a subset of T of lessons containing en-
tity a which is a part of set A.

V The set of all lessons.
VALID(T) A function which indicates if a given schedule T

is valid.
Φ(T , C) The penalty function of a schedule T , given soft

constraints C.
Φ(T , C) The penalty function of a schedule T , given soft

constraints C and taking into account scaling
factors.

63

Φ∗(T , C) The penalty function of a schedule T , given soft
constraints C and adding an extra penalty de-
scribing the spread of the schedule.

Φ
∗
(T , C) The penalty function of a schedule T , given soft

constraints C, adding an extra penalty describ-
ing the spread of the schedule and taking into
account scaling factors.

Ψ(T , C) A function describing the fairness of a given
schedule.

Ψ(T , C) A function describing the fairness of a given
schedule taking into account scaling factors.

64

References

[1] Salwani Abdullah, Samad Ahmadi, Edmund K Burke, Moshe Dror, and
Barry McCollum. A tabu-based large neighbourhood search methodology
for the capacitated examination timetabling problem. Journal of the Op-
erational Research Society, 58(11):1494–1502, 2007.

[2] David Abramson. Constructing school timetables using simulated anneal-
ing: sequential and parallel algorithms. Management Science, 37(1):98–113,
1991.

[3] David Abramson and J Abela. A parallel genetic algorithm for solving the
school timetabling problem. 1991.

[4] David Abramson, Mohan Krishna Amoorthy, and Henry Dang. Simu-
lated annealing cooling schedules for the school timetabling problem. Asia-
Pacific Journal of Operational Research, 16(1):1, 1999.

[5] Leena N Ahmed, Ender Özcan, and Ahmed Kheiri. Solving high school
timetabling problems worldwide using selection hyper-heuristics. Expert
Systems with Applications, 42(13):5463–5471, 2015.

[6] Benchmarking project for (high) school timetabling. https://www.

utwente.nl/ctit/hstt/. Accessed: 2017-02-09.

[7] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

[8] Dominique de Werra. An introduction to timetabling. European Journal
of Operational Research, 19(2):151–162, 1985.

[9] EURO Working Group on Automated Timetabling archive of
papers. http://watt.cs.kuleuven.be/application-area/

educational-timetabling/papers. Accessed: 2017-02-13.

[10] Werner Junginger. Timetabling in Germany - a survey. Interfaces,
16(4):66–74, 1986.

[11] Carlos Lara, Juan J Flores, and Félix Calderón. Solving a school
timetabling problem using a bee algorithm. In Mexican International Con-
ference on Artificial Intelligence, pages 664–674. Springer, 2008.

[12] Nelishia Pillay. A survey of school timetabling research. Annals of Opera-
tions Research, 218(1):261–293, 2014.

[13] Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence
Review, 13(2):87–127, 1999.

[14] Bernard van Kesteren. The clustering problem in Dutch high schools:
changing metrics in search space, 1999.

65

https://www.utwente.nl/ctit/hstt/
https://www.utwente.nl/ctit/hstt/
http://watt.cs.kuleuven.be/application-area/educational-timetabling/papers
http://watt.cs.kuleuven.be/application-area/educational-timetabling/papers

[15] B. P. Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962.

[16] RJ Roy Willemen. School timetable construction: algorithms and com-
plexity. 2002.

[17] Defu Zhang, Yongkai Liu, Rym MHallah, and Stephen CH Leung. A sim-
ulated annealing with a new neighborhood structure based algorithm for
high school timetabling problems. European Journal of Operational Re-
search, 203(3):550–558, 2010.

66

	Abstract
	Introduction
	Overview & contribution

	I High School Scheduling Problem
	Problem description
	Problem modelling
	Conceptual model
	Technical model
	Problem definition (generic model)
	Complexity

	Current state of algorithms
	Hill Climbing
	Genetic algorithms
	Tabu search
	Simulated annealing

	II High School Scheduling at Zermelo
	Specification of the model
	Hard constraints
	Soft constraints
	Softened hard constraints
	Evaluation

	Current optimisation algorithms
	Problem definition

	III Improving schedules using the Crowbar Method
	Introduction
	Description
	Experimental setup
	Proof of concept
	Softened hard constraints

	Efficacy of Crowbar Method
	Optimisation of cutoff value
	Use of Crowbar Method on unoptimised schedules

	Results

	IV Evaluating a schedule
	Introduction
	A fairness evaluation
	Conceptually
	Implementation

	The Statistician
	Experiments
	First schedule
	Second schedule
	Overview of results
	Changes in highest evaluator and schedule quality

	Results

	Conclusion
	Inspiration for future research

	Glossary
	Symbols & Notation

