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1 Introduction

The introduction in the paper of Ellens et al., from now on notated as [1], describes analytical
techniques to analyze metrics that are related to random fluctuations between consecutive obser-
vations. In this thesis, we will take a closer look at the probability that the process, starting at
level n, reaches level n + 1 before an independent exponentially distributed time T expires. Also
the probability that the process, starting at level n, reaches level n — 1 before an exponentially
distributed time T expires, is examined.

These exponentially distributed times T' are studied in [1] to determine the distribution of the
maximum of a birth-death process over a deterministic interval with given initial and terminal
conditions. The probabilities to reach a higher, respectively lower, state before an exponentially
distributed time T expires, both satisfy recursive formulas that look interesting to analyze. The
interesting part was that numerical results in Excel seemed to imply that these probabilities do
not always converge. Therefore, in this thesis we will analyze their limiting behaviour.

The remainder of this thesis is as follows. First we will describe the model of the birth-death
process that we will use throughout this thesis. This chapter will also give the basic formulas we
got from [1] and we introduce the basic concepts and formulas. Also an example will be given
for which we will consider the relation between two sequences of probabilities.

After that, we have enough background to analyze the recursive formulas given in Section 2.1
of [1]. Chapter 3 will give observations of the graph of the recursive formula for the probability
that the process arrives at a state n + 1 before time T given that the process starts in state n,
this probability will be denoted by p,. The observations will be based on examples in Excel of
the M|M|c-model, with ¢ € {1,2,...,5}, and M|M|oco-model. The remainder of the chapter
will give counterexamples and proofs of observations.

Chapter 4 and Chapter 5 will state the main results of this thesis. These main results are limiting
results for the probabilities p, and g,, where ¢, is the probability that the process X arrives at
state n — 1 before time T given that the process starts in state n. Chapter 5 also introduces the
concept of stochastic monotonicity. This will be needed in the proof of the main result of this
chapter.

Chapter 6 summarizes the results of Sections 2.2 and 2.3 of [1] and will give a motivation to the
choice of considering a killed birth-death process.

This thesis concludes with Chapter 7. This chapter will discuss what we originally planned to
research in this thesis and what we actually researched.



2 The model

In this chapter we will describe the model that will be used in this thesis.
For notational purposes, define N := {1,2,3,...} and Ng :={0,1,2,3,...}.

Definition 2.1. Let the stochastic process X = (X¢)>0 be a birth-death process, where X; € Ny
denotes the state of the process at time ¢t. The birth rate in state n is A,, > 0, and the death
rate in state n is p, > 0, for n € Ny, where pg = 0.

Remark 2.2. The stochastic process X is a continuous time Markov chain on a discrete state
space.

Since we will prove properties of these functions in later chapters of this thesis, we will give the
steps of the derivation of these recursive formulas in section 2.1 of [1] in this chapter.

Given an initial state X, we consider an independent, exponentially distributed time 7T till expi-
ration. Given a level m € Ny, we are interested in the probability that the process X equals the
level m. The goal of this chapter is to give the derivation of the probability that the maximum
of the stochastic process X is equal to m over the interval [0,T], of exponential length, given
that the process starts in state 1.

Remark 2.3. Since we consider the process X on the stochastic interval [0, T, we call (XtT)t>0
a killed birth-death process, where X/ := X;ar. If necessary, we will model the killed birth-
death process as a birth-death process with an extra state co, which will be an absorbing state,
i.e., the process will never leave this state once it has arrived there. We will use this extra state

oo in Chapter 5.

Before we can prove results for the process X, first some notation and definitions need to be
introduced.

Notation 2.4.

1. Use m to denote a level. Then, m is a state in the birth-death process (X;);>o about
which we want to know several probabilities. (For example, we could be interested in the
probability that the birth-death process (X;);>¢ is in a state larger than m.)

2. Let t > 0. Let X; := SuP,e[o, Xs denote the running time maximum associated with
process X.

3. Lett > 0. Let X, := inf e(o,4) Xs denote the running time minimum associated with process
X.

4. Let T be an exponentially distributed random variable with rate 7 > 0, independent of
process X.



Definition 2.5. Let n € Ng.

1. Let p, :=P ()_(T >n+1|Xo= n) be the probability that the process X, starting at level
n, reaches level n + 1 before time T'.

2. Let pp, =1—p, =P (XT =n|Xy= n) be the probability that the process X, starting at
level n, does not reach level n + 1 before time 7.

3. Let ¢, :=P (XT <n-—-1|Xy= n) be the probability that the process X, starting at level

n, reaches level n — 1 before time 7.

4. Let i € Ng. Let rp; := P(Xp =m| Xo=1) be the probability that the maximum of
process X equals m over the interval [0,7] (of random duration), given that it starts in
state 1.

Definition 2.6.
1. Define p* := lim SUP,,_, o0 Pn. and p~ :=liminf,, ;o pn.
2. Define ¢ :=limsup,,_, . qn and ¢~ := liminf, . qy.

3. Define o := lim,, s ;\L—“ and 8% := lim,,_ o ui’ provided these limits exist.

Definition 2.7. Define the probability that the maximum of the birth-death process (X¢):>o0
does not exceed level m, given its initial state ¢ and its final value j at a deterministic time ¢ by
Gmige =P (Xi <m| Xo =1i,X, =j).

To analyze gy, i j,t, [1] first considers the maximum over an exponential interval given the initial
state of the process. The authors deduce two recursive formulas describing the probability that
the maximum and minimum of the process X, starting at level n, reaches level n + 1 and level
n — 1, respectively, before an exponential time T expires. These probabilities are given in parts

1 and 3 of Definition 2.5 as (pn),,cy, and (gn),en, -

2.1 Formulas

The process X is a birth-death process, hence it satisfies the memoryless property. For a birth-
death process, at rate A\, a birth occurs when the process is in state n, and at rate u,, a death.
In this model the process is only considered until the exponential time T expires. Therefore,
the process moves from state n to another state (where reaching time 7" stops the process) at
rate A\, + pn, + 7. We can model this by extending the state space by an extra state, oo, to
which the process jumps to with rate 7. However, in this chapter we do not yet need to consider

An

the extended state space. Hence the probability to reach state n + 1 equals S v and the

probability to reach state n — 1 equals )\fﬁ (for n — 1 € Ny).

Since T 2 exp(7), with 7 > 0, it holds that T satisfies the memoryless property. This means
that after a jump of the birth-death process on time ¢ < T, the remaining time 7" — ¢ is again
exponentially distributed with rate 7.

Using the memoryless property of the birth-death process and the memoryless property of T
gives that
N Ao+ T

Do



and for n € N it holds that

_ An n n
_)\7L+T+:LL7L An+T+:LL77/

Pn Pn—1Pn-

Analogously, it holds for all n € Ny that

_ Han n An
R

qn dn+19n-

For all 4 > m it holds that -
Tm,i = P(XT =m ‘ XO = Z) = 0,

because in this case Xp = SupPsepo,r] = ¢ > m. In the next lemma it will be proven that
Tmyi = Di*.. Dm—1) Dm for all i < m.

Lemma 2.8. For alli < m, it holds that

Proof. Throughout this proof, we use the memoryless property of the random variable T

Let ¢ = m. Then, -
Tmi = Tmm = P(Xr =m | Xo =m) = pnm.

Let i =m — 1. Then,
Tm,i = ’I"m’m,1 = IP)(XT =m | X() = m—l) = ]P(XT Z m—1 ‘ X() = m—l)IP’(XT =m ‘ X(] = m),

since to arrive in state m, there must be a birth before time 7" when the process is in state m — 1,
and, moreover, no birth may occur in state m before time T'. In other words,

Tm,i = Pm—1"Pm-

Let ¢ < m — 1. Since we consider a birth-death process, to reach state m — 1 while starting in
state ¢ before time T, the process must first reach the states i+1,...,m—2 before time T, before
being able to jump to state m — 1. Thus,

rm7i:IF’()_(T:m|X0=i)
:]P’()_(TZm—l\oni)~IF’(XT:m|X0:m).

Recursively, we get that

m—2
Tm,i = H [P(XT >n | XO = n)} “Pm—1"DPm
n=i
Hence, for all ¢ < m Eqn. (1) holds. O



Lemma 2.9. It holds that

Ao _
) n - 07
Pn = {)\o-i-T A, - (2)
Xt Fin(—pp_)? =L
Proof. For n = 0 it holds that pg = P(X7 > 1| Xy = 0) = %, because pg = 0.
Let n > 1. Then, p, = 5 +’\T”+# + 5 +"T"+# DPn—1Pn. Rewriting this equation gives

(An + 7+ pn)Pn = Ay + finPn—1Pn
< (A + 7T+ lin = fnPn-1)Pn = An
= (A + 7+ (1 = pn-1))pn = An
An
Ao+ 74 pn(1—pp_1)’

< Pn =

which we needed to show. O

Lemma 2.10. It holds that

Y
—

0" = {0’ " )

Kn
An+7+pn (1—gn41)?

Proof. For n =0 it holds that ¢y = IF’(X'T < —-1]Xp=0)=0, since X; >0 for all ¢t > 0.

Let n > 1. It holds that ¢, = + 5 J:‘T"'Jm Gn+19n- Rewriting this equation gives

fin
An+T+pn
()‘n +7+ ,Ufn)Qn = Un + An‘]n+1qn
— (/\n + 7+ pn — AnQn—&-l)Qn = Hn
— (/J/n + 7+ )\n(l - Qn-‘rl))qn = HUn
Hn

<~ (Qn = 5
Hn + 7+ An(l - qn—i-l)

which we needed to show. ]

2.2 Examples

In this section we consider for two models the relation between the sequence (pp)nen, and the
sequence (G, )nen,- Both models have a finite state space, S = {0,1,..., N}. Again, let T be an
exponentially distributed random variable with rate 7, independent of X.

Let the parameters A\, > 0, for n € {0,1,...,N — 1}, Ay = 0, po = 0 and u, > 0, for
n e {1,2,...,N} be given.

Consider the birth-death process X' = (X});>¢ on the state space S with birth- and death-
parameters given by AL, = \,, > 0, foralln € {0,1,...,N—1}, A}, =0, uy = 0 and pl, = p, > 0,
for all n € {1,2,...,N}. Furthermore, consider the birth-death process X? = (X?);>o on
the state space S with swapped birth and death parameters given by A2 = p, > 0, for all
ne{0,1,...,N -1} A =0, 3 =0and p2 =\, >0, for all n € {1,2,...,N}.



Then it holds that

1 n 2 Hn
= and pj = .
Po An + T Po M + T
For n € {1,..., N} it holds that
A ,
Pk n and p? = Fin

B )\n+7_+/in(]-_p717,71) /‘n+7—+)‘n(1_p%71).

Furthermore it holds that

1 Hn 2 An
= d = .
an i+ T and gy A+ T
For n € {0,1,..., N — 1} it holds that
n A’I’L
qul = H and qi =

B Hn+7+/\n(1*q711+1) )‘nJFTJFNn(l*qurl).

It holds that p} = ¢3; and that p3 = ¢},. Using induction to n it follows for all n € {0,1,..., N}
that pl = ¢ _,, and p2 =qk_,..

If A\, = A foralln € {0,1,...,N — 1}, and u,, = A, for all n € {1,2,..., N}, then it follows
that the processes X' and X? are equal. Hence, pl =g\ _,, for alln € {0,1,..., N}. Note that
|S| = N + 1 is even, if N is off. Vice versa, if |S| is odd, then N is even. In the latter case it
holds that pl = ¢}, n = %
If A, = pin—n, for all n € {0,1,..., N — 1}, and Ay = 0 = po, then it follows that p} = ¢}
for all n € {0,1,...,N}.

—n



3 Observations and results for p, and =z,

When studying the paper [1] we became interested in the structural properties of the formula for
the probabilities p,, n € Ny. Therefore, we decided to numerically analyze six M|M |c-models,
ce{l,...,5,00}, in Excel to get a better understanding of the behaviour of p,, as a function of
n. For the M|M|c-model it holds that A, = A for all n € N and

_Jnp ifn <g,
fin = cu ifn>ec.

Notation 3.1. For n € Ny, ¢ € NU{oo}, we use the superscript ¢ for the investigated probabilities
in the M|M|c-model. Moreover, we use the superscript * to indicate the corresponding limits as
n tends to co. For example, p¢ is the probability that the process X, starting at level n, reaches
level n+ 1 before time T in the M|M |c-model, p¢ is the departure rate of the M|M |c-model in
state n, and p* ¢ := lim, 00 PS5,

For all the examples we considered, we saw that the graph of p, as a function of n is
non-increasing and that it has a limiting value. See, for example, Figures 1 and 2 below. More-
over, we saw that, when plotting the graphs of p, for different values of ¢ in one plot, that the
graph of p, was monotonic. Furthermore, we noticed that the graphs had a short steep part in
the graph of p, and for the remainder a relatively flat one. If the graph has points before this
steep part of the graph, then the graph changes from relatively flat to steep and then back to
relatively flat.

Figures 1 and 2 show two examples on realizations of the graphs of p,. The plots gave rise to a
number of conjectures that we have tried to prove. These conjectures concern the characterization
of this steep part of the graph, the limiting value of the graph of p,, and some monotonic properties
depending on the number of servers ¢, the birth-rates A, the death-rates u, and the rate 7.

Graphs of p, for differentc
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Figure 1: The graphs of p, for n € {0,1,...,25} for M|M|ec, ¢ € {1,...,5,00}, with p = 1,
)\n:%forallnENg, and 7 = 2.



Graphs of p, for different c
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Figure 2: The graphs of p,, for n € {0,1,...,25} for M|M|ec, ¢ € {1,...,5,00}, with p = 1,

)\n:%foraﬂnENg,andT:ﬁ.

3.1 Observations based on Excel

This section will first focus on observations of the graph of p, for the M|M|c-model, ¢ €
{1,2,...,5,00} We will describe the examples we considered in Excel and the observations we
made using these examples. Then, we focus on the slope of the graph of p,.

3.1.1 Observations of the graph of p,

In Excel we plotted the graph of p,, for the M|M|c-model, ¢ € {1,...,5,00} for n =0,1,...,100
and for various values of the parameters A, u or 7. The observations below are based on the
graphs in these different Excel sheets. Before presenting the observations, we will first discuss
what examples we used to base these observations on.

First we fixed A and p to study the effects of 7. We came up with the 17 situations in Table 1
because we wanted to consider the influence of 7 on the M|M|c-model, with ¢ € {1,2,...,5}.
Therefore, we chose A = 0.75 and p = 1, that way we made sure that A < cu and hence the queue
length of this queueing system will not explode (see Chapters 3 and 4 in [1]). Then we wanted
to see what would happen if 7 became small. Therefore we considered the situations given in
Table 1 of the Appendix.

After researching the influence of 7 on the system, we wanted to see what would happen if we
would change the ratio A\/u. This made us choose p = 1 and considered for four situations of
7 what would happen if we would decrease A\ (with A < p). The parameter combinations we
considered here can be found in in the Tables 2, 3, 4 and 5 of the Appendix.

Consider the M|M|c-model, ¢ € {1,...,5,00}. The conjectures we made using the different
examples are stated in Conjecture 3.2.
Conjecture 3.2.

1. the sequence (p;,),,cy, is non-increasing in n.

2. the sequence (pt) has a limit.

neNp

10



3. p& = pstl for all n € Ng with n < ¢ and p¢ > pSt! for all n > c. It looks like pS = p2° for
all n € Ny with n < ¢ and p% > pS° for all n > ¢. So, it seems that the graphs of p,, (for
the same n € Ny) are non-increasing as ¢ is increasing.

4. 1im,, 00 P& > lim,, 0o pST1. This is the limit version of Conjecture 3.2.3.
5. lim. o p™¢ = 0.

6. pIt > prz for 7,79 > 0 such that 7 < 75, where 7 and 72 denote two distinct extinction
rates.

A counterexample for Conjecture 3.2.1 can be given. However, Lemma 3.5 shows the validity of
Conjecture 3.2.1 for the M|M|c-model, ¢ € Ny U {co}.

Consider a birth-death process with A, = 0.5 for all n € Ny, 7 = 1.5 and

0 ifn=20,
tn = { N2 if n is even, n # 0, (4)

In(n) +1 if nis odd.

Then it holds for all n € N that u, > 0 (so :—Z is well-defined for all n € N) and it holds that

Hn — 00 as n — 00. Therefore, a* := lim,, o 2—: =0 and B* := lim,,_, #in = 0. The graph op
pn shows that it does not hold that the sequence (p”)neNo is non-increasing in n. Hence, this is
not a generic property of birth-death processes. The corresponding graph can be found in Figure
3. Moreover, this example also seems to give a counterexample of Conjecture 3.2.2. However, as

we will see in Chapter 4, also for this example lim,, ., p, exists.

Graphofp,

ST EMRRANRIISLAEBTERRESGEGRE

Figure 3: The graph of p, for n € {0,1,...,100} with s, as in Eqn. (4), A, = 1 for all n € Ny,
and 7 = %
Moreover, for the M|M|c-model, ¢ € N U {oc}, we can prove that the sequence (py,),cy, 18
non-increasing in n. This will be proven in Lemma 3.5. Conjecture 3.2.2 will be proven under
some mild conditions in Chapter 4. The other conjectures will be proven for the M|M |c-model
in this chapter.

11



3.1.2 Observations of the graph of x,

Definition 3.3. Define the slope of the graph as the difference between two consecutive proba-
bilities p,,, i.e.,

Tn = Pn — Pn+l
for all n € Ny.

In this subsection we will study the graph of x,,. We will study two aspects: monotonicity and
the behaviour around its maximum. The latter is motivated by our interest in the part of the
graph p¢, where it is steepest.

First, we considered the same examples as in Section 3.1.1 for the slope of the graph of p{. In
this way, we can take into account the observations made in Section 3.1.1. However, we also
considered an example with A =1, u = 0.5 and 7 = 0.01, and an example with A = 0.75, u = 0.5
and 7 = 0.01. This is related to the question of the monotonicity of the graph of z¢.

Recall Notation 3.1.

The conjectures we made using the different examples are given in Conjecture 3.4.

Conjecture 3.4.

1. for the M|M|c-model, ¢ € NU {oo}, the graph of xf is not always monotone in c.

c

¢ is non-decreasing as a function of c.

2. maxpeN, T

3. n* := arg max,en, &, denotes the point where the graph of p{ has the steepest descent,
the steepest descent is at py,. or pp. ;.

4. arg maxpen, Z5, is non-increasing as ¢ decreases.

The goal of these observations is to come up with a heuristic method to evaluate the top of the
graph of z},.

The graphs of z¢ in Figure 4 are an example showing that the graphs of x¢ can intersect for
different values of c. Hence, this example shows that monotonicity for z¢ cannot be proven for
the M|M|c-models, ¢ € NU {co}.

3.1.3 Heuristic for z,

For notational convenience, we leave the superscript ¢ out of the notation.

In this subsection we will describe our attempts to find a heuristic method to predict
n* = argmaxpen, &n for M|M|c-models, ¢ € NU {o0}.

Excel calculations for the slope of p, for M|M|c, ¢ € NU{o0}.
In this subsection we will analyze some Excel sheets we built. These Excel sheets calculate the
point n* = argmax,en, Zn-

In these Excel sheets multiple examples are considered and can be found in Table 6 in the
Appendix. Note that these Excel sheets could easily be used to calculate n* for other parameters
for M|M|e, with ¢ € {1,2,3,4,5}, and M|M]oo. This can be done easily by just changing the
respective values for A\, pu or 7.

12



Graph of x,, for differentc
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Figure 4: The graphs of z,, for n € {0,1,...,25} for M|M]|c, ¢ € {1,...,5,00}, with u = 1,

An =3 for all n € Ny, and 7 = 555-

First, the values for p,, are calculated in these Excel files. These values are then used to calculate
the values for x,,. Finally, n* is calculated by a formula that compares the calculated maximum
with the Excel cells containing the values of x,, and this formula returns how many cells are above
the number we sought including the cell that contains this maximum. Since we start counting
from n = 0 we have to subtract 1 to get the correct value for n*.

Excel observations for the slope of p, for M|M]|c, c € NU {c0}.
This subsection will contain some observations based on the results of the examples.

1. n* is non-decreasing as A increases. This observation is based on situations 1 — 5.

2. n* is non-decreasing as p increases. This observation is based on situations 6 — 20.
3. n* is non-increasing as 7 increases. This observation is based on situations 21 — 34.
4

. Increasing the number of servers ¢ does not always lead to n* non-decreasing or non-
increasing. An example is as follows. Let A = 1, y = 0.5 and 7 = 0.01. For M|M|4 and
M|M|oo it can be calculated that n* = 6, while for M|M|5, n* = 5.

The conclusion is that since increasing the number of servers does not always lead to n* non-
decreasing or non-increasing, this did not succeed. Therefore, this could be a topic of further
research.

3.2 Monotonicity and convergence results for the M|M|c-model, with
c € NU {oco}

Consider the M|M|c-model, ¢ € NU {oo}. Let 7 > 0 be given. Assume that p > 0 and that
A< cp.
Recall the definition of p,, Eqn. (2).

Next, we will show that the sequence (py)nen is a non-increasing sequence for the M |M|c-model,
¢ € NU{oo}. Then, an easy consequence is that the sequence (p,)nen has a limit.

13



Lemma 3.5. Let A\, u > 0 and let 7 > 0. For the M|M|c-model, ¢ € NU {oo}, it holds that

1. pp,=0,n€Np, if A\=0 and p > 0. Moreover, the limit exists and p* = lim, o pn = 0.

A

2. pn = A—_"\_T, n € Ny, if A > 0 and p = 0. Moreover, the limit exists and p* = lim,_, o Py, = -

8. pn > Dnt1, n € No, if A >0 and p > 0. Moreover, p* = lim,,_, o, p,, exists.

Proof. 1. Let A =0 and p > 0. Then, by Eqn. (2), it immediately follows that p, = 0 for all

n € Ny. Hence, the sequence (pn)neNo has a limit, namely lim,,_, . p, = 0.

2. Let A > 0 and g = 0. Then, it follows immediately for all n € Ny that p, = )\)‘? So,
then it holds for all n € Ny that p,, = p,+1. Thus, the sequence (py,)nen, is constant, and
hence, it has a limit, namely lim,, ., p, = %-5-7

3. Let A, > 0. Note that since A > 0 and 7 > 0 it holds that py = ,\7-);7 € (0,1).

It suffices to consider two situations, namely 0 < n < ¢, and n > c¢. Note that for ¢ = o
only the first case has to be considered.

e Suppose that 0 < n < c. It holds that

A
po = A+T
(%) A
>
A+ 74+ p(1—po)
= P1,

where (*) holds since p > 0 and pg € (0,1).

Since p > 0, it then follows that u(l — pg) < w(l — p1). Moreover, since A > 0
and 7 > 0, it therefore holds that A + 7 + u(1 — pg) < A+ 7+ u(1 — p1). Hence,
A Therefore, we have that

> A
A+7+p(l—po) = Ar+p(l-p1)”

A
h= A+ 7+ u(l —po)
A
T A+T+p(l—p1)
A
>
A+ T+ 2u(1 —pr)

= D2
So, it holds that p; > ps. Analogously, p, > pn41 for all 2 < n < ¢. So, for all
0 < n < ¢ we have that p, > pp41.

e Suppose that n > ¢. Above, we already have proven that p._; > p.. Since p > 0, it
therefore follows that cu(1 —pe.—1) < cu(l — p.). Moreover, since A > 0 and 7 > 0, we
also have that A + 7+ cp(1 — pe—1) < A+ 7+ cu(1 — p.). Therefore,

A
Pe = N+ en(l = pey)
Y
>
A+T7+cp(l —pe)

= Pc+1-
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So, it holds that p. > pc41. Similarly we get for all n > ¢ that p, > p,41, thus it
holds for all n > ¢ that p,, is strictly decreasing.

Thus, we have proven for all n € Ny that p,, > ppy1.

For all n € Ny it holds that p,, is a probability, hence p,, € [0,1] for all n € Ny. Thus the
sequence (p”)nENo is bounded. Then, by the Monotone Convergence Theorem, it follows
that the sequence (py)nen, has a limit.

O
Remark 3.6. In Theorem 4.1 we will derive an expression for p*, when A, u > 0.
Remark 3.7. If we would have that 0 = o < gy, < pipy1 and Ay = A > 0 for all n € Ny, then

it would follow analogously that the sequence of (p,)nen, is non-increasing. It is even strictly
decreasing if A > 0 and p,, > 0 for all n € N.

Remark 3.8. To be able to apply the Monotone Convergence Theorem we need a non-increasing
or a non-decreasing sequence (p,)nen,. For a general birth-death process we do not necessarily
have this property. Therefore we cannot use the Monotone Convergence Theorem to prove in
general that the sequence (pp)nen, has a limit.

Recall Notation 3.1.

Lemma 3.9. Let A\, u,7 > 0. Let c € N. Then,
o p¢ =pitl for alln <c,

o p¢ > pctl for alln > c.

n

Proof. It holds that ué = nu for all n < ¢ and pf = cp for all n > c.

We use induction on n to prove the statement of the lemma.

Let n = 0. Then it holds that \§f = A = Ag“. Hence, p§ = )\—j‘_T = p8+1.
Suppose that p§,_; = pfill, n < ¢, then
A A
P, =pitt

A+ THnp(l—pS_y) A+ +np(l—psth)

Next, let n = ¢. By assumption p§,_; = pfltll It holds that u¢ = cu = pét!. Hence,

c _ . c+1

Let n = ¢+ 1. By assumption p¢_; = pST}. It holds that u& = cu and p&t' = (¢4 1)p. It holds

that cu < (¢ + 1), and thus pé < pStt. Then,
A7+ (L=pra) = A+ 7+eu(l=piTh) < A7+ (e+Dpl—pity) = A7+ (1-pt).

Hence,

A A c+1.

Pn = — > . =7 = Dn
A+T+ps(1—pS_ 1)~ AT+ psT (1 —peth)
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Finally, assume that p& > p¢tt, with n > ¢+ 1. It holds that u¢ = cu < (¢ + 1)p = pStt. Then
it follows that u (1 —pS_;) < pSt (1 —pSth), since g < pct! and since 1 —p¢_; < 1 —pStY.

This gives that

A A c+1
= c C > c+1 c+1 :pn .
A 7+pn(T=ph )~ A7+ pat (1 - pth)

Dy

So for all n € Ny with n < ¢ it holds that p¢, = pS™! and for all n > ¢ it holds that p¢ > pStt. O
Corollary 3.10. Let c1,co € N such that ¢y < co. Then,
o pil =p for alln < cy,

o pil > p for allm > cy.

Proof. Using Lemma 3.9 iteratively gives the statement we need to show. O
Lemma 3.11. Let ¢ € N. Then,

o pf =p foralln <c,

o po > pX for alln > c,

M C __ (o¢]
o lim. o py, = Py’ -

Proof. Let ¢; € N.

Let n < ¢p. Then, p& = p&2 for all c3 > ¢1. Also, pS? = pP°, since the birth- and death-rates are

n

equal for M|M|cy and M|M|oo for the states {0,1,...,n}.
Now, let n > ¢;. Fix ¢a > n. By Corollary 3.10 we get pS' > p¢?, and, similarly to the previous
case, we get pr2 = pr°.

Then it holds for all n € Ny with n < ¢; that p! = pf? = po° and for all n > ¢; it holds that

n

pst > p% = pS°. which concludes the first part of the proof.

. —

Since for all n < ¢ it holds that p, = py°, it immediately follows that lim._,. p¢, = p5°. O

3.3 The slope of p,

This subsection will again focus on the slope of the graph of p,,, in other words, we will focus on
the maximum of the graph of x,,. The question is, whether this graph has a unique maximum.
We will give a result about conditions when the graph of x,, is increasing and decreasing. First
we will focus on the M|M|oo-model. Then we study the M|M|c-model, ¢ € N. From now on,
we omit the superscript as it will be clear which model will be considered.

Recall Definition 3.3, i.e., , := py — pnt1, 7 € No.
3.3.1 Slope of the M|M|oc-model

Consider the M|M|oo-model. Let A, u, 7 > 0. Then, Eqn. (7) becomes

A : —
oy = {)\+T . ifn=0,
n — .
Py ¢ p— iftneN.
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Lemma 3.12. Consider the M|M|oo -model. Let A\, u, ™ > 0. Then,

)\ . n(Pn—l—Pn)-Fl—Pn
B O i —pa— )+ (e Dp(l—pa ) 0=

. L—p
Ty = {)‘“ T p0))

Proof. Let n = 0. Then,

Lo =Po —P1
A A
TOAET A7+ u(l—po)
A+ T4+ pl—p) —(A+7)
A+ 7) A+ 7+ p(l = po))
1 —po
A+7)A+7+p(1 —po))

:)\'u-

Let n € N. Then,

Tn = Pn — Pn+1
B A A
T+t ap(l—pa1) A+T+ @+ Dp( —p,)

AT+ Dp(l —pp) = A+ 7+ np(l — pp-1))
A+ 74+ nu(l —pa1))A+ 7+ (n+ Dl —pn))
(n+p(l —pn) — np(l — pp_1)

A+ 7+nu1 = pa1)) A+ 74+ (n+1p(l —pn))
n(pn—1—pn) +1—pn
A+ 7+ 0u(1 —po1) A+ 7+ (n+ (1 —pn))’

Lemma 3.13. Consider the M|M |oco -model with A, pn, 7 > 0. Let n € N be such that

Tp_1 > ”Tﬁxn. Then it holds that x,, > Tp41.

Proof. Assume that n € N is such that z,,_; > %xn Rewriting Eqn. (6) gives that

n(pnfl _pn) +1-— Pn
AT Hnu(l = pp-1))(A+ 7+ (n+1)u(l = pn))
n(pn—1—pn) +1—pn
A7+ nu(l = pp1) N+ 7+ (n+ (1 —pn))
n(pn—l - pn) +1-— Pn
A4+ 7+ (n+2)p(l —poy1) A +74+ (n+ Dp(l —py))’

Ty = Al
(

ZAM-(

> e
-

where the first inequality holds by Lemma 3.5 (i.e., pn—1 > pn+1)-

To prove that z,, > x,11 it remains to be proven that

n(pnfl _pn) +1—pn > (n + 1)(pn _pn+1) +1—ppy1.

At the contrary, assume that n(p,—1 —pn) + 1 —pn < (n+ 1)(Pn — Prt1) + 1 — pry1. Then,

n(pnfl _pn) +1—pn— (n + 1)(pn _anrl) —1+4+pny1 <0.
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This implies that

NPppn—1 — NPp + 1 — py — npy + NPpi+1 — Pn + Pnt1 — 1 + Png1 < 0
= npp—1 —2(n+ Dpn + (n+ 2)ppy1 <0

= n(pn—1—=pn) + (0 +2)(Pp+1 —pn) <0
= nrp—1— (n+2)z, <0
= nxp_1 < (n+2),,
which yields a contradiction with the assumption that x,,_1 > ”T"‘an Hence,

n(Ppn-1—pn) +1=pn > (+1)(Pn — pnt1) + 1= pnir.

This gives

' n(Pn—1—pPn) +1—pn
T 2 At A+74+(n+2)p(l —prt1)) A+ 7+ (n+ Du(l —pn))

> (n+1)(pn — Pnt1) +1 = pupr

- xn+1;
thus completing the proof of the lemma.

3.3.2 Slope of the M|M|c-model, with ¢ € N

Consider the M|M|c-model, with ¢ € N. Again, let A, u, 7 > 0. Therefore, Eqn. (7) becomes

A

AT n= 07
_ A
Pn =\ XFrrrn(l—pn_1)’ 1<n<ec,
A n>c

M7 ten(I—pn_1)’

Lemma 3.14. For the M|M|c-model, with ¢ € N, it holds that

1—p —
AR RO h A p0)) n=0,

— n(Pn—1—Pn)+1—Pn
Tn = (M B pe DO o ey LSS 6

Pn—1—"Pn
A+7+eu(l—pn—1))(A+7+cp(l—pn))’

A - n>c.

Proof. Consider n = 0. Then, analogously to deriving Eqn. (5), we get that

1—po

=M 0 T+ A — o))

Let n € N such that n < ¢. Then, analogously to deriving Eqn. (6), we get that

n(pn—l - pn) +1-pn
A+ 7+ nu(l = po1)) A+ 7+ (n+1p(l —pn))’

Ty = Al
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Now, let n € N such that n > ¢. Then,

Tn = Pn — Pn+1
B A A
TNt THeu(l—pa1) AT +cu(l—pa)
AFTHep(l —pn) = (A+ 7+ cp(l —pp-1))
Ot 7+l —po )\ 7+ el — pn))
Pn—1 —Pn
A+7+ceu(l —pp_1)) AN+ 7+ cu(l —pn))’

= Aep -

O

Lemma 3.15. Consider the M|M|c-model, with ¢ € N. Let \,u,7 > 0. If 1 < n < ¢ and
Tp—1 > "T'*'an, then x,, > Tpy1. If n>c and 1 > xy, then x,, > Ty

Proof. Let n < c and x,,—1 > "T“xn, then, analogously to the proof of part 1 of Lemma 3.13, it
follows that x, > xp41.

Now, let n > ¢. Assume that z,,_1 > x,. Then it holds that

Ty — Tpg1 = /\C//f . Pn—1 —DPn
A+ 74+ cu(l —pr_1)) A+ 7+ (1 —pp))
. )\CN ) Pn — Pn+1
A+ 7+ cpu(l—pn)) A+ 7+ cp(l — pntr))
> Ac Tn1
= T e = )+ T+ en(T = pa)
T
— e

A+ 74+ cu(l —pn))(A+ 7+ cp(l —ppy1))
>0

b

where the first inequality holds by Lemma 3.5 (i.e., pp—1 > pn+1), and where the second inequality
holds by the assumption that x,_1 > z,. This concludes the proof of the lemma. O
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4 Convergence of p, for a general birth-death process

In this chapter we will prove that for a birth-death process the limit lim,, o p, exists under
mild conditions. Before we prove this theorem, we will give an example to show an application
of the theorem.

One of the mild conditions is that the limit of the ratio between the birth and death parameters
must exist. The other mild condition is that the limit of the ratio between the exponential rate
7 and the death parameters must exist.

Theorem 4.1. Suppose that o = lim,,_, 2—" >0 and f* = limy, o /LL > 0 both exist. Let p,,
n € Ny, be given by '

A e

_ pywE- ifn =0, X

bn An . N
An+T+pn (1=pn_1) fneN

1. Suppose a* =0 and B* > 0. Then, lim, o pp, = px = 0.

2. Suppose a* > 0 and f* > 0. Then, lim,,_,o pr, = p* exists with p* the smallest solution of
the equation
2 — (" + B+ 1)z +a* =0, (8)

in other words

. (a4 B +1) = (o + B +1)2 — da*
- 5 .

3. Suppose o = p* =0. Then, lim,,_, o p, = p* = 0.

The proof for parts 2 and 3 of the theorem requires more work than the proof for part 1. Therefore
we will first prove part 1 of the theorem.

Proof of Theorem /.1 part 1. Let o* =0 and let 8* > 0. Let p,,, n € Ny be given by Eqn. (7).

Note that p, > 0 for all n € N. Therefore, we can rewrite Eqn. (7), for all n € N, by dividing
by p,. This gives

An An
Hn Hn
Pn = An T > An T : (9)
2t (l—pn1) g2t
Hence,
An *
p~ = liminf p, > lim inf tin = a =0 (10)
n—oo 1T iy %.FL_F]_ a*—l—ﬁ*—‘,—l ’
since a* = 0 and 8* > 0.
Furthermore, it holds that
An An
Hn Hn
Pn = An T < An T
frt e+ (L=pn1) 92+ 5
Hence,
An o
T =limsu < limsu = = =0. 11

Combining Eqns. (10) and (11) yields lim,, o, p, = 0, which completes the proof of part 1 of
Theorem 4.1. O
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4.1 Application of Theorem 4.1 part 3

As an illustration of part 3 of Theorem 4.1, we consider the M|M |oo-model. Recall that 7 > 0,
A=A >0 for all n € Ny, o = 0 and p,, = np > 0 for all n € N. Then, a*:limnﬁoof;—::0
and £* = lim,, o J—n = 0. An example of the graph of p,, is given in Figure 5. /

Graph ofp,

12

Pn
=)
o

0 2 46 81012141618 20 22 24 26 28 30 32 34 36 3840 42 44 46 48 50

n

Figure 5: The graph of p,, for n € {0,1,...,50} for M|M|oo, with p =1, A,, = % for all n € Ny,
and 7 = ﬁ.

Since the sequence (”")neNO has the property that it is monotonically increasing to oo, we can
show via a direct proof that lim,,_,., p, = 0. The proof of Lemma 4.2 was initially based on the
proof of Lemma 3 in [2], but later we showed Lemma 3.5 part 3 and the proof below uses this
lemma.

Lemma 4.2. For the M|M|oco model it holds that lim,,_, o p, = 0.

Proof. By Lemma 3.5 we know that the sequence (pn)neNo is a decreasing sequence. Hence, for
all n € N it holds that p, < pg. Therefore,

A
A4+ 74+ (n+1)p(l—p)
A
< 9
“A+7+ (n+ Dl —po)

Pn+1 =

since p, < po.
Now we can take the limit of n to oo of the right-hand side. This gives

A
li =0.
nggo A1+ (n —+ 1)/1(]. —po)

Thus,
p* = lim p, =0.

n—o0

21



4.2 Proof of parts 2 and 3 of Theorem 4.1

The proof of the second part of Theorem 4.1 consists of multiple steps. These steps are formulated
as lemmas that will be proven in this subsection. The final proof of Theorem 4.1 part 2 can then
be found at the end of this subsection and this proof will use all lemmas in this subsection.
Throughout this section, we assume that a® > 0.

Recall Definition 2.6.1, i.e., p* := limsup,,_, ., pn and p~ := liminf,, o0 py.
Lemma 4.3. Let o* > 0 and 8* > 0. It holds that p™,p~ > 0.

Proof. Let a* > 0 and $* > 0. Let p,, n € Ny be given by Eqn. (7). Analogously to the proof
of the first part of Theorem 4.1 we get again Eqn. (9). Hence, also Eqn. (10) holds, which gives
that

a*

> — >0
ey
since a* > 0.
Because p~ = liminf,,_, ., p, > 0 it follows immediately that p,, > 0 for all n € Ny. Moreover,
since p™ > p~ we also have that p™ > 0, which concludes the proof. O

Lemma 4.4. Let o* > 0. It holds that p* and p~ are both solutions of Eqn. (8). in other
words,

(a*+6*+1)—\/(a*+ﬁ*—|—1)2—4a* (a*—i—ﬁ*—l—l)—i—\/(a*+6*+1)2—4a*
2 ’ 2

pt.p~ €

Proof. By virtue of Lemma 4.3 we have that p*,p~ > 0. The proof of that lemma even yields
that p, > 0 for all n € Ng. Hence, dividing by p*, p~ and p,, n € Ny, is allowed.

Because (py, )nen, is a sequence of probabilities, it holds that p™ and p~ both exist with p™,p~ €
[0,1]. Hence, there exist a subsequence (pn, )k € (Pn)nen, such that p,, — pt as k — oo and
there exists a subsequence (pm,); C (Pn)nen, such that p,,, — p~ as ! — oo.

Recall Eqn. (7), so for all n € Ny that p,+1 = An+1+rizzil(1—pn)' Therefore,

)\nkJrl
ng+1 7+ /’Lnk-‘rl(l _pnk)

pnkJrl - A

Note that limg_yo0 Pn,+1 €xists, since limy_yo pp, exists.
Furthermore, it holds that

lim p,, 11 <limsup sup p; <limsupp, = pt.
k—o0

k—oo j>np+1 n— o0
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Thus, limg_see Pnyt1 < pT, and so

. Anptl
pt > lim Tt
k—o0 /\nk-‘rl +7+ /J'nk-l-l(l - pnk)
Ang+1
. Hng 41
= lim k
koo Mpt+1tTHn, +1(1=pn, )
Hng+1
a*
a* + 6* +1- hmk%oo Pny,

a*

Oé*+,8*+1—p+

So, we have that p™ > This can be rewritten as

T
pt(a*+ 8" +1—-p") >a*,

—= —(pN2+ (@ +p+1)pt —a* >0,

— (") —(a*+ 8" +1)pt+a* <0. (12)

Rewriting Eqn. (7) yields

pn(An + T + /f('n) - )\n

Pn—1=
HnPn
Therefore,
Amg | T TS
_ Pny ()‘nk + T+ /‘Lnk) - )\nk _ Pry (I’L"k * Hny + 1) Hrng
pnkfl - - * (13)
,unkpnk pnk

Because limy_, o0 pn,, = pT exists, it follows that limg_ o0 pp, 1 also exists. It holds that

lim p,,—1 <limsup sup p; <limsupp, = pt.
k—o0 —00

k—oo j>np—1 n
pf(a*+p"+1)—a"

oF , we have that

Since limy 00 Pp—1 =

p+(a*+ﬁ*+1)—a* N
+ p-
p

Therefore,
(p*)?>p" (0" + 5" +1) -,
which yields
(P*)? —p" (" + 5" +1) +a* >0. (14)

Combining Eqns. (12) and (14) yields that p™ is a solution of Eqn. (8). Hence,

(a* + 8% +1) — /(" + B* + 1) — da* (a*+5*+1)+\/(a*+ﬁ*+1)2—4a*
2 ’ 2

pt e

Analogously (only the sign of the inequalities changes, because the limit inferior is considered
instead of the limit superior), it follows that p~ is also a solution of Eqn. (8). This concludes
the proof of the lemma. O
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Remark 4.5. Since it holds that p™ and p~ both exist, it necessarily must hold that both
solutions of the quadratic expression exist.

Since 8* > 0 we only need to consider two situations, namely 5* > 0 and 8* = 0 in order to be
able to prove the theorem.

First consider the case where 5* > 0. If

(" + 8"+ 1) + /(o + B + 1)* — 4a* L (@ + 8" +1) = /(a* + B + 1) — da*

2 - 2 20,
(15)
then it holds that
(a* +ﬁ*+1) _ \/(a*+6* +1)2 — 4ot
+ -
p =p = B) )
since p™,p~ € [0, 1], which is the smallest solution of Eqn. (8).
Lemma 4.6. Let o*,* > 0. Then Eqn. (15) holds.
Proof. First we will prove that
(@ + B+ 1) +/(a* + 5* + 1) — 4a*
\/ >1 (16)

2

holds. To show this, it is sufficient to prove that (a* + 8* +1) + \/(a* + B* +1)° — da* > 2.
Suppose that is not true. Then,

\/(a*+6*+1)2—4a*§2—(a*+ﬂ*+1):1—a*—5*.

This implies that
(" +8)+1)" —4a” < (1 - (a" + 7)),

in other words,
(@ + 8 +2(a" +4) +1—4a" <1—2(a" + ) + (o + 5°)°.

Rewriting yields
4(a* + p) —4a* <0,
so that g* < 0. This contradicts the fact that * > 0. Hence, Eqn. (16) holds.

Next, we will prove that

(" + 8" +1) = /(o + B + 1)* — 4a*

0<
- 2

<1. (17)

To show this, it is sufficient to prove that 0 < (a* + §* +1) — \/(a* + B* +1)% — da* < 2.
The fact that o*, 8* > 0, implies that

(a*+5*+1)—\/(a*+5*+1)2—4a*20.
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To prove that (a* + 8* + 1) — \/(a* + 8% +1)* — 4a* < 2, we will assume the contrary. In other
words,

SVl B 1 o > 2 (@ 45 4 1),

or, equivalently,

Vi@ +8)+1) —dor <a*+ 5" — 1.

Similarly as before, this implies that 8* < 0. Thus, we have arrived at a contradiction, so that
Eqn. (17) holds.

So, if 8* > 0, then it holds that

(a*+ﬁ*+1)+\/(a*+6*+1)2—4a* . (a*+6*+1)—\/(a*+ﬁ*+1)2—4a*

> >0,
2 - 2 -

which concludes the proof of the claim. O

Corollary 4.7. Let o* > 0. If B* > 0, then

L @4 ) o+ 8+ 1) da

p = 2 =P,

which is the smallest solution of Eqn. (8).

Proof. By virtue of Lemma 4.4 and Lemma 4.6, and since p™,p~ € [0,1], we can conclude that
for 5* > 0 it holds that

. (" + 8" +1) = /(o + B + 1)* — da*

p = 2 =P,

which is the smallest solution of Eqn. (8). O

Corollary 4.7 concludes the proof of Theorem 4.1 in case 8* > 0.
Now it remains to consider the case * = 0.
Lemma 4.4 yields that p™ and p~ are both solutions to Eqn. (8), which reduces to
22— (" + 1)z +a* =0, (18)

so that

L e s - er+ 1) —dar (@ + 1) +4/(ar +1)7 — da
p,p € B ) 5

:{<a*+1>— (a" =17
2

3

(0" +1) +2 (" —1)2 } . (19)

Consider three situations, namely o = 1, @ > 1 and 0 < a* < 1. These three situations
cover all possible situations, since a* > 0. These situations will be considered in Lemma 4.8 and
Lemma 4.9, respectively.
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Lemma 4.8. Let 8* = 0. Let o* > 1. Then it holds that p™ = p~ = 1, which is the smallest
solution of Eqn. (18).

Proof. Let o* = 1. Then 1 is the unique root of Eqn. (18), and so p™ = p~ = 1. So, then it
follows that p™ = 1 = p~, and hence p* exists and is given by p* = 1.

Let a* > 1. It holds that 1 and a* are the roots of the quadratic Eqn. (18). Since p*,p~ € [0, 1],
necessarily pT =p~ = 1. O

Lemma 4.9. Let 8* = 0. Let 0 < o* < 1. Then p*, p~ € {a*, 1}, which are the solutions of
the quadratic Eqn. (18).

Proof. Since 0 < o* < 1, Eqn. (19) reduces to

a* 41— 1—a*)2 o +144/(1 —a*)?
’ 2

{a +1— (I1—a*) a*+1+(1-a% }

{a”

’ 2
2a*
2 )

However, because 0 < o* < 1 this does not give a unique solution. Hence p™, p~ € {a*,1}. O

However, we want to prove that for 8* = 0 and 0 < a* < 1 we have that p™ = p~ = o* < 1.
Therefore we will consider the following lemma.

Lemma 4.10. Let * =0 and let 0 < o* < 1. It holds that p* = limsup,, ., pn < 1.

Proof. Tt holds that lim,, f‘t—” = a* < 1. Let € > 0 be such that a* 4+ ¢ < 1. Then there exists
N € Ny, such that for all n > N it holds that %= < a* +¢ < 1.

Define, for all n € Ny,
Vo An if n <N,
"l (@ 4 €y ifn >N,
and
An
pln = )\/ /
w7+ (1= pl )

For all 0 < n < N it holds that A}, = A, and thus also that p/, = p,. For all n > N, it holds
that that X, > A,.

By virtue of Eqn. (7),

1
Pn = e iy
1+ M + &7(1 _pnfl)
and
, 1
Pn = n



Let n = N. Since ply_; = pn—1 and Xy > Ay, it holds that

T T
1+f+MfN(1—pIN71)=1+f+ul(1—pN71)

Ay Ay Ay Ay
T
<1+E+%(1—p]\[,1).

This yields

[y

/
PN = T
MUl -+ 5 -y

25

“&:
Z| =z

I+ 5+ 5 —pr1)

= PN-

Let n > N and assume that p/,_; > pp—1. Then 1 —p),_; <1 —p,_;. By assumption it holds
that AJ, > A, hence 1/A], < 1/A,,. Therefore,

T Hn g Hn
1‘*‘)74‘)7(1—1?/%1)<1+>7+/\*,(1—pn—1>
T pn
<1+ —+5a—p, 1),
+/\n+/\n( Pn—1)
so that
, 1
Pn = T En(] _ o
1+>\;1+>\;Z(1 Ph1)
1
> s

1+ ﬁ + An (1 _pn—l)
= Pn-
As a conclusion, p, < p), for all n € Ny, so that limsup,,_,., pn < limsup,,_, ., p},. Thus, it is
sufficient to show that limsup,,_, . p}, < 1.

We will now prove by induction to n that p], < 1 for all n € Ny.

. Y Y .
Notice that py = Tif and p), = NI ) M E N. Since we have for all n € N that
A/ *
- :7(06 + ) pn =a"+e=:c
fn fn
we can write, for all k£ € N,
c
Ph = (20)

ct -+ 1l-py

It holds that 7 > 0, hence p;; < 1. Then there exists o € (0, 1) such that pj < o < 1. Without
loss of generality we may assume that ¢ < o, otherwise we could have chosen o larger.

Then,
, c c c
= < < <1, 21
P ct-+l-py ~ct+l-py = ct+l-o (21)
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where the first inequality holds because i > 0.

Using induction to k, we will show that

< ——— <L 22
Pr = ctl-o (22)
Eqn. (21) gives
, c
==
which is Eqn. (22) for k = 1. Therefore,
c ctl—oc—-—c 1-0

1—pi>1- = = .
- c+1l—o c+1l—o c+1l—o

Using this for Eqn. (20) with k& = 2, we get
c c c

T Il g S erl g Sog L=
¢ I P1 c P1 C+c+1—g

Db

1
ct+l—0o

Since ¢ < g, we get ¢+ 1 — o < 1, hence > 1. Multiplying by 1 — o then gives that

=0 > 1 — g. Therefore,

ct+1l—0o
I < C < C
Py = -0 — )
ct+ 4155 c+1—o

which is Eqn. (22) for k = 2.

Assume that Eqn. (22) holds for £ = n — 1. We will prove that Eqn. (22) also holds for k = n.
Since Min > 0, we get that

C C C c

p;L = + T + 1 / S + 1 / S + 1 c = l—c °
& n —DPh-1 c —Pn_1 C T cFl-0 ¢+ ct+l—0o
Similarly to the case k = 2 we get
1—
7% s1-.
c+1—o
Therefore,
<—°S < °
p”*c+c}ri’a*c+l—a '
This proves Eqn. (22) for k = n.
Eqn. (22) implies that
c
limsupp, < ——— < 1
n~>ooppn T c+l—-0

As a consequence, we get that

lim su _
n—»ooppn T c+1l—-0

A
A
-

which is what we needed to show. ]
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Corollary 4.11. For * =0 and 0 < a* < 1 it holds that pt = p~ = o*, and thus p* = a*.

Proof. From Lemma 4.10 it follows that p* = limsup,,_, . p, < 1. Since p* € {a*,1} it follows
that p™ = a* < 1. Since it always holds that p~ < p*, we also have that p~ = o* < 1. Thus,
pT =p~ = a* < 1. Therefore, p* exists and is equal to a* < 1, which is the smallest solution of
Eqn. (8). O

Now we can give the proof the second part of Theorem 4.1.

Proof of Theorem 4.1 part 2. Let X = (X;)i>0 be a birth-death process with birth parameters

An > 0, n € Ny, and death parameters p, > 0, n € N and pg = 0. Let 7 > 0 be given. Assume
that lim, % =a* > 0and lim,,_,s Hi = (* > 0 both exist. Let p,, n € N, be given by Eqn.
(7).

To prove that lim,, o p;, exists, it is sufficient to prove that p™ = p~, i.e., limsup,,_,. pn =
liminf,, o0 pn.

Lemma 4.4 gives that p™ and p~ are both solutions of Eqn. (8).
For * > 0, Lemma 4.6 gives that Eqn. (15) holds. Then Corollary 4.7 gives that

@48 1) — (e + B+ 1)’ —dar
b = 9 ,

which is the smallest solution of Eqn. (8).

Now, consider 8* = 0. Lemma 4.8 gives for a® > 1 that p* = 1, which is the smallest solution
of Eqn. (8). Moreover, Lemma 4.9 gives, for 0 < a* < 1, that p*,p~ € {a*,1}, which is not
a unique solution yet. However, from Lemma 4.10 it follows that p™ < 7i—s < 1. Then with
Corollary 4.11 it follows that p* = «*, which is the smallest solution of Eqn. (8).

Thus, for all 5* > 0 and for all a* > 0, it holds that p* exists and it is the smallest solution of
Eqn. (8), which is what we needed to show. O

To finish the proof of Theorem 4.1, it remains to prove part 3 of this theorem. This proof will
now be given.

Proof of Theorem 4.1 part 3. Let X = (X¢)t>0 be a birth-death process with birth parameters
An > 0, n € Ny, and death parameters p, > 0, n € N and pg = 0. Let 7 > 0 be given. Assume
that lim,, o ;\L—“ =a* =0 and lim,,_, Hi = 8* =0. Let p,, n € N, be given by Eqn. (7).

To prove that p* = lim,,_, p, = 0 exists, it is sufficient to prove that p™ = 0, i.e., limsup,,_, ., pn =
0.

Lemma 4.10 gives that p™ < 1. So, to prove that p™ = 0, we will assume the contrary and prove
that p* = 1.

Therefore, assume that p* > 0. Hence, there exists a subsequence (pn,);,  (Pn), ey, Such that
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Pn,. — pT as k — oco. Then, Eqn. (13) holds. Then, since o* = 3* = 0 we get

Do (m+L+1>_ﬂ

. . Bny | Hn K
1 _ — 1 k k k
o P = 1 Dy,
= lim @+i+1—7/\”’€
k—o0 ln, Hny, My Pry,
=04+0+1-0.

Therefore, it holds that p* = 1. However, this is a contradiction to the fact that p™ < 1.
Therefore, p™ = 0.

Since, p~ < p* and p*,p~ € [0, 1], we immediately get that p* = 0. O

4.3 More monotonicity and convergence results for the M|M|c-model
(with ¢ € N)

Let ¢ € N and consider the M|M|c-model. From [1] we know that we have to assume that
An = A < cp, for all n € Ny, and

np  for all n < ¢,
Hn =
cu  forall m > ¢,
where we assume that p > 0.
Recall Notation 3.1. This subsection uses the superscript index again.

From Theorem 4.1 we know that the sequence (pf,) has a limit, therefore we introduce some

notation for this limit.

neNp

Notation 4.12. Denote by p*¢ the limiting value of the sequence (pf,),, ¢y, -

In this chapter we will prove that p*© is monotonic in ¢ € N and compute the limit lim,_,, p*°.

For the M|M|c-model, ¢ € N, it holds that

A
a*=—>0 and B*:L>O.
cp clt

Lemma 4.13. Let ¢ € N. Then p*° is non-increasing as a function of c, i.e., p*¢ — p*°t1 > 0.

Proof. By Theorem 4.1 we get that

*,C

p =

2
A T A T A
cﬁcﬁl—\/(cﬁcu“) — A
. .

Multiplication of both the denominator and the numerator by cu yields

Pl
VSO 2 e ey e
p - 2cp

AT tep—y/ ()\+T+cu)2 —4Acp

2cp
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To prove that p*¢ is non-increasing in ¢, we will prove that the derivative to ¢ is non-positive.
The derivative of p* ¢ to c is given by

d . AT [ 1

\/(A+T+cu)2—4>\cu+i 4 [\/(/\+r+cu)2—4/\cu”

@t T 22 | 22 2cp de
)\+T ]. \/ 2
= —— — )\ _4>\
22 + 22 A+ 7+ cp) Cl
1 1

— (2u(N 4 7) + 2ep® — Ap)
Zep 2\/()\ + 74 cp)® — dhep

*(A+T)+\/()‘+T+Cﬂ)2*4>\cﬂ 2u(=A+7+cp)
g _
25 4cu\/()\+7+cu)274)\c,u
7(>\+T)\/(/\+T+Cy,)2*4)\C/L+()\+T+CM)2*4ACM*CM(*A+T+CM)

QCZM\/()\ + 7+ cp)® — dhep

To prove that %p*’c < 0, we will assume the contrary.

Hence, we assume that

—()\+T)\/()\+T+c,u)2—4)\cu+(/\+7+cu)2—4)\cu—c,u(—/\+7+cu)>0.

Then,

A +7+cp)® — Ahep > (>\+T)\/(/\+T+Cu)274)\CM+C[L(7)\+T+CILL),

in other words,

A+ 7)% 4+ 2cu( N+ 7) + 2u? — dep) > ()\+T)\/(/\+T+CM)2 —Aep 4 EpP Fep (T —N).

If (A\+7)2+ cu(r — A) < 0, then we get a contradiction and hence the proof is complete. So,
assume that (A + 7)2 4+ cu(T — A) > 0. Then,

A+7)2 +ep(t —A) > ()\+7)\/()\+T+c,u)2 — 4)ep.

Taking the square on both sides yields,
A+ 1) 4+ 2eu(r = NN+ 1)+ P (r = N2 > (A +1)%- (()\ + 74 cp)’ — 4)\c,u) .
Rewriting this gives
A+ 1)+ 2eu(r = NA+ 7+ 2T = A2 > A+ 7)2 (A4 7)2 4 2cu(X + 7) + 2p® — dep)
= 2cu(T = NA+7)2+Ep(1 = N2 > 2epu(N+7)° + PPN+ 1) — depd(A +7)2
— 2(\+ 7')2(7' —A=A—7)+cu(r — )\)2 > cu(A+ 7)2 — 44X\ + 7)2
= AN+ ceu(t = N2 > cpu(A+7)2 — 4NN+ 7)?
= (T1-2)?>(\+1)2
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However, since A\, 7 > 0, (1 — X)? > (XA + 7)? gives a contradiction. Hence, the assumption that

—()\—|—T)\/(/\—|—T+c,u)2—4)\cu—|—()\—|—T+cu)2—4)\c,u—cu(—)\—|—7'+cu) >0

is not correct. Thus, %p**c <0. O

Corollary 4.14. Let c;,co € N. Then it holds that p*“ > p*°2.

Proof. Apply Lemma 4.13 repeatedly. O

Lemma 4.15. [t holds that p*°¢ < ﬁ, hence lim._,, p*¢ = 0.

Proof. Before proving the upper bound for p*¢ we will first give a lower bound for
(A + 7 + cp)? — dep, which is the term under the square root in p*.

For all ¢ € N we have that

N+ T7 4+ cp)? —deph = A+ 7)% 4+ 20+ 7)ep + 2 p® — dep
= A2 4207 + 72 + 2eu) + 2cur + A p? — dep
= A2 27 4+ 72 — 2cp\ + 2cpuT + A
= A\2 — AT+ 4ANT + 72 — 2epu) + 2cpuT + AP
= (T = A2 +2(7 — Nep + 2u? +4Xr
= (T = A+cp)? +4r7
> (1= A+ep)? >0,

where the last inequality holds since A, 7 > 0 and A\ < cpu.
It holds that

e AT+ ep— /(A + 7+ cp)? — dep

2cp

AT — (T = A+ ep)?+4AT
- 2cp
< AT+ cu— /(T =X+ cp)?
- 2cp
W A+THep— (11— A+cp)
B 2cp

2
2

A
= o

where (*) holds because A < cp.
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So, when we take the limit of ¢ — oo we get

A
0< lim p*¢ < lim — = 0.

c—00 c—00 Clt

Notation 4.16.
1. Let ¢ € N. For all n € N and for 7 > 0 denote by p], the probability p¢ in the M|M |c-model.

2. Denote by p*7 the limiting value of the sequence (p},), ey,

Lemma 4.17. Let c € N. It holds that lim, o p*"™ = ﬁ

Proof. Tt holds that

Cwr o AT — /N T+ cp)? — dep A
lim p*" = lim = —.
710 710 2cu 2cp

Proposition 4.18. Let ¢ € N and let 71,70 > 0 such that 71 < 9. Then, it holds for all n € Ny,
that p]' — p72 > 0. Moreover, p*™ — p*™ > (.
Proof. We will give a proof by induction on n.

Let n = 0. Then,

p7'1 _ pTQ _ )\O _ )\0 (;) /\0 _ >\0 -0
0 0 Ao+ 711 Ao + T Ao+ T2 Ao+ 72

where (*) holds because 71 < 72. So, for n = 0 it holds that pJ* — pg* > 0.
Now consider n = 1. Then it holds that

I A A
P N (U —py) M4t —py)
(%) A1 A1
MAm+mA—p) M+t um(l—pp)
(*;*) A1 B A
A+ T+ (1 —=pg*) A+ 7+ p(l—pg)
= O7
where (**) holds because py' > pg?, and where (***) holds because 71 < T2. So, for n = 1 it

holds that p* — p1? > 0.

Suppose that for n — 1 it holds that p;' ; —p;> ; > 0. Then consider n. Analogously to the case
n =1 it follows that pJ! —pr2 > 0.

Thus, for all n € Ny, it holds that pJt — p72 > 0.
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It holds that p*7 = lim, o p;,. Theorem 4.1 states that this limit exists. Then for 71 < 7o we
have that

po™ —p*™ = lim p' — lim p]?

n—oo n—oo

1 TL T2

= lim (py' —p7?)

S T

2 2, O

=0.

So, it holds for 71 < 75 that p*™ — p*™ > 0. O
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5 Convergence of ¢, for a general birth-death process

Consider a birth-death process X = (X;);>¢ with birth parameters A\, > 0, n € Ny, and death
parameters u, >0, n € N and o = 0. Let 7 > 0 be given. Assume that o*, 3* > 0 both exist.

Recall from Eqn. (3) that
fin

Nn+7+)‘n(1_Qn+1) ( )
Lemma 5.1. It holds, that g, > 0 for all n € N. Moreover, it holds that
ntl = - , 24
n An A 24
for all n € N.
Proof. Let n € N. Then,
1
Hn Hn qn+1
S 1
- T An ”
14 T
Hence,
. . 1 1
liminf g, > lim = = > 0,

since #* > 0 and o™ > 0 both exist. Hence, g,, > 0 for all n € N.

It holds that gy = 0, therefore we consider only n € N. Let n € N be arbitrary. Recall that
Ap > 0 for all n € Ny. Lemma 5.1 states that g, > 0 for all n € N, therefore dividing by ¢, is
allowed. Rewriting Eqn. (23) gives

dn (,un + 7+ )\71,(1 - %4-1)) = Un-

Then,
qn+1 = )\n Anqn7
which is equal to Eqn. (24), and which is what we needed to show. O

Note that since gg = 0, we do not get such a formula for ¢g;. Therefore, to prove that the sequence
(@n)nen, has a limit under mild conditions is harder than for the sequence (py),,cy,- However, in
the remainder of this chapter we will prove that for a birth-death process the sequence (g, )nen,
has a limit under mild conditions.
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Theorem 5.2. Suppose that o = lim,_ s 2—" >0 and B8* = lim, ui > 0 both exist. Let
go =0 and let g,, n € N, be given by Eqn. (23).

1. Suppose a® = 0. Then lim,, .o ¢, = ¢* exists with ¢* = ﬁ

2. Suppose a* > 0. Then lim,,_, o, q, = ¢* exists with q* the smallest solution of the equation
afr? — (@ B+ ) +1=0, (25)

in other words

o+ B +1—/(ar + 8 +1)° — da

2a*

q =

The proof for a® > 0 requires more work than the proof for a* = 0. Therefore we will first prove
part 1 of the theorem.
Proof of Theorem 5.2 part 1. Let a® = 0. Let f* = lim,, o Mi > 0 exist.

Note that p, > 0, n € N. Hence, we can rewrite Equ. (23) by dividing by p,,. This gives

1
n =
L4+ 02 (1= dnp1)
S 1
P Y
14+ o + .
Hence,
liminf ¢, > li 1 = ! -
lnnilog qn_nlﬁnolol_i_p‘i_i_% B 1+ﬁ*+0¢* - 1+,8*’
since #* > 0 and o® = 0.
Furthermore, it holds that
1
™ i dn+1
1
< T+ =
t o
Hence,
I < 1 1 1
imsu im = .

Hence, lim,, o ¢, = ﬁ, which completes the proof of part 1 of Theorem 5.2. O

5.1 Part 2 of Theorem 5.2

The proof of the second part of Theorem 5.2 consists of multiple steps that will be formulated
and proven in this subsection. Similarly to the Theorem 4.1, the part of Theorem 5.2 concerning
B* > 0, can be proven directly. For f* = 0 and 0 < a* < 1, we can also give a direct
proof. However, for the case that 8* = 0 and a* > 1, we will need to introduce the concept
of stochastic monotonicity, discussed in Section 5.1.1. Stochastic monotonicity will be used to
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compare X with a birth-death process with slightly different birth- and death-rates in order to
prove that limsup,, . pn < 1. Subsection 5.1.2 combines all results given in this subsection to
give the proof of the second part of the theorem.

The conditions of part 2 of Theorem 5.2 are assumed to hold throughout this section, i.e.,
lim,, oo 2 =a* >0 and lim,_, #i = * > 0 both exist.

Recall Definition 2.6.2, i.e., ¢T := limsup,,_, ., ¢, and ¢~ := liminf, o ¢n-

Because (¢, )nen is a sequence of probabilities, it holds that g™ and ¢~ both exist with ¢, ¢~ € [0,1].
Lemma 5.3. It holds that ¢*,q~ > 0.

Proof. For the birth-death process X it holds that A\, > 0, n € Ny and p,, > 0, n € N. We
assumed that o* > 0 and 5* > 0 both exist.

Analogously to the proof of Lemma 5.1 we get, for all n € N,

1
I 122 (1= )
> ﬁ > 0.
bn | in
Further,
R e e Es =i
This completes the proof. O]

Lemma 5.4. Let a* > 0 and B* > 0. It holds that both ¢* and ¢~ are solutions to the quadratic
equation
ozt — (@ + B+ 1)z +1=0, (26)

i other words,

(@ +8 +1) = J(a* + B+ 1)* —da* (0" + 8"+ 1) +/(a* + 8% + 1) — 4a*

+ —
€ )
¢4 20+ 200* ’

Proof. Because (qn)nen, is a sequence of probabilities, it holds that ¢™ and ¢~ both exist with
qt,q~ € [0,1]. Hence, there exist a subsequence (¢n,)r C (gn)nen, such that g,, — ¢ as

k — oo and there exists a subsequence (¢m,); C (¢n)nen, such that ¢, — ¢~ as | — oco.

By Lemma 5.3 g7, ¢~ > 0. The proof of this lemma even gives that ¢, > 0 for all n € N. Hence,
dividing by ¢*, ¢~ and g,, n € N, is allowed.

Recall Eqn. (24). Therefore,

Hn, + 7+ A”k Ky
dn = — . 27
kt1 )‘nk )‘nk I, ( )

By Eqn. (27) limg 00 qn,+1 €xists, since limg_ o0 qn,, = ¢ exists.
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Furthermore, it holds that

hm Qrk+1 < limsup sup ¢; <limsupg, = q".
k—oo j>nir+1 n—o0
So,
q+ > lim Hny, +T+>\nk o Hny,
k—o0 )"ﬂk )\nkan
1
— lim 27 4 im T p1— lim Ere
k—oc0 nk k— o0 )"ﬂk k—oco )\nk an
1 1
= — + e 1 gim
oF k=00 fln, Ay o k—oo Qp,
1 * 1 1
o q
Multiplying the above equation by a* and ¢, we get
o (q1)? = (" + 5 + ) gt +1>0. (28)

By virtue of Eqn. (23) for n = nj — 1 and dividing by pn,—1 we get for all n, € N>o that

1
Inyp—1 = - P . (29)
1+ Hng—1 + Hng—1 (1- an)
Note that limy_ye0 Gn,,—1 €xists, since limy_, 0 ¢, = ¢ exists. It holds that
hm Gnj,—1 < limsup sup g¢; < hm sup qn=q"
k— k—oo j>np—1
Since limg 00 Gn,,—1 exists, Eqn. (29) yields limg 00 Gnj—1 = m, and so
g > - :
1+8*+a*(1—qh)
This yields,
a* (q+)2 —(a*+pB*+1)¢g" +1<0. (30)
Combining Eqn. (28) and Eqn. (30) yields that g+ is a solution of the quadratic equation
ozt — (@ + B+ 1)z +1=0. (31)

Solving the quadratic expression gives

(a*+6*+1)—\/(a*+ﬁ*+1)2—4a* (a*+5*+1)+\/(a*+6*+1)2—4a*

+
S 5
a4 2a* 2a*

Analogously (only the sign of the inequalities change because the limit inferior is considered
instead of the limit superior), it yields that ¢~ is also a solution of Eqn. (31). This concludes
the proof of the lemma. O
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Remark 5.5. Since ¢ and ¢~ both exist, it necessarily holds that both solutions of the quadratic
expression are real. This can also be easily verified by noting that (a* + 8* + 1)2 — 4ot =
(B* +1—a*)? 4+ 4a* 5% > 0.

Since 8* > 0, we only need to consider two situations, namely 8* = 0 and 8* > 0.

First consider the case where 5* > 0. If it holds that

(" + 8"+ 1) +1/(a* + B + 1)* — 4a* G V(@ + 8+ 1) - dar
>
20* - 20"

>0,

(32)
then, necessarily

(@ 4B D) =yt + B 1) —dar
¢ =9 = 20" ’

since ¢*, ¢~ € [0, 1].

Lemma 5.6. Let 8* > 0. Then, Eqn. (32) holds. Moreover,

(" + 8" +1) = /(a* + B + 1) — 4o

20* ’

q+ = q7 =
which is the smallest solution of Eqn. (25).
Proof. The proof of this lemma consists of two parts.

* * * * 2__ *
e We will first prove that (@7 AT H )Ty 0 #5 H) 40" Ty show this, it is sufficient to

2a*

prove that (a* + *+1) + \/(a* + 5% + 1)2 —4a* > 2a*. Suppose that this is not true.
Then,

\/(a*+ﬁ*+1)2—4a* <20 —(a*+ B8 +1)=a" —(B*+1).
Taking squares yields
(@ +(8°+1))" —4a” < (" = (8" +1))".

This implies that

(@) +2a" (B + 1) + (8" +1)° —da* < (a*)* = 20" (8" + 1) + (B +1)°,
in other words,
0>4a™ (8" +1) —4a* =4a™p".
Since a* > 0, it follows that
p* <0.

This contradicts the assumption that 8* > 0. Therefore, the first part of Eqn. (32) holds.

e Now we will prove that

(" + 8" +1) = /(a* + B+ 1)* — da*
<

<1.
2a* -
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To show this, it is sufficient to prove that

Og(a*—&—ﬂ*—i—l)—\/(a*+[3*+1)2—4a*§2a*.

Since a*, 8* > 0, clearly (a* 4+ * 4+ 1) — \/(a* + B* + 1)2 —4a* > 0.

It holds that
(0" + 8" +1)° —da* = (8" +1—a*)* +4a*B* > 0.

Thus, to prove that (a* 4+ * +1) — \/(a* + B* + 1)2 — 4a* < 2a*, it is sufficient to prove
that

(@ +p"+1) - \/(6* +1—a*)® +4a*p* < 20,

or

B +1—a*< \/(5* +1—a*)® + da* B,
which is evidently true.
Hence, the remainder of Eqn. (32) also holds true.
Combination of the two parts yields the result. O

Now it remains to consider 5* = 0. Then, Eqn. (26) reduces to
ozt — (" +1)x+1=0. (33)

Lemma 5.4 then gives,

(" +1) — /(0" = 1)® (" + 1)+ /(a* —1)?

2a*

g, q € (34)

We consider three situations, namely a* = 1, a* > 1 and 0 < a® < 1. These three situations
cover all possible situations, because we assumed that a® > 0. These situations will be considered
in the next lemmas.

Lemma 5.7. Let 3* =0 and let 0 < o* < 1. Then q© = q~ = 1, which is the smallest solution
of Eqn. (33).

Proof. Suppose that 0 < a < 1. Then Eqn. (34) reduces to

o +1— /(e —1)° a* +1+4/(a* —1)
2ac* ’ 2a*

qt, ¢ €

a* +1— 1—a*) a*+1+(1—a*)}

{
(2 }
{

1

1
a*

)
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Since 0 < a* < 1, it holds that - > 1. Since ¢, ¢~ € [0,1] it follows that ¢™ = ¢~ = 1 and

hence ¢* exists and is given by ¢* = 1, which is the smallest solution of Eqn. (33). O

Lemma 5.8. Let 8* =0 and let o* > 1. Then ¢+, ¢~ € {%,1}.

Proof. Suppose that o* > 1. Then, analogously to the proof of Lemma 5.7, it follows that

1
q+a q_ S {O[*71} .

However, because a® > 1 this does not give a unique solution. O

We would like to prove that ¢t = ¢~ = . The method we will use is to define a stochastically

smaller system which will be a birth—degth process Y with birth-rates A/, and death-rates p,,
and no extinction rate. We will derive the corresponding lim sup,,_, ., ¢,, and prove that the limit
superior is strictly smaller that 1. As a consequence, the ¢* = limsup,,_, .. ¢, < 1 for the process
X,andso gt =¢ =2

a*

5.1.1 Stochastic monotonicity

This subsection will introduce the concept of stochastic monotonicity that will be needed to prove
Theorem 5.2 for the case that 8* > 0 and a* > 1. This subsection is based on [5].

Let S := Np U {oc0}.

Notation 5.9. Let S; := {i,i + 1,...} U{oo}, for all n € Ny.

Definition 5.10. Let p and ¢ be two probability distributions on the state space S with the

following property:
Zpi < Zqi for all I € S.
i>T i>T

Then p is said to be stochastically not larger than ¢ and we denote this by p < q.

Lemma 5.11. Let f: S — R be non-decreasing. Let p < q. Then it holds that

pf=> pif(i) <Y aif(i) =qf.

i€S i€S

Proof. For notational purposes, define f(—1) = 0. For all < € S it holds that

FG) =" L))
jes

Since f is a non-decreasing function, it holds that

f(o0) > lim f(n) =: f".

n— oo

Recall S; :={i,i+1,...} U{oc} for all i € Ny and S := {oc}. Note that Sy = S.
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For i = oo it holds that

since it holds that f* = limn_e £(1) = limn_ee (z;;o [fG) — f — 1)]) = e FG) = £ = 1))
Therefore, we can write for all i € S,

F) =Y () = (G = D] Ls, (i) + (f(00) = f7) Ls. (0).

Jj€No
Then,
pf =Y pif()
jeS
=> [pj (Z [f(k) = f(k = 1] Ls, (j) + (f(o0) — f*)]lsm(j)ﬂ
j€s keNo
=> lpj (Z [f(k) = f(k —1)] ]lsk(j)> +>[p; (f(00) = f*) s, (5)]
jes kENg jes
-y [(f(k)—f(k— ) ij] T poe (f(00) = )
keNg JESK
D [(f(k) SV qj] ¥ (F(0) ~ )
keNg JESk
=>4 1)
jeS
=af,
where (*) holds since Zjesk pj < Zjesk ¢; and P < ¢oo. Hence, this concludes the proof of
the lemma. |
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Consider a Markov chain on the state space S and transition matrix P. Write p; . for the prob-
ablhty distribution {pi,07 Didy---s pi,N}-
Definition 5.12. We call the transition matrix P stochastically monotonic if
Di. 2 piy1, forallie S.
Definition 5.13. Define Pf: S — R as the function given by Pf(i) = p;.f for i € S.
The following corollary of Lemma 5.11 holds.
Corollary 5.14. Let f: S — R be non-decreasing and let P be stochastically monotonic. Then
it holds that p;.f < piy1,.f for alli € S, hence Pf is a non-decreasing function.
Let @ be a transition matrix with the property that P < Q, i.e., p;. 2 ¢;. for alli € S.

Theorem 5.15. If P < Q and P or Q is stochastically monotonic, then
P" <Q" for alln € N.

Moreover, if P (Q) is stochastically monotonic, then P™ (Q™) is stochastically monotonic, n € N.

Proof. The proof of the theorem will be split into two parts. First we will prove that @™, n € N,
is stochastically monotonic, if @ is stochastically monotonic. Then we will prove that P* < Q"
for all n € N, if P <X @ and P or @ is stochastically monotonic.

e Let @ be stochastically monotonic. We will prove by induction on n that Q™, n € N is
stochastically monotonic. For n = 1 the statement holds. Therefore, assume that Qm,
n € N, is stochastically monotonic and consider n+ 1. To prove that Q™! is stochastically

monotonic, it is sufficient to prove for all i € S that ¢*+! < qffll

Let 2 € S. It holds, that

doat=) (Z ik '%j)

i>T >I \kes
_ n
= § Qi,k§ dk,j | »
keS i>1

forall I € S.

Since, Y j>1k,j 18 a non-decreasing function in k£ by monotonicity of @ and since Q" is
stochastically monotonic by assumption, we can apply Corollary 5.14. Then, for all I € S,

Zqzﬂjl < Z Q?Jrl,kZQk,j

> kes >
§j>1 \keS
_ +1
= _a;
R
This proves that q{f,ﬂ = qffll for all i € S. Thus, Q™! is stochastically monotonic.
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e Now, assume that P < @, @ is stochastically monotonic. We will prove by induction on n
that P" < Q™. For n = 1 the statement holds, since we assume that P < . Therefore,
assume that P" < Q", n € N, and consider n + 1. To prove that P"*t! < Q"+, we need
to prove for all i € S that p?H < qZ,H.

Ty

Let i€ S. For all I € S it holds that

Zp?jl = Z (Z Pi'k 'Pk,j>

i>I j>I \keS
= Z p?,k Zpk,j
kes §>1
() .
<D (P Do
kes >
()
n
< Z i,k Z k.
kes >
_ +1
=D a
i1

where (*) holds since P < @, and where (**) holds since 3~ ; gk,; is a non-decreasing func-
tion in k£ by monotonicity of Q, P* < Q™ by the induction hypothesis. Thus, P"*1 < Qnt!,
which concludes the proof of the theorem.

O

5.1.2 Application of stochastic monotonicity

Recall that a* > 1. So, there exists an € > 0 such that * — e > 1. Take such an e. Since
lim,, oo f—" = o exists, there exists an N € Ny such that for all n > N it holds that 2—" > ot —e.
Take such an N € Nj.

Now we want to construct a stochastic process Y and compare it with the process X using

stochastic monotonicity. Therefore, let p := —¢_ . Then, p > L. The goal is to show that

o
14+a*—e 2

Gn < 1% < 1 for all n > N. The construction is based on stochastic monotonicity.

Consider the following birth-death process Y = (Y;):>0 on state space S = Ng U {oco}. Let the
birth-rates be given by A, = p > %, n € Np, and the death-rates be given by u, = 1 — p,
n € N. Assume that the states 0 and oo are absorbing states, i.e., P(Y; =0 | Yy =0) =1
for all t > 0. Notice that from state n < oo, the state oo is never reached by the process Y.
Furthermore, consider the birth-death process X (as defined before). The process X jumps after
an exponentially distributed time T' to the exit state co.

Recall Notation 5.9.
Now, restrict both X and Y to the state space Sy_1.

The goal is to show that gy < 1=2. For computing this probability, it suffices to consider the
corresponding jump chain. P and @ are the transition matrices of the jump chains associated
with X and Y, respectively, restricted to S’.
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The transition matrix Q = (Q; ;), jes 1s given as follows:

1 0 0 0 0 0
1—p 0 D 0 o0 0
0 1—p 0 p 0 0
R=1 o0 0 1—-p 0 p 0]-
0 0 0 0o 0 ... 1
and let the transition matrix P = (P, ;), ;. be given as follows:
1 0 0 0 0
KN AN
uN+:;AN 0 MN+:;AN 0 0
0 BUN+1 0 AN41 0
MN+1+THAN$1 MUN+1+HTHAN+1
P = 0 0 KNt 0 _ Angr
HN+2+T+HANt2 HN42+T+AN+2
0 0 0 0 0

Lemma 5.16. Q is stochastically monotonic.

Proof. Consider i = N — 1.
e Let I = N — 1. Then it holds that ng] Qij=1= ijl Qit1,5-
e Let I € {N,N +1}. Then it holds that >0, ;Qi; =0<p=35;Qit1,-
e Let I > N + 2. Then it holds that ZjZI Qi;=0< ijj Qit1,j-
So, for all I € S it holds that Qn_1,. < Q...
Consider 7 > N.
e Let 7€ {N—1,...,i—1}. Then it holds that >, Qi; =1=3";5; Qit1,.
e Let I = 4. Then it holds that ijl Qij=p<1l= ijj Qit1,j-
e Let I =i+ 1. Then it holds that 37,5, Qij =p=>_,5; Qit1,5-
e Let I > ¢+ 2. Then it holds that ZjZI Qi =0< ijl Qit+1,j-
So, for all I € S it holds that Q;. = Qi41,..

Thus, for all ¢ > N it holds that Q;. < Q;41,.. Hence, @ is stochastically monotone.
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0

T
BUN+THAN
T

UN+1+THAN$1

- T
UN42+THANT2
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Lemma 5.17. Q < P.
Proof. It holds that Qn_1,. = Py—_1,. and that @, = Px,.. Hence, we have immediately that
Qn-1,. = Pn_1,. and that Q,. % Px,..
Now, let i € S\{N — 1, 00}.

o Let ] € {N— 1,...77; — 1} Then, ZjZIQiJ =1= ZjZIPiJ'

e Let I € {i,i+1}. Then it holds that } .., Q;; =p and that >, F; ; = #i“_:f_:)\ Since
i > N — 1 we have that A\; > p; (o — €). Then, since 7 > 0, it holds that

Xi+7>p (0 —e€).
Adding (A; + 7) (a* — €) on both sides of this equation yields
N+1)A+a"—e) > (ui+Ni+7)(a" —e).

Since 7 > 0 it holds that u; + 7+ A; > 0, therefore dividing both sides of the equation by
i + 7+ A; is allowed. Moreover, it holds that a* — e > 0, hence 1 4+ a* — € > 0 and thus
dividing both sides of the equation by 1 + a* — € is also allowed. This yields

Ai+T af —e€
>
wi+Tt+XAN o l+a*—e

:p'

Hence, it holds that ijl Qi < ijl P, ;.

o Let I € S\{N—1,...,i,i+1}. Then, 3,0, Qi; =0 < mﬁj;& =51 Pije

So, for all + € S it holds that @;. = F;.. Hence, @ is stochastically not larger than P. O

Definition 5.18. Let (X,,) be a Markov chain on Ny.

neNp

1. Let fi(j-n) be the probability that the Markov chain X, starting in state ¢, reaches state j
for the first time at time n € N, i.e.,

fi(;n) =P(X,=jXs#jforalls=1,2,...,n—1| Xo=1).

2. Let fi(.,?) be the probability that the Markov chain X, starting in state ¢, has reached state
j before or at time n € N, i.e.,

fir;) =P(3te{l,2,....,n}: X, =j | Xo=1).

3. Let f;; be the probability that the Markov chain X, starting in state i, reaches state j,
ie.,
fig =PUE X =4} [ Xo=1).

We will call f; ; the first entrance probability if j, starting in i.
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Remark 5.19. It holds that

fii=> fi(jn),
n=1
fij = lim ff,’}),

and that

n

() _ N~ (=R
fiJ 7Zfi7j ’

k=1

Hence, both Definition 5.18.1 and Definition 5.18.2 can be used to describe the absorption prob-
ability f; ; as defined in Definition 5.18.3. We will use Definition 5.18.2 later, however the proof
of Theorem 5.20 uses Definition 5.18.1.

Recall that g, is that probability that the Markov chain, starting in state n, reaches state n — 1
before time T'. For the extended jump Markov chain with killed state oo, it holds that ¢, = fyn n—1
for all n € Np.

We recall that Sy is an infinite state space. Therefore the following theorem holds true for the

models we consider.

Theorem 5.20. Let j € S be given. Let S' = {i € S| fi; > 0}. Then it holds that {fi ;ties: is
the minimal, non-negative solution of the equations

i =Dij+ Y Pikge, for alli€ S (37)
k#j

This theorem is proven as Theorem 1.13 in [3].
For the next lemma, we rename the states of the state space Sy = {N — 1, N, ...} U{oo} by
So ={0,1,...} U{oo}. Therefore, we are now interested in the probability fi o.

Lemma 5.21. Consider the Markov chain with transition matriz Q as given in Eqn. (35).
Then,

1-—p
fio=——".
P

Proof. For the Markov chain with transition matrix @, as given in Eqn. (35), with j = 0 it holds
that
S’ ::{i€S|f¢,j >0}:N0.

It holds that feo = 0 and fio = pfit1,0 + (1 —p)fi—1,0 for i € S'\{0}. Note that foo # 0
necessarily. However, for convenience of notation, we write fy o = 1.

For all € S’ we can write f@o = pfi,O + (1 —p)fi,o. Then,

p(fio — firr0) = (1 =p) (fic1,0 — fio)-

Define g(i) := fio — fit1,0 for all i € S’. Then,

o(i) = ~—Lg(i ~ 1),
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by iteration,

g(i) = (H))ig(o) = (1 _p>i “(foo = f10) = (?)i (1= fr0),

since fo,0 = 1.

Assume that lima/—oo far,0 = 0. Then, for all i € S’,

fio= lim [(fio — fi+1,0) + (fix1,0 — fit2,0) + - (far—1,0 — faro) + far0] (38)

M—o0

M-—1
~ lim [Z (k)] + Faro

M —o0

k=i
' M-1 l—p k '
= (1= fro)- @gnm > (p) +A}5nme,o>
(1f1,o)~<k}lglooL (p) +0>

=(1-fi0)- | lim (%p) __

=(1- fio)-

where we use that 1]'%” < 1. Hence, for all : € S/, we have that

()

fio =01~ fi0)" T (39)

when we assume that limps_,00 far0 = 0. We can check that f;o, ¢ € S’, in Eqn. (39) are a
solution to Eqn. (37). It remains to show that Eqn. (39) is the minimal solution.

However, we do not yet know that limy/ o far,0 = 0, but we do know that fy; o > 0, for all
M € Sy. Then, the first equality of Eqn. (38) becomes an >, hence

()

1— 1=p"
P

fio> 10— fio)-

(40)
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Substitution of ¢ = 2 in Eqn. (40) gives that

1;17)2
f20> (1= f10)- p7~

Then, using that f1 o9 =1—p+ pfa,o, we get

P
1— L=p
P

fio>1—=p+p-(1—fio)-

>1— 21— :
= fio=21-p+p - (1- fio) op— 1
(1-p)°
— >1— 1— SRS A
fio=21=p+(1- fio) 1
(1-p)°
= 1 >1-— P ——
fio- ( + 1 ) > p+ 1
= fro- (2214 0-p°) 2 (1-p) (@ -1+ (1 -p)’
= fio-(2p 71+172p+p)22p7172p2+p+172p+p2
— fiop’>p—
= fi0> p
Thus,
17
fl,oZip (41)

for any solution of Eqn. (37).
Rewriting Eqn. (39), with ¢ = 1, gives the solution

fio= % (42)

Hence, combining Eqn. (41) and Eqn. (42) gives that f1o = 1%’ is the minimal solution of
f10- O

Recall that we only adjusted the numbering of the states for the previous lemma. So, we now
we consider again the state space Sy_1.

Notice that p > % implies for the Y-model that fxy ny—1 = 1[);” < 1.

Lemma 5.22. It holds that q %p

Proof. Since a* > 1 there exists a € > 0 such that o™ — e > 1. Take such an €. Since a* exists,
there exists N € N such that for all n > N it holds that An L 2> a* —e. Take such a N.

Recall the processes X and Y. The corresponding transition matrices P and @ of the processes X
and Y, respectively, with state space Sy_1 are given by the matrices in Eqn. (36) and Eqn. (35).
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In Lemma 5.16 it is proven that the transition matrix @ of the process Y is stochastically
monotone. In Lemma 5.17 it is proven that @ < P.

Let the function f: Sy_1 — R be given by f(i) = 1g, (7). For notational purposes, define
f(N —2) =0. Then, f is a non-decreasing function.

Since f is a non-decreasing function, @ < P and @ is stochastically monotonic, Theorem 5.15
gives that Q™ < P™. Then, using Lemma 5.11, it follows that Q™ f < P™f. Therefore,

SooQufG) < Y. PG (43)

JESN-1 ]ESN 1

The entries of the matrices P and @ are given by p; ; and g; ;, respectively. Furthermore, it
holds that P; = P(X,, = j | Xo = 1), i.e., the probability that the process is in state j after n

jumps, given that it started in state ¢. For the remainder of this proof denote by f ) (P) and

fi(g)(Q) the probability f; (n ]) for the process X and Y, respectively. Moreover, denote by fi;(P)
and f; ;(Q) the first entrance probability f; ; for the process X and Y, respectively.

Let n € N be arbitrary. For all 7 € S’ it holds that

2: Pf ' 2: HSN

JESN -1 JESN-1

= > Py

JESN

=Y P(X,=jlXo=1)

JESN
(—)P(Xt#N—lwe{l,z,...,n}|X0:i)
=1-P(X;=N—1forsomete{1,2,....,n}| Xo=1)
:1_fi(,7ll\;—1(P)7 (44)

where (*) holds since N — 1 is an absorbing state, i.e., P(X,, = N —1| Xo=N —1) =1 for all
n € N.

Analogously, it follows for all i € Sy_1, that

Y6 =1-£2(Q). (45)

JESN-1
Using Eqn. (44) and Eqn. (45) together with Eqn. (43) gives for all n € N that

1— N (@) <1— fIN_1(P),

hence
I @Q) = [ (P).
For all i € Sy_1 it holds that

fin—1(P) = lim {3 (P) < lim fi¥_,(Q) = fin-1(Q). (46)
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Recall fx n—1(P) = gn. Combining this with Eqn. (46) yields for all N € N, with % >a*—e€
for all n > N, that

1—p
an = fun-1(P) < fyn-1(Q) = S <1
Consequently,
. 1—p
limsupgy < —— < 1.
N—o00 b
O
Corollary 5.23. It holds that g+ = L.
Proof. To prove the statement, we will first prove that 1%) > al . It holds that
1-p_ 1-me
p 11(){:-7-6
1
_ 14a*—e
T _a*—¢
14+a*+e
_ 1
Caf—e¢
1
> —.
2
In Lemma 5.8 it is shown that ¢ € { %, 1}. Hence, it immediately follows that ¢* = % O

5.2 Proof of part 2 of Theorem 5.2

Now we can prove the second part of Theorem 5.2.

Proof of part 2 of Theorem 5.2. Recall that o® > 0 and * > 0. Let go = 0 and let ¢,,, n € N be
given by Eqn. (24), i.e.,
Pn +T+ A0 pn

225 AnGn

dn+1 =

for all n € N.

Combination of Lemma 5.4 and Lemma 5.6 proves the statement if the theorem for o*, 5* > 0.
Lemma, 5.7 proves the statement for f* =0 and 0 < a® < 1.

Combination of Lemma 5.8, Lemma 5.22 and Corollary 5.23, proves the statement for a* > 1
and 5* = 0. O
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6 Summary of the theoretical results in [1]

Ellens et al. describe in Section 2 of [1] a method to determine the probability that the maximum
of a birth-death process over an interval with initial state and end state given exceeds a certain
level. To determine this probability over an interval of deterministic length, they first determine
this probability on an interval of exponential length.

After considering an interval of exponential length, Ellens et al. use the property that an Erlang
distributed time converges to a deterministic time to calculate the probability that the maximum
of a birth-death process over a deterministic interval with initial state and end state given exceeds
a certain level.

Since the exponential interval is used to calculate the probability on a deterministic interval, in
this chapter we will describe the steps Ellens et al. took in Section 2 in [1]. That way, we also
give a motivation as to why we considered the killed birth-death process before.

In Subsection 6.1 we will summarize the results of Section 2.2 of [1], and in Subsection 6.2 we
will summarize the results of Section 2.3 of [I]. Note that Section 2.1 of [1] is already discussed
in this thesis in Chapter 2.

Since, we consider the stochastic process on an interval [0,7] (of random duration) before we
consider the process on an interval of deterministic length, we used the killed birth-death process
in the previous chapters to model the process on an interval of exponential length. Since we use
the exponential interval to later consider the deterministic interval, the deterministic interval is
the motivation to consider the killed birth-death process.

6.1 Maximum over an exponential interval; initial and terminal state
given

Section 2.2 in [1] derives an expression for the probability that the maximum of the process X
is equal to m on a stochastic interval T" given that it starts in state ¢ and finishes in state j. In
this subsection we will explain how Ellens et al. derived this expression and we will also give the
expression for the probability that the maximum of the process X is at most m on a stochastic
interval T' given that it starts in state ¢ and finishes in state j.

Recall Definition 2.7.

Definition 6.1.

1. Let 7,5 := P(Xr = m | Xo = i, X7 = j) be the probability that the maximum of the
process X equals the level m, given that the process started in state 4 and finished at time
T in state j.

2. Let 7 := P(Xr < m | Xo = i, X7 = j) be the probability that the maximum of the
process X does not exceed the level m, given that the process started in state ¢ and finished
at time 7' in state j.
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Proposition 6.2.
1. Fori,j <m it holds that rp, ;5 < T -
2. Fori=m it holds that rp ;i = Tm.,i;-
3. For j =m it holds that v, ;5 = Tm,,j-
4. Fori>m it holds that ;5 =0 =T 5.
5

. For j > m it holds that vy, ;5 =0 =Ty 5 5.

Proof.
1. Let 4,5 < m. Since

P(Xr<m|Xo=1i,Xr=j)=> P(Xp=k|Xo=i,Xp=j)>PXr=m|Xo=i,Xr=j),
k=1

it holds that 7y, ; < T i j-

2. Let ¢ = m. Then,
Tmij = Tmm.j =P(Xr =m| Xo=m, X7 = j)
and
Tmyi,j = Tmm,j = P(Xp <m | Xo=m,Xrp =j) =P(Xr =m | Xo =m, Xp = j).

Thus, 7,5 = Tm,i,; for i =m.
3. Similar as for the case where ¢ = m, we get for j = m that ry, ; j = T -
4. Let i > m. Then X7 >4 > m, hence Ty = 0= Tm ;-

5. Let j > m. Then, analogously to the case i > m, it holds that X7 > j > m, and thus
Tmig = 0= Timij-

O

Now that we have proven some properties of the probabilities 7, ; ; and 7y, ; j, we can introduce
the following concept.

Definition 6.3.

1. Let Smj5 = P(Xr = m, X7 = j | Xo = i) be the probability that the maximum of the
process X equals the level m and finishes at time 7" in state j, given that the process started
in state 1.

2. Let 8,4 := P(Xr < m,Xr = j | Xo = i) be the probability that the maximum of the
process X does not exceed the level m and finishes at time 7T in state j, given that the
process started in state 1.

The above definition can be used to give an expression for the probabilities 7, ; ; and 7y, 4 ; in
the following way.
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Proposition 6.4. It holds that vy, ; = —mid  and that Tm,ij = —Smaig

limy, 00 8n,4,5 limy, o0 Sn,i,j

Proof. Tt holds that

T =P(X7=m| Xo=1i,Xr = j)
]P’(Xsz,XT:j|X0:i)
P(Xp =j | Xo =1)

_ P(XT:m,XT:j|X0=i)
limn_mo P(XT S TL,XT :] | Xo = Z)

Smi,j

N hmn—>oo gn,i,j .
Analogously, it holds that

Fm.i; = P(Xr <m| Xo =i, Xp = j)
P(Xr <m,Xr=j|Xo=1)
P(Xr =j|Xo=1)
L PXr<m, Xr=j|Xo=1)
Climy e P(Xp <0, X =3 | Xo = i)

Sm,ij

hmn—>oo gn,i,j

In Section 2.2 of [1], Ellens et al. state that

_ { (pipi+l Tees 'pm—l)ﬁm,ja Zm] S m,
Smyi,j =

0, 1>morj>m,
and
>\mflyin+7 (pm—lﬁm,j +pm—1,j)v J<m,
= _ T m ~ Y —
Pm,; = PN T——— + ot pim pr Pm—1Pm,m, ] =,
) ] >m.

Eqns. (47) and (48) are then used to prove

P i = <:umpm Hm—1Pm—1 o :u'j+1pj+1> ) TPj
L N W W e )

and

_ Hi+1 Hm T
Sm,i,j = (pipi—i-l"'pm—l) : (pjp]-‘rlpm) : N
Mot Am) N
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0. — m
Proposition 6.5. Sy.i; = > ax(i i} Skii-

Proof. Tt holds that

m
Smyig =PXp <m,Xp=j|Xo=1)= Zsk7i,j
k=0

max{i,j}—1

m
E Skyi,j T E Sk,i,j

k=0 max{i,j}

max{i,j}—1

Z 0+ Z Sk,i,j
k=0 max{i,j}

m

= E Skyiyj-

max{i,j}

O

Combining Proposition 6.5 with Proposition 6.4 gives 7, ; j and 7p, ; ; in terms of the probabilities
Pn, for which we have a recursive way of calculating them. This concludes the calculation of the
probabilities r,, ; ; and 7y, ; ;.

Before we consider the deterministic interval, we first will introduce two matrices.

Definition 6.6.
1. Let Sy, be the matrix with (4, 7)th entry given by 8, ; ;.
2. Let sy, be the matrix with (4, j)th entry given by sy, ;.

6.2 Maximum over a deterministic interval

Notation 6.7. Let T} denote the sum of k£ € N independent exponential distributed random
variables, with mean % So,

k
o= T,
n=1
where T n = 1,...,k, are independent exponentially distributed random variables, all with
t
mean .
k

Then, T} is Erlang distributed with mean t. With the Strong Law of Large Numbers it follows
that T}, — t as k — oo, with probability 1. Since T} converges to a deterministic time ¢ as k — oo,

we will use this to approximate 53, ; ., and s}, ; ;,, where 57, ; ., and s, ; ., are defined as follows.

Definition 6.8.
1. Let s* t::P(XtSm,Xt :j|X0:Z)

m,,7,

2. Let sy, ;0= P(X; =m, X; =7 | Xo =1).
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In the previous section we considered the maximum over an exponential time interval with
the initial and terminal states of the process given. Section 2.3 of [1] studied the maximum
over a deterministic interval with the initial and terminal states of the process given. So, the
deterministic-time counterpart of 7, ; j, denoted by Gm,i ¢, is considered. Therefore, this subsec-
tion will evaluate not only Gy ¢, but also the deterministic-time counterpart of 7, ; j, denoted
by Gm,i,j,¢- This will give an analogous relation as for 7, ;; and r,,, ;, when replacing the ex-
ponentially distributed time T by the deterministic time ¢. However, now the relation is less
amenable.

Definition 6.9. Let ¢t > 0 be given.

1. Let (jm,i,j,t = P(Xt S m | XO = i,Xt = ])

2. Let ¢m,ijt = P(X; =m | Xo =14, X; = j) be the deterministic counterpart of T'mij-

Let M be a sufficiently large truncation level.

Notation 6.10.
1. Let S‘%T be the (M + 1) x (M + 1)-matrix with (¢, j)th entry given by 5., ;.

2. Let S%T be the (M + 1) x (M + 1)-matrix with (¢, j)th entry given by sy, ;.

It holds that (S f‘f ket S % T,C) is the probability that the truncated process never reaches
T T /i
a state above m during time Tj. Recall that TF, ..., T,f are all independent and identically

distributed. Therefore,

Mgy Y = (s2)
Analogously,

S gy S = (8,)

sd m, Ly m,

Section 2.3 in [1] derives

]

_ k _ _
(JLH;O (52, ) = (55), =PB(Xy <m, Xy = | Xo=1) = S0
ivj
. M k > . .
(kli)rrgo (Sm’le> > = (S:”vt)i,j =PXy=m, Xy =37 Xo=1) =55,
ivj

*
m,t,7,

*

To calculate the probabilities Gp, i 5+ and g s ;¢ of interest we can use 5 ¢ and s7, o, Te-

spectively. It holds that

Gmije =P(Xy <m | Xo =4, X¢ = j)
_P(thm,Xt:]‘X():Z)
P(X: =j | Xo =1)

<%
Smijt

* ..
m,i,j.¢

lim,,yoo S
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and it holds that

dm,i,jt = P(Xt =m | Xo=1X; = j)
IP’()_(t:m,thj\oni)

T P(X, = | Xo=1)

%
Smijt
! )
m,i, gt

lim,,yoo S
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7 Discussion

We started this research by reading the first two chapters of the article of Ellens et al., [1].
While reading these chapters, we became interested in the behaviour of the probabilities p,, and
Gn- Since the probabilities p, have a forward recursive formula, these probabilities could be
numerically analyzed in Excel for the M|M|c-model, ¢ € NU {oo}. That way we hoped to get
more feeling with these probabilities before moving on to the next part of the article. However,
during this numerical analysis, it turned out that we could give some interesting conjectures about
the behaviour of the probabilities p,. Therefore, we decided to prove some of these conjectures.

The original idea was that after studying the first two chapters we would study the rest of the
article to see if we could extend this research. However, proving properties about the behaviour
of the probabilities p,, turned out to be harder than anticipated. Therefore, we decided that we
would spend more time on researching the properties of the probabilities p,. We proved that
under some mild restrictions the limit p* = lim,,_, », p,, exists and we gave an expression for p*.
In the proof of this theorem, one case turned out to be harder than the other cases. However,
using a upper bound for the limit superior, also this case could be proven.

Since the recursive formulas of p, and ¢, have a similar look, we decided that it would be
interesting to research the probability ¢, and see if these probabilities also converge. As is turns
out, for most cases, the proof of this theorem goes in a similar way to the proof of the limiting
value of p,. However, one case turned out to be harder than the other cases. For this case we
could not use the same trick as for the theorem about p*. For this proof we needed to introduce
the concept of stochastic monotonicity. Using this concept, we were able to also prove that under
some mild conditions the limit ¢* = lim,,_,, ¢, exists and give an expression for ¢*. Therefore,
the main results of this thesis are the two theorems that give a statement about the limiting
values p* and ¢*, i.e., Theorem 4.1 and Theorem 5.2. Some further research could be done to
find if (and how) stochastic monotonicity can also be used to proof part of Theorem 4.1.

58



Appendix

Example A " T
1 0.75 | 1 2
2 0.75 | 1 1.75
3 0.75 | 1 1.5
4 0.75 | 1 1.25
5 0.75 | 1 1
6 0.75 | 1 0.75
7 0.75 | 1 0.5
8 0.75 | 1 0.4
9 0.75 | 1 0.3
10 0.75 | 1 0.25
11 0.75 | 1 0.2
12 0.75 | 1 0.15
13 0.75 | 1 0.1
14 0.75 | 1 0.05
15 0.75 | 1 0.01
16 0.75 | 1 | 0.001
17 0.75 | 1 | 0.0001

Table 1: Fixed A and p, with various 7.

Example A wl T
1 09999 | 1 |1
2 0999 | 1|1
3 0.99 1|1
4 0.9 1|1
5 0.8 1|1
6 0.75 1|1
7 0.7 1|1
8 0.6 111
9 0.5 1|1
10 0.1 1|1

Table 2: Fixed p and 7, with various .

Example H A ‘ I ‘ T
1 099 | 1105
2 075 | 1105
3 05 | 105
4 0.1 | 1]05

Table 3: Fixed p and 7, with various A.
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Example H A ‘ w ‘ T
1 099 | 1|01
2 0.7 | 1] 0.1
3 05 | 1]0.1
4 01 | 1]0.1

Table 4: Fixed p and 7, with various A.

Example H A ‘ I ‘ T
1 099 | 1] 0.01
2 0.75 |11 0.01
3 05 | 10.01
4 0.1 | 1]0.01

Table 5: Fixed p and 7, with various A.
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Example A J T
1 001 ] 1 0.5
2 0.1 1 0.5
3 0.5 1 0.5
4 1 1 0.5
5 5 1 0.5
6 1 0.1] 05
7 1 0.5 ] 0.5
8§=4 1 1 0.5
9 1 5 0.5
10 1 10 0.5
11 5 0.1 ] 0.5
12 5 0.5 ] 0.5
13=5 5 1 0.5
14 5 5 0.5
15 5 10 0.5
16 001 |01 ] 0.5
17 001 | 05| 0.5
18=1 001 ] 1 0.5
19 001 ] 5 0.5
20 0.01 | 10 0.5
21 1 5 0.01
22 1 5 0.1
23=9 1 5 0.5
24 1 5 1
25 1 5 5
26 1 0.5 | 0.01
27 1 05| 0.1
28=7 1 0.5 ] 0.5
29 1 0.5 1
30 1 0.5 5
31 075 | 1 2
32 075 | 1 0.75
33 075 | 1 0.2
34 0.75 | 1 | 0.001
35 0.75 | 1 | 0.002
36 0.75 | 0.5 | 0.01

Table 6: 36 situations where A, p and 7 can vary.
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