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1 Introduction

When lifting well-known results from probability theory to random variables that take values in spaces other
than the real numbers, one usually considers the ones that take values in separable Banach spaces. This is
done for technical reasons, in particular because a necessary condition for a random variable to be integrable
is to be (a version of) a separably valued random variable. However, this does not mean that these results
cannot be lifted to the setting of non-separable Banach spaces. It turns out that restricting to separable
subspaces allows us to lift a lot of results from the separable case to the non-separable one. A lot of care has
to be taken in this process and therefore it is necessary to keep all definitions and arguments very precise.
Many of the arguments will turn out to be far more subtle and involved than may be thought at first sight.
Moreover, we will rigorously prove several elementary results, that usually are assumed to hold in this more
general setting, but are almost never proven.

There is not much literature on this subject (see, e.g. [1], [2], [3] and [4]) and the existing literature is not
always consistent or precise in its definitions. Therefore we thought it useful to start by making a detailed
overview of all the definitions and basic results necessary to prove our results later on. Chapters 2 to 7
provide some well-known elementary concepts and results from Functional Analysis and Measure Theory. In
Chapters 8 to 12 we consider the standard construction of random variables and Bochner integrals in Banach
spaces. When working in the non-separable setting, it turns out that the concept of independence of random
variables is less straight-forward and that none of the literature rigorously builds up this concept, even in
the separable setting. Therefore, we spent a lot of effort in Chapters 13 and 14 to develop this concept from
scratch. Moreover, this allows us to lift one of the main results from [11] to the non-separable setting.

One of the main reasons to consider non-separable spaces is because if E is a Banach space and T > 0, then
the Banach space

DE [0, T ] := {f : [0, T ]→ E | f cadlag}

equipped with supremum norm is not separable if E 6= {0}.

In Chapter 15 it turns out that our thorough set-up allows us to find a simple proof for another main result
from [11], which gives a set of conditions for a series of elements in the space DE [0, T ] to converge. In
Chapter 16 and 17 we describe the standard set-up of conditional expectations and martingales in Banach
spaces. Finally in Chapter 18, we obtain several new results on the convergence of series of random variables.

The main new results can be found in Chapter 13, in particular Theorem 13.20, Chapter 14 and Chapter
18.
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2 Sets

In this section we will give some basic definitions about sets, such as the definition of a π-system in a set
Ω and the definition of a σ-algebra in a set Ω. We will also give some basic properties that deal with these
definitions.

Definition 2.1. Let Ω be a set. A family I of subsets of Ω is a π-system if for all I1, I2 ∈ I we have that
I1 ∩ I2 ∈ I.

Definition 2.2. Let Ω be a set. A family D of subsets of Ω is a d-system in Ω if the following hold

1. Ω ∈ D,

2. If E,F ∈ D with E ⊆ F then also F \ E ∈ D,

3. If En ∈ D for all n ∈ N and En ⊆ En+1 for all n ∈ N then also
∞⋃
n=1

En ∈ D.

Definition 2.3. Let Ω be a non-empty set. A family A of subsets of Ω is an algebra in Ω if:

1. Ω ∈ A or, equivalently, A 6= ∅,

2. If A,B ∈ A then also A ∪B ∈ A ,

3. If A ∈ A then also AC := Ω \A ∈ A .

If, additionally, for (An)n∈N ⊂ A we have
⋃∞
n=1An ∈ A then A is called a σ-algebra.

Definition 2.4. Let Ω be a set and let I be a family of subsets of Ω. Then we define σ(I) as the smallest
σ-algebra in Ω that contains I, which is the intersection of all σ-algebras in Ω that contain I. We say that
σ(I) is the σ-algebra generated by I.

There are several connections between the above definitions. Some of these connections will be useful and
are therefore stated below.

Proposition 2.5. [8, Proposition 1.13] Let Ω be a set. Let Σ be a family of subsets of Ω. Σ is a σ-algebra
if and only if Σ is a π-system and a d-system.

Lemma 2.6. [8, Corollary 1.15] Let Ω be a set, let I be a π-system in Ω and let D be a d-system in Ω. If
I ⊆ D then σ(I) ⊆ D.

Definition 2.7. Let Ω be a set. A family S of subsets of Ω is a semiring if it is nonempty and:

1. ∅ ∈ S,

2. If A,B ∈ S then also A ∩B ∈ S,

3. If A,B ∈ S then there exist n ∈ N, C1, ..., Cn ∈ S such that Ci ∩ Cj = ∅ for all i, j ∈ {1, ..., n} with
i 6= j and such that A \B =

⋃n
i=1 Ci.

Remark 2.8. Note that every algebra is a semiring.

Definition 2.9. Let Ω be a set. A relation ≤ on Ω is called a partial order if:

1. ≤ is transitive i.e. if x, y, z ∈ Ω with x ≤ y and y ≤ z, then also x ≤ z;

2. ≤ is reflexive i.e. x ≤ x for all x ∈ Ω;

3. ≤ is antisymmetric i.e. if x, y ∈ Ω with x ≤ y and y ≤ x, then x = y.

The set Ω equipped with a partial order ≤ is called a partially ordered set.

3



Definition 2.10. Let T be a topological space. The Borel σ-algebra of T , denoted by B(T ), is the
smallest σ-algebra containing all open subsets of T . Sets of B(T ) are called the Borel sets of T .

Definition 2.11. Let V be a real vector space. We define the convex hull of a set A ⊆ V by

conv(S) :=
{∑k

j=1 λjxj | λj ≥ 0,
∑k
j=1 λj = 1 and xj ∈ S for all j ∈ {1, ..., k} and for some k ∈ N

}
.

Definition 2.12. Let V be a real vector space. We define the linear span of a set S ⊆ V by

span(S) :=
{∑k

j=1 λjvj | for some k ∈ N, λj ∈ R for j ∈ {1, ..., k} and vj ∈ S for j ∈ {1, ..., k}
}

.

3 Vector spaces and metric spaces

In this section we will introduce the notion of a Banach space and a Riesz space, and we will also give some
properties of Banach spaces. After that we will define separability and discuss properties of separability, for
instance subspaces of separable spaces.
Definition 3.1. Let (E, d) be a metric space. A sequence (xn)n∈N ⊂ E is a Cauchy sequence if for
each ε > 0 there exists an n0 (depending on ε) satisfying d(xn, xm) < ε for all n,m ≥ n0. (Or equivalently

lim
n,m→∞

d(xn, xm) = 0.)

Definition 3.2. Let (E, d) be a metric space. (E, d) is called complete if every Cauchy sequence in E
converges in E.

Definition 3.3. Let E be a vector space. E is called a Banach space if it is a normed space that is also
a complete metric space under the metric induced by the norm, i.e. d(x, y) = ||x− y|| for x, y ∈ E.

Theorem 3.4. [7, Theorem 2.28.(e)] Let E be a Banach space and F ⊆ E a closed linear subspace of E.
Then F is also a Banach space.

Definition 3.5. Let E be a metric space and φ : E → R a function. φ is called lower semi coninuous if
φ(x0) ≤ lim inf

x→x0

φ(x) for all x0 ∈ E.

Definition 3.6. Let E1, E2 and E3 be normed spaces and let β : E1 ×E2 → E3 be a bilinear map. Then β
is called bounded if for some constant c ∈ R we have ||β(x, y)|| ≤ c||x|| · ||y|| for all x ∈ E1 and all y ∈ E2.

Definition 3.7. Let V be a vector space over R equipped with a partial order. V is called a (partially)
ordered vector space if for all x, y, z ∈ V and all λ ∈ R≥0 we have

1. If x ≤ y then also x+ z ≤ y + z;

2. If x ≤ y then also λx ≤ λy.

Definition 3.8. Let V be a partially ordered vector space, S ⊆ V a subset and b ∈ V a vector. b is called
an upper (lower) bound of S if b ≥ s (b ≤ s) for all s ∈ S.
Furthermore b is called the supremum (infimum) of S, denoted by supS (inf S), if b is an upper (lower)
bound of S and if for each upper (lower) bound a of S it holds that a ≥ b (a ≤ b).

Definition 3.9. A partially ordered vector space V is called a Riesz space if for all x, y ∈ V we have that
sup{x, y} and inf{x, y} exist in V .
The functions (x, y) 7→ sup{x, y} and (x, y) 7→ inf{x, y} are called the lattice operations on V , and the
absolute value of x ∈ V is defined as |x| = sup{x,−x}.

Definition 3.10. A normed Riesz space is a Riesz space V equipped with a lattice norm, i.e. a norm
|| · || such that for x, y ∈ V with |x| ≤ |y| we have that ||x|| ≤ ||y||.
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Definition 3.11. A complete normed Riesz space is called a Banach lattice.

Definition 3.12. Let V be a metric (or topological) space. V is called separable if it contains a countable
dense subset, i.e. a countable subset D ⊆ V such that D = V .

Now we will consider some simple properties of separability that are often used without proof.

Theorem 3.13. [7, Theorem 1.43] Let E be a separable metric space and F ⊆ E a subset of E. Then F is
also separable.

Lemma 3.14. Let E be a metric space and (Ai)i∈N ⊆ E separable subsets. Then A :=
⋃∞
i=1Ai is also

separable.

Proof. Let (Di)i∈N ⊆ E with Di ⊆ Ai a countable dense subset of Ai for all i ∈ N. Then we have that
D :=

⋃∞
i=1Di ⊆ A and D is countable. Now let x ∈ A. Then we have that x ∈ Ai for at least one i ∈ N

and since Di is dense in Ai we have that there exists a sequence (xi)i∈N ⊆ Di with xi → x for i→∞. Since
Di ⊆ D, we thus have a sequence in D converging to x. So D is dense in A and thus A is separable.

Theorem 3.15. Let E be a metric space with metric d and F ⊆ E a separable subset. Then F is also
separable.

Proof. Let A ⊆ F be a countable dense subset of F and let x ∈ F . Then we have two cases.

• If x ∈ F then there exists a sequence (xi)i∈N ⊆ A with xi → x for i→∞ since A is dense in F .

• If x ∈ F \ F , then there exists a sequence (xi)i∈N ⊆ F with xi → x for i → ∞, since x is an element
of the closure of F . Now for all i ∈ N there exists a sequence (yin)n∈N ⊆ A with yin → xi for n → ∞
since xi ∈ F and A is dense in F . Now consider the sequence (zi)i∈N given by zi := yini

where ni such
that d(yini

, xi) <
1
i . Now we obviously have that zi ∈ A for all i ∈ N and zi → x for i→∞.

Thus in both cases there exists a sequence in A converging to x. Thus A is also dense in F , hence F is
separable.

Theorem 3.16. Let E be a normed vector space and V ⊆ E a separable subset of E. Then span(V ) is also
separable in E and hence span(V ) is seperable as well.

Proof. Let W ⊆ V be a countable dense subset of V . Define

D := {λ1w1 + ...+ λnwn : n ∈ N, wi ∈W ∀i ∈ N, λi ∈ Q ∀i ∈ N}.

Then we know that D is countable and that D ⊆ span(V ). We will show that D is dense in span(V ).

Let x ∈ span(V ). Then we can write, for some n ∈ N, v1, ..., vn ∈ V and λ1, ..., λn ∈ R\{0} that x =
n∑
i=1

λivi.

For all i ∈ {1, ..., n} we have that vi ∈ V and thus there exists a sequence (wim)m∈N ⊆W with wim → vi for
m→∞ since W is dense in V . Now consider the sequence (yj)j∈N defined by

yj = qj1w
1
m1

j
+ ...+ qjnw

n
mn

j
=

n∑
i=1

qjiw
i
mi

j
,

where we have, for all i and all j that

mi
j satisfies ||wimi

j
− vi|| <

1

|λi| · 2nj
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and that

qji satisfies |qji − λi| <
1

(||wi
mi

j
||+ 1) · 2nj

.

Then we obviously have that yj ∈ D for all j ∈ N and we have

||yj − x|| =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

qjiw
i
mi

j
−

n∑
i=1

λivi

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

∣∣∣∣∣∣qjiwimi
j
− λivi

∣∣∣∣∣∣ =

n∑
i=1

∣∣∣∣∣∣qjiwimi
j
− λivi + λiw

i
mi

j
− λiwimi

j

∣∣∣∣∣∣
≤

n∑
i=1

(∣∣∣∣qjiwimi
j
− λiwimi

j

∣∣∣∣+
∣∣∣∣λiwimi

j
− λivi

∣∣∣∣) =

n∑
i=1

(∣∣qji − λi∣∣ · ∣∣∣∣wimi
j

∣∣∣∣+
∣∣λi∣∣ · ∣∣∣∣wimi

j
− vi

∣∣∣∣)

<

n∑
i=1

 ∣∣∣∣wi
mi

j

∣∣∣∣
(||wi

mi
j
||+ 1) · 2nj

+

∣∣λi∣∣
|λi| · 2nj

 =

n∑
i=1

 ∣∣∣∣wi
mi

j

∣∣∣∣
(||wi

mi
j
||+ 1)

· 1

2nj
+

1

2nj


<

n∑
i=1

(
1

2nj
+

1

2nj

)
= n · 2 · 1

2nj
=

1

j
,

thus we obtain that yj → x for j → ∞. Thus there exists a sequence in D converging to x and thus D is
dense in span(V ). Since D is a countable dense subset of span(V ), it follows that span(V ) is separable.
With Theorem 3.15 we now obtain that span(V ) is also separable since E is a normed vector space and
consequently a metric space.

Definition 3.17. For a topological vector space E over K (i.e. a vector space equipped with a topology
such that the vector space operations are continuous with respect to the topology, where K = R or K = Q)
the dual space, denoted by E∗, is the vector space of all continuous linear mappings from E to K. For
x∗ ∈ E∗, the norm of x∗ is defined by ||x∗|| = sup

x∈E:||x||≤1

| 〈x, x∗〉 | where 〈x, x∗〉 := x∗(x).

Definition 3.18. Let E be a Banach space with dual space E∗.

1. A linear subspace F ⊆ E∗ is called norming for a subset S ⊆ E if for all x ∈ S we have
||x|| = sup

x∗∈F :||x∗||≤1

| 〈x, x∗〉 |.

2. A linear subspace that is norming for E is simply called norming.

Definition 3.19. Let E be a Banach space with dual space E∗. A linear subspace F of E∗ is said to
seperate the points of a subset S of E if for every pair x, y ∈ S with x 6= y there exists an x∗ ∈ F such
that 〈x, x∗〉 6= 〈y, x∗〉.

Definition 3.20. Let E,F be two ordered vector spaces. An operator T : F → E is a positive operator
if it is a linear operator that maps positive vectors to positive vectors, i.e. T is positive if x ≥ 0 in F implies
T (x) ≥ 0 in E.

4 Set functions

Sometimes we will consider set functions that are more general than the standard setting of measures.

Definition 4.1. A set function µ : S → R ∪ {∞,−∞} on a semiring S is

• monotone if A ⊂ B with A,B ∈ S imply µ(A) ≤ µ(B);

• (finitely) additive if for each finite family {A1, ..., An} of pairwise disjoint sets in S with
⋃n
i=1Ai ∈ S

we have µ(
⋃n
i=1Ai) =

∑n
i=1 µ(Ai);
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• σ-additive(or countably additive) if for each countable family (An)n∈N of pairwise disjoint sets in
S with

⋃∞
i=1Ai ∈ S we have µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai);

• subadditive if {A1, ..., An} ⊆ S and
⋃n
i=1Ai ∈ S imply µ(

⋃n
i=1Ai) ≤

∑n
i=1 µ(Ai);

• σ-subadditive if (An)n∈N ⊆ S and
⋃∞
i=1Ai ∈ S imply µ(

⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai).

Definition 4.2. A set function µ : S → [−∞,∞] on a semiring is

• a signed charge if it is additive, assumes at most one of the values −∞ and ∞ and µ(∅) = 0;

• a charge if it is a signed charge that assumes only nonnegative values;

• a signed measure if it is σ-additive, assumes at most one of the values −∞ and ∞ and µ(∅) = 0;

• a measure if it is a signed measure that assumes only nonnegative values.

5 Measure spaces

In this section we will define what a measure space is. When considering measure spaces it can be useful
to widen the σ-algebra we are working with, and there is a very intuitive method to do this, and therefore
we will explain this. With this expansion introduced, we can consider two different σ-algebras and thus two
different measure spaces. Therefore we will, as well in this section as in later sections, have some definitions
that appear similar, but have subtle differences. These subtle differences, however, can have major effects.
They make proving several theorems significantly more difficult and the proofs become more subtle. For
generalities on measure theory we refer to [5] and [13].

Definition 5.1. The triple (Ω,Σ, µ) with Ω a set, Σ a σ-algebra on Ω and µ a measure on Σ is called a
measure space.

Proposition 5.2. [8, Proposition 1.8] Let (Ω,Σ, µ) be a measure space and let (En)n∈N be a sequence in Σ.

1. If the sequence is increasing with limit E =
∞⋃
i=1

Ei then lim
i→∞

µ(Ei) = µ(E).

2. If the sequence is decreasing with limit E =
∞⋂
i=1

Ei and if µ(Ei) < ∞ for i ≥ n for some n ∈ N, then

lim
i→∞

µ(Ei) = µ(E).

Definition 5.3. Let (Ω,Σ, µ) be a measure space. N ⊆ Ω is called a µ-null set if there exists an A ∈ Σ
such that N ⊆ A and µ(A) = 0.
Notation 5.4. The collection of all µ-null sets is denoted by Nµ.

Definition 5.5. Let (Ω,Σ, µ) be a measure space. (Ω,Σ, µ) is called complete if Σ contains all µ-null sets,
i.e. Nµ ⊆ Σ. Then µ is called a complete measure.

Definition 5.6. Let (Ω,Σ, µ) be a measure space. Define Σµ := σ(Σ,Nµ).

Lemma 5.7. [13, Theorem 13.B] Let (Ω,Σ, µ) be a measure space. Then A ∈ Σµ if and only if there exists
B ∈ Σ with (A∆B) ∈ Nµ, where A∆B := (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Definition 5.8. Let (Ω,Σ, µ) be a measure space. For A ∈ Σµ we define µ̂(A) = µ(B) where B ∈ Σ such
that (A∆B) ∈ Nµ.
Remark 5.9. µ̂ is a measure on (Ω,Σµ).

Definition 5.10. Let (Ω,Σ, µ) be a measure space. Then (Ω,Σµ, µ̂) is a complete measure space and it is
called the completion of (Ω,Σ, µ).
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Remark 5.11. This definition gives an alternative way to define a complete measure space: Let (Ω,Σ, µ) be
a measure space. If Σ = Σµ then (Ω,Σ, µ) is complete.

Definition 5.12. Let (Ω,Σ, µ) be a measure space.

• A set S ⊆ Ω is called measurable if S ∈ Σ.

• A set S ⊆ Ω is called µ-measurable if S ∈ Σµ.

Definition 5.13. Let (Ω,Σ, µ) be a measure space. (Ω,Σ, µ) is called σ-finite if there exist (An)n∈N with
An ∈ Σ and µ(An) <∞ for all n ∈ N such that Ω =

⋃∞
n=1An.

Lemma 5.14. [9, Lemma 2.10] Let (Ω,Σ, µ) be a measure space and (An)n∈N ⊆ Σ such that
∞∑
n=1

µ(An) <∞

then µ
( ⋂
k≥1

⋃
n≥k

An

)
= 0.

6 Functions to a (Banach) space

Notation 6.1. For a set Ω and a subset A ⊂ Ω we denote the indicator function with 1A, i.e.

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

.

Definition 6.2. Let Ω be a set, A an algebra on Ω, µ a charge and E a vector space. Let ϕ : Ω→ E be a
function that assumes only a finite number of values in E, say x1, ..., xn ∈ E.
ϕ is called an E-simple function if Ai := ϕ−1({xi}) ∈ A for each i, and ϕ is called an E-step function
if additionally µ(Ai) <∞ for each nonzero xi.
The standard representation of ϕ is given by ϕ =

∑n
i=1 xi1Ai

.

Definition 6.3. Let (Ω,Σ, µ) be a measure space and E a Banach space. Then we define
LE := {f : Ω→ E | f is an E-step function}. This is a vector space.

Definition 6.4. Let (Ω,Σ, µ) be a measure space and E a Banach space. Then we define
EΩ := {f | f : Ω→ E a function}. This is also a vector space.

Definition 6.5. Let (Ω,Σ, µ) be a measure space, E a Banach space and f : Ω→ E a function. Then the
real-valued, nonnegative function ||f || : Ω → R, defined by ||f ||(ω) = ||f(ω)|| for each ω ∈ Ω, is called the
norm function of f .

The following definition will introduce a notion that will become very important later on.
Definition 6.6. Let (Ω,Σ, µ) be a measure space, E a vector space and f, g : Ω→ E be two functions with
f = g µ-almost everywhere. Then they are called µ-versions of each other.

7 Measurable functions

Definition 7.1. Let (Ω,Σ, µ) and (Y,F , ν) be two measure spaces and let f : Ω→ Y be a function.

1. f is called measurable (or Σ\F-measurable if it is not clear which σ-algebras are used) if f−1(A) ∈ Σ
for all A ∈ F .

2. f is called µ-measurable (or Σµ\F-measurable if it is not clear which σ-algebras are used) if f is
measurable with respect to Σµ, i.e. f−1(A) ∈ Σµ for all A ∈ F .

8



Lemma 7.2. Let (Ω,Σ, µ) be a measure space and E a Banach space equipped with the Borel σ-algebra. Let
f : Ω→ E be a function. If f has a measurable µ-version, then f is µ-measurable.

Proof. Let g : Ω→ E be a measurable µ-version of f and letN ∈ Σ with µ(N) = 0 be such thatf = g on Ω\N .
Let A be a Borel set of E. Then f−1(A) \ g−1(A) ⊆ N and g−1(A) \ f−1(A) ⊆ N , so f−1(A)∆g−1(A) ⊆ N ,
hence f−1(A)∆g−1(A) ∈ Nµ. Since g is measurable we have g−1(A) ∈ Σ and thus Lemma 5.7 yields that
f−1(A) ∈ Σµ. Thus f is µ-measurable.

A partial converse is given in Theorem 9.11

8 Strongly measurable functions

A major part of the analysis of measurable real functions relies on the fact that they can be appriximated
by simple functions or step functions. For functions with values in Banach spaces mere measurability is too
weak for such an approximation property. In this section we will define strongly measurable functions and
strongly µ-measurable functions as being a suitable limit of simple or step functions and mention some of
their known properties. There are two definitions of strong µ-measurability that we can use and that appear
to be different. One uses step functions and the other simple functions. However we will show that the defini-
tions are equivalent if we assume that the measure space is σ-finite. First we will define strong measurability.

Definition 8.1. Let (Ω,Σ, µ) be a measure space, E a Banach space and f : Ω → E be a function. We
say that f is strongly measurable (or strongly Σ-measurable if it is not clear which σ-algebra is used)
if there exists a sequence (ϕn)n∈N of E-simple functions such that lim

n→∞
ϕn = f pointwise on Ω (i.e. for all

ω ∈ Ω it holds that lim
n→∞

ϕn(ω) = f(ω)).

Next we will define strong µ-measurability.
Definition 8.2. Let (Ω,Σ, µ) be a measure space, E a Banach space and f : Ω → E a function. f is
called strongly µ-measurable if there exists a sequence (ϕn)n∈N of E-simple functions that converge to f
µ-almost everywhere.

Theorem 8.3. Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and f : Ω → E a function.
Then the following are equivalent:

1. f is strongly µ-measurable;

2. there exists a sequence (ϕn)n∈N of E-step functions converging to f µ-almost everywhere.

Proof.
”⇒” Let f be a function such that there exists a sequence (ϕn)n∈N of E-simple functions converging to
f µ-almost everywhere, and let (ϕn)n∈N be such a sequence. Let (Bn)n∈N ⊆ Σ with µ(Bn) < ∞ for all

n and such that Ω =
∞⋃
n=1

Bn. This is possible, since (Ω,Σ, µ) is σ-finite. Write ϕn =
Nn∑
k=1

1An
k
xnk with

Ank ∈ Σ and xnk ∈ E for all k and all n ∈ N. Define Cn =
N1+...+Nn⋃

k=1

Bk. Then for all n we have that

µ(Cn) = µ

(
N1+...+Nn⋃

k=1

Bk

)
≤

N1+...+Nn∑
k=1

µ(Bk) < ∞ since µ(Bk) < ∞ for all k and N1 + ... + Nn is finite.

Now consider ϕ′n := ϕn1Cn
. Then we have that ϕ′n is an E-step function for all n and since 1Cn

→ 1Ω we
obtain that (ϕ′n)n∈N converges to f µ-almost everywhere since (ϕn)n∈N converges to f µ-almost everywhere.
So there exists a sequence (ϕn)n∈N of E-step functions converging to f µ-almost everywhere.

”⇐” Since a sequence of E-step functions is also a sequence of E-simple functions we have that (2) implies
(1).
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So we have that the statements are equivalent.

In the theorem above we assumed that the measure space was σ-finite, and then the two properties turned
out to be equivalent. However, when we do not assume that the measure space is σ-finite, the two statements
turn out to be completely different. To illustrate this, consider the following example.

Example 8.4. Let E be a Banach space and consider the measure space (Ω,Σ, µ) with Ω 6= ∅ and µ defined
by

µ(A) =

{
0 if A = ∅
∞ if A ∈ Σ \ {∅}

.

Then obviously (Ω,Σ, µ) is not σ-finite.

Now consider the function f given by f(ω) = 1 for all ω ∈ Ω. Then f is obviously an E-simple function,
but clearly not an E-step function. Thus there exists a sequence (ϕn)n∈N of E-simple functions such that
lim
n→∞

||f(ω)− ϕn(ω)|| = 0 for µ-almost all ω ∈ Ω, by taking ϕn = f for all n ∈ N. However, the only E-step

function is given by 1∅ = 0 since ∅ is the only element of Σ with finite measure. Moreover we have that 0
does not converge µ-almost everywhere to f . So there does not exist a sequence (ϕn)n∈N of E-step functions
converging to f µ-almost everywhere.

In the remainder of this section we will consider some results.
Definition 8.5. For (Ω,Σ, µ) a σ-finite measure space and E a Banach space, we define
M(Ω, E) := {f ∈ EΩ : f is strongly µ-measurable} and SM(Ω, E) := {f ∈ EΩ : f is strongly measurable}.

Remark 8.6. [6, Lemma 11.40] Note that LE ⊆ M(Ω, E) ⊆ EΩ, and it is easy to verify that M(Ω, E) is a
vector subspace of EΩ. Similarly, SM(Ω, E) is a vector subspace of EΩ.

Lemma 8.7. [6, Lemma 11.39] Let (Ω,Σ, µ) be a measure space and E a Banach space. If f : Ω → E is
strongly µ-measurable, then the real function ||f || is µ-measurable.

The following Proposition will be frequently used.
Proposition 8.8. [9, Proposition 1.10] Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space.
For f : Ω→ E are equivalent:

1. f is strongly µ-measurable;

2. f has a strongly measurable µ-version.

Lemma 8.9. Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and f : Ω → E a strongly

µ-measurable function. Let f̃ be a µ-version of f . Then f̃ is also strongly µ-measurable.

Proof. By Proposition 8.8 f has a µ-version g which is strongly measurable. By definition of µ-versions we
have that g is also a µ-version of f̃ and thus we obtain with Proposition 8.8 that f̃ is strongly µ-measurable.

9 Pettis measurable functions

In this section we will define one more notion of measurability and after that we will connect the different
notions of measurabilty. This will be very useful for some later theorems, since sometimes we will be given
one notion of measurability while needing another notion.

Definition 9.1. Let (Ω,Σ, µ) be a measure space, E a Banach space, F a norming subspace of E∗ and
f : Ω→ E a function.

10



1. f is called Pettis measurable(or weakly measurable) if 〈f, x∗〉 : Ω→ K, 〈f, x∗〉 (ω) := 〈f(ω), x∗〉,
is measurable for all x∗ ∈ E∗.
Furthermore we say that f is Pettis measurable on F if 〈f, x∗〉 is measurable for all x∗ ∈ F .

2. If (Ω,Σ, µ) is σ-finite then f is called Pettis µ-measurable(or weakly µ-measurable) if
〈f, x∗〉 is µ-measurable for all x∗ ∈ E∗.
Furthermore we say that f is Pettis µ-measurable on F if 〈f, x∗〉 is µ-measurable for all x∗ ∈ F .

Definition 9.2. Let (Ω,Σ, µ) be a measure space, E a Banach space and f : Ω→ E a function.

1. f is called separably valued if there exists a separable subspace F ⊆ E such that f(ω) ∈ F for all
ω ∈ Ω.

2. If (Ω,Σ, µ) is σ-finite then f is called µ-separably valued if there exists a separable subspace F ⊆ E
such that f(ω) ∈ F for µ-almost all ω ∈ Ω.

Theorem 9.3. [9, Theorem 1.5 and Proposition 1.8] Let (Ω,Σ, µ) be a measure space, E a Banach space,
F a norming subspace of E∗. For f : Ω→ E are equivalent:

1. f is strongly measurable;

2. f is separably valued and Pettis measurable;

3. f is separably valued and Pettis measurable on F ;

4. f is separably valued and measurable.

Corollary 9.4. Let (Ω,Σ, µ) be a measure space, E a separable Banach space and f : Ω→ E a function. f
is measurable if and only if f is strongly measurable.

Corollary 9.5. [9, Corollary 1.6] The pointwise limit of a sequence of strongly measurable functions is
strongly measurable.

Corollary 9.6. [9, Corollary 1.7] Let (Ω,Σ, µ) be a measure space, E and F two Banach spaces and
f : Ω → E a strongly measurable function. Let φ : E → F a continuous function. Then φ ◦ f is strongly
measurable.

Theorem 9.7. [9, Theorem 1.11] Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space, F a norming
subspace of E∗. For f : Ω→ E are equivalent:

1. f is strongly µ-measurable;

2. f is µ-separably valued and Pettis µ-measurable;

3. f is µ-separably valued and Pettis µ-measurable on F .

Corollary 9.8. [9, Corollary 1.12] The µ-almost everywhere limit of a sequence of strongly µ-measurable
functions is strongly µ-measurable.

Corollary 9.9. [9, Corollary 1.13] Let (Ω,Σ, µ) be a σ-finite measure space, E and F two Banach spaces
and f : Ω → E a strongly µ-measurable function. Let φ : E → F a continuous function. Then φ ◦ f is
strongly µ-measurable.

Corollary 9.10. [9, Corollary 1.14] Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and
f, g : Ω → E two strongly µ-measurable functions. Let F be a subspace of E∗ separating the points of E.
If we have that 〈f, x∗〉 = 〈g, x∗〉 µ-almost everywhere for all x∗ ∈ F , then we have that f = g µ-almost
everywhere.

Theorem 9.11. Let (Ω,Σ, µ) be a σ-finite measure space and E a separable Banach space. For f : Ω→ E
are equivalent:

11



1. f is strongly µ-measurable;

2. f is Pettis µ-measurable;

3. f is µ-measurable.

4. f has a measurable µ-version.

Proof. Combining Theorem 9.3 and Theorem 9.7 give the equivalence of 1,2 and 3. The implication 4 ⇒ 3
is contained in Lemma 7.2. Proposition 8.8 and Theorem 9.3 yield that 1 implies 4.

With some more care, the implication 1⇒ 3 of Theorem 9.11 can be proven also for non-separable Banach
spaces E.

The next convenient relation seems to be missing in [9].

Lemma 9.12. Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and f : Ω → E a strongly
µ-measurable function. Then f is µ-measurable.

Proof. With Proposition 8.8 there exists a function f̃ : Ω→ E such that f̃ is strongly measurable and f = f̃
µ-a.s., so let Ω∗ ⊆ Ω such that Ω∗ ∈ Σ, µ(Ω∗) = 1 and f(ω) = f̃(ω) for all ω ∈ Ω∗. Let B be a Borel set in
E. Then we can write:

f−1(B) = (f−1(B) ∩ Ω∗) ∪ (f−1(B) ∩ (Ω \ Ω∗))
(∗)
= (f̃−1(B) ∩ Ω∗) ∪ (f−1(B) ∩ (Ω \ Ω∗))

where (∗) follows since f = f̃ on Ω∗ and thus f−1(B) ∩ Ω∗ = f̃−1(B) ∩ Ω∗.

Now we have that f−1(B) ∩ (Ω \ Ω∗) is a µ-null set, since µ(Ω \ Ω∗) = 0 (because µ(Ω∗) = 1), and thus
f−1(B) ∩ (Ω \ Ω∗) ∈ Σµ.

Furthermore we have that f̃−1(B) ∩Ω∗ = f̃−1(B) \
(
f̃−1(B) ∩ (Ω \Ω∗)

)
. Since f̃ is strongly measurable we

have with Theorem 9.3 that f̃ is measurable, so we obtain that f̃−1(B) ∈ Σ and thus that f̃−1(B) ∈ Σµ. In

the same way as above we get that f̃−1(B)∩ (Ω \Ω∗) is a µ-null set and thus f̃−1(B)∩ (Ω \Ω∗) ∈ Σµ. Since

Σµ is a σ-algebra, we obtain that f̃−1(B) ∩ Ω∗ = f̃−1(B) \
(
f̃−1(B) ∩ (Ω \ Ω∗)

)
∈ Σµ.

Thus f−1(B) = (f̃−1(B) ∩ Ω∗) ∪ (f−1(B) ∩ (Ω \ Ω∗)) ∈ Σµ since Σµ is a σ-algebra. So f is Σµ-measurable,
i.e. f is µ-measurable.

10 Bochner Integral

Definition 10.1. Let Ω be a set, A an algebra on Ω, µ a charge, E a vector space and ϕ an E-step
function with standard representation ϕ =

∑n
i=1 xi1Ai . The integral of ϕ is the vector

∫
Ω
ϕdµ defined by∫

Ω
ϕdµ =

∑n
i=1 µ(Ai)xi. This integral is independent of the representation and will later be known as the

Bochner Integral. For B ∈ A we define the integral of ϕ over B as
∫
B
ϕdµ =

∫
Ω
ϕ1Bdµ.

Theorem 10.2. [6, Theorem 11.34] Let (Ω,Σ, µ) be a measure space and E a Banach space. For all
ϕ,ψ ∈ LE and all α, β ∈ R we have

∫
(αϕ+ βψ)dµ = α

∫
ϕdµ+ β

∫
ψdµ. (i.e. the operator

∫
·dµ is a linear

operator from LE to E.)
If E is a Banach lattice then we have that LE is a Riesz space under the pointwise lattice operations (i.e.
we use the pointwise ordening on LE, so f ≤ g if and only if f(ω) ≤ g(ω) for all ω ∈ Ω, and then
sup{f, g}(ω) = sup{f(ω), g(ω)} and inf{f, g}(ω) = inf{f(ω), g(ω)} for all ω ∈ Ω) and the operator

∫
·dµ is

a positive operator from LE to E.
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Lemma 10.3. [6, Lemma 11.34] Let (Ω,Σ, µ) be a measure space and E a Banach space. Let ϕ ∈ LE with
standard representation ϕ =

∑n
i=1 xi1Ai

. Then the norm function ||ϕ|| of ϕ is a real step function (i.e.
||ϕ|| ∈ LR) with standard representation ||ϕ|| =

∑n
i=1 ||xi||1Ai

. Moreover,
∫

Ω
||ϕ||dµ =

∑n
i=1 ||xi||µ(Ai) and

||
∫

Ω
ϕdµ|| ≤

∫
Ω
||ϕ||dµ.

Lemma 10.4. [6, Lemma 11.41] Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. Let
f : Ω → E be a strongly µ-measurable function. Suppose that for two sequences (ϕn)n∈N and (ψn)n∈N of
E-step functions the real µ-measurable functions ||f−ϕn|| and ||f−ψn|| are Lebesgue integrable for all n ∈ N
and

lim
n→∞

∫
||f − ϕn||dµ = lim

n→∞

∫
||f − ψn||dµ = 0.

Then for each A ∈ Σ we have

lim
n→∞

∫
A

ϕndµ = lim
n→∞

∫
A

ψndµ

where the last two limits are taken with respect to the norm topology on E.

Definition 10.5. Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. Let f : Ω → E be a
strongly µ-measurable function. We say that f is µ-Bochner integrable if there exists a sequence (ϕn)n∈N
of E-step functions such that the real µ-measurable function ||f − ϕn|| is Lebesgue integrable for all n ∈ N
and lim

n→∞

∫
||f − ϕn||dµ = 0.

In this case we define for each A ∈ Σ the Bochner Integral of f over A by
∫
A
fdµ = lim

n→∞

∫
A
ϕndµ where

the last limit is in the norm topology of E.

Theorem 10.6. [6, Theorem 11.43] Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. Let
f, g : Ω→ E be µ-Bochner integrable functions and let α, β ∈ R. Then αf + βg is µ-Bochner integrable and∫
A

(αf + βg)dµ = α
∫
A
fdµ+ β

∫
A
gdµ for all A ∈ Σ.

Moreover, if E is a Banach lattice and f(ω) ≤ g(ω) for µ-almost all ω ∈ Ω then
∫
A
fdµ ≤

∫
A
gdµ for all

A ∈ Σ.

Theorem 10.7. [6, Theorem 11.44] Let (Ω,Σ, µ) be a finite measure space and E a Banach space. Let
f : Ω→ E be a µ-measurable function. Then f is µ-Bochner integrable if and only if its norm function ||f ||
is Lebesgue integrable (i.e.

∫
||f ||dλ <∞ with λ the Lebesgue measure).

Lemma 10.8. [6, Lemma 11.45] Let (Ω,Σ, µ) be a σ-finite measure space, let E and F be two Banach
spaces and let f : Ω→ E be a µ-Bochner integrable function. If T : E → F is a bounded operator, then the
function Tf : Ω→ F , defined by (Tf)(ω) = T (f(ω)), is µ-Bochner integrable with

∫
Ω
Tfdµ = T (

∫
Ω
fdµ).

Proposition 10.9. [9, Proposition 1.16] Let (Ω,Σ, µ) be a σ-finite measure space, let E be a Banach space
and let f : Ω→ E be a strongly µ-measurable function. f is µ-Bochner integrable if and only if

∫
Ω
||f ||dµ <∞

and in this case we have ||
∫

Ω
fdµ|| ≤

∫
Ω
||f ||dµ.

Proposition 10.10. [9, Proposition 1.17] Let (Ω,Σ, µ) be a σ-finite measure space, let E be a Banach space
and let f : Ω→ E be a µ-Bochner integrable function. If µ(Ω) = 1, then

∫
Ω
fdµ ∈ conv{f(ω) : ω ∈ Ω}.

Theorem 10.11. [9, Proposition 1.18] Let (Ω,Σ, µ) be a σ-finite measure space, let E be a Banach space,
let (fn)n∈N, with fn : Ω → E for all n ∈ N, be a sequence of µ-Bochner integrable functions. Assume that
there exists a function f : Ω→ E and a µ-Bochner integrable function g : Ω→ R such that

1. lim
n→∞

fn = f µ-almost everywhere;

2. ||fn|| ≤ |g| µ-almost everywhere.

Then f is µ-Bochner integrable and lim
n→∞

∫
Ω
||fn − f ||dµ = 0.

In particular we have lim
n→∞

∫
Ω
fndµ =

∫
Ω
fdµ.
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The following Proposition is known as Jensen’s inequality.
Proposition 10.12. Let (Ω,Σ, µ) be a σ-finite measure space with µ(Ω) = 1, E a Banach space, f : Ω→ E
a Bochner integrable function and φ : E → R a convex and lower semi continuous function. If φ ◦ f is
intergrable, then we have φ

( ∫
Ω
fdµ

)
≤
∫

Ω
φ ◦ fdµ.

11 Lp-spaces

Let (Ω,Σ, µ) be a measure space and E a normed space. On EΩ we define the equivalence relation ∼ by
f ∼ g if and only if f = g µ-almost everywhere. Recall the following definitions.
Definition 11.1. Let (Ω,Σ, µ) be a measure space. For 1 ≤ p < ∞ we define Lp(Ω) := {f : Ω →
R | f measurable and

∫
Ω
|f |pdµ <∞}/ ∼.

Definition 11.2. Let (Ω,Σ, µ) be a measure space. We define L∞(Ω) := {f : Ω→ R | f measurable and ∃M ≥
0 such that |f | ≤M a.s.}/ ∼.

Lemma 11.3. [7, Theorem 1.61, Example 2.5] Let (Ω,Σ, µ) be a measure space and 1 ≤ p < ∞. Then

||f ||Lp(Ω) :=
( ∫

Ω
|f |pdµ

) 1
p is a norm on Lp(Ω) and Lp(Ω) equipped with this norm is a Banach space.

Lemma 11.4. [7, Theorem 1.61, Example 2.5] Let (Ω,Σ, µ) be a measure space. Then ||f ||L∞(Ω) := inf{M ≥
0 : |f | ≤M a.s.} is a norm on L∞(Ω) and L∞(Ω) equipped with this norm is a Banach space.

However we will not consider R but general Banach spaces in this thesis. Therefore we will give the above
definitions in a similar fashion but for general Banach spaces.

Definition 11.5. Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. For 1 ≤ p <∞ we define
Lp(Ω;E) := {f : Ω→ E | f strongly µ-measurable and

∫
Ω
||f ||pdµ <∞}/ ∼.

Definition 11.6. Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. We define L∞(Ω;E) :=
{f : Ω→ E | f strongly µ-measurable and ∃r ≥ 0 such that µ({||f || > r}) = 0}/ ∼.

Lemma 11.7. [9, p. 12] Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and 1 ≤ p <∞. Then

||f ||Lp(Ω;E) :=
( ∫

Ω
||f ||pdµ

) 1
p is a norm on Lp(Ω;E) and Lp(Ω;E) equipped with this norm is a Banach

space.

Lemma 11.8. [9, p. 12] Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and 1 ≤ p <∞. Then
the set of all E-step functions is dense in Lp(Ω;E).

Lemma 11.9. [9, p. 12] Let (Ω,Σ, µ) be a σ-finite measure space and E a Banach space. Then ||f ||L∞(Ω;E) :=
inf{r ≥ 0 : µ({||f || > r}) = 0} is a norm on L∞(Ω;E) and L∞(Ω;E) equipped with this norm is a Banach
space.

Remark 11.10. Let (Ω,Σ, µ) be a σ-finite measure space and 1 ≤ p < ∞. Then we have that Lp(Ω;R) =
Lp(Ω) and that L∞(Ω;R) = L∞(Ω). It is straightforward to prove this.

Definition 11.11. Let (Ω,Σ, µ) be a σ-finite measure space, E a Banach space and 1 ≤ p ≤ ∞. Let G ⊆ Σ
be a sub-σ-algebra. Then we define
Lp(Ω,G;E) := {f ∈ Lp(Ω;E) | f has a µ-version that is strongly µ-measurable with respect to G}.

Definition 11.12. Let (Ω,Σ, µ) be a σ-finite measure space with µ(Ω) < ∞, E a Banach space and let
1 ≤ p < ∞. T ⊆ Lp(Ω;E) is uniformly p-integrable (or just uniformly integrable if p = 1) if for all
ε > 0 there exists an r > 0 such that

sup
f∈T

∫
Ω

1{
||f ||>r

}||f ||pdµ ≤ ε.
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Remark 11.13. [10, above Proposition 2.6.39] Definition 11.12 is equivalent with the statement that for all
ε > 0 there exists an r > 0 such that

sup
g∈
{
||f ||p:f∈T

}∫
Ω

1{
|g|>r

}|g|dµ ≤ ε.

12 Random Variables

Approximation by step functions plays an essential role in probability theory. Reduction steps in proofs
to step functions are even commonly referred to as the standard machinery. Banach space valued random
variables are therefore defined as strongly P-measurable maps, to keep the ability to use these approximations
in proofs.
Definition 12.1. Let (Ω,F ,P) be a probability space (i.e. P(Ω) = 1) and E a Banach space. X : Ω → E
is a random variable if X is strongly P-measurable.

Definition 12.2. Let (Ω,F ,P) be a probability space, E a Banach space and X : Ω→ E a random variable.

• IfX is P-Bochner integrable, the expectation of X is defined as the Bochner integral E(X) :=
∫

Ω
XdP.

• The distribution of X is the Borel probability measure µX on E defined by µX(B) := P(X ∈ B) :=

P(X̃ ∈ B) := P({ω ∈ Ω : X̃(ω) ∈ B}) for B ∈ B(E) where X̃ is a strongly measurable P-version of
X. (All goes well by Proposition 8.8 and Theorem 9.3.)

Definition 12.3. Let E be a Banach space. If E-valued random variables, not necessarily defined on the
same probability spaces, have the same distribution they are said to be identically distributed.

Theorem 12.4. Let (Ω,F ,P) be a probability space, E a Banach space and X : Ω→ E a random variable.
Denote by Y a strongly measurable P-version of X. Define B := {Y (ω) : ω ∈ Ω}. Then B as well as B are
separable.

Proof. With Proposition 8.8 we have that Y exists, since X is a random variable and thus strongly P-
measurable. Y is strongly measurable thus there exists a sequence of E-simple functions (ϕn)n∈N such that
lim
n→∞

ϕn(ω) = Y (ω) for all ω ∈ Ω. For every n ∈ N we have that {ϕn(ω) : ω ∈ Ω} is finite since φn is an

E-simple function. Now consider A :=
∞⋃
n=1
{ϕn(ω) : ω ∈ Ω}. Then A is obviously countable and dense in

A, so A is separable. Now we will show that B ⊆ A. Let x ∈ B. Then there exists an ω ∈ Ω such that
Y (ω) = x, and thus lim

n→∞
ϕn(ω) = x. By definition of A we obviously have that ϕn(ω) ∈ A for all n ∈ N and

thus by definition of the closure we obtain that x ∈ A. Thus we have that B ⊆ A, and since A is a separable
metric space we obtain by Theorem 3.13 that B is separable. Furthermore by Theorem 3.15 we now obtain
that B is also separable.

Lemma 12.5. [9, above Proposition 2.3] Let E and F be Banach spaces and let X and Y be two identically
distributed E-valued random variables defined on some, not necessarily the same, probability spaces. Let
f : E → F be a Borel measurable function. Then f(X) and f(Y ) are identically distributed.

Proposition 12.6. [9, Proposition 2.3] Let (Ω,F ,P) be a probability space, E a Banach space and X : Ω→
E a random variable. Then for every ε > 0 there exists a compact set K ⊆ E such that P({X /∈ K}) < ε.

Definition 12.7. Let (Ω,F ,P) be a probability space, E a Banach space and X a family of E-valued
random variables on Ω. X is called uniformly tight if for every ε > 0 there exists a compact set K ⊆ E
such that P({X /∈ K}) < ε for all X ∈X .
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Lemma 12.8. [9, Lemma 2.5] Let (Ω,F ,P) be a probability space, E a Banach space and X a family of
E-valued random variables on Ω. If X is uniformly tight, then X −X := {X1 −X2 : X1, X2 ∈ X } is
uniformly tight.

Definition 12.9. Let (Ω,F ,P) be a probability space, E a Banach space and (Xn)n∈N a sequence of E-
valued random variables on Ω. We say that (Xn)n∈N converges in probability to the random variable
X : Ω→ E if lim

n→∞
P(||Xn −X|| > r) = 0 for all r > 0.

The following lemma is called Chebyshev’s inequality.
Lemma 12.10. [9, p. 20] Let (Ω,F ,P) be a probability space and X ∈ Lp(Ω). Then P(|X| ≥ r) ≤ 1

rpE(|X|p)
for all r > 0 and 1 ≤ p <∞.

Corollary 12.11. [9, p. 20] Let (Ω,F ,P) be a probability space, E a Banach space and (Xn)n∈N a sequence
of E-valued random variables on Ω. If (Xn)n∈N converges to a random variable X : Ω→ E in Lp(Ω;E) for
some 1 ≤ p <∞, then lim

n→∞
Xn = X in probability.

Definition 12.12. Let (Ω,F ,P) be a probability space, E a Banach space and (Xn)n∈N a sequence of E-
valued random variables on Ω. We say that (Xn)n∈N converges a.s. to some random variable X : Ω→ E
if P(ω : lim

n→∞
||Xn(ω)−X(ω)|| = 0) = 1.

Proposition 12.13. [9, Proposition 2.11] Let (Ω,F ,P) be a probability space, E a Banach space and
(Xn)n∈N a sequence of E-valued random variables on Ω. If (Xn)n∈N converges in probability, then it has a
subsequence (Xnk

)k∈N that is a.s. convergent.

Definition 12.14. Let (Ω,F ,P) be a probability space, E a Banach space and X : Ω → E a random
variable. X is called symmetric if X and −X are identically distributed.

Lemma 12.15. Let (Ω,F ,P) be a probability space, E a Banach space and X : Ω→ E a symmetric random

variable. Let X̃ be a P-version of X. Then X̃ is also a symmetric random variable.

Proof. By Lemma 8.9 we have that X̃ is a random variable. By definition we have that X and −X are
identically distributed. Furthermore we have by definition that X = X̃ a.s. and thus we obtain that X and
X̃ are identically distributed. We also have by definition of P-versions that −X = −X̃ a.s. and thus −X
and −X̃ are identically distributed. Thus we obtain that X̃ and −X̃ are identically distributed, and so X̃
is a symmetric random variable.

Lemma 12.16. Let (Ω,F ,P) be a probability space, E a Banach space and let X, (Xi)i∈N : Ω→ E be random

variables. Let X̃ be a strongly measurable P-version of X and for i ∈ N, let X̃i be a strongly measurable

P-version of Xi. Then X̃ −
k∑
i=1

X̃i is a strongly measurable P-version of X −
k∑
i=1

Xi for all k ∈ N.

Proof. X̃ and (X̃i)i∈N exist by Proposition 8.8 and by definition we have that X̃
a.s.
= X and X̃i

a.s.
= Xi for

all i ∈ N. Now let k ∈ N. Then we thus have that X −
k∑
i=1

Xi
a.s.
= X̃ −

k∑
i=1

X̃i so we obtain that X̃ −
k∑
i=1

X̃i

is a P-version of X −
k∑
i=1

Xi for all k ∈ N.

Furthermore we have that (Ω,F ,P) is a probability space so with Remark 8.6 we have that SM(Ω, E) is

a vector subspace of EΩ and thus X̃ −
k∑
i=1

X̃i is strongly measurable on Ω since X̃, X̃i ∈ SM(Ω, E) for all

i ∈ N. Hence X̃ −
k∑
i=1

X̃i is a strongly measurable P-version of X −
k∑
i=1

Xi for all k ∈ N.
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13 Independence

Many results we want to lift to the non-separable setting involve independence of random variables. As
pointed out in Chapter 1, we need to build up this concept from scratch, since the literature is somewhat
sloppy with the non-separable case. The main goal of this section is to lift [11, Theorem 2.4], which is
described in Theorem 13.19, to the non-separable setting.

Definition 13.1. Let (Ω,F ,P) be a probability space and I an index set. A sequence of σ-algebras (Fi)i∈I
with Fi ⊆ F for all i ∈ I is called independent if for every n ∈ N and for all choices of Ei ∈ Fji for

i ∈ {1, ..., n} and with ji 6= jk for all i, k ∈ {1, ..., n} with i 6= k it holds that P(E1 ∩ ... ∩ En) =
n∏
i=1

P(Ei) .

Definition 13.2. Let (Ω,F ,P) be a probability space, let I be an index set, and let Ei be a Banach space
and Xi : Ω → Ei a random variable for all i ∈ I. We say that (Xi)i∈I are independent if for all N ∈ N,
i1, ..., iN ∈ I, and B1, ..., BN Borel sets in Ei1 , ..., EiN we have that

P(Xi1 ∈ B1, ..., XiN ∈ BN ) =

N∏
n=1

P(Xin ∈ Bn).

Definition 13.3. Let (Ω,F ,P) be a probability space, let I and J be two index sets, and let Ei and Fj be
Banach spaces and Xi : Ω → Ei and Yj : Ω → Fj be random variables for all i ∈ I and all j ∈ J . We say
that (Xi)i∈I is independent of (Yj)j∈J if for all n,m ∈ N, i1, ..., in ∈ I, j1, ..., jm ∈ J , B1, ..., Bn Borel
sets in Ei1 , ..., Ein and C1, ..., Cm Borel sets in Fj1 , ..., Fjm we have that

P(Xi1 ∈ B1, ..., Xin ∈ Bn, Yj1 ∈ C1, ..., Yjm ∈ Cm) = P(Xi1 ∈ B1, ..., Xin ∈ Bn)P(Yj1 ∈ C1, ..., Yjm ∈ Cm).

The next proposition is a result that is often used, though a proof is difficult to find. It is however proven
in [12], as Lemma 4.2. As the proof in [12] omits some details, we include a detailed proof here.
Proposition 13.4. Let (Ω,F ,P) be a probability space. Let I1, I2, ... be π-systems with Ii ⊆ F for all
i ∈ N. Suppose that for all m ∈ N and all choices of Ij ∈ Iij for j ∈ {1, ...,m} and with ij 6= ik for all

j, k ∈ {1, ...,m} with j 6= k it holds that P(I1 ∩ ... ∩ Im) =
m∏
j=1

P(Ij).

Then σ(I1), σ(I2), ... are independent.

Proof. Without loss of generality we assume that Ω ∈ Ii for all i ∈ N. This is possible since if Ω /∈ Ii for
some i ∈ N, then Ii ∪ {Ω} is still a π-system, σ(Ii) = σ(Ii ∪ {Ω}) and I1, ...,Ii−1, Ii ∪ {Ω}, Ii+1, ... satisfy
the same property as stated in the Proposition for I1, I2, ... Define

D :=
{
A ∈ F : P(A ∩B) = P(A)P(B) ∀B ∈

{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈ Ii ∀i ∈ {2, ..., n}

}}
.

First I will prove that I1 ⊆ D. Let C ∈ I1. Then for all choices of n ∈ N and B2 ∈ I2, ..., Bn ∈ In we have

P(C ∩B2 ∩ ... ∩Bn)
(∗1)
= P(C)P(B2) · ... · P(Bn)

(∗2)
= P(C)P(B2 ∩ ... ∩Bn),

where (∗1) and (∗2) follow by the assumption. Thus for all B ∈
{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈ Ii ∀i ∈

{2, ..., n}
}

we have that P(C ∩B) = P(C)P(B). So we have that C ∈ D since C ∈ F , and thus I1 ⊆ D.

Next I will prove that D is a d-system.

• F is a σ-algebra, and thus we have that Ω ∈ F . For B ∈
{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈ Ii ∀i ∈

{2, ..., n}
}

we obviously have that P(Ω ∩B) = P(B) = 1 · P(B) = P(Ω)P(B). Hence Ω ∈ D.
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• Let A,B ∈ D with A ⊆ B and let C ∈
{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈ Ii ∀i ∈ {2, ..., n}

}
. Then we

have

P((B \A) ∩ C) = P((B ∩ C) \ (A ∩ C))
(∗1)
= P(B ∩ C)− P(A ∩ C)

(∗2)
= P(B)P(C)− P(A)P(C)

= (P(B)− P(A))P(C)
(∗3)
= P(B \A)P(C),

where (∗1) holds since A ⊆ B and thus (A∩C) ⊆ (B ∩C), (∗2) since A,B ∈ D and (∗3) since A ⊆ B.
Thus we obtain that B \A ∈ D since C was arbitrary.

• Let Am ∈ D for m ∈ N with Am ⊆ Am+1 for all m ∈ N. Let B ∈
{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈

Ii ∀i ∈ {2, ..., n}
}

. Then we have

P
(( ∞⋃

m=1

Am
)
∩B

)
= P

( ∞⋃
m=1

(Am ∩B)
)
.

Now consider the sequence EN =
⋃N
m=1(Am ∩ B). Then this is an increasing sequence with limit

E =
⋃∞
N=1EN =

⋃∞
N=1

⋃N
m=1(Am ∩ B) =

⋃∞
m=1(Am ∩ B). With part (i) of Proposition 5.2 we get

lim
N→∞

P(EN ) = P(E), i.e. lim
N→∞

P
(⋃N

m=1(Am ∩B)
)

= P
(⋃∞

m=1(Am ∩B)
)

. Thus we have

P
( ∞⋃
m=1

(Am ∩B)
)

= lim
N→∞

P
( N⋃
m=1

(Am ∩B)
)

(∗1)
= lim

N→∞
P(AN ∩B)

(∗2)
= lim

N→∞
P(AN )P(B)

= P(B) lim
N→∞

P(AN )
(∗3)
= P(B)P

( ∞⋃
N=1

AN

)
= P

( ∞⋃
N=1

AN

)
P(B),

where (∗1) follows since (AN )N∈N is an increasing sequence and thus
⋃N
m=1(Am ∩B) = AN ∩B, (∗2)

follows since AN ∈ D for all N ∈ N and (∗3) follows with part (i) of Proposition 5.2 since (AN )N∈N is
an increasing sequence with limit

⋃∞
N=1AN . This yields

⋃∞
m=1Am ∈ D.

So D is a d-system.

Thus D is a d-system containing the π-system I1 and thus by Lemma 2.6 we have that σ(I1) ⊆ D. So for
all choices A ∈ σ(I1) and all choices B ∈

{
I2 ∩ ... ∩ In : n ∈ N≥2 and Ii ∈ Ii ∀i ∈ {2, ..., n}

}
we have that

P(A ∩B) = P(A)P(B). Since Ω ∈ Ii for all i ∈ N we obtain that σ(I1), I2, I3, ... satisfy the same property
as stated in the Proposition for I1, I2,..., since a σ-algebra is also a π-system by Proposition 2.5.

Now we can apply the above repeatedly to obtain that σ(I1), ..., σ(In), In+1, ... satisfy the same property
for each n ∈ N. By definition, this yields that σ(I1), σ(I2), ... are independent.

Next we will study independence of random variables. Let (Ω,F ,P) be a probability space and E a Banach
space. Recall that an E-valued random variable is a strongly P-measurable map X : Ω→ E. For E-valued
random variables defined on (Ω,F ,P) it can be useful to consider the σ-algebra generated by the random
variables. However the definition of this σ-algebra is not necessarily clear, since this σ-algebra has to be
contained in F . When discussing independence of random variables the definition below appears useful,
but this definition only works when all the random variables are measurable. Therefore we introduce the
following assumption.

Assumption A1. Let (Ω,F ,P) be a probability space, I an index set, (Ei)i∈I Banach spaces and (Xi)i∈I :
Ω→ Ei random variables. Xi is measurable for all i ∈ I.

When F is complete, we have with Lemma 9.12 that random variables on (Ω,F ,P) are measurable. If F is
not complete, we can consider the completion of F , FP, and thus we can still use the next definition with
respect to (Ω,FP, P̂).
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Definition 13.5. Let (Ω,F ,P) be a probability space, I an index set, (Ei)i∈I Banach spaces and (Xi)i∈I :
Ω → Ei random variables. Assume that A1 is satisfied. Then the σ-algebra generated by (Xi)i∈I ,
denoted by σ(Xi : i ∈ I), is the smallest σ-algebra such that Xi is measurable with respect to this σ-algebra
for all i ∈ I. We can write

σ(Xi : i ∈ I) :=

σ
({
{ω ∈ Ω : Xji(ω) ∈ Bji for all i ∈ N} : ji ∈ I for all i ∈ N, Bji a Borel set in Eji for all i ∈ N

})
.

Remark 13.6. Note that{
{ω ∈ Ω : Xji(ω) ∈ Bji for all i ∈ N} : ji ∈ I for all i ∈ N, Bji a Borel set in Eji for all i ∈ N

}
:= Π(Xi : i ∈ I)

is a π-system and for I = {1} it is a σ-algebra.

Definition 13.5 corresponds with the definition of the generated σ-algebra for R-valued random variables,
but since the general definition of an E-valued random variable involves strong P-measurability, we might
want to consider a different construction of the generated σ-algebra than the above, namely the smallest
σ-algebra such that the random variables are strongly measurable. But for this σ-algebra to be contained
in F , and thus to be well-defined, there has to be a stronger assumption on the random variables than in
Definition 13.5. Under this assumption the σ-algebras turn out to be the same, and with Proposition 8.8 it
seems that the assumption is not really a restriction.

Lemma 13.7. Let (Ω,F ,P) be a probability space, I an index set, (Ei)i∈I Banach spaces and (Xi)i∈I :
Ω → Ei random variables. Assume that Xi is strongly F-measurable for all i ∈ I. The smallest σ-algebra
such that Xi is strongly measurable with respect to this σ-algebra for all i ∈ I equals σ(Xi : i ∈ I).

Proof. Denote by σσ(Xi : i ∈ I) the smallest σ-algebra such that for all i ∈ I the random variable Xi is
strongly measurable with respect to this σ-algebra. Let i ∈ I. Since Xi is strongly measurable with respect
to σσ(Xj : j ∈ I) we have with Theorem 9.3 that Xi is measurable with respect to σσ(Xj : j ∈ I) and that
Xi is separably valued. Now since Xi is measurable with respect to σ(Xj : j ∈ I) and separably valued we
have with Theorem 9.3 that Xi is strongly measurable with respect to σ(Xj : j ∈ I). Thus we obtain that
σ(Xi : i ∈ I) = σσ(Xi : i ∈ I).

Proposition 13.8. Let (Ω,F ,P) be a probability space and I an index set. Let Ei be a Banach space and
Xi : Ω → Ei a random variable for all i ∈ I. Assume that A1 is satisfied. Then we have that (Xi)i∈I are
independent if and only if the σ-algebras generated by the random variables are independent, i.e. (σ(Xi))i∈I
are independent σ-algebras.

Proof. Since we assume that A1 is satisfied the generated σ-algebras are well-defined.

• Suppose that (Xi)i∈I are independent. Let n ∈ N, ji ∈ I for i ∈ {1, ..., n} with ji 6= jk for all
i, k ∈ {1, ..., n} with i 6= k, and let Ai ∈ σ(Xji) for i ∈ {1, ..., n}. Then we have for i ∈ {1, ..., n} that
Ai = {ω ∈ Ω : Xji(ω) ∈ Bi} for some Borel set Bi ⊆ Eji . We obtain

P(A1 ∩ ... ∩An) = P
( n⋂
i=1

{ω ∈ Ω : Xji(ω) ∈ Bi}
)

= P(Xj1 ∈ B1, ..., Xjn ∈ Bn)

(∗)
=

n∏
i=1

P(Xji ∈ Bi) =

n∏
i=1

P({ω ∈ Ω : Xji(ω) ∈ Bi}) =

n∏
i=1

P(Ai),

where (∗) follows since (Xi)i∈I are independent. So we obtain that (σ(Xi))i∈I are independent σ-
algebras.
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• Now suppose that (σ(Xi))i∈I are independent σ-algebras. Let n ∈ N, j1, ..., jn ∈ I and B1, ..., Bn
Borel sets in Ej1 , ..., Ejn . Then we have:

P(Xj1 ∈ B1, ..., Xjn ∈ Bn) = P
( n⋂
i=1

{ω ∈ Ω : Xji(ω) ∈ Bi}
)

(∗)
=

n∏
i=1

P({ω ∈ Ω : Xji(ω) ∈ Bi}) =

n∏
i=1

P(Xji ∈ Bi),

where (∗) holds since {ω ∈ Ω : Xji(ω) ∈ Bi} ∈ σ(Xji) for all i ∈ {1, ..., n} and (σ(Xi))i∈I are
independent σ-algebras. Thus we have that (Xi)i∈I are independent.

Proposition 13.9. Let (Ω,F ,P) be a probability space, I and J index sets and Ei and Fj Banach spaces
for all i ∈ I and all j ∈ J . Let Xi : Ω → Ei and Yj : Ω → Fj be random variables for all i ∈ I and all
j ∈ J . Assume that A1 is satisfied. Then (Xi)i∈I and (Yj)j∈J are independent if and only if σ(Xi : i ∈ I)
and σ(Yj : j ∈ J ) are independent.

Proof. As before the generated σ-algebras are well-defined.

• Suppose that (Xi)i∈I and (Yj)j∈J are independent. Let A1 ∈ Π(Xi : i ∈ I) and let A2 ∈ Π(Yj : j ∈ J ),
where we use the notation of Remark 13.6. Then we have that A1 = {ω ∈ Ω : Xik(ω) ∈ Bk for all k ∈
N} with for all k ∈ N, Bk a Borel set in Eik . Similarly, A2 = {ω ∈ Ω : Yjl(ω) ∈ Cl for all l ∈ N} with
for all l ∈ N, Cl a Borel set in Fjl . Then we have:

P(A1 ∩A2) = P({ω ∈ Ω : Xik(ω) ∈ Bk for all k ∈ N} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl for all l ∈ N})

= P

(( ∞⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk}

)
∩

( ∞⋂
i=1

{ω ∈ Ω : Yjl(ω) ∈ Cl}

))

= P

( ∞⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl}

)
.

Now consider the sequence given by En =
⋂n
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl} for

n ∈ N. Then we have for all n ∈ N that En+1 =
⋂n+1
i=1 {ω ∈ Ω : Xik(ω) ∈ Bk}∩{ω ∈ Ω : Yjl(ω) ∈ Cl} ⊆⋂n

i=1{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl} = En so the sequence is decreasing. Furthermore
we have that P(En) ≤ 1 for all n ∈ N and the sequence has limit E :=

⋂∞
n=1En =

⋂∞
n=1

⋂n
i=1{ω ∈ Ω :

Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl} =
⋂∞
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl}. So with

part (ii) of Proposition 5.2 we have that lim
n→∞

P(En) = P(E). Thus we obtain:

P

( ∞⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl}

)
= P(E) = lim

n→∞
P(En)

= lim
n→∞

P

(
n⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk} ∩ {ω ∈ Ω : Yjl(ω) ∈ Cl}

)

= lim
n→∞

P

((
n⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk}

)
∩

(
n⋂
i=1

{ω ∈ Ω : Yjl(ω) ∈ Cl}

))

(∗1)
= lim

n→∞
P

(
n⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk}

)
P

(
n⋂
i=1

{ω ∈ Ω : Yjl(ω) ∈ Cl}

)
,

where (∗1) follows since (Xi)i∈I and (Yj)j∈J are independent.
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Now consider the sequence given by Gn =
⋂n
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} for all n ∈ N and the sequence

given by Dn =
⋂n
i=1{ω ∈ Ω : Yjl(ω) ∈ Cl}. Then we have for all n ∈ N that Gn+1 =

⋂n+1
i=1 {ω ∈

Ω : Xik(ω) ∈ Bk} ⊆
⋂n
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} = Gn and Dn+1 =

⋂n+1
i=1 {ω ∈ Ω : Yjl(ω) ∈

Cl} ⊆
⋂n
i=1{ω ∈ Ω : Yjl(ω) ∈ Cl} = Dn thus the sequences are decreasing. Furthermore we have

that P(Gn) ≤ 1 and P(Dn) ≤ 1 for all n ∈ N and the sequences have the limits G :=
⋂∞
n=1Gn =⋂∞

n=1

⋂n
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} =

⋂∞
i=1{ω ∈ Ω : Xik(ω) ∈ Bk} = A1 and D :=

⋂∞
n=1Dn =⋂∞

n=1

⋂n
i=1{ω ∈ Ω : Yjl(ω) ∈ Cl} =

⋂∞
i=1{ω ∈ Ω : Yjl(ω) ∈ Cl} = A2. So with part (ii) of Proposition

5.2 we have that lim
n→∞

P(Gn) = P(G) = P(A1) and lim
n→∞

P(Dn) = P(D) = P(A2), thus we obtain:

lim
n→∞

P

(
n⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk}

)
P

(
n⋂
i=1

{ω ∈ Ω : Yjl(ω) ∈ Cl}

)

= lim
n→∞

P

(
n⋂
i=1

{ω ∈ Ω : Xik(ω) ∈ Bk}

)
· lim
n→∞

P

(
n⋂
i=1

{ω ∈ Ω : Yjl(ω) ∈ Cl}

)
= lim
n→∞

P(An) · lim
n→∞

P(Dn) = P(A1)P(A2).

Thus we have that P(A1∩A2) = P(A1)P(A2) so now we obtain with Proposition 13.4 that σ(Xi : i ∈ I)
is independent of σ(Yj : j ∈ J ).

• Now suppose that σ(Xi : i ∈ I) is independent of σ(Yj : j ∈ J ). Let n,m ∈ N, i1, ..., in ∈ I,
j1, ..., jm ∈ J , B1, ..., Bn Borel sets of Ei1 , ..., Ein and C1, ..., Cm Borel sets of Fj1 , ..., Fjm . Then we
have:

P(Xi1 ∈ B1, ..., Xin ∈ Bn, Yj1 ∈ C1, ..., Yjm ∈ Cm)

= P({ω ∈ Ω : Xik(ω) ∈ Bi for all k ∈ {1, ..., n}} ∩ {ω ∈ Ω : Yjk(ω) ∈ Cj for all k ∈ {1, ...,m}})
(∗)
= P({ω ∈ Ω : Xik(ω) ∈ Bi for all k ∈ {1, ..., n}})P({ω ∈ Ω : Yjk(ω) ∈ Cj for all k ∈ {1, ...,m}})

= P(Xi1 ∈ B1, ..., Xin ∈ Bn)P(Yj1 ∈ C1, ..., Yjm ∈ Cm)

where (∗) since {ω ∈ Ω : Xik(ω) ∈ Bi for all k ∈ {1, ..., n}} ∈ σ(Xi : i ∈ I) and {ω ∈ Ω : Yjk(ω) ∈
Cj for all k ∈ {1, ...,m}} ∈ σ(Yj : j ∈ J ) and σ(Xi : i ∈ I) is independent of σ(Yj : j ∈ J ). Thus we
have that (Xi)i∈I is independent of (Yj)j∈J .

So (Xi)i∈I and (Yj)j∈J are independent if and only if σ(Xi : i ∈ I) and σ(Yj : j ∈ J ) are independent.

Lemma 13.10. [9, p. 21] Let (Ω,F ,P) be a probability space, let I be an index set and let Ei be a Banach
space and Xi : Ω→ Ei a random variable for all i ∈ I. We have that (Xi)i∈I are independent if and only if
every finite subfamily of (Xi)i∈I is independent.

Proposition 13.11. [9, Proposition 2.13] Let (Ω,F ,P) be a probability space, E1, ..., EN Banach spaces and
X1 : Ω → E1,..., XN : Ω → EN random variables. X1, ..., XN are independent if and only if µ(X1,...,XN ) =
µX1× ...×µXN

, where µ(X1,...,XN ) is the distribution of the E1× ...×EN -valued random variable (X1, ..., XN )
and µX1

× ...× µXN
is the product measure.

Proposition 13.12. [9, Proposition 2.14] Let (Ω,F ,P) be a probability space, E1, E2 Banach spaces,
(Xn)n∈N, X : Ω → E1 random variables and (Yn)n∈N, Y : Ω → E2 random variables. If lim

n→∞
Xn = X

in probability, lim
n→∞

Yn = Y in probability and if for each n ∈ N we have that Xn is independent of Yn, then

X and Y are independent.

Lemma 13.13. Let (Ω,F ,P) be a probability space, I an index set, (Ei)i∈I Banach spaces and (Xi)i∈I :

Ω → Ei random variables. Let (X̃i)i∈I : Ω → Ei such that X̃i is a P-version of Xi for all i ∈ I. Then we

have that (Xi)i∈I are independent if and only if (X̃i)i∈I are independent.
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Proof. By Lemma 8.9 we have that (X̃i)i∈I are random variables, and thus we can speak of independence

of (X̃i)i∈I .

• Suppose (Xi)i∈I are independent. Let N ∈ N, i1, ..., iN ∈ I and B1, ..., BN Borel sets in Ei1 , ..., EiN .
Then we have:

P(X̃i1 ∈ B1, ..., X̃iN ∈ BN )
(∗1)
= P(Xi1 ∈ B1, ..., XiN ∈ BN )

(∗2)
=

N∏
n=1

P(Xin ∈ Bn)
(∗3)
=

N∏
n=1

P(X̃in ∈ Bn)

where (∗1) and (∗3) since we have that Xi = X̃i a.s. for all i ∈ I and (∗2) since (Xi)i∈I are independent.

So (X̃i)i∈I are independent random variables.

• Suppose (X̃i)i∈I are independent. Let N ∈ N, i1, ..., iN ∈ I and B1, ..., BN Borel sets in Ei1 , ..., EiN .
Then we have:

P(Xi1 ∈ B1, ..., XiN ∈ BN )
(∗1)
= P(X̃i1 ∈ B1, ..., X̃iN ∈ BN )

(∗2)
=

N∏
n=1

P(X̃in ∈ Bn)
(∗3)
=

N∏
n=1

P(Xin ∈ Bn)

where (∗1) and (∗3) hold since we have that Xi = X̃i a.s. for all i ∈ I and (∗2) since (X̃i)i∈I are
independent. So (Xi)i∈I are independent random variables.

So (Xi)i∈I are independent if and only if (X̃i)i∈I are independent.

Lemma 13.14. Let (Ω,F ,P) be a probability space, I and J index sets, (Ei)i∈I and (Fi)i∈J Banach spaces,

and Xi : Ω→ Ei and Yj : Ω→ Fj random variables for all i ∈ I and all j ∈ J . Let X̃i be a P-version of Xi

for i ∈ I and let Ỹj be a P-version of Yj for j ∈ J . Then (Xi)i∈I and (Yj)j∈J are independent if and only

if (X̃i)i∈I and (Ỹj)j∈J are independent.

Proof. By Lemma 8.9 we have that (X̃i)i∈I and (Ỹj)j∈J are sequences of random variables, and thus we can

speak of independence of (X̃i)i∈I and (Ỹj)j∈J .

• Suppose (Xi)i∈I is independent of (Yj)j∈J . Let n,m ∈ N, i1, ..., in ∈ I, j1, ..., jm ∈ J , B1, ..., Bn Borel
sets in Ei1 , ..., Ein and C1, ..., Cm Borel sets in Fj1 , ..., Fjm . Then we have:

P(X̃i1 ∈ B1, ..., X̃in ∈ Bn, Ỹj1 ∈ C1, ..., Ỹjm ∈ Cm)

(∗1)
= P(Xi1 ∈ B1, ..., Xin ∈ Bn, Yj1 ∈ C1, ..., Yjm ∈ Cm)

(∗2)
= P(Xi1 ∈ B1, ..., Xin ∈ Bn)P(Yj1 ∈ C1, ..., Yjm ∈ Cm)

(∗3)
= P(X̃i1 ∈ B1, ..., X̃in ∈ Bn)P(Ỹj1 ∈ C1, ..., Ỹjm ∈ Cm)

where (∗1) and (∗3) follow since we have that Xi = X̃i a.s. for all i ∈ I and Yj = Ỹj a.s. for all j ∈ J ,

and (∗2) since (Xi)i∈I is independent of (Yj)j∈J . So (X̃i)i∈I is independent of (Ỹj)j∈J .

• Suppose (X̃i)i∈I is independent of (Ỹj)j∈J . Let n,m ∈ N, i1, ..., in ∈ I, j1, ..., jm ∈ J , B1, ..., Bn Borel
sets in Ei1 , ..., Ein and C1, ..., Cm Borel sets in Fj1 , ..., Fjm . Then we have:

P(Xi1 ∈ B1, ..., Xin ∈ Bn, Yj1 ∈ C1, ..., Yjm ∈ Cm)

(∗1)
= P(X̃i1 ∈ B1, ..., X̃in ∈ Bn, Ỹj1 ∈ C1, ..., Ỹjm ∈ Cm)

(∗2)
= P(X̃i1 ∈ B1, ..., X̃in ∈ Bn)P(Ỹj1 ∈ C1, ..., Ỹjm ∈ Cm)

(∗3)
= P(Xi1 ∈ B1, ..., Xin ∈ Bn)P(Yj1 ∈ C1, ..., Yjm ∈ Cm)

where (∗1) and (∗3) hold since we have that Xi = X̃i a.s. for all i ∈ I and Yj = Ỹj a.s. for all j ∈ J ,

and (∗2) since (X̃i)i∈I is independent of (Ỹj)j∈J . So (Xi)i∈I is independent of (Yj)j∈J .

22



So (Xi)i∈I and (Yj)j∈J are independent if and only if (X̃i)i∈I and (Ỹj)j∈J are independent.

Proposition 13.15. [9, Proposition 2.16] Let (Ω,F ,P) be a probability space, E a Banach space, and
X,Y : Ω→ E random variables. If X is symmetric and independent of Y , then for all 1 ≤ p <∞ we have
E(||X||p) ≤ E(||X + Y ||p).

The following theorem is called the Itô-Nisio theorem.
Theorem 13.16. [9, Theorem 2.17] Let (Ω,F ,P) be a probability space and E a Banach space. Let Xn :

Ω → E for n ≥ 1 be independent symmetric random variables. Put Sn :=
n∑
i=1

Xi and let S : Ω → E be a

random variable. The following are equivalent:

1. lim
n→∞

〈Sn, x∗〉 = 〈S, x∗〉 a.s. for all x∗ ∈ E∗;

2. lim
n→∞

〈Sn, x∗〉 = 〈S, x∗〉 in probability for all x∗ ∈ E∗;

3. lim
n→∞

Sn = S a.s.;

4. lim
n→∞

Sn = S in probability.

If these hold and E(||S||p) <∞ for some 1 ≤ p <∞ then lim
n→∞

E(||Sn − S||p) = 0.

Lemma 13.17. [9, Lemma 2.18] Let (Ω,F ,P) be a probability space and E a Banach space. Let X1, ..., Xn :

Ω→ E be independent symmetric random variables. Put Sk :=
k∑
i=1

Xi for k = 1, ..., n. Then P( max
1≤k≤n

||Sk|| >

r) ≤ 2P(||Sn|| > r) for all r ≥ 0.

Theorem 13.18. [9, Theorem 3.1] Let (Ω,F ,P) be a probability space, E a Banach space and (Xn)n∈N :
Ω → E a sequence of independent symmetric random variables. Then for all N ∈ N, a1, ..., aN ∈ R and

1 ≤ p <∞ we have E
(
||
N∑
i=1

aiXi||p
)
≤ ( max

1≤i≤N
|ai|)pE

(
||
N∑
i=1

Xi||p
)

.

The next result is the key tool in the analysis of [11].

Theorem 13.19. [11, Theorem 2.4] Let (Ω,F ,P) be a probability space, E a separable Banach space and
(Xi)i∈N : Ω → E a sequence of symmetric, independent random variables. Suppose there exists a random

variable X such that for all k ∈ N there exists a random variable ∆k with ∆k = X −
k∑
i=1

Xi a.s. and ∆k is

independent of X1, ..., Xk. Then SN :=
N∑
i=1

Xi converges with probability 1 to a random variable S.

With all preparations in hand we can lift this result to the non-separable setting.

Theorem 13.20. Let (Ω,F ,P) be a probability space, E a Banach space and (Xi)i∈N : Ω→ E a sequence of
symmetric, independent random variables. Suppose there exists a random variable X such that for all k ∈ N

there exists a random variable ∆k with ∆k = X −
k∑
i=1

Xi a.s. and ∆k is independent of X1, ..., Xk. Then

SN :=
N∑
i=1

Xi converges with probability 1 to a random variable S.

Proof. With Proposition 8.8 we can let (X̃i)i∈N, X̃, (∆̃k)k∈N : Ω → E strongly measurable P-versions of

(Xi)i∈N, X and (∆k)k∈N respectively. With Lemma 13.13 and Lemma 12.15 we obtain that (X̃i)i∈N is a
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sequence of symmetric, independent random variables, and by Lemma 13.13 we also have for every k ∈ N

that ∆̃k is independent of X̃1, ..., X̃k. Furthermore we have that ∆̃k = X̃ −
k∑
i=1

X̃i a.s. for every k ∈ N, since

∆̃k
a.s.
= ∆k

a.s.
= X −

k∑
i=1

Xi
a.s.
= X̃ −

k∑
i=1

Xi
a.s.
= X̃ −

k∑
i=1

X̃i.

Now consider (Di)i∈N where Di := {X̃i(ω) : ω ∈ Ω}, A := {X̃(ω) : ω ∈ Ω} and (Ck)k∈N where Ck :=

{∆̃k(ω) : ω ∈ Ω}. Then we obviously have that A ⊆ E, that Di ⊆ E for all i ∈ N and that Ck ⊆ E for all
k ∈ N. Furthermore we have by Theorem 12.4 that A is separable, Di is separable for all i ∈ N and Ck is
separable for all k ∈ N.

Now define U :=
(⋃∞

i=1Di

)⋃
A
⋃(⋃∞

k=1 Ck
)
. Then obviously U ⊆ E and we have that U is a countable

union of separable sets and thus by Lemma 3.14 U is also separable.

Now consider Ẽ := span(U). Since E is a Banach space, and thus a normed vector space, we have with

Theorem 3.16 that Ẽ is separable, and since it is a closed subspace of E we have with Lemma 3.4 that Ẽ
is a Banach space. Thus Ẽ is a separable Banach space, and by construction we have that (X̃i)i∈N, X̃ and

(∆̃k)k∈N are Ẽ-valued.

Now we can apply Theorem 13.19 to obtain that S̃N :=
∑N
i=1 X̃i converges with probability 1 to a random

variable S.

Now for all N ∈ N define SN :=
∑N
i=1Xi. Then we have for all N ∈ N, since X̃i = Xi a.s. for all i ∈ N, that∑N

i=1 X̃i =
∑N
i=1Xi a.s. and thus that SN = S̃N a.s.

For all N ∈ N let ΩN := {ω ∈ Ω : SN (ω) = S̃N (ω)} and let ΩC := {ω ∈ Ω : lim
N→∞

S̃N (ω) = S(ω)}. Then

we have for all N ∈ N that P(ΩN ) = 1 and P(ΩC) = 1. Let Ω̃ := (
⋂∞
N=1 ΩN )

⋂
ΩC . Then we know that

P(Ω̃) = 1 since Ω̃ is a countable intersection of sets with measure 1. Furthermore we have for ω ∈ Ω̃ that

lim
N→∞

SN (ω) = lim
N→∞

S̃N (ω) = S(ω)

and thus SN converges with probability 1 to the random variable S.

14 Symmetrization

We want to extend Theorem 13.20 to more general settings. In particular, we want to apply it to sequences of
random variables which are not symmetric. It turns out to be useful to consider the so-called symmetrization
of a random variable. In this section we show that the process of symmetrization preserves properties like
independence, so that we can apply our previous results to these symmetrizations.

Definition 14.1. Let (Ω,F ,P) be a probability space and E a Banach space.

• An identical copy (Ω′,F ′,P′) of (Ω,F ,P) is a probability space such that there exists a bijection
f : Ω→ Ω′ satisfying

1. for all A ∈ F we have f(A) ∈ F ′ and P′(f(A)) = P(A);

2. for all A′ ∈ F ′ we have f−1(A′) ∈ F and P(f−1(A′)) = P′(A′).

• Let X : Ω → E be a random variable. The copy X ′ of X on (Ω′,F ′,P′) is an E-valued random
variable on (Ω′,F ′,P′) such that for all ω ∈ Ω we have that X(ω) = X ′(f(ω)) with f the bijection
from the definition of (Ω′,F ′,P′). (And we thus also have for all ω′ ∈ Ω′ that X ′(ω′) = X(f−1(ω′)).)
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Lemma 14.2. Let (Ω,F ,P) be a probability space and E a Banach space. Let (Ω′,F ′,P′) be a copy of
(Ω,F ,P) as defined in Definition 14.1. Let X : Ω → E be a random variable and let X ′ be a copy of X on
(Ω′,F ′,P′) as defined in Definition 14.1. Then we have the following:

1. X is also a random variable on Ω×Ω′ and on Ω′×Ω, where we view X as a map (ω, ω′) 7→ X(ω) and
(ω′, ω) 7→ X(ω), respectively.

2. X −X ′ is a random variable on Ω× Ω′.

Proof. I will first prove the first statement, and then I will prove the second statement by using the first.

1. X is a random variable so let (ϕn)n∈N be a sequence of E-simple functions on Ω such that lim
n→∞

ϕn = X

P-a.s. Let Ω∗ ⊆ Ω such that Ω∗ ∈ F , P(Ω∗) = 1 and for all ω ∈ Ω∗ we have that lim
n→∞

ϕn(ω) = X(ω).

Write ϕn :=
∑Nn

i=1 x
n
i 1A

n
i

and define ϕ′n :=
∑Nn

i=1 x
n
i 1A

n
i ×Ω′ . For every n ∈ N obviously ϕ′n is an E-

simple function on Ω×Ω′ and for all (ω, ω′) ∈ Ω∗ ×Ω′ we have lim
n→∞

ϕ′n(ω, ω′) = lim
n→∞

ϕn(ω) = X(ω).

Furthermore, we have that P × P′(Ω∗ × Ω′) = P(Ω∗)P′(Ω′) = 1 and thus lim
n→∞

ϕ′n = X P × P′-a.s. So

X is a random variable on Ω× Ω′. Similarly, we obtain that X is a random variable on Ω′ × Ω.

2. Since X ′ is a copy of X it is a random variable. By the first statement we have that X and X ′ are
E-valued random variables on Ω×Ω′. (Ω×Ω′,F ×F ′,P×P′) is a probability space since (Ω,F ,P) and
(Ω′,F ′,P′) are probability spaces. Using Remark 8.6 it follows thatM(Ω×Ω′, E) is a vector subspace
of EΩ×Ω′ and thus X −X ′ is an E-valued random variable on Ω× Ω′.

Lemma 14.3. Let (Ω,F ,P) be a probability space and E a Banach space. Let (Ω′,F ′,P′) be a copy of
(Ω,F ,P) as defined in Definition 14.1. Let X : Ω → E be a random variable and let X ′ be a copy of X on

(Ω′,F ′,P′) as defined in Definition 14.1. Let X̃ be a strongly measurable P-version of X. Then X̃ ′(the copy

of X̃ on Ω′) is a strongly measurable P′-version of X ′.

Proof. X̃ exists by Proposition 8.8 and by definition we have that X̃ = X P-a.s. So let Ω∗ ⊆ Ω be such that
Ω∗ ∈ F , P(Ω∗) = 1 and for all ω ∈ Ω∗ we have that X̃(ω) = X(ω). Let ω ∈ Ω∗ and let f be as in Definition
14.1. Then we have

X̃ ′(f(ω)) = X̃(ω) = X(ω) = X ′(f(ω)),

and thus X̃ ′ is a P′-version of X ′. Since X̃ is strongly measurable and X̃ ′ is the copy of X̃ on Ω′, we get
that X̃ ′ is also strongly measurable. So X̃ ′ is a strongly measurable P′-version of X ′.

Lemma 14.4. Let (Ω,F ,P) be a probability space and E a Banach space. Let (Ω′,F ′,P′) be a copy of
(Ω,F ,P) as defined in Definition 14.1. Let X : Ω → E be a random variable and let X ′ be a copy of X on

(Ω′,F ′,P′) as defined in Definition 14.1. Let X̃ be a strongly measurable P-version of X and let X̃ ′ be a

strongly measurable P′-version of X ′. Then X̃ − X̃ ′ is a strongly measurable P× P′-version of X −X ′.

Proof. X̃ and X̃ ′ exist by Proposition 8.8 and by definition we have that X̃ = X P-a.s. and X̃ ′ = X ′ P′-a.s.
So let Ω∗1 ⊆ Ω such that Ω∗1 ∈ F , P(Ω∗1) = 1 and X̃(ω) = X(ω) for all ω ∈ Ω∗1. Furthermore let Ω∗2 ⊆ Ω′

such that Ω∗2 ∈ F ′, P′(Ω∗2) = 1 and X̃ ′(ω′) = X ′(ω′) for all ω′ ∈ Ω∗2. Let (ω, ω′) ∈ Ω∗1 × Ω∗2. Then we have

(X − X ′)(ω, ω′) = X(ω) − X ′(ω′) = X̃(ω) − X̃ ′(ω′) = (X̃ − X̃ ′)(ω, ω′) so X̃ − X̃ ′ is a P × P′-version of
X −X ′.

We have that (Ω×Ω′,F×F ′,P×P′) is a probability space since (Ω,F ,P) and (Ω′,F ′,P′) are probability spaces

so with Remark 8.6 we have that SM(Ω×Ω′, E) is a vector subspace of EΩ×Ω′ . Since X̃, X̃ ′ ∈ SM(Ω×Ω′, E)

it follows that X̃ − X̃ ′ is strongly measurable on Ω×Ω′. So X̃ − X̃ ′ is a strongly measurable P× P′-version
of X −X ′.

25



Lemma 14.5. Let (Ω,F ,P) be a probability space and E a Banach space. Let (Ω′,F ′,P′) be a copy of
(Ω,F ,P) as defined in Definition 14.1. Let X : Ω → E be a random variable and let X ′ be a copy of X on
(Ω′,F ′,P′) as defined in Definition 14.1. Then Xs := X −X ′ is a symmetric random variable.

Proof. Xs is well-defined and a random variable by Lemma 14.2. Let with Proposition 8.8 X̃ be a strongly
measurable P-version of X. Let with Lemma 14.3 X̃ ′ be a strongly measurable P′-version of X ′. With
Lemma 14.4 we have that X̃ − X̃ ′ is a strongly measurable P× P′-version of X −X ′. Let f as in Definition
14.1. Now we have for B a Borel set in E that

P× P′(Xs ∈ B) = P× P′((X −X ′) ∈ B) = P× P′
(
{(ω, ω′) ∈ Ω× Ω′ : X̃(ω)− X̃ ′(ω′) ∈ B}

)
= P× P

(
{(ω1, ω2) ∈ Ω× Ω : X̃(ω1)− X̃ ′(f(ω2)) ∈ B}

)
= P× P

(
{(ω1, ω2) ∈ Ω× Ω : X̃(ω1)− X̃(ω2) ∈ B}

)
= P′ × P

(
{(ω′, ω) ∈ Ω′ × Ω : X̃(f−1(ω′))− X̃(ω) ∈ B}

)
= P′ × P

(
{(ω′, ω) ∈ Ω′ × Ω : X̃ ′(ω′)− X̃(ω) ∈ B}

)
= P× P′

(
{(ω, ω′) ∈ Ω× Ω′ : X̃ ′(ω′)− X̃(ω) ∈ B}

)
= P× P′(−Xs ∈ B)

so Xs is symmetric. So Xs := X −X ′ is a symmetric random variable.

Next we show that the symmetrization of independent random variables yield independent random variables.

Proposition 14.6. Let (Ω,F ,P) be a probability space, let I be an index set, let E be a Banach space and let
(Ω′,F ′,P′) be a copy of (Ω,F ,P) as defined in Definition 14.1. Let (Xj)j∈I : Ω→ E be independent random
variables and let for all j ∈ I X ′j be a copy of Xj on (Ω′,F ′,P′) as defined in Definition 14.1. Define for all
j ∈ I Xs

j : Ω× Ω′ → E by Xs
j := Xj −X ′j. Then we have that (Xs

j )j∈I are independent random variables.

Proof. For all j ∈ I we have with part 2 of Lemma 14.2 that Xs
j is a random variable. Since for all j ∈ I

we have that X ′j is a copy of Xj we have that (X ′j)j∈I are also independent random variables. For all j ∈ I
consider Xj and X ′j as E-valued random variables on Ω×Ω′. This is possible by part 1 of Lemma 14.2. The
independence then obviously persists.

Let j ∈ I and let with Proposition 8.8 X̃j be a strongly measurable P-version of Xj defined on Ω and let X̃ ′j
be a strongly measurable P′-version of X ′j defined on Ω′. Let X̃s

j be the strongly measurable P× P′-version

of Xs
j as defined in Lemma 14.4, i.e. X̃s

j = X̃j − X̃ ′j .

By Lemma 13.13 we have that (X̃j)j∈I are independent random variables since (Xj)j∈I are and that (X̃ ′j)j∈I

are independent random variables since (X ′j)j∈I are. Now again consider, for all j ∈ I, X̃j and X̃ ′j as E-
valued random variables on Ω × Ω′, which is possible by part 1 of Lemma 14.2. The independence then
obviously persists.

For all i ∈ I we have that X̃i(ω, ω
′), with (ω, ω′) ∈ Ω× Ω′, does not depend on ω′ and thus we can rewrite

for all i ∈ I
σ(X̃i) =

{
{(ω, ω′) ∈ Ω× Ω′ : X̃i(ω, ω

′) ∈ B} : B a Borel set in E
}

=
{
{ω ∈ Ω : X̃i(ω) ∈ B} × Ω′ : B a Borel set in E

}
.

Similarly we can rewrite

σ(X̃ ′i) =
{

Ω× {ω′ ∈ Ω′ : X̃ ′i(ω
′) ∈ B} : B a Borel set in E

}
.

Furthermore denote with F
X̃i

the σ-algebra generated by X̃i with respect to (Ω,F ,P) and with F ′
X̃′i

the

σ-algebra generated by X̃ ′i with respect to (Ω′,F ′,P′). Then we have that σ(X̃i) = F
X̃i
× Ω′ and
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σ(X̃ ′i) = Ω×F ′
X̃′i

.

Now we have for all i ∈ I:

σ(X̃s
i ) =

{
{(ω, ω′) ∈ Ω× Ω′ : X̃s

i (ω, ω′) ∈ B} : B a Borel set in E
}

=
{
{(ω, ω′) ∈ Ω× Ω′ : X̃i(ω)− X̃ ′i(ω

′) ∈ B} : B a Borel set in E
}
.

Define Ii := {A × B : A ∈ F
X̃i
, B ∈ F ′

X̃′i
} for all i ∈ I. Since X̃i is strongly measurable with respect to

(Ω,F ,P) we have with Theorem 9.3 that X̃i is measurable with respect to (Ω,F ,P) and thus we obtain that
F
X̃i
⊆ F . Similarly we have that F ′

X̃′i
⊆ F ′ so we obtain that Ii ⊆ F × F ′ for all i ∈ I and thus that

σ(Ii) ⊆ F × F ′ for all i ∈ I since F × F ′ is a σ-algebra.

Now I will show that for all i ∈ I we have that Ii is a π-system. Let i ∈ I and let A×A′, B×B′ ∈ Ii. Then
we have that (A×A′) ∩ (B ×B′) = (A ∩B)× (A′ ∩B′). Since F

X̃i
is a σ-algebra and A,B ∈ F

X̃i
we have

that A ∩B ∈ F
X̃i

. Since F ′
X̃′i

is a σ-algebra and A′, B′ ∈ F ′
X̃′i

we have that A′ ∩B′ ∈ F ′
X̃′i

. Thus we obtain

that (A×A′) ∩ (B ×B′) ∈ Ii. So Ii is a π-system.

Next I will prove that σ(X̃s
i ) ⊆ σ(Ii) for all i ∈ I. Let i ∈ I and let B be a Borel set in E. Then we have

that

X̃i

−1
(B) = {(ω, ω′) ∈ Ω× Ω′ : X̃i(ω, ω

′) ∈ B} = {ω ∈ Ω : X̃i(ω) ∈ B} × Ω′.

Since {ω ∈ Ω : X̃i(ω) ∈ B} ∈ F
X̃i

and Ω′ ∈ F ′
X̃′i

since F ′
X̃′i

is a σ-algebra, we obtain that X̃i

−1
(B) ∈ σ(Ii).

So X̃i is measurable with respect to σ(Ii). Similarly X̃ ′i is measurable with respect to σ(Ii).
Since X̃i and X̃ ′i are strongly measurable, we have with Theorem 9.3 that they are separably valued. Since
they are measurable with respect to σ(Ii) and separably valued, we have with Theorem 9.3 that they are

strongly measurable with respect to σ(Ii). By Remark 8.6 we have that X̃i − X̃ ′i = X̃s
i is also strongly

measurable with respect to σ(Ii) and thus by Theorem 9.3 we have that X̃s
i is measurable with respect to

σ(Ii). Since σ(X̃s
i ) is the smallest σ-algebra such that X̃s

i is measurable we obtain that σ(X̃s
i ) ⊆ σ(Ii).

Thus for all i ∈ I we have that σ(X̃s
i ) ⊆ σ(Ii).

Now I will prove that (σ(Ii))i∈I are independent σ-algebras. Let n ∈ N and let {Ii1 , ..., Iin} ⊆ {Ii : i ∈ I}
be a collection of π-systems and for convenience of notation say i1 = 1, i2 = 2, etc. Let Ii ∈ Ii for i = 1, ..., n.
Then we have for all i ∈ {1, ..., n} that Ii = Ai ×Bi with Ai ∈ FX̃i

and Bi ∈ F ′
X̃′i

. Then we have

P× P′(I1 ∩ ... ∩ In) = P× P′((A1 ×B1) ∩ ... ∩ (An ×Bn))

= P× P′((A1 ∩ ... ∩An)× (B1 ∩ ... ∩Bn)) = P(A1 ∩ ... ∩An)P′(B1 ∩ ... ∩Bn).

Since (X̃i)i∈I are independent random variables we have with Proposition 13.8 that (F
X̃i

)i∈I are independent

and thus since A1 ∈ FX̃1
,...,An ∈ FX̃n

we have that P(A1 ∩ ... ∩An) =
∏n
k=1 P(Ak). Similarly we have that

P′(B1 ∩ ... ∩Bn) =
∏n
k=1 P′(Bk). So we obtain

P(A1 ∩ ... ∩An)P′(B1 ∩ ... ∩Bn) =

(
n∏
k=1

P(Ak)

)(
n∏
k=1

P′(Bk)

)

=

n∏
k=1

P(Ak)P′(Bk) =

n∏
k=1

P× P′(Ak ×Bk) =

n∏
k=1

P× P′(Ik).
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Thus by Proposition 13.4 we obtain that σ(I1), ..., σ(In) are independent. Since n was arbitrary and
{Ii1 , ..., Iin} ⊆ {Ii : i ∈ I} was an arbitrary collection we obtain that (σ(Ii))i∈I are independent. Since

for all i ∈ I we have that σ(X̃s
i ) ⊆ σ(Ii) we thus obtain that σ(X̃s

i )i∈I are independent. So by Proposi-

tion 13.8 we obtain that (X̃s
i )i∈I are independent and then with Lemma 13.13 we obtain that (Xs

i )i∈I are
independent.

Proposition 14.7. Let (Ω,F ,P) be a probability space, let E be a Banach space and let (Ω′,F ′,P′) be a
copy of (Ω,F ,P) as defined in Definition 14.1. Let (Xj)j∈N : Ω → E be independent random variables and
suppose there exists a random variable X : Ω→ E such that for all k ∈ N there exists a random variable ∆k

with ∆k = X −
∑k
i=1Xi a.s. and ∆k is independent of X1, ..., Xk. Let for all j ∈ N X ′j be a copy of Xj on

(Ω′,F ′,P′) as defined in Definition 14.1 and define for all j ∈ N Xs
j : Ω× Ω′ → E by Xs

j := Xj −X ′j.

Then there exists a random variable Y : Ω× Ω′ → E such that for all k ∈ N there exists a random variable
δk with δk = Y −

∑k
i=1X

s
i a.s. and δk is independent of Xs

1 , ..., X
s
k.

Proof. Let X ′ be a copy of X on (Ω′,F ′,P′) as defined in Definition 14.1 and let ∆′k be a copy of ∆k on
(Ω′,F ′,P′) as defined in Definition 14.1 for all k ∈ N. Since X ′, ∆′k and X ′j are copies of X, ∆k and Xj

for all j ∈ N and k ∈ N we have that (X ′j)j∈N are also independent random variables, X ′ is also a random

variable and for all k ∈ N we have that ∆′k = X ′ −
∑k
i=1X

′
i a.s., ∆′k is also a random variable and that ∆′k

is independent of X ′1, ..., X
′
k.

Define Y := Xs := X −X ′ and define for all k ∈ N δk := ∆s
k := ∆k −∆′k. Then we have

δk
a.s.
= X −

k∑
i=1

Xi −
(
X ′ −

k∑
i=1

X ′i

)
= (X −X ′)−

k∑
i=1

(Xi −X ′i) = Xs −
k∑
i=1

Xs
i .

We have with part 2 of Lemma 14.2 for all j ∈ N and all k ∈ N that Xs
j , Y and δk are random variables.

Let j ∈ N and let with Proposition 8.8 X̃j and Ỹ := X̃ be strongly measurable P-versions of Xj and X,

respectively, defined on Ω, and X̃ ′j and X̃ ′ strongly measurable P′-versions of X ′j and X ′, respectively, defined

on Ω′. Then let X̃s
j and X̃s be the strongly measurable P× P′-versions of Xs

j respectively Xs as defined in

Lemma 14.4, i.e. X̃s
j = X̃j − X̃ ′j and X̃s = X̃− X̃ ′. Let k ∈ N. Let ∆̃k be the strongly measurable P-version

of ∆k as defined in Lemma 12.16, i.e. ∆̃k = X̃ −
∑k
j=1 X̃j , ∆̃′k the strongly measurable P′-version of ∆′k as

defined in Lemma 12.16, i.e. ∆̃′k = X̃ ′−
∑k
j=1 X̃

′
j and let δ̃k := ∆̃s

k be the strongly measurable P×P′-version

of ∆s
k as defined in Lemma 14.4, i.e. ∆̃s

k = ∆̃k − ∆̃′k.

By Lemma 13.13 we have that (X̃j)j∈N are independent random variables since (Xj)j∈N are and that (X̃ ′j)j∈N

are independent random variables since (X ′j)j∈N are. By Lemma 13.14 we have that ∆̃k is independent of

X̃1, ..., X̃k and that ∆̃′k is independent of X̃ ′1, ..., X̃
′
k for all k ∈ N. Now consider for all j ∈ N and all k ∈ N,

X̃j , X̃ ′j , X̃, X̃ ′, ∆̃k and ∆̃′k as E-valued random variables on Ω×Ω′, which is possible with part 1 of Lemma
14.2. The independence then obviously persists.

Let k ∈ N. Just like in the proof of Proposition 14.6 denote by F
∆̃k

the σ-algebra generated by ∆̃k with

respect to (Ω,F ,P), by F ′
∆̃′k

the σ-algebra generated by ∆̃′k with respect to (Ω′,F ′,P′), by F
X̃1,...,X̃k

the

σ-algebra generated by X̃1, ..., X̃k with respect to (Ω,F ,P) and by F ′
X̃′1,...,X̃

′
k

the σ-algebra generated by

X̃ ′1, ..., X̃
′
k with respect to (Ω′,F ′,P′).

Define for all k ∈ N the set J 1
k := {A × B : A ∈ F

∆̃k
, B ∈ F ′

∆̃′k
} and the set J 2

k := {A × B : A ∈
F
X̃1,...,X̃k

, B ∈ F ′
X̃′1,...,X̃

′
k

}. Identically to the proof of Proposition 14.6, we obtain that J 1
k and J 2

k are
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π-systems and that σ(∆̃s
k) ⊆ σ(J 1

k ) ⊆ F × F ′ and σ(X̃s
1 , ..., X̃

s
k) ⊆ σ(J 2

k ) ⊆ F × F ′.

Now I will prove that σ(J 1
k ) is independent of σ(J 2

k ) for all k ∈ N. Let k ∈ N. Let A ∈ J 1
k , i.e. A = A1×A2

with A1 ∈ F∆̃k
and A2 ∈ F ′

∆̃′k
, and let B ∈ J 2

k , i.e. B = B1 ×B2 with B1 ∈ FX̃1,...,X̃k
and B2 ∈ F ′

X̃′1,...,X̃
′
k

.

Then we have
P× P′(A ∩B) = P× P′((A1 ×A2) ∩ (B1 ×B2))

= P× P′((A1 ∩B1)× (A2 ∩B2)) = P(A1 ∩B1)P′(A2 ∩B2).

Since A1 ∈ F∆̃k
, B1 ∈ FX̃1,...,X̃k

and ∆̃k is independent of X̃1, ..., X̃k and thus with Proposition 13.9

F
∆̃k

is independent of F
X̃1,...,X̃k

we obtain that P(A1 ∩ B1) = P(A1)P(B1). Similarly we obtain that

P′(A2 ∩B2) = P′(A2)P′(B2). Thus we get

P(A1 ∩B1)P′(A2 ∩B2) = P(A1)P(B1)P′(A2)P′(B2)

= P× P′(A1 ×A2) · P× P′(B1 ×B2) = P× P′(A) · P× P′(B).

So with Proposition 13.4 we obtain that σ(J 1
k ) is independent of σ(J 2

k ). Since σ(∆̃s
k) ⊆ σ(J 1

k ) and

σ(X̃s
1 , ..., X̃

s
k) ⊆ σ(J 2

k ) we obtain that σ(∆̃s
k) is independent of σ(X̃s

1 , ..., X̃
s
k). So by Proposition 13.9 we

obtain that ∆̃s
k is independent of X̃s

1 , ..., X̃
s
k. Now we obtain with Lemma 13.14 that ∆s

k = δk is independent
of Xs

1 , ..., X
s
k.

15 Stochastic processes

In order to formulate and prove a theorem similar to Theorem 13.20 with stochastic processes instead of
random variables, we have to introduce the notion of a stochastic process.
Definition 15.1. Let E be a Banach space. A stochastic process with values in E with time set [0, T ],
T ∈ R>0, is a family of E-valued random variables X := (Xt)t∈[0,T ] which are all defined on the same
probability space (Ω,F ,P).

Definition 15.2. Let E be Banach space and I ⊆ R+ an interval. A function f : I → E is called cadlag
(continu à droite, limites à gauche) if for all t ∈ I:
1. If t is not equal to the left endpoint the left limit, f(t−) := lim

s↑t
f(s), exists;

2. If t is not equal to the right endpoint the right limit, f(t+) := lim
s↓t

f(s), exists and f(t+) = f(t).

Definition 15.3. Let E be a Banach space and let T > 0. Then we define

DE [0, T ] := {f : [0, T ]→ E | f cadlag}.

The proof of the next Lemma is very similar to the proof that (C[0, T ], ||·||∞) is a Banach space. Furthermore
we refer to [14] for discussion of the space DE [0, T ].

Lemma 15.4. Let E be a Banach space and let T > 0. Define on DE [0, T ] the function || · ||T such that for
f ∈ DE [0, T ] we have ||f ||T := sup

t∈[0,T ]

||f(t)||. Then || · ||T is a norm and DE [0, T ] equipped with this norm is

a Banach space.

Definition 15.5. Let (Ω,F ,P) be a probability space, E a Banach space and X = (Xt)t∈[0,T ] a stochastic
process. X is called a cadlag process if for P-almost all ω ∈ Ω we have that t 7→ Xt(ω) is an E-valued
cadlag function on [0, T ].
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Let (Ω,F ,P) be a probability space, E a Banach space and (Xt)t∈[0,T ] a cadlag process. Now we would like
to be able to state that ω 7−→ (t 7→ Xt(ω)) is a DE [0, T ]-valued random variable, and this is also often used
in literature. However the following example shows that we have to be very careful when using this, as it
appeares not to be true in general.

Example 15.6. Let E = R and consider the probability space ([0, 1],B([0, 1]), λ) where B([0, 1]) is the Borel
σ-algebra on [0, 1] and λ the Lebesgue measure on [0, 1]. Define X(t, ω) = 1[ω,T ](t). Clearly, X has values
in DE [0, T ]. Then for all A ⊆ [0, 1] with λ(A) = 1 we have range(X|A) = {t 7→ 1[ω,T ](t) : ω ∈ A}. Since
A is uncountable and for all f, g ∈ range(X|A) we have that ||f − g|| = 1 we obtain that range(X|A) is not
separable and thus X is not λ-separably valued. Now it follows with Theorem 9.7 that X is not strongly
λ-measurable and thus not a DE [0, T ]-valued random variable.

The following was first shown in [11, Theorem 3.10.1]. The proof there was very involved and encountered
many technical difficulties. With our preparations, in particular Theorem 13.20, it can now be shown more
easily.

Theorem 15.7. Let (Ω,F ,P) be a probability space, let E be a Banach space and let (Ω′,F ′,P′) be a copy
of (Ω,F ,P) as defined in Definition 14.1. Let for j ∈ N (Xj(t))t∈[0,T ] : Ω → E be independent cadlag
processes and assume that we can consider the process Xj(t) as a random variable from Ω to DE [0, T ] for
all j ∈ N. Suppose there exists a random variable X : Ω → DE [0, T ] such that for every k ∈ N there exists

a random variable ∆k : Ω → DE [0, T ] with ∆k = X −
k∑
i=1

Xi a.s. and ∆k is independent of X1, ..., Xk.

Let for all j ∈ N X ′j be a copy of Xj on (Ω′,F ′,P′) as defined in definition 14.1 and define for all j ∈ N

Xs
j : Ω×Ω′ → DE [0, T ] by Xs

j := Xj−X ′j. Finally define for n ∈ N Ssn : Ω×Ω′ → DE [0, T ] by Ssn :=
n∑
i=1

Xs
i .

Then there exists a random variable S : Ω× Ω′ → DE [0, T ] such that ||S − Ssn||T
a.s.−→ 0.

Proof. By Lemma 14.5, Proposition 14.6 and Proposition 14.7 we obtain that (Xs
j )j∈N are independent,

symmetric random variables and that there exists a random variable Xs such that for all k ∈ N there exists
a random variable ∆s

k with ∆s
k = Xs −

∑k
i=1X

s
i a.s. and ∆s

k is independent of Xs
1 , ..., X

s
k. Thus all of the

conditions of Theorem 13.20 are met, so we can apply this theorem to obtain the stated result.

16 Conditional Expectation

Definition 16.1. Let (Ω,F ,P) be a probability space, E a Banach space, G ⊆ F a sub-σ-algebra and
X ∈ L1(Ω;E). The random variable E(X|G) is the unique element of L1(Ω,G;E) with the property that for
all G ∈ G we have

∫
G
E(X|G)dP =

∫
G
XdP and is called the conditional expectation of X.

The existence and uniqueness of the conditional expectation is proven in [10, Theorem 2.6.23].

In the setting of Definition 16.1 we have with Proposition 8.8 that E(X|G) has a P|G-version that is strongly
G-measurable, and thus a P-version that is strongly G-measurable.
Note that we can not conclude with Proposition 8.8 that E(X|G) is always strongly P-measurable with
respect to G since a P|G-version is also a P-version but the converse is not necessarily true. However we
can assume without loss of generality that E(X|G) is strongly G-measurable, which leads to the following
extension of Definition 16.1.

Continuation of Definition 16.1.Without loss of generality we assume that E(X|G) is strongly G-measurable.

Next we will consider some useful properties of the conditional expectation. Many of the properties we know
for R-valued random variables are easily extended to this general case, however not even all of them are still
well-defined, and thus some can not be extended.

Proposition 16.2. Let (Ω,F ,P) be a probability space, E a Banach space, G ⊆ F a sub-σ-algebra and
X ∈ L1(Ω;E). Then we have:
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1. E
(
E(X|G)

)
= E(X).

2. For a, b ∈ R and Y ∈ L1(Ω;E) we have E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s.

3. If X ∈ L1(Ω,G;E) then we have X = E(X|G) a.s.

4. If H is a sub-σ-algebra of G, then E(E(X|G)|H) = E(X|H) a.s. (the tower property)

5. Let H ⊆ F be another sub-σ-algebra independent of σ(X,G). Then E(X|σ(G,H)) = E(X|G) a.s. In
particular if X is independent of G then E(X|G) = E(X) a.s.

6. Let φ : E → R be a convex and lower semi continuous function and suppose that φ ◦X ∈ L1(Ω). Then
φ ◦ E(X|G) ≤ E(φ ◦X|G) a.s. (the Conditional Jensen’s inequality)

Proof. Let (Ω,F ,P) be a probability space, E a Banach space, G ⊆ F a sub-σ-algebra and X ∈ L1(Ω;E).
Then we have:

1. E
(
E(X|G)

)
:=
∫

Ω
E(X|G)dP Ω∈G

=
∫

Ω
XdP := E(X).

2. We have for all G ∈ G that∫
G

E(aX + bY |G)dP =

∫
G

(aX + bY )dP Theorem 10.6
= a

∫
G

XdP + b

∫
G

Y dP

= a

∫
G

E(X|G)dP + b

∫
G

E(Y |G)dP Theorem 10.6
=

∫
G

(
aE(X|G) + bE(Y |G)

)
dP

so aE(X|G) + bE(Y |G) is a version of the conditional expectation of aX + bY but so is E(aX + bY |G)
and thus we obtain that E(aX + bY |G) = aE(X|G) + bE(Y |G) a.s.

3. This follows directly from Definition 16.1.

4. This proof can be found in [10, Proposition 2.6.33].

5. This proof can be found in [10, Proposition 2.6.35 and Proposition 2.6.36].

6. This proof can be found in [10, Proposition 2.6.29].

Proposition 16.3. [10, Corollary 2.6.30] Let (Ω,F ,P) be a probability space, E a Banach space, G ⊆ F a
sub-σ-algebra and 1 ≤ p <∞. Suppose X ∈ Lp(Ω;E). Then ||E(X|G)||p ≤ E(||X||p|G) a.s. In particular we
have E(X|G) ∈ Lp(Ω;E) and ||E(X|G)||p ≤ ||X||p.

The following is known as the conditional dominated convergence theorem.
Theorem 16.4. [10, Theorem 2.6.28] Let (Ω,F ,P) be a probability space, E a Banach space and G ⊆ F a
sub-σ-algebra. Let (Xn)n∈N be a sequence in ∈ L1(Ω;E). Suppose that lim

n→∞
Xn = X a.s. for some X and

that there exists an Y ∈ L1(Ω) such that ||Xn|| ≤ Y a.s. Then we have

• lim
n→∞

E
(
||Xn −X|| |G

)
= 0 a.s.

• lim
n→∞

E(Xn|G) = E(X|G) a.s.

Proposition 16.5. [10, Proposition 2.6.39] Let (Ω,F ,P) be a probability space, E a Banach space, I an
index set, (Gi)i∈I a family of sub-σ-algebras of F and G :=

⋂
i∈I Gi. Let 1 ≤ p < ∞. Then for all

f ∈ Lp(Ω;E) the family
{
E(f |Gi) : i ∈ I

}
is uniformly p-integrable.

Proposition 16.6. Let (Ω,F ,P) be a probability space, E1, E2, E Banach spaces, G ⊆ F a sub-σ-algebra,
β : E1 × E2 → E a bounded bilinear mapping, X ∈ L1(Ω,G;E1) and Y ∈ L1(Ω;E2). Assume that
β(X,Y ) ∈ L1(Ω;E). Then E

(
β(X,Y )|G

)
= β

(
X,E(Y |G)

)
a.s.

Proof. This follows from [10, Proposition 2.6.31].
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17 Martingales

Definition 17.1. Let (Ω,F ,P) be a probability space, E a Banach space and I a partially ordered set.

- A family (Fi)i∈I of sub-σ-algebras of F is called a filtration if for i, j ∈ I with i ≤ j we have Fi ⊆ Fj .

- A family (Xi)i∈I ⊆ L1(Ω;E) of E-valued random variables is adapted to the filtration (Fi)i∈I if
Xi ∈ L1(Ω,Fi;E) for all i ∈ I.

- Assume that A1 is satisfied. Then the filtration generated by a sequence of random variables
X = (Xi)i∈I ⊆ L1(Ω;E) is the filtration (FXi )i∈I where FXi := σ(Xj : j ≤ i), and X is adapted to
this filtration.

Definition 17.2. Let (Ω,F ,P) be a probability space, E a Banach space, I a partially ordered set and
(Fi)i∈I a filtration in F . (Mi)i∈I ⊆ L1(Ω;E) is called a martingale with respect to (Fi)i∈I if it is
adapted to (Fi)i∈I and E(Mj |Fi) = Mi a.s. for all i, j ∈ I with i ≤ j. If in addition E(||Mi||p) <∞ for all
i ∈ I then (Mi)i∈I is called an Lp-martingale.

Definition 17.3. Let (Ω,F ,P) be a probability space, E a Banach space and (Fn)n∈N a filtration in F .
Then we define F∞:= σ(Fn : n ∈ N).

Theorem 17.4. [10, Theorem 3.3.2] Let (Ω,F ,P) be a probability space, E a Banach space and (Fi)i∈N a

filtration in F . If X ∈ L1(Ω;E), then lim
n→∞

E(X | Fn)
a.s.
= E(X | F∞).

18 Convergence of series of random variables

Consider a probability space (Ω,F ,P), a Banach space E and (Xj)j∈N : Ω → E independent random vari-

ables. It is interesting to consider the a.s. convergence of
∑N
i=1(Xi−ci) with (cn)n∈N functions to or elements

of E. The first result that catches our attention is that, under the assumptions of Theorem 13.20, for every
sequence (cn)n∈N in E of which the sum converges we have that

∑N
i=1(Xi− ci) converges a.s. This is stated

in the following Proposition.

Proposition 18.1. Let (Ω,F ,P) be a probability space and let E be a Banach space. Let (Xj)j∈N : Ω→ E
be symmetric independent random variables and suppose there exists a random variable X : Ω→ E such that
for all k ∈ N there exists a random variable ∆k : Ω→ E with ∆k = X−

∑k
i=1Xi a.s. and ∆k is independent

of X1, ..., Xk. Let (cn)n∈N ⊆ E be a sequence such that
∑N
i=1 ci converges. Then

∑N
i=1(Xi − ci) converges

a.s.

Proof. By Theorem 13.20 we have that
∑N
i=1Xi converges a.s., and by assumption we have that

∑N
i=1 cn

converges. Thus, since
∑N
i=1(Xi − ci) =

∑N
i=1Xi −

∑N
i=1 ci, we have that

∑N
i=1(Xi − ci) converges a.s.

The next result that is interesting to consider is what happens with the a.s. convergence of
∑N
i=1(Xi − ci)

when cn would be equal to the value of the random variable Xn at a certain point ωn ∈ Ω. It would be
preferred if this ω is independent of n. The following Theorem deals with this situation.

Theorem 18.2. Let (Ω,F ,P) be a probability space and let E be a Banach space. Let (Xj)j∈N : Ω → E
be independent random variables and suppose there exists a random variable X : Ω → E such that for all
k ∈ N there exists a random variable ∆k : Ω → E with ∆k = X −

∑k
i=1Xi a.s. and ∆k is independent of

X1, ..., Xk. Then there exist (cn)n∈N with cn ∈ E for all n ∈ N and such that
∑N
i=1(Xi − ci) converges a.s.

where for all n ∈ N cn = Xn(ω) for some ω ∈ Ω.
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Proof. Let (Ω′,F ′,P′) be a copy of (Ω,F ,P) as defined in Definition 14.1. Let for all j ∈ N X ′j be a copy of
Xj on (Ω′,F ′,P′) as defined in Definition 14.1. Define for all j ∈ N Xs

j : Ω×Ω′ → E by Xs
j := Xj −X ′j and

define for all n ∈ N Ssn : Ω×Ω′ → E by Ssn :=
∑n
i=1X

s
i . By Lemma 14.5, Proposition 14.6 and Proposition

14.7 we have that (Xs
j )j∈N are independent, symmetric random variables and that there exists a random

variable Xs such that for all k ∈ N there exists a random variable ∆s
k with ∆s

k = Xs −
∑k
i=1X

s
i a.s. and

∆s
k is independent of Xs

1 , ..., X
s
k. So all of the conditions of Theorem 13.20 are met and thus we obtain with

Theorem 13.20 that Ssn converges a.s. in Ω× Ω′ to some random variable S.

So now there exists a set Ω∗ ⊆ Ω × Ω′ with Ω∗ ∈ F × F ′, P × P′(Ω∗) = 1 and for all (ω, ω′) ∈ Ω∗ we have
that lim

n→∞
Ssn(ω, ω′) = S(ω, ω′).

Define Ω∗1 := {ω′ ∈ Ω′ : ∃ω ∈ Ω s.t. (ω, ω′) ∈ Ω∗} and define for all ω′ ∈ Ω′ Ω∗ω′ := {ω ∈ Ω : (ω, ω′) ∈ Ω∗}.
Note that for ω′ ∈ Ω∗1 we have that Ω∗ω′ 6= ∅ and for ω′ ∈ Ω′ \ Ω∗1 we have that Ω∗ω′ = ∅.

Now we have

1 = P× P′(Ω∗) =

∫
Ω×Ω′

1Ω∗(ω, ω
′)dP× P′(ω, ω′) Fubini=

∫
Ω′

∫
Ω

1Ω∗(ω, ω
′)dP(ω)dP′(ω′)

=

∫
Ω′

∫
Ω

1Ω∗1
(ω′)1Ω∗

ω′
(ω)dP(ω)dP′(ω′) (∗1)

=

∫
Ω′

1Ω∗1
(ω′)

∫
Ω

1Ω∗
ω′

(ω)dP(ω)dP′(ω′)

=

∫
Ω′

1Ω∗1
(ω′)

∫
ω∈Ω∗

ω′

1dP(ω)dP′(ω′) =

∫
ω′∈Ω∗1

1

∫
ω∈Ω∗

ω′

1dP(ω)dP′(ω′) =

∫
ω′∈Ω∗1

∫
ω∈Ω∗

ω′

1dP(ω)dP′(ω′)

where (∗1) follows since 1Ω∗1
(ω′) does not depend on ω.

Thus now we find that there exists at least one ω′ ∈ Ω∗1 such that P(Ω∗ω′) = 1, otherwise we would have∫
ω′∈Ω∗1

∫
ω∈Ω∗

ω′
1dP(ω)dP′(ω′) < 1. So take this ω′. Now we have for all ω ∈ Ω∗ω′ that (ω, ω′) ∈ Ω∗ and thus

lim
n→∞

Ssn(ω, ω′) = S(ω, ω′). Define Sn : Ω→ E by Sn :=
∑n
i=1Xi and S′n : Ω′ → E by S′n :=

∑n
i=1X

′
i. Then

we have that

Ssn =

n∑
i=1

Xs
i =

n∑
i=1

(Xi −X ′i) =

n∑
i=1

Xi −
n∑
i=1

X ′i = Sn − S′n.

Since Ssn(ω, ω′) converges for all ω ∈ Ω∗ω′ and P(Ω∗ω′) = 1 we now obtain that Sn−S′n(ω′) : Ω→ E converges
a.s. Thus if we let c′n = X ′n(ω′) we have that

N∑
n=1

(Xn − c′n) =

N∑
n=1

(Xn −X ′n(ω′)) =

N∑
n=1

Xn −
N∑
n=1

X ′n(ω′) = SN − S′N (ω′),

and thus that
∑N
n=1(Xn −X ′n(ω′)) converges a.s.

Since Ω′ is a copy of Ω and for all j ∈ N X ′j is a copy of Xj we can let ω ∈ Ω such that Xj(ω) = X ′j(ω
′) for

all j ∈ N. Now let cn = Xn(ω). Then we obtain

N∑
n=1

(Xn − cn) =

N∑
n=1

(Xn −Xn(ω)) =

N∑
n=1

(Xn −X ′n(ω′)) =

N∑
n=1

(Xn − c′n)

and thus
∑N
n=1(Xn − cn) converges a.s.

So
∑N
n=1(Xn − cn) converges a.s. where for all n ∈ N cn = Xn(ω) for some ω ∈ Ω.
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The above Theorem gives the a.s. convergence for the sequence (cn = Xn(ω))n∈N for some ω ∈ Ω when
the random variables satisfy the assumptions of Theorem 13.20. However, this is not a very useful case as
the element ω′ is not obtained constructively. We would prefer that

∑N
i=1(Xi − E(Xi)) would converge a.s.

and we would also prefer to obtain similar results when the assumptions of Theorem 13.20 are not satisfied.
However without the assumptions of Theorem 13.20 the desired result is not necessarily true. To illustrate
this we consider the Banach space E = R. The following two examples will show the difference between
random variables to R that satisfy the assumptions of Theorem 13.20 and random variables that do not.

Example 18.3. Let the probability space (Ω,F ,P) be given by Ω =
{

(a1, a2, ...) : ai ∈ {0, 1}
}

,

F = σ
({
{a1 = i1, ..., an = in} : n ∈ N, ij ∈ {0, 1}∀j ∈ {1, ..., n}

})
and for A = {a1 = i1, ..., an = in} with n ∈ N and ij ∈ {0, 1} for all j ∈ {1, ..., n} we have that P(A) = 1

2n .
Then let (Xj)j∈N : Ω → R be given by Xi(ω) = ωi for all ω ∈ Ω, where ωi means the i-th element of
the sequence ω. For all i ∈ N we have that Xi is obviously integrable since E(Xi) = 1

2 , thus (Xj)j∈N are
random variables, and they are obviously independent. Furthermore we obviously have that limn→∞

∑n
i=1Xi

does not always exist and thus the assumptions of Theorem 13.20 are not satisfied. Now we have that∑N
i=1(Xi − E(Xi)) =

∑N
i=1(Xi − 1

2 ) =
∑N
i=1Xi − N

2 for all N ∈ N and thus
∑N
i=1(Xi − E(Xi)) does not

converge a.s.

Example 18.4. Let the probability space (Ω,F ,P) be given as in Example 18.3. Let (Xj)j∈N : Ω → R be
given by Xi(ω) = 1

i2ωi for all ω ∈ Ω. For all i ∈ N we have that Xi is obviously integrable since E(Xi) = 1
i2

1
2 ,

and thus (Xj)j∈N are random variables, and they are obviously independent. Now we have that
∑∞
i=1Xi

is a random variable and thus with X =
∑∞
i=1Xi the assumptions of Theorem 13.20 are satisfied. Since∑∞

i=1 E(Xi) =
∑∞
i=1

1
i2

1
2 = 1

2

∑∞
i=1

1
i2 <∞ we have with Proposition 18.1 that

∑n
i=1(Xi−E(Xi)) converges

a.s.

Theorem 18.5. Let (Ω,F ,P) be a probability space and let E be a Banach space. Let (Xj)j∈N : Ω → E
be independent random variables with Xj ∈ L1(Ω;E) for all j ∈ N. Suppose there exists a random variable
X : Ω→ E such that X ∈ L1(Ω;E) and that for all k ∈ N there exists a random variable ∆k : Ω→ E with

∆k = X −
∑k
i=1Xi a.s. and ∆k is independent of X1, ..., Xk. Then Sn :=

∑n
i=1(Xi −E(Xi)) converges a.s.

Proof. Note that ∆k ∈ L1(Ω;E) for all k ∈ N since X ∈ L1(Ω;E) and Xj ∈ L1(Ω;E) for all j ∈ N. With

Proposition 8.8, Lemma 12.16 and Lemma 13.13 we can let (X̃i)i∈N, X̃ and (∆̃k)k∈N be strongly measurable

P-versions of respectively (Xi)i∈N, X and (∆k)k∈N, such that (X̃i)i∈N is a sequence of independent random

variables and that ∆̃k = X̃ −
k∑
i=1

X̃i a.s. and ∆̃k is independent of X̃1, ..., X̃k for all k ∈ N. Note that it also

holds that X̃ ∈ L1(Ω;E), X̃j ∈ L1(Ω;E) and ∆̃k ∈ L1(Ω;E) for all j, k ∈ N.

Now by Theorem 9.3 we have that A1 is satisfied and thus we can define Fk := σ
(
X̃1, ..., X̃k

)
for all k ∈ N.

Define S̃n :=
∑n
i=1

(
X̃i − E

(
X̃i

))
. Let k ∈ N. Since ∆̃k is independent of X̃1, ..., X̃k, it follows that ∆̃k is

independent of X̃1 − E
(
X̃1

)
, ..., X̃k − E

(
X̃k

)
and thus with Proposition 16.2.5 we obtain

E
(

∆̃k − E
(
∆̃k

)
| Fk

)
a.s.
= E

(
∆̃k − E

(
∆̃k

)) a.s.
= E

(
∆̃k

)
− E

(
E
(
∆̃k

))
= 0.

Now we get, where all the equalities hold almost surely,

0 = E
(

∆̃k−E
(
∆̃k

)
|Fk
)

= E

(
X̃ −

k∑
i=1

X̃i − E

(
X̃ −

k∑
i=1

X̃i

)
| Fk

)
= E

(
X̃ −

k∑
i=1

X̃i − E
(
X̃
)

+

k∑
i=1

E
(
X̃i

)
| Fk

)

Proposition 16.2.2
= E

(
X̃ − E

(
X̃
)
| Fk

)
−

k∑
i=1

E
(
X̃i − E

(
X̃i

)
| Fk

)
.
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Since X̃i is Fk-measurable for all i ∈ {1, ..., k} we have that X̃i−E
(
X̃i

)
is Fk-measurable for all i ∈ {1, ..., k}.

Thus with Theorem 9.3 we obtain that X̃i is separably valued for all i ∈ {1, ..., k} and thus again with

Theorem 9.3 we have that X̃i is strongly Fk-measurable for all i ∈ {1, ..., k}. Thus now we have with
Proposition 16.2.3

E
(
X̃ − E

(
X̃
)
| Fk

)
−

k∑
i=1

E
(
X̃i − E

(
X̃i

)
| Fk

)
a.s.
= E

(
X̃ − E

(
X̃
)
| Fk

)
−

k∑
i=1

E
(
X̃i − E

(
X̃i

))
.

And thus we have

E
(
X̃ − E

(
X̃
)
| Fk

)
a.s.
=

k∑
i=1

E
(
X̃i − E

(
X̃i

))
:= S̃k.

By definition we have that (Fi)i∈N is a filtration in F . By Theorem 17.4 we obtain, since X̃ − E
(
X̃
)
∈

L1(Ω;E), that

lim
k→∞

E
(
X̃ − E

(
X̃
)
| Fk

)
= E

(
X̃ − E

(
X̃
)
| F∞

)
a.s.

i.e. E
(
X̃ − E

(
X̃
)
| Fk

)
converges a.s. Now since E

(
X̃ − E

(
X̃
)
| Fk

)
a.s.
= S̃k we have that S̃k converges a.s.

and thus since

S̃k =

k∑
i=1

(
X̃i − E

(
X̃i

))
=

k∑
i=1

(
X̃i − E

(
Xi

)) a.s.
=

k∑
i=1

(
Xi − E

(
Xi

))
= Sk,

Sk converges a.s.
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additive set function, 6
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Banach lattice, 5
Banach space, 4
Bochner integral, 13
Borel σ-algebra, 4
bounded map, 4

cadlag process, 29
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complete measure, 7
complete space, 4
completion of a measure space, 7
conditional expectation, 30
convergence almost surely, 16
convergence in probability, 16
convex hull, 4
copy of a probability space, 24
copy of a random variable, 24

dual space, 6

filtration, 32
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µ-Bochner integrable, 13
µ-measurable, 8
µ-separably valued, 11
cadlag, 29
measurable, 8
Pettis µ-measurable, 11
Pettis measurable, 11
separably valued, 11
strongly µ-measurable, 9
strongly measurable, 9

generated σ-algebra, 3, 19

identically distributed, 15
independence

independent σ-algebras, 17
independent random variables, 17

infimum, 4

linear span, 4
lower semi coninuous, 4

martingale, 32
measure, 7
measure space, 7
monotone set function, 6

normed Riesz space, 4
norming subspace, 6

partially ordered set, 3
partially ordered vector space, 4
positive operator, 6

random variable, 15
Riesz space, 4

semiring, 3
separable space, 5
seperating subspace, 6
set

µ-measurable, 8
measurable, 8

signed charge, 7
signed measure, 7
stochastic process, 29
subadditive set function, 7
supremum, 4
symmetric, 16

uniformly integrable, 14
uniformly tight, 15
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