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1 Introduction

The introduction in the paper of Ellens et al., from now on notated as [1], describes analytical
techniques to analyze metrics that are related to random fluctuations between consecutive obser-
vations. In this thesis, we will take a closer look at the probability that the process, starting at
level n, reaches level n+ 1 before an independent exponentially distributed time T expires. Also
the probability that the process, starting at level n, reaches level n − 1 before an exponentially
distributed time T expires, is examined.

These exponentially distributed times T are studied in [1] to determine the distribution of the
maximum of a birth-death process over a deterministic interval with given initial and terminal
conditions. The probabilities to reach a higher, respectively lower, state before an exponentially
distributed time T expires, both satisfy recursive formulas that look interesting to analyze. The
interesting part was that numerical results in Excel seemed to imply that these probabilities do
not always converge. Therefore, in this thesis we will analyze their limiting behaviour.

The remainder of this thesis is as follows. First we will describe the model of the birth-death
process that we will use throughout this thesis. This chapter will also give the basic formulas we
got from [1] and we introduce the basic concepts and formulas. Also an example will be given
for which we will consider the relation between two sequences of probabilities.

After that, we have enough background to analyze the recursive formulas given in Section 2.1
of [1]. Chapter 3 will give observations of the graph of the recursive formula for the probability
that the process arrives at a state n + 1 before time T given that the process starts in state n,
this probability will be denoted by pn. The observations will be based on examples in Excel of
the M |M |c -model, with c ∈ {1, 2, . . . , 5}, and M |M |∞ -model. The remainder of the chapter
will give counterexamples and proofs of observations.

Chapter 4 and Chapter 5 will state the main results of this thesis. These main results are limiting
results for the probabilities pn and qn, where qn is the probability that the process X arrives at
state n− 1 before time T given that the process starts in state n. Chapter 5 also introduces the
concept of stochastic monotonicity. This will be needed in the proof of the main result of this
chapter.

Chapter 6 summarizes the results of Sections 2.2 and 2.3 of [1] and will give a motivation to the
choice of considering a killed birth-death process.

This thesis concludes with Chapter 7. This chapter will discuss what we originally planned to
research in this thesis and what we actually researched.
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2 The model

In this chapter we will describe the model that will be used in this thesis.

For notational purposes, define N := {1, 2, 3, ...} and N0 := {0, 1, 2, 3, ...}.

Definition 2.1. Let the stochastic process X = (Xt)t≥0 be a birth-death process, where Xt ∈ N0

denotes the state of the process at time t. The birth rate in state n is λn > 0, and the death
rate in state n is µn > 0, for n ∈ N0, where µ0 = 0.

Remark 2.2. The stochastic process X is a continuous time Markov chain on a discrete state
space.

Since we will prove properties of these functions in later chapters of this thesis, we will give the
steps of the derivation of these recursive formulas in section 2.1 of [1] in this chapter.

Given an initial state X0, we consider an independent, exponentially distributed time T till expi-
ration. Given a level m ∈ N0, we are interested in the probability that the process X equals the
level m. The goal of this chapter is to give the derivation of the probability that the maximum
of the stochastic process X is equal to m over the interval [0, T ], of exponential length, given
that the process starts in state i.

Remark 2.3. Since we consider the process X on the stochastic interval [0, T ], we call
(
XT
t

)
t≥0

a killed birth-death process, where XT
t := Xt∧T . If necessary, we will model the killed birth-

death process as a birth-death process with an extra state ∞, which will be an absorbing state,
i.e., the process will never leave this state once it has arrived there. We will use this extra state
∞ in Chapter 5.

Before we can prove results for the process X, first some notation and definitions need to be
introduced.

Notation 2.4.

1. Use m to denote a level. Then, m is a state in the birth-death process (Xt)t≥0 about
which we want to know several probabilities. (For example, we could be interested in the
probability that the birth-death process (Xt)t≥0 is in a state larger than m.)

2. Let t ≥ 0. Let X̄t := sups∈[0,t]Xs denote the running time maximum associated with
process X.

3. Let t ≥ 0. Let X̂t := infs∈[0,t]Xs denote the running time minimum associated with process
X.

4. Let T be an exponentially distributed random variable with rate τ > 0, independent of
process X.
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Definition 2.5. Let n ∈ N0.

1. Let pn := P
(
X̄T ≥ n+ 1 | X0 = n

)
be the probability that the process X, starting at level

n, reaches level n+ 1 before time T .

2. Let p̄n := 1− pn = P
(
X̄T = n | X0 = n

)
be the probability that the process X, starting at

level n, does not reach level n+ 1 before time T .

3. Let qn := P
(
X̂T ≤ n− 1 | X0 = n

)
be the probability that the process X, starting at level

n, reaches level n− 1 before time T .

4. Let i ∈ N0. Let rm,i := P
(
X̄T = m | X0 = i

)
be the probability that the maximum of

process X equals m over the interval [0, T ] (of random duration), given that it starts in
state i.

Definition 2.6.

1. Define p+ := lim supn→∞ pn and p− := lim infn→∞ pn.

2. Define q+ := lim supn→∞ qn and q− := lim infn→∞ qn.

3. Define α∗ := limn→∞
λn
µn

and β∗ := limn→∞
τ
µn

, provided these limits exist.

Definition 2.7. Define the probability that the maximum of the birth-death process (Xt)t≥0

does not exceed level m, given its initial state i and its final value j at a deterministic time t by
qm,i,j,t := P

(
X̄t ≤ m | X0 = i,Xt = j

)
.

To analyze qm,i,j,t, [1] first considers the maximum over an exponential interval given the initial
state of the process. The authors deduce two recursive formulas describing the probability that
the maximum and minimum of the process X, starting at level n, reaches level n + 1 and level
n− 1, respectively, before an exponential time T expires. These probabilities are given in parts
1 and 3 of Definition 2.5 as (pn)n∈N0

and (qn)n∈N0
.

2.1 Formulas

The process X is a birth-death process, hence it satisfies the memoryless property. For a birth-
death process, at rate λn a birth occurs when the process is in state n, and at rate µn a death.
In this model the process is only considered until the exponential time T expires. Therefore,
the process moves from state n to another state (where reaching time T stops the process) at
rate λn + µn + τ . We can model this by extending the state space by an extra state, ∞, to
which the process jumps to with rate τ . However, in this chapter we do not yet need to consider
the extended state space. Hence the probability to reach state n + 1 equals λn

λn+τ+µn
and the

probability to reach state n− 1 equals µn
λn+τ+µn

(for n− 1 ∈ N0).

Since T
d
= exp(τ), with τ > 0, it holds that T satisfies the memoryless property. This means

that after a jump of the birth-death process on time t < T , the remaining time T − t is again
exponentially distributed with rate τ .

Using the memoryless property of the birth-death process and the memoryless property of T
gives that

p0 =
λ0

λ0 + τ
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and for n ∈ N it holds that

pn =
λn

λn + τ + µn
+

µn
λn + τ + µn

pn−1pn.

Analogously, it holds for all n ∈ N0 that

qn =
µn

λn + τ + µn
+

λn
λn + τ + µn

qn+1qn.

For all i > m it holds that
rm,i = P(X̄T = m | X0 = i) = 0,

because in this case X̄T = sups∈[0,T ] ≥ i > m. In the next lemma it will be proven that
rm,i = (pi · . . . · pm−1) · p̄m for all i ≤ m.

Lemma 2.8. For all i ≤ m, it holds that

rm,i = (pi · . . . · pm−1) · p̄m. (1)

Proof. Throughout this proof, we use the memoryless property of the random variable T .

Let i = m. Then,
rm,i = rm,m = P(X̄T = m | X0 = m) = p̄m.

Let i = m− 1. Then,

rm,i = rm,m−1 = P(X̄T = m | X0 = m−1) = P(X̄T ≥ m−1 | X0 = m−1)·P(X̄T = m | X0 = m),

since to arrive in state m, there must be a birth before time T when the process is in state m−1,
and, moreover, no birth may occur in state m before time T . In other words,

rm,i = pm−1 · p̄m.

Let i < m − 1. Since we consider a birth-death process, to reach state m − 1 while starting in
state i before time T , the process must first reach the states i+1, . . . ,m−2 before time T , before
being able to jump to state m− 1. Thus,

rm,i = P(X̄T = m | X0 = i)

= P(X̄T ≥ m− 1 | X0 = i) · P(X̄T = m | X0 = m).

Recursively, we get that

rm,i =

m−2∏
n=i

[
P(X̄T ≥ n | X0 = n)

]
· pm−1 · p̄m

= (pi · . . . · pm−1) · p̄m.

Hence, for all i ≤ m Eqn. (1) holds.
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Lemma 2.9. It holds that

pn =

{
λ0

λ0+τ , n = 0,
λn

λn+τ+µn(1−pn−1) , n ≥ 1.
(2)

Proof. For n = 0 it holds that p0 = P(X̄T ≥ 1 | X0 = 0) = λ0

λ0+t , because µ0 = 0.

Let n ≥ 1. Then, pn = λn
λn+τ+µn

+ µn
λn+τ+µn

pn−1pn. Rewriting this equation gives

(λn + τ + µn)pn = λn + µnpn−1pn

⇐⇒ (λn + τ + µn − µnpn−1)pn = λn

⇐⇒ (λn + τ + µn(1− pn−1))pn = λn

⇐⇒ pn =
λn

λn + τ + µn(1− pn−1)
,

which we needed to show.

Lemma 2.10. It holds that

qn =

{
0, n = 0,

µn
λn+τ+µn(1−qn+1) , n ≥ 1.

(3)

Proof. For n = 0 it holds that q0 = P(X̂T ≤ −1 | X0 = 0) = 0, since Xt ≥ 0 for all t ≥ 0.

Let n ≥ 1. It holds that qn = µn
λn+τ+µn

+ λn
λn+τ+µn

qn+1qn. Rewriting this equation gives

(λn + τ + µn)qn = µn + λnqn+1qn

⇐⇒ (λn + τ + µn − λnqn+1)qn = µn

⇐⇒ (µn + τ + λn(1− qn+1))qn = µn

⇐⇒ qn =
µn

µn + τ + λn(1− qn+1)
,

which we needed to show.

2.2 Examples

In this section we consider for two models the relation between the sequence (pn)n∈N0
and the

sequence (qn)n∈N0
. Both models have a finite state space, S = {0, 1, . . . , N}. Again, let T be an

exponentially distributed random variable with rate τ , independent of X.

Let the parameters λn > 0, for n ∈ {0, 1, . . . , N − 1}, λN = 0, µ0 = 0 and µn > 0, for
n ∈ {1, 2, . . . , N} be given.

Consider the birth-death process X1 = (X1
t )t≥0 on the state space S with birth- and death-

parameters given by λ1
n = λn > 0, for all n ∈ {0, 1, . . . , N−1}, λ1

N = 0, µ1
0 = 0 and µ1

n = µn > 0,
for all n ∈ {1, 2, . . . , N}. Furthermore, consider the birth-death process X2 = (X2

t )t≥0 on
the state space S with swapped birth and death parameters given by λ2

n = µn > 0, for all
n ∈ {0, 1, . . . , N − 1}, λ2

N = 0, µ2
0 = 0 and µ2

n = λn > 0, for all n ∈ {1, 2, . . . , N}.
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Then it holds that

p1
0 =

λn
λn + τ

and p2
0 =

µn
µn + τ

.

For n ∈ {1, . . . , N} it holds that

p1
n =

λn
λn + τ + µn(1− p1

n−1)
and p2

n =
µn

µn + τ + λn(1− p2
n−1)

.

Furthermore it holds that

q1
N =

µn
µn + τ

and q2
N =

λn
λn + τ

.

For n ∈ {0, 1, . . . , N − 1} it holds that

q1
n =

µn
µn + τ + λn(1− q1

n+1)
and q2

n =
λn

λn + τ + µn(1− q2
n+1)

.

It holds that p1
0 = q2

N and that p2
0 = q1

N . Using induction to n it follows for all n ∈ {0, 1, . . . , N}
that p1

n = q2
N−n and p2

n = q1
N−n.

If λn = λ, for all n ∈ {0, 1, . . . , N − 1}, and µn = λ, for all n ∈ {1, 2, . . . , N}, then it follows
that the processes X1 and X2 are equal. Hence, p1

n = q1
N−n for all n ∈ {0, 1, . . . , N}. Note that

|S| = N + 1 is even, if N is off. Vice versa, if |S| is odd, then N is even. In the latter case it
holds that p1

n = q1
n, n = N

2

If λn = µN−n, for all n ∈ {0, 1, . . . , N − 1}, and λN = 0 = µ0, then it follows that p1
n = q1

N−n
for all n ∈ {0, 1, . . . , N}.
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3 Observations and results for pn and xn

When studying the paper [1] we became interested in the structural properties of the formula for
the probabilities pn, n ∈ N0. Therefore, we decided to numerically analyze six M |M |c -models,
c ∈ {1, . . . , 5,∞}, in Excel to get a better understanding of the behaviour of pn as a function of
n. For the M |M |c -model it holds that λn = λ for all n ∈ N and

µn =

{
nµ if n < c,

cµ if n ≥ c.

Notation 3.1. For n ∈ N0, c ∈ N∪{∞}, we use the superscript c for the investigated probabilities
in the M |M |c -model. Moreover, we use the superscript ∗ to indicate the corresponding limits as
n tends to ∞. For example, pcn is the probability that the process X, starting at level n, reaches
level n+ 1 before time T in the M |M |c -model, µcn is the departure rate of the M |M |c -model in
state n, and p∗,c := limn→∞ pcn.

For all the examples we considered, we saw that the graph of pn as a function of n is
non-increasing and that it has a limiting value. See, for example, Figures 1 and 2 below. More-
over, we saw that, when plotting the graphs of pn for different values of c in one plot, that the
graph of pn was monotonic. Furthermore, we noticed that the graphs had a short steep part in
the graph of pn and for the remainder a relatively flat one. If the graph has points before this
steep part of the graph, then the graph changes from relatively flat to steep and then back to
relatively flat.

Figures 1 and 2 show two examples on realizations of the graphs of pn. The plots gave rise to a
number of conjectures that we have tried to prove. These conjectures concern the characterization
of this steep part of the graph, the limiting value of the graph of pn and some monotonic properties
depending on the number of servers c, the birth-rates λ, the death-rates µ, and the rate τ .

Figure 1: The graphs of pn for n ∈ {0, 1, . . . , 25} for M |M |c, c ∈ {1, . . . , 5,∞}, with µ = 1,
λn = 3

4 for all n ∈ N0, and τ = 2.
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Figure 2: The graphs of pn for n ∈ {0, 1, . . . , 25} for M |M |c, c ∈ {1, . . . , 5,∞}, with µ = 1,
λn = 3

4 for all n ∈ N0, and τ = 1
1000 .

3.1 Observations based on Excel

This section will first focus on observations of the graph of pn for the M |M |c -model, c ∈
{1, 2, . . . , 5,∞} We will describe the examples we considered in Excel and the observations we
made using these examples. Then, we focus on the slope of the graph of pn.

3.1.1 Observations of the graph of pn

In Excel we plotted the graph of pn for the M |M |c -model, c ∈ {1, . . . , 5,∞} for n = 0, 1, . . . , 100
and for various values of the parameters λ, µ or τ . The observations below are based on the
graphs in these different Excel sheets. Before presenting the observations, we will first discuss
what examples we used to base these observations on.

First we fixed λ and µ to study the effects of τ . We came up with the 17 situations in Table 1
because we wanted to consider the influence of τ on the M |M |c -model, with c ∈ {1, 2, . . . , 5}.
Therefore, we chose λ = 0.75 and µ = 1, that way we made sure that λ < cµ and hence the queue
length of this queueing system will not explode (see Chapters 3 and 4 in [4]). Then we wanted
to see what would happen if τ became small. Therefore we considered the situations given in
Table 1 of the Appendix.

After researching the influence of τ on the system, we wanted to see what would happen if we
would change the ratio λ/µ. This made us choose µ = 1 and considered for four situations of
τ what would happen if we would decrease λ (with λ < µ). The parameter combinations we
considered here can be found in in the Tables 2, 3, 4 and 5 of the Appendix.

Consider the M |M |c -model, c ∈ {1, . . . , 5,∞}. The conjectures we made using the different
examples are stated in Conjecture 3.2.

Conjecture 3.2.

1. the sequence (pcn)n∈N0
is non-increasing in n.

2. the sequence (pcn)n∈N0
has a limit.
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3. pcn = pc+1
n for all n ∈ N0 with n ≤ c and pcn ≥ pc+1

n for all n > c. It looks like pcn = p∞n for
all n ∈ N0 with n ≤ c and pcn ≥ p∞n for all n > c. So, it seems that the graphs of pn (for
the same n ∈ N0) are non-increasing as c is increasing.

4. limn→∞ pcn ≥ limn→∞ pc+1
n . This is the limit version of Conjecture 3.2.3.

5. limc→∞ p∗,c = 0.

6. pτ1n ≥ pτ2n for τ1, τ2 > 0 such that τ1 < τ2, where τ1 and τ2 denote two distinct extinction
rates.

A counterexample for Conjecture 3.2.1 can be given. However, Lemma 3.5 shows the validity of
Conjecture 3.2.1 for the M |M |c -model, c ∈ N0 ∪ {∞}.

Consider a birth-death process with λn = 0.5 for all n ∈ N0, τ = 1.5 and

µn =


0 if n = 0,

n2 if n is even, n 6= 0,

ln(n) + 1 if n is odd.

(4)

Then it holds for all n ∈ N that µn > 0 (so λn
µn

is well-defined for all n ∈ N) and it holds that

µn →∞ as n→∞. Therefore, α∗ := limn→∞
λn
µn

= 0 and β∗ := limn→∞
τ
µn

= 0. The graph op

pn shows that it does not hold that the sequence (pn)n∈N0
is non-increasing in n. Hence, this is

not a generic property of birth-death processes. The corresponding graph can be found in Figure
3. Moreover, this example also seems to give a counterexample of Conjecture 3.2.2. However, as
we will see in Chapter 4, also for this example limn→∞ pn exists.

Figure 3: The graph of pn for n ∈ {0, 1, . . . , 100} with µn as in Eqn. (4), λn = 1
2 for all n ∈ N0,

and τ = 3
2 .

Moreover, for the M |M |c -model, c ∈ N ∪ {∞}, we can prove that the sequence (pcn)n∈N0
is

non-increasing in n. This will be proven in Lemma 3.5. Conjecture 3.2.2 will be proven under
some mild conditions in Chapter 4. The other conjectures will be proven for the M |M |c -model
in this chapter.
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3.1.2 Observations of the graph of xn

Definition 3.3. Define the slope of the graph as the difference between two consecutive proba-
bilities pn, i.e.,

xn := pn − pn+1

for all n ∈ N0.

In this subsection we will study the graph of xn. We will study two aspects: monotonicity and
the behaviour around its maximum. The latter is motivated by our interest in the part of the
graph pcn, where it is steepest.

First, we considered the same examples as in Section 3.1.1 for the slope of the graph of pcn. In
this way, we can take into account the observations made in Section 3.1.1. However, we also
considered an example with λ = 1, µ = 0.5 and τ = 0.01, and an example with λ = 0.75, µ = 0.5
and τ = 0.01. This is related to the question of the monotonicity of the graph of xcn.

Recall Notation 3.1.

The conjectures we made using the different examples are given in Conjecture 3.4.

Conjecture 3.4.

1. for the M |M |c -model, c ∈ N ∪ {∞}, the graph of xcn is not always monotone in c.

2. maxn∈N0
xcn is non-decreasing as a function of c.

3. n∗ := arg maxn∈N0 x
c
n denotes the point where the graph of pcn has the steepest descent,

the steepest descent is at pcn∗ or pcn∗+1.

4. arg maxn∈N0 x
c
n is non-increasing as c decreases.

The goal of these observations is to come up with a heuristic method to evaluate the top of the
graph of xcn.

The graphs of xcn in Figure 4 are an example showing that the graphs of xcn can intersect for
different values of c. Hence, this example shows that monotonicity for xcn cannot be proven for
the M |M |c -models, c ∈ N ∪ {∞}.

3.1.3 Heuristic for xn

For notational convenience, we leave the superscript c out of the notation.

In this subsection we will describe our attempts to find a heuristic method to predict
n∗ = arg maxn∈N0 xn for M |M |c -models, c ∈ N ∪ {∞}.

Excel calculations for the slope of pn for M |M |c, c ∈ N ∪ {∞}.
In this subsection we will analyze some Excel sheets we built. These Excel sheets calculate the
point n∗ = arg maxn∈N0

xn.

In these Excel sheets multiple examples are considered and can be found in Table 6 in the
Appendix. Note that these Excel sheets could easily be used to calculate n∗ for other parameters
for M |M |c, with c ∈ {1, 2, 3, 4, 5}, and M |M |∞. This can be done easily by just changing the
respective values for λ, µ or τ .

12



Figure 4: The graphs of xn for n ∈ {0, 1, . . . , 25} for M |M |c, c ∈ {1, . . . , 5,∞}, with µ = 1,
λn = 3

4 for all n ∈ N0, and τ = 1
1000 .

First, the values for pn are calculated in these Excel files. These values are then used to calculate
the values for xn. Finally, n∗ is calculated by a formula that compares the calculated maximum
with the Excel cells containing the values of xn and this formula returns how many cells are above
the number we sought including the cell that contains this maximum. Since we start counting
from n = 0 we have to subtract 1 to get the correct value for n∗.

Excel observations for the slope of pn for M |M |c, c ∈ N ∪ {∞}.
This subsection will contain some observations based on the results of the examples.

1. n∗ is non-decreasing as λ increases. This observation is based on situations 1− 5.

2. n∗ is non-decreasing as µ increases. This observation is based on situations 6− 20.

3. n∗ is non-increasing as τ increases. This observation is based on situations 21− 34.

4. Increasing the number of servers c does not always lead to n∗ non-decreasing or non-
increasing. An example is as follows. Let λ = 1, µ = 0.5 and τ = 0.01. For M |M |4 and
M |M |∞ it can be calculated that n∗ = 6, while for M |M |5, n∗ = 5.

The conclusion is that since increasing the number of servers does not always lead to n∗ non-
decreasing or non-increasing, this did not succeed. Therefore, this could be a topic of further
research.

3.2 Monotonicity and convergence results for the M |M |c -model, with
c ∈ N ∪ {∞}

Consider the M |M |c -model, c ∈ N ∪ {∞}. Let τ > 0 be given. Assume that µ > 0 and that
λ < cµ.

Recall the definition of pn, Eqn. (2).

Next, we will show that the sequence (pn)n∈N is a non-increasing sequence for the M |M |c -model,
c ∈ N ∪ {∞}. Then, an easy consequence is that the sequence (pn)n∈N has a limit.

13



Lemma 3.5. Let λ, µ ≥ 0 and let τ > 0. For the M |M |c -model, c ∈ N ∪ {∞}, it holds that

1. pn = 0, n ∈ N0, if λ = 0 and µ ≥ 0. Moreover, the limit exists and p∗ = limn→∞ pn = 0.

2. pn = λ
λ+τ , n ∈ N0, if λ > 0 and µ = 0. Moreover, the limit exists and p∗ = limn→∞ pn = λ

λ+τ .

3. pn > pn+1, n ∈ N0, if λ > 0 and µ > 0. Moreover, p∗ = limn→∞ pn exists.

Proof. 1. Let λ = 0 and µ ≥ 0. Then, by Eqn. (2), it immediately follows that pn = 0 for all
n ∈ N0. Hence, the sequence (pn)n∈N0

has a limit, namely limn→∞ pn = 0.

2. Let λ > 0 and µ = 0. Then, it follows immediately for all n ∈ N0 that pn = λ
λ+τ . So,

then it holds for all n ∈ N0 that pn = pn+1. Thus, the sequence (pn)n∈N0
is constant, and

hence, it has a limit, namely limn→∞ pn = λ
λ+τ .

3. Let λ, µ > 0. Note that since λ > 0 and τ > 0 it holds that p0 = λ
λ+τ ∈ (0, 1).

It suffices to consider two situations, namely 0 ≤ n < c, and n ≥ c. Note that for c = ∞
only the first case has to be considered.

• Suppose that 0 ≤ n < c. It holds that

p0 =
λ

λ+ τ
(∗)
>

λ

λ+ τ + µ(1− p0)

= p1,

where (*) holds since µ > 0 and p0 ∈ (0, 1).

Since µ > 0, it then follows that µ(1 − p0) ≤ µ(1 − p1). Moreover, since λ ≥ 0
and τ > 0, it therefore holds that λ + τ + µ(1 − p0) ≤ λ + τ + µ(1 − p1). Hence,

λ
λ+τ+µ(1−p0) ≥

λ
λ+τ+µ(1−p1) . Therefore, we have that

p1 =
λ

λ+ τ + µ(1− p0)

≥ λ

λ+ τ + µ(1− p1)

>
λ

λ+ τ + 2µ(1− p1)

= p2.

So, it holds that p1 > p2. Analogously, pn > pn+1 for all 2 ≤ n < c. So, for all
0 ≤ n < c we have that pn > pn+1.

• Suppose that n ≥ c. Above, we already have proven that pc−1 > pc. Since µ > 0, it
therefore follows that cµ(1− pc−1) < cµ(1− pc). Moreover, since λ > 0 and τ > 0, we
also have that λ+ τ + cµ(1− pc−1) < λ+ τ + cµ(1− pc). Therefore,

pc =
λ

λ+ τ + cµ(1− pc−1)

>
λ

λ+ τ + cµ(1− pc)
= pc+1.
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So, it holds that pc > pc+1. Similarly we get for all n ≥ c that pn > pn+1, thus it
holds for all n ≥ c that pn is strictly decreasing.

Thus, we have proven for all n ∈ N0 that pn > pn+1.

For all n ∈ N0 it holds that pn is a probability, hence pn ∈ [0, 1] for all n ∈ N0. Thus the
sequence (pn)n∈N0

is bounded. Then, by the Monotone Convergence Theorem, it follows
that the sequence (pn)n∈N0 has a limit.

Remark 3.6. In Theorem 4.1 we will derive an expression for p∗, when λ, µ > 0.

Remark 3.7. If we would have that 0 = µ0 ≤ µn ≤ µn+1 and λn = λ ≥ 0 for all n ∈ N0, then
it would follow analogously that the sequence of (pn)n∈N0 is non-increasing. It is even strictly
decreasing if λ > 0 and µn > 0 for all n ∈ N.

Remark 3.8. To be able to apply the Monotone Convergence Theorem we need a non-increasing
or a non-decreasing sequence (pn)n∈N0

. For a general birth-death process we do not necessarily
have this property. Therefore we cannot use the Monotone Convergence Theorem to prove in
general that the sequence (pn)n∈N0 has a limit.

Recall Notation 3.1.

Lemma 3.9. Let λ, µ, τ > 0. Let c ∈ N. Then,

• pcn = pc+1
n for all n ≤ c,

• pcn > pc+1
n for all n > c.

Proof. It holds that µcn = nµ for all n ≤ c and µcn = cµ for all n ≥ c.

We use induction on n to prove the statement of the lemma.

Let n = 0. Then it holds that λc0 = λ = λc+1
0 . Hence, pc0 = λ

λ+τ = pc+1
0 .

Suppose that pcn−1 = pc+1
n−1, n < c, then

pcn =
λ

λ+ τ + nµ(1− pcn−1)
=

λ

λ+ τ + nµ(1− pc+1
n−1)

= pc+1
n .

Next, let n = c. By assumption pcn−1 = pc+1
n−1. It holds that µcn = cµ = µc+1

n . Hence,

pcn = pc+1
n .

Let n = c+ 1. By assumption pcn−1 = pc+1
n−1. It holds that µcn = cµ and µc+1

n = (c+ 1)µ. It holds
that cµ < (c+ 1)µ, and thus µcn < µc+1

n . Then,

λ+τ+µcn(1−pcn−1) = λ+τ+cµ(1−pc+1
n−1) < λ+τ+(c+1)µ(1−pc+1

n−1) = λ+τ+µc+1
n (1−pc+1

n−1).

Hence,

pcn =
λ

λ+ τ + µcn(1− pcn−1)
>

λ

λ+ τ + µc+1
n (1− pc+1

n−1)
= pc+1

n .
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Finally, assume that pcn > pc+1
n , with n > c+ 1. It holds that µcn = cµ < (c+ 1)µ = µc+1

n . Then
it follows that µcn(1− pcn−1) < µc+1

n (1− pc+1
n−1), since µcn < µc+1

n and since 1− pcn−1 < 1− pc+1
n−1.

This gives that

pcn =
λ

λ+ τ + µcn(1− pcn−1)
>

λ

λ+ τ + µc+1
n (1− pc+1

n−1)
= pc+1

n .

So for all n ∈ N0 with n ≤ c it holds that pcn = pc+1
n and for all n > c it holds that pcn > pc+1

n .

Corollary 3.10. Let c1, c2 ∈ N such that c1 < c2. Then,

• pc1n = pc2n for all n ≤ c1,

• pc1n > pc2n for all n > c1.

Proof. Using Lemma 3.9 iteratively gives the statement we need to show.

Lemma 3.11. Let c ∈ N. Then,

• pcn = p∞n for all n ≤ c,

• pcn > p∞n for all n > c,

• limc→∞ pcn = p∞n .

Proof. Let c1 ∈ N.

Let n ≤ c1. Then, pc1n = pc2n for all c2 > c1. Also, pc2n = p∞n , since the birth- and death-rates are
equal for M |M |c2 and M |M |∞ for the states {0, 1, . . . , n}.

Now, let n > c1. Fix c2 > n. By Corollary 3.10 we get pc1n > pc2n , and, similarly to the previous
case, we get pc2n = p∞n .

Then it holds for all n ∈ N0 with n ≤ c1 that pc1n = pc2n = p∞n and for all n > c1 it holds that
pc1n > pc2n = p∞n , which concludes the first part of the proof.

Since for all n ≤ c it holds that pcn = p∞n , it immediately follows that limc→∞ pcn = p∞n .

3.3 The slope of pn

This subsection will again focus on the slope of the graph of pn, in other words, we will focus on
the maximum of the graph of xn. The question is, whether this graph has a unique maximum.
We will give a result about conditions when the graph of xn is increasing and decreasing. First
we will focus on the M |M |∞ -model. Then we study the M |M |c -model, c ∈ N. From now on,
we omit the superscript as it will be clear which model will be considered.

Recall Definition 3.3, i.e., xn := pn − pn+1, n ∈ N0.

3.3.1 Slope of the M |M |∞ -model

Consider the M |M |∞ -model. Let λ, µ, τ > 0. Then, Eqn. (7) becomes

pn =

{
λ

λ+τ if n = 0,
λ

λ+τ+nµ(1−pn−1) if n ∈ N.
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Lemma 3.12. Consider the M |M |∞ -model. Let λ, µ, τ > 0. Then,

xn =

{
λµ · 1−p0

(λ+τ)(λ+τ+µ(1−p0)) , n = 0,

λµ · n(pn−1−pn)+1−pn
(λ+τ+nµ(1−pn−1))(λ+τ+(n+1)µ(1−pn)) , n ≥ 1.

Proof. Let n = 0. Then,

x0 = p0 − p1

=
λ

λ+ τ
− λ

λ+ τ + µ(1− p0)

= λ · λ+ τ + µ(1− p0)− (λ+ τ)

(λ+ τ)(λ+ τ + µ(1− p0))

= λµ · 1− p0

(λ+ τ)(λ+ τ + µ(1− p0))
. (5)

Let n ∈ N. Then,

xn = pn − pn+1

=
λ

λ+ τ + nµ(1− pn−1)
− λ

λ+ τ + (n+ 1)µ(1− pn)

= λ · λ+ τ + (n+ 1)µ(1− pn)− (λ+ τ + nµ(1− pn−1))

(λ+ τ + nµ(1− pn−1))(λ+ τ + (n+ 1)µ(1− pn))

= λ · (n+ 1)µ(1− pn)− nµ(1− pn−1)

(λ+ τ + nµ(1− pn−1))(λ+ τ + (n+ 1)µ(1− pn))

= λµ · n(pn−1 − pn) + 1− pn
(λ+ τ + nµ(1− pn−1))(λ+ τ + (n+ 1)µ(1− pn))

. (6)

Lemma 3.13. Consider the M |M |∞ -model with λ, µ, τ > 0. Let n ∈ N be such that
xn−1 ≥ n+2

n xn. Then it holds that xn ≥ xn+1.

Proof. Assume that n ∈ N is such that xn−1 ≥ n+2
n xn. Rewriting Eqn. (6) gives that

xn = λµ · n(pn−1 − pn) + 1− pn
(λ+ τ + nµ(1− pn−1))(λ+ τ + (n+ 1)µ(1− pn))

≥ λµ · n(pn−1 − pn) + 1− pn
(λ+ τ + nµ(1− pn+1))(λ+ τ + (n+ 1)µ(1− pn))

≥ λµ · n(pn−1 − pn) + 1− pn
(λ+ τ + (n+ 2)µ(1− pn+1))(λ+ τ + (n+ 1)µ(1− pn))

,

where the first inequality holds by Lemma 3.5 (i.e., pn−1 > pn+1).

To prove that xn ≥ xn+1 it remains to be proven that

n(pn−1 − pn) + 1− pn ≥ (n+ 1)(pn − pn+1) + 1− pn+1.

At the contrary, assume that n(pn−1 − pn) + 1− pn < (n+ 1)(pn − pn+1) + 1− pn+1. Then,

n(pn−1 − pn) + 1− pn − (n+ 1)(pn − pn+1)− 1 + pn+1 < 0.
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This implies that

npn−1 − npn + 1− pn − npn + npn+1 − pn + pn+1 − 1 + pn+1 < 0

⇒ npn−1 − 2(n+ 1)pn + (n+ 2)pn+1 < 0

⇒ n(pn−1 − pn) + (n+ 2)(pn+1 − pn) < 0

⇒ nxn−1 − (n+ 2)xn < 0

⇒ nxn−1 < (n+ 2)xn,

which yields a contradiction with the assumption that xn−1 ≥ n+2
n xn. Hence,

n(pn−1 − pn) + 1− pn ≥ (n+ 1)(pn − pn+1) + 1− pn+1.

This gives

xn ≥ λµ ·
n(pn−1 − pn) + 1− pn

(λ+ τ + (n+ 2)µ(1− pn+1))(λ+ τ + (n+ 1)µ(1− pn))

≥ (n+ 1)(pn − pn+1) + 1− pn+1

= xn+1,

thus completing the proof of the lemma.

3.3.2 Slope of the M |M |c -model, with c ∈ N

Consider the M |M |c -model, with c ∈ N. Again, let λ, µ, τ > 0. Therefore, Eqn. (7) becomes

pn =


λ

λ+τ , n = 0,
λ

λ+τ+nµ(1−pn−1) , 1 ≤ n ≤ c,
λ

λ+τ+cµ(1−pn−1) , n > c.

Lemma 3.14. For the M |M |c -model, with c ∈ N, it holds that

xn =


λµ · 1−p0

(λ+τ)(λ+τ+µ(1−p0)) , n = 0,

λµ · n(pn−1−pn)+1−pn
(λ+τ+nµ(1−pn−1))(λ+τ+(n+1)µ(1−pn)) , 1 ≤ n < c,

λcµ · pn−1−pn
(λ+τ+cµ(1−pn−1))(λ+τ+cµ(1−pn)) , n ≥ c.

Proof. Consider n = 0. Then, analogously to deriving Eqn. (5), we get that

x0 = λµ · 1− p0

(λ+ τ)(λ+ τ + µ(1− p0))
.

Let n ∈ N such that n < c. Then, analogously to deriving Eqn. (6), we get that

xn = λµ · n(pn−1 − pn) + 1− pn
(λ+ τ + nµ(1− pn−1))(λ+ τ + (n+ 1)µ(1− pn))

.
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Now, let n ∈ N such that n ≥ c. Then,

xn = pn − pn+1

=
λ

λ+ τ + cµ(1− pn−1)
− λ

λ+ τ + cµ(1− pn)

= λ · λ+ τ + cµ(1− pn)− (λ+ τ + cµ(1− pn−1))

(λ+ τ + cµ(1− pn−1))(λ+ τ + cµ(1− pn))

= λcµ · pn−1 − pn
(λ+ τ + cµ(1− pn−1))(λ+ τ + cµ(1− pn))

.

Lemma 3.15. Consider the M |M |c -model, with c ∈ N. Let λ, µ, τ > 0. If 1 ≤ n < c and
xn−1 ≥ n+2

n xn, then xn ≥ xn+1. If n ≥ c and xn−1 ≥ xn, then xn ≥ xn+1.

Proof. Let n < c and xn−1 ≥ n+2
n xn, then, analogously to the proof of part 1 of Lemma 3.13, it

follows that xn ≥ xn+1.

Now, let n ≥ c. Assume that xn−1 ≥ xn. Then it holds that

xn − xn+1 = λcµ · pn−1 − pn
(λ+ τ + cµ(1− pn−1))(λ+ τ + cµ(1− pn))

− λcµ · pn − pn+1

(λ+ τ + cµ(1− pn))(λ+ τ + cµ(1− pn+1))

≥ λcµ · xn−1

(λ+ τ + cµ(1− pn+1))(λ+ τ + cµ(1− pn))

− λcµ · xn
(λ+ τ + cµ(1− pn))(λ+ τ + cµ(1− pn+1))

≥ 0,

where the first inequality holds by Lemma 3.5 (i.e., pn−1 > pn+1), and where the second inequality
holds by the assumption that xn−1 ≥ xn. This concludes the proof of the lemma.
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4 Convergence of pn for a general birth-death process

In this chapter we will prove that for a birth-death process the limit limn→∞ pn exists under
mild conditions. Before we prove this theorem, we will give an example to show an application
of the theorem.

One of the mild conditions is that the limit of the ratio between the birth and death parameters
must exist. The other mild condition is that the limit of the ratio between the exponential rate
τ and the death parameters must exist.

Theorem 4.1. Suppose that α∗ = limn→∞
λn
µn
≥ 0 and β∗ = limn→∞

τ
µn
≥ 0 both exist. Let pn,

n ∈ N0, be given by

pn =

{
λ0

λ0+τ if n = 0,
λn

λn+τ+µn(1−pn−1) if n ∈ N.
(7)

1. Suppose α∗ = 0 and β∗ > 0. Then, limn→∞ pn = p∗ = 0.

2. Suppose α∗ > 0 and β∗ ≥ 0. Then, limn→∞ pn = p∗ exists with p∗ the smallest solution of
the equation

x2 − (α∗ + β∗ + 1)x+ α∗ = 0, (8)

in other words

p∗ =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)2 − 4α∗

2
.

3. Suppose α∗ = β∗ = 0. Then, limn→∞ pn = p∗ = 0.

The proof for parts 2 and 3 of the theorem requires more work than the proof for part 1. Therefore
we will first prove part 1 of the theorem.

Proof of Theorem 4.1 part 1. Let α∗ = 0 and let β∗ > 0. Let pn, n ∈ N0 be given by Eqn. (7).

Note that µn > 0 for all n ∈ N. Therefore, we can rewrite Eqn. (7), for all n ∈ N, by dividing
by µn. This gives

pn =

λn
µn

λn
µn

+ τ
µn

+ (1− pn−1)
≥

λn
µn

λn
µn

+ τ
µn

+ 1
. (9)

Hence,

p− = lim inf
n→∞

pn ≥ lim inf
n→∞

λn
µn

λn
µn

+ τ
µn

+ 1
=

α∗

α∗ + β∗ + 1
= 0, (10)

since α∗ = 0 and β∗ > 0.

Furthermore, it holds that

pn =

λn
µn

λn
µn

+ τ
µn

+ (1− pn−1)
≤

λn
µn

λn
µn

+ τ
µn

.

Hence,

p+ = lim sup
n→∞

pn ≤ lim sup
n→∞

λn
µn

λn
µn

+ τ
µn

=
α∗

α∗ + β∗
= 0. (11)

Combining Eqns. (10) and (11) yields limn→∞ pn = 0, which completes the proof of part 1 of
Theorem 4.1.
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4.1 Application of Theorem 4.1 part 3

As an illustration of part 3 of Theorem 4.1, we consider the M |M |∞ -model. Recall that τ > 0,
λn = λ > 0 for all n ∈ N0, µ0 = 0 and µn = nµ > 0 for all n ∈ N. Then, α∗ = limn→∞

λn
µn

= 0
and β∗ = limn→∞

τ
µn

= 0. An example of the graph of pn is given in Figure 5.

Figure 5: The graph of pn for n ∈ {0, 1, . . . , 50} for M |M |∞, with µ = 1, λn = 3
4 for all n ∈ N0,

and τ = 1
1000 .

Since the sequence (µn)n∈N0
has the property that it is monotonically increasing to ∞, we can

show via a direct proof that limn→∞ pn = 0. The proof of Lemma 4.2 was initially based on the
proof of Lemma 3 in [2], but later we showed Lemma 3.5 part 3 and the proof below uses this
lemma.

Lemma 4.2. For the M |M |∞ model it holds that limn→∞ pn = 0.

Proof. By Lemma 3.5 we know that the sequence (pn)n∈N0
is a decreasing sequence. Hence, for

all n ∈ N it holds that pn ≤ p0. Therefore,

pn+1 =
λ

λ+ τ + (n+ 1)µ(1− pn)

≤ λ

λ+ τ + (n+ 1)µ(1− p0)
,

since pn ≤ p0.

Now we can take the limit of n to ∞ of the right-hand side. This gives

lim
n→∞

λ

λ+ τ + (n+ 1)µ(1− p0)
= 0.

Thus,
p∗ = lim

n→∞
pn = 0.
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4.2 Proof of parts 2 and 3 of Theorem 4.1

The proof of the second part of Theorem 4.1 consists of multiple steps. These steps are formulated
as lemmas that will be proven in this subsection. The final proof of Theorem 4.1 part 2 can then
be found at the end of this subsection and this proof will use all lemmas in this subsection.
Throughout this section, we assume that α∗ > 0.

Recall Definition 2.6.1, i.e., p+ := lim supn→∞ pn and p− := lim infn→∞ pn.

Lemma 4.3. Let α∗ > 0 and β∗ ≥ 0. It holds that p+, p− > 0.

Proof. Let α∗ > 0 and β∗ ≥ 0. Let pn, n ∈ N0 be given by Eqn. (7). Analogously to the proof
of the first part of Theorem 4.1 we get again Eqn. (9). Hence, also Eqn. (10) holds, which gives
that

p− ≥ α∗

α∗ + β∗ + 1
> 0,

since α∗ > 0.

Because p− = lim infn→∞ pn > 0 it follows immediately that pn > 0 for all n ∈ N0. Moreover,
since p+ ≥ p− we also have that p+ > 0, which concludes the proof.

Lemma 4.4. Let α∗ > 0. It holds that p+ and p− are both solutions of Eqn. (8). in other
words,

p+, p− ∈

 (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2
,

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2

 .

Proof. By virtue of Lemma 4.3 we have that p+, p− > 0. The proof of that lemma even yields
that pn > 0 for all n ∈ N0. Hence, dividing by p+, p− and pn, n ∈ N0, is allowed.

Because (pn)n∈N0
is a sequence of probabilities, it holds that p+ and p− both exist with p+, p− ∈

[0, 1]. Hence, there exist a subsequence (pnk)k ⊆ (pn)n∈N0
such that pnk → p+ as k → ∞ and

there exists a subsequence (pml)l ⊆ (pn)n∈N0
such that pml → p− as l→∞.

Recall Eqn. (7), so for all n ∈ N0 that pn+1 = λn+1

λn+1+τ+µn+1(1−pn) . Therefore,

pnk+1 =
λnk+1

λnk+1 + τ + µnk+1(1− pnk)
.

Note that limk→∞ pnk+1 exists, since limk→∞ pnk exists.

Furthermore, it holds that

lim
k→∞

pnk+1 ≤ lim sup
k→∞

sup
j≥nk+1

pj ≤ lim sup
n→∞

pn = p+.
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Thus, limk→∞ pnk+1 ≤ p+, and so

p+ ≥ lim
k→∞

λnk+1

λnk+1 + τ + µnk+1(1− pnk)

= lim
k→∞

λnk+1

µnk+1

λnk+1+τ+µnk+1(1−pnk )

µnk+1

=
α∗

α∗ + β∗ + 1− limk→∞ pnk

=
α∗

α∗ + β∗ + 1− p+
.

So, we have that p+ ≥ α∗

α∗+β∗+1−p+ . This can be rewritten as

p+
(
α∗ + β∗ + 1− p+

)
≥ α∗,

⇐⇒ −(p+)2 + (α∗ + β∗ + 1) p+ − α∗ ≥ 0,

⇐⇒ (p+)2 − (α∗ + β∗ + 1) p+ + α∗ ≤ 0. (12)

Rewriting Eqn. (7) yields

pn−1 =
pn(λn + τ + µn)− λn

µnpn
.

Therefore,

pnk−1 =
pnk(λnk + τ + µnk)− λnk

µnkpnk
=
pnk

(
λnk
µnk

+ τ
µnk

+ 1
)
− λnk

µnk

pnk
. (13)

Because limk→∞ pnk = p+ exists, it follows that limk→∞ pnk−1 also exists. It holds that

lim
k→∞

pnk−1 ≤ lim sup
k→∞

sup
j≥nk−1

pj ≤ lim sup
n→∞

pn = p+.

Since limk→∞ pnk−1 = p+(α∗+β∗+1)−α∗
p+ , we have that

p+ (α∗ + β∗ + 1)− α∗

p+
≤ p+.

Therefore,
(p+)2 ≥ p+ (α∗ + β∗ + 1)− α∗,

which yields
(p+)2 − p+ (α∗ + β∗ + 1) + α∗ ≥ 0. (14)

Combining Eqns. (12) and (14) yields that p+ is a solution of Eqn. (8). Hence,

p+ ∈

 (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2
,

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2

 .

Analogously (only the sign of the inequalities changes, because the limit inferior is considered
instead of the limit superior), it follows that p− is also a solution of Eqn. (8). This concludes
the proof of the lemma.
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Remark 4.5. Since it holds that p+ and p− both exist, it necessarily must hold that both
solutions of the quadratic expression exist.

Since β∗ ≥ 0 we only need to consider two situations, namely β∗ > 0 and β∗ = 0 in order to be
able to prove the theorem.

First consider the case where β∗ > 0. If

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2
> 1 ≥

(α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2
≥ 0,

(15)
then it holds that

p+ = p− =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2
,

since p+, p− ∈ [0, 1], which is the smallest solution of Eqn. (8).

Lemma 4.6. Let α∗, β∗ > 0. Then Eqn. (15) holds.

Proof. First we will prove that

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2
> 1 (16)

holds. To show this, it is sufficient to prove that (α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗ > 2.
Suppose that is not true. Then,√

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2− (α∗ + β∗ + 1) = 1− α∗ − β∗.

This implies that
((α∗ + β∗) + 1)

2 − 4α∗ ≤ (1− (α∗ + β∗))
2
,

in other words,

(α∗ + β∗)
2

+ 2 (α∗ + β∗) + 1− 4α∗ ≤ 1− 2 (α∗ + β∗) + (α∗ + β∗)
2
.

Rewriting yields
4 (α∗ + β∗)− 4α∗ ≤ 0,

so that β∗ ≤ 0. This contradicts the fact that β∗ > 0. Hence, Eqn. (16) holds.

Next, we will prove that

0 ≤
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2
≤ 1. (17)

To show this, it is sufficient to prove that 0 ≤ (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2.

The fact that α∗, β∗ > 0, implies that

(α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≥ 0.

24



To prove that (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2, we will assume the contrary. In other

words,

−
√

(α∗ + β∗ + 1)
2 − 4α∗ > 2− (α∗ + β∗ + 1) ,

or, equivalently, √
((α∗ + β∗) + 1)

2 − 4α∗ < α∗ + β∗ − 1.

Similarly as before, this implies that β∗ < 0. Thus, we have arrived at a contradiction, so that
Eqn. (17) holds.

So, if β∗ > 0, then it holds that

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2
> 1 ≥

(α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2
≥ 0,

which concludes the proof of the claim.

Corollary 4.7. Let α∗ > 0. If β∗ > 0, then

p+ =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2
= p−,

which is the smallest solution of Eqn. (8).

Proof. By virtue of Lemma 4.4 and Lemma 4.6, and since p+, p− ∈ [0, 1], we can conclude that
for β∗ > 0 it holds that

p+ =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2
= p−,

which is the smallest solution of Eqn. (8).

Corollary 4.7 concludes the proof of Theorem 4.1 in case β∗ > 0.

Now it remains to consider the case β∗ = 0.

Lemma 4.4 yields that p+ and p− are both solutions to Eqn. (8), which reduces to

x2 − (α∗ + 1)x+ α∗ = 0, (18)

so that

p+, p− ∈

 (α∗ + 1)−
√

(α∗ + 1)
2 − 4α∗

2
,

(α∗ + 1) +

√
(α∗ + 1)

2 − 4α∗

2


=

{
(α∗ + 1)−

√
(α∗ − 1)2

2
,

(α∗ + 1) +
√

(α∗ − 1)2

2

}
. (19)

Consider three situations, namely α∗ = 1, α∗ > 1 and 0 ≤ α∗ < 1. These three situations
cover all possible situations, since α∗ ≥ 0. These situations will be considered in Lemma 4.8 and
Lemma 4.9, respectively.
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Lemma 4.8. Let β∗ = 0. Let α∗ ≥ 1. Then it holds that p+ = p− = 1, which is the smallest
solution of Eqn. (18).

Proof. Let α∗ = 1. Then 1 is the unique root of Eqn. (18), and so p+ = p− = 1. So, then it
follows that p+ = 1 = p−, and hence p∗ exists and is given by p∗ = 1.

Let α∗ > 1. It holds that 1 and α∗ are the roots of the quadratic Eqn. (18). Since p+, p− ∈ [0, 1],
necessarily p+ = p− = 1.

Lemma 4.9. Let β∗ = 0. Let 0 < α∗ < 1. Then p+, p− ∈ {α∗, 1}, which are the solutions of
the quadratic Eqn. (18).

Proof. Since 0 < α∗ < 1, Eqn. (19) reduces to

p+, p− ∈

α
∗ + 1−

√
(1− α∗)2

2
,
α∗ + 1 +

√
(1− α∗)2

2


=

{
α∗ + 1− (1− α∗)

2
,
α∗ + 1 + (1− α∗)

2

}
=

{
2α∗

2
,

2

2

}
= {α∗, 1} .

However, because 0 < α∗ < 1 this does not give a unique solution. Hence p+, p− ∈ {α∗, 1}.

However, we want to prove that for β∗ = 0 and 0 < α∗ < 1 we have that p+ = p− = α∗ < 1.
Therefore we will consider the following lemma.

Lemma 4.10. Let β∗ = 0 and let 0 ≤ α∗ < 1. It holds that p+ = lim supn→∞ pn < 1.

Proof. It holds that limn→∞
λn
µn

= α∗ < 1. Let ε > 0 be such that α∗ + ε < 1. Then there exists

N ∈ N0, such that for all n ≥ N it holds that λn
µn
≤ α∗ + ε < 1.

Define, for all n ∈ N0,

λ′n :=

{
λn if n < N,

(α∗ + ε)µn if n ≥ N,

and

p′n :=
λ′n

λ′n + τ + µn(1− p′n−1)

For all 0 ≤ n < N it holds that λ′n = λn and thus also that p′n = pn. For all n ≥ N , it holds
that that λ′n > λn.

By virtue of Eqn. (7),

pn =
1

1 + τ
λn

+ µn
λn

(1− pn−1)

and

p′n =
1

1 + τ
λ′n

+ µn
λ′n

(1− p′n−1)
.
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Let n = N . Since p′N−1 = pN−1 and λ′N > λN , it holds that

1 +
τ

λ′N
+
µN
λ′N

(1− p′N−1) = 1 +
τ

λ′N
+
µN
λ′N

(1− pN−1)

< 1 +
τ

λN
+
µN
λN

(1− pN−1).

This yields

p′N =
1

1 + τ
λ′N

+ µN
λ′N

(1− p′N−1)

>
1

1 + τ
λN

+ µN
λN

(1− pN−1)

= pN .

Let n > N and assume that p′n−1 > pn−1. Then 1 − p′n−1 < 1 − pn−1. By assumption it holds
that λ′n > λn, hence 1/λ′n < 1/λn. Therefore,

1 +
τ

λ′n
+
µn
λ′n

(1− p′n−1) < 1 +
τ

λ′n
+
µn
λ′n

(1− pn−1)

< 1 +
τ

λn
+
µn
λn

(1− pn−1),

so that

p′n =
1

1 + τ
λ′n

+ µn
λ′n

(1− p′n−1)

>
1

1 + τ
λn

+ µn
λn

(1− pn−1)

= pn.

As a conclusion, pn ≤ p′n for all n ∈ N0, so that lim supn→∞ pn ≤ lim supn→∞ p′n. Thus, it is
sufficient to show that lim supn→∞ p′n < 1.

We will now prove by induction to n that p′n < 1 for all n ∈ N0.

Notice that p′0 =
λ′0

λ′0+τ and p′n =
λ′n

λ′n+τ+µn(1−p′n−1) , n ∈ N. Since we have for all n ∈ N that

λ′n
µn

=
(α∗ + ε)µn

µn
= α∗ + ε =: c,

we can write, for all k ∈ N,

p′k =
c

c+ τ
µk

+ 1− p′k−1

. (20)

It holds that τ > 0, hence p′0 < 1. Then there exists σ ∈ (0, 1) such that p′0 ≤ σ < 1. Without
loss of generality we may assume that c < σ, otherwise we could have chosen σ larger.

Then,

p′1 =
c

c+ τ
µ1

+ 1− p′0
≤ c

c+ 1− p′0
≤ c

c+ 1− σ
< 1, (21)
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where the first inequality holds because τ
µ1
≥ 0.

Using induction to k, we will show that

p′k ≤
c

c+ 1− σ
< 1. (22)

Eqn. (21) gives

p′1 ≤
c

c+ 1− σ
,

which is Eqn. (22) for k = 1. Therefore,

1− p′1 ≥ 1− c

c+ 1− σ
=
c+ 1− σ − c
c+ 1− σ

=
1− σ

c+ 1− σ
.

Using this for Eqn. (20) with k = 2, we get

p′2 =
c

c+ τ
µ2

+ 1− p′1
≤ c

c+ 1− p′1
≤ c

c+ 1−σ
c+1−σ

.

Since c < σ, we get c + 1 − σ ≤ 1, hence 1
c+1−σ ≥ 1. Multiplying by 1 − σ then gives that

1−σ
c+1−σ ≥ 1− σ. Therefore,

p′2 ≤
c

c+ 1−σ
c+1−σ

≤ c

c+ 1− σ
,

which is Eqn. (22) for k = 2.

Assume that Eqn. (22) holds for k = n− 1. We will prove that Eqn. (22) also holds for k = n.
Since τ

µn
≥ 0, we get that

p′n =
c

c+ τ
µn

+ 1− p′n−1

≤ c

c+ 1− p′n−1

≤ c

c+ 1− c
c+1−σ

=
c

c+ 1−σ
c+1−σ

.

Similarly to the case k = 2 we get
1− σ

c+ 1− σ
≥ 1− σ.

Therefore,

p′n ≤
c

c+ 1−σ
c+1−σ

≤ c

c+ 1− σ
< 1.

This proves Eqn. (22) for k = n.

Eqn. (22) implies that

lim sup
n→∞

p′n ≤
c

c+ 1− σ
< 1.

As a consequence, we get that

lim sup
n→∞

pn ≤
c

c+ 1− σ
< 1,

which is what we needed to show.
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Corollary 4.11. For β∗ = 0 and 0 < α∗ < 1 it holds that p+ = p− = α∗, and thus p∗ = α∗.

Proof. From Lemma 4.10 it follows that p+ = lim supn→∞ pn < 1. Since p+ ∈ {α∗, 1} it follows
that p+ = α∗ < 1. Since it always holds that p− ≤ p+, we also have that p− = α∗ < 1. Thus,
p+ = p− = α∗ < 1. Therefore, p∗ exists and is equal to α∗ < 1, which is the smallest solution of
Eqn. (8).

Now we can give the proof the second part of Theorem 4.1.

Proof of Theorem 4.1 part 2. Let X = (Xt)t≥0 be a birth-death process with birth parameters
λn > 0, n ∈ N0, and death parameters µn > 0, n ∈ N and µ0 = 0. Let τ > 0 be given. Assume
that limn→∞

λn
µn

= α∗ > 0 and limn→∞
τ
µn

= β∗ ≥ 0 both exist. Let pn, n ∈ N, be given by Eqn.

(7).

To prove that limn→∞ pn exists, it is sufficient to prove that p+ = p−, i.e., lim supn→∞ pn =
lim infn→∞ pn.

Lemma 4.4 gives that p+ and p− are both solutions of Eqn. (8).

For β∗ > 0, Lemma 4.6 gives that Eqn. (15) holds. Then Corollary 4.7 gives that

p∗ =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2
,

which is the smallest solution of Eqn. (8).

Now, consider β∗ = 0. Lemma 4.8 gives for α∗ ≥ 1 that p∗ = 1, which is the smallest solution
of Eqn. (8). Moreover, Lemma 4.9 gives, for 0 < α∗ < 1, that p+, p− ∈ {α∗, 1}, which is not
a unique solution yet. However, from Lemma 4.10 it follows that p+ ≤ c

c+1−σ < 1. Then with
Corollary 4.11 it follows that p∗ = α∗, which is the smallest solution of Eqn. (8).

Thus, for all β∗ ≥ 0 and for all α∗ > 0, it holds that p∗ exists and it is the smallest solution of
Eqn. (8), which is what we needed to show.

To finish the proof of Theorem 4.1, it remains to prove part 3 of this theorem. This proof will
now be given.

Proof of Theorem 4.1 part 3. Let X = (Xt)t≥0 be a birth-death process with birth parameters
λn > 0, n ∈ N0, and death parameters µn > 0, n ∈ N and µ0 = 0. Let τ > 0 be given. Assume
that limn→∞

λn
µn

= α∗ = 0 and limn→∞
τ
µn

= β∗ = 0. Let pn, n ∈ N, be given by Eqn. (7).

To prove that p∗ = limn→∞ pn = 0 exists, it is sufficient to prove that p+ = 0, i.e., lim supn→∞ pn =
0.

Lemma 4.10 gives that p+ < 1. So, to prove that p+ = 0, we will assume the contrary and prove
that p+ = 1.

Therefore, assume that p+ > 0. Hence, there exists a subsequence (pnk)k ⊆ (pn)n∈N0
such that
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pnk → p+ as k →∞. Then, Eqn. (13) holds. Then, since α∗ = β∗ = 0 we get

lim
k→∞

pnk−1 = lim
k→∞

pnk

(
λnk
µnk

+ τ
µnk

+ 1
)
− λnk

µnk

pnk

= lim
k→∞

λnk
µnk

+
τ

µnk
+ 1− λnk

µnkpnk
= 0 + 0 + 1− 0.

Therefore, it holds that p+ = 1. However, this is a contradiction to the fact that p+ < 1.
Therefore, p+ = 0.

Since, p− ≤ p+ and p+, p− ∈ [0, 1], we immediately get that p∗ = 0.

4.3 More monotonicity and convergence results for the M |M |c -model
(with c ∈ N)

Let c ∈ N and consider the M |M |c -model. From [4] we know that we have to assume that
λn = λ < cµ, for all n ∈ N0, and

µn =

{
nµ for all n < c,

cµ for all n ≥ c,

where we assume that µ > 0.

Recall Notation 3.1. This subsection uses the superscript index again.

From Theorem 4.1 we know that the sequence (pcn)n∈N0
has a limit, therefore we introduce some

notation for this limit.

Notation 4.12. Denote by p∗,c the limiting value of the sequence (pcn)n∈N0
.

In this chapter we will prove that p∗,c is monotonic in c ∈ N and compute the limit limc→∞ p∗,c.

For the M |M |c -model, c ∈ N, it holds that

α∗ =
λ

cµ
> 0 and β∗ =

τ

cµ
> 0.

Lemma 4.13. Let c ∈ N. Then p∗,c is non-increasing as a function of c, i.e., p∗,c − p∗,c+1 ≥ 0.

Proof. By Theorem 4.1 we get that

p∗,c =

λ
cµ + τ

cµ + 1−
√(

λ
cµ + τ

cµ + 1
)2

− 4 λ
cµ

2
.

Multiplication of both the denominator and the numerator by cµ yields

p∗,c =
λ+τ+cµ−

√
(cµ)2·( λ

cµ+ τ
cµ+1)

2−4λcµ

2cµ

=
λ+τ+cµ−

√
(λ+τ+cµ)2−4λcµ

2cµ .
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To prove that p∗,c is non-increasing in c, we will prove that the derivative to c is non-positive.
The derivative of p∗,c to c is given by

d

dc
p∗,c = −λ+ τ

2c2µ
−
[
− 1

2c2µ
·
√

(λ+ τ + cµ)
2 − 4λcµ+

1

2cµ
· d
dc

[√
(λ+ τ + cµ)

2 − 4λcµ

]]
= −λ+ τ

2c2µ
+

1

2c2µ
·
√

(λ+ τ + cµ)
2 − 4λcµ

− 1

2cµ
·

 1

2

√
(λ+ τ + cµ)

2 − 4λcµ
·
(
2µ(λ+ τ) + 2cµ2 − 4µλ

)
=
−(λ+ τ) +

√
(λ+ τ + cµ)

2 − 4λcµ

2c2µ
− 2µ (−λ+ τ + cµ)

4cµ

√
(λ+ τ + cµ)

2 − 4λcµ

=
−(λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ+ (λ+ τ + cµ)
2 − 4λcµ− cµ (−λ+ τ + cµ)

2c2µ

√
(λ+ τ + cµ)

2 − 4λcµ
.

To prove that d
dcp
∗,c ≤ 0, we will assume the contrary.

Hence, we assume that

−(λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ+ (λ+ τ + cµ)
2 − 4λcµ− cµ (−λ+ τ + cµ) > 0.

Then,

(λ+ τ + cµ)
2 − 4λcµ > (λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ+ cµ (−λ+ τ + cµ) ,

in other words,

(λ+ τ)2 + 2cµ(λ+ τ) + c2µ2 − 4cµλ > (λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ+ c2µ2 + cµ (τ − λ) .

If (λ + τ)2 + cµ(τ − λ) < 0, then we get a contradiction and hence the proof is complete. So,
assume that (λ+ τ)2 + cµ(τ − λ) ≥ 0. Then,

(λ+ τ)2 + cµ(τ − λ) > (λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ.

Taking the square on both sides yields,

(λ+ τ)4 + 2cµ(τ − λ)(λ+ τ)2 + c2µ2(τ − λ)2 > (λ+ τ)2 ·
(

(λ+ τ + cµ)
2 − 4λcµ

)
.

Rewriting this gives

(λ+ τ)4 + 2cµ(τ − λ)(λ+ τ)2 + c2µ2(τ − λ)2 > (λ+ τ)2 ·
(
(λ+ τ)2 + 2cµ(λ+ τ) + c2µ2 − 4cµλ

)
⇐⇒ 2cµ(τ − λ)(λ+ τ)2 + c2µ2(τ − λ)2 > 2cµ(λ+ τ)3 + c2µ2(λ+ τ)2 − 4cµλ(λ+ τ)2

⇐⇒ 2(λ+ τ)2(τ − λ− λ− τ) + cµ(τ − λ)2 > cµ(λ+ τ)2 − 4λ(λ+ τ)2

⇐⇒ −4λ(λ+ τ)2 + cµ(τ − λ)2 > cµ(λ+ τ)2 − 4λ(λ+ τ)2

⇐⇒ (τ − λ)2 > (λ+ τ)2.
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However, since λ, τ > 0, (τ − λ)2 > (λ+ τ)2 gives a contradiction. Hence, the assumption that

−(λ+ τ)

√
(λ+ τ + cµ)

2 − 4λcµ+ (λ+ τ + cµ)
2 − 4λcµ− cµ (−λ+ τ + cµ) > 0

is not correct. Thus, d
dcp
∗,c ≤ 0.

Corollary 4.14. Let c1, c2 ∈ N. Then it holds that p∗,c1 ≥ p∗,c2 .

Proof. Apply Lemma 4.13 repeatedly.

Lemma 4.15. It holds that p∗,c ≤ λ
cµ , hence limc→∞ p∗,c = 0.

Proof. Before proving the upper bound for p∗,c, we will first give a lower bound for
(λ+ τ + cµ)2 − 4cµλ, which is the term under the square root in p∗.

For all c ∈ N we have that

(λ+ τ + cµ)2 − 4cµλ = (λ+ τ)2 + 2(λ+ τ)cµ+ c2µ2 − 4cµλ

= λ2 + 2λτ + τ2 + 2cµλ+ 2cµτ + c2µ2 − 4cµλ

= λ2 + 2λτ + τ2 − 2cµλ+ 2cµτ + c2µ2

= λ2 − 2λτ + 4λτ + τ2 − 2cµλ+ 2cµτ + c2µ2

= (τ − λ)2 + 2(τ − λ)cµ+ c2µ2 + 4λτ

= (τ − λ+ cµ)2 + 4λτ

≥ (τ − λ+ cµ)2 ≥ 0,

where the last inequality holds since λ, τ ≥ 0 and λ < cµ.

It holds that

p∗,c =
λ+ τ + cµ−

√
(λ+ τ + cµ)2 − 4cµλ

2cµ

=
λ+ τ + cµ−

√
(τ − λ+ cµ)2 + 4λτ

2cµ

≤
λ+ τ + cµ−

√
(τ − λ+ cµ)2

2cµ

(∗)
=

λ+ τ + cµ− (τ − λ+ cµ)

2cµ

=
2λ

2cµ

=
λ

cµ
,

where (*) holds because λ < cµ.

32



So, when we take the limit of c→∞ we get

0 ≤ lim
c→∞

p∗,c ≤ lim
c→∞

λ

cµ
= 0.

Notation 4.16.

1. Let c ∈ N. For all n ∈ N and for τ > 0 denote by pτn the probability pcn in the M |M |c -model.

2. Denote by p∗,τ the limiting value of the sequence (pτn)n∈N0
.

Lemma 4.17. Let c ∈ N. It holds that limτ↓0 p
∗,τ = λ

cµ .

Proof. It holds that

lim
τ↓0

p∗,τ = lim
τ↓0

λ+ τ + cµ−
√

(λ+ τ + cµ)2 − 4cµλ

2cµ
=

λ

2cµ
.

Proposition 4.18. Let c ∈ N and let τ1, τ2 > 0 such that τ1 < τ2. Then, it holds for all n ∈ N0,
that pτ1n − pτ2n > 0. Moreover, p∗,τ1 − p∗,τ2 > 0.

Proof. We will give a proof by induction on n.

Let n = 0. Then,

pτ10 − p
τ2
0 =

λ0

λ0 + τ1
− λ0

λ0 + τ2

(∗)
>

λ0

λ0 + τ2
− λ0

λ0 + τ2
= 0,

where (*) holds because τ1 < τ2. So, for n = 0 it holds that pτ10 − p
τ2
0 > 0.

Now consider n = 1. Then it holds that

pτ11 − p
τ2
1 =

λ1

λ1 + τ1 + µ1(1− pτ10 )
− λ1

λ1 + τ2 + µ1(1− pτ20 )

(∗∗)
>

λ1

λ1 + τ1 + µ1(1− pτ20 )
− λ1

λ1 + τ2 + µ1(1− pτ20 )

(∗∗∗)
>

λ1

λ1 + τ2 + µ1(1− pτ20 )
− λ1

λ1 + τ2 + µ1(1− pτ20 )

= 0,

where (**) holds because pτ10 > pτ20 , and where (***) holds because τ1 < τ2. So, for n = 1 it
holds that pτ11 − p

τ2
1 > 0.

Suppose that for n− 1 it holds that pτ1n−1 − p
τ2
n−1 > 0. Then consider n. Analogously to the case

n = 1 it follows that pτ1n − pτ2n > 0.

Thus, for all n ∈ N0, it holds that pτ1n − pτ2n ≥ 0.
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It holds that p∗,τ = limn→∞ pτn. Theorem 4.1 states that this limit exists. Then for τ1 < τ2 we
have that

p∗,τ1 − p∗,τ2 = lim
n→∞

pτ1n − lim
n→∞

pτ2n

= lim
n→∞

(pτ1n − pτ2n )

≥ lim
n→∞

(0)

= 0.

So, it holds for τ1 < τ2 that p∗,τ1 − p∗,τ2 ≥ 0.
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5 Convergence of qn for a general birth-death process

Consider a birth-death process X = (Xt)t≥0 with birth parameters λn > 0, n ∈ N0, and death
parameters µn > 0, n ∈ N and µ0 = 0. Let τ > 0 be given. Assume that α∗, β∗ ≥ 0 both exist.

Recall from Eqn. (3) that

qn =
µn

µn + τ + λn(1− qn+1)
. (23)

Lemma 5.1. It holds, that qn > 0 for all n ∈ N. Moreover, it holds that

qn+1 =
µn + τ + λn

λn
− µn
λnqn

, (24)

for all n ∈ N.

Proof. Let n ∈ N. Then,

qn =
1

1 + τ
µn

+ λn
µn

(1− qn+1)

≥ 1

1 + τ
µn

+ λn
µn

.

Hence,

lim inf
n→∞

qn ≥ lim
n→∞

1

1 + τ
µn

+ λn
µn

=
1

1 + β∗ + α∗
> 0,

since β∗ ≥ 0 and α∗ ≥ 0 both exist. Hence, qn > 0 for all n ∈ N.

It holds that q0 = 0, therefore we consider only n ∈ N. Let n ∈ N be arbitrary. Recall that
λn > 0 for all n ∈ N0. Lemma 5.1 states that qn > 0 for all n ∈ N, therefore dividing by qn is
allowed. Rewriting Eqn. (23) gives

qn (µn + τ + λn(1− qn+1)) = µn.

Then,

qn+1 =
µn + τ + λn

λn
− µn
λnqn

,

which is equal to Eqn. (24), and which is what we needed to show.

Note that since q0 = 0, we do not get such a formula for q1. Therefore, to prove that the sequence
(qn)n∈N0

has a limit under mild conditions is harder than for the sequence (pn)n∈N0
. However, in

the remainder of this chapter we will prove that for a birth-death process the sequence (qn)n∈N0

has a limit under mild conditions.
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Theorem 5.2. Suppose that α∗ = limn→∞
λn
µn
≥ 0 and β∗ = limn→∞

τ
µn
≥ 0 both exist. Let

q0 = 0 and let qn, n ∈ N, be given by Eqn. (23).

1. Suppose α∗ = 0. Then limn→∞ qn = q∗ exists with q∗ = 1
β∗+1 .

2. Suppose α∗ > 0. Then limn→∞ qn = q∗ exists with q∗ the smallest solution of the equation

α∗x2 − (α∗ + β∗ + 1)x+ 1 = 0, (25)

in other words

q∗ =
α∗ + β∗ + 1−

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗
.

The proof for α∗ > 0 requires more work than the proof for α∗ = 0. Therefore we will first prove
part 1 of the theorem.

Proof of Theorem 5.2 part 1. Let α∗ = 0. Let β∗ = limn→∞
τ
µn
≥ 0 exist.

Note that µn > 0, n ∈ N. Hence, we can rewrite Eqn. (23) by dividing by µn. This gives

qn =
1

1 + τ
µn

+ λn
µn

(1− qn+1)

≥ 1

1 + τ
µn

+ λn
µn

.

Hence,

lim inf
n→∞

qn ≥ lim
n→∞

1

1 + τ
µn

+ λn
µn

=
1

1 + β∗ + α∗
=

1

1 + β∗
,

since β∗ ≥ 0 and α∗ = 0.

Furthermore, it holds that

qn =
1

1 + τ
µn

+ λn
µn

(1− qn+1)

≤ 1

1 + τ
µn

.

Hence,

lim sup
n→∞

qn ≤ lim
n→∞

1

1 + τ
µn

=
1

1 + β∗
.

Hence, limn→∞ qn = 1
1+β∗ , which completes the proof of part 1 of Theorem 5.2.

5.1 Part 2 of Theorem 5.2

The proof of the second part of Theorem 5.2 consists of multiple steps that will be formulated
and proven in this subsection. Similarly to the Theorem 4.1, the part of Theorem 5.2 concerning
β∗ > 0, can be proven directly. For β∗ = 0 and 0 < α∗ ≤ 1, we can also give a direct
proof. However, for the case that β∗ = 0 and α∗ > 1, we will need to introduce the concept
of stochastic monotonicity, discussed in Section 5.1.1. Stochastic monotonicity will be used to
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compare X with a birth-death process with slightly different birth- and death-rates in order to
prove that lim supn→∞ pn < 1. Subsection 5.1.2 combines all results given in this subsection to
give the proof of the second part of the theorem.

The conditions of part 2 of Theorem 5.2 are assumed to hold throughout this section, i.e.,
limn→∞

λn
µn

= α∗ > 0 and limn→∞
τ
µn

= β∗ ≥ 0 both exist.

Recall Definition 2.6.2, i.e., q+ := lim supn→∞ qn and q− := lim infn→∞ qn.

Because (qn)n∈N is a sequence of probabilities, it holds that q+ and q− both exist with q+, q− ∈ [0, 1].

Lemma 5.3. It holds that q+, q− > 0.

Proof. For the birth-death process X it holds that λn > 0, n ∈ N0 and µn > 0, n ∈ N. We
assumed that α∗ > 0 and β∗ ≥ 0 both exist.

Analogously to the proof of Lemma 5.1 we get, for all n ∈ N,

qn =
1

1 + τ
µn

+ λn
µn

(1− qn+1)

≥ 1

1 + τ
µn

+ λn
µn

> 0.

Further,

q+ ≥ q− lim inf
n→∞

qn ≥ lim
n→∞

1

1 + τ
µn

+ λn
µn

=
1

1 + β∗ + α∗
> 0.

This completes the proof.

Lemma 5.4. Let α∗ > 0 and β∗ ≥ 0. It holds that both q+ and q− are solutions to the quadratic
equation

α∗x2 − (α∗ + β∗ + 1)x+ 1 = 0, (26)

in other words,

q+, q− ∈

 (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2α∗
,

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗

 ,

Proof. Because (qn)n∈N0
is a sequence of probabilities, it holds that q+ and q− both exist with

q+, q− ∈ [0, 1]. Hence, there exist a subsequence (qnk)k ⊆ (qn)n∈N0
such that qnk → q+ as

k →∞ and there exists a subsequence (qml)l ⊆ (qn)n∈N0
such that qml → q− as l→∞.

By Lemma 5.3 q+, q− > 0. The proof of this lemma even gives that qn > 0 for all n ∈ N. Hence,
dividing by q+, q− and qn, n ∈ N, is allowed.

Recall Eqn. (24). Therefore,

qnk+1 =
µnk + τ + λnk

λnk
− µnk
λnkqnk

. (27)

By Eqn. (27) limk→∞ qnk+1 exists, since limk→∞ qnk = q+ exists.
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Furthermore, it holds that

lim
k→∞

qk+1 ≤ lim sup
k→∞

sup
j≥nk+1

qj ≤ lim sup
n→∞

qn = q+.

So,

q+ ≥ lim
k→∞

[
µnk + τ + λnk

λnk
− µnk
λnkqnk

]
= lim
k→∞

µnk
λnk

+ lim
k→∞

τ

λnk
+ 1− lim

k→∞

µnk
λnk
· 1

qnk

=
1

α∗
+ lim
k→∞

τ

µnk
· µnk
λnk

+ 1− 1

α∗
· lim
k→∞

1

qnk

=
1

α∗
+
β∗

α∗
+ 1− 1

α∗
· 1

q+
.

Multiplying the above equation by α∗ and q+, we get

α∗
(
q+
)2 − (α∗ + β∗ + 1) q+ + 1 ≥ 0. (28)

By virtue of Eqn. (23) for n = nk − 1 and dividing by µnk−1 we get for all nk ∈ N≥2 that

qnk−1 =
1

1 + τ
µnk−1

+
λnk−1

µnk−1
(1− qnk)

. (29)

Note that limk→∞ qnk−1 exists, since limk→∞ qnk = q+ exists. It holds that

lim
k→∞

qnk−1 ≤ lim sup
k→∞

sup
j≥nk−1

qj ≤ lim sup
n→∞

qn = q+.

Since limk→∞ qnk−1 exists, Eqn. (29) yields limk→∞ qnk−1 = 1
1+β∗+α∗(1−q+) , and so

q+ ≥ 1

1 + β∗ + α∗(1− q+)
.

This yields,

α∗
(
q+
)2 − (α∗ + β∗ + 1) q+ + 1 ≤ 0. (30)

Combining Eqn. (28) and Eqn. (30) yields that q+ is a solution of the quadratic equation

α∗x2 − (α∗ + β∗ + 1)x+ 1 = 0. (31)

Solving the quadratic expression gives

q+ ∈

 (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2α∗
,

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗

 .

Analogously (only the sign of the inequalities change because the limit inferior is considered
instead of the limit superior), it yields that q− is also a solution of Eqn. (31). This concludes
the proof of the lemma.
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Remark 5.5. Since q+ and q− both exist, it necessarily holds that both solutions of the quadratic
expression are real. This can also be easily verified by noting that (α∗ + β∗ + 1)

2 − 4α∗ =

(β∗ + 1− α∗)2
+ 4α∗β∗ ≥ 0.

Since β∗ ≥ 0, we only need to consider two situations, namely β∗ = 0 and β∗ > 0.

First consider the case where β∗ > 0. If it holds that

(α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗
> 1 ≥

(α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗

2α∗
≥ 0,

(32)
then, necessarily

q+ = q− =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗
,

since q+, q− ∈ [0, 1].

Lemma 5.6. Let β∗ > 0. Then, Eqn. (32) holds. Moreover,

q+ = q− =
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗
,

which is the smallest solution of Eqn. (25).

Proof. The proof of this lemma consists of two parts.

• We will first prove that
(α∗+β∗+1)+

√
(α∗+β∗+1)2−4α∗

2α∗ > 1. To show this, it is sufficient to

prove that (α∗ + β∗ + 1) +

√
(α∗ + β∗ + 1)

2 − 4α∗ > 2α∗. Suppose that this is not true.
Then, √

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2α∗ − (α∗ + β∗ + 1) = α∗ − (β∗ + 1) .

Taking squares yields

(α∗ + (β∗ + 1))
2 − 4α∗ ≤ (α∗ − (β∗ + 1))

2
.

This implies that

(α∗)
2

+ 2α∗ (β∗ + 1) + (β∗ + 1)
2 − 4α∗ ≤ (α∗)

2 − 2α∗ (β∗ + 1) + (β∗ + 1)
2
,

in other words,
0 ≥ 4α∗ (β∗ + 1)− 4α∗ = 4α∗β∗.

Since α∗ > 0, it follows that
β∗ ≤ 0.

This contradicts the assumption that β∗ > 0. Therefore, the first part of Eqn. (32) holds.

• Now we will prove that

0 ≤
(α∗ + β∗ + 1)−

√
(α∗ + β∗ + 1)

2 − 4α∗

2α∗
≤ 1.
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To show this, it is sufficient to prove that

0 ≤ (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2α∗.

Since α∗, β∗ > 0, clearly (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≥ 0.

It holds that
(α∗ + β∗ + 1)

2 − 4α∗ = (β∗ + 1− α∗)2
+ 4α∗β∗ ≥ 0.

Thus, to prove that (α∗ + β∗ + 1)−
√

(α∗ + β∗ + 1)
2 − 4α∗ ≤ 2α∗, it is sufficient to prove

that

(α∗ + β∗ + 1)−
√

(β∗ + 1− α∗)2
+ 4α∗β∗ ≤ 2α∗,

or

β∗ + 1− α∗ ≤
√

(β∗ + 1− α∗)2
+ 4α∗β∗,

which is evidently true.

Hence, the remainder of Eqn. (32) also holds true.

Combination of the two parts yields the result.

Now it remains to consider β∗ = 0. Then, Eqn. (26) reduces to

α∗x2 − (α∗ + 1)x+ 1 = 0. (33)

Lemma 5.4 then gives,

q+, q− ∈

 (α∗ + 1)−
√

(α∗ − 1)
2

2α∗
,

(α∗ + 1) +

√
(α∗ − 1)

2

2α∗

 . (34)

We consider three situations, namely α∗ = 1, α∗ > 1 and 0 < α∗ < 1. These three situations
cover all possible situations, because we assumed that α∗ > 0. These situations will be considered
in the next lemmas.

Lemma 5.7. Let β∗ = 0 and let 0 < α∗ ≤ 1. Then q+ = q− = 1, which is the smallest solution
of Eqn. (33).

Proof. Suppose that 0 < α ≤ 1. Then Eqn. (34) reduces to

q+, q− ∈

α
∗ + 1−

√
(α∗ − 1)

2

2α∗
,
α∗ + 1 +

√
(α∗ − 1)

2

2α∗


=

{
α∗ + 1− (1− α∗)

2α∗
,
α∗ + 1 + (1− α∗)

2α∗

}
=

{
2α∗

2α∗
,

2

2α∗

}
=

{
1,

1

α∗

}
.
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Since 0 < α∗ ≤ 1, it holds that 1
α∗ ≥ 1. Since q+, q− ∈ [0, 1] it follows that q+ = q− = 1 and

hence q∗ exists and is given by q∗ = 1, which is the smallest solution of Eqn. (33).

Lemma 5.8. Let β∗ = 0 and let α∗ > 1. Then q+, q− ∈
{

1
α∗ , 1

}
.

Proof. Suppose that α∗ > 1. Then, analogously to the proof of Lemma 5.7, it follows that

q+, q− ∈
{

1

α∗
, 1

}
.

However, because α∗ > 1 this does not give a unique solution.

We would like to prove that q+ = q− = 1
α∗ . The method we will use is to define a stochastically

smaller system which will be a birth-death process Y with birth-rates λ′n and death-rates µ′n,
and no extinction rate. We will derive the corresponding lim supn→∞ q′n and prove that the limit
superior is strictly smaller that 1. As a consequence, the q+ = lim supn→∞ qn < 1 for the process
X, and so q+ = q− = 1

α∗ .

5.1.1 Stochastic monotonicity

This subsection will introduce the concept of stochastic monotonicity that will be needed to prove
Theorem 5.2 for the case that β∗ > 0 and α∗ > 1. This subsection is based on [5].

Let S := N0 ∪ {∞}.

Notation 5.9. Let Si := {i, i+ 1, . . .} ∪ {∞}, for all n ∈ N0.

Definition 5.10. Let p and q be two probability distributions on the state space S with the
following property: ∑

i≥I

pi ≤
∑
i≥I

qi for all I ∈ S.

Then p is said to be stochastically not larger than q and we denote this by p � q.

Lemma 5.11. Let f : S → R be non-decreasing. Let p � q. Then it holds that

pf =
∑
i∈S

pif(i) ≤
∑
i∈S

qif(i) = qf.

Proof. For notational purposes, define f(−1) = 0. For all i ∈ S it holds that

f(i) =
∑
j∈S

f(j)1{j}(i).

Since f is a non-decreasing function, it holds that

f(∞) ≥ lim
n→∞

f(n) =: f∗.

Recall Si := {i, i+ 1, . . .} ∪ {∞} for all i ∈ N0 and S∞ := {∞}. Note that S0 = S.
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For all i ∈ N0 it holds that 1S∞(i) = 0 and

f(i) = f(0) +

i∑
j=1

[f(j)− f(j − 1)]

= f(0)− f(−1) +

i∑
j=1

[f(j)− f(j − 1)]

=

i∑
j=0

[f(j)− f(j − 1)]

=
∑
j∈N0

[f(j)− f(j − 1)]1Sj (i) + (f(∞)− f∗)1S∞(i).

For i =∞ it holds that

f(∞) = f∗ + f(∞)− f∗

=
∑
j∈N0

[f(j)− f(j − 1)] + f(∞)− f∗,

since it holds that f∗ = limn→∞ f(n) = limn→∞

(∑n
j=0 [f(j)− f(j − 1)]

)
=
∑
j∈N0

[f(j)− f(j − 1)].

Therefore, we can write for all i ∈ S,

f(i) =
∑
j∈N0

[f(j)− f(j − 1)]1Sj (i) + (f(∞)− f∗)1S∞(i).

Then,

pf =
∑
j∈S

pjf(j)

=
∑
j∈S

[
pj

(∑
k∈N0

[f(k)− f(k − 1)]1Sk(j) + (f(∞)− f∗)1S∞(j)

)]

=
∑
j∈S

[
pj

(∑
k∈N0

[f(k)− f(k − 1)]1Sk(j)

)]
+
∑
j∈S

[pj (f(∞)− f∗)1S∞(j)]

=
∑
k∈N0

(f(k)− f(k − 1)) ·
∑
j∈Sk

pj

+ p∞ · (f(∞)− f∗)

(∗)
≤
∑
k∈N0

(f(k)− f(k − 1)) ·
∑
j∈Sk

qj

+ q∞ · (f(∞)− f∗)

=
∑
j∈S

qjf(j)

= qf,

where (*) holds since
∑
j∈Sk pj ≤

∑
j∈Sk qj and p∞ ≤ q∞. Hence, this concludes the proof of

the lemma.
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Consider a Markov chain on the state space S and transition matrix P . Write pi,· for the prob-
ability distribution {pi,0, pi,1, . . . , pi,N}.

Definition 5.12. We call the transition matrix P stochastically monotonic if

pi,· � pi+1,· for all i ∈ S.

Definition 5.13. Define Pf : S → R as the function given by Pf(i) = pi,·f for i ∈ S.

The following corollary of Lemma 5.11 holds.

Corollary 5.14. Let f : S → R be non-decreasing and let P be stochastically monotonic. Then
it holds that pi,·f ≤ pi+1,·f for all i ∈ S, hence Pf is a non-decreasing function.

Let Q be a transition matrix with the property that P � Q, i.e., pi,· � qi,· for all i ∈ S.

Theorem 5.15. If P � Q and P or Q is stochastically monotonic, then

Pn � Qn for all n ∈ N.

Moreover, if P (Q) is stochastically monotonic, then Pn (Qn) is stochastically monotonic, n ∈ N.

Proof. The proof of the theorem will be split into two parts. First we will prove that Qn, n ∈ N,
is stochastically monotonic, if Q is stochastically monotonic. Then we will prove that Pn � Qn

for all n ∈ N, if P � Q and P or Q is stochastically monotonic.

• Let Q be stochastically monotonic. We will prove by induction on n that Qn, n ∈ N is
stochastically monotonic. For n = 1 the statement holds. Therefore, assume that Qn,
n ∈ N, is stochastically monotonic and consider n+1. To prove that Qn+1 is stochastically
monotonic, it is sufficient to prove for all i ∈ S that qn+1

i,· � q
n+1
i+1,·.

Let i ∈ S. It holds, that ∑
j≥I

qn+1
i,j =

∑
j≥I

(∑
k∈S

qni,k · qk,j

)

=
∑
k∈S

qni,k∑
j≥I

qk,j

 ,

for all I ∈ S.

Since,
∑
j≥I qk,j is a non-decreasing function in k by monotonicity of Q and since Qn is

stochastically monotonic by assumption, we can apply Corollary 5.14. Then, for all I ∈ S,

∑
j≥I

qn+1
i,j ≤

∑
k∈S

qni+1,k

∑
j≥I

qk,j


=
∑
j≥I

(∑
k∈S

qni+1,k · qk,j

)
=
∑
j≥I

qn+1
i+1,j .

This proves that qn+1
i,· � q

n+1
i+1,· for all i ∈ S. Thus, Qn+1 is stochastically monotonic.

43



• Now, assume that P � Q, Q is stochastically monotonic. We will prove by induction on n
that Pn � Qn. For n = 1 the statement holds, since we assume that P � Q. Therefore,
assume that Pn � Qn, n ∈ N, and consider n + 1. To prove that Pn+1 � Qn+1, we need
to prove for all i ∈ S that pn+1

i,· � q
n+1
i,· .

Let i ∈ S. For all I ∈ S it holds that∑
j≥I

pn+1
i,j =

∑
j≥I

(∑
k∈S

pni,k · pk,j

)

=
∑
k∈S

pni,k∑
j≥I

pk,j


(∗)
≤
∑
k∈S

pni,k∑
j≥I

qk,j


(∗∗)
≤
∑
k∈S

qni,k∑
j≥I

qk,j


=
∑
j≥I

qn+1
i,j ,

where (*) holds since P � Q, and where (**) holds since
∑
j≥I qk,j is a non-decreasing func-

tion in k by monotonicity ofQ, Pn � Qn by the induction hypothesis. Thus, Pn+1 � Qn+1,
which concludes the proof of the theorem.

5.1.2 Application of stochastic monotonicity

Recall that α∗ > 1. So, there exists an ε > 0 such that α∗ − ε > 1. Take such an ε. Since
limn→∞

λn
µn

= α∗ exists, there exists an N ∈ N0 such that for all n ≥ N it holds that λn
µn
≥ α∗−ε.

Take such an N ∈ N0.

Now we want to construct a stochastic process Y and compare it with the process X using
stochastic monotonicity. Therefore, let p := α∗−ε

1+α∗−ε . Then, p > 1
2 . The goal is to show that

qn ≤ 1−p
p < 1 for all n ≥ N . The construction is based on stochastic monotonicity.

Consider the following birth-death process Y = (Yt)t≥0 on state space S = N0 ∪ {∞}. Let the
birth-rates be given by λn = p > 1

2 , n ∈ N0, and the death-rates be given by µn = 1 − p,
n ∈ N. Assume that the states 0 and ∞ are absorbing states, i.e., P(Yt = 0 | Y0 = 0) = 1
for all t ≥ 0. Notice that from state n < ∞, the state ∞ is never reached by the process Y .
Furthermore, consider the birth-death process X (as defined before). The process X jumps after
an exponentially distributed time T to the exit state ∞.

Recall Notation 5.9.

Now, restrict both X and Y to the state space SN−1.

The goal is to show that qN ≤ 1−p
p . For computing this probability, it suffices to consider the

corresponding jump chain. P and Q are the transition matrices of the jump chains associated
with X and Y , respectively, restricted to S′.
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The transition matrix Q = (Qi,j)i,j∈S′ is given as follows:

Q =



1 0 0 0 0 . . . 0
1− p 0 p 0 0 . . . 0

0 1− p 0 p 0 . . . 0
0 0 1− p 0 p . . . 0
...

. . .
. . .

. . .
...

0 0 0 0 0 . . . 1


, (35)

and let the transition matrix P = (Pi,j)i,j∈S′ be given as follows:

P =



1 0 0 0 0 . . . 0
µN

µN+τ+λN
0 λN

µN+τ+λN
0 0 . . . τ

µN+τ+λN

0 µN+1

µN+1+τ+λN+1
0 λN+1

µN+1+τ+λN+1
0 . . . τ

µN+1+τ+λN+1

0 0 µN+2

µN+2+τ+λN+2
0 λN+2

µN+2+τ+λN+2
. . . τ

µN+2+τ+λN+2

...
. . .

. . .
. . .

...
0 0 0 0 0 . . . 1


.

(36)

Lemma 5.16. Q is stochastically monotonic.

Proof. Consider i = N − 1.

• Let I = N − 1. Then it holds that
∑
j≥I Qi,j = 1 =

∑
j≥I Qi+1,j .

• Let I ∈ {N,N + 1}. Then it holds that
∑
j≥I Qi,j = 0 < p =

∑
j≥I Qi+1,j .

• Let I ≥ N + 2. Then it holds that
∑
j≥I Qi,j = 0 ≤

∑
j≥I Qi+1,j .

So, for all I ∈ S it holds that QN−1,· � QN,·.

Consider i ≥ N .

• Let I ∈ {N − 1, . . . , i− 1}. Then it holds that
∑
j≥I Qi,j = 1 =

∑
j≥I Qi+1,j .

• Let I = i. Then it holds that
∑
j≥I Qi,j = p ≤ 1 =

∑
j≥I Qi+1,j .

• Let I = i+ 1. Then it holds that
∑
j≥I Qi,j = p =

∑
j≥I Qi+1,j .

• Let I ≥ i+ 2. Then it holds that
∑
j≥I Qi,j = 0 ≤

∑
j≥I Qi+1,j .

So, for all I ∈ S it holds that Qi,· � Qi+1,·.

Thus, for all i ≥ N it holds that Qi,· � Qi+1,·. Hence, Q is stochastically monotone.
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Lemma 5.17. Q � P .

Proof. It holds that QN−1,· = PN−1,· and that Q∞,· = P∞,·. Hence, we have immediately that
QN−1,· � PN−1,· and that Q∞,· � P∞,·.

Now, let i ∈ S\{N − 1,∞}.

• Let I ∈ {N − 1, . . . , i− 1}. Then,
∑
j≥I Qi,j = 1 =

∑
j≥I Pi,j .

• Let I ∈ {i, i+ 1}. Then it holds that
∑
j≥I Qi,j = p and that

∑
j≥I Pi,j = λi+τ

µi+τ+λi
. Since

i ≥ N − 1 we have that λi ≥ µi (α∗ − ε). Then, since τ > 0, it holds that

λi + τ > µi (α∗ − ε) .

Adding (λi + τ) (α∗ − ε) on both sides of this equation yields

(λi + τ) (1 + α∗ − ε) > (µi + λi + τ) (α∗ − ε) .

Since τ > 0 it holds that µi + τ + λi > 0, therefore dividing both sides of the equation by
µi + τ + λi is allowed. Moreover, it holds that α∗ − ε > 0, hence 1 + α∗ − ε > 0 and thus
dividing both sides of the equation by 1 + α∗ − ε is also allowed. This yields

λi + τ

µi + τ + λi
>

α∗ − ε
1 + α∗ − ε

= p.

Hence, it holds that
∑
j≥I Qi,j ≤

∑
j≥I Pi,j .

• Let I ∈ S\{N − 1, . . . , i, i+ 1}. Then,
∑
j≥I Qi,j = 0 < λi+τ

µi+τ+λi
=
∑
j≥I Pi,j .

So, for all i ∈ S it holds that Qi,· � Pi,·. Hence, Q is stochastically not larger than P .

Definition 5.18. Let (Xn)n∈N0
be a Markov chain on N0.

1. Let f
(=n)
i,j be the probability that the Markov chain X, starting in state i, reaches state j

for the first time at time n ∈ N, i.e.,

f
(=n)
i,j := P (Xn = j,Xs 6= j for all s = 1, 2, . . . , n− 1 | X0 = i) .

2. Let f
(n)
i,j be the probability that the Markov chain X, starting in state i, has reached state

j before or at time n ∈ N, i.e.,

f
(n)
i,j := P (∃t ∈ {1, 2, . . . , n} : Xt = j | X0 = i) .

3. Let fi,j be the probability that the Markov chain X, starting in state i, reaches state j,
i.e.,

fi,j := P (∪∞t=1{Xt = j} | X0 = i) .

We will call fi,j the first entrance probability if j, starting in i.
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Remark 5.19. It holds that

fi,j =

∞∑
n=1

f
(=n)
i,j ,

fi,j = lim
n→∞

f
(n)
i,j ,

and that

f
(n)
i,j =

n∑
k=1

f
(=k)
i,j .

Hence, both Definition 5.18.1 and Definition 5.18.2 can be used to describe the absorption prob-
ability fi,j as defined in Definition 5.18.3. We will use Definition 5.18.2 later, however the proof
of Theorem 5.20 uses Definition 5.18.1.

Recall that qn is that probability that the Markov chain, starting in state n, reaches state n− 1
before time T . For the extended jump Markov chain with killed state∞, it holds that qn = fn,n−1

for all n ∈ N0.

We recall that SN is an infinite state space. Therefore the following theorem holds true for the
models we consider.

Theorem 5.20. Let j ∈ S be given. Let S′ = {i ∈ S | fi,j > 0}. Then it holds that {fi,j}i∈S′ is
the minimal, non-negative solution of the equations

gi = pi,j +
∑
k 6=j

pi,kgk, for all i ∈ S′. (37)

This theorem is proven as Theorem 1.13 in [3].

For the next lemma, we rename the states of the state space SN = {N − 1, N, . . .} ∪ {∞} by
S0 = {0, 1, . . .} ∪ {∞}. Therefore, we are now interested in the probability f1,0.

Lemma 5.21. Consider the Markov chain with transition matrix Q as given in Eqn. (35).
Then,

f1,0 =
1− p
p

.

Proof. For the Markov chain with transition matrix Q, as given in Eqn. (35), with j = 0 it holds
that

S′ := {i ∈ S | fi,j > 0} = N0.

It holds that f∞,0 = 0 and fi,0 = pfi+1,0 + (1 − p)fi−1,0 for i ∈ S′\{0}. Note that f0,0 6= 0
necessarily. However, for convenience of notation, we write f0,0 = 1.

For all i ∈ S′ we can write fi,0 = pfi,0 + (1− p)fi,0. Then,

p (fi,0 − fi+1,0) = (1− p) (fi−1,0 − fi,0) .

Define g(i) := fi,0 − fi+1,0 for all i ∈ S′. Then,

g(i) =
1− p
p

g(i− 1),
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by iteration,

g(i) =

(
1− p
p

)i
g(0) =

(
1− p
p

)i
· (f0,0 − f1,0) =

(
1− p
p

)i
· (1− f1,0) ,

since f0,0 = 1.

Assume that limM→∞ fM,0 = 0. Then, for all i ∈ S′,

fi,0 = lim
M→∞

[(fi,0 − fi+1,0) + (fi+1,0 − fi+2,0) + . . . (fM−1,0 − fM,0) + fM,0] (38)

= lim
M→∞

[
M−1∑
k=i

[g(k)] + fM,0

]

= (1− f1,0) ·

(
lim
M→∞

[
M−1∑
k=i

(
1− p
p

)k]
+ lim
M→∞

fM,0

)

= (1− f1,0) ·

(
lim
M→∞

[
M−1∑
k=i

(
1− p
p

)k]
+ 0

)

= (1− f1,0) ·

[
lim
M→∞

[
M−1∑
k=0

(
1− p
p

)k]
−

i−1∑
k=0

(
1− p
p

)k]

= (1− f1,0) ·

 lim
M→∞

1−
(

1−p
p

)M
1− 1−p

p

−
1−

(
1−p
p

)i
1− 1−p

p


= (1− f1,0) ·

 lim
M→∞

(
1−p
p

)i
−
(

1−p
p

)M
1− 1−p

p


= (1− f1,0) ·


(

1−p
p

)i
− 0

1− 1−p
p

 ,
where we use that 1−p

p < 1. Hence, for all i ∈ S′, we have that

fi,0 = (1− f1,0) ·

(
1−p
p

)i
1− 1−p

p

, (39)

when we assume that limM→∞ fM,0 = 0. We can check that fi,0, i ∈ S′, in Eqn. (39) are a
solution to Eqn. (37). It remains to show that Eqn. (39) is the minimal solution.

However, we do not yet know that limM→∞ fM,0 = 0, but we do know that fM,0 ≥ 0, for all
M ∈ S0. Then, the first equality of Eqn. (38) becomes an ≥, hence

fi,0 ≥ (1− f1,0) ·

(
1−p
p

)i
1− 1−p

p

. (40)
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Substitution of i = 2 in Eqn. (40) gives that

f2,0 ≥ (1− f1,0) ·

(
1−p
p

)2

1− 1−p
p

.

Then, using that f1,0 = 1− p+ pf2,0, we get

f1,0 ≥ 1− p+ p · (1− f1,0) ·

(
1−p
p

)2

1− 1−p
p

⇐⇒ f1,0 ≥ 1− p+ p2 · (1− f1,0) ·

(
1−p
p

)2

2p− 1

⇐⇒ f1,0 ≥ 1− p+ (1− f1,0) · (1− p)2

2p− 1

⇐⇒ f1,0 ·

(
1 +

(1− p)2

2p− 1

)
≥ 1− p+

(1− p)2

2p− 1

⇐⇒ f1,0 ·
(

2p− 1 + (1− p)2
)
≥ (1− p) (2p− 1) + (1− p)2

⇐⇒ f1,0 ·
(
2p− 1 + 1− 2p+ p2

)
≥ 2p− 1− 2p2 + p+ 1− 2p+ p2

⇐⇒ f1,0 · p2 ≥ p− p2

⇐⇒ f1,0 ≥
p− p2

p2
.

Thus,

f1,0 ≥
1− p
p

(41)

for any solution of Eqn. (37).

Rewriting Eqn. (39), with i = 1, gives the solution

f1,0 =
1− p
p

. (42)

Hence, combining Eqn. (41) and Eqn. (42) gives that f1,0 = 1−p
p is the minimal solution of

f1,0.

Recall that we only adjusted the numbering of the states for the previous lemma. So, we now
we consider again the state space SN−1.

Notice that p > 1
2 implies for the Y -model that fN,N−1 = 1−p

p < 1.

Lemma 5.22. It holds that q+ ≤ 1−p
p .

Proof. Since α∗ > 1 there exists a ε > 0 such that α∗ − ε > 1. Take such an ε. Since α∗ exists,
there exists N ∈ N such that for all n ≥ N it holds that λn

µn
≥ α∗ − ε. Take such a N .

Recall the processes X and Y . The corresponding transition matrices P and Q of the processes X
and Y , respectively, with state space SN−1 are given by the matrices in Eqn. (36) and Eqn. (35).

49



In Lemma 5.16 it is proven that the transition matrix Q of the process Y is stochastically
monotone. In Lemma 5.17 it is proven that Q � P .

Let the function f : SN−1 → R be given by f(i) = 1SN (i). For notational purposes, define
f(N − 2) = 0. Then, f is a non-decreasing function.

Since f is a non-decreasing function, Q � P and Q is stochastically monotonic, Theorem 5.15
gives that Qn � Pn. Then, using Lemma 5.11, it follows that Qnf ≤ Pnf . Therefore,∑

j∈SN−1

Qni,jf(j) ≤
∑

j∈SN−1

Pni,jf(j). (43)

The entries of the matrices P and Q are given by pi,j and qi,j , respectively. Furthermore, it
holds that Pni,j = P(Xn = j | X0 = i), i.e., the probability that the process is in state j after n

jumps, given that it started in state i. For the remainder of this proof denote by f
(n)
i,j (P ) and

f
(n)
i,j (Q) the probability f

(n)
i,j for the process X and Y , respectively. Moreover, denote by fi,j(P )

and fi,j(Q) the first entrance probability fi,j for the process X and Y , respectively.

Let n ∈ N be arbitrary. For all i ∈ S′ it holds that∑
j∈SN−1

Pni,jf(j) =
∑

j∈SN−1

Pni,j1SN (j)

=
∑
j∈SN

Pni,j

=
∑
j∈SN

P (Xn = j | X0 = i)

(∗)
= P (Xt 6= N − 1 ∀t ∈ {1, 2, . . . , n} | X0 = i)

= 1− P (Xt = N − 1 for some t ∈ {1, 2, . . . , n} | X0 = i)

= 1− f (n)
i,N−1(P ), (44)

where (*) holds since N − 1 is an absorbing state, i.e., P (Xn = N − 1 | X0 = N − 1) = 1 for all
n ∈ N.

Analogously, it follows for all i ∈ SN−1, that∑
j∈SN−1

Qni,jf(j) = 1− f (n)
i,j (Q). (45)

Using Eqn. (44) and Eqn. (45) together with Eqn. (43) gives for all n ∈ N that

1− f (n)
i,N−1(Q) ≤ 1− f (n)

i,N−1(P ),

hence
f

(n)
i,N−1(Q) ≥ f (n)

i,N−1(P ).

For all i ∈ SN−1 it holds that

fi,N−1(P ) = lim
n→∞

f
(n)
i,N−1(P ) ≤ lim

n→∞
f

(n)
i,N−1(Q) = fi,N−1(Q). (46)
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Recall fN,N−1(P ) = qN . Combining this with Eqn. (46) yields for all N ∈ N, with λn
µn
≥ α∗ − ε

for all n ≥ N , that

qN = fN,N−1(P ) ≤ fN,N−1(Q) =
1− p
p

< 1.

Consequently,

lim sup
N→∞

qN ≤
1− p
p

< 1.

Corollary 5.23. It holds that q+ = 1
α∗ .

Proof. To prove the statement, we will first prove that 1−p
p ≥

1
α∗ . It holds that

1− p
p

=
1− α∗−ε

1+α∗+ε
α∗−ε

1+α∗+ε

=
1

1+α∗−ε
α∗−ε

1+α∗+ε

=
1

α∗ − ε

≥ 1

α∗
.

In Lemma 5.8 it is shown that q+ ∈ { 1
α∗ , 1}. Hence, it immediately follows that q+ = 1

α∗ .

5.2 Proof of part 2 of Theorem 5.2

Now we can prove the second part of Theorem 5.2.

Proof of part 2 of Theorem 5.2. Recall that α∗ > 0 and β∗ ≥ 0. Let q0 = 0 and let qn, n ∈ N be
given by Eqn. (24), i.e.,

qn+1 =
µn + τ + λn

µn
− µn
λnqn

for all n ∈ N.

Combination of Lemma 5.4 and Lemma 5.6 proves the statement if the theorem for α∗, β∗ > 0.
Lemma 5.7 proves the statement for β∗ = 0 and 0 < α∗ ≤ 1.

Combination of Lemma 5.8, Lemma 5.22 and Corollary 5.23, proves the statement for α∗ > 1
and β∗ = 0.
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6 Summary of the theoretical results in [1]

Ellens et al. describe in Section 2 of [1] a method to determine the probability that the maximum
of a birth-death process over an interval with initial state and end state given exceeds a certain
level. To determine this probability over an interval of deterministic length, they first determine
this probability on an interval of exponential length.

After considering an interval of exponential length, Ellens et al. use the property that an Erlang
distributed time converges to a deterministic time to calculate the probability that the maximum
of a birth-death process over a deterministic interval with initial state and end state given exceeds
a certain level.

Since the exponential interval is used to calculate the probability on a deterministic interval, in
this chapter we will describe the steps Ellens et al. took in Section 2 in [1]. That way, we also
give a motivation as to why we considered the killed birth-death process before.

In Subsection 6.1 we will summarize the results of Section 2.2 of [1], and in Subsection 6.2 we
will summarize the results of Section 2.3 of [1]. Note that Section 2.1 of [1] is already discussed
in this thesis in Chapter 2.

Since, we consider the stochastic process on an interval [0, T ] (of random duration) before we
consider the process on an interval of deterministic length, we used the killed birth-death process
in the previous chapters to model the process on an interval of exponential length. Since we use
the exponential interval to later consider the deterministic interval, the deterministic interval is
the motivation to consider the killed birth-death process.

6.1 Maximum over an exponential interval; initial and terminal state
given

Section 2.2 in [1] derives an expression for the probability that the maximum of the process X
is equal to m on a stochastic interval T given that it starts in state i and finishes in state j. In
this subsection we will explain how Ellens et al. derived this expression and we will also give the
expression for the probability that the maximum of the process X is at most m on a stochastic
interval T given that it starts in state i and finishes in state j.

Recall Definition 2.7.

Definition 6.1.

1. Let rm,i,j := P(X̄T = m | X0 = i,XT = j) be the probability that the maximum of the
process X equals the level m, given that the process started in state i and finished at time
T in state j.

2. Let r̄m,i,j := P(X̄T ≤ m | X0 = i,XT = j) be the probability that the maximum of the
process X does not exceed the level m, given that the process started in state i and finished
at time T in state j.
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Proposition 6.2.

1. For i, j < m it holds that rm,i,j ≤ r̄m,i,j.

2. For i = m it holds that rm,i,j = r̄m,i,j.

3. For j = m it holds that rm,i,j = r̄m,i,j.

4. For i > m it holds that rm,i,j = 0 = r̄m,i,j.

5. For j > m it holds that rm,i,j = 0 = r̄m,i,j.

Proof.

1. Let i, j < m. Since

P(X̄T ≤ m | X0 = i,XT = j) =

m∑
k=1

P(X̄T = k | X0 = i,XT = j) ≥ P(X̄T = m | X0 = i,XT = j),

it holds that rm,i,j ≤ r̄m,i,j .

2. Let i = m. Then,

rm,i,j = rm,m,j = P(X̄T = m | X0 = m,XT = j)

and

r̄m,i,j = r̄m,m,j = P(X̄T ≤ m | X0 = m,XT = j) = P(X̄T = m | X0 = m,XT = j).

Thus, rm,i,j = r̄m,i,j for i = m.

3. Similar as for the case where i = m, we get for j = m that rm,i,j = r̄m,i,j .

4. Let i > m. Then X̄T ≥ i > m, hence rm,i,j = 0 = r̄m,i,j .

5. Let j > m. Then, analogously to the case i > m, it holds that X̄T ≥ j > m, and thus
rm,i,j = 0 = r̄m,i,j .

Now that we have proven some properties of the probabilities rm,i,j and r̄m,i,j , we can introduce
the following concept.

Definition 6.3.

1. Let sm,i,j := P(X̄T = m,XT = j | X0 = i) be the probability that the maximum of the
process X equals the level m and finishes at time T in state j, given that the process started
in state i.

2. Let s̄m,i,j := P(X̄T ≤ m,XT = j | X0 = i) be the probability that the maximum of the
process X does not exceed the level m and finishes at time T in state j, given that the
process started in state i.

The above definition can be used to give an expression for the probabilities rm,i,j and r̄m,i,j in
the following way.
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Proposition 6.4. It holds that rm,i,j =
sm,i,j

limn→∞ s̄n,i,j
and that r̄m,i,j =

s̄m,i,j
limn→∞ s̄n,i,j

.

Proof. It holds that

rm,i,j = P(X̄T = m | X0 = i,XT = j)

=
P(X̄T = m,XT = j | X0 = i)

P(XT = j | X0 = i)

=
P(X̄T = m,XT = j | X0 = i)

limn→∞ P(X̄T ≤ n,XT = j | X0 = i)

=
sm,i,j

limn→∞ s̄n,i,j
.

Analogously, it holds that

r̄m,i,j = P(X̄T ≤ m | X0 = i,XT = j)

=
P(X̄T ≤ m,XT = j | X0 = i)

P(XT = j | X0 = i)

=
P(X̄T ≤ m,XT = j | X0 = i)

limn→∞ P(X̄T ≤ n,XT = j | X0 = i)

=
s̄m,i,j

limn→∞ s̄n,i,j
.

In Section 2.2 of [1], Ellens et al. state that

sm,i,j =

{
(pipi+1 · ... · pm−1)p̄m,j , i, j ≤ m,
0, i > m or j > m,

(47)

and

p̄m,j =


µm

λm+µm+τ (pm−1p̄m,j + p̄m−1,j), j < m,
τ

λm+µm+τ + µm
λm+µm+τ pm−1p̄m,m, j = m,

0, j > m.

(48)

Eqns. (47) and (48) are then used to prove

p̄m,j =

(
µmpm
λm

µm−1pm−1

λm−1
· · · µj+1pj+1

λj+1

)
· τpj
λj

and

sm,i,j = (pipi+1 · · · pm−1) · (pjpj+1 · · · pm) ·
(
µj+1

λj+1
· · · µm

λm

)
· τ
λj
.
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Proposition 6.5. s̄m,i,j =
∑m

max{i,j} sk,i,j.

Proof. It holds that

s̄m,i,j = P(X̄T ≤ m,XT = j | X0 = i) =

m∑
k=0

sk,i,j

=

max{i,j}−1∑
k=0

sk,i,j +

m∑
max{i,j}

sk,i,j

=

max{i,j}−1∑
k=0

0 +

m∑
max{i,j}

sk,i,j

=

m∑
max{i,j}

sk,i,j .

Combining Proposition 6.5 with Proposition 6.4 gives rm,i,j and r̄m,i,j in terms of the probabilities
pn, for which we have a recursive way of calculating them. This concludes the calculation of the
probabilities rm,i,j and r̄m,i,j .

Before we consider the deterministic interval, we first will introduce two matrices.

Definition 6.6.

1. Let S̄m,T be the matrix with (i, j)th entry given by s̄m,i,j .

2. Let sm,T be the matrix with (i, j)th entry given by sm,i,j .

6.2 Maximum over a deterministic interval

Notation 6.7. Let Tk denote the sum of k ∈ N independent exponential distributed random
variables, with mean t

k . So,

Tk =

k∑
n=1

T kn ,

where T kn , n = 1, . . . , k, are independent exponentially distributed random variables, all with
mean t

k .

Then, Tk is Erlang distributed with mean t. With the Strong Law of Large Numbers it follows
that Tk → t as k →∞, with probability 1. Since Tk converges to a deterministic time t as k →∞,
we will use this to approximate s̄∗m,i,j,t and s∗m,i,j,t, where s̄∗m,i,j,t and s∗m,i,j,t are defined as follows.

Definition 6.8.

1. Let s̄∗m,i,j,t := P(X̄t ≤ m,Xt = j | X0 = i).

2. Let s∗m,i,j,t := P(X̄t = m,Xt = j | X0 = i).

55



In the previous section we considered the maximum over an exponential time interval with
the initial and terminal states of the process given. Section 2.3 of [1] studied the maximum
over a deterministic interval with the initial and terminal states of the process given. So, the
deterministic-time counterpart of r̄m,i,j , denoted by q̄m,i,j,t, is considered. Therefore, this subsec-
tion will evaluate not only q̄m,i,j,t, but also the deterministic-time counterpart of rm,i,j , denoted
by qm,i,j,t. This will give an analogous relation as for r̄m,i,j and rm,i,j , when replacing the ex-
ponentially distributed time T by the deterministic time t. However, now the relation is less
amenable.

Definition 6.9. Let t ≥ 0 be given.

1. Let q̄m,i,j,t := P(X̄t ≤ m | X0 = i,Xt = j).

2. Let qm,i,j,t := P(X̄t = m | X0 = i,Xt = j) be the deterministic counterpart of rm,i,j .

Let M be a sufficiently large truncation level.

Notation 6.10.

1. Let S̄Mm,T be the (M + 1)× (M + 1)-matrix with (i, j)th entry given by s̄m,i,j .

2. Let SMm,T be the (M + 1)× (M + 1)-matrix with (i, j)th entry given by sm,i,j .

It holds that
(
SM
m,Tk1

· . . . · SM
m,Tkk

)
i,j

is the probability that the truncated process never reaches

a state above m during time Tk. Recall that T k1 , ..., T kk are all independent and identically
distributed. Therefore,

SMm,Tk1
· . . . · SMm,Tkk =

(
SMm,Tk1

)k
.

Analogously,

S̄Mm,Tk1
· . . . · S̄Mm,Tkk =

(
S̄Mm,Tk1

)k
.

Section 2.3 in [1] derives(
lim
k→∞

(
S̄Mm,Tk1

)k)
i,j

=
(
S̄∗m,t

)
i,j

:= P(X̄t ≤ m,Xt = j | X0 = i) = s̄∗m,i,j,t,

(
lim
k→∞

(
SMm,Tk1

)k)
i,j

=
(
S∗m,t

)
i,j

:= P(X̄t = m,Xt = j | X0 = i) = s∗m,i,j,t.

To calculate the probabilities q̄m,i,j,t and qm,i,j,t of interest we can use s̄∗m,i,j,t and s∗m,i,j,t, re-
spectively. It holds that

q̄m,i,j,t = P(X̄t ≤ m | X0 = i,Xt = j)

=
P(X̄t ≤ m,Xt = j | X0 = i)

P(Xt = j | X0 = i)

=
s̄∗m,i,j,t

limn→∞ s̄∗m,i,j,t
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and it holds that

qm,i,j,t = P(X̄t = m | X0 = i,Xt = j)

=
P(X̄t = m,Xt = j | X0 = i)

P(Xt = j | X0 = i)

=
s∗m,i,j,t

limn→∞ s̄∗m,i,j,t
.
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7 Discussion

We started this research by reading the first two chapters of the article of Ellens et al., [1].
While reading these chapters, we became interested in the behaviour of the probabilities pn and
qn. Since the probabilities pn have a forward recursive formula, these probabilities could be
numerically analyzed in Excel for the M |M |c -model, c ∈ N ∪ {∞}. That way we hoped to get
more feeling with these probabilities before moving on to the next part of the article. However,
during this numerical analysis, it turned out that we could give some interesting conjectures about
the behaviour of the probabilities pn. Therefore, we decided to prove some of these conjectures.

The original idea was that after studying the first two chapters we would study the rest of the
article to see if we could extend this research. However, proving properties about the behaviour
of the probabilities pn turned out to be harder than anticipated. Therefore, we decided that we
would spend more time on researching the properties of the probabilities pn. We proved that
under some mild restrictions the limit p∗ = limn→∞ pn exists and we gave an expression for p∗.
In the proof of this theorem, one case turned out to be harder than the other cases. However,
using a upper bound for the limit superior, also this case could be proven.

Since the recursive formulas of pn and qn have a similar look, we decided that it would be
interesting to research the probability qn and see if these probabilities also converge. As is turns
out, for most cases, the proof of this theorem goes in a similar way to the proof of the limiting
value of pn. However, one case turned out to be harder than the other cases. For this case we
could not use the same trick as for the theorem about p∗. For this proof we needed to introduce
the concept of stochastic monotonicity. Using this concept, we were able to also prove that under
some mild conditions the limit q∗ = limn→∞ qn exists and give an expression for q∗. Therefore,
the main results of this thesis are the two theorems that give a statement about the limiting
values p∗ and q∗, i.e., Theorem 4.1 and Theorem 5.2. Some further research could be done to
find if (and how) stochastic monotonicity can also be used to proof part of Theorem 4.1.
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Appendix

Example λ µ τ
1 0.75 1 2
2 0.75 1 1.75
3 0.75 1 1.5
4 0.75 1 1.25
5 0.75 1 1
6 0.75 1 0.75
7 0.75 1 0.5
8 0.75 1 0.4
9 0.75 1 0.3
10 0.75 1 0.25
11 0.75 1 0.2
12 0.75 1 0.15
13 0.75 1 0.1
14 0.75 1 0.05
15 0.75 1 0.01
16 0.75 1 0.001
17 0.75 1 0.0001

Table 1: Fixed λ and µ, with various τ .

Example λ µ τ
1 0.9999 1 1
2 0.999 1 1
3 0.99 1 1
4 0.9 1 1
5 0.8 1 1
6 0.75 1 1
7 0.7 1 1
8 0.6 1 1
9 0.5 1 1
10 0.1 1 1

Table 2: Fixed µ and τ , with various λ.

Example λ µ τ
1 0.99 1 0.5
2 0.75 1 0.5
3 0.5 1 0.5
4 0.1 1 0.5

Table 3: Fixed µ and τ , with various λ.
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Example λ µ τ
1 0.99 1 0.1
2 0.75 1 0.1
3 0.5 1 0.1
4 0.1 1 0.1

Table 4: Fixed µ and τ , with various λ.

Example λ µ τ
1 0.99 1 0.01
2 0.75 1 0.01
3 0.5 1 0.01
4 0.1 1 0.01

Table 5: Fixed µ and τ , with various λ.
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Example λ µ τ
1 0.01 1 0.5
2 0.1 1 0.5
3 0.5 1 0.5
4 1 1 0.5
5 5 1 0.5
6 1 0.1 0.5
7 1 0.5 0.5

8 = 4 1 1 0.5
9 1 5 0.5
10 1 10 0.5
11 5 0.1 0.5
12 5 0.5 0.5

13 = 5 5 1 0.5
14 5 5 0.5
15 5 10 0.5
16 0.01 0.1 0.5
17 0.01 0.5 0.5

18 = 1 0.01 1 0.5
19 0.01 5 0.5
20 0.01 10 0.5
21 1 5 0.01
22 1 5 0.1

23 = 9 1 5 0.5
24 1 5 1
25 1 5 5
26 1 0.5 0.01
27 1 0.5 0.1

28 = 7 1 0.5 0.5
29 1 0.5 1
30 1 0.5 5
31 0.75 1 2
32 0.75 1 0.75
33 0.75 1 0.2
34 0.75 1 0.001
35 0.75 1 0.002
36 0.75 0.5 0.01

Table 6: 36 situations where λ, µ and τ can vary.
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